Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.2.
  1// SPDX-License-Identifier: MIT
  2/*
  3 * Copyright © 2023 Intel Corporation
  4 */
  5
  6#include "xe_devcoredump.h"
  7#include "xe_devcoredump_types.h"
  8
  9#include <linux/ascii85.h>
 10#include <linux/devcoredump.h>
 11#include <generated/utsrelease.h>
 12
 13#include <drm/drm_managed.h>
 14
 15#include "xe_device.h"
 16#include "xe_exec_queue.h"
 17#include "xe_force_wake.h"
 18#include "xe_gt.h"
 19#include "xe_gt_printk.h"
 20#include "xe_guc_capture.h"
 21#include "xe_guc_ct.h"
 22#include "xe_guc_log.h"
 23#include "xe_guc_submit.h"
 24#include "xe_hw_engine.h"
 25#include "xe_module.h"
 26#include "xe_pm.h"
 27#include "xe_sched_job.h"
 28#include "xe_vm.h"
 29
 30/**
 31 * DOC: Xe device coredump
 32 *
 33 * Devices overview:
 34 * Xe uses dev_coredump infrastructure for exposing the crash errors in a
 35 * standardized way.
 36 * devcoredump exposes a temporary device under /sys/class/devcoredump/
 37 * which is linked with our card device directly.
 38 * The core dump can be accessed either from
 39 * /sys/class/drm/card<n>/device/devcoredump/ or from
 40 * /sys/class/devcoredump/devcd<m> where
 41 * /sys/class/devcoredump/devcd<m>/failing_device is a link to
 42 * /sys/class/drm/card<n>/device/.
 43 *
 44 * Snapshot at hang:
 45 * The 'data' file is printed with a drm_printer pointer at devcoredump read
 46 * time. For this reason, we need to take snapshots from when the hang has
 47 * happened, and not only when the user is reading the file. Otherwise the
 48 * information is outdated since the resets might have happened in between.
 49 *
 50 * 'First' failure snapshot:
 51 * In general, the first hang is the most critical one since the following hangs
 52 * can be a consequence of the initial hang. For this reason we only take the
 53 * snapshot of the 'first' failure and ignore subsequent calls of this function,
 54 * at least while the coredump device is alive. Dev_coredump has a delayed work
 55 * queue that will eventually delete the device and free all the dump
 56 * information.
 57 */
 58
 59#ifdef CONFIG_DEV_COREDUMP
 60
 61/* 1 hour timeout */
 62#define XE_COREDUMP_TIMEOUT_JIFFIES (60 * 60 * HZ)
 63
 64static struct xe_device *coredump_to_xe(const struct xe_devcoredump *coredump)
 65{
 66	return container_of(coredump, struct xe_device, devcoredump);
 67}
 68
 69static struct xe_guc *exec_queue_to_guc(struct xe_exec_queue *q)
 70{
 71	return &q->gt->uc.guc;
 72}
 73
 74static ssize_t __xe_devcoredump_read(char *buffer, size_t count,
 75				     struct xe_devcoredump *coredump)
 76{
 77	struct xe_device *xe;
 78	struct xe_devcoredump_snapshot *ss;
 79	struct drm_printer p;
 80	struct drm_print_iterator iter;
 81	struct timespec64 ts;
 82	int i;
 83
 84	xe = coredump_to_xe(coredump);
 85	ss = &coredump->snapshot;
 86
 87	iter.data = buffer;
 88	iter.start = 0;
 89	iter.remain = count;
 90
 91	p = drm_coredump_printer(&iter);
 92
 93	drm_puts(&p, "**** Xe Device Coredump ****\n");
 94	drm_puts(&p, "kernel: " UTS_RELEASE "\n");
 95	drm_puts(&p, "module: " KBUILD_MODNAME "\n");
 96
 97	ts = ktime_to_timespec64(ss->snapshot_time);
 98	drm_printf(&p, "Snapshot time: %lld.%09ld\n", ts.tv_sec, ts.tv_nsec);
 99	ts = ktime_to_timespec64(ss->boot_time);
100	drm_printf(&p, "Uptime: %lld.%09ld\n", ts.tv_sec, ts.tv_nsec);
101	drm_printf(&p, "Process: %s\n", ss->process_name);
