Loading...
Note: File does not exist in v6.2.
1// SPDX-License-Identifier: MIT
2/*
3 * Copyright © 2023 Intel Corporation
4 */
5
6#include "xe_devcoredump.h"
7#include "xe_devcoredump_types.h"
8
9#include <linux/ascii85.h>
10#include <linux/devcoredump.h>
11#include <generated/utsrelease.h>
12
13#include <drm/drm_managed.h>
14
15#include "xe_device.h"
16#include "xe_exec_queue.h"
17#include "xe_force_wake.h"
18#include "xe_gt.h"
19#include "xe_gt_printk.h"
20#include "xe_guc_capture.h"
21#include "xe_guc_ct.h"
22#include "xe_guc_log.h"
23#include "xe_guc_submit.h"
24#include "xe_hw_engine.h"
25#include "xe_module.h"
26#include "xe_pm.h"
27#include "xe_sched_job.h"
28#include "xe_vm.h"
29
30/**
31 * DOC: Xe device coredump
32 *
33 * Devices overview:
34 * Xe uses dev_coredump infrastructure for exposing the crash errors in a
35 * standardized way.
36 * devcoredump exposes a temporary device under /sys/class/devcoredump/
37 * which is linked with our card device directly.
38 * The core dump can be accessed either from
39 * /sys/class/drm/card<n>/device/devcoredump/ or from
40 * /sys/class/devcoredump/devcd<m> where
41 * /sys/class/devcoredump/devcd<m>/failing_device is a link to
42 * /sys/class/drm/card<n>/device/.
43 *
44 * Snapshot at hang:
45 * The 'data' file is printed with a drm_printer pointer at devcoredump read
46 * time. For this reason, we need to take snapshots from when the hang has
47 * happened, and not only when the user is reading the file. Otherwise the
48 * information is outdated since the resets might have happened in between.
49 *
50 * 'First' failure snapshot:
51 * In general, the first hang is the most critical one since the following hangs
52 * can be a consequence of the initial hang. For this reason we only take the
53 * snapshot of the 'first' failure and ignore subsequent calls of this function,
54 * at least while the coredump device is alive. Dev_coredump has a delayed work
55 * queue that will eventually delete the device and free all the dump
56 * information.
57 */
58
59#ifdef CONFIG_DEV_COREDUMP
60
61/* 1 hour timeout */
62#define XE_COREDUMP_TIMEOUT_JIFFIES (60 * 60 * HZ)
63
64static struct xe_device *coredump_to_xe(const struct xe_devcoredump *coredump)
65{
66 return container_of(coredump, struct xe_device, devcoredump);
67}
68
69static struct xe_guc *exec_queue_to_guc(struct xe_exec_queue *q)
70{
71 return &q->gt->uc.guc;
72}
73
74static ssize_t __xe_devcoredump_read(char *buffer, size_t count,
75 struct xe_devcoredump *coredump)
76{
77 struct xe_device *xe;
78 struct xe_devcoredump_snapshot *ss;
79 struct drm_printer p;
80 struct drm_print_iterator iter;
81 struct timespec64 ts;
82 int i;
83
84 xe = coredump_to_xe(coredump);
85 ss = &coredump->snapshot;
86
87 iter.data = buffer;
88 iter.start = 0;
89 iter.remain = count;
90
91 p = drm_coredump_printer(&iter);
92
93 drm_puts(&p, "**** Xe Device Coredump ****\n");
94 drm_puts(&p, "kernel: " UTS_RELEASE "\n");
95 drm_puts(&p, "module: " KBUILD_MODNAME "\n");
96
97 ts = ktime_to_timespec64(ss->snapshot_time);
98 drm_printf(&p, "Snapshot time: %lld.%09ld\n", ts.tv_sec, ts.tv_nsec);
99 ts = ktime_to_timespec64(ss->boot_time);
100 drm_printf(&p, "Uptime: %lld.%09ld\n", ts.tv_sec, ts.tv_nsec);
101 drm_printf(&p, "Process: %s\n", ss->process_name);
102 xe_device_snapshot_print(xe, &p);
