Linux Audio

Check our new training course

Loading...
v6.13.7
   1/*
   2 * Copyright © 2012 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Keith Packard <keithp@keithp.com>
  25 *
  26 */
  27
  28#include <linux/i2c.h>
  29#include <linux/module.h>
  30#include <linux/slab.h>
  31
  32#include <drm/display/drm_dp_helper.h>
  33#include <drm/drm_crtc.h>
  34#include <drm/drm_crtc_helper.h>
  35#include <drm/drm_edid.h>
  36#include <drm/drm_modeset_helper_vtables.h>
  37#include <drm/drm_simple_kms_helper.h>
  38
  39#include "gma_display.h"
  40#include "psb_drv.h"
  41#include "psb_intel_drv.h"
  42#include "psb_intel_reg.h"
  43
  44/**
  45 * struct i2c_algo_dp_aux_data - driver interface structure for i2c over dp
  46 * 				 aux algorithm
  47 * @running: set by the algo indicating whether an i2c is ongoing or whether
  48 * 	     the i2c bus is quiescent
  49 * @address: i2c target address for the currently ongoing transfer
  50 * @aux_ch: driver callback to transfer a single byte of the i2c payload
  51 */
  52struct i2c_algo_dp_aux_data {
  53	bool running;
  54	u16 address;
  55	int (*aux_ch) (struct i2c_adapter *adapter,
  56		       int mode, uint8_t write_byte,
  57		       uint8_t *read_byte);
  58};
  59
  60/* Run a single AUX_CH I2C transaction, writing/reading data as necessary */
  61static int
  62i2c_algo_dp_aux_transaction(struct i2c_adapter *adapter, int mode,
  63			    uint8_t write_byte, uint8_t *read_byte)
  64{
  65	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  66	int ret;
  67
  68	ret = (*algo_data->aux_ch)(adapter, mode,
  69				   write_byte, read_byte);
  70	return ret;
  71}
  72
  73/*
  74 * I2C over AUX CH
  75 */
  76
  77/*
  78 * Send the address. If the I2C link is running, this 'restarts'
  79 * the connection with the new address, this is used for doing
  80 * a write followed by a read (as needed for DDC)
  81 */
  82static int
  83i2c_algo_dp_aux_address(struct i2c_adapter *adapter, u16 address, bool reading)
  84{
  85	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  86	int mode = MODE_I2C_START;
  87
  88	if (reading)
  89		mode |= MODE_I2C_READ;
  90	else
  91		mode |= MODE_I2C_WRITE;
  92	algo_data->address = address;
  93	algo_data->running = true;
  94	return i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
  95}
  96
  97/*
  98 * Stop the I2C transaction. This closes out the link, sending
  99 * a bare address packet with the MOT bit turned off
 100 */
 101static void
 102i2c_algo_dp_aux_stop(struct i2c_adapter *adapter, bool reading)
 103{
 104	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
 105	int mode = MODE_I2C_STOP;
 106
 107	if (reading)
 108		mode |= MODE_I2C_READ;
 109	else
 110		mode |= MODE_I2C_WRITE;
 111	if (algo_data->running) {
 112		(void) i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
 113		algo_data->running = false;
 114	}
 115}
 116
 117/*
 118 * Write a single byte to the current I2C address, the
 119 * I2C link must be running or this returns -EIO
 120 */
 121static int
 122i2c_algo_dp_aux_put_byte(struct i2c_adapter *adapter, u8 byte)
 123{
 124	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
 125
 126	if (!algo_data->running)
 127		return -EIO;
 128
 129	return i2c_algo_dp_aux_transaction(adapter, MODE_I2C_WRITE, byte, NULL);
 130}
 131
 132/*
 133 * Read a single byte from the current I2C address, the
 134 * I2C link must be running or this returns -EIO
 135 */
 136static int
 137i2c_algo_dp_aux_get_byte(struct i2c_adapter *adapter, u8 *byte_ret)
 138{
 139	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
 140
 141	if (!algo_data->running)
 142		return -EIO;
 143
 144	return i2c_algo_dp_aux_transaction(adapter, MODE_I2C_READ, 0, byte_ret);
 145}
 146
 147static int
 148i2c_algo_dp_aux_xfer(struct i2c_adapter *adapter,
 149		     struct i2c_msg *msgs,
 150		     int num)
 151{
 152	int ret = 0;
 153	bool reading = false;
 154	int m;
 155	int b;
 156
 157	for (m = 0; m < num; m++) {
 158		u16 len = msgs[m].len;
 159		u8 *buf = msgs[m].buf;
 160		reading = (msgs[m].flags & I2C_M_RD) != 0;
 161		ret = i2c_algo_dp_aux_address(adapter, msgs[m].addr, reading);
 162		if (ret < 0)
 163			break;
 164		if (reading) {
 165			for (b = 0; b < len; b++) {
 166				ret = i2c_algo_dp_aux_get_byte(adapter, &buf[b]);
 167				if (ret < 0)
 168					break;
 169			}
 170		} else {
 171			for (b = 0; b < len; b++) {
 172				ret = i2c_algo_dp_aux_put_byte(adapter, buf[b]);
 173				if (ret < 0)
 174					break;
 175			}
 176		}
 177		if (ret < 0)
 178			break;
 179	}
 180	if (ret >= 0)
 181		ret = num;
 182	i2c_algo_dp_aux_stop(adapter, reading);
 183	DRM_DEBUG_KMS("dp_aux_xfer return %d\n", ret);
 184	return ret;
 185}
 186
 187static u32
 188i2c_algo_dp_aux_functionality(struct i2c_adapter *adapter)
 189{
 190	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
 191	       I2C_FUNC_SMBUS_READ_BLOCK_DATA |
 192	       I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
 193	       I2C_FUNC_10BIT_ADDR;
 194}
 195
 196static const struct i2c_algorithm i2c_dp_aux_algo = {
 197	.master_xfer	= i2c_algo_dp_aux_xfer,
 198	.functionality	= i2c_algo_dp_aux_functionality,
 199};
 200
 201static void
 202i2c_dp_aux_reset_bus(struct i2c_adapter *adapter)
 203{
 204	(void) i2c_algo_dp_aux_address(adapter, 0, false);
 205	(void) i2c_algo_dp_aux_stop(adapter, false);
 206}
 207
 208static int
 209i2c_dp_aux_prepare_bus(struct i2c_adapter *adapter)
 210{
 211	adapter->algo = &i2c_dp_aux_algo;
 212	adapter->retries = 3;
 213	i2c_dp_aux_reset_bus(adapter);
 214	return 0;
 215}
 216
 217/*
 218 * FIXME: This is the old dp aux helper, gma500 is the last driver that needs to
 219 * be ported over to the new helper code in drm_dp_helper.c like i915 or radeon.
 220 */
 221static int
 222i2c_dp_aux_add_bus(struct i2c_adapter *adapter)
 223{
 224	int error;
 225
 226	error = i2c_dp_aux_prepare_bus(adapter);
 227	if (error)
 228		return error;
 229	error = i2c_add_adapter(adapter);
 230	return error;
 231}
 232
 233#define _wait_for(COND, MS, W) ({ \
 234        unsigned long timeout__ = jiffies + msecs_to_jiffies(MS);       \
 235        int ret__ = 0;                                                  \
 236        while (! (COND)) {                                              \
 237                if (time_after(jiffies, timeout__)) {                   \
 238                        ret__ = -ETIMEDOUT;                             \
 239                        break;                                          \
 240                }                                                       \
 241                if (W && !in_dbg_master()) msleep(W);                   \
 242        }                                                               \
 243        ret__;                                                          \
 244})
 245
 246#define wait_for(COND, MS) _wait_for(COND, MS, 1)
 247
 248#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
 249
 250#define DP_LINK_CONFIGURATION_SIZE	9
 251
 252#define CDV_FAST_LINK_TRAIN	1
 253
 254struct cdv_intel_dp {
 255	uint32_t output_reg;
 256	uint32_t DP;
 257	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
 258	bool has_audio;
 259	int force_audio;
 260	uint32_t color_range;
 261	uint8_t link_bw;
 262	uint8_t lane_count;
 263	uint8_t dpcd[4];
 264	struct gma_encoder *encoder;
 265	struct i2c_adapter adapter;
 266	struct i2c_algo_dp_aux_data algo;
 267	uint8_t	train_set[4];
 268	uint8_t link_status[DP_LINK_STATUS_SIZE];
 269	int panel_power_up_delay;
 270	int panel_power_down_delay;
 271	int panel_power_cycle_delay;
 272	int backlight_on_delay;
 273	int backlight_off_delay;
 274	struct drm_display_mode *panel_fixed_mode;  /* for eDP */
 275	bool panel_on;
 276};
 277
 278struct ddi_regoff {
 279	uint32_t	PreEmph1;
 280	uint32_t	PreEmph2;
 281	uint32_t	VSwing1;
 282	uint32_t	VSwing2;
 283	uint32_t	VSwing3;
 284	uint32_t	VSwing4;
 285	uint32_t	VSwing5;
 286};
 287
 288static struct ddi_regoff ddi_DP_train_table[] = {
 289	{.PreEmph1 = 0x812c, .PreEmph2 = 0x8124, .VSwing1 = 0x8154,
 290	.VSwing2 = 0x8148, .VSwing3 = 0x814C, .VSwing4 = 0x8150,
 291	.VSwing5 = 0x8158,},
 292	{.PreEmph1 = 0x822c, .PreEmph2 = 0x8224, .VSwing1 = 0x8254,
 293	.VSwing2 = 0x8248, .VSwing3 = 0x824C, .VSwing4 = 0x8250,
 294	.VSwing5 = 0x8258,},
 295};
 296
 297static uint32_t dp_vswing_premph_table[] = {
 298        0x55338954,	0x4000,
 299        0x554d8954,	0x2000,
 300        0x55668954,	0,
 301        0x559ac0d4,	0x6000,
 302};
 303/**
 304 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
 305 * @encoder: GMA encoder struct
 306 *
 307 * If a CPU or PCH DP output is attached to an eDP panel, this function
 308 * will return true, and false otherwise.
 309 */
 310static bool is_edp(struct gma_encoder *encoder)
 311{
 312	return encoder->type == INTEL_OUTPUT_EDP;
 313}
 314
 315
 316static void cdv_intel_dp_start_link_train(struct gma_encoder *encoder);
 317static void cdv_intel_dp_complete_link_train(struct gma_encoder *encoder);
 318static void cdv_intel_dp_link_down(struct gma_encoder *encoder);
 319
 320static int
 321cdv_intel_dp_max_lane_count(struct gma_encoder *encoder)
 322{
 323	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
 324	int max_lane_count = 4;
 325
 326	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
 327		max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
 328		switch (max_lane_count) {
 329		case 1: case 2: case 4:
 330			break;
 331		default:
 332			max_lane_count = 4;
 333		}
 334	}
 335	return max_lane_count;
 336}
 337
 338static int
 339cdv_intel_dp_max_link_bw(struct gma_encoder *encoder)
 340{
 341	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
 342	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
 343
 344	switch (max_link_bw) {
 345	case DP_LINK_BW_1_62:
 346	case DP_LINK_BW_2_7:
 347		break;
 348	default:
 349		max_link_bw = DP_LINK_BW_1_62;
 350		break;
 351	}
 352	return max_link_bw;
 353}
 354
 355static int
 356cdv_intel_dp_link_clock(uint8_t link_bw)
 357{
 358	if (link_bw == DP_LINK_BW_2_7)
 359		return 270000;
 360	else
 361		return 162000;
 362}
 363
 364static int
 365cdv_intel_dp_link_required(int pixel_clock, int bpp)
 366{
 367	return (pixel_clock * bpp + 7) / 8;
 368}
 369
 370static int
 371cdv_intel_dp_max_data_rate(int max_link_clock, int max_lanes)
 372{
 373	return (max_link_clock * max_lanes * 19) / 20;
 374}
 375
 376static void cdv_intel_edp_panel_vdd_on(struct gma_encoder *intel_encoder)
 377{
 378	struct drm_device *dev = intel_encoder->base.dev;
 379	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
 380	u32 pp;
 381
 382	if (intel_dp->panel_on) {
 383		DRM_DEBUG_KMS("Skip VDD on because of panel on\n");
 384		return;
 385	}
 386	DRM_DEBUG_KMS("\n");
 387
 388	pp = REG_READ(PP_CONTROL);
 389
 390	pp |= EDP_FORCE_VDD;
 391	REG_WRITE(PP_CONTROL, pp);
 392	REG_READ(PP_CONTROL);
 393	msleep(intel_dp->panel_power_up_delay);
 394}
 395
 396static void cdv_intel_edp_panel_vdd_off(struct gma_encoder *intel_encoder)
 397{
 398	struct drm_device *dev = intel_encoder->base.dev;
 399	u32 pp;
 400
 401	DRM_DEBUG_KMS("\n");
 402	pp = REG_READ(PP_CONTROL);
 403
 404	pp &= ~EDP_FORCE_VDD;
 405	REG_WRITE(PP_CONTROL, pp);
 406	REG_READ(PP_CONTROL);
 407
 408}
 409
 410/* Returns true if the panel was already on when called */
 411static bool cdv_intel_edp_panel_on(struct gma_encoder *intel_encoder)
 412{
 413	struct drm_device *dev = intel_encoder->base.dev;
 414	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
 415	u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_NONE;
 416
 417	if (intel_dp->panel_on)
 418		return true;
 419
 420	DRM_DEBUG_KMS("\n");
 421	pp = REG_READ(PP_CONTROL);
 422	pp &= ~PANEL_UNLOCK_MASK;
 423
 424	pp |= (PANEL_UNLOCK_REGS | POWER_TARGET_ON);
 425	REG_WRITE(PP_CONTROL, pp);
 426	REG_READ(PP_CONTROL);
 427
 428	if (wait_for(((REG_READ(PP_STATUS) & idle_on_mask) == idle_on_mask), 1000)) {
 429		DRM_DEBUG_KMS("Error in Powering up eDP panel, status %x\n", REG_READ(PP_STATUS));
 430		intel_dp->panel_on = false;
 431	} else
 432		intel_dp->panel_on = true;
 433	msleep(intel_dp->panel_power_up_delay);
 434
 435	return false;
 436}
 437
 438static void cdv_intel_edp_panel_off (struct gma_encoder *intel_encoder)
 439{
 440	struct drm_device *dev = intel_encoder->base.dev;
 441	u32 pp, idle_off_mask = PP_ON ;
 442	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
 443
 444	DRM_DEBUG_KMS("\n");
 445
 446	pp = REG_READ(PP_CONTROL);
 447
 448	if ((pp & POWER_TARGET_ON) == 0)
 449		return;
 450
 451	intel_dp->panel_on = false;
 452	pp &= ~PANEL_UNLOCK_MASK;
 453	/* ILK workaround: disable reset around power sequence */
 454
 455	pp &= ~POWER_TARGET_ON;
 456	pp &= ~EDP_FORCE_VDD;
 457	pp &= ~EDP_BLC_ENABLE;
 458	REG_WRITE(PP_CONTROL, pp);
 459	REG_READ(PP_CONTROL);
 460	DRM_DEBUG_KMS("PP_STATUS %x\n", REG_READ(PP_STATUS));
 461
 462	if (wait_for((REG_READ(PP_STATUS) & idle_off_mask) == 0, 1000)) {
 463		DRM_DEBUG_KMS("Error in turning off Panel\n");
 464	}
 465
 466	msleep(intel_dp->panel_power_cycle_delay);
 467	DRM_DEBUG_KMS("Over\n");
 468}
 469
 470static void cdv_intel_edp_backlight_on (struct gma_encoder *intel_encoder)
 471{
 472	struct drm_device *dev = intel_encoder->base.dev;
 473	u32 pp;
 474
 475	DRM_DEBUG_KMS("\n");
 476	/*
 477	 * If we enable the backlight right away following a panel power
 478	 * on, we may see slight flicker as the panel syncs with the eDP
 479	 * link.  So delay a bit to make sure the image is solid before
 480	 * allowing it to appear.
