Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
v6.13.7
   1/*
   2 * Copyright 2009 Jerome Glisse.
   3 * All Rights Reserved.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the
   7 * "Software"), to deal in the Software without restriction, including
   8 * without limitation the rights to use, copy, modify, merge, publish,
   9 * distribute, sub license, and/or sell copies of the Software, and to
  10 * permit persons to whom the Software is furnished to do so, subject to
  11 * the following conditions:
  12 *
  13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  20 *
  21 * The above copyright notice and this permission notice (including the
  22 * next paragraph) shall be included in all copies or substantial portions
  23 * of the Software.
  24 *
  25 */
  26/*
  27 * Authors:
  28 *    Jerome Glisse <glisse@freedesktop.org>
  29 *    Dave Airlie
  30 */
  31
  32#include <linux/atomic.h>
  33#include <linux/debugfs.h>
  34#include <linux/firmware.h>
  35#include <linux/kref.h>
  36#include <linux/sched/signal.h>
  37#include <linux/seq_file.h>
  38#include <linux/slab.h>
  39#include <linux/wait.h>
  40
  41#include <drm/drm_device.h>
  42#include <drm/drm_file.h>
  43
  44#include "radeon.h"
  45#include "radeon_reg.h"
  46#include "radeon_trace.h"
  47
  48/*
 
  49 * Fences mark an event in the GPUs pipeline and are used
  50 * for GPU/CPU synchronization.  When the fence is written,
  51 * it is expected that all buffers associated with that fence
  52 * are no longer in use by the associated ring on the GPU and
  53 * that the relevant GPU caches have been flushed.  Whether
  54 * we use a scratch register or memory location depends on the asic
  55 * and whether writeback is enabled.
  56 */
  57
  58/**
  59 * radeon_fence_write - write a fence value
  60 *
  61 * @rdev: radeon_device pointer
  62 * @seq: sequence number to write
  63 * @ring: ring index the fence is associated with
  64 *
  65 * Writes a fence value to memory or a scratch register (all asics).
  66 */
  67static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring)
  68{
  69	struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
  70
  71	if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
  72		if (drv->cpu_addr)
  73			*drv->cpu_addr = cpu_to_le32(seq);
 
  74	} else {
  75		WREG32(drv->scratch_reg, seq);
  76	}
  77}
  78
  79/**
  80 * radeon_fence_read - read a fence value
  81 *
  82 * @rdev: radeon_device pointer
  83 * @ring: ring index the fence is associated with
  84 *
  85 * Reads a fence value from memory or a scratch register (all asics).
  86 * Returns the value of the fence read from memory or register.
  87 */
  88static u32 radeon_fence_read(struct radeon_device *rdev, int ring)
  89{
  90	struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
  91	u32 seq = 0;
  92
  93	if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
  94		if (drv->cpu_addr)
  95			seq = le32_to_cpu(*drv->cpu_addr);
  96		else
  97			seq = lower_32_bits(atomic64_read(&drv->last_seq));
 
  98	} else {
  99		seq = RREG32(drv->scratch_reg);
 100	}
 101	return seq;
 102}
 103
 104/**
 105 * radeon_fence_schedule_check - schedule lockup check
 106 *
 107 * @rdev: radeon_device pointer
 108 * @ring: ring index we should work with
 109 *
 110 * Queues a delayed work item to check for lockups.
 111 */
 112static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring)
 113{
 114	/*
 115	 * Do not reset the timer here with mod_delayed_work,
 116	 * this can livelock in an interaction with TTM delayed destroy.
 117	 */
 118	queue_delayed_work(system_power_efficient_wq,
 119			   &rdev->fence_drv[ring].lockup_work,
 120			   RADEON_FENCE_JIFFIES_TIMEOUT);
 121}
 122
 123/**
 124 * radeon_fence_emit - emit a fence on the requested ring
 125 *
 126 * @rdev: radeon_device pointer
 127 * @fence: radeon fence object
 128 * @ring: ring index the fence is associated with
 129 *
 130 * Emits a fence command on the requested ring (all asics).
 131 * Returns 0 on success, -ENOMEM on failure.
 132 */
 133int radeon_fence_emit(struct radeon_device *rdev,
 134		      struct radeon_fence **fence,
 135		      int ring)
 136{
 137	u64 seq;
 138
 139	/* we are protected by the ring emission mutex */
 140	*fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL);
 141	if ((*fence) == NULL)
 142		return -ENOMEM;
 143
 144	(*fence)->rdev = rdev;
 145	(*fence)->seq = seq = ++rdev->fence_drv[ring].sync_seq[ring];
 146	(*fence)->ring = ring;
 147	(*fence)->is_vm_update = false;
 148	dma_fence_init(&(*fence)->base, &radeon_fence_ops,
 149		       &rdev->fence_queue.lock,
 150		       rdev->fence_context + ring,
 151		       seq);
 152	radeon_fence_ring_emit(rdev, ring, *fence);
 153	trace_radeon_fence_emit(rdev_to_drm(rdev), ring, (*fence)->seq);
 154	radeon_fence_schedule_check(rdev, ring);
 155	return 0;
 156}
 157
 158/*
 159 * radeon_fence_check_signaled - callback from fence_queue
 160 *
 161 * this function is called with fence_queue lock held, which is also used
 162 * for the fence locking itself, so unlocked variants are used for
 163 * fence_signal, and remove_wait_queue.
 164 */
 165static int radeon_fence_check_signaled(wait_queue_entry_t *wait,
 166				       unsigned int mode, int flags, void *key)
 167{
 168	struct radeon_fence *fence;
 169	u64 seq;
 170
 171	fence = container_of(wait, struct radeon_fence, fence_wake);
 172
 173	/*
 174	 * We cannot use radeon_fence_process here because we're already
 175	 * in the waitqueue, in a call from wake_up_all.
 176	 */
 177	seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq);
 178	if (seq >= fence->seq) {
 179		dma_fence_signal_locked(&fence->base);
 180		radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring);
 181		__remove_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake);
 182		dma_fence_put(&fence->base);
 183	}
 184	return 0;
 185}
 186
 187/**
 188 * radeon_fence_activity - check for fence activity
 189 *
 190 * @rdev: radeon_device pointer
 191 * @ring: ring index the fence is associated with
 192 *
 193 * Checks the current fence value and calculates the last
 194 * signalled fence value. Returns true if activity occured
 195 * on the ring, and the fence_queue should be waken up.
 196 */
 197static bool radeon_fence_activity(struct radeon_device *rdev, int ring)
 198{
 199	uint64_t seq, last_seq, last_emitted;
 200	unsigned int count_loop = 0;
 201	bool wake = false;
 202
 203	/* Note there is a scenario here for an infinite loop but it's
 204	 * very unlikely to happen. For it to happen, the current polling
 205	 * process need to be interrupted by another process and another
 206	 * process needs to update the last_seq btw the atomic read and
 207	 * xchg of the current process.
 208	 *
 209	 * More over for this to go in infinite loop there need to be
 210	 * continuously new fence signaled ie radeon_fence_read needs
 211	 * to return a different value each time for both the currently
 212	 * polling process and the other process that xchg the last_seq
 213	 * btw atomic read and xchg of the current process. And the
 214	 * value the other process set as last seq must be higher than
 215	 * the seq value we just read. Which means that current process
 216	 * need to be interrupted after radeon_fence_read and before
 217	 * atomic xchg.
 218	 *
 219	 * To be even more safe we count the number of time we loop and
 220	 * we bail after 10 loop just accepting the fact that we might
 221	 * have temporarly set the last_seq not to the true real last
 222	 * seq but to an older one.
 223	 */
 224	last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq);
 225	do {
 226		last_emitted = rdev->fence_drv[ring].sync_seq[ring];
 227		seq = radeon_fence_read(rdev, ring);
 228		seq |= last_seq & 0xffffffff00000000LL;
 229		if (seq < last_seq) {
 230			seq &= 0xffffffff;
 231			seq |= last_emitted & 0xffffffff00000000LL;
 232		}
 233
 234		if (seq <= last_seq || seq > last_emitted)
 235			break;
 236
 237		/* If we loop over we don't want to return without
 238		 * checking if a fence is signaled as it means that the
 239		 * seq we just read is different from the previous on.
 240		 */
 241		wake = true;
 242		last_seq = seq;
 243		if ((count_loop++) > 10) {
 244			/* We looped over too many time leave with the
 245			 * fact that we might have set an older fence
 246			 * seq then the current real last seq as signaled
 247			 * by the hw.
 248			 */
 249			break;
 250		}
 251	} while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq);
 252
 253	if (seq < last_emitted)
 254		radeon_fence_schedule_check(rdev, ring);
 255
 256	return wake;
 257}
 258
 259/**
 260 * radeon_fence_check_lockup - check for hardware lockup
 261 *
 262 * @work: delayed work item
 263 *
 264 * Checks for fence activity and if there is none probe
 265 * the hardware if a lockup occured.
 266 */
 267static void radeon_fence_check_lockup(struct work_struct *work)
 268{
 269	struct radeon_fence_driver *fence_drv;
 270	struct radeon_device *rdev;
 271	int ring;
 272
 273	fence_drv = container_of(work, struct radeon_fence_driver,
 274				 lockup_work.work);
 275	rdev = fence_drv->rdev;
 276	ring = fence_drv - &rdev->fence_drv[0];
 277
 278	if (!down_read_trylock(&rdev->exclusive_lock)) {
 279		/* just reschedule the check if a reset is going on */
 280		radeon_fence_schedule_check(rdev, ring);
 281		return;
 282	}
 283
 284	if (fence_drv->delayed_irq && rdev->irq.installed) {
 285		unsigned long irqflags;
 286
 287		fence_drv->delayed_irq = false;
 288		spin_lock_irqsave(&rdev->irq.lock, irqflags);
 289		radeon_irq_set(rdev);
 290		spin_unlock_irqrestore(&rdev->irq.lock, irqflags);
 291	}
 292
 293	if (radeon_fence_activity(rdev, ring))
 294		wake_up_all(&rdev->fence_queue);
 295
 296	else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) {
 297
 298		/* good news we believe it's a lockup */
 299		dev_warn(rdev->dev, "GPU lockup (current fence id 0x%016llx last fence id 0x%016llx on ring %d)\n",
 
