Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * DSA topology and switch handling
4 *
5 * Copyright (c) 2008-2009 Marvell Semiconductor
6 * Copyright (c) 2013 Florian Fainelli <florian@openwrt.org>
7 * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
8 */
9
10#include <linux/device.h>
11#include <linux/err.h>
12#include <linux/list.h>
13#include <linux/module.h>
14#include <linux/netdevice.h>
15#include <linux/slab.h>
16#include <linux/rtnetlink.h>
17#include <linux/of.h>
18#include <linux/of_net.h>
19#include <net/dsa_stubs.h>
20#include <net/sch_generic.h>
21
22#include "conduit.h"
23#include "devlink.h"
24#include "dsa.h"
25#include "netlink.h"
26#include "port.h"
27#include "switch.h"
28#include "tag.h"
29#include "user.h"
30
31#define DSA_MAX_NUM_OFFLOADING_BRIDGES BITS_PER_LONG
32
33static DEFINE_MUTEX(dsa2_mutex);
34LIST_HEAD(dsa_tree_list);
35
36static struct workqueue_struct *dsa_owq;
37
38/* Track the bridges with forwarding offload enabled */
39static unsigned long dsa_fwd_offloading_bridges;
40
41bool dsa_schedule_work(struct work_struct *work)
42{
43 return queue_work(dsa_owq, work);
44}
45
46void dsa_flush_workqueue(void)
47{
48 flush_workqueue(dsa_owq);
49}
50EXPORT_SYMBOL_GPL(dsa_flush_workqueue);
51
52/**
53 * dsa_lag_map() - Map LAG structure to a linear LAG array
54 * @dst: Tree in which to record the mapping.
55 * @lag: LAG structure that is to be mapped to the tree's array.
56 *
57 * dsa_lag_id/dsa_lag_by_id can then be used to translate between the
58 * two spaces. The size of the mapping space is determined by the
59 * driver by setting ds->num_lag_ids. It is perfectly legal to leave
60 * it unset if it is not needed, in which case these functions become
61 * no-ops.
62 */
63void dsa_lag_map(struct dsa_switch_tree *dst, struct dsa_lag *lag)
64{
65 unsigned int id;
66
67 for (id = 1; id <= dst->lags_len; id++) {
68 if (!dsa_lag_by_id(dst, id)) {
69 dst->lags[id - 1] = lag;
70 lag->id = id;
71 return;
72 }
73 }
74
75 /* No IDs left, which is OK. Some drivers do not need it. The
76 * ones that do, e.g. mv88e6xxx, will discover that dsa_lag_id
77 * returns an error for this device when joining the LAG. The
78 * driver can then return -EOPNOTSUPP back to DSA, which will
79 * fall back to a software LAG.
80 */
81}
82
83/**
84 * dsa_lag_unmap() - Remove a LAG ID mapping
85 * @dst: Tree in which the mapping is recorded.
86 * @lag: LAG structure that was mapped.
87 *
88 * As there may be multiple users of the mapping, it is only removed
89 * if there are no other references to it.