103
104 drm_printf(&p, "\n**** GT #%d ****\n", ss->gt->info.id);
105 drm_printf(&p, "\tTile: %d\n", ss->gt->tile->id);
106
107 drm_puts(&p, "\n**** GuC Log ****\n");
108 xe_guc_log_snapshot_print(ss->guc.log, &p);
109 drm_puts(&p, "\n**** GuC CT ****\n");
110 xe_guc_ct_snapshot_print(ss->guc.ct, &p);
111
112 drm_puts(&p, "\n**** Contexts ****\n");
113 xe_guc_exec_queue_snapshot_print(ss->ge, &p);
114
115 drm_puts(&p, "\n**** Job ****\n");
116 xe_sched_job_snapshot_print(ss->job, &p);
117
118 drm_puts(&p, "\n**** HW Engines ****\n");
119 for (i = 0; i < XE_NUM_HW_ENGINES; i++)
120 if (ss->hwe[i])
121 xe_engine_snapshot_print(ss->hwe[i], &p);
122
123 drm_puts(&p, "\n**** VM state ****\n");
124 xe_vm_snapshot_print(ss->vm, &p);
125
126 return count - iter.remain;
127}
128
129static void xe_devcoredump_snapshot_free(struct xe_devcoredump_snapshot *ss)
130{
131 int i;
132
133 xe_guc_log_snapshot_free(ss->guc.log);
134 ss->guc.log = NULL;
135
136 xe_guc_ct_snapshot_free(ss->guc.ct);
137 ss->guc.ct = NULL;
138
139 xe_guc_capture_put_matched_nodes(&ss->gt->uc.guc);
140 ss->matched_node = NULL;
141
142 xe_guc_exec_queue_snapshot_free(ss->ge);
143 ss->ge = NULL;
144
145 xe_sched_job_snapshot_free(ss->job);
146 ss->job = NULL;
147
148 for (i = 0; i < XE_NUM_HW_ENGINES; i++)
149 if (ss->hwe[i]) {
150 xe_hw_engine_snapshot_free(ss->hwe[i]);
151 ss->hwe[i] = NULL;
152 }
153
154 xe_vm_snapshot_free(ss->vm);
155 ss->vm = NULL;
156}
157
158static ssize_t xe_devcoredump_read(char *buffer, loff_t offset,
159 size_t count, void *data, size_t datalen)
160{
161 struct xe_devcoredump *coredump = data;
162 struct xe_devcoredump_snapshot *ss;
163 ssize_t byte_copied;
164
165 if (!coredump)
166 return -ENODEV;
167
168 ss = &coredump->snapshot;
169
170 /* Ensure delayed work is captured before continuing */
171 flush_work(&ss->work);
172
173 if (!ss->read.buffer)
174 return -ENODEV;
175
176 if (offset >= ss->read.size)
177 return 0;
178
179 byte_copied = count < ss->read.size - offset ? count :
180 ss->read.size - offset;
181 memcpy(buffer, ss->read.buffer + offset, byte_copied);
182
183 return byte_copied;
184}
185
186static void xe_devcoredump_free(void *data)
187{
188 struct xe_devcoredump *coredump = data;
189
190 /* Our device is gone. Nothing to do... */
191 if (!data || !coredump_to_xe(coredump))
192 return;
193
194 cancel_work_sync(&coredump->snapshot.work);
195
196 xe_devcoredump_snapshot_free(&coredump->snapshot);
197 kvfree(coredump->snapshot.read.buffer);
198
199 /* To prevent stale data on next snapshot, clear everything */
200 memset(&coredump->snapshot, 0, sizeof(coredump->snapshot));
201 coredump->captured = false;
202 coredump->job = NULL;
203 drm_info(&coredump_to_xe(coredump)->drm,
204 "Xe device coredump has been deleted.\n");
205}
206
207static void xe_devcoredump_deferred_snap_work(struct work_struct *work)
208{
209 struct xe_devcoredump_snapshot *ss = container_of(work, typeof(*ss), work);
210 struct xe_devcoredump *coredump = container_of(ss, typeof(*coredump), snapshot);
211 struct xe_device *xe = coredump_to_xe(coredump);
212 unsigned int fw_ref;
213
214 /*
215 * NB: Despite passing a GFP_ flags parameter here, more allocations are done
216 * internally using GFP_KERNEL expliictly. Hence this call must be in the worker
217 * thread and not in the initial capture call.