 300			 (uint64_t)atomic64_read(&fence_drv->last_seq),
 301			 fence_drv->sync_seq[ring], ring);
 302
 303		/* remember that we need an reset */
 304		rdev->needs_reset = true;
 305		wake_up_all(&rdev->fence_queue);
 306	}
 307	up_read(&rdev->exclusive_lock);
 308}
 309
 310/**
 311 * radeon_fence_process - process a fence
 312 *
 313 * @rdev: radeon_device pointer
 314 * @ring: ring index the fence is associated with
 315 *
 316 * Checks the current fence value and wakes the fence queue
 317 * if the sequence number has increased (all asics).
 318 */
 319void radeon_fence_process(struct radeon_device *rdev, int ring)
 320{
 321	if (radeon_fence_activity(rdev, ring))
 322		wake_up_all(&rdev->fence_queue);
 323}
 324
 325/**
 326 * radeon_fence_seq_signaled - check if a fence sequence number has signaled
 327 *
 328 * @rdev: radeon device pointer
 329 * @seq: sequence number
 330 * @ring: ring index the fence is associated with
 331 *
 332 * Check if the last signaled fence sequnce number is >= the requested
 333 * sequence number (all asics).
 334 * Returns true if the fence has signaled (current fence value
 335 * is >= requested value) or false if it has not (current fence
 336 * value is < the requested value.  Helper function for
 337 * radeon_fence_signaled().
 338 */
 339static bool radeon_fence_seq_signaled(struct radeon_device *rdev,
 340				      u64 seq, unsigned int ring)
 341{
 342	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq)
 343		return true;
 344
 345	/* poll new last sequence at least once */
 346	radeon_fence_process(rdev, ring);
 347	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq)
 348		return true;
 349
 350	return false;
 351}
 352
 353static bool radeon_fence_is_signaled(struct dma_fence *f)
 354{
 355	struct radeon_fence *fence = to_radeon_fence(f);
 356	struct radeon_device *rdev = fence->rdev;
 357	unsigned int ring = fence->ring;
 358	u64 seq = fence->seq;
 359
 360	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq)
 361		return true;
 
 362
 363	if (down_read_trylock(&rdev->exclusive_lock)) {
 364		radeon_fence_process(rdev, ring);
 365		up_read(&rdev->exclusive_lock);
 366
 367		if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq)
 368			return true;
 
 369	}
 370	return false;
 371}
 372
 373/**
 374 * radeon_fence_enable_signaling - enable signalling on fence
 375 * @f: fence
 376 *
 377 * This function is called with fence_queue lock held, and adds a callback
 378 * to fence_queue that checks if this fence is signaled, and if so it
 379 * signals the fence and removes itself.
 380 */
 381static bool radeon_fence_enable_signaling(struct dma_fence *f)
 382{
 383	struct radeon_fence *fence = to_radeon_fence(f);
 384	struct radeon_device *rdev = fence->rdev;
 385
 386	if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq)
 387		return false;
 388
 389	if (down_read_trylock(&rdev->exclusive_lock)) {
 390		radeon_irq_kms_sw_irq_get(rdev, fence->ring);
 391
 392		if (radeon_fence_activity(rdev, fence->ring))
 393			wake_up_all_locked(&rdev->fence_queue);
 394
 395		/* did fence get signaled after we enabled the sw irq? */
 396		if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) {
 397			radeon_irq_kms_sw_irq_put(rdev, fence->ring);
 398			up_read(&rdev->exclusive_lock);
 399			return false;
 400		}
 401
 402		up_read(&rdev->exclusive_lock);
 403	} else {
 404		/* we're probably in a lockup, lets not fiddle too much */
 405		if (radeon_irq_kms_sw_irq_get_delayed(rdev, fence->ring))
 406			rdev->fence_drv[fence->ring].delayed_irq = true;
 407		radeon_fence_schedule_check(rdev, fence->ring);
 408	}
 409
 410	fence->fence_wake.flags = 0;
 411	fence->fence_wake.private = NULL;
 412	fence->fence_wake.func = radeon_fence_check_signaled;
 413	__add_wait_queue(&rdev->fence_queue, &fence->fence_wake);
 414	dma_fence_get(f);
 415	return true;
 416}
 417
 418/**
 419 * radeon_fence_signaled - check if a fence has signaled
 420 *
 421 * @fence: radeon fence object
 422 *
 423 * Check if the requested fence has signaled (all asics).
 424 * Returns true if the fence has signaled or false if it has not.
 425 */
 426bool radeon_fence_signaled(struct radeon_fence *fence)
 427{
 428	if (!fence)
 429		return true;
 430
 431	if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) {
 432		dma_fence_signal(&fence->base);
 433		return true;
 434	}
 435	return false;
 436}
 437
 438/**
 439 * radeon_fence_any_seq_signaled - check if any sequence number is signaled
 440 *
 441 * @rdev: radeon device pointer
 442 * @seq: sequence numbers
 443 *
 444 * Check if the last signaled fence sequnce number is >= the requested
 445 * sequence number (all asics).
 446 * Returns true if any has signaled (current value is >= requested value)
 447 * or false if it has not. Helper function for radeon_fence_wait_seq.
 448 */
 449static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq)
 450{
 451	unsigned int i;
 452
 453	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
 454		if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i))
 455			return true;
 456	}
 457	return false;
 458}
 459
 460/**
 461 * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers
 462 *
 463 * @rdev: radeon device pointer
 464 * @target_seq: sequence number(s) we want to wait for
 465 * @intr: use interruptable sleep
 466 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
 467 *
 468 * Wait for the requested sequence number(s) to be written by any ring
 469 * (all asics).  Sequnce number array is indexed by ring id.
 470 * @intr selects whether to use interruptable (true) or non-interruptable
 471 * (false) sleep when waiting for the sequence number.  Helper function
 472 * for radeon_fence_wait_*().
 473 * Returns remaining time if the sequence number has passed, 0 when
 474 * the wait timeout, or an error for all other cases.
 475 * -EDEADLK is returned when a GPU lockup has been detected.
 476 */
 477static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev,
 478					  u64 *target_seq, bool intr,
 479					  long timeout)
 480{
 481	long r;
 482	int i;
 483
 484	if (radeon_fence_any_seq_signaled(rdev, target_seq))
 485		return timeout;
 486
 487	/* enable IRQs and tracing */
 488	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
 489		if (!target_seq[i])
 490			continue;
 491
 492		trace_radeon_fence_wait_begin(rdev_to_drm(rdev), i, target_seq[i]);
 493		radeon_irq_kms_sw_irq_get(rdev, i);
 494	}
 495
 496	if (intr) {
 497		r = wait_event_interruptible_timeout(rdev->fence_queue, (
 498			radeon_fence_any_seq_signaled(rdev, target_seq)
 499			 || rdev->needs_reset), timeout);
 500	} else {
 501		r = wait_event_timeout(rdev->fence_queue, (
 502			radeon_fence_any_seq_signaled(rdev, target_seq)
 503			 || rdev->needs_reset), timeout);
 504	}
 505
 506	if (rdev->needs_reset)
 507		r = -EDEADLK;
 508
 509	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
 510		if (!target_seq[i])
 511			continue;
 512
 513		radeon_irq_kms_sw_irq_put(rdev, i);
 514		trace_radeon_fence_wait_end(rdev_to_drm(rdev), i, target_seq[i]);
 515	}
 516
 517	return r;
 518}
 519
 520/**
 521 * radeon_fence_wait_timeout - wait for a fence to signal with timeout
 522 *
 523 * @fence: radeon fence object
 524 * @intr: use interruptible sleep
 525 *
 526 * Wait for the requested fence to signal (all asics).
 527 * @intr selects whether to use interruptable (true) or non-interruptable
 528 * (false) sleep when waiting for the fence.
 529 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
 530 * Returns remaining time if the sequence number has passed, 0 when
 531 * the wait timeout, or an error for all other cases.
 532 */
 533long radeon_fence_wait_timeout(struct radeon_fence *fence, bool intr, long timeout)
 534{
 535	uint64_t seq[RADEON_NUM_RINGS] = {};
 536	long r;
 537
 538	/*
 539	 * This function should not be called on !radeon fences.
 540	 * If this is the case, it would mean this function can
 541	 * also be called on radeon fences belonging to another card.
 542	 * exclusive_lock is not held in that case.
 543	 */
 544	if (WARN_ON_ONCE(!to_radeon_fence(&fence->base)))
 545		return dma_fence_wait(&fence->base, intr);
 546
 547	seq[fence->ring] = fence->seq;
 548	r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, timeout);
 549	if (r <= 0)
 550		return r;
 