 481	 */
 482	msleep(300);
 483	pp = REG_READ(PP_CONTROL);
 484
 485	pp |= EDP_BLC_ENABLE;
 486	REG_WRITE(PP_CONTROL, pp);
 487	gma_backlight_enable(dev);
 488}
 489
 490static void cdv_intel_edp_backlight_off (struct gma_encoder *intel_encoder)
 491{
 492	struct drm_device *dev = intel_encoder->base.dev;
 493	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
 494	u32 pp;
 495
 496	DRM_DEBUG_KMS("\n");
 497	gma_backlight_disable(dev);
 498	msleep(10);
 499	pp = REG_READ(PP_CONTROL);
 500
 501	pp &= ~EDP_BLC_ENABLE;
 502	REG_WRITE(PP_CONTROL, pp);
 503	msleep(intel_dp->backlight_off_delay);
 504}
 505
 506static enum drm_mode_status
 507cdv_intel_dp_mode_valid(struct drm_connector *connector,
 508		    struct drm_display_mode *mode)
 509{
 510	struct gma_encoder *encoder = gma_attached_encoder(connector);
 511	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
 512	int max_link_clock = cdv_intel_dp_link_clock(cdv_intel_dp_max_link_bw(encoder));
 513	int max_lanes = cdv_intel_dp_max_lane_count(encoder);
 514	struct drm_psb_private *dev_priv = to_drm_psb_private(connector->dev);
 515
 516	if (is_edp(encoder) && intel_dp->panel_fixed_mode) {
 517		if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
 518			return MODE_PANEL;
 519		if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
 520			return MODE_PANEL;
 521	}
 522
 523	/* only refuse the mode on non eDP since we have seen some weird eDP panels
 524	   which are outside spec tolerances but somehow work by magic */
 525	if (!is_edp(encoder) &&
 526	    (cdv_intel_dp_link_required(mode->clock, dev_priv->edp.bpp)
 527	     > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes)))
 528		return MODE_CLOCK_HIGH;
 529
 530	if (is_edp(encoder)) {
 531	    if (cdv_intel_dp_link_required(mode->clock, 24)
 532	     	> cdv_intel_dp_max_data_rate(max_link_clock, max_lanes))
 533		return MODE_CLOCK_HIGH;
 534
 535	}
 536	if (mode->clock < 10000)
 537		return MODE_CLOCK_LOW;
 538
 539	return MODE_OK;
 540}
 541
 542static uint32_t
 543pack_aux(uint8_t *src, int src_bytes)
 544{
 545	int	i;
 546	uint32_t v = 0;
 547
 548	if (src_bytes > 4)
 549		src_bytes = 4;
 550	for (i = 0; i < src_bytes; i++)
 551		v |= ((uint32_t) src[i]) << ((3-i) * 8);
 552	return v;
 553}
 554
 555static void
 556unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
 557{
 558	int i;
 559	if (dst_bytes > 4)
 560		dst_bytes = 4;
 561	for (i = 0; i < dst_bytes; i++)
 562		dst[i] = src >> ((3-i) * 8);
 563}
 564
 565static int
 566cdv_intel_dp_aux_ch(struct gma_encoder *encoder,
 567		uint8_t *send, int send_bytes,
 568		uint8_t *recv, int recv_size)
 569{
 570	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
 571	uint32_t output_reg = intel_dp->output_reg;
 572	struct drm_device *dev = encoder->base.dev;
 573	uint32_t ch_ctl = output_reg + 0x10;
 574	uint32_t ch_data = ch_ctl + 4;
 575	int i;
 576	int recv_bytes;
 577	uint32_t status;
 578	uint32_t aux_clock_divider;
 579	int try, precharge;
 580
 581	/* The clock divider is based off the hrawclk,
 582	 * and would like to run at 2MHz. So, take the
 583	 * hrawclk value and divide by 2 and use that
 584	 * On CDV platform it uses 200MHz as hrawclk.
 585	 *
 586	 */
 587	aux_clock_divider = 200 / 2;
 588
 589	precharge = 4;
 590	if (is_edp(encoder))
 591		precharge = 10;
 592
 593	if (REG_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
 594		DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
 595			  REG_READ(ch_ctl));
 596		return -EBUSY;
 597	}
 598
 599	/* Must try at least 3 times according to DP spec */
 600	for (try = 0; try < 5; try++) {
 601		/* Load the send data into the aux channel data registers */
 602		for (i = 0; i < send_bytes; i += 4)
 603			REG_WRITE(ch_data + i,
 604				   pack_aux(send + i, send_bytes - i));
 605
 606		/* Send the command and wait for it to complete */
 607		REG_WRITE(ch_ctl,
 608			   DP_AUX_CH_CTL_SEND_BUSY |
 609			   DP_AUX_CH_CTL_TIME_OUT_400us |
 610			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
 611			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
 612			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
 613			   DP_AUX_CH_CTL_DONE |
 614			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
 615			   DP_AUX_CH_CTL_RECEIVE_ERROR);
 616		for (;;) {
 617			status = REG_READ(ch_ctl);
 618			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
 619				break;
 620			udelay(100);
 621		}
 622
 623		/* Clear done status and any errors */
 624		REG_WRITE(ch_ctl,
 625			   status |
 626			   DP_AUX_CH_CTL_DONE |
 627			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
 628			   DP_AUX_CH_CTL_RECEIVE_ERROR);
 629		if (status & DP_AUX_CH_CTL_DONE)
 630			break;
 631	}
 632
 633	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
 634		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
 635		return -EBUSY;
 636	}
 637
 638	/* Check for timeout or receive error.
 639	 * Timeouts occur when the sink is not connected
 640	 */
 641	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
 642		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
 643		return -EIO;
 644	}
 645
 646	/* Timeouts occur when the device isn't connected, so they're
 647	 * "normal" -- don't fill the kernel log with these */
 648	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
 649		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
 650		return -ETIMEDOUT;
 651	}
 652
 653	/* Unload any bytes sent back from the other side */
 654	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
 655		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
 656	if (recv_bytes > recv_size)
 657		recv_bytes = recv_size;
 658
 659	for (i = 0; i < recv_bytes; i += 4)
 660		unpack_aux(REG_READ(ch_data + i),
 661			   recv + i, recv_bytes - i);
 662
 663	return recv_bytes;
 664}
 665
 666/* Write data to the aux channel in native mode */
 667static int
 668cdv_intel_dp_aux_native_write(struct gma_encoder *encoder,
 669			  uint16_t address, uint8_t *send, int send_bytes)
 670{
 671	int ret;
 672	uint8_t	msg[20];
 673	int msg_bytes;
 674	uint8_t	ack;
 675
 676	if (send_bytes > 16)
 677		return -1;
 678	msg[0] = DP_AUX_NATIVE_WRITE << 4;
 679	msg[1] = address >> 8;
 680	msg[2] = address & 0xff;
 681	msg[3] = send_bytes - 1;
 682	memcpy(&msg[4], send, send_bytes);
 683	msg_bytes = send_bytes + 4;
 684	for (;;) {
 685		ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes, &ack, 1);
 686		if (ret < 0)
 687			return ret;
 688		ack >>= 4;
 689		if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK)
 690			break;
 691		else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
 692			udelay(100);
 693		else
 694			return -EIO;
 695	}
 696	return send_bytes;
 697}
 698
 699/* Write a single byte to the aux channel in native mode */
 700static int
 701cdv_intel_dp_aux_native_write_1(struct gma_encoder *encoder,
 702			    uint16_t address, uint8_t byte)
 703{
 704	return cdv_intel_dp_aux_native_write(encoder, address, &byte, 1);
 705}
 706
 707/* read bytes from a native aux channel */
 708static int
 709cdv_intel_dp_aux_native_read(struct gma_encoder *encoder,
 710			 uint16_t address, uint8_t *recv, int recv_bytes)
 711{
 712	uint8_t msg[4];
 713	int msg_bytes;
 714	uint8_t reply[20];
 715	int reply_bytes;
 716	uint8_t ack;
 717	int ret;
 718
 719	msg[0] = DP_AUX_NATIVE_READ << 4;
 720	msg[1] = address >> 8;
 721	msg[2] = address & 0xff;
 722	msg[3] = recv_bytes - 1;
 723
 724	msg_bytes = 4;
 725	reply_bytes = recv_bytes + 1;
 726
 727	for (;;) {
 728		ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes,
 729				      reply, reply_bytes);
 730		if (ret == 0)
 731			return -EPROTO;
 732		if (ret < 0)
 733			return ret;
 734		ack = reply[0] >> 4;
 735		if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) {
 736			memcpy(recv, reply + 1, ret - 1);
 737			return ret - 1;
 738		}
 739		else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
 740			udelay(100);
 741		else
 742			return -EIO;
 743	}
 744}
 745
 746static int
 747cdv_intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
 748		    uint8_t write_byte, uint8_t *read_byte)
 749{
 750	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
 751	struct cdv_intel_dp *intel_dp = container_of(adapter,
 752						struct cdv_intel_dp,
 753						adapter);
 754	struct gma_encoder *encoder = intel_dp->encoder;
 755	uint16_t address = algo_data->address;
 756	uint8_t msg[5];
 757	uint8_t reply[2];
 758	unsigned retry;
 759	int msg_bytes;
 760	int reply_bytes;
 761	int ret;
 762
 763	/* Set up the command byte */
 764	if (mode & MODE_I2C_READ)
 765		msg[0] = DP_AUX_I2C_READ << 4;
 766	else
 767		msg[0] = DP_AUX_I2C_WRITE << 4;
 768
 769	if (!(mode & MODE_I2C_STOP))
 770		msg[0] |= DP_AUX_I2C_MOT << 4;
 771
 772	msg[1] = address >> 8;
 773	msg[2] = address;
 774
 775	switch (mode) {
 776	case MODE_I2C_WRITE:
 777		msg[3] = 0;
 778		msg[4] = write_byte;
 779		msg_bytes = 5;
 780		reply_bytes = 1;
 781		break;
 782	case MODE_I2C_READ:
 783		msg[3] = 0;
 784		msg_bytes = 4;
 785		reply_bytes = 2;
 786		break;
 787	default:
 788		msg_bytes = 3;
 789		reply_bytes = 1;
 790		break;
 791	}
 792
 793	for (retry = 0; retry < 5; retry++) {
 794		ret = cdv_intel_dp_aux_ch(encoder,
 795				      msg, msg_bytes,
 796				      reply, reply_bytes);
 797		if (ret < 0) {
 798			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
 799			return ret;
 800		}
 801
 802		switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) {
 803		case DP_AUX_NATIVE_REPLY_ACK:
 804			/* I2C-over-AUX Reply field is only valid
 805			 * when paired with AUX ACK.
 806			 */
 807			break;
 808		case DP_AUX_NATIVE_REPLY_NACK:
 809			DRM_DEBUG_KMS("aux_ch native nack\n");
 810			return -EREMOTEIO;
 811		case DP_AUX_NATIVE_REPLY_DEFER:
 812			udelay(100);
 813			continue;
 814		default:
 815			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
 816				  reply[0]);
 817			return -EREMOTEIO;
 818		}
 819
 820		switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) {
 821		case DP_AUX_I2C_REPLY_ACK:
 822			if (mode == MODE_I2C_READ) {
 823				*read_byte = reply[1];
 824			}
 825			return reply_bytes - 1;
 826		case DP_AUX_I2C_REPLY_NACK:
 827			DRM_DEBUG_KMS("aux_i2c nack\n");
 828			return -EREMOTEIO;
 829		case DP_AUX_I2C_REPLY_DEFER:
 830			DRM_DEBUG_KMS("aux_i2c defer\n");
 831			udelay(100);
 832			break;
 833		default:
 834			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
 835			return -EREMOTEIO;
 836		}
 837	}
 838
 839	DRM_ERROR("too many retries, giving up\n");
 840	return -EREMOTEIO;
 841}
 842
 843static int
 844cdv_intel_dp_i2c_init(struct gma_connector *connector,
 845		      struct gma_encoder *encoder, const char *name)
 846{
 847	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
 848	int ret;
 849
 850	DRM_DEBUG_KMS("i2c_init %s\n", name);
 851
 852	intel_dp->algo.running = false;
 853	intel_dp->algo.address = 0;
 854	intel_dp->algo.aux_ch = cdv_intel_dp_i2c_aux_ch;
 855
 856	memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
 857	intel_dp->adapter.owner = THIS_MODULE;
 
 858	strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
 859	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
 860	intel_dp->adapter.algo_data = &intel_dp->algo;
 861	intel_dp->adapter.dev.parent = connector->base.kdev;
 862
 863	if (is_edp(encoder))
 864		cdv_intel_edp_panel_vdd_on(encoder);
 865	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
 866	if (is_edp(encoder))
 867		cdv_intel_edp_panel_vdd_off(encoder);
 868
 869	return ret;
 870}
 871
 872static void cdv_intel_fixed_panel_mode(struct drm_display_mode *fixed_mode,
 873	struct drm_display_mode *adjusted_mode)
 874{
 875	adjusted_mode->hdisplay = fixed_mode->hdisplay;
 876	adjusted_mode->hsync_start = fixed_mode->hsync_start;
 877	adjusted_mode->hsync_end = fixed_mode->hsync_end;
 878	adjusted_mode->htotal = fixed_mode->htotal;
 879
 880	adjusted_mode->vdisplay = fixed_mode->vdisplay;
 881	adjusted_mode->vsync_start = fixed_mode->vsync_start;
 882	adjusted_mode->vsync_end = fixed_mode->vsync_end;
 883	adjusted_mode->vtotal = fixed_mode->vtotal;
 884
 885	adjusted_mode->clock = fixed_mode->clock;
 886
 887	drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V);
 888}
 889
 890static bool
 891cdv_intel_dp_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode,
 892		    struct drm_display_mode *adjusted_mode)
 893{
 894	struct drm_psb_private *dev_priv = to_drm_psb_private(encoder->dev);
 895	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
 896	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
 897	int lane_count, clock;
 898	int max_lane_count = cdv_intel_dp_max_lane_count(intel_encoder);
 899	int max_clock = cdv_intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
 900	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
 901	int refclock = mode->clock;
 902	int bpp = 24;
 903
 904	if (is_edp(intel_encoder) && intel_dp->panel_fixed_mode) {
 905		cdv_intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
 906		refclock = intel_dp->panel_fixed_mode->clock;
 907		bpp = dev_priv->edp.bpp;
 908	}
 909
 910	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
 911		for (clock = max_clock; clock >= 0; clock--) {
 912			int link_avail = cdv_intel_dp_max_data_rate(cdv_intel_dp_link_clock(bws[clock]), lane_count);
 913
 914			if (cdv_intel_dp_link_required(refclock, bpp) <= link_avail) {
 915				intel_dp->link_bw = bws[clock];
 916				intel_dp->lane_count = lane_count;
 917				adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
 918				DRM_DEBUG_KMS("Display port link bw %02x lane "
 919						"count %d clock %d\n",
 920				       intel_dp->link_bw, intel_dp->lane_count,
 921				       adjusted_mode->clock);
 922				return true;
 923			}
 924		}
 925	}
 926	if (is_edp(intel_encoder)) {
 927		/* okay we failed just pick the highest */
 928		intel_dp->lane_count = max_lane_count;
 929		intel_dp->link_bw = bws[max_clock];
 930		adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
 931		DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
 932			      "count %d clock %d\n",
 933			      intel_dp->link_bw, intel_dp->lane_count,
 934			      adjusted_mode->clock);
 935
 936		return true;
 937	}
 938	return false;
 939}
 940
 941struct cdv_intel_dp_m_n {
 942	uint32_t	tu;
 943	uint32_t	gmch_m;
 944	uint32_t	gmch_n;
 945	uint32_t	link_m;
 946	uint32_t	link_n;
 947};
 948
 949static void
 950cdv_intel_reduce_ratio(uint32_t *num, uint32_t *den)
 951{
 952	/*
 953	while (*num > 0xffffff || *den > 0xffffff) {
 954		*num >>= 1;
 955		*den >>= 1;
 956	}*/
 957	uint64_t value, m;
 958	m = *num;
 959	value = m * (0x800000);
 960	m = do_div(value, *den);
 961	*num = value;
 962	*den = 0x800000;
 963}
 964
 965static void
 966cdv_intel_dp_compute_m_n(int bpp,
 967		     int nlanes,
 968		     int pixel_clock,
 969		     int link_clock,
 970		     struct cdv_intel_dp_m_n *m_n)
 971{
 972	m_n->tu = 64;
 973	m_n->gmch_m = (pixel_clock * bpp + 7) >> 3;
 974	m_n->gmch_n = link_clock * nlanes;
 975	cdv_intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
 976	m_n->link_m = pixel_clock;
 977	m_n->link_n = link_clock;
 978	cdv_intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
 979}
 980
 981void
 982cdv_intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
 983		 struct drm_display_mode *adjusted_mode)
 984{
 985	struct drm_device *dev = crtc->dev;
 986	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
 987	struct drm_mode_config *mode_config = &dev->mode_config;
 988	struct drm_encoder *encoder;
 989	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
 990	int lane_count = 4, bpp = 24;
 991	struct cdv_intel_dp_m_n m_n;
 992	int pipe = gma_crtc->pipe;
 993
 994	/*
 995	 * Find the lane count in the intel_encoder private
 996	 */
 997	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
 998		struct gma_encoder *intel_encoder;
 999		struct cdv_intel_dp *intel_dp;
1000
1001		if (encoder->crtc != crtc)
1002			continue;
1003
1004		intel_encoder = to_gma_encoder(encoder);
1005		intel_dp = intel_encoder->dev_priv;
1006		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
1007			lane_count = intel_dp->lane_count;
1008			break;
1009		} else if (is_edp(intel_encoder)) {
1010			lane_count = intel_dp->lane_count;
1011			bpp = dev_priv->edp.bpp;
1012			break;
1013		}
1014	}
1015
1016	/*
1017	 * Compute the GMCH and Link ratios. The '3' here is
1018	 * the number of bytes_per_pixel post-LUT, which we always
1019	 * set up for 8-bits of R/G/B, or 3 bytes total.