102	xe_device_snapshot_print(xe, &p);
103
104	drm_printf(&p, "\n**** GT #%d ****\n", ss->gt->info.id);
105	drm_printf(&p, "\tTile: %d\n", ss->gt->tile->id);
106
107	drm_puts(&p, "\n**** GuC Log ****\n");
108	xe_guc_log_snapshot_print(ss->guc.log, &p);
109	drm_puts(&p, "\n**** GuC CT ****\n");
110	xe_guc_ct_snapshot_print(ss->guc.ct, &p);
111
112	drm_puts(&p, "\n**** Contexts ****\n");
113	xe_guc_exec_queue_snapshot_print(ss->ge, &p);
114
115	drm_puts(&p, "\n**** Job ****\n");
116	xe_sched_job_snapshot_print(ss->job, &p);
117
118	drm_puts(&p, "\n**** HW Engines ****\n");
119	for (i = 0; i < XE_NUM_HW_ENGINES; i++)
120		if (ss->hwe[i])
121			xe_engine_snapshot_print(ss->hwe[i], &p);
122
123	drm_puts(&p, "\n**** VM state ****\n");
124	xe_vm_snapshot_print(ss->vm, &p);
125
126	return count - iter.remain;
127}
128
129static void xe_devcoredump_snapshot_free(struct xe_devcoredump_snapshot *ss)
130{
131	int i;
132
133	xe_guc_log_snapshot_free(ss->guc.log);
134	ss->guc.log = NULL;
135
136	xe_guc_ct_snapshot_free(ss->guc.ct);
137	ss->guc.ct = NULL;
138
139	xe_guc_capture_put_matched_nodes(&ss->gt->uc.guc);
140	ss->matched_node = NULL;
141
142	xe_guc_exec_queue_snapshot_free(ss->ge);
143	ss->ge = NULL;
144
145	xe_sched_job_snapshot_free(ss->job);
146	ss->job = NULL;
147
148	for (i = 0; i < XE_NUM_HW_ENGINES; i++)
149		if (ss->hwe[i]) {
150			xe_hw_engine_snapshot_free(ss->hwe[i]);
151			ss->hwe[i] = NULL;
152		}
153
154	xe_vm_snapshot_free(ss->vm);
155	ss->vm = NULL;
156}
157
158static ssize_t xe_devcoredump_read(char *buffer, loff_t offset,
159				   size_t count, void *data, size_t datalen)
160{
161	struct xe_devcoredump *coredump = data;
162	struct xe_devcoredump_snapshot *ss;
163	ssize_t byte_copied;
164
165	if (!coredump)
166		return -ENODEV;
167
168	ss = &coredump->snapshot;
169
170	/* Ensure delayed work is captured before continuing */
171	flush_work(&ss->work);
172
173	if (!ss->read.buffer)
174		return -ENODEV;
175
176	if (offset >= ss->read.size)
177		return 0;
178
179	byte_copied = count < ss->read.size - offset ? count :
180		ss->read.size - offset;
181	memcpy(buffer, ss->read.buffer + offset, byte_copied);
182
183	return byte_copied;
184}
185
186static void xe_devcoredump_free(void *data)
187{
188	struct xe_devcoredump *coredump = data;
189
190	/* Our device is gone. Nothing to do... */
191	if (!data || !coredump_to_xe(coredump))
192		return;
193
194	cancel_work_sync(&coredump->snapshot.work);
195
196	xe_devcoredump_snapshot_free(&coredump->snapshot);
197	kvfree(coredump->snapshot.read.buffer);
198
199	/* To prevent stale data on next snapshot, clear everything */
200	memset(&coredump->snapshot, 0, sizeof(coredump->snapshot));
201	coredump->captured = false;
202	coredump->job = NULL;
203	drm_info(&coredump_to_xe(coredump)->drm,
204		 "Xe device coredump has been deleted.\n");
205}
206
207static void xe_devcoredump_deferred_snap_work(struct work_struct *work)
208{
209	struct xe_devcoredump_snapshot *ss = container_of(work, typeof(*ss), work);
210	struct xe_devcoredump *coredump = container_of(ss, typeof(*coredump), snapshot);
211	struct xe_device *xe = coredump_to_xe(coredump);
212	unsigned int fw_ref;
213
214	/*
215	 * NB: Despite passing a GFP_ flags parameter here, more allocations are done
216	 * internally using GFP_KERNEL expliictly. Hence this call must be in the worker
217	 * thread and not in the initial capture call.