 551
 552	dma_fence_signal(&fence->base);
 553	return r;
 554}
 555
 556/**
 557 * radeon_fence_wait - wait for a fence to signal
 558 *
 559 * @fence: radeon fence object
 560 * @intr: use interruptible sleep
 561 *
 562 * Wait for the requested fence to signal (all asics).
 563 * @intr selects whether to use interruptable (true) or non-interruptable
 564 * (false) sleep when waiting for the fence.
 565 * Returns 0 if the fence has passed, error for all other cases.
 566 */
 567int radeon_fence_wait(struct radeon_fence *fence, bool intr)
 568{
 569	long r = radeon_fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT);
 570
 571	if (r > 0)
 572		return 0;
 573	else
 574		return r;
 
 575}
 576
 577/**
 578 * radeon_fence_wait_any - wait for a fence to signal on any ring
 579 *
 580 * @rdev: radeon device pointer
 581 * @fences: radeon fence object(s)
 582 * @intr: use interruptable sleep
 583 *
 584 * Wait for any requested fence to signal (all asics).  Fence
 585 * array is indexed by ring id.  @intr selects whether to use
 586 * interruptable (true) or non-interruptable (false) sleep when
 587 * waiting for the fences. Used by the suballocator.
 588 * Returns 0 if any fence has passed, error for all other cases.
 589 */
 590int radeon_fence_wait_any(struct radeon_device *rdev,
 591			  struct radeon_fence **fences,
 592			  bool intr)
 593{
 594	uint64_t seq[RADEON_NUM_RINGS];
 595	unsigned int i, num_rings = 0;
 596	long r;
 597
 598	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
 599		seq[i] = 0;
 600
 601		if (!fences[i])
 602			continue;
 
 603
 604		seq[i] = fences[i]->seq;
 605		++num_rings;
 606	}
 607
 608	/* nothing to wait for ? */
 609	if (num_rings == 0)
 610		return -ENOENT;
 611
 612	r = radeon_fence_wait_seq_timeout(rdev, seq, intr, MAX_SCHEDULE_TIMEOUT);
 613	if (r < 0)
 614		return r;
 615
 616	return 0;
 617}
 618
 619/**
 620 * radeon_fence_wait_next - wait for the next fence to signal
 621 *
 622 * @rdev: radeon device pointer
 623 * @ring: ring index the fence is associated with
 624 *
 625 * Wait for the next fence on the requested ring to signal (all asics).
 626 * Returns 0 if the next fence has passed, error for all other cases.
 627 * Caller must hold ring lock.
 628 */
 629int radeon_fence_wait_next(struct radeon_device *rdev, int ring)
 630{
 631	uint64_t seq[RADEON_NUM_RINGS] = {};
 632	long r;
 633
 634	seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL;
 635	if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) {
 636		/* nothing to wait for, last_seq is already
 637		 * the last emited fence
 638		 */
 639		return -ENOENT;
 640	}
 641
 642	r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
 643	if (r < 0)
 644		return r;
 645
 646	return 0;
 647}
 648
 649/**
 650 * radeon_fence_wait_empty - wait for all fences to signal
 651 *
 652 * @rdev: radeon device pointer
 653 * @ring: ring index the fence is associated with
 654 *
 655 * Wait for all fences on the requested ring to signal (all asics).
 656 * Returns 0 if the fences have passed, error for all other cases.
 657 * Caller must hold ring lock.
 658 */
 659int radeon_fence_wait_empty(struct radeon_device *rdev, int ring)
 660{
 661	uint64_t seq[RADEON_NUM_RINGS] = {};
 662	long r;
 663
 664	seq[ring] = rdev->fence_drv[ring].sync_seq[ring];
 665	if (!seq[ring])
 666		return 0;
 667
 668	r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
 669	if (r < 0) {
 670		if (r == -EDEADLK)
 671			return -EDEADLK;
 672
 673		dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n",
 674			ring, r);
 675	}
 676	return 0;
 677}
 678
 679/**
 680 * radeon_fence_ref - take a ref on a fence
 681 *
 682 * @fence: radeon fence object
 683 *
 684 * Take a reference on a fence (all asics).
 685 * Returns the fence.
 686 */
 687struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence)
 688{
 689	dma_fence_get(&fence->base);
 690	return fence;
 691}
 692
 693/**
 694 * radeon_fence_unref - remove a ref on a fence
 695 *
 696 * @fence: radeon fence object
 697 *
 698 * Remove a reference on a fence (all asics).
 699 */
 700void radeon_fence_unref(struct radeon_fence **fence)
 701{
 702	struct radeon_fence *tmp = *fence;
 703
 704	*fence = NULL;
 705	if (tmp)
 706		dma_fence_put(&tmp->base);
 
 707}
 708
 709/**
 710 * radeon_fence_count_emitted - get the count of emitted fences
 711 *
 712 * @rdev: radeon device pointer
 713 * @ring: ring index the fence is associated with
 714 *
 715 * Get the number of fences emitted on the requested ring (all asics).
 716 * Returns the number of emitted fences on the ring.  Used by the
 717 * dynpm code to ring track activity.
 718 */
 719unsigned int radeon_fence_count_emitted(struct radeon_device *rdev, int ring)
 720{
 721	uint64_t emitted;
 722
 723	/* We are not protected by ring lock when reading the last sequence
 724	 * but it's ok to report slightly wrong fence count here.
 725	 */
 726	radeon_fence_process(rdev, ring);
 727	emitted = rdev->fence_drv[ring].sync_seq[ring]
 728		- atomic64_read(&rdev->fence_drv[ring].last_seq);
 729	/* to avoid 32bits warp around */
 730	if (emitted > 0x10000000)
 731		emitted = 0x10000000;
 732
 733	return (unsigned int)emitted;
 734}
 735
 736/**
 737 * radeon_fence_need_sync - do we need a semaphore
 738 *
 739 * @fence: radeon fence object
 740 * @dst_ring: which ring to check against
 741 *
 742 * Check if the fence needs to be synced against another ring
 743 * (all asics).  If so, we need to emit a semaphore.
 744 * Returns true if we need to sync with another ring, false if
 745 * not.
 746 */
 747bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring)
 748{
 749	struct radeon_fence_driver *fdrv;
 750
 751	if (!fence)
 752		return false;
 
 753
 754	if (fence->ring == dst_ring)
 755		return false;
 
 756
 757	/* we are protected by the ring mutex */
 758	fdrv = &fence->rdev->fence_drv[dst_ring];
 759	if (fence->seq <= fdrv->sync_seq[fence->ring])
 760		return false;
 
 761
 762	return true;
 763}
 764
 765/**
 766 * radeon_fence_note_sync - record the sync point
 767 *
 768 * @fence: radeon fence object
 769 * @dst_ring: which ring to check against
 770 *
 771 * Note the sequence number at which point the fence will
 772 * be synced with the requested ring (all asics).
 773 */
 774void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring)
 775{
 776	struct radeon_fence_driver *dst, *src;
 777	unsigned int i;
 778
 779	if (!fence)
 780		return;
 
 781
 782	if (fence->ring == dst_ring)
 783		return;
 