1020	 */
1021	cdv_intel_dp_compute_m_n(bpp, lane_count,
1022			     mode->clock, adjusted_mode->clock, &m_n);
1023
1024	{
1025		REG_WRITE(PIPE_GMCH_DATA_M(pipe),
1026			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
1027			   m_n.gmch_m);
1028		REG_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
1029		REG_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
1030		REG_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
1031	}
1032}
1033
1034static void
1035cdv_intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
1036		  struct drm_display_mode *adjusted_mode)
1037{
1038	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1039	struct drm_crtc *crtc = encoder->crtc;
1040	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
1041	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1042	struct drm_device *dev = encoder->dev;
1043
1044	intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1045	intel_dp->DP |= intel_dp->color_range;
1046
1047	if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1048		intel_dp->DP |= DP_SYNC_HS_HIGH;
1049	if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1050		intel_dp->DP |= DP_SYNC_VS_HIGH;
1051
1052	intel_dp->DP |= DP_LINK_TRAIN_OFF;
1053
1054	switch (intel_dp->lane_count) {
1055	case 1:
1056		intel_dp->DP |= DP_PORT_WIDTH_1;
1057		break;
1058	case 2:
1059		intel_dp->DP |= DP_PORT_WIDTH_2;
1060		break;
1061	case 4:
1062		intel_dp->DP |= DP_PORT_WIDTH_4;
1063		break;
1064	}
1065	if (intel_dp->has_audio)
1066		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1067
1068	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
1069	intel_dp->link_configuration[0] = intel_dp->link_bw;
1070	intel_dp->link_configuration[1] = intel_dp->lane_count;
1071
1072	/*
1073	 * Check for DPCD version > 1.1 and enhanced framing support
1074	 */
1075	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
1076	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
1077		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
1078		intel_dp->DP |= DP_ENHANCED_FRAMING;
1079	}
1080
1081	/* CPT DP's pipe select is decided in TRANS_DP_CTL */
1082	if (gma_crtc->pipe == 1)
1083		intel_dp->DP |= DP_PIPEB_SELECT;
1084
1085	REG_WRITE(intel_dp->output_reg, (intel_dp->DP | DP_PORT_EN));
1086	DRM_DEBUG_KMS("DP expected reg is %x\n", intel_dp->DP);
1087	if (is_edp(intel_encoder)) {
1088		uint32_t pfit_control;
1089		cdv_intel_edp_panel_on(intel_encoder);
1090
1091		if (mode->hdisplay != adjusted_mode->hdisplay ||
1092			    mode->vdisplay != adjusted_mode->vdisplay)
1093			pfit_control = PFIT_ENABLE;
1094		else
1095			pfit_control = 0;
1096
1097		pfit_control |= gma_crtc->pipe << PFIT_PIPE_SHIFT;
1098
1099		REG_WRITE(PFIT_CONTROL, pfit_control);
1100	}
1101}
1102
1103
1104/* If the sink supports it, try to set the power state appropriately */
1105static void cdv_intel_dp_sink_dpms(struct gma_encoder *encoder, int mode)
1106{
1107	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1108	int ret, i;
1109
1110	/* Should have a valid DPCD by this point */
1111	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1112		return;
1113
1114	if (mode != DRM_MODE_DPMS_ON) {
1115		ret = cdv_intel_dp_aux_native_write_1(encoder, DP_SET_POWER,
1116						  DP_SET_POWER_D3);
1117		if (ret != 1)
1118			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1119	} else {
1120		/*
1121		 * When turning on, we need to retry for 1ms to give the sink
1122		 * time to wake up.
1123		 */
1124		for (i = 0; i < 3; i++) {
1125			ret = cdv_intel_dp_aux_native_write_1(encoder,
1126							  DP_SET_POWER,
1127							  DP_SET_POWER_D0);
1128			if (ret == 1)
1129				break;
1130			udelay(1000);
1131		}
1132	}
1133}
1134
1135static void cdv_intel_dp_prepare(struct drm_encoder *encoder)
1136{
1137	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1138	int edp = is_edp(intel_encoder);
1139
1140	if (edp) {
1141		cdv_intel_edp_backlight_off(intel_encoder);
1142		cdv_intel_edp_panel_off(intel_encoder);
1143		cdv_intel_edp_panel_vdd_on(intel_encoder);
1144        }
1145	/* Wake up the sink first */
1146	cdv_intel_dp_sink_dpms(intel_encoder, DRM_MODE_DPMS_ON);
1147	cdv_intel_dp_link_down(intel_encoder);
1148	if (edp)
1149		cdv_intel_edp_panel_vdd_off(intel_encoder);
1150}
1151
1152static void cdv_intel_dp_commit(struct drm_encoder *encoder)
1153{
1154	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1155	int edp = is_edp(intel_encoder);
1156
1157	if (edp)
1158		cdv_intel_edp_panel_on(intel_encoder);
1159	cdv_intel_dp_start_link_train(intel_encoder);
1160	cdv_intel_dp_complete_link_train(intel_encoder);
1161	if (edp)
1162		cdv_intel_edp_backlight_on(intel_encoder);
1163}
1164
1165static void
1166cdv_intel_dp_dpms(struct drm_encoder *encoder, int mode)
1167{
1168	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1169	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1170	struct drm_device *dev = encoder->dev;
1171	uint32_t dp_reg = REG_READ(intel_dp->output_reg);
1172	int edp = is_edp(intel_encoder);
1173
1174	if (mode != DRM_MODE_DPMS_ON) {
1175		if (edp) {
1176			cdv_intel_edp_backlight_off(intel_encoder);
1177			cdv_intel_edp_panel_vdd_on(intel_encoder);
1178		}
1179		cdv_intel_dp_sink_dpms(intel_encoder, mode);
1180		cdv_intel_dp_link_down(intel_encoder);
1181		if (edp) {
1182			cdv_intel_edp_panel_vdd_off(intel_encoder);
1183			cdv_intel_edp_panel_off(intel_encoder);
1184		}
1185	} else {
1186        	if (edp)
1187			cdv_intel_edp_panel_on(intel_encoder);
1188		cdv_intel_dp_sink_dpms(intel_encoder, mode);
1189		if (!(dp_reg & DP_PORT_EN)) {
1190			cdv_intel_dp_start_link_train(intel_encoder);
1191			cdv_intel_dp_complete_link_train(intel_encoder);
1192		}
1193		if (edp)
1194        		cdv_intel_edp_backlight_on(intel_encoder);
1195	}
1196}
1197
1198/*
1199 * Native read with retry for link status and receiver capability reads for
1200 * cases where the sink may still be asleep.
1201 */
1202static bool
1203cdv_intel_dp_aux_native_read_retry(struct gma_encoder *encoder, uint16_t address,
1204			       uint8_t *recv, int recv_bytes)
1205{
1206	int ret, i;
1207
1208	/*
1209	 * Sinks are *supposed* to come up within 1ms from an off state,
1210	 * but we're also supposed to retry 3 times per the spec.
1211	 */
1212	for (i = 0; i < 3; i++) {
1213		ret = cdv_intel_dp_aux_native_read(encoder, address, recv,
1214					       recv_bytes);
1215		if (ret == recv_bytes)
1216			return true;
1217		udelay(1000);
1218	}
1219
1220	return false;
1221}
1222
1223/*
1224 * Fetch AUX CH registers 0x202 - 0x207 which contain
1225 * link status information
1226 */
1227static bool
1228cdv_intel_dp_get_link_status(struct gma_encoder *encoder)
1229{
1230	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1231	return cdv_intel_dp_aux_native_read_retry(encoder,
1232					      DP_LANE0_1_STATUS,
1233					      intel_dp->link_status,
1234					      DP_LINK_STATUS_SIZE);
1235}
1236
1237static uint8_t
1238cdv_intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1239		     int r)
1240{
1241	return link_status[r - DP_LANE0_1_STATUS];
1242}
1243
1244static uint8_t
1245cdv_intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1246				 int lane)
1247{
1248	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1249	int	    s = ((lane & 1) ?
1250			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1251			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1252	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1253
1254	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1255}
1256
1257static uint8_t
1258cdv_intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1259				      int lane)
1260{
1261	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1262	int	    s = ((lane & 1) ?
1263			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1264			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1265	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1266
1267	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1268}
1269
1270#define CDV_DP_VOLTAGE_MAX	    DP_TRAIN_VOLTAGE_SWING_LEVEL_3
1271
1272static void
1273cdv_intel_get_adjust_train(struct gma_encoder *encoder)
1274{
1275	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1276	uint8_t v = 0;
1277	uint8_t p = 0;
1278	int lane;
1279
1280	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1281		uint8_t this_v = cdv_intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1282		uint8_t this_p = cdv_intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1283
1284		if (this_v > v)
1285			v = this_v;
1286		if (this_p > p)
1287			p = this_p;
1288	}
1289
1290	if (v >= CDV_DP_VOLTAGE_MAX)
1291		v = CDV_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1292
1293	if (p == DP_TRAIN_PRE_EMPHASIS_MASK)
1294		p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1295
1296	for (lane = 0; lane < 4; lane++)
1297		intel_dp->train_set[lane] = v | p;
1298}
1299
1300
1301static uint8_t
1302cdv_intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1303		      int lane)
1304{
1305	int i = DP_LANE0_1_STATUS + (lane >> 1);
1306	int s = (lane & 1) * 4;
1307	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1308
1309	return (l >> s) & 0xf;
1310}
1311
1312/* Check for clock recovery is done on all channels */
1313static bool
1314cdv_intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1315{
1316	int lane;
1317	uint8_t lane_status;
1318
1319	for (lane = 0; lane < lane_count; lane++) {
1320		lane_status = cdv_intel_get_lane_status(link_status, lane);
1321		if ((lane_status & DP_LANE_CR_DONE) == 0)
1322			return false;
1323	}
1324	return true;
1325}
1326
1327/* Check to see if channel eq is done on all channels */
1328#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1329			 DP_LANE_CHANNEL_EQ_DONE|\
1330			 DP_LANE_SYMBOL_LOCKED)
1331static bool
1332cdv_intel_channel_eq_ok(struct gma_encoder *encoder)
1333{
1334	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1335	uint8_t lane_align;
1336	uint8_t lane_status;
1337	int lane;
1338
1339	lane_align = cdv_intel_dp_link_status(intel_dp->link_status,
1340					  DP_LANE_ALIGN_STATUS_UPDATED);
1341	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1342		return false;
1343	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1344		lane_status = cdv_intel_get_lane_status(intel_dp->link_status, lane);
1345		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1346			return false;
1347	}
1348	return true;
1349}
1350
1351static bool
1352cdv_intel_dp_set_link_train(struct gma_encoder *encoder,
1353			uint32_t dp_reg_value,
1354			uint8_t dp_train_pat)
1355{
1356	struct drm_device *dev = encoder->base.dev;
1357	int ret;
1358	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1359
1360	REG_WRITE(intel_dp->output_reg, dp_reg_value);
1361	REG_READ(intel_dp->output_reg);
1362
1363	ret = cdv_intel_dp_aux_native_write_1(encoder,
1364				    DP_TRAINING_PATTERN_SET,
1365				    dp_train_pat);
1366
1367	if (ret != 1) {
1368		DRM_DEBUG_KMS("Failure in setting link pattern %x\n",
1369				dp_train_pat);
1370		return false;
1371	}
1372
1373	return true;
1374}
1375
1376
1377static bool
1378cdv_intel_dplink_set_level(struct gma_encoder *encoder,
1379			uint8_t dp_train_pat)
1380{
1381	int ret;
1382	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1383
1384	ret = cdv_intel_dp_aux_native_write(encoder,
1385					DP_TRAINING_LANE0_SET,
1386					intel_dp->train_set,
1387					intel_dp->lane_count);
1388
1389	if (ret != intel_dp->lane_count) {
1390		DRM_DEBUG_KMS("Failure in setting level %d, lane_cnt= %d\n",
1391				intel_dp->train_set[0], intel_dp->lane_count);
1392		return false;
1393	}
1394	return true;
1395}
1396
1397static void
1398cdv_intel_dp_set_vswing_premph(struct gma_encoder *encoder, uint8_t signal_level)
1399{
1400	struct drm_device *dev = encoder->base.dev;
1401	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1402	struct ddi_regoff *ddi_reg;
1403	int vswing, premph, index;
1404
1405	if (intel_dp->output_reg == DP_B)
1406		ddi_reg = &ddi_DP_train_table[0];
1407	else
1408		ddi_reg = &ddi_DP_train_table[1];
1409
1410	vswing = (signal_level & DP_TRAIN_VOLTAGE_SWING_MASK);
1411	premph = ((signal_level & DP_TRAIN_PRE_EMPHASIS_MASK)) >>
1412				DP_TRAIN_PRE_EMPHASIS_SHIFT;
1413
1414	if (vswing + premph > 3)
1415		return;
1416#ifdef CDV_FAST_LINK_TRAIN
1417	return;
1418#endif
1419	DRM_DEBUG_KMS("Test2\n");
1420	//return ;
1421	cdv_sb_reset(dev);
1422	/* ;Swing voltage programming
1423        ;gfx_dpio_set_reg(0xc058, 0x0505313A) */
1424	cdv_sb_write(dev, ddi_reg->VSwing5, 0x0505313A);
1425
1426	/* ;gfx_dpio_set_reg(0x8154, 0x43406055) */
1427	cdv_sb_write(dev, ddi_reg->VSwing1, 0x43406055);
1428
1429	/* ;gfx_dpio_set_reg(0x8148, 0x55338954)
1430	 * The VSwing_PreEmph table is also considered based on the vswing/premp
1431	 */
1432	index = (vswing + premph) * 2;
1433	if (premph == 1 && vswing == 1) {
1434		cdv_sb_write(dev, ddi_reg->VSwing2, 0x055738954);
1435	} else
1436		cdv_sb_write(dev, ddi_reg->VSwing2, dp_vswing_premph_table[index]);
1437
1438	/* ;gfx_dpio_set_reg(0x814c, 0x40802040) */
1439	if ((vswing + premph) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)
1440		cdv_sb_write(dev, ddi_reg->VSwing3, 0x70802040);
1441	else
1442		cdv_sb_write(dev, ddi_reg->VSwing3, 0x40802040);
1443
1444	/* ;gfx_dpio_set_reg(0x8150, 0x2b405555) */
1445	/* cdv_sb_write(dev, ddi_reg->VSwing4, 0x2b405555); */
1446
1447	/* ;gfx_dpio_set_reg(0x8154, 0xc3406055) */
1448	cdv_sb_write(dev, ddi_reg->VSwing1, 0xc3406055);
1449
1450	/* ;Pre emphasis programming
1451	 * ;gfx_dpio_set_reg(0xc02c, 0x1f030040)
1452	 */
1453	cdv_sb_write(dev, ddi_reg->PreEmph1, 0x1f030040);
1454
1455	/* ;gfx_dpio_set_reg(0x8124, 0x00004000) */
1456	index = 2 * premph + 1;
1457	cdv_sb_write(dev, ddi_reg->PreEmph2, dp_vswing_premph_table[index]);
1458	return;
1459}
1460
1461
1462/* Enable corresponding port and start training pattern 1 */
1463static void
1464cdv_intel_dp_start_link_train(struct gma_encoder *encoder)
1465{
1466	struct drm_device *dev = encoder->base.dev;
1467	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1468	int i;
1469	uint8_t voltage;
1470	bool clock_recovery = false;
1471	int tries;
1472	u32 reg;
1473	uint32_t DP = intel_dp->DP;
1474
1475	DP |= DP_PORT_EN;
1476	DP &= ~DP_LINK_TRAIN_MASK;
1477
1478	reg = DP;
1479	reg |= DP_LINK_TRAIN_PAT_1;
1480	/* Enable output, wait for it to become active */
1481	REG_WRITE(intel_dp->output_reg, reg);
1482	REG_READ(intel_dp->output_reg);
1483	gma_wait_for_vblank(dev);
1484
1485	DRM_DEBUG_KMS("Link config\n");
1486	/* Write the link configuration data */
1487	cdv_intel_dp_aux_native_write(encoder, DP_LINK_BW_SET,
1488				  intel_dp->link_configuration,
1489				  2);
1490
1491	memset(intel_dp->train_set, 0, 4);
1492	voltage = 0;
1493	tries = 0;
1494	clock_recovery = false;
1495
1496	DRM_DEBUG_KMS("Start train\n");
1497	reg = DP | DP_LINK_TRAIN_PAT_1;
1498
1499	for (;;) {
1500		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1501		DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1502				intel_dp->train_set[0],
1503				intel_dp->link_configuration[0],
1504				intel_dp->link_configuration[1]);
1505
1506		if (!cdv_intel_dp_set_link_train(encoder, reg, DP_TRAINING_PATTERN_1)) {
1507			DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 1\n");
1508		}
1509		cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1510		/* Set training pattern 1 */
1511
1512		cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_1);
1513
1514		udelay(200);
1515		if (!cdv_intel_dp_get_link_status(encoder))
1516			break;
1517
1518		DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1519				intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1520				intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1521
1522		if (cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1523			DRM_DEBUG_KMS("PT1 train is done\n");
1524			clock_recovery = true;
1525			break;
1526		}
1527
1528		/* Check to see if we've tried the max voltage */
1529		for (i = 0; i < intel_dp->lane_count; i++)
1530			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1531				break;
1532		if (i == intel_dp->lane_count)
1533			break;
1534
1535		/* Check to see if we've tried the same voltage 5 times */
1536		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1537			++tries;
1538			if (tries == 5)
1539				break;
1540		} else
1541			tries = 0;
1542		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1543
1544		/* Compute new intel_dp->train_set as requested by target */
1545		cdv_intel_get_adjust_train(encoder);
1546
1547	}
1548
1549	if (!clock_recovery) {
1550		DRM_DEBUG_KMS("failure in DP pattern 1 training, train set %x\n", intel_dp->train_set[0]);
1551	}
1552
1553	intel_dp->DP = DP;
1554}
1555
1556static void
1557cdv_intel_dp_complete_link_train(struct gma_encoder *encoder)
1558{
1559	struct drm_device *dev = encoder->base.dev;
1560	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1561	int tries, cr_tries;
1562	u32 reg;
1563	uint32_t DP = intel_dp->DP;
1564
1565	/* channel equalization */
1566	tries = 0;
1567	cr_tries = 0;
1568
1569	DRM_DEBUG_KMS("\n");
1570	reg = DP | DP_LINK_TRAIN_PAT_2;
1571
1572	for (;;) {
1573
1574		DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1575				intel_dp->train_set[0],
1576				intel_dp->link_configuration[0],
1577				intel_dp->link_configuration[1]);
1578        	/* channel eq pattern */
1579
1580		if (!cdv_intel_dp_set_link_train(encoder, reg,
1581					     DP_TRAINING_PATTERN_2)) {
1582			DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 2\n");
1583		}
1584		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1585
1586		if (cr_tries > 5) {
1587			DRM_ERROR("failed to train DP, aborting\n");
1588			cdv_intel_dp_link_down(encoder);
1589			break;
1590		}
1591
1592		cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1593
1594		cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_2);
1595
1596		udelay(1000);
1597		if (!cdv_intel_dp_get_link_status(encoder))
1598			break;
1599
1600		DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1601				intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1602				intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1603
1604		/* Make sure clock is still ok */
1605		if (!cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1606			cdv_intel_dp_start_link_train(encoder);
1607			cr_tries++;
1608			continue;
1609		}
1610
1611		if (cdv_intel_channel_eq_ok(encoder)) {
1612			DRM_DEBUG_KMS("PT2 train is done\n");
1613			break;
1614		}
1615
1616		/* Try 5 times, then try clock recovery if that fails */
1617		if (tries > 5) {
1618			cdv_intel_dp_link_down(encoder);
1619			cdv_intel_dp_start_link_train(encoder);
1620			tries = 0;
1621			cr_tries++;
1622			continue;
1623		}
1624
1625		/* Compute new intel_dp->train_set as requested by target */
1626		cdv_intel_get_adjust_train(encoder);
1627		++tries;
1628
1629	}
1630
1631	reg = DP | DP_LINK_TRAIN_OFF;
1632
1633	REG_WRITE(intel_dp->output_reg, reg);
1634	REG_READ(intel_dp->output_reg);
1635	cdv_intel_dp_aux_native_write_1(encoder,
1636				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1637}
1638
1639static void
1640cdv_intel_dp_link_down(struct gma_encoder *encoder)
1641{
1642	struct drm_device *dev = encoder->base.dev;
1643	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1644	uint32_t DP = intel_dp->DP;
1645
1646	if ((REG_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1647		return;
1648
1649	DRM_DEBUG_KMS("\n");
1650
1651
1652	{
1653		DP &= ~DP_LINK_TRAIN_MASK;
1654		REG_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1655	}
1656	REG_READ(intel_dp->output_reg);
1657
1658	msleep(17);
1659
1660	REG_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1661	REG_READ(intel_dp->output_reg);
1662}
1663
1664static enum drm_connector_status cdv_dp_detect(struct gma_encoder *encoder)
1665{
1666	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1667	enum drm_connector_status status;
1668
1669	status = connector_status_disconnected;
1670	if (cdv_intel_dp_aux_native_read(encoder, 0x000, intel_dp->dpcd,
1671				     sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1672	{
1673		if (intel_dp->dpcd[DP_DPCD_REV] != 0)
1674			status = connector_status_connected;
1675	}
1676	if (status == connector_status_connected)
1677		DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
1678			intel_dp->dpcd[0], intel_dp->dpcd[1],
1679			intel_dp->dpcd[2], intel_dp->dpcd[3]);
1680	return status;
1681}
1682
1683/*
1684 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1685 *
1686 * \return true if DP port is connected.