218 */
219 dev_coredumpm_timeout(gt_to_xe(ss->gt)->drm.dev, THIS_MODULE, coredump, 0, GFP_KERNEL,
220 xe_devcoredump_read, xe_devcoredump_free,
221 XE_COREDUMP_TIMEOUT_JIFFIES);
222
223 xe_pm_runtime_get(xe);
224
225 /* keep going if fw fails as we still want to save the memory and SW data */
226 fw_ref = xe_force_wake_get(gt_to_fw(ss->gt), XE_FORCEWAKE_ALL);
227 if (!xe_force_wake_ref_has_domain(fw_ref, XE_FORCEWAKE_ALL))
228 xe_gt_info(ss->gt, "failed to get forcewake for coredump capture\n");
229 xe_vm_snapshot_capture_delayed(ss->vm);
230 xe_guc_exec_queue_snapshot_capture_delayed(ss->ge);
231 xe_force_wake_put(gt_to_fw(ss->gt), fw_ref);
232
233 xe_pm_runtime_put(xe);
234
235 /* Calculate devcoredump size */
236 ss->read.size = __xe_devcoredump_read(NULL, INT_MAX, coredump);
237
238 ss->read.buffer = kvmalloc(ss->read.size, GFP_USER);
239 if (!ss->read.buffer)
240 return;
241
242 __xe_devcoredump_read(ss->read.buffer, ss->read.size, coredump);
243 xe_devcoredump_snapshot_free(ss);
244}
245
246static void devcoredump_snapshot(struct xe_devcoredump *coredump,
247 struct xe_sched_job *job)
248{
249 struct xe_devcoredump_snapshot *ss = &coredump->snapshot;
250 struct xe_exec_queue *q = job->q;
251 struct xe_guc *guc = exec_queue_to_guc(q);
252 u32 adj_logical_mask = q->logical_mask;
253 u32 width_mask = (0x1 << q->width) - 1;
254 const char *process_name = "no process";
255
256 unsigned int fw_ref;
257 bool cookie;
258 int i;
259
260 ss->snapshot_time = ktime_get_real();
261 ss->boot_time = ktime_get_boottime();
262
263 if (q->vm && q->vm->xef)
264 process_name = q->vm->xef->process_name;
265 strscpy(ss->process_name, process_name);
266
267 ss->gt = q->gt;
268 coredump->job = job;
269 INIT_WORK(&ss->work, xe_devcoredump_deferred_snap_work);
270
271 cookie = dma_fence_begin_signalling();
272 for (i = 0; q->width > 1 && i < XE_HW_ENGINE_MAX_INSTANCE;) {
273 if (adj_logical_mask & BIT(i)) {
274 adj_logical_mask |= width_mask << i;
275 i += q->width;
276 } else {
277 ++i;
278 }
279 }
280
281 /* keep going if fw fails as we still want to save the memory and SW data */
282 fw_ref = xe_force_wake_get(gt_to_fw(q->gt), XE_FORCEWAKE_ALL);
283
284 ss->guc.log = xe_guc_log_snapshot_capture(&guc->log, true);
285 ss->guc.ct = xe_guc_ct_snapshot_capture(&guc->ct);
286 ss->ge = xe_guc_exec_queue_snapshot_capture(q);
287 ss->job = xe_sched_job_snapshot_capture(job);
288 ss->vm = xe_vm_snapshot_capture(q->vm);
289
290 xe_engine_snapshot_capture_for_job(job);
291
292 queue_work(system_unbound_wq, &ss->work);
293
294 xe_force_wake_put(gt_to_fw(q->gt), fw_ref);
295 dma_fence_end_signalling(cookie);
296}
297
298/**
299 * xe_devcoredump - Take the required snapshots and initialize coredump device.
300 * @job: The faulty xe_sched_job, where the issue was detected.
301 *
302 * This function should be called at the crash time within the serialized
303 * gt_reset. It is skipped if we still have the core dump device available
304 * with the information of the 'first' snapshot.