 784
 785	/* we are protected by the ring mutex */
 786	src = &fence->rdev->fence_drv[fence->ring];
 787	dst = &fence->rdev->fence_drv[dst_ring];
 788	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
 789		if (i == dst_ring)
 790			continue;
 791
 792		dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]);
 793	}
 794}
 795
 796/**
 797 * radeon_fence_driver_start_ring - make the fence driver
 798 * ready for use on the requested ring.
 799 *
 800 * @rdev: radeon device pointer
 801 * @ring: ring index to start the fence driver on
 802 *
 803 * Make the fence driver ready for processing (all asics).
 804 * Not all asics have all rings, so each asic will only
 805 * start the fence driver on the rings it has.
 806 * Returns 0 for success, errors for failure.
 807 */
 808int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring)
 809{
 810	uint64_t index;
 811	int r;
 812
 813	radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
 814	if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) {
 815		rdev->fence_drv[ring].scratch_reg = 0;
 816		if (ring != R600_RING_TYPE_UVD_INDEX) {
 817			index = R600_WB_EVENT_OFFSET + ring * 4;
 818			rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
 819			rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr +
 820							 index;
 821
 822		} else {
 823			/* put fence directly behind firmware */
 824			index = ALIGN(rdev->uvd_fw->size, 8);
 825			rdev->fence_drv[ring].cpu_addr = rdev->uvd.cpu_addr + index;
 826			rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index;
 827		}
 828
 829	} else {
 830		r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg);
 831		if (r) {
 832			dev_err(rdev->dev, "fence failed to get scratch register\n");
 833			return r;
 834		}
 835		index = RADEON_WB_SCRATCH_OFFSET +
 836			rdev->fence_drv[ring].scratch_reg -
 837			rdev->scratch.reg_base;
 838		rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
 839		rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index;
 840	}
 841	radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring);
 842	rdev->fence_drv[ring].initialized = true;
 843	dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016llx\n",
 844		 ring, rdev->fence_drv[ring].gpu_addr);
 845	return 0;
 846}
 847
 848/**
 849 * radeon_fence_driver_init_ring - init the fence driver
 850 * for the requested ring.
 851 *
 852 * @rdev: radeon device pointer
 853 * @ring: ring index to start the fence driver on
 854 *
 855 * Init the fence driver for the requested ring (all asics).
 856 * Helper function for radeon_fence_driver_init().
 857 */
 858static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring)
 859{
 860	int i;
 861
 862	rdev->fence_drv[ring].scratch_reg = -1;
 863	rdev->fence_drv[ring].cpu_addr = NULL;
 864	rdev->fence_drv[ring].gpu_addr = 0;
 865	for (i = 0; i < RADEON_NUM_RINGS; ++i)
 866		rdev->fence_drv[ring].sync_seq[i] = 0;
 867	atomic64_set(&rdev->fence_drv[ring].last_seq, 0);
 868	rdev->fence_drv[ring].initialized = false;
 869	INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work,
 870			  radeon_fence_check_lockup);
 871	rdev->fence_drv[ring].rdev = rdev;
 872}
 873
 874/**
 875 * radeon_fence_driver_init - init the fence driver
 876 * for all possible rings.
 877 *
 878 * @rdev: radeon device pointer
 879 *
 880 * Init the fence driver for all possible rings (all asics).
 881 * Not all asics have all rings, so each asic will only
 882 * start the fence driver on the rings it has using
 883 * radeon_fence_driver_start_ring().
 884 */
 885void radeon_fence_driver_init(struct radeon_device *rdev)
 886{
 887	int ring;
 888
 889	init_waitqueue_head(&rdev->fence_queue);
 890	for (ring = 0; ring < RADEON_NUM_RINGS; ring++)
 891		radeon_fence_driver_init_ring(rdev, ring);
 
 892
 893	radeon_debugfs_fence_init(rdev);
 894}
 895
 896/**
 897 * radeon_fence_driver_fini - tear down the fence driver
 898 * for all possible rings.
 899 *
 900 * @rdev: radeon device pointer
 901 *
 902 * Tear down the fence driver for all possible rings (all asics).
 903 */
 904void radeon_fence_driver_fini(struct radeon_device *rdev)
 905{
 906	int ring, r;
 907
 908	mutex_lock(&rdev->ring_lock);
 909	for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
 910		if (!rdev->fence_drv[ring].initialized)
 911			continue;
 912		r = radeon_fence_wait_empty(rdev, ring);
 913		if (r) {
 914			/* no need to trigger GPU reset as we are unloading */
 915			radeon_fence_driver_force_completion(rdev, ring);
 916		}
 917		cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
 918		wake_up_all(&rdev->fence_queue);
 919		radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
 920		rdev->fence_drv[ring].initialized = false;
 921	}
 922	mutex_unlock(&rdev->ring_lock);
 923}
 924
 925/**
 926 * radeon_fence_driver_force_completion - force all fence waiter to complete
 927 *
 928 * @rdev: radeon device pointer
 929 * @ring: the ring to complete
 930 *
 931 * In case of GPU reset failure make sure no process keep waiting on fence
 932 * that will never complete.
 933 */
 934void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring)
 935{
 936	if (rdev->fence_drv[ring].initialized) {
 937		radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring);
 938		cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
 939	}
 940}
 941
 942
 943/*
 944 * Fence debugfs
 945 */
 946#if defined(CONFIG_DEBUG_FS)
 947static int radeon_debugfs_fence_info_show(struct seq_file *m, void *data)
 948{
 949	struct radeon_device *rdev = m->private;
 950	int i, j;
 951
 952	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
 953		if (!rdev->fence_drv[i].initialized)
 954			continue;
 955
 956		radeon_fence_process(rdev, i);
 957
 958		seq_printf(m, "--- ring %d ---\n", i);
 959		seq_printf(m, "Last signaled fence 0x%016llx\n",
 960			   (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq));
 961		seq_printf(m, "Last emitted        0x%016llx\n",
 962			   rdev->fence_drv[i].sync_seq[i]);
 963
 964		for (j = 0; j < RADEON_NUM_RINGS; ++j) {
 965			if (i != j && rdev->fence_drv[j].initialized)
 966				seq_printf(m, "Last sync to ring %d 0x%016llx\n",
 967					   j, rdev->fence_drv[i].sync_seq[j]);
 968		}
 969	}
 970	return 0;
 971}
 972
 973/*
 974 * radeon_debugfs_gpu_reset - manually trigger a gpu reset
 975 *
 976 * Manually trigger a gpu reset at the next fence wait.
 977 */
 978static int radeon_debugfs_gpu_reset(void *data, u64 *val)
 979{
 980	struct radeon_device *rdev = (struct radeon_device *)data;
 981
 982	down_read(&rdev->exclusive_lock);
 983	*val = rdev->needs_reset;
 984	rdev->needs_reset = true;
 985	wake_up_all(&rdev->fence_queue);
 986	up_read(&rdev->exclusive_lock);
 987
 988	return 0;
 989}
 990DEFINE_SHOW_ATTRIBUTE(radeon_debugfs_fence_info);
 991DEFINE_DEBUGFS_ATTRIBUTE(radeon_debugfs_gpu_reset_fops,
 992			 radeon_debugfs_gpu_reset, NULL, "%lld\n");
 993#endif
 994
 995void radeon_debugfs_fence_init(struct radeon_device *rdev)
 996{
 997#if defined(CONFIG_DEBUG_FS)
 998	struct dentry *root = rdev_to_drm(rdev)->primary->debugfs_root;
 999
1000	debugfs_create_file("radeon_gpu_reset", 0444, root, rdev,
1001			    &radeon_debugfs_gpu_reset_fops);
1002	debugfs_create_file("radeon_fence_info", 0444, root, rdev,
1003			    &radeon_debugfs_fence_info_fops);
1004
1005
1006#endif
1007}
1008
1009static const char *radeon_fence_get_driver_name(struct dma_fence *fence)
1010{
1011	return "radeon";
1012}
1013
1014static const char *radeon_fence_get_timeline_name(struct dma_fence *f)
1015{
1016	struct radeon_fence *fence = to_radeon_fence(f);
1017
1018	switch (fence->ring) {
1019	case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx";
1020	case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1";
1021	case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2";
1022	case R600_RING_TYPE_DMA_INDEX: return "radeon.dma";
1023	case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1";
1024	case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd";
1025	case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1";
1026	case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2";
1027	default:
1028		WARN_ON_ONCE(1);
1029		return "radeon.unk";
1030	}
1031}
1032
1033static inline bool radeon_test_signaled(struct radeon_fence *fence)
1034{
1035	return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->base.flags);
1036}
1037
1038struct radeon_wait_cb {
1039	struct dma_fence_cb base;
1040	struct task_struct *task;
1041};
1042
1043static void
1044radeon_fence_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
1045{
1046	struct radeon_wait_cb *wait =
1047		container_of(cb, struct radeon_wait_cb, base);
1048
1049	wake_up_process(wait->task);
1050}
1051
1052static signed long radeon_fence_default_wait(struct dma_fence *f, bool intr,
1053					     signed long t)
1054{
1055	struct radeon_fence *fence = to_radeon_fence(f);
1056	struct radeon_device *rdev = fence->rdev;
1057	struct radeon_wait_cb cb;
1058
1059	cb.task = current;
1060
1061	if (dma_fence_add_callback(f, &cb.base, radeon_fence_wait_cb))
1062		return t;
1063
1064	while (t > 0) {
1065		if (intr)
1066			set_current_state(TASK_INTERRUPTIBLE);
1067		else
1068			set_current_state(TASK_UNINTERRUPTIBLE);
1069
1070		/*
1071		 * radeon_test_signaled must be called after
1072		 * set_current_state to prevent a race with wake_up_process
1073		 */
1074		if (radeon_test_signaled(fence))
1075			break;
1076
1077		if (rdev->needs_reset) {
1078			t = -EDEADLK;
1079			break;
1080		}
1081
1082		t = schedule_timeout(t);
1083
1084		if (t > 0 && intr && signal_pending(current))
1085			t = -ERESTARTSYS;
1086	}
1087
1088	__set_current_state(TASK_RUNNING);
1089	dma_fence_remove_callback(f, &cb.base);
1090
1091	return t;
1092}
1093
1094const struct dma_fence_ops radeon_fence_ops = {
1095	.get_driver_name = radeon_fence_get_driver_name,
1096	.get_timeline_name = radeon_fence_get_timeline_name,
1097	.enable_signaling = radeon_fence_enable_signaling,
1098	.signaled = radeon_fence_is_signaled,
1099	.wait = radeon_fence_default_wait,
1100	.release = NULL,
1101};
v6.2
   1/*
   2 * Copyright 2009 Jerome Glisse.
   3 * All Rights Reserved.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the
   7 * "Software"), to deal in the Software without restriction, including
   8 * without limitation the rights to use, copy, modify, merge, publish,
   9 * distribute, sub license, and/or sell copies of the Software, and to
  10 * permit persons to whom the Software is furnished to do so, subject to
  11 * the following conditions:
  12 *
  13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  20 *
  21 * The above copyright notice and this permission notice (including the
  22 * next paragraph) shall be included in all copies or substantial portions
  23 * of the Software.
  24 *
  25 */
  26/*
  27 * Authors:
  28 *    Jerome Glisse <glisse@freedesktop.org>
  29 *    Dave Airlie
  30 */
  31
  32#include <linux/atomic.h>
 