90 */
91void dsa_lag_unmap(struct dsa_switch_tree *dst, struct dsa_lag *lag)
92{
93 unsigned int id;
94
95 dsa_lags_foreach_id(id, dst) {
96 if (dsa_lag_by_id(dst, id) == lag) {
97 dst->lags[id - 1] = NULL;
98 lag->id = 0;
99 break;
100 }
101 }
102}
103
104struct dsa_lag *dsa_tree_lag_find(struct dsa_switch_tree *dst,
105 const struct net_device *lag_dev)
106{
107 struct dsa_port *dp;
108
109 list_for_each_entry(dp, &dst->ports, list)
110 if (dsa_port_lag_dev_get(dp) == lag_dev)
111 return dp->lag;
112
113 return NULL;
114}
115
116struct dsa_bridge *dsa_tree_bridge_find(struct dsa_switch_tree *dst,
117 const struct net_device *br)
118{
119 struct dsa_port *dp;
120
121 list_for_each_entry(dp, &dst->ports, list)
122 if (dsa_port_bridge_dev_get(dp) == br)
123 return dp->bridge;
124
125 return NULL;
126}
127
128static int dsa_bridge_num_find(const struct net_device *bridge_dev)
129{
130 struct dsa_switch_tree *dst;
131
132 list_for_each_entry(dst, &dsa_tree_list, list) {
133 struct dsa_bridge *bridge;
134
135 bridge = dsa_tree_bridge_find(dst, bridge_dev);
136 if (bridge)
137 return bridge->num;
138 }
139
140 return 0;
141}
142
143unsigned int dsa_bridge_num_get(const struct net_device *bridge_dev, int max)
144{
145 unsigned int bridge_num = dsa_bridge_num_find(bridge_dev);
146
147 /* Switches without FDB isolation support don't get unique
148 * bridge numbering
149 */
150 if (!max)
151 return 0;
152
153 if (!bridge_num) {
154 /* First port that requests FDB isolation or TX forwarding
155 * offload for this bridge
156 */
157 bridge_num = find_next_zero_bit(&dsa_fwd_offloading_bridges,
158 DSA_MAX_NUM_OFFLOADING_BRIDGES,
159 1);
160 if (bridge_num >= max)
161 return 0;
162
163 set_bit(bridge_num, &dsa_fwd_offloading_bridges);
164 }
165
166 return bridge_num;
167}
168
169void dsa_bridge_num_put(const struct net_device *bridge_dev,
170 unsigned int bridge_num)
171{
172 /* Since we refcount bridges, we know that when we call this function
173 * it is no longer in use, so we can just go ahead and remove it from
174 * the bit mask.
175 */
176 clear_bit(bridge_num, &dsa_fwd_offloading_bridges);
177}
178
179struct dsa_switch *dsa_switch_find(int tree_index, int sw_index)
180{
181 struct dsa_switch_tree *dst;
182 struct dsa_port *dp;
183
184 list_for_each_entry(dst, &dsa_tree_list, list) {
185 if (dst->index != tree_index)
186 continue;
187
188 list_for_each_entry(dp, &dst->ports, list) {
189 if (dp->ds->index != sw_index)
190 continue;
191
192 return dp->ds;
193 }
194 }
195
196 return NULL;
197}
198EXPORT_SYMBOL_GPL(dsa_switch_find);
199
200static struct dsa_switch_tree *dsa_tree_find(int index)
201{
202 struct dsa_switch_tree *dst;
203
204 list_for_each_entry(dst, &dsa_tree_list, list)
205 if (dst->index == index)
206 return dst;
207
208 return NULL;
209}
210
211static struct dsa_switch_tree *dsa_tree_alloc(int index)
212{
213 struct dsa_switch_tree *dst;
214
215 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
216 if (!dst)
217 return NULL;
218
219 dst->index = index;
220
221 INIT_LIST_HEAD(&dst->rtable);
222
223 INIT_LIST_HEAD(&dst->ports);
224
225 INIT_LIST_HEAD(&dst->list);
226 list_add_tail(&dst->list, &dsa_tree_list);
227
228 kref_init(&dst->refcount);
229
230 return dst;
231}
232
233static void dsa_tree_free(struct dsa_switch_tree *dst)
234{
235 if (dst->tag_ops)
236 dsa_tag_driver_put(dst->tag_ops);
237 list_del(&dst->list);
238 kfree(dst);
239}
240
241static struct dsa_switch_tree *dsa_tree_get(struct dsa_switch_tree *dst)
242{
243 if (dst)
244 kref_get(&dst->refcount);
245
246 return dst;
247}
248
249static struct dsa_switch_tree *dsa_tree_touch(int index)
250{
251 struct dsa_switch_tree *dst;
252
253 dst = dsa_tree_find(index);
254 if (dst)
255 return dsa_tree_get(dst);
256 else
257 return dsa_tree_alloc(index);
258}
259
260static void dsa_tree_release(struct kref *ref)
261{
262 struct dsa_switch_tree *dst;
263
264 dst = container_of(ref, struct dsa_switch_tree, refcount);