305 */
306void xe_devcoredump(struct xe_sched_job *job)
307{
308 struct xe_device *xe = gt_to_xe(job->q->gt);
309 struct xe_devcoredump *coredump = &xe->devcoredump;
310
311 if (coredump->captured) {
312 drm_dbg(&xe->drm, "Multiple hangs are occurring, but only the first snapshot was taken\n");
313 return;
314 }
315
316 coredump->captured = true;
317 devcoredump_snapshot(coredump, job);
318
319 drm_info(&xe->drm, "Xe device coredump has been created\n");
320 drm_info(&xe->drm, "Check your /sys/class/drm/card%d/device/devcoredump/data\n",
321 xe->drm.primary->index);
322}
323
324static void xe_driver_devcoredump_fini(void *arg)
325{
326 struct drm_device *drm = arg;
327
328 dev_coredump_put(drm->dev);
329}
330
331int xe_devcoredump_init(struct xe_device *xe)
332{
333 return devm_add_action_or_reset(xe->drm.dev, xe_driver_devcoredump_fini, &xe->drm);
334}
335
336#endif
337
338/**
339 * xe_print_blob_ascii85 - print a BLOB to some useful location in ASCII85
340 *
341 * The output is split into multiple calls to drm_puts() because some print
342 * targets, e.g. dmesg, cannot handle arbitrarily long lines. These targets may
343 * add newlines, as is the case with dmesg: each drm_puts() call creates a
344 * separate line.
345 *
346 * There is also a scheduler yield call to prevent the 'task has been stuck for
347 * 120s' kernel hang check feature from firing when printing to a slow target
348 * such as dmesg over a serial port.
349 *
350 * @p: the printer object to output to
351 * @prefix: optional prefix to add to output string
352 * @suffix: optional suffix to add at the end. 0 disables it and is
353 * not added to the output, which is useful when using multiple calls
354 * to dump data to @p
355 * @blob: the Binary Large OBject to dump out
356 * @offset: offset in bytes to skip from the front of the BLOB, must be a multiple of sizeof(u32)
357 * @size: the size in bytes of the BLOB, must be a multiple of sizeof(u32)
358 */
359void xe_print_blob_ascii85(struct drm_printer *p, const char *prefix, char suffix,
360 const void *blob, size_t offset, size_t size)
361{
362 const u32 *blob32 = (const u32 *)blob;
363 char buff[ASCII85_BUFSZ], *line_buff;
364 size_t line_pos = 0;
365
366#define DMESG_MAX_LINE_LEN 800
367 /* Always leave space for the suffix char and the \0 */
368#define MIN_SPACE (ASCII85_BUFSZ + 2) /* 85 + "<suffix>\0" */
369
370 if (size & 3)
371 drm_printf(p, "Size not word aligned: %zu", size);
372 if (offset & 3)
373 drm_printf(p, "Offset not word aligned: %zu", size);
374
375 line_buff = kzalloc(DMESG_MAX_LINE_LEN, GFP_KERNEL);
376 if (IS_ERR_OR_NULL(line_buff)) {
377 drm_printf(p, "Failed to allocate line buffer: %pe", line_buff);
378 return;
379 }
380
381 blob32 += offset / sizeof(*blob32);
382 size /= sizeof(*blob32);
383
384 if (prefix) {
385 strscpy(line_buff, prefix, DMESG_MAX_LINE_LEN - MIN_SPACE - 2);
386 line_pos = strlen(line_buff);
387
388 line_buff[line_pos++] = ':';
389 line_buff[line_pos++] = ' ';
390 }
391
392 while (size--) {
393 u32 val = *(blob32++);
394
395 strscpy(line_buff + line_pos, ascii85_encode(val, buff),
396 DMESG_MAX_LINE_LEN - line_pos);
397 line_pos += strlen(line_buff + line_pos);
398
399 if ((line_pos + MIN_SPACE) >= DMESG_MAX_LINE_LEN) {
400 line_buff[line_pos++] = 0;
401
402 drm_puts(p, line_buff);
403
404 line_pos = 0;
405
406 /* Prevent 'stuck thread' time out errors */
407 cond_resched();
408 }
409 }
410
411 if (suffix)
412 line_buff[line_pos++] = suffix;
413
414 if (line_pos) {
415 line_buff[line_pos++] = 0;
416 drm_puts(p, line_buff);
417 }
418
419 kfree(line_buff);
420
421#undef MIN_SPACE
422#undef DMESG_MAX_LINE_LEN
423}