  33#include <linux/firmware.h>
  34#include <linux/kref.h>
  35#include <linux/sched/signal.h>
  36#include <linux/seq_file.h>
  37#include <linux/slab.h>
  38#include <linux/wait.h>
  39
  40#include <drm/drm_device.h>
  41#include <drm/drm_file.h>
  42
  43#include "radeon.h"
  44#include "radeon_reg.h"
  45#include "radeon_trace.h"
  46
  47/*
  48 * Fences
  49 * Fences mark an event in the GPUs pipeline and are used
  50 * for GPU/CPU synchronization.  When the fence is written,
  51 * it is expected that all buffers associated with that fence
  52 * are no longer in use by the associated ring on the GPU and
  53 * that the relevant GPU caches have been flushed.  Whether
  54 * we use a scratch register or memory location depends on the asic
  55 * and whether writeback is enabled.
  56 */
  57
  58/**
  59 * radeon_fence_write - write a fence value
  60 *
  61 * @rdev: radeon_device pointer
  62 * @seq: sequence number to write
  63 * @ring: ring index the fence is associated with
  64 *
  65 * Writes a fence value to memory or a scratch register (all asics).
  66 */
  67static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring)
  68{
  69	struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
 
  70	if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
  71		if (drv->cpu_addr) {
  72			*drv->cpu_addr = cpu_to_le32(seq);
  73		}
  74	} else {
  75		WREG32(drv->scratch_reg, seq);
  76	}
  77}
  78
  79/**
  80 * radeon_fence_read - read a fence value
  81 *
  82 * @rdev: radeon_device pointer
  83 * @ring: ring index the fence is associated with
  84 *
  85 * Reads a fence value from memory or a scratch register (all asics).
  86 * Returns the value of the fence read from memory or register.
  87 */
  88static u32 radeon_fence_read(struct radeon_device *rdev, int ring)
  89{
  90	struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
  91	u32 seq = 0;
  92
  93	if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
  94		if (drv->cpu_addr) {
  95			seq = le32_to_cpu(*drv->cpu_addr);
  96		} else {
  97			seq = lower_32_bits(atomic64_read(&drv->last_seq));
  98		}
  99	} else {
 100		seq = RREG32(drv->scratch_reg);
 101	}
 102	return seq;
 103}
 104
 105/**
 106 * radeon_fence_schedule_check - schedule lockup check
 107 *
 108 * @rdev: radeon_device pointer
 109 * @ring: ring index we should work with
 110 *
 111 * Queues a delayed work item to check for lockups.
 112 */
 113static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring)
 114{
 115	/*
 116	 * Do not reset the timer here with mod_delayed_work,
 117	 * this can livelock in an interaction with TTM delayed destroy.
 118	 */
 119	queue_delayed_work(system_power_efficient_wq,
 120			   &rdev->fence_drv[ring].lockup_work,
 121			   RADEON_FENCE_JIFFIES_TIMEOUT);
 122}
 123
 124/**
 125 * radeon_fence_emit - emit a fence on the requested ring
 126 *
 127 * @rdev: radeon_device pointer
 128 * @fence: radeon fence object
 129 * @ring: ring index the fence is associated with
 130 *
 131 * Emits a fence command on the requested ring (all asics).
 132 * Returns 0 on success, -ENOMEM on failure.
 133 */
 134int radeon_fence_emit(struct radeon_device *rdev,
 135		      struct radeon_fence **fence,
 136		      int ring)
 137{
 138	u64 seq;
 139
 140	/* we are protected by the ring emission mutex */
 141	*fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL);
 142	if ((*fence) == NULL) {
 143		return -ENOMEM;
 144	}
 145	(*fence)->rdev = rdev;
 146	(*fence)->seq = seq = ++rdev->fence_drv[ring].sync_seq[ring];
 147	(*fence)->ring = ring;
 148	(*fence)->is_vm_update = false;
 149	dma_fence_init(&(*fence)->base, &radeon_fence_ops,
 150		       &rdev->fence_queue.lock,
 151		       rdev->fence_context + ring,
 152		       seq);
 153	radeon_fence_ring_emit(rdev, ring, *fence);
 154	trace_radeon_fence_emit(rdev->ddev, ring, (*fence)->seq);
 155	radeon_fence_schedule_check(rdev, ring);
 156	return 0;
 157}
 158
 159/*
 160 * radeon_fence_check_signaled - callback from fence_queue
 161 *
 162 * this function is called with fence_queue lock held, which is also used
 163 * for the fence locking itself, so unlocked variants are used for
 164 * fence_signal, and remove_wait_queue.
 165 */
 166static int radeon_fence_check_signaled(wait_queue_entry_t *wait, unsigned mode, int flags, void *key)
 