1687 * \return false if DP port is disconnected.
1688 */
1689static enum drm_connector_status
1690cdv_intel_dp_detect(struct drm_connector *connector, bool force)
1691{
1692	struct gma_encoder *encoder = gma_attached_encoder(connector);
1693	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1694	enum drm_connector_status status;
1695	struct edid *edid = NULL;
1696	int edp = is_edp(encoder);
1697
1698	intel_dp->has_audio = false;
1699
1700	if (edp)
1701		cdv_intel_edp_panel_vdd_on(encoder);
1702	status = cdv_dp_detect(encoder);
1703	if (status != connector_status_connected) {
1704		if (edp)
1705			cdv_intel_edp_panel_vdd_off(encoder);
1706		return status;
1707        }
1708
1709	if (intel_dp->force_audio) {
1710		intel_dp->has_audio = intel_dp->force_audio > 0;
1711	} else {
1712		edid = drm_get_edid(connector, &intel_dp->adapter);
1713		if (edid) {
1714			intel_dp->has_audio = drm_detect_monitor_audio(edid);
1715			kfree(edid);
1716		}
1717	}
1718	if (edp)
1719		cdv_intel_edp_panel_vdd_off(encoder);
1720
1721	return connector_status_connected;
1722}
1723
1724static int cdv_intel_dp_get_modes(struct drm_connector *connector)
1725{
1726	struct gma_encoder *intel_encoder = gma_attached_encoder(connector);
1727	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1728	struct edid *edid = NULL;
1729	int ret = 0;
1730	int edp = is_edp(intel_encoder);
1731
1732
1733	edid = drm_get_edid(connector, &intel_dp->adapter);
1734	if (edid) {
1735		drm_connector_update_edid_property(connector, edid);
1736		ret = drm_add_edid_modes(connector, edid);
1737		kfree(edid);
1738	}
1739
1740	if (is_edp(intel_encoder)) {
1741		struct drm_device *dev = connector->dev;
1742		struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
1743
1744		cdv_intel_edp_panel_vdd_off(intel_encoder);
1745		if (ret) {
1746			if (edp && !intel_dp->panel_fixed_mode) {
1747				struct drm_display_mode *newmode;
1748				list_for_each_entry(newmode, &connector->probed_modes,
1749					    head) {
1750					if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1751						intel_dp->panel_fixed_mode =
1752							drm_mode_duplicate(dev, newmode);
1753						break;
1754					}
1755				}
1756			}
1757
1758			return ret;
1759		}
1760		if (!intel_dp->panel_fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
1761			intel_dp->panel_fixed_mode =
1762				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1763			if (intel_dp->panel_fixed_mode) {
1764				intel_dp->panel_fixed_mode->type |=
1765					DRM_MODE_TYPE_PREFERRED;
1766			}
1767		}
1768		if (intel_dp->panel_fixed_mode != NULL) {
1769			struct drm_display_mode *mode;
1770			mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
1771			drm_mode_probed_add(connector, mode);
1772			return 1;
1773		}
1774	}
1775
1776	return ret;
1777}
1778
1779static bool
1780cdv_intel_dp_detect_audio(struct drm_connector *connector)
1781{
1782	struct gma_encoder *encoder = gma_attached_encoder(connector);
1783	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1784	struct edid *edid;
1785	bool has_audio = false;
1786	int edp = is_edp(encoder);
1787
1788	if (edp)
1789		cdv_intel_edp_panel_vdd_on(encoder);
1790
1791	edid = drm_get_edid(connector, &intel_dp->adapter);
1792	if (edid) {
1793		has_audio = drm_detect_monitor_audio(edid);
1794		kfree(edid);
1795	}
1796	if (edp)
1797		cdv_intel_edp_panel_vdd_off(encoder);
1798
1799	return has_audio;
1800}
1801
1802static int
1803cdv_intel_dp_set_property(struct drm_connector *connector,
1804		      struct drm_property *property,
1805		      uint64_t val)
1806{
1807	struct drm_psb_private *dev_priv = to_drm_psb_private(connector->dev);
1808	struct gma_encoder *encoder = gma_attached_encoder(connector);
1809	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1810	int ret;
1811
1812	ret = drm_object_property_set_value(&connector->base, property, val);
1813	if (ret)
1814		return ret;
1815
1816	if (property == dev_priv->force_audio_property) {
1817		int i = val;
1818		bool has_audio;
1819
1820		if (i == intel_dp->force_audio)
1821			return 0;
1822
1823		intel_dp->force_audio = i;
1824
1825		if (i == 0)
1826			has_audio = cdv_intel_dp_detect_audio(connector);
1827		else
1828			has_audio = i > 0;
1829
1830		if (has_audio == intel_dp->has_audio)
1831			return 0;
1832
1833		intel_dp->has_audio = has_audio;
1834		goto done;
1835	}
1836
1837	if (property == dev_priv->broadcast_rgb_property) {
1838		if (val == !!intel_dp->color_range)
1839			return 0;
1840
1841		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1842		goto done;
1843	}
1844
1845	return -EINVAL;
1846
1847done:
1848	if (encoder->base.crtc) {
1849		struct drm_crtc *crtc = encoder->base.crtc;
1850		drm_crtc_helper_set_mode(crtc, &crtc->mode,
1851					 crtc->x, crtc->y,
1852					 crtc->primary->fb);
1853	}
1854
1855	return 0;
1856}
1857
1858static void
1859cdv_intel_dp_destroy(struct drm_connector *connector)
1860{
1861	struct gma_connector *gma_connector = to_gma_connector(connector);
1862	struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
1863	struct cdv_intel_dp *intel_dp = gma_encoder->dev_priv;
1864
1865	if (is_edp(gma_encoder)) {
1866	/*	cdv_intel_panel_destroy_backlight(connector->dev); */
1867		kfree(intel_dp->panel_fixed_mode);
1868		intel_dp->panel_fixed_mode = NULL;
1869	}
1870	i2c_del_adapter(&intel_dp->adapter);
1871	drm_connector_cleanup(connector);
1872	kfree(gma_connector);
1873}
1874
1875static const struct drm_encoder_helper_funcs cdv_intel_dp_helper_funcs = {
1876	.dpms = cdv_intel_dp_dpms,
1877	.mode_fixup = cdv_intel_dp_mode_fixup,
1878	.prepare = cdv_intel_dp_prepare,
1879	.mode_set = cdv_intel_dp_mode_set,
1880	.commit = cdv_intel_dp_commit,
1881};
1882
1883static const struct drm_connector_funcs cdv_intel_dp_connector_funcs = {
1884	.dpms = drm_helper_connector_dpms,
1885	.detect = cdv_intel_dp_detect,
1886	.fill_modes = drm_helper_probe_single_connector_modes,
1887	.set_property = cdv_intel_dp_set_property,
1888	.destroy = cdv_intel_dp_destroy,
1889};
1890
1891static const struct drm_connector_helper_funcs cdv_intel_dp_connector_helper_funcs = {
1892	.get_modes = cdv_intel_dp_get_modes,
1893	.mode_valid = cdv_intel_dp_mode_valid,
1894	.best_encoder = gma_best_encoder,
1895};
1896
1897static void cdv_intel_dp_add_properties(struct drm_connector *connector)
1898{
1899	cdv_intel_attach_force_audio_property(connector);
1900	cdv_intel_attach_broadcast_rgb_property(connector);
1901}
1902
1903/* check the VBT to see whether the eDP is on DP-D port */
1904static bool cdv_intel_dpc_is_edp(struct drm_device *dev)
1905{
1906	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
1907	struct child_device_config *p_child;
1908	int i;
1909
1910	if (!dev_priv->child_dev_num)
1911		return false;
1912
1913	for (i = 0; i < dev_priv->child_dev_num; i++) {
1914		p_child = dev_priv->child_dev + i;
1915
1916		if (p_child->dvo_port == PORT_IDPC &&
1917		    p_child->device_type == DEVICE_TYPE_eDP)
1918			return true;
1919	}
1920	return false;
1921}
1922
1923/* Cedarview display clock gating
1924
1925   We need this disable dot get correct behaviour while enabling
1926   DP/eDP. TODO - investigate if we can turn it back to normality
1927   after enabling */
1928static void cdv_disable_intel_clock_gating(struct drm_device *dev)
1929{
1930	u32 reg_value;
1931	reg_value = REG_READ(DSPCLK_GATE_D);
1932
1933	reg_value |= (DPUNIT_PIPEB_GATE_DISABLE |
1934			DPUNIT_PIPEA_GATE_DISABLE |
1935			DPCUNIT_CLOCK_GATE_DISABLE |
1936			DPLSUNIT_CLOCK_GATE_DISABLE |
1937			DPOUNIT_CLOCK_GATE_DISABLE |
1938			DPIOUNIT_CLOCK_GATE_DISABLE);
1939
1940	REG_WRITE(DSPCLK_GATE_D, reg_value);
1941
1942	udelay(500);
1943}
1944
1945void
1946cdv_intel_dp_init(struct drm_device *dev, struct psb_intel_mode_device *mode_dev, int output_reg)
1947{
1948	struct gma_encoder *gma_encoder;
1949	struct gma_connector *gma_connector;
1950	struct drm_connector *connector;
1951	struct drm_encoder *encoder;
1952	struct cdv_intel_dp *intel_dp;
1953	const char *name = NULL;
1954	int type = DRM_MODE_CONNECTOR_DisplayPort;
1955
1956	gma_encoder = kzalloc(sizeof(struct gma_encoder), GFP_KERNEL);
1957	if (!gma_encoder)
1958		return;
1959        gma_connector = kzalloc(sizeof(struct gma_connector), GFP_KERNEL);
1960        if (!gma_connector)
1961                goto err_connector;
1962	intel_dp = kzalloc(sizeof(struct cdv_intel_dp), GFP_KERNEL);
1963	if (!intel_dp)
1964	        goto err_priv;
1965
1966	if ((output_reg == DP_C) && cdv_intel_dpc_is_edp(dev))
1967		type = DRM_MODE_CONNECTOR_eDP;
1968
1969	connector = &gma_connector->base;
1970	encoder = &gma_encoder->base;
1971
1972	drm_connector_init(dev, connector, &cdv_intel_dp_connector_funcs, type);
1973	drm_simple_encoder_init(dev, encoder, DRM_MODE_ENCODER_TMDS);
1974
1975	gma_connector_attach_encoder(gma_connector, gma_encoder);
1976
1977	if (type == DRM_MODE_CONNECTOR_DisplayPort)
1978		gma_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1979        else
1980		gma_encoder->type = INTEL_OUTPUT_EDP;
1981
1982
1983	gma_encoder->dev_priv=intel_dp;
1984	intel_dp->encoder = gma_encoder;
1985	intel_dp->output_reg = output_reg;
1986
1987	drm_encoder_helper_add(encoder, &cdv_intel_dp_helper_funcs);
1988	drm_connector_helper_add(connector, &cdv_intel_dp_connector_helper_funcs);
1989
1990	connector->polled = DRM_CONNECTOR_POLL_HPD;
1991	connector->interlace_allowed = false;
1992	connector->doublescan_allowed = false;
1993
1994	/* Set up the DDC bus. */
1995	switch (output_reg) {
1996		case DP_B:
1997			name = "DPDDC-B";
1998			gma_encoder->ddi_select = (DP_MASK | DDI0_SELECT);
1999			break;
2000		case DP_C:
2001			name = "DPDDC-C";
2002			gma_encoder->ddi_select = (DP_MASK | DDI1_SELECT);
2003			break;
2004	}
2005
2006	cdv_disable_intel_clock_gating(dev);
2007
2008	cdv_intel_dp_i2c_init(gma_connector, gma_encoder, name);
2009        /* FIXME:fail check */
2010	cdv_intel_dp_add_properties(connector);
2011
2012	if (is_edp(gma_encoder)) {
2013		int ret;
2014		struct edp_power_seq cur;
2015                u32 pp_on, pp_off, pp_div;
2016		u32 pwm_ctrl;
2017
2018		pp_on = REG_READ(PP_CONTROL);
2019		pp_on &= ~PANEL_UNLOCK_MASK;
2020	        pp_on |= PANEL_UNLOCK_REGS;
2021
2022		REG_WRITE(PP_CONTROL, pp_on);
2023
2024		pwm_ctrl = REG_READ(BLC_PWM_CTL2);
2025		pwm_ctrl |= PWM_PIPE_B;
2026		REG_WRITE(BLC_PWM_CTL2, pwm_ctrl);
2027
2028                pp_on = REG_READ(PP_ON_DELAYS);
2029                pp_off = REG_READ(PP_OFF_DELAYS);
2030                pp_div = REG_READ(PP_DIVISOR);
2031
2032		/* Pull timing values out of registers */
2033                cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2034                        PANEL_POWER_UP_DELAY_SHIFT;
2035
2036                cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2037                        PANEL_LIGHT_ON_DELAY_SHIFT;
2038
2039                cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2040                        PANEL_LIGHT_OFF_DELAY_SHIFT;
2041
2042                cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2043                        PANEL_POWER_DOWN_DELAY_SHIFT;
2044
2045                cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2046                               PANEL_POWER_CYCLE_DELAY_SHIFT);
2047
2048                DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2049                              cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2050
2051
2052		intel_dp->panel_power_up_delay = cur.t1_t3 / 10;
2053                intel_dp->backlight_on_delay = cur.t8 / 10;
2054                intel_dp->backlight_off_delay = cur.t9 / 10;
2055                intel_dp->panel_power_down_delay = cur.t10 / 10;
2056                intel_dp->panel_power_cycle_delay = (cur.t11_t12 - 1) * 100;
2057
2058                DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2059                              intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2060                              intel_dp->panel_power_cycle_delay);
2061
2062                DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2063                              intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2064
2065
2066		cdv_intel_edp_panel_vdd_on(gma_encoder);
2067		ret = cdv_intel_dp_aux_native_read(gma_encoder, DP_DPCD_REV,
2068					       intel_dp->dpcd,
2069					       sizeof(intel_dp->dpcd));
2070		cdv_intel_edp_panel_vdd_off(gma_encoder);
2071		if (ret <= 0) {
2072			/* if this fails, presume the device is a ghost */
2073			DRM_INFO("failed to retrieve link info, disabling eDP\n");
2074			drm_encoder_cleanup(encoder);
2075			cdv_intel_dp_destroy(connector);
2076			goto err_connector;
2077		} else {
2078        		DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
2079				intel_dp->dpcd[0], intel_dp->dpcd[1],
2080				intel_dp->dpcd[2], intel_dp->dpcd[3]);
2081
2082		}
2083		/* The CDV reference driver moves pnale backlight setup into the displays that
2084		   have a backlight: this is a good idea and one we should probably adopt, however
2085		   we need to migrate all the drivers before we can do that */
2086                /*cdv_intel_panel_setup_backlight(dev); */
2087	}
2088	return;
2089
2090err_priv:
2091	kfree(gma_connector);
2092err_connector:
2093	kfree(gma_encoder);
2094}
v6.2
   1/*
   2 * Copyright © 2012 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Keith Packard <keithp@keithp.com>