218	 */
219	dev_coredumpm_timeout(gt_to_xe(ss->gt)->drm.dev, THIS_MODULE, coredump, 0, GFP_KERNEL,
220			      xe_devcoredump_read, xe_devcoredump_free,
221			      XE_COREDUMP_TIMEOUT_JIFFIES);
222
223	xe_pm_runtime_get(xe);
224
225	/* keep going if fw fails as we still want to save the memory and SW data */
226	fw_ref = xe_force_wake_get(gt_to_fw(ss->gt), XE_FORCEWAKE_ALL);
227	if (!xe_force_wake_ref_has_domain(fw_ref, XE_FORCEWAKE_ALL))
228		xe_gt_info(ss->gt, "failed to get forcewake for coredump capture\n");
229	xe_vm_snapshot_capture_delayed(ss->vm);
230	xe_guc_exec_queue_snapshot_capture_delayed(ss->ge);
231	xe_force_wake_put(gt_to_fw(ss->gt), fw_ref);
232
233	xe_pm_runtime_put(xe);
234
235	/* Calculate devcoredump size */
236	ss->read.size = __xe_devcoredump_read(NULL, INT_MAX, coredump);
237
238	ss->read.buffer = kvmalloc(ss->read.size, GFP_USER);
239	if (!ss->read.buffer)
240		return;
241
242	__xe_devcoredump_read(ss->read.buffer, ss->read.size, coredump);
243	xe_devcoredump_snapshot_free(ss);
244}
245
246static void devcoredump_snapshot(struct xe_devcoredump *coredump,
247				 struct xe_sched_job *job)
248{
249	struct xe_devcoredump_snapshot *ss = &coredump->snapshot;
250	struct xe_exec_queue *q = job->q;
251	struct xe_guc *guc = exec_queue_to_guc(q);
252	u32 adj_logical_mask = q->logical_mask;
253	u32 width_mask = (0x1 << q->width) - 1;
254	const char *process_name = "no process";
255
256	unsigned int fw_ref;
257	bool cookie;
258	int i;
259
260	ss->snapshot_time = ktime_get_real();
261	ss->boot_time = ktime_get_boottime();
262
263	if (q->vm && q->vm->xef)
264		process_name = q->vm->xef->process_name;
265	strscpy(ss->process_name, process_name);
266
267	ss->gt = q->gt;
268	coredump->job = job;
269	INIT_WORK(&ss->work, xe_devcoredump_deferred_snap_work);
270
271	cookie = dma_fence_begin_signalling();
272	for (i = 0; q->width > 1 && i < XE_HW_ENGINE_MAX_INSTANCE;) {
273		if (adj_logical_mask & BIT(i)) {
274			adj_logical_mask |= width_mask << i;
275			i += q->width;
276		} else {
277			++i;
278		}
279	}
280
281	/* keep going if fw fails as we still want to save the memory and SW data */
282	fw_ref = xe_force_wake_get(gt_to_fw(q->gt), XE_FORCEWAKE_ALL);
283
284	ss->guc.log = xe_guc_log_snapshot_capture(&guc->log, true);
285	ss->guc.ct = xe_guc_ct_snapshot_capture(&guc->ct);
286	ss->ge = xe_guc_exec_queue_snapshot_capture(q);
287	ss->job = xe_sched_job_snapshot_capture(job);
288	ss->vm = xe_vm_snapshot_capture(q->vm);
289
290	xe_engine_snapshot_capture_for_job(job);
291
292	queue_work(system_unbound_wq, &ss->work);
293
294	xe_force_wake_put(gt_to_fw(q->gt), fw_ref);
295	dma_fence_end_signalling(cookie);
296}
297
298/**
299 * xe_devcoredump - Take the required snapshots and initialize coredump device.
300 * @job: The faulty xe_sched_job, where the issue was detected.
301 *
302 * This function should be called at the crash time within the serialized
303 * gt_reset. It is skipped if we still have the core dump device available
304 * with the information of the 'first' snapshot.