 167{
 168	struct radeon_fence *fence;
 169	u64 seq;
 170
 171	fence = container_of(wait, struct radeon_fence, fence_wake);
 172
 173	/*
 174	 * We cannot use radeon_fence_process here because we're already
 175	 * in the waitqueue, in a call from wake_up_all.
 176	 */
 177	seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq);
 178	if (seq >= fence->seq) {
 179		dma_fence_signal_locked(&fence->base);
 180		radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring);
 181		__remove_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake);
 182		dma_fence_put(&fence->base);
 183	}
 184	return 0;
 185}
 186
 187/**
 188 * radeon_fence_activity - check for fence activity
 189 *
 190 * @rdev: radeon_device pointer
 191 * @ring: ring index the fence is associated with
 192 *
 193 * Checks the current fence value and calculates the last
 194 * signalled fence value. Returns true if activity occured
 195 * on the ring, and the fence_queue should be waken up.
 196 */
 197static bool radeon_fence_activity(struct radeon_device *rdev, int ring)
 198{
 199	uint64_t seq, last_seq, last_emitted;
 200	unsigned count_loop = 0;
 201	bool wake = false;
 202
 203	/* Note there is a scenario here for an infinite loop but it's
 204	 * very unlikely to happen. For it to happen, the current polling
 205	 * process need to be interrupted by another process and another
 206	 * process needs to update the last_seq btw the atomic read and
 207	 * xchg of the current process.
 208	 *
 209	 * More over for this to go in infinite loop there need to be
 210	 * continuously new fence signaled ie radeon_fence_read needs
 211	 * to return a different value each time for both the currently
 212	 * polling process and the other process that xchg the last_seq
 213	 * btw atomic read and xchg of the current process. And the
 214	 * value the other process set as last seq must be higher than
 215	 * the seq value we just read. Which means that current process
 216	 * need to be interrupted after radeon_fence_read and before
 217	 * atomic xchg.
 218	 *
 219	 * To be even more safe we count the number of time we loop and
 220	 * we bail after 10 loop just accepting the fact that we might
 221	 * have temporarly set the last_seq not to the true real last
 222	 * seq but to an older one.
 223	 */
 224	last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq);
 225	do {
 226		last_emitted = rdev->fence_drv[ring].sync_seq[ring];
 227		seq = radeon_fence_read(rdev, ring);
 228		seq |= last_seq & 0xffffffff00000000LL;
 229		if (seq < last_seq) {
 230			seq &= 0xffffffff;
 231			seq |= last_emitted & 0xffffffff00000000LL;
 232		}
 233
 234		if (seq <= last_seq || seq > last_emitted) {
 235			break;
 236		}
 237		/* If we loop over we don't want to return without
 238		 * checking if a fence is signaled as it means that the
 239		 * seq we just read is different from the previous on.
 240		 */
 241		wake = true;
 242		last_seq = seq;
 243		if ((count_loop++) > 10) {
 244			/* We looped over too many time leave with the
 245			 * fact that we might have set an older fence
 246			 * seq then the current real last seq as signaled
 247			 * by the hw.
 248			 */
 249			break;
 250		}
 251	} while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq);
 252
 253	if (seq < last_emitted)
 254		radeon_fence_schedule_check(rdev, ring);
 255
 256	return wake;
 257}
 258
 259/**
 260 * radeon_fence_check_lockup - check for hardware lockup
 261 *
 262 * @work: delayed work item
 263 *
 264 * Checks for fence activity and if there is none probe
 265 * the hardware if a lockup occured.
 266 */
 267static void radeon_fence_check_lockup(struct work_struct *work)
 268{
 269	struct radeon_fence_driver *fence_drv;
 270	struct radeon_device *rdev;
 271	int ring;
 272
 273	fence_drv = container_of(work, struct radeon_fence_driver,
 274				 lockup_work.work);
 275	rdev = fence_drv->rdev;
 276	ring = fence_drv - &rdev->fence_drv[0];
 277
 278	if (!down_read_trylock(&rdev->exclusive_lock)) {
 279		/* just reschedule the check if a reset is going on */
 280		radeon_fence_schedule_check(rdev, ring);
 281		return;
 282	}
 283
 284	if (fence_drv->delayed_irq && rdev->irq.installed) {
 285		unsigned long irqflags;
 286
 287		fence_drv->delayed_irq = false;
 288		spin_lock_irqsave(&rdev->irq.lock, irqflags);
 289		radeon_irq_set(rdev);
 290		spin_unlock_irqrestore(&rdev->irq.lock, irqflags);
 291	}
 292
 293	if (radeon_fence_activity(rdev, ring))
 294		wake_up_all(&rdev->fence_queue);
 295
 296	else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) {
 297
 298		/* good news we believe it's a lockup */
 299		dev_warn(rdev->dev, "GPU lockup (current fence id "
 300			 "0x%016llx last fence id 0x%016llx on ring %d)\n",
 301			 (uint64_t)atomic64_read(&fence_drv->last_seq),
 302			 fence_drv->sync_seq[ring], ring);
 303
 304		/* remember that we need an reset */
 305		rdev->needs_reset = true;
 306		wake_up_all(&rdev->fence_queue);
 307	}
 308	up_read(&rdev->exclusive_lock);
 309}
 310
 311/**
 312 * radeon_fence_process - process a fence
 313 *
 314 * @rdev: radeon_device pointer
 315 * @ring: ring index the fence is associated with
 316 *
 317 * Checks the current fence value and wakes the fence queue
 318 * if the sequence number has increased (all asics).
 319 */
 320void radeon_fence_process(struct radeon_device *rdev, int ring)
 321{
 322	if (radeon_fence_activity(rdev, ring))
 323		wake_up_all(&rdev->fence_queue);
 324}
 325
 326/**
 327 * radeon_fence_seq_signaled - check if a fence sequence number has signaled
 328 *
 329 * @rdev: radeon device pointer
 330 * @seq: sequence number
 331 * @ring: ring index the fence is associated with
 332 *
 333 * Check if the last signaled fence sequnce number is >= the requested
 334 * sequence number (all asics).
 335 * Returns true if the fence has signaled (current fence value
 336 * is >= requested value) or false if it has not (current fence
 337 * value is < the requested value.  Helper function for
 338 * radeon_fence_signaled().
 339 */
 340static bool radeon_fence_seq_signaled(struct radeon_device *rdev,
 341				      u64 seq, unsigned ring)
 342{
 343	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
 344		return true;
 345	}
 346	/* poll new last sequence at least once */
 347	radeon_fence_process(rdev, ring);
 348	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
 349		return true;
 350	}
 351	return false;
 352}
 353
 354static bool radeon_fence_is_signaled(struct dma_fence *f)
 355{
 356	struct radeon_fence *fence = to_radeon_fence(f);
 357	struct radeon_device *rdev = fence->rdev;
 358	unsigned ring = fence->ring;
 359	u64 seq = fence->seq;
 360
 361	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
 362		return true;
 363	}
 364
 365	if (down_read_trylock(&rdev->exclusive_lock)) {
 366		radeon_fence_process(rdev, ring);
 367		up_read(&rdev->exclusive_lock);
 368
 369		if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
 370			return true;
 371		}
 372	}
 373	return false;
 374}
 375
 376/**
 377 * radeon_fence_enable_signaling - enable signalling on fence
 378 * @f: fence
 379 *
 380 * This function is called with fence_queue lock held, and adds a callback
 381 * to fence_queue that checks if this fence is signaled, and if so it
 382 * signals the fence and removes itself.
 383 */
 384static bool radeon_fence_enable_signaling(struct dma_fence *f)
 385{
 386	struct radeon_fence *fence = to_radeon_fence(f);
 387	struct radeon_device *rdev = fence->rdev;
 388
 389	if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq)
 390		return false;
 391
 392	if (down_read_trylock(&rdev->exclusive_lock)) {
 393		radeon_irq_kms_sw_irq_get(rdev, fence->ring);
 394
 395		if (radeon_fence_activity(rdev, fence->ring))
 396			wake_up_all_locked(&rdev->fence_queue);
 397
 398		/* did fence get signaled after we enabled the sw irq? */
 399		if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) {
 400			radeon_irq_kms_sw_irq_put(rdev, fence->ring);
 401			up_read(&rdev->exclusive_lock);
 402			return false;
 403		}
 404
 405		up_read(&rdev->exclusive_lock);
 406	} else {
 407		/* we're probably in a lockup, lets not fiddle too much */
 408		if (radeon_irq_kms_sw_irq_get_delayed(rdev, fence->ring))
 409			rdev->fence_drv[fence->ring].delayed_irq = true;
 410		radeon_fence_schedule_check(rdev, fence->ring);
 411	}
 412
 413	fence->fence_wake.flags = 0;
 414	fence->fence_wake.private = NULL;
 415	fence->fence_wake.func = radeon_fence_check_signaled;
 416	__add_wait_queue(&rdev->fence_queue, &fence->fence_wake);
 417	dma_fence_get(f);
 418	return true;
 419}
 420
 421/**
 422 * radeon_fence_signaled - check if a fence has signaled
 423 *
 424 * @fence: radeon fence object
 425 *
 426 * Check if the requested fence has signaled (all asics).
 427 * Returns true if the fence has signaled or false if it has not.
 428 */
 429bool radeon_fence_signaled(struct radeon_fence *fence)
 430{
 431	if (!fence)
 432		return true;
 433
 434	if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) {
 435		dma_fence_signal(&fence->base);
 436		return true;
 437	}
 438	return false;
 439}
 440
 441/**
 442 * radeon_fence_any_seq_signaled - check if any sequence number is signaled
 443 *
 444 * @rdev: radeon device pointer
 445 * @seq: sequence numbers
 446 *
 447 * Check if the last signaled fence sequnce number is >= the requested
 448 * sequence number (all asics).
 449 * Returns true if any has signaled (current value is >= requested value)
 450 * or false if it has not. Helper function for radeon_fence_wait_seq.
 451 */
 452static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq)
 453{
 454	unsigned i;
 455
 456	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
 457		if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i))
 458			return true;
 459	}
 460	return false;
 461}
 462
 463/**
 464 * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers
 465 *
 466 * @rdev: radeon device pointer
 467 * @target_seq: sequence number(s) we want to wait for
 468 * @intr: use interruptable sleep
 469 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
 470 *
 471 * Wait for the requested sequence number(s) to be written by any ring
 472 * (all asics).  Sequnce number array is indexed by ring id.
 473 * @intr selects whether to use interruptable (true) or non-interruptable
 474 * (false) sleep when waiting for the sequence number.  Helper function
 475 * for radeon_fence_wait_*().
 476 * Returns remaining time if the sequence number has passed, 0 when
 477 * the wait timeout, or an error for all other cases.
 478 * -EDEADLK is returned when a GPU lockup has been detected.
 479 */
 480static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev,
 481					  u64 *target_seq, bool intr,
 482					  long timeout)
 483{
 484	long r;
 485	int i;
 486
 487	if (radeon_fence_any_seq_signaled(rdev, target_seq))
 488		return timeout;
 489
 490	/* enable IRQs and tracing */
 491	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
 492		if (!target_seq[i])
 493			continue;
 494
 495		trace_radeon_fence_wait_begin(rdev->ddev, i, target_seq[i]);
 496		radeon_irq_kms_sw_irq_get(rdev, i);
 497	}
 498
 499	if (intr) {
 500		r = wait_event_interruptible_timeout(rdev->fence_queue, (
 501			radeon_fence_any_seq_signaled(rdev, target_seq)
 502			 || rdev->needs_reset), timeout);
 503	} else {
 504		r = wait_event_timeout(rdev->fence_queue, (
 505			radeon_fence_any_seq_signaled(rdev, target_seq)
 506			 || rdev->needs_reset), timeout);
 507	}
 508
 509	if (rdev->needs_reset)
 510		r = -EDEADLK;
 511
 512	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
 513		if (!target_seq[i])
 514			continue;
 515
 516		radeon_irq_kms_sw_irq_put(rdev, i);
 517		trace_radeon_fence_wait_end(rdev->ddev, i, target_seq[i]);
 518	}
 519
 520	return r;
 521}
 522
 523/**
 524 * radeon_fence_wait_timeout - wait for a fence to signal with timeout
 525 *
 526 * @fence: radeon fence object
 527 * @intr: use interruptible sleep
 528 *
 529 * Wait for the requested fence to signal (all asics).
 530 * @intr selects whether to use interruptable (true) or non-interruptable
 531 * (false) sleep when waiting for the fence.
 532 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
 533 * Returns remaining time if the sequence number has passed, 0 when
 534 * the wait timeout, or an error for all other cases.
 535 */
 536long radeon_fence_wait_timeout(struct radeon_fence *fence, bool intr, long timeout)
 537{
 538	uint64_t seq[RADEON_NUM_RINGS] = {};
 539	long r;
 540
 541	/*
 542	 * This function should not be called on !radeon fences.
 543	 * If this is the case, it would mean this function can
 544	 * also be called on radeon fences belonging to another card.
 545	 * exclusive_lock is not held in that case.
 546	 */
 547	if (WARN_ON_ONCE(!to_radeon_fence(&fence->base)))
 548		return dma_fence_wait(&fence->base, intr);
 549
 550	seq[fence->ring] = fence->seq;
 551	r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, timeout);
 552	if (r <= 0) {
 553		return r;
 554	}
 555
 556	dma_fence_signal(&fence->base);
 557	return r;
 558}
 559
 560/**
 561 * radeon_fence_wait - wait for a fence to signal
 562 *
 563 * @fence: radeon fence object
 564 * @intr: use interruptible sleep
 565 *
 566 * Wait for the requested fence to signal (all asics).
 567 * @intr selects whether to use interruptable (true) or non-interruptable
 568 * (false) sleep when waiting for the fence.
 569 * Returns 0 if the fence has passed, error for all other cases.
 570 */
 571int radeon_fence_wait(struct radeon_fence *fence, bool intr)
 572{
 573	long r = radeon_fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT);
 574	if (r > 0) {
 