  25 *
  26 */
  27
  28#include <linux/i2c.h>
  29#include <linux/module.h>
  30#include <linux/slab.h>
  31
  32#include <drm/display/drm_dp_helper.h>
  33#include <drm/drm_crtc.h>
  34#include <drm/drm_crtc_helper.h>
  35#include <drm/drm_edid.h>
 
  36#include <drm/drm_simple_kms_helper.h>
  37
  38#include "gma_display.h"
  39#include "psb_drv.h"
  40#include "psb_intel_drv.h"
  41#include "psb_intel_reg.h"
  42
  43/**
  44 * struct i2c_algo_dp_aux_data - driver interface structure for i2c over dp
  45 * 				 aux algorithm
  46 * @running: set by the algo indicating whether an i2c is ongoing or whether
  47 * 	     the i2c bus is quiescent
  48 * @address: i2c target address for the currently ongoing transfer
  49 * @aux_ch: driver callback to transfer a single byte of the i2c payload
  50 */
  51struct i2c_algo_dp_aux_data {
  52	bool running;
  53	u16 address;
  54	int (*aux_ch) (struct i2c_adapter *adapter,
  55		       int mode, uint8_t write_byte,
  56		       uint8_t *read_byte);
  57};
  58
  59/* Run a single AUX_CH I2C transaction, writing/reading data as necessary */
  60static int
  61i2c_algo_dp_aux_transaction(struct i2c_adapter *adapter, int mode,
  62			    uint8_t write_byte, uint8_t *read_byte)
  63{
  64	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  65	int ret;
  66
  67	ret = (*algo_data->aux_ch)(adapter, mode,
  68				   write_byte, read_byte);
  69	return ret;
  70}
  71
  72/*
  73 * I2C over AUX CH
  74 */
  75
  76/*
  77 * Send the address. If the I2C link is running, this 'restarts'
  78 * the connection with the new address, this is used for doing
  79 * a write followed by a read (as needed for DDC)
  80 */
  81static int
  82i2c_algo_dp_aux_address(struct i2c_adapter *adapter, u16 address, bool reading)
  83{
  84	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  85	int mode = MODE_I2C_START;
  86
  87	if (reading)
  88		mode |= MODE_I2C_READ;
  89	else
  90		mode |= MODE_I2C_WRITE;
  91	algo_data->address = address;
  92	algo_data->running = true;
  93	return i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
  94}
  95
  96/*
  97 * Stop the I2C transaction. This closes out the link, sending
  98 * a bare address packet with the MOT bit turned off
  99 */
 100static void
 101i2c_algo_dp_aux_stop(struct i2c_adapter *adapter, bool reading)
 102{
 103	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
 104	int mode = MODE_I2C_STOP;
 105
 106	if (reading)
 107		mode |= MODE_I2C_READ;
 108	else
 109		mode |= MODE_I2C_WRITE;
 110	if (algo_data->running) {
 111		(void) i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
 112		algo_data->running = false;
 113	}
 114}
 115
 116/*
 117 * Write a single byte to the current I2C address, the
 118 * I2C link must be running or this returns -EIO
 119 */
 120static int
 121i2c_algo_dp_aux_put_byte(struct i2c_adapter *adapter, u8 byte)
 122{
 123	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
 124
 125	if (!algo_data->running)
 126		return -EIO;
 127
 128	return i2c_algo_dp_aux_transaction(adapter, MODE_I2C_WRITE, byte, NULL);
 129}
 130
 131/*
 132 * Read a single byte from the current I2C address, the
 133 * I2C link must be running or this returns -EIO
 134 */
 135static int
 136i2c_algo_dp_aux_get_byte(struct i2c_adapter *adapter, u8 *byte_ret)
 137{
 138	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
 139
 140	if (!algo_data->running)
 141		return -EIO;
 142
 143	return i2c_algo_dp_aux_transaction(adapter, MODE_I2C_READ, 0, byte_ret);
 144}
 145
 146static int
 147i2c_algo_dp_aux_xfer(struct i2c_adapter *adapter,
 148		     struct i2c_msg *msgs,
 149		     int num)
 150{
 151	int ret = 0;
 152	bool reading = false;
 153	int m;
 154	int b;
 155
 156	for (m = 0; m < num; m++) {
 157		u16 len = msgs[m].len;
 158		u8 *buf = msgs[m].buf;
 159		reading = (msgs[m].flags & I2C_M_RD) != 0;
 160		ret = i2c_algo_dp_aux_address(adapter, msgs[m].addr, reading);
 161		if (ret < 0)
 162			break;
 163		if (reading) {
 164			for (b = 0; b < len; b++) {
 165				ret = i2c_algo_dp_aux_get_byte(adapter, &buf[b]);
 166				if (ret < 0)
 167					break;
 168			}
 169		} else {
 170			for (b = 0; b < len; b++) {
 171				ret = i2c_algo_dp_aux_put_byte(adapter, buf[b]);
 172				if (ret < 0)
 173					break;
 174			}
 175		}
 176		if (ret < 0)
 177			break;
 178	}
 179	if (ret >= 0)
 180		ret = num;
 181	i2c_algo_dp_aux_stop(adapter, reading);
 182	DRM_DEBUG_KMS("dp_aux_xfer return %d\n", ret);
 183	return ret;
 184}
 185
 186static u32
 187i2c_algo_dp_aux_functionality(struct i2c_adapter *adapter)
 188{
 189	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
 190	       I2C_FUNC_SMBUS_READ_BLOCK_DATA |
 191	       I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
 192	       I2C_FUNC_10BIT_ADDR;
 193}
 194
 195static const struct i2c_algorithm i2c_dp_aux_algo = {
 196	.master_xfer	= i2c_algo_dp_aux_xfer,
 197	.functionality	= i2c_algo_dp_aux_functionality,
 198};
 199
 200static void
 201i2c_dp_aux_reset_bus(struct i2c_adapter *adapter)
 202{
 203	(void) i2c_algo_dp_aux_address(adapter, 0, false);
 204	(void) i2c_algo_dp_aux_stop(adapter, false);
 205}
 206
 207static int
 208i2c_dp_aux_prepare_bus(struct i2c_adapter *adapter)
 209{
 210	adapter->algo = &i2c_dp_aux_algo;
 211	adapter->retries = 3;
 212	i2c_dp_aux_reset_bus(adapter);
 213	return 0;
 214}
 215
 216/*
 217 * FIXME: This is the old dp aux helper, gma500 is the last driver that needs to
 218 * be ported over to the new helper code in drm_dp_helper.c like i915 or radeon.
 219 */
 220static int
 221i2c_dp_aux_add_bus(struct i2c_adapter *adapter)
 222{
 223	int error;
 224
 225	error = i2c_dp_aux_prepare_bus(adapter);
 226	if (error)
 227		return error;
 228	error = i2c_add_adapter(adapter);
 229	return error;
 230}
 231
 232#define _wait_for(COND, MS, W) ({ \
 233        unsigned long timeout__ = jiffies + msecs_to_jiffies(MS);       \
 234        int ret__ = 0;                                                  \
 235        while (! (COND)) {                                              \
 236                if (time_after(jiffies, timeout__)) {                   \
 237                        ret__ = -ETIMEDOUT;                             \
 238                        break;                                          \
 239                }                                                       \
 240                if (W && !in_dbg_master()) msleep(W);                   \
 241        }                                                               \
 242        ret__;                                                          \
 243})
 244
 245#define wait_for(COND, MS) _wait_for(COND, MS, 1)
 246
 247#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
 248
 249#define DP_LINK_CONFIGURATION_SIZE	9
 250
 251#define CDV_FAST_LINK_TRAIN	1
 252
 253struct cdv_intel_dp {
 254	uint32_t output_reg;
 255	uint32_t DP;
 256	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
 257	bool has_audio;
 258	int force_audio;
 259	uint32_t color_range;
 260	uint8_t link_bw;
 261	uint8_t lane_count;
 262	uint8_t dpcd[4];
 263	struct gma_encoder *encoder;
 264	struct i2c_adapter adapter;
 265	struct i2c_algo_dp_aux_data algo;
 266	uint8_t	train_set[4];
 267	uint8_t link_status[DP_LINK_STATUS_SIZE];
 268	int panel_power_up_delay;
 269	int panel_power_down_delay;
 270	int panel_power_cycle_delay;
 271	int backlight_on_delay;
 272	int backlight_off_delay;
 273	struct drm_display_mode *panel_fixed_mode;  /* for eDP */
 274	bool panel_on;
 275};
 276
 277struct ddi_regoff {
 278	uint32_t	PreEmph1;
 279	uint32_t	PreEmph2;
 280	uint32_t	VSwing1;
 281	uint32_t	VSwing2;
 282	uint32_t	VSwing3;
 283	uint32_t	VSwing4;
 284	uint32_t	VSwing5;
 285};
 286
 287static struct ddi_regoff ddi_DP_train_table[] = {
 288	{.PreEmph1 = 0x812c, .PreEmph2 = 0x8124, .VSwing1 = 0x8154,
 289	.VSwing2 = 0x8148, .VSwing3 = 0x814C, .VSwing4 = 0x8150,
 290	.VSwing5 = 0x8158,},
 291	{.PreEmph1 = 0x822c, .PreEmph2 = 0x8224, .VSwing1 = 0x8254,
 292	.VSwing2 = 0x8248, .VSwing3 = 0x824C, .VSwing4 = 0x8250,
 293	.VSwing5 = 0x8258,},
 294};
 295
 296static uint32_t dp_vswing_premph_table[] = {
 297        0x55338954,	0x4000,
 298        0x554d8954,	0x2000,
 299        0x55668954,	0,
 300        0x559ac0d4,	0x6000,
 301};
 302/**
 303 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
 304 * @encoder: GMA encoder struct
 305 *
 306 * If a CPU or PCH DP output is attached to an eDP panel, this function
 307 * will return true, and false otherwise.
 308 */
 309static bool is_edp(struct gma_encoder *encoder)
 310{
 311	return encoder->type == INTEL_OUTPUT_EDP;
 312}
 313
 314
 315static void cdv_intel_dp_start_link_train(struct gma_encoder *encoder);
 316static void cdv_intel_dp_complete_link_train(struct gma_encoder *encoder);
 317static void cdv_intel_dp_link_down(struct gma_encoder *encoder);
 318
 319static int
 320cdv_intel_dp_max_lane_count(struct gma_encoder *encoder)
 321{
 322	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
 323	int max_lane_count = 4;
 324
 325	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
 326		max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
 327		switch (max_lane_count) {
 328		case 1: case 2: case 4:
 329			break;
 330		default:
 331			max_lane_count = 4;
 332		}
 333	}
 334	return max_lane_count;
 335}
 336
 337static int
 338cdv_intel_dp_max_link_bw(struct gma_encoder *encoder)
 339{
 340	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
 341	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
 342
 343	switch (max_link_bw) {
 344	case DP_LINK_BW_1_62:
 345	case DP_LINK_BW_2_7:
 346		break;
 347	default:
 348		max_link_bw = DP_LINK_BW_1_62;
 349		break;
 350	}
 351	return max_link_bw;
 352}
 353
 354static int
 355cdv_intel_dp_link_clock(uint8_t link_bw)
 356{
 357	if (link_bw == DP_LINK_BW_2_7)
 358		return 270000;
 359	else
 360		return 162000;
 361}
 362
 363static int
 364cdv_intel_dp_link_required(int pixel_clock, int bpp)
 365{
 366	return (pixel_clock * bpp + 7) / 8;
 367}
 368
 369static int
 370cdv_intel_dp_max_data_rate(int max_link_clock, int max_lanes)
 371{
 372	return (max_link_clock * max_lanes * 19) / 20;
 373}
 374
 375static void cdv_intel_edp_panel_vdd_on(struct gma_encoder *intel_encoder)
 376{
 377	struct drm_device *dev = intel_encoder->base.dev;
 378	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
 379	u32 pp;
 380
 381	if (intel_dp->panel_on) {
 382		DRM_DEBUG_KMS("Skip VDD on because of panel on\n");
 383		return;
 384	}
 385	DRM_DEBUG_KMS("\n");
 386
 387	pp = REG_READ(PP_CONTROL);
 388
 389	pp |= EDP_FORCE_VDD;
 390	REG_WRITE(PP_CONTROL, pp);
 391	REG_READ(PP_CONTROL);
 392	msleep(intel_dp->panel_power_up_delay);
 393}
 394
 395static void cdv_intel_edp_panel_vdd_off(struct gma_encoder *intel_encoder)
 396{
 397	struct drm_device *dev = intel_encoder->base.dev;
 398	u32 pp;
 399
 400	DRM_DEBUG_KMS("\n");
 401	pp = REG_READ(PP_CONTROL);
 402
 403	pp &= ~EDP_FORCE_VDD;
 404	REG_WRITE(PP_CONTROL, pp);
 405	REG_READ(PP_CONTROL);
 406
 407}
 408
 409/* Returns true if the panel was already on when called */
 410static bool cdv_intel_edp_panel_on(struct gma_encoder *intel_encoder)
 411{
 412	struct drm_device *dev = intel_encoder->base.dev;
 413	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
 414	u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_NONE;
 415
 416	if (intel_dp->panel_on)
 417		return true;
 418
 419	DRM_DEBUG_KMS("\n");
 420	pp = REG_READ(PP_CONTROL);
 421	pp &= ~PANEL_UNLOCK_MASK;
 422
 423	pp |= (PANEL_UNLOCK_REGS | POWER_TARGET_ON);
 424	REG_WRITE(PP_CONTROL, pp);
 425	REG_READ(PP_CONTROL);
 426
 427	if (wait_for(((REG_READ(PP_STATUS) & idle_on_mask) == idle_on_mask), 1000)) {
 428		DRM_DEBUG_KMS("Error in Powering up eDP panel, status %x\n", REG_READ(PP_STATUS));
 429		intel_dp->panel_on = false;
 430	} else
 431		intel_dp->panel_on = true;
 432	msleep(intel_dp->panel_power_up_delay);
 433
 434	return false;
 435}
 436
 437static void cdv_intel_edp_panel_off (struct gma_encoder *intel_encoder)
 438{
 439	struct drm_device *dev = intel_encoder->base.dev;
 440	u32 pp, idle_off_mask = PP_ON ;
 441	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
 442
 443	DRM_DEBUG_KMS("\n");
 444
 445	pp = REG_READ(PP_CONTROL);
 446
 447	if ((pp & POWER_TARGET_ON) == 0)
 448		return;
 449
 450	intel_dp->panel_on = false;
 451	pp &= ~PANEL_UNLOCK_MASK;
 452	/* ILK workaround: disable reset around power sequence */
 453
 454	pp &= ~POWER_TARGET_ON;
 455	pp &= ~EDP_FORCE_VDD;
 456	pp &= ~EDP_BLC_ENABLE;
 457	REG_WRITE(PP_CONTROL, pp);
 458	REG_READ(PP_CONTROL);
 459	DRM_DEBUG_KMS("PP_STATUS %x\n", REG_READ(PP_STATUS));
 460
 461	if (wait_for((REG_READ(PP_STATUS) & idle_off_mask) == 0, 1000)) {
 462		DRM_DEBUG_KMS("Error in turning off Panel\n");
 463	}
 464
 465	msleep(intel_dp->panel_power_cycle_delay);
 466	DRM_DEBUG_KMS("Over\n");
 467}
 468
 469static void cdv_intel_edp_backlight_on (struct gma_encoder *intel_encoder)
 470{
 471	struct drm_device *dev = intel_encoder->base.dev;
 472	u32 pp;
 473
 474	DRM_DEBUG_KMS("\n");
 475	/*
 476	 * If we enable the backlight right away following a panel power
 477	 * on, we may see slight flicker as the panel syncs with the eDP
 478	 * link.  So delay a bit to make sure the image is solid before
 479	 * allowing it to appear.