265
266 dsa_tree_free(dst);
267}
268
269static void dsa_tree_put(struct dsa_switch_tree *dst)
270{
271 if (dst)
272 kref_put(&dst->refcount, dsa_tree_release);
273}
274
275static struct dsa_port *dsa_tree_find_port_by_node(struct dsa_switch_tree *dst,
276 struct device_node *dn)
277{
278 struct dsa_port *dp;
279
280 list_for_each_entry(dp, &dst->ports, list)
281 if (dp->dn == dn)
282 return dp;
283
284 return NULL;
285}
286
287static struct dsa_link *dsa_link_touch(struct dsa_port *dp,
288 struct dsa_port *link_dp)
289{
290 struct dsa_switch *ds = dp->ds;
291 struct dsa_switch_tree *dst;
292 struct dsa_link *dl;
293
294 dst = ds->dst;
295
296 list_for_each_entry(dl, &dst->rtable, list)
297 if (dl->dp == dp && dl->link_dp == link_dp)
298 return dl;
299
300 dl = kzalloc(sizeof(*dl), GFP_KERNEL);
301 if (!dl)
302 return NULL;
303
304 dl->dp = dp;
305 dl->link_dp = link_dp;
306
307 INIT_LIST_HEAD(&dl->list);
308 list_add_tail(&dl->list, &dst->rtable);
309
310 return dl;
311}
312
313static bool dsa_port_setup_routing_table(struct dsa_port *dp)
314{
315 struct dsa_switch *ds = dp->ds;
316 struct dsa_switch_tree *dst = ds->dst;
317 struct device_node *dn = dp->dn;
318 struct of_phandle_iterator it;
319 struct dsa_port *link_dp;
320 struct dsa_link *dl;
321 int err;
322
323 of_for_each_phandle(&it, err, dn, "link", NULL, 0) {
324 link_dp = dsa_tree_find_port_by_node(dst, it.node);
325 if (!link_dp) {
326 of_node_put(it.node);
327 return false;
328 }
329
330 dl = dsa_link_touch(dp, link_dp);
331 if (!dl) {
332 of_node_put(it.node);
333 return false;
334 }
335 }
336
337 return true;
338}
339
340static bool dsa_tree_setup_routing_table(struct dsa_switch_tree *dst)
341{
342 bool complete = true;
343 struct dsa_port *dp;
344
345 list_for_each_entry(dp, &dst->ports, list) {
346 if (dsa_port_is_dsa(dp)) {
347 complete = dsa_port_setup_routing_table(dp);
348 if (!complete)
349 break;
350 }
351 }
352
353 return complete;
354}
355
356static struct dsa_port *dsa_tree_find_first_cpu(struct dsa_switch_tree *dst)
357{
358 struct dsa_port *dp;
359
360 list_for_each_entry(dp, &dst->ports, list)
361 if (dsa_port_is_cpu(dp))
362 return dp;
363
364 return NULL;
365}
366
367struct net_device *dsa_tree_find_first_conduit(struct dsa_switch_tree *dst)
368{
369 struct device_node *ethernet;
370 struct net_device *conduit;
371 struct dsa_port *cpu_dp;
372
373 cpu_dp = dsa_tree_find_first_cpu(dst);
374 ethernet = of_parse_phandle(cpu_dp->dn, "ethernet", 0);
375 conduit = of_find_net_device_by_node(ethernet);
376 of_node_put(ethernet);
377
378 return conduit;
379}
380
381/* Assign the default CPU port (the first one in the tree) to all ports of the
382 * fabric which don't already have one as part of their own switch.
383 */
384static int dsa_tree_setup_default_cpu(struct dsa_switch_tree *dst)
385{
386 struct dsa_port *cpu_dp, *dp;
387
388 cpu_dp = dsa_tree_find_first_cpu(dst);
389 if (!cpu_dp) {
390 pr_err("DSA: tree %d has no CPU port\n", dst->index);
391 return -EINVAL;
392 }
393
394 list_for_each_entry(dp, &dst->ports, list) {
395 if (dp->cpu_dp)
396 continue;
397
398 if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
399 dp->cpu_dp = cpu_dp;
400 }
401
402 return 0;
403}
404
405static struct dsa_port *
406dsa_switch_preferred_default_local_cpu_port(struct dsa_switch *ds)
407{
408 struct dsa_port *cpu_dp;
409
410 if (!ds->ops->preferred_default_local_cpu_port)
411 return NULL;
412
413 cpu_dp = ds->ops->preferred_default_local_cpu_port(ds);
414 if (!cpu_dp)
415 return NULL;
416
417 if (WARN_ON(!dsa_port_is_cpu(cpu_dp) || cpu_dp->ds != ds))
418 return NULL;
419
420 return cpu_dp;
421}
422
423/* Perform initial assignment of CPU ports to user ports and DSA links in the
424 * fabric, giving preference to CPU ports local to each switch. Default to
425 * using the first CPU port in the switch tree if the port does not have a CPU
426 * port local to this switch.