 575		return 0;
 576	} else {
 577		return r;
 578	}
 579}
 580
 581/**
 582 * radeon_fence_wait_any - wait for a fence to signal on any ring
 583 *
 584 * @rdev: radeon device pointer
 585 * @fences: radeon fence object(s)
 586 * @intr: use interruptable sleep
 587 *
 588 * Wait for any requested fence to signal (all asics).  Fence
 589 * array is indexed by ring id.  @intr selects whether to use
 590 * interruptable (true) or non-interruptable (false) sleep when
 591 * waiting for the fences. Used by the suballocator.
 592 * Returns 0 if any fence has passed, error for all other cases.
 593 */
 594int radeon_fence_wait_any(struct radeon_device *rdev,
 595			  struct radeon_fence **fences,
 596			  bool intr)
 597{
 598	uint64_t seq[RADEON_NUM_RINGS];
 599	unsigned i, num_rings = 0;
 600	long r;
 601
 602	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
 603		seq[i] = 0;
 604
 605		if (!fences[i]) {
 606			continue;
 607		}
 608
 609		seq[i] = fences[i]->seq;
 610		++num_rings;
 611	}
 612
 613	/* nothing to wait for ? */
 614	if (num_rings == 0)
 615		return -ENOENT;
 616
 617	r = radeon_fence_wait_seq_timeout(rdev, seq, intr, MAX_SCHEDULE_TIMEOUT);
 618	if (r < 0) {
 619		return r;
 620	}
 621	return 0;
 622}
 623
 624/**
 625 * radeon_fence_wait_next - wait for the next fence to signal
 626 *
 627 * @rdev: radeon device pointer
 628 * @ring: ring index the fence is associated with
 629 *
 630 * Wait for the next fence on the requested ring to signal (all asics).
 631 * Returns 0 if the next fence has passed, error for all other cases.
 632 * Caller must hold ring lock.
 633 */
 634int radeon_fence_wait_next(struct radeon_device *rdev, int ring)
 635{
 636	uint64_t seq[RADEON_NUM_RINGS] = {};
 637	long r;
 638
 639	seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL;
 640	if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) {
 641		/* nothing to wait for, last_seq is
 642		   already the last emited fence */
 
 643		return -ENOENT;
 644	}
 
 645	r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
 646	if (r < 0)
 647		return r;
 