 480	 */
 481	msleep(300);
 482	pp = REG_READ(PP_CONTROL);
 483
 484	pp |= EDP_BLC_ENABLE;
 485	REG_WRITE(PP_CONTROL, pp);
 486	gma_backlight_enable(dev);
 487}
 488
 489static void cdv_intel_edp_backlight_off (struct gma_encoder *intel_encoder)
 490{
 491	struct drm_device *dev = intel_encoder->base.dev;
 492	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
 493	u32 pp;
 494
 495	DRM_DEBUG_KMS("\n");
 496	gma_backlight_disable(dev);
 497	msleep(10);
 498	pp = REG_READ(PP_CONTROL);
 499
 500	pp &= ~EDP_BLC_ENABLE;
 501	REG_WRITE(PP_CONTROL, pp);
 502	msleep(intel_dp->backlight_off_delay);
 503}
 504
 505static enum drm_mode_status
 506cdv_intel_dp_mode_valid(struct drm_connector *connector,
 507		    struct drm_display_mode *mode)
 508{
 509	struct gma_encoder *encoder = gma_attached_encoder(connector);
 510	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
 511	int max_link_clock = cdv_intel_dp_link_clock(cdv_intel_dp_max_link_bw(encoder));
 512	int max_lanes = cdv_intel_dp_max_lane_count(encoder);
 513	struct drm_psb_private *dev_priv = to_drm_psb_private(connector->dev);
 514
 515	if (is_edp(encoder) && intel_dp->panel_fixed_mode) {
 516		if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
 517			return MODE_PANEL;
 518		if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
 519			return MODE_PANEL;
 520	}
 521
 522	/* only refuse the mode on non eDP since we have seen some weird eDP panels
 523	   which are outside spec tolerances but somehow work by magic */
 524	if (!is_edp(encoder) &&
 525	    (cdv_intel_dp_link_required(mode->clock, dev_priv->edp.bpp)
 526	     > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes)))
 527		return MODE_CLOCK_HIGH;
 528
 529	if (is_edp(encoder)) {
 530	    if (cdv_intel_dp_link_required(mode->clock, 24)
 531	     	> cdv_intel_dp_max_data_rate(max_link_clock, max_lanes))
 532		return MODE_CLOCK_HIGH;
 533
 534	}
 535	if (mode->clock < 10000)
 536		return MODE_CLOCK_LOW;
 537
 538	return MODE_OK;
 539}
 540
 541static uint32_t
 542pack_aux(uint8_t *src, int src_bytes)
 543{
 544	int	i;
 545	uint32_t v = 0;
 546
 547	if (src_bytes > 4)
 548		src_bytes = 4;
 549	for (i = 0; i < src_bytes; i++)
 550		v |= ((uint32_t) src[i]) << ((3-i) * 8);
 551	return v;
 552}
 553
 554static void
 555unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
 556{
 557	int i;
 558	if (dst_bytes > 4)
 559		dst_bytes = 4;
 560	for (i = 0; i < dst_bytes; i++)
 561		dst[i] = src >> ((3-i) * 8);
 562}
 563
 564static int
 565cdv_intel_dp_aux_ch(struct gma_encoder *encoder,
 566		uint8_t *send, int send_bytes,
 567		uint8_t *recv, int recv_size)
 568{
 569	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
 570	uint32_t output_reg = intel_dp->output_reg;
 571	struct drm_device *dev = encoder->base.dev;
 572	uint32_t ch_ctl = output_reg + 0x10;
 573	uint32_t ch_data = ch_ctl + 4;
 574	int i;
 575	int recv_bytes;
 576	uint32_t status;
 577	uint32_t aux_clock_divider;
 578	int try, precharge;
 579
 580	/* The clock divider is based off the hrawclk,
 581	 * and would like to run at 2MHz. So, take the
 582	 * hrawclk value and divide by 2 and use that
 583	 * On CDV platform it uses 200MHz as hrawclk.
 584	 *
 585	 */
 586	aux_clock_divider = 200 / 2;
 587
 588	precharge = 4;
 589	if (is_edp(encoder))
 590		precharge = 10;
 591
 592	if (REG_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
 593		DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
 594			  REG_READ(ch_ctl));
 595		return -EBUSY;
 596	}
 597
 598	/* Must try at least 3 times according to DP spec */
 599	for (try = 0; try < 5; try++) {
 600		/* Load the send data into the aux channel data registers */
 601		for (i = 0; i < send_bytes; i += 4)
 602			REG_WRITE(ch_data + i,
 603				   pack_aux(send + i, send_bytes - i));
 604
 605		/* Send the command and wait for it to complete */
 606		REG_WRITE(ch_ctl,
 607			   DP_AUX_CH_CTL_SEND_BUSY |
 608			   DP_AUX_CH_CTL_TIME_OUT_400us |
 609			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
 610			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
 611			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
 612			   DP_AUX_CH_CTL_DONE |
 613			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
 614			   DP_AUX_CH_CTL_RECEIVE_ERROR);
 615		for (;;) {
 616			status = REG_READ(ch_ctl);
 617			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
 618				break;
 619			udelay(100);
 620		}
 621
 622		/* Clear done status and any errors */
 623		REG_WRITE(ch_ctl,
 624			   status |
 625			   DP_AUX_CH_CTL_DONE |
 626			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
 627			   DP_AUX_CH_CTL_RECEIVE_ERROR);
 628		if (status & DP_AUX_CH_CTL_DONE)
 629			break;
 630	}
 631
 632	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
 633		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
 634		return -EBUSY;
 635	}
 636
 637	/* Check for timeout or receive error.
 638	 * Timeouts occur when the sink is not connected
 639	 */
 640	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
 641		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
 642		return -EIO;
 643	}
 644
 645	/* Timeouts occur when the device isn't connected, so they're
 646	 * "normal" -- don't fill the kernel log with these */
 647	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
 648		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
 649		return -ETIMEDOUT;
 650	}
 651
 652	/* Unload any bytes sent back from the other side */
 653	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
 654		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
 655	if (recv_bytes > recv_size)
 656		recv_bytes = recv_size;
 657
 658	for (i = 0; i < recv_bytes; i += 4)
 659		unpack_aux(REG_READ(ch_data + i),
 660			   recv + i, recv_bytes - i);
 661
 662	return recv_bytes;
 663}
 664
 665/* Write data to the aux channel in native mode */
 666static int
 667cdv_intel_dp_aux_native_write(struct gma_encoder *encoder,
 668			  uint16_t address, uint8_t *send, int send_bytes)
 669{
 670	int ret;
 671	uint8_t	msg[20];
 672	int msg_bytes;
 673	uint8_t	ack;
 674
 675	if (send_bytes > 16)
 676		return -1;
 677	msg[0] = DP_AUX_NATIVE_WRITE << 4;
 678	msg[1] = address >> 8;
 679	msg[2] = address & 0xff;
 680	msg[3] = send_bytes - 1;
 681	memcpy(&msg[4], send, send_bytes);
 682	msg_bytes = send_bytes + 4;
 683	for (;;) {
 684		ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes, &ack, 1);
 685		if (ret < 0)
 686			return ret;
 687		ack >>= 4;
 688		if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK)
 689			break;
 690		else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
 691			udelay(100);
 692		else
 693			return -EIO;
 694	}
 695	return send_bytes;
 696}
 697
 698/* Write a single byte to the aux channel in native mode */
 699static int
 700cdv_intel_dp_aux_native_write_1(struct gma_encoder *encoder,
 701			    uint16_t address, uint8_t byte)
 702{
 703	return cdv_intel_dp_aux_native_write(encoder, address, &byte, 1);
 704}
 705
 706/* read bytes from a native aux channel */
 707static int
 708cdv_intel_dp_aux_native_read(struct gma_encoder *encoder,
 709			 uint16_t address, uint8_t *recv, int recv_bytes)
 710{
 711	uint8_t msg[4];
 712	int msg_bytes;
 713	uint8_t reply[20];
 714	int reply_bytes;
 715	uint8_t ack;
 716	int ret;
 717
 718	msg[0] = DP_AUX_NATIVE_READ << 4;
 719	msg[1] = address >> 8;
 720	msg[2] = address & 0xff;
 721	msg[3] = recv_bytes - 1;
 722
 723	msg_bytes = 4;
 724	reply_bytes = recv_bytes + 1;
 725
 726	for (;;) {
 727		ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes,
 728				      reply, reply_bytes);
 729		if (ret == 0)
 730			return -EPROTO;
 731		if (ret < 0)
 732			return ret;
 733		ack = reply[0] >> 4;
 734		if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) {
 735			memcpy(recv, reply + 1, ret - 1);
 736			return ret - 1;
 737		}
 738		else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
 739			udelay(100);
 740		else
 741			return -EIO;
 742	}
 743}
 744
 745static int
 746cdv_intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
 747		    uint8_t write_byte, uint8_t *read_byte)
 748{
 749	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
 750	struct cdv_intel_dp *intel_dp = container_of(adapter,
 751						struct cdv_intel_dp,
 752						adapter);
 753	struct gma_encoder *encoder = intel_dp->encoder;
 754	uint16_t address = algo_data->address;
 755	uint8_t msg[5];
 756	uint8_t reply[2];
 757	unsigned retry;
 758	int msg_bytes;
 759	int reply_bytes;
 760	int ret;
 761
 762	/* Set up the command byte */
 763	if (mode & MODE_I2C_READ)
 764		msg[0] = DP_AUX_I2C_READ << 4;
 765	else
 766		msg[0] = DP_AUX_I2C_WRITE << 4;
 767
 768	if (!(mode & MODE_I2C_STOP))
 769		msg[0] |= DP_AUX_I2C_MOT << 4;
 770
 771	msg[1] = address >> 8;
 772	msg[2] = address;
 773
 774	switch (mode) {
 775	case MODE_I2C_WRITE:
 776		msg[3] = 0;
 777		msg[4] = write_byte;
 778		msg_bytes = 5;
 779		reply_bytes = 1;
 780		break;
 781	case MODE_I2C_READ:
 782		msg[3] = 0;
 783		msg_bytes = 4;
 784		reply_bytes = 2;
 785		break;
 786	default:
 787		msg_bytes = 3;
 788		reply_bytes = 1;
 789		break;
 790	}
 791
 792	for (retry = 0; retry < 5; retry++) {
 793		ret = cdv_intel_dp_aux_ch(encoder,
 794				      msg, msg_bytes,
 795				      reply, reply_bytes);
 796		if (ret < 0) {
 797			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
 798			return ret;
 799		}
 800
 801		switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) {
 802		case DP_AUX_NATIVE_REPLY_ACK:
 803			/* I2C-over-AUX Reply field is only valid
 804			 * when paired with AUX ACK.
 805			 */
 806			break;
 807		case DP_AUX_NATIVE_REPLY_NACK:
 808			DRM_DEBUG_KMS("aux_ch native nack\n");
 809			return -EREMOTEIO;
 810		case DP_AUX_NATIVE_REPLY_DEFER:
 811			udelay(100);
 812			continue;
 813		default:
 814			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
 815				  reply[0]);
 816			return -EREMOTEIO;
 817		}
 818
 819		switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) {
 820		case DP_AUX_I2C_REPLY_ACK:
 821			if (mode == MODE_I2C_READ) {
 822				*read_byte = reply[1];
 823			}
 824			return reply_bytes - 1;
 825		case DP_AUX_I2C_REPLY_NACK:
 826			DRM_DEBUG_KMS("aux_i2c nack\n");
 827			return -EREMOTEIO;
 828		case DP_AUX_I2C_REPLY_DEFER:
 829			DRM_DEBUG_KMS("aux_i2c defer\n");
 830			udelay(100);
 831			break;
 832		default:
 833			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
 834			return -EREMOTEIO;
 835		}
 836	}
 837
 838	DRM_ERROR("too many retries, giving up\n");
 839	return -EREMOTEIO;
 840}
 841
 842static int
 843cdv_intel_dp_i2c_init(struct gma_connector *connector,
 844		      struct gma_encoder *encoder, const char *name)
 845{
 846	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
 847	int ret;
 848
 849	DRM_DEBUG_KMS("i2c_init %s\n", name);
 850
 851	intel_dp->algo.running = false;
 852	intel_dp->algo.address = 0;
 853	intel_dp->algo.aux_ch = cdv_intel_dp_i2c_aux_ch;
 854
 855	memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
 856	intel_dp->adapter.owner = THIS_MODULE;
 857	intel_dp->adapter.class = I2C_CLASS_DDC;
 858	strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
 859	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
 860	intel_dp->adapter.algo_data = &intel_dp->algo;
 861	intel_dp->adapter.dev.parent = connector->base.kdev;
 862
 863	if (is_edp(encoder))
 864		cdv_intel_edp_panel_vdd_on(encoder);
 865	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
 866	if (is_edp(encoder))
 867		cdv_intel_edp_panel_vdd_off(encoder);
 868
 869	return ret;
 870}
 871
 872static void cdv_intel_fixed_panel_mode(struct drm_display_mode *fixed_mode,
 873	struct drm_display_mode *adjusted_mode)
 874{
 875	adjusted_mode->hdisplay = fixed_mode->hdisplay;
 876	adjusted_mode->hsync_start = fixed_mode->hsync_start;
 877	adjusted_mode->hsync_end = fixed_mode->hsync_end;
 878	adjusted_mode->htotal = fixed_mode->htotal;
 879
 880	adjusted_mode->vdisplay = fixed_mode->vdisplay;
 881	adjusted_mode->vsync_start = fixed_mode->vsync_start;
 882	adjusted_mode->vsync_end = fixed_mode->vsync_end;
 883	adjusted_mode->vtotal = fixed_mode->vtotal;
 884
 885	adjusted_mode->clock = fixed_mode->clock;
 886
 887	drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V);
 888}
 889
 890static bool
 891cdv_intel_dp_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode,
 892		    struct drm_display_mode *adjusted_mode)
 893{
 894	struct drm_psb_private *dev_priv = to_drm_psb_private(encoder->dev);
 895	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
 896	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
 897	int lane_count, clock;
 898	int max_lane_count = cdv_intel_dp_max_lane_count(intel_encoder);
 899	int max_clock = cdv_intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
 900	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
 901	int refclock = mode->clock;
 902	int bpp = 24;
 903
 904	if (is_edp(intel_encoder) && intel_dp->panel_fixed_mode) {
 905		cdv_intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
 906		refclock = intel_dp->panel_fixed_mode->clock;
 907		bpp = dev_priv->edp.bpp;
 908	}
 909
 910	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
 911		for (clock = max_clock; clock >= 0; clock--) {
 912			int link_avail = cdv_intel_dp_max_data_rate(cdv_intel_dp_link_clock(bws[clock]), lane_count);
 913
 914			if (cdv_intel_dp_link_required(refclock, bpp) <= link_avail) {
 915				intel_dp->link_bw = bws[clock];
 916				intel_dp->lane_count = lane_count;
 917				adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
 918				DRM_DEBUG_KMS("Display port link bw %02x lane "
 919						"count %d clock %d\n",
 920				       intel_dp->link_bw, intel_dp->lane_count,
 921				       adjusted_mode->clock);
 922				return true;
 923			}
 924		}
 925	}
 926	if (is_edp(intel_encoder)) {
 927		/* okay we failed just pick the highest */
 928		intel_dp->lane_count = max_lane_count;
 929		intel_dp->link_bw = bws[max_clock];
 930		adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
 931		DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
 932			      "count %d clock %d\n",
 933			      intel_dp->link_bw, intel_dp->lane_count,
 934			      adjusted_mode->clock);
 935
 936		return true;
 937	}
 938	return false;
 939}
 940
 941struct cdv_intel_dp_m_n {
 942	uint32_t	tu;
 943	uint32_t	gmch_m;
 944	uint32_t	gmch_n;
 945	uint32_t	link_m;
 946	uint32_t	link_n;
 947};
 948
 949static void
 950cdv_intel_reduce_ratio(uint32_t *num, uint32_t *den)
 951{
 952	/*
 953	while (*num > 0xffffff || *den > 0xffffff) {
 954		*num >>= 1;
 955		*den >>= 1;
 956	}*/
 957	uint64_t value, m;
 958	m = *num;
 959	value = m * (0x800000);
 960	m = do_div(value, *den);
 961	*num = value;
 962	*den = 0x800000;
 963}
 964
 965static void
 966cdv_intel_dp_compute_m_n(int bpp,
 967		     int nlanes,
 968		     int pixel_clock,
 969		     int link_clock,
 970		     struct cdv_intel_dp_m_n *m_n)
 971{
 972	m_n->tu = 64;
 973	m_n->gmch_m = (pixel_clock * bpp + 7) >> 3;
 974	m_n->gmch_n = link_clock * nlanes;
 975	cdv_intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
 976	m_n->link_m = pixel_clock;
 977	m_n->link_n = link_clock;
 978	cdv_intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
 979}
 980
 981void
 982cdv_intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
 983		 struct drm_display_mode *adjusted_mode)
 984{
 985	struct drm_device *dev = crtc->dev;
 986	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
 987	struct drm_mode_config *mode_config = &dev->mode_config;
 988	struct drm_encoder *encoder;
 989	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
 990	int lane_count = 4, bpp = 24;
 991	struct cdv_intel_dp_m_n m_n;
 992	int pipe = gma_crtc->pipe;
 993
 994	/*
 995	 * Find the lane count in the intel_encoder private
 996	 */
 997	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
 998		struct gma_encoder *intel_encoder;
 999		struct cdv_intel_dp *intel_dp;
1000
1001		if (encoder->crtc != crtc)
1002			continue;
1003
1004		intel_encoder = to_gma_encoder(encoder);
1005		intel_dp = intel_encoder->dev_priv;
1006		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
1007			lane_count = intel_dp->lane_count;
1008			break;
1009		} else if (is_edp(intel_encoder)) {
1010			lane_count = intel_dp->lane_count;
1011			bpp = dev_priv->edp.bpp;
1012			break;
1013		}
1014	}
1015
1016	/*
1017	 * Compute the GMCH and Link ratios. The '3' here is
1018	 * the number of bytes_per_pixel post-LUT, which we always
1019	 * set up for 8-bits of R/G/B, or 3 bytes total.