427 */
428static int dsa_tree_setup_cpu_ports(struct dsa_switch_tree *dst)
429{
430 struct dsa_port *preferred_cpu_dp, *cpu_dp, *dp;
431
432 list_for_each_entry(cpu_dp, &dst->ports, list) {
433 if (!dsa_port_is_cpu(cpu_dp))
434 continue;
435
436 preferred_cpu_dp = dsa_switch_preferred_default_local_cpu_port(cpu_dp->ds);
437 if (preferred_cpu_dp && preferred_cpu_dp != cpu_dp)
438 continue;
439
440 /* Prefer a local CPU port */
441 dsa_switch_for_each_port(dp, cpu_dp->ds) {
442 /* Prefer the first local CPU port found */
443 if (dp->cpu_dp)
444 continue;
445
446 if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
447 dp->cpu_dp = cpu_dp;
448 }
449 }
450
451 return dsa_tree_setup_default_cpu(dst);
452}
453
454static void dsa_tree_teardown_cpu_ports(struct dsa_switch_tree *dst)
455{
456 struct dsa_port *dp;
457
458 list_for_each_entry(dp, &dst->ports, list)
459 if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
460 dp->cpu_dp = NULL;
461}
462
463static int dsa_port_setup(struct dsa_port *dp)
464{
465 bool dsa_port_link_registered = false;
466 struct dsa_switch *ds = dp->ds;
467 bool dsa_port_enabled = false;
468 int err = 0;
469
470 if (dp->setup)
471 return 0;
472
473 err = dsa_port_devlink_setup(dp);
474 if (err)
475 return err;
476
477 switch (dp->type) {
478 case DSA_PORT_TYPE_UNUSED:
479 dsa_port_disable(dp);
480 break;
481 case DSA_PORT_TYPE_CPU:
482 if (dp->dn) {
483 err = dsa_shared_port_link_register_of(dp);
484 if (err)
485 break;
486 dsa_port_link_registered = true;
487 } else {
488 dev_warn(ds->dev,
489 "skipping link registration for CPU port %d\n",
490 dp->index);
491 }
492
493 err = dsa_port_enable(dp, NULL);
494 if (err)
495 break;
496 dsa_port_enabled = true;
497
498 break;
499 case DSA_PORT_TYPE_DSA:
500 if (dp->dn) {
501 err = dsa_shared_port_link_register_of(dp);
502 if (err)
503 break;
504 dsa_port_link_registered = true;
505 } else {
506 dev_warn(ds->dev,
507 "skipping link registration for DSA port %d\n",
508 dp->index);
509 }
510
511 err = dsa_port_enable(dp, NULL);
512 if (err)
513 break;
514 dsa_port_enabled = true;
515
516 break;
517 case DSA_PORT_TYPE_USER:
518 of_get_mac_address(dp->dn, dp->mac);
519 err = dsa_user_create(dp);
520 break;
521 }
522
523 if (err && dsa_port_enabled)
524 dsa_port_disable(dp);
525 if (err && dsa_port_link_registered)
526 dsa_shared_port_link_unregister_of(dp);
527 if (err) {
528 dsa_port_devlink_teardown(dp);
529 return err;
530 }
531
532 dp->setup = true;
533
534 return 0;
535}
536
537static void dsa_port_teardown(struct dsa_port *dp)
538{
539 if (!dp->setup)
540 return;
541
542 switch (dp->type) {
543 case DSA_PORT_TYPE_UNUSED:
544 break;
545 case DSA_PORT_TYPE_CPU:
546 dsa_port_disable(dp);
547 if (dp->dn)
548 dsa_shared_port_link_unregister_of(dp);
549 break;
550 case DSA_PORT_TYPE_DSA:
551 dsa_port_disable(dp);
552 if (dp->dn)
553 dsa_shared_port_link_unregister_of(dp);
554 break;
555 case DSA_PORT_TYPE_USER:
556 if (dp->user) {
557 dsa_user_destroy(dp->user);
558 dp->user = NULL;
559 }
560 break;
561 }
562
563 dsa_port_devlink_teardown(dp);
564
565 dp->setup = false;
566}
567
568static int dsa_port_setup_as_unused(struct dsa_port *dp)
569{
570 dp->type = DSA_PORT_TYPE_UNUSED;
571 return dsa_port_setup(dp);
572}
573
574static int dsa_switch_setup_tag_protocol(struct dsa_switch *ds)
575{