 648	return 0;
 649}
 650
 651/**
 652 * radeon_fence_wait_empty - wait for all fences to signal
 653 *
 654 * @rdev: radeon device pointer
 655 * @ring: ring index the fence is associated with
 656 *
 657 * Wait for all fences on the requested ring to signal (all asics).
 658 * Returns 0 if the fences have passed, error for all other cases.
 659 * Caller must hold ring lock.
 660 */
 661int radeon_fence_wait_empty(struct radeon_device *rdev, int ring)
 662{
 663	uint64_t seq[RADEON_NUM_RINGS] = {};
 664	long r;
 665
 666	seq[ring] = rdev->fence_drv[ring].sync_seq[ring];
 667	if (!seq[ring])
 668		return 0;
 669
 670	r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
 671	if (r < 0) {
 672		if (r == -EDEADLK)
 673			return -EDEADLK;
 674
 675		dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n",
 676			ring, r);
 677	}
 678	return 0;
 679}
 680
 681/**
 682 * radeon_fence_ref - take a ref on a fence
 683 *
 684 * @fence: radeon fence object
 685 *
 686 * Take a reference on a fence (all asics).
 687 * Returns the fence.
 688 */
 689struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence)
 690{
 691	dma_fence_get(&fence->base);
 692	return fence;
 693}
 694
 695/**
 696 * radeon_fence_unref - remove a ref on a fence
 697 *
 698 * @fence: radeon fence object
 699 *
 700 * Remove a reference on a fence (all asics).
 701 */
 702void radeon_fence_unref(struct radeon_fence **fence)
 703{
 704	struct radeon_fence *tmp = *fence;
 705
 706	*fence = NULL;
 707	if (tmp) {
 708		dma_fence_put(&tmp->base);
 709	}
 710}
 711
 712/**
 713 * radeon_fence_count_emitted - get the count of emitted fences
 714 *
 715 * @rdev: radeon device pointer
 716 * @ring: ring index the fence is associated with
 717 *
 718 * Get the number of fences emitted on the requested ring (all asics).
 719 * Returns the number of emitted fences on the ring.  Used by the
 720 * dynpm code to ring track activity.
 721 */
 722unsigned radeon_fence_count_emitted(struct radeon_device *rdev, int ring)
 723{
 724	uint64_t emitted;
 725
 726	/* We are not protected by ring lock when reading the last sequence
 727	 * but it's ok to report slightly wrong fence count here.
 728	 */
 729	radeon_fence_process(rdev, ring);
 730	emitted = rdev->fence_drv[ring].sync_seq[ring]
 731		- atomic64_read(&rdev->fence_drv[ring].last_seq);
 732	/* to avoid 32bits warp around */
 733	if (emitted > 0x10000000) {
 734		emitted = 0x10000000;
 735	}
 736	return (unsigned)emitted;
 737}
 738
 739/**
 740 * radeon_fence_need_sync - do we need a semaphore
 741 *
 742 * @fence: radeon fence object
 743 * @dst_ring: which ring to check against
 744 *
 745 * Check if the fence needs to be synced against another ring
 746 * (all asics).  If so, we need to emit a semaphore.
 747 * Returns true if we need to sync with another ring, false if
 748 * not.
 749 */
 750bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring)
 751{
 752	struct radeon_fence_driver *fdrv;
 753
 754	if (!fence) {
 755		return false;
 756	}
 757
 758	if (fence->ring == dst_ring) {
 759		return false;
 760	}
 761
 762	/* we are protected by the ring mutex */
 763	fdrv = &fence->rdev->fence_drv[dst_ring];
 764	if (fence->seq <= fdrv->sync_seq[fence->ring]) {
 765		return false;
 766	}
 767
 768	return true;
 769}
 770
 771/**
 772 * radeon_fence_note_sync - record the sync point
 773 *
 774 * @fence: radeon fence object
 775 * @dst_ring: which ring to check against
 776 *
 777 * Note the sequence number at which point the fence will
 778 * be synced with the requested ring (all asics).
 779 */
 780void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring)
 781{
 782	struct radeon_fence_driver *dst, *src;
 783	unsigned i;
 784
 785	if (!fence) {
 786		return;
 787	}
 788
 789	if (fence->ring == dst_ring) {
 790		return;
 791	}
 792
 793	/* we are protected by the ring mutex */
 794	src = &fence->rdev->fence_drv[fence->ring];
 795	dst = &fence->rdev->fence_drv[dst_ring];
 796	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
 797		if (i == dst_ring) {
 798			continue;
 799		}
 800		dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]);
 801	}
 802}
 803
 804/**
 805 * radeon_fence_driver_start_ring - make the fence driver
 806 * ready for use on the requested ring.
 807 *
 808 * @rdev: radeon device pointer
 809 * @ring: ring index to start the fence driver on
 810 *
 811 * Make the fence driver ready for processing (all asics).
 812 * Not all asics have all rings, so each asic will only
 813 * start the fence driver on the rings it has.
 814 * Returns 0 for success, errors for failure.
 815 */
 816int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring)
 817{
 818	uint64_t index;
 819	int r;
 820
 821	radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
 822	if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) {
 823		rdev->fence_drv[ring].scratch_reg = 0;
 824		if (ring != R600_RING_TYPE_UVD_INDEX) {
 825			index = R600_WB_EVENT_OFFSET + ring * 4;
 826			rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
 827			rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr +
 828							 index;
 829
 830		} else {
 831			/* put fence directly behind firmware */
 832			index = ALIGN(rdev->uvd_fw->size, 8);
 833			rdev->fence_drv[ring].cpu_addr = rdev->uvd.cpu_addr + index;
 834			rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index;
 835		}
 836
 837	} else {
 838		r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg);
 839		if (r) {
 840			dev_err(rdev->dev, "fence failed to get scratch register\n");
 841			return r;
 842		}
 843		index = RADEON_WB_SCRATCH_OFFSET +
 844			rdev->fence_drv[ring].scratch_reg -
 845			rdev->scratch.reg_base;
 846		rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
 847		rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index;
 848	}
 849	radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring);
 850	rdev->fence_drv[ring].initialized = true;
 851	dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016llx\n",
 852		 ring, rdev->fence_drv[ring].gpu_addr);
 853	return 0;
 854}
 855
 856/**
 857 * radeon_fence_driver_init_ring - init the fence driver
 858 * for the requested ring.
 859 *
 860 * @rdev: radeon device pointer
 861 * @ring: ring index to start the fence driver on
 862 *
 863 * Init the fence driver for the requested ring (all asics).
 864 * Helper function for radeon_fence_driver_init().
 865 */
 866static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring)
 867{
 868	int i;
 869
 870	rdev->fence_drv[ring].scratch_reg = -1;
 871	rdev->fence_drv[ring].cpu_addr = NULL;
 872	rdev->fence_drv[ring].gpu_addr = 0;
 873	for (i = 0; i < RADEON_NUM_RINGS; ++i)
 874		rdev->fence_drv[ring].sync_seq[i] = 0;
 875	atomic64_set(&rdev->fence_drv[ring].last_seq, 0);
 876	rdev->fence_drv[ring].initialized = false;
 877	INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work,
 878			  radeon_fence_check_lockup);
 879	rdev->fence_drv[ring].rdev = rdev;
 880}
 881
 882/**
 883 * radeon_fence_driver_init - init the fence driver
 884 * for all possible rings.
 885 *
 886 * @rdev: radeon device pointer
 887 *
 888 * Init the fence driver for all possible rings (all asics).
 889 * Not all asics have all rings, so each asic will only
 890 * start the fence driver on the rings it has using
 891 * radeon_fence_driver_start_ring().
 892 */
 893void radeon_fence_driver_init(struct radeon_device *rdev)
 894{
 895	int ring;
 896
 897	init_waitqueue_head(&rdev->fence_queue);
 898	for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
 899		radeon_fence_driver_init_ring(rdev, ring);
 900	}
 901
 902	radeon_debugfs_fence_init(rdev);
 903}
 904
 905/**
 906 * radeon_fence_driver_fini - tear down the fence driver
 907 * for all possible rings.
 908 *
 909 * @rdev: radeon device pointer
 910 *
 911 * Tear down the fence driver for all possible rings (all asics).
 912 */
 913void radeon_fence_driver_fini(struct radeon_device *rdev)
 914{
 915	int ring, r;
 916
 917	mutex_lock(&rdev->ring_lock);
 918	for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
 919		if (!rdev->fence_drv[ring].initialized)
 920			continue;
 921		r = radeon_fence_wait_empty(rdev, ring);
 922		if (r) {
 923			/* no need to trigger GPU reset as we are unloading */
 924			radeon_fence_driver_force_completion(rdev, ring);
 925		}
 926		cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
 927		wake_up_all(&rdev->fence_queue);
 928		radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
 929		rdev->fence_drv[ring].initialized = false;
 930	}
 931	mutex_unlock(&rdev->ring_lock);
 932}
 933
 934/**
 935 * radeon_fence_driver_force_completion - force all fence waiter to complete
 936 *
 937 * @rdev: radeon device pointer
 938 * @ring: the ring to complete
 939 *
 940 * In case of GPU reset failure make sure no process keep waiting on fence
 941 * that will never complete.
 942 */
 943void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring)
 944{
 945	if (rdev->fence_drv[ring].initialized) {
 946		radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring);
 947		cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
 948	}
 949}
 950
 951
 952/*
 953 * Fence debugfs
 954 */
 955#if defined(CONFIG_DEBUG_FS)
 956static int radeon_debugfs_fence_info_show(struct seq_file *m, void *data)
 957{
 958	struct radeon_device *rdev = (struct radeon_device *)m->private;
 959	int i, j;
 960
 961	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
 962		if (!rdev->fence_drv[i].initialized)
 963			continue;
 964
 965		radeon_fence_process(rdev, i);
 966
 967		seq_printf(m, "--- ring %d ---\n", i);
 968		seq_printf(m, "Last signaled fence 0x%016llx\n",
 969			   (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq));
 970		seq_printf(m, "Last emitted        0x%016llx\n",
 971			   rdev->fence_drv[i].sync_seq[i]);
 972
 973		for (j = 0; j < RADEON_NUM_RINGS; ++j) {
 974			if (i != j && rdev->fence_drv[j].initialized)
 975				seq_printf(m, "Last sync to ring %d 0x%016llx\n",
 976					   j, rdev->fence_drv[i].sync_seq[j]);
 977		}
 978	}
 979	return 0;
 980}
 981
 982/*
 983 * radeon_debugfs_gpu_reset - manually trigger a gpu reset
 984 *
 985 * Manually trigger a gpu reset at the next fence wait.
 986 */
 987static int radeon_debugfs_gpu_reset(void *data, u64 *val)
 988{
 989	struct radeon_device *rdev = (struct radeon_device *)data;
 990
 991	down_read(&rdev->exclusive_lock);
 992	*val = rdev->needs_reset;
 993	rdev->needs_reset = true;
 994	wake_up_all(&rdev->fence_queue);
 995	up_read(&rdev->exclusive_lock);
 996
 997	return 0;
 998}
 999DEFINE_SHOW_ATTRIBUTE(radeon_debugfs_fence_info);
1000DEFINE_DEBUGFS_ATTRIBUTE(radeon_debugfs_gpu_reset_fops,
1001			 radeon_debugfs_gpu_reset, NULL, "%lld\n");
1002#endif
1003
1004void radeon_debugfs_fence_init(struct radeon_device *rdev)
1005{
1006#if defined(CONFIG_DEBUG_FS)
1007	struct dentry *root = rdev->ddev->primary->debugfs_root;
1008
1009	debugfs_create_file("radeon_gpu_reset", 0444, root, rdev,
1010			    &radeon_debugfs_gpu_reset_fops);
1011	debugfs_create_file("radeon_fence_info", 0444, root, rdev,
1012			    &radeon_debugfs_fence_info_fops);
1013
1014
1015#endif
1016}
1017
1018static const char *radeon_fence_get_driver_name(struct dma_fence *fence)
1019{
1020	return "radeon";
1021}
1022
1023static const char *radeon_fence_get_timeline_name(struct dma_fence *f)
1024{
1025	struct radeon_fence *fence = to_radeon_fence(f);
 
1026	switch (fence->ring) {
1027	case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx";
1028	case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1";
1029	case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2";
1030	case R600_RING_TYPE_DMA_INDEX: return "radeon.dma";
1031	case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1";
1032	case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd";
1033	case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1";
1034	case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2";
1035	default: WARN_ON_ONCE(1); return "radeon.unk";
 
 
1036	}
1037}
1038
1039static inline bool radeon_test_signaled(struct radeon_fence *fence)
1040{
1041	return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->base.flags);
1042}
1043
1044struct radeon_wait_cb {
1045	struct dma_fence_cb base;
1046	struct task_struct *task;
1047};
1048
1049static void
1050radeon_fence_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
1051{
1052	struct radeon_wait_cb *wait =
1053		container_of(cb, struct radeon_wait_cb, base);
1054
1055	wake_up_process(wait->task);
1056}
1057
1058static signed long radeon_fence_default_wait(struct dma_fence *f, bool intr,
1059					     signed long t)
1060{
1061	struct radeon_fence *fence = to_radeon_fence(f);
1062	struct radeon_device *rdev = fence->rdev;
1063	struct radeon_wait_cb cb;
1064
1065	cb.task = current;
1066
1067	if (dma_fence_add_callback(f, &cb.base, radeon_fence_wait_cb))
1068		return t;
1069
1070	while (t > 0) {
1071		if (intr)
1072			set_current_state(TASK_INTERRUPTIBLE);
1073		else
1074			set_current_state(TASK_UNINTERRUPTIBLE);
1075
1076		/*
1077		 * radeon_test_signaled must be called after
1078		 * set_current_state to prevent a race with wake_up_process
1079		 */
1080		if (radeon_test_signaled(fence))
1081			break;
1082
1083		if (rdev->needs_reset) {
1084			t = -EDEADLK;
1085			break;
1086		}
1087
1088		t = schedule_timeout(t);
1089
1090		if (t > 0 && intr && signal_pending(current))
1091			t = -ERESTARTSYS;
1092	}
1093
1094	__set_current_state(TASK_RUNNING);
1095	dma_fence_remove_callback(f, &cb.base);
1096
1097	return t;
1098}
1099
1100const struct dma_fence_ops radeon_fence_ops = {
1101	.get_driver_name = radeon_fence_get_driver_name,
1102	.get_timeline_name = radeon_fence_get_timeline_name,
1103	.enable_signaling = radeon_fence_enable_signaling,
1104	.signaled = radeon_fence_is_signaled,
1105	.wait = radeon_fence_default_wait,
1106	.release = NULL,
1107};