1020	 */
1021	cdv_intel_dp_compute_m_n(bpp, lane_count,
1022			     mode->clock, adjusted_mode->clock, &m_n);
1023
1024	{
1025		REG_WRITE(PIPE_GMCH_DATA_M(pipe),
1026			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
1027			   m_n.gmch_m);
1028		REG_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
1029		REG_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
1030		REG_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
1031	}
1032}
1033
1034static void
1035cdv_intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
1036		  struct drm_display_mode *adjusted_mode)
1037{
1038	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1039	struct drm_crtc *crtc = encoder->crtc;
1040	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
1041	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1042	struct drm_device *dev = encoder->dev;
1043
1044	intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1045	intel_dp->DP |= intel_dp->color_range;
1046
1047	if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1048		intel_dp->DP |= DP_SYNC_HS_HIGH;
1049	if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1050		intel_dp->DP |= DP_SYNC_VS_HIGH;
1051
1052	intel_dp->DP |= DP_LINK_TRAIN_OFF;
1053
1054	switch (intel_dp->lane_count) {
1055	case 1:
1056		intel_dp->DP |= DP_PORT_WIDTH_1;
1057		break;
1058	case 2:
1059		intel_dp->DP |= DP_PORT_WIDTH_2;
1060		break;
1061	case 4:
1062		intel_dp->DP |= DP_PORT_WIDTH_4;
1063		break;
1064	}
1065	if (intel_dp->has_audio)
1066		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1067
1068	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
1069	intel_dp->link_configuration[0] = intel_dp->link_bw;
1070	intel_dp->link_configuration[1] = intel_dp->lane_count;
1071
1072	/*
1073	 * Check for DPCD version > 1.1 and enhanced framing support
1074	 */
1075	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
1076	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
1077		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
1078		intel_dp->DP |= DP_ENHANCED_FRAMING;
1079	}
1080
1081	/* CPT DP's pipe select is decided in TRANS_DP_CTL */
1082	if (gma_crtc->pipe == 1)
1083		intel_dp->DP |= DP_PIPEB_SELECT;
1084
1085	REG_WRITE(intel_dp->output_reg, (intel_dp->DP | DP_PORT_EN));
1086	DRM_DEBUG_KMS("DP expected reg is %x\n", intel_dp->DP);
1087	if (is_edp(intel_encoder)) {
1088		uint32_t pfit_control;
1089		cdv_intel_edp_panel_on(intel_encoder);
1090
1091		if (mode->hdisplay != adjusted_mode->hdisplay ||
1092			    mode->vdisplay != adjusted_mode->vdisplay)
1093			pfit_control = PFIT_ENABLE;
1094		else
1095			pfit_control = 0;
1096
1097		pfit_control |= gma_crtc->pipe << PFIT_PIPE_SHIFT;
1098
1099		REG_WRITE(PFIT_CONTROL, pfit_control);
1100	}
1101}
1102
1103
1104/* If the sink supports it, try to set the power state appropriately */
1105static void cdv_intel_dp_sink_dpms(struct gma_encoder *encoder, int mode)
1106{
1107	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1108	int ret, i;
1109
1110	/* Should have a valid DPCD by this point */
1111	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1112		return;
1113
1114	if (mode != DRM_MODE_DPMS_ON) {
1115		ret = cdv_intel_dp_aux_native_write_1(encoder, DP_SET_POWER,
1116						  DP_SET_POWER_D3);
1117		if (ret != 1)
1118			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1119	} else {
1120		/*
1121		 * When turning on, we need to retry for 1ms to give the sink
1122		 * time to wake up.
1123		 */
1124		for (i = 0; i < 3; i++) {
1125			ret = cdv_intel_dp_aux_native_write_1(encoder,
1126							  DP_SET_POWER,
1127							  DP_SET_POWER_D0);
1128			if (ret == 1)
1129				break;
1130			udelay(1000);
1131		}
1132	}
1133}
1134
1135static void cdv_intel_dp_prepare(struct drm_encoder *encoder)
1136{
1137	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1138	int edp = is_edp(intel_encoder);
1139
1140	if (edp) {
1141		cdv_intel_edp_backlight_off(intel_encoder);
1142		cdv_intel_edp_panel_off(intel_encoder);
1143		cdv_intel_edp_panel_vdd_on(intel_encoder);
1144        }
1145	/* Wake up the sink first */
1146	cdv_intel_dp_sink_dpms(intel_encoder, DRM_MODE_DPMS_ON);
1147	cdv_intel_dp_link_down(intel_encoder);
1148	if (edp)
1149		cdv_intel_edp_panel_vdd_off(intel_encoder);
1150}
1151
1152static void cdv_intel_dp_commit(struct drm_encoder *encoder)
1153{
1154	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1155	int edp = is_edp(intel_encoder);
1156
1157	if (edp)
1158		cdv_intel_edp_panel_on(intel_encoder);
1159	cdv_intel_dp_start_link_train(intel_encoder);
1160	cdv_intel_dp_complete_link_train(intel_encoder);
1161	if (edp)
1162		cdv_intel_edp_backlight_on(intel_encoder);
1163}
1164
1165static void
1166cdv_intel_dp_dpms(struct drm_encoder *encoder, int mode)
1167{
1168	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1169	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1170	struct drm_device *dev = encoder->dev;
1171	uint32_t dp_reg = REG_READ(intel_dp->output_reg);
1172	int edp = is_edp(intel_encoder);
1173
1174	if (mode != DRM_MODE_DPMS_ON) {
1175		if (edp) {
1176			cdv_intel_edp_backlight_off(intel_encoder);
1177			cdv_intel_edp_panel_vdd_on(intel_encoder);
1178		}
1179		cdv_intel_dp_sink_dpms(intel_encoder, mode);
1180		cdv_intel_dp_link_down(intel_encoder);
1181		if (edp) {
1182			cdv_intel_edp_panel_vdd_off(intel_encoder);
1183			cdv_intel_edp_panel_off(intel_encoder);
1184		}
1185	} else {
1186        	if (edp)
1187			cdv_intel_edp_panel_on(intel_encoder);
1188		cdv_intel_dp_sink_dpms(intel_encoder, mode);
1189		if (!(dp_reg & DP_PORT_EN)) {
1190			cdv_intel_dp_start_link_train(intel_encoder);
1191			cdv_intel_dp_complete_link_train(intel_encoder);
1192		}
1193		if (edp)
1194        		cdv_intel_edp_backlight_on(intel_encoder);
1195	}
1196}
1197
1198/*
1199 * Native read with retry for link status and receiver capability reads for
1200 * cases where the sink may still be asleep.
1201 */
1202static bool
1203cdv_intel_dp_aux_native_read_retry(struct gma_encoder *encoder, uint16_t address,
1204			       uint8_t *recv, int recv_bytes)
1205{
1206	int ret, i;
1207
1208	/*
1209	 * Sinks are *supposed* to come up within 1ms from an off state,
1210	 * but we're also supposed to retry 3 times per the spec.
1211	 */
1212	for (i = 0; i < 3; i++) {
1213		ret = cdv_intel_dp_aux_native_read(encoder, address, recv,
1214					       recv_bytes);
1215		if (ret == recv_bytes)
1216			return true;
1217		udelay(1000);
1218	}
1219
1220	return false;
1221}
1222
1223/*
1224 * Fetch AUX CH registers 0x202 - 0x207 which contain
1225 * link status information
1226 */
1227static bool
1228cdv_intel_dp_get_link_status(struct gma_encoder *encoder)
1229{
1230	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1231	return cdv_intel_dp_aux_native_read_retry(encoder,
1232					      DP_LANE0_1_STATUS,
1233					      intel_dp->link_status,
1234					      DP_LINK_STATUS_SIZE);
1235}
1236
1237static uint8_t
1238cdv_intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1239		     int r)
1240{
1241	return link_status[r - DP_LANE0_1_STATUS];
1242}
1243
1244static uint8_t
1245cdv_intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1246				 int lane)
1247{
1248	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1249	int	    s = ((lane & 1) ?
1250			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1251			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1252	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1253
1254	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1255}
1256
1257static uint8_t
1258cdv_intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1259				      int lane)
1260{
1261	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1262	int	    s = ((lane & 1) ?
1263			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1264			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1265	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1266
1267	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1268}
1269
1270#define CDV_DP_VOLTAGE_MAX	    DP_TRAIN_VOLTAGE_SWING_LEVEL_3
1271
1272static void
1273cdv_intel_get_adjust_train(struct gma_encoder *encoder)
1274{
1275	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1276	uint8_t v = 0;
1277	uint8_t p = 0;
1278	int lane;
1279
1280	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1281		uint8_t this_v = cdv_intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1282		uint8_t this_p = cdv_intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1283
1284		if (this_v > v)
1285			v = this_v;
1286		if (this_p > p)
1287			p = this_p;
1288	}
1289
1290	if (v >= CDV_DP_VOLTAGE_MAX)
1291		v = CDV_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1292
1293	if (p == DP_TRAIN_PRE_EMPHASIS_MASK)
1294		p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1295
1296	for (lane = 0; lane < 4; lane++)
1297		intel_dp->train_set[lane] = v | p;
1298}
1299
1300
1301static uint8_t
1302cdv_intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1303		      int lane)
1304{
1305	int i = DP_LANE0_1_STATUS + (lane >> 1);
1306	int s = (lane & 1) * 4;
1307	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1308
1309	return (l >> s) & 0xf;
1310}
1311
1312/* Check for clock recovery is done on all channels */
1313static bool
1314cdv_intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1315{
1316	int lane;
1317	uint8_t lane_status;
1318
1319	for (lane = 0; lane < lane_count; lane++) {
1320		lane_status = cdv_intel_get_lane_status(link_status, lane);
1321		if ((lane_status & DP_LANE_CR_DONE) == 0)
1322			return false;
1323	}
1324	return true;
1325}
1326
1327/* Check to see if channel eq is done on all channels */
1328#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1329			 DP_LANE_CHANNEL_EQ_DONE|\
1330			 DP_LANE_SYMBOL_LOCKED)
1331static bool
1332cdv_intel_channel_eq_ok(struct gma_encoder *encoder)
1333{
1334	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1335	uint8_t lane_align;
1336	uint8_t lane_status;
1337	int lane;
1338
1339	lane_align = cdv_intel_dp_link_status(intel_dp->link_status,
1340					  DP_LANE_ALIGN_STATUS_UPDATED);
1341	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1342		return false;
1343	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1344		lane_status = cdv_intel_get_lane_status(intel_dp->link_status, lane);
1345		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1346			return false;
1347	}
1348	return true;
1349}
1350
1351static bool
1352cdv_intel_dp_set_link_train(struct gma_encoder *encoder,
1353			uint32_t dp_reg_value,
1354			uint8_t dp_train_pat)
1355{
1356	struct drm_device *dev = encoder->base.dev;
1357	int ret;
1358	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1359
1360	REG_WRITE(intel_dp->output_reg, dp_reg_value);
1361	REG_READ(intel_dp->output_reg);
1362
1363	ret = cdv_intel_dp_aux_native_write_1(encoder,
1364				    DP_TRAINING_PATTERN_SET,
1365				    dp_train_pat);
1366
1367	if (ret != 1) {
1368		DRM_DEBUG_KMS("Failure in setting link pattern %x\n",
1369				dp_train_pat);
1370		return false;
1371	}
1372
1373	return true;
1374}
1375
1376
1377static bool
1378cdv_intel_dplink_set_level(struct gma_encoder *encoder,
1379			uint8_t dp_train_pat)
1380{
1381	int ret;
1382	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1383
1384	ret = cdv_intel_dp_aux_native_write(encoder,
1385					DP_TRAINING_LANE0_SET,
1386					intel_dp->train_set,
1387					intel_dp->lane_count);
1388
1389	if (ret != intel_dp->lane_count) {
1390		DRM_DEBUG_KMS("Failure in setting level %d, lane_cnt= %d\n",
1391				intel_dp->train_set[0], intel_dp->lane_count);
1392		return false;
1393	}
1394	return true;
1395}
1396
1397static void
1398cdv_intel_dp_set_vswing_premph(struct gma_encoder *encoder, uint8_t signal_level)
1399{
1400	struct drm_device *dev = encoder->base.dev;
1401	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1402	struct ddi_regoff *ddi_reg;
1403	int vswing, premph, index;
1404
1405	if (intel_dp->output_reg == DP_B)
1406		ddi_reg = &ddi_DP_train_table[0];
1407	else
1408		ddi_reg = &ddi_DP_train_table[1];
1409
1410	vswing = (signal_level & DP_TRAIN_VOLTAGE_SWING_MASK);
1411	premph = ((signal_level & DP_TRAIN_PRE_EMPHASIS_MASK)) >>
1412				DP_TRAIN_PRE_EMPHASIS_SHIFT;
1413
1414	if (vswing + premph > 3)
1415		return;
1416#ifdef CDV_FAST_LINK_TRAIN
1417	return;
1418#endif
1419	DRM_DEBUG_KMS("Test2\n");
1420	//return ;
1421	cdv_sb_reset(dev);
1422	/* ;Swing voltage programming
1423        ;gfx_dpio_set_reg(0xc058, 0x0505313A) */
1424	cdv_sb_write(dev, ddi_reg->VSwing5, 0x0505313A);
1425
1426	/* ;gfx_dpio_set_reg(0x8154, 0x43406055) */
1427	cdv_sb_write(dev, ddi_reg->VSwing1, 0x43406055);
1428
1429	/* ;gfx_dpio_set_reg(0x8148, 0x55338954)
1430	 * The VSwing_PreEmph table is also considered based on the vswing/premp
1431	 */
1432	index = (vswing + premph) * 2;
1433	if (premph == 1 && vswing == 1) {
1434		cdv_sb_write(dev, ddi_reg->VSwing2, 0x055738954);
1435	} else
1436		cdv_sb_write(dev, ddi_reg->VSwing2, dp_vswing_premph_table[index]);
1437
1438	/* ;gfx_dpio_set_reg(0x814c, 0x40802040) */
1439	if ((vswing + premph) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)
1440		cdv_sb_write(dev, ddi_reg->VSwing3, 0x70802040);
1441	else
1442		cdv_sb_write(dev, ddi_reg->VSwing3, 0x40802040);
1443
1444	/* ;gfx_dpio_set_reg(0x8150, 0x2b405555) */
1445	/* cdv_sb_write(dev, ddi_reg->VSwing4, 0x2b405555); */
1446
1447	/* ;gfx_dpio_set_reg(0x8154, 0xc3406055) */
1448	cdv_sb_write(dev, ddi_reg->VSwing1, 0xc3406055);
1449
1450	/* ;Pre emphasis programming
1451	 * ;gfx_dpio_set_reg(0xc02c, 0x1f030040)
1452	 */
1453	cdv_sb_write(dev, ddi_reg->PreEmph1, 0x1f030040);
1454
1455	/* ;gfx_dpio_set_reg(0x8124, 0x00004000) */
1456	index = 2 * premph + 1;
1457	cdv_sb_write(dev, ddi_reg->PreEmph2, dp_vswing_premph_table[index]);
1458	return;
1459}
1460
1461
1462/* Enable corresponding port and start training pattern 1 */
1463static void
1464cdv_intel_dp_start_link_train(struct gma_encoder *encoder)
1465{
1466	struct drm_device *dev = encoder->base.dev;
1467	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1468	int i;
1469	uint8_t voltage;
1470	bool clock_recovery = false;
1471	int tries;
1472	u32 reg;
1473	uint32_t DP = intel_dp->DP;
1474
1475	DP |= DP_PORT_EN;
1476	DP &= ~DP_LINK_TRAIN_MASK;
1477
1478	reg = DP;
1479	reg |= DP_LINK_TRAIN_PAT_1;
1480	/* Enable output, wait for it to become active */
1481	REG_WRITE(intel_dp->output_reg, reg);
1482	REG_READ(intel_dp->output_reg);
1483	gma_wait_for_vblank(dev);
1484
1485	DRM_DEBUG_KMS("Link config\n");
1486	/* Write the link configuration data */
1487	cdv_intel_dp_aux_native_write(encoder, DP_LINK_BW_SET,
1488				  intel_dp->link_configuration,
1489				  2);
1490
1491	memset(intel_dp->train_set, 0, 4);
1492	voltage = 0;
1493	tries = 0;
1494	clock_recovery = false;
1495
1496	DRM_DEBUG_KMS("Start train\n");
1497	reg = DP | DP_LINK_TRAIN_PAT_1;
1498
1499	for (;;) {
1500		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1501		DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1502				intel_dp->train_set[0],
1503				intel_dp->link_configuration[0],
1504				intel_dp->link_configuration[1]);
1505
1506		if (!cdv_intel_dp_set_link_train(encoder, reg, DP_TRAINING_PATTERN_1)) {
1507			DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 1\n");
1508		}
1509		cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1510		/* Set training pattern 1 */
1511
1512		cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_1);
1513
1514		udelay(200);
1515		if (!cdv_intel_dp_get_link_status(encoder))
1516			break;
1517
1518		DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1519				intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1520				intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1521
1522		if (cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1523			DRM_DEBUG_KMS("PT1 train is done\n");
1524			clock_recovery = true;
1525			break;
1526		}
1527
1528		/* Check to see if we've tried the max voltage */
1529		for (i = 0; i < intel_dp->lane_count; i++)
1530			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1531				break;
1532		if (i == intel_dp->lane_count)
1533			break;
1534
1535		/* Check to see if we've tried the same voltage 5 times */
1536		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1537			++tries;
1538			if (tries == 5)
1539				break;
1540		} else
1541			tries = 0;
1542		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1543
1544		/* Compute new intel_dp->train_set as requested by target */
1545		cdv_intel_get_adjust_train(encoder);
1546
1547	}
1548
1549	if (!clock_recovery) {
1550		DRM_DEBUG_KMS("failure in DP patter 1 training, train set %x\n", intel_dp->train_set[0]);
1551	}
1552
1553	intel_dp->DP = DP;
1554}
1555
1556static void
1557cdv_intel_dp_complete_link_train(struct gma_encoder *encoder)
1558{
1559	struct drm_device *dev = encoder->base.dev;
1560	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1561	int tries, cr_tries;
1562	u32 reg;
1563	uint32_t DP = intel_dp->DP;
1564
1565	/* channel equalization */
1566	tries = 0;
1567	cr_tries = 0;
1568
1569	DRM_DEBUG_KMS("\n");
1570	reg = DP | DP_LINK_TRAIN_PAT_2;
1571
1572	for (;;) {
1573
1574		DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1575				intel_dp->train_set[0],
1576				intel_dp->link_configuration[0],
1577				intel_dp->link_configuration[1]);
1578        	/* channel eq pattern */
1579
1580		if (!cdv_intel_dp_set_link_train(encoder, reg,
1581					     DP_TRAINING_PATTERN_2)) {
1582			DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 2\n");
1583		}
1584		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1585
1586		if (cr_tries > 5) {
1587			DRM_ERROR("failed to train DP, aborting\n");
1588			cdv_intel_dp_link_down(encoder);
1589			break;
1590		}
1591
1592		cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1593
1594		cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_2);
1595
1596		udelay(1000);
1597		if (!cdv_intel_dp_get_link_status(encoder))
1598			break;
1599
1600		DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1601				intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1602				intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1603
1604		/* Make sure clock is still ok */
1605		if (!cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1606			cdv_intel_dp_start_link_train(encoder);
1607			cr_tries++;
1608			continue;
1609		}
1610
1611		if (cdv_intel_channel_eq_ok(encoder)) {
1612			DRM_DEBUG_KMS("PT2 train is done\n");
1613			break;
1614		}
1615
1616		/* Try 5 times, then try clock recovery if that fails */
1617		if (tries > 5) {
1618			cdv_intel_dp_link_down(encoder);
1619			cdv_intel_dp_start_link_train(encoder);
1620			tries = 0;
1621			cr_tries++;
1622			continue;
1623		}
1624
1625		/* Compute new intel_dp->train_set as requested by target */
1626		cdv_intel_get_adjust_train(encoder);
1627		++tries;
1628
1629	}
1630
1631	reg = DP | DP_LINK_TRAIN_OFF;
1632
1633	REG_WRITE(intel_dp->output_reg, reg);
1634	REG_READ(intel_dp->output_reg);
1635	cdv_intel_dp_aux_native_write_1(encoder,
1636				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1637}
1638
1639static void
1640cdv_intel_dp_link_down(struct gma_encoder *encoder)
1641{
1642	struct drm_device *dev = encoder->base.dev;
1643	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1644	uint32_t DP = intel_dp->DP;
1645
1646	if ((REG_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1647		return;
1648
1649	DRM_DEBUG_KMS("\n");
1650
1651
1652	{
1653		DP &= ~DP_LINK_TRAIN_MASK;
1654		REG_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1655	}
1656	REG_READ(intel_dp->output_reg);
1657
1658	msleep(17);
1659
1660	REG_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1661	REG_READ(intel_dp->output_reg);
1662}
1663
1664static enum drm_connector_status cdv_dp_detect(struct gma_encoder *encoder)
1665{
1666	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1667	enum drm_connector_status status;
1668
1669	status = connector_status_disconnected;
1670	if (cdv_intel_dp_aux_native_read(encoder, 0x000, intel_dp->dpcd,
1671				     sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1672	{
1673		if (intel_dp->dpcd[DP_DPCD_REV] != 0)
1674			status = connector_status_connected;
1675	}
1676	if (status == connector_status_connected)
1677		DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
1678			intel_dp->dpcd[0], intel_dp->dpcd[1],
1679			intel_dp->dpcd[2], intel_dp->dpcd[3]);
1680	return status;
1681}
1682
1683/*
1684 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1685 *
1686 * \return true if DP port is connected.