576 const struct dsa_device_ops *tag_ops = ds->dst->tag_ops;
577 struct dsa_switch_tree *dst = ds->dst;
578 int err;
579
580 if (tag_ops->proto == dst->default_proto)
581 goto connect;
582
583 rtnl_lock();
584 err = ds->ops->change_tag_protocol(ds, tag_ops->proto);
585 rtnl_unlock();
586 if (err) {
587 dev_err(ds->dev, "Unable to use tag protocol \"%s\": %pe\n",
588 tag_ops->name, ERR_PTR(err));
589 return err;
590 }
591
592connect:
593 if (tag_ops->connect) {
594 err = tag_ops->connect(ds);
595 if (err)
596 return err;
597 }
598
599 if (ds->ops->connect_tag_protocol) {
600 err = ds->ops->connect_tag_protocol(ds, tag_ops->proto);
601 if (err) {
602 dev_err(ds->dev,
603 "Unable to connect to tag protocol \"%s\": %pe\n",
604 tag_ops->name, ERR_PTR(err));
605 goto disconnect;
606 }
607 }
608
609 return 0;
610
611disconnect:
612 if (tag_ops->disconnect)
613 tag_ops->disconnect(ds);
614
615 return err;
616}
617
618static void dsa_switch_teardown_tag_protocol(struct dsa_switch *ds)
619{
620 const struct dsa_device_ops *tag_ops = ds->dst->tag_ops;
621
622 if (tag_ops->disconnect)
623 tag_ops->disconnect(ds);
624}
625
626static int dsa_switch_setup(struct dsa_switch *ds)
627{
628 int err;
629
630 if (ds->setup)
631 return 0;
632
633 /* Initialize ds->phys_mii_mask before registering the user MDIO bus
634 * driver and before ops->setup() has run, since the switch drivers and
635 * the user MDIO bus driver rely on these values for probing PHY
636 * devices or not
637 */
638 ds->phys_mii_mask |= dsa_user_ports(ds);
639
640 err = dsa_switch_devlink_alloc(ds);
641 if (err)
642 return err;
643
644 err = dsa_switch_register_notifier(ds);
645 if (err)
646 goto devlink_free;
647
648 ds->configure_vlan_while_not_filtering = true;
649
650 err = ds->ops->setup(ds);
651 if (err < 0)
652 goto unregister_notifier;
653
654 err = dsa_switch_setup_tag_protocol(ds);
655 if (err)
656 goto teardown;
657
658 if (!ds->user_mii_bus && ds->ops->phy_read) {
659 ds->user_mii_bus = mdiobus_alloc();
660 if (!ds->user_mii_bus) {
661 err = -ENOMEM;
662 goto teardown;
663 }
664
665 dsa_user_mii_bus_init(ds);
666
667 err = mdiobus_register(ds->user_mii_bus);
668 if (err < 0)
669 goto free_user_mii_bus;
670 }
671
672 dsa_switch_devlink_register(ds);
673
674 ds->setup = true;
675 return 0;
676
677free_user_mii_bus:
678 if (ds->user_mii_bus && ds->ops->phy_read)
679 mdiobus_free(ds->user_mii_bus);
680teardown:
681 if (ds->ops->teardown)
682 ds->ops->teardown(ds);
683unregister_notifier:
684 dsa_switch_unregister_notifier(ds);
685devlink_free:
686 dsa_switch_devlink_free(ds);
687 return err;
688}
689
690static void dsa_switch_teardown(struct dsa_switch *ds)
691{
692 if (!ds->setup)
693 return;
694
695 dsa_switch_devlink_unregister(ds);
696
697 if (ds->user_mii_bus && ds->ops->phy_read) {
698 mdiobus_unregister(ds->user_mii_bus);
699 mdiobus_free(ds->user_mii_bus);
700 ds->user_mii_bus = NULL;
701 }
702
703 dsa_switch_teardown_tag_protocol(ds);
704
705 if (ds->ops->teardown)
706 ds->ops->teardown(ds);
707
708 dsa_switch_unregister_notifier(ds);
709
710 dsa_switch_devlink_free(ds);
711
712 ds->setup = false;
713}
714
715/* First tear down the non-shared, then the shared ports. This ensures that
716 * all work items scheduled by our switchdev handlers for user ports have
717 * completed before we destroy the refcounting kept on the shared ports.