305 */
306void xe_devcoredump(struct xe_sched_job *job)
307{
308	struct xe_device *xe = gt_to_xe(job->q->gt);
309	struct xe_devcoredump *coredump = &xe->devcoredump;
310
311	if (coredump->captured) {
312		drm_dbg(&xe->drm, "Multiple hangs are occurring, but only the first snapshot was taken\n");
313		return;
314	}
315
316	coredump->captured = true;
317	devcoredump_snapshot(coredump, job);
318
319	drm_info(&xe->drm, "Xe device coredump has been created\n");
320	drm_info(&xe->drm, "Check your /sys/class/drm/card%d/device/devcoredump/data\n",
321		 xe->drm.primary->index);
322}
323
324static void xe_driver_devcoredump_fini(void *arg)
325{
326	struct drm_device *drm = arg;
327
328	dev_coredump_put(drm->dev);
329}
330
331int xe_devcoredump_init(struct xe_device *xe)
332{
333	return devm_add_action_or_reset(xe->drm.dev, xe_driver_devcoredump_fini, &xe->drm);
334}
335
336#endif
337
338/**
339 * xe_print_blob_ascii85 - print a BLOB to some useful location in ASCII85
340 *
341 * The output is split into multiple calls to drm_puts() because some print
342 * targets, e.g. dmesg, cannot handle arbitrarily long lines. These targets may
343 * add newlines, as is the case with dmesg: each drm_puts() call creates a
344 * separate line.
345 *
346 * There is also a scheduler yield call to prevent the 'task has been stuck for
347 * 120s' kernel hang check feature from firing when printing to a slow target
348 * such as dmesg over a serial port.
349 *
350 * @p: the printer object to output to
351 * @prefix: optional prefix to add to output string
352 * @suffix: optional suffix to add at the end. 0 disables it and is
353 *          not added to the output, which is useful when using multiple calls
354 *          to dump data to @p
355 * @blob: the Binary Large OBject to dump out
356 * @offset: offset in bytes to skip from the front of the BLOB, must be a multiple of sizeof(u32)
357 * @size: the size in bytes of the BLOB, must be a multiple of sizeof(u32)
358 */
359void xe_print_blob_ascii85(struct drm_printer *p, const char *prefix, char suffix,
360			   const void *blob, size_t offset, size_t size)
361{
362	const u32 *blob32 = (const u32 *)blob;
363	char buff[ASCII85_BUFSZ], *line_buff;
364	size_t line_pos = 0;
365
366#define DMESG_MAX_LINE_LEN	800
367	/* Always leave space for the suffix char and the \0 */
368#define MIN_SPACE		(ASCII85_BUFSZ + 2)	/* 85 + "<suffix>\0" */
369
370	if (size & 3)
371		drm_printf(p, "Size not word aligned: %zu", size);
372	if (offset & 3)
373		drm_printf(p, "Offset not word aligned: %zu", size);
374
375	line_buff = kzalloc(DMESG_MAX_LINE_LEN, GFP_KERNEL);
376	if (IS_ERR_OR_NULL(line_buff)) {
377		drm_printf(p, "Failed to allocate line buffer: %pe", line_buff);
378		return;
379	}
380
381	blob32 += offset / sizeof(*blob32);
382	size /= sizeof(*blob32);
383
384	if (prefix) {
385		strscpy(line_buff, prefix, DMESG_MAX_LINE_LEN - MIN_SPACE - 2);
386		line_pos = strlen(line_buff);
387
388		line_buff[line_pos++] = ':';
389		line_buff[line_pos++] = ' ';
390	}
391
392	while (size--) {
393		u32 val = *(blob32++);
394
395		strscpy(line_buff + line_pos, ascii85_encode(val, buff),
396			DMESG_MAX_LINE_LEN - line_pos);
397		line_pos += strlen(line_buff + line_pos);
398
399		if ((line_pos + MIN_SPACE) >= DMESG_MAX_LINE_LEN) {
400			line_buff[line_pos++] = 0;
401
402			drm_puts(p, line_buff);
403
404			line_pos = 0;
405
406			/* Prevent 'stuck thread' time out errors */
407			cond_resched();
408		}
409	}
410
411	if (suffix)
412		line_buff[line_pos++] = suffix;
413
414	if (line_pos) {
415		line_buff[line_pos++] = 0;
416		drm_puts(p, line_buff);
417	}
418
419	kfree(line_buff);
420
421#undef MIN_SPACE
422#undef DMESG_MAX_LINE_LEN
423}