1687 * \return false if DP port is disconnected.
1688 */
1689static enum drm_connector_status
1690cdv_intel_dp_detect(struct drm_connector *connector, bool force)
1691{
1692	struct gma_encoder *encoder = gma_attached_encoder(connector);
1693	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1694	enum drm_connector_status status;
1695	struct edid *edid = NULL;
1696	int edp = is_edp(encoder);
1697
1698	intel_dp->has_audio = false;
1699
1700	if (edp)
1701		cdv_intel_edp_panel_vdd_on(encoder);
1702	status = cdv_dp_detect(encoder);
1703	if (status != connector_status_connected) {
1704		if (edp)
1705			cdv_intel_edp_panel_vdd_off(encoder);
1706		return status;
1707        }
1708
1709	if (intel_dp->force_audio) {
1710		intel_dp->has_audio = intel_dp->force_audio > 0;
1711	} else {
1712		edid = drm_get_edid(connector, &intel_dp->adapter);
1713		if (edid) {
1714			intel_dp->has_audio = drm_detect_monitor_audio(edid);
1715			kfree(edid);
1716		}
1717	}
1718	if (edp)
1719		cdv_intel_edp_panel_vdd_off(encoder);
1720
1721	return connector_status_connected;
1722}
1723
1724static int cdv_intel_dp_get_modes(struct drm_connector *connector)
1725{
1726	struct gma_encoder *intel_encoder = gma_attached_encoder(connector);
1727	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1728	struct edid *edid = NULL;
1729	int ret = 0;
1730	int edp = is_edp(intel_encoder);
1731
1732
1733	edid = drm_get_edid(connector, &intel_dp->adapter);
1734	if (edid) {
1735		drm_connector_update_edid_property(connector, edid);
1736		ret = drm_add_edid_modes(connector, edid);
1737		kfree(edid);
1738	}
1739
1740	if (is_edp(intel_encoder)) {
1741		struct drm_device *dev = connector->dev;
1742		struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
1743
1744		cdv_intel_edp_panel_vdd_off(intel_encoder);
1745		if (ret) {
1746			if (edp && !intel_dp->panel_fixed_mode) {
1747				struct drm_display_mode *newmode;
1748				list_for_each_entry(newmode, &connector->probed_modes,
1749					    head) {
1750					if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1751						intel_dp->panel_fixed_mode =
1752							drm_mode_duplicate(dev, newmode);
1753						break;
1754					}
1755				}
1756			}
1757
1758			return ret;
1759		}
1760		if (!intel_dp->panel_fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
1761			intel_dp->panel_fixed_mode =
1762				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1763			if (intel_dp->panel_fixed_mode) {
1764				intel_dp->panel_fixed_mode->type |=
1765					DRM_MODE_TYPE_PREFERRED;
1766			}
1767		}
1768		if (intel_dp->panel_fixed_mode != NULL) {
1769			struct drm_display_mode *mode;
1770			mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
1771			drm_mode_probed_add(connector, mode);
1772			return 1;
1773		}
1774	}
1775
1776	return ret;
1777}
1778
1779static bool
1780cdv_intel_dp_detect_audio(struct drm_connector *connector)
1781{
1782	struct gma_encoder *encoder = gma_attached_encoder(connector);
1783	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1784	struct edid *edid;
1785	bool has_audio = false;
1786	int edp = is_edp(encoder);
1787
1788	if (edp)
1789		cdv_intel_edp_panel_vdd_on(encoder);
1790
1791	edid = drm_get_edid(connector, &intel_dp->adapter);
1792	if (edid) {
1793		has_audio = drm_detect_monitor_audio(edid);
1794		kfree(edid);
1795	}
1796	if (edp)
1797		cdv_intel_edp_panel_vdd_off(encoder);
1798
1799	return has_audio;
1800}
1801
1802static int
1803cdv_intel_dp_set_property(struct drm_connector *connector,
1804		      struct drm_property *property,
1805		      uint64_t val)
1806{
1807	struct drm_psb_private *dev_priv = to_drm_psb_private(connector->dev);
1808	struct gma_encoder *encoder = gma_attached_encoder(connector);
1809	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1810	int ret;
1811
1812	ret = drm_object_property_set_value(&connector->base, property, val);
1813	if (ret)
1814		return ret;
1815
1816	if (property == dev_priv->force_audio_property) {
1817		int i = val;
1818		bool has_audio;
1819
1820		if (i == intel_dp->force_audio)
1821			return 0;
1822
1823		intel_dp->force_audio = i;
1824
1825		if (i == 0)
1826			has_audio = cdv_intel_dp_detect_audio(connector);
1827		else
1828			has_audio = i > 0;
1829
1830		if (has_audio == intel_dp->has_audio)
1831			return 0;
1832
1833		intel_dp->has_audio = has_audio;
1834		goto done;
1835	}
1836
1837	if (property == dev_priv->broadcast_rgb_property) {
1838		if (val == !!intel_dp->color_range)
1839			return 0;
1840
1841		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1842		goto done;
1843	}
1844
1845	return -EINVAL;
1846
1847done:
1848	if (encoder->base.crtc) {
1849		struct drm_crtc *crtc = encoder->base.crtc;
1850		drm_crtc_helper_set_mode(crtc, &crtc->mode,
1851					 crtc->x, crtc->y,
1852					 crtc->primary->fb);
1853	}
1854
1855	return 0;
1856}
1857
1858static void
1859cdv_intel_dp_destroy(struct drm_connector *connector)
1860{
1861	struct gma_connector *gma_connector = to_gma_connector(connector);
1862	struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
1863	struct cdv_intel_dp *intel_dp = gma_encoder->dev_priv;
1864
1865	if (is_edp(gma_encoder)) {
1866	/*	cdv_intel_panel_destroy_backlight(connector->dev); */
1867		kfree(intel_dp->panel_fixed_mode);
1868		intel_dp->panel_fixed_mode = NULL;
1869	}
1870	i2c_del_adapter(&intel_dp->adapter);
1871	drm_connector_cleanup(connector);
1872	kfree(gma_connector);
1873}
1874
1875static const struct drm_encoder_helper_funcs cdv_intel_dp_helper_funcs = {
1876	.dpms = cdv_intel_dp_dpms,
1877	.mode_fixup = cdv_intel_dp_mode_fixup,
1878	.prepare = cdv_intel_dp_prepare,
1879	.mode_set = cdv_intel_dp_mode_set,
1880	.commit = cdv_intel_dp_commit,
1881};
1882
1883static const struct drm_connector_funcs cdv_intel_dp_connector_funcs = {
1884	.dpms = drm_helper_connector_dpms,
1885	.detect = cdv_intel_dp_detect,
1886	.fill_modes = drm_helper_probe_single_connector_modes,
1887	.set_property = cdv_intel_dp_set_property,
1888	.destroy = cdv_intel_dp_destroy,
1889};
1890
1891static const struct drm_connector_helper_funcs cdv_intel_dp_connector_helper_funcs = {
1892	.get_modes = cdv_intel_dp_get_modes,
1893	.mode_valid = cdv_intel_dp_mode_valid,
1894	.best_encoder = gma_best_encoder,
1895};
1896
1897static void cdv_intel_dp_add_properties(struct drm_connector *connector)
1898{
1899	cdv_intel_attach_force_audio_property(connector);
1900	cdv_intel_attach_broadcast_rgb_property(connector);
1901}
1902
1903/* check the VBT to see whether the eDP is on DP-D port */
1904static bool cdv_intel_dpc_is_edp(struct drm_device *dev)
1905{
1906	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
1907	struct child_device_config *p_child;
1908	int i;
1909
1910	if (!dev_priv->child_dev_num)
1911		return false;
1912
1913	for (i = 0; i < dev_priv->child_dev_num; i++) {
1914		p_child = dev_priv->child_dev + i;
1915
1916		if (p_child->dvo_port == PORT_IDPC &&
1917		    p_child->device_type == DEVICE_TYPE_eDP)
1918			return true;
1919	}
1920	return false;
1921}
1922
1923/* Cedarview display clock gating
1924
1925   We need this disable dot get correct behaviour while enabling
1926   DP/eDP. TODO - investigate if we can turn it back to normality
1927   after enabling */
1928static void cdv_disable_intel_clock_gating(struct drm_device *dev)
1929{
1930	u32 reg_value;
1931	reg_value = REG_READ(DSPCLK_GATE_D);
1932
1933	reg_value |= (DPUNIT_PIPEB_GATE_DISABLE |
1934			DPUNIT_PIPEA_GATE_DISABLE |
1935			DPCUNIT_CLOCK_GATE_DISABLE |
1936			DPLSUNIT_CLOCK_GATE_DISABLE |
1937			DPOUNIT_CLOCK_GATE_DISABLE |
1938			DPIOUNIT_CLOCK_GATE_DISABLE);
1939
1940	REG_WRITE(DSPCLK_GATE_D, reg_value);
1941
1942	udelay(500);
1943}
1944
1945void
1946cdv_intel_dp_init(struct drm_device *dev, struct psb_intel_mode_device *mode_dev, int output_reg)
1947{
1948	struct gma_encoder *gma_encoder;
1949	struct gma_connector *gma_connector;
1950	struct drm_connector *connector;
1951	struct drm_encoder *encoder;
1952	struct cdv_intel_dp *intel_dp;
1953	const char *name = NULL;
1954	int type = DRM_MODE_CONNECTOR_DisplayPort;
1955
1956	gma_encoder = kzalloc(sizeof(struct gma_encoder), GFP_KERNEL);
1957	if (!gma_encoder)
1958		return;
1959        gma_connector = kzalloc(sizeof(struct gma_connector), GFP_KERNEL);
1960        if (!gma_connector)
1961                goto err_connector;
1962	intel_dp = kzalloc(sizeof(struct cdv_intel_dp), GFP_KERNEL);
1963	if (!intel_dp)
1964	        goto err_priv;
1965
1966	if ((output_reg == DP_C) && cdv_intel_dpc_is_edp(dev))
1967		type = DRM_MODE_CONNECTOR_eDP;
1968
1969	connector = &gma_connector->base;
1970	encoder = &gma_encoder->base;
1971
1972	drm_connector_init(dev, connector, &cdv_intel_dp_connector_funcs, type);
1973	drm_simple_encoder_init(dev, encoder, DRM_MODE_ENCODER_TMDS);
1974
1975	gma_connector_attach_encoder(gma_connector, gma_encoder);
1976
1977	if (type == DRM_MODE_CONNECTOR_DisplayPort)
1978		gma_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1979        else
1980		gma_encoder->type = INTEL_OUTPUT_EDP;
1981
1982
1983	gma_encoder->dev_priv=intel_dp;
1984	intel_dp->encoder = gma_encoder;
1985	intel_dp->output_reg = output_reg;
1986
1987	drm_encoder_helper_add(encoder, &cdv_intel_dp_helper_funcs);
1988	drm_connector_helper_add(connector, &cdv_intel_dp_connector_helper_funcs);
1989
1990	connector->polled = DRM_CONNECTOR_POLL_HPD;
1991	connector->interlace_allowed = false;
1992	connector->doublescan_allowed = false;
1993
1994	/* Set up the DDC bus. */
1995	switch (output_reg) {
1996		case DP_B:
1997			name = "DPDDC-B";
1998			gma_encoder->ddi_select = (DP_MASK | DDI0_SELECT);
1999			break;
2000		case DP_C:
2001			name = "DPDDC-C";
2002			gma_encoder->ddi_select = (DP_MASK | DDI1_SELECT);
2003			break;
2004	}
2005
2006	cdv_disable_intel_clock_gating(dev);
2007
2008	cdv_intel_dp_i2c_init(gma_connector, gma_encoder, name);
2009        /* FIXME:fail check */
2010	cdv_intel_dp_add_properties(connector);
2011
2012	if (is_edp(gma_encoder)) {
2013		int ret;
2014		struct edp_power_seq cur;
2015                u32 pp_on, pp_off, pp_div;
2016		u32 pwm_ctrl;
2017
2018		pp_on = REG_READ(PP_CONTROL);
2019		pp_on &= ~PANEL_UNLOCK_MASK;
2020	        pp_on |= PANEL_UNLOCK_REGS;
2021
2022		REG_WRITE(PP_CONTROL, pp_on);
2023
2024		pwm_ctrl = REG_READ(BLC_PWM_CTL2);
2025		pwm_ctrl |= PWM_PIPE_B;
2026		REG_WRITE(BLC_PWM_CTL2, pwm_ctrl);
2027
2028                pp_on = REG_READ(PP_ON_DELAYS);
2029                pp_off = REG_READ(PP_OFF_DELAYS);
2030                pp_div = REG_READ(PP_DIVISOR);
2031
2032		/* Pull timing values out of registers */
2033                cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2034                        PANEL_POWER_UP_DELAY_SHIFT;
2035
2036                cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2037                        PANEL_LIGHT_ON_DELAY_SHIFT;
2038
2039                cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2040                        PANEL_LIGHT_OFF_DELAY_SHIFT;
2041
2042                cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2043                        PANEL_POWER_DOWN_DELAY_SHIFT;
2044
2045                cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2046                               PANEL_POWER_CYCLE_DELAY_SHIFT);
2047
2048                DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2049                              cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2050
2051
2052		intel_dp->panel_power_up_delay = cur.t1_t3 / 10;
2053                intel_dp->backlight_on_delay = cur.t8 / 10;
2054                intel_dp->backlight_off_delay = cur.t9 / 10;
2055                intel_dp->panel_power_down_delay = cur.t10 / 10;
2056                intel_dp->panel_power_cycle_delay = (cur.t11_t12 - 1) * 100;
2057
2058                DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2059                              intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2060                              intel_dp->panel_power_cycle_delay);
2061
2062                DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2063                              intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2064
2065
2066		cdv_intel_edp_panel_vdd_on(gma_encoder);
2067		ret = cdv_intel_dp_aux_native_read(gma_encoder, DP_DPCD_REV,
2068					       intel_dp->dpcd,
2069					       sizeof(intel_dp->dpcd));
2070		cdv_intel_edp_panel_vdd_off(gma_encoder);
2071		if (ret <= 0) {
2072			/* if this fails, presume the device is a ghost */
2073			DRM_INFO("failed to retrieve link info, disabling eDP\n");
2074			drm_encoder_cleanup(encoder);
2075			cdv_intel_dp_destroy(connector);
2076			goto err_connector;
2077		} else {
2078        		DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
2079				intel_dp->dpcd[0], intel_dp->dpcd[1],
2080				intel_dp->dpcd[2], intel_dp->dpcd[3]);
2081
2082		}
2083		/* The CDV reference driver moves pnale backlight setup into the displays that
2084		   have a backlight: this is a good idea and one we should probably adopt, however
2085		   we need to migrate all the drivers before we can do that */
2086                /*cdv_intel_panel_setup_backlight(dev); */
2087	}
2088	return;
2089
2090err_priv:
2091	kfree(gma_connector);
2092err_connector:
2093	kfree(gma_encoder);
2094}