718 */
719static void dsa_tree_teardown_ports(struct dsa_switch_tree *dst)
720{
721 struct dsa_port *dp;
722
723 list_for_each_entry(dp, &dst->ports, list)
724 if (dsa_port_is_user(dp) || dsa_port_is_unused(dp))
725 dsa_port_teardown(dp);
726
727 dsa_flush_workqueue();
728
729 list_for_each_entry(dp, &dst->ports, list)
730 if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp))
731 dsa_port_teardown(dp);
732}
733
734static void dsa_tree_teardown_switches(struct dsa_switch_tree *dst)
735{
736 struct dsa_port *dp;
737
738 list_for_each_entry(dp, &dst->ports, list)
739 dsa_switch_teardown(dp->ds);
740}
741
742/* Bring shared ports up first, then non-shared ports */
743static int dsa_tree_setup_ports(struct dsa_switch_tree *dst)
744{
745 struct dsa_port *dp;
746 int err = 0;
747
748 list_for_each_entry(dp, &dst->ports, list) {
749 if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp)) {
750 err = dsa_port_setup(dp);
751 if (err)
752 goto teardown;
753 }
754 }
755
756 list_for_each_entry(dp, &dst->ports, list) {
757 if (dsa_port_is_user(dp) || dsa_port_is_unused(dp)) {
758 err = dsa_port_setup(dp);
759 if (err) {
760 err = dsa_port_setup_as_unused(dp);
761 if (err)
762 goto teardown;
763 }
764 }
765 }
766
767 return 0;
768
769teardown:
770 dsa_tree_teardown_ports(dst);
771
772 return err;
773}
774
775static int dsa_tree_setup_switches(struct dsa_switch_tree *dst)
776{
777 struct dsa_port *dp;
778 int err = 0;
779
780 list_for_each_entry(dp, &dst->ports, list) {
781 err = dsa_switch_setup(dp->ds);
782 if (err) {
783 dsa_tree_teardown_switches(dst);
784 break;
785 }
786 }
787
788 return err;
789}
790
791static int dsa_tree_setup_conduit(struct dsa_switch_tree *dst)
792{
793 struct dsa_port *cpu_dp;
794 int err = 0;
795
796 rtnl_lock();
797
798 dsa_tree_for_each_cpu_port(cpu_dp, dst) {
799 struct net_device *conduit = cpu_dp->conduit;
800 bool admin_up = (conduit->flags & IFF_UP) &&
801 !qdisc_tx_is_noop(conduit);
802
803 err = dsa_conduit_setup(conduit, cpu_dp);
804 if (err)
805 break;
806
807 /* Replay conduit state event */
808 dsa_tree_conduit_admin_state_change(dst, conduit, admin_up);
809 dsa_tree_conduit_oper_state_change(dst, conduit,
810 netif_oper_up(conduit));
811 }
812
813 rtnl_unlock();
814
815 return err;
816}
817
818static void dsa_tree_teardown_conduit(struct dsa_switch_tree *dst)
819{
820 struct dsa_port *cpu_dp;
821
822 rtnl_lock();
823
824 dsa_tree_for_each_cpu_port(cpu_dp, dst) {
825 struct net_device *conduit = cpu_dp->conduit;
826
827 /* Synthesizing an "admin down" state is sufficient for
828 * the switches to get a notification if the conduit is
829 * currently up and running.
830 */
831 dsa_tree_conduit_admin_state_change(dst, conduit, false);
832
833 dsa_conduit_teardown(conduit);
834 }
835
836 rtnl_unlock();
837}
838
839static int dsa_tree_setup_lags(struct dsa_switch_tree *dst)
840{
841 unsigned int len = 0;
842 struct dsa_port *dp;
843
844 list_for_each_entry(dp, &dst->ports, list) {
845 if (dp->ds->num_lag_ids > len)
846 len = dp->ds->num_lag_ids;
847 }
848
849 if (!len)
850 return 0;
851
852 dst->lags = kcalloc(len, sizeof(*dst->lags), GFP_KERNEL);
853 if (!dst->lags)
854 return -ENOMEM;
855
856 dst->lags_len = len;
857 return 0;
858}
859
860static void dsa_tree_teardown_lags(struct dsa_switch_tree *dst)
861{
862 kfree(dst->lags);
863}
864
865static int dsa_tree_setup(struct dsa_switch_tree *dst)
866{
867 bool complete;
868 int err;
869
870 if (dst->setup) {
871 pr_err("DSA: tree %d already setup! Disjoint trees?\n",
872 dst->index);
873 return -EEXIST;
874 }
875
876 complete = dsa_tree_setup_routing_table(dst);
877 if (!complete)
878 return 0;
879
880 err = dsa_tree_setup_cpu_ports(dst);
881 if (err)
882 return err;
883
884 err = dsa_tree_setup_switches(dst);
885 if (err)
886 goto teardown_cpu_ports;
887
888 err = dsa_tree_setup_ports(dst);
889 if (err)
890 goto teardown_switches;
891
892 err = dsa_tree_setup_conduit(dst);
893 if (err)
894 goto teardown_ports;
895
896 err = dsa_tree_setup_lags(dst);
897 if (err)
898 goto teardown_conduit;
899
900 dst->setup = true;
901
902 pr_info("DSA: tree %d setup\n", dst->index);
903
904 return 0;
905
906teardown_conduit:
907 dsa_tree_teardown_conduit(dst);
908teardown_ports:
909 dsa_tree_teardown_ports(dst);
910teardown_switches:
911 dsa_tree_teardown_switches(dst);
912teardown_cpu_ports:
913 dsa_tree_teardown_cpu_ports(dst);
914
915 return err;
916}
917
918static void dsa_tree_teardown(struct dsa_switch_tree *dst)
919{
920 struct dsa_link *dl, *next;
921
922 if (!dst->setup)
923 return;
924
925 dsa_tree_teardown_lags(dst);
926
927 dsa_tree_teardown_conduit(dst);
928
929 dsa_tree_teardown_ports(dst);
930
931 dsa_tree_teardown_switches(dst);
932
933 dsa_tree_teardown_cpu_ports(dst);
934
935 list_for_each_entry_safe(dl, next, &dst->rtable, list) {
936 list_del(&dl->list);
937 kfree(dl);
938 }
939
940 pr_info("DSA: tree %d torn down\n", dst->index);
941
942 dst->setup = false;
943}
944
945static int dsa_tree_bind_tag_proto(struct dsa_switch_tree *dst,
946 const struct dsa_device_ops *tag_ops)
947{
948 const struct dsa_device_ops *old_tag_ops = dst->tag_ops;
949 struct dsa_notifier_tag_proto_info info;
950 int err;
951
952 dst->tag_ops = tag_ops;
953
954 /* Notify the switches from this tree about the connection
955 * to the new tagger
956 */
957 info.tag_ops = tag_ops;
958 err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_CONNECT, &info);
959 if (err && err != -EOPNOTSUPP)
960 goto out_disconnect;
961
962 /* Notify the old tagger about the disconnection from this tree */
963 info.tag_ops = old_tag_ops;
964 dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info);
965
966 return 0;
967
968out_disconnect:
969 info.tag_ops = tag_ops;
970 dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info);
971 dst->tag_ops = old_tag_ops;
972
973 return err;
974}
975
976/* Since the dsa/tagging sysfs device attribute is per conduit, the assumption
977 * is that all DSA switches within a tree share the same tagger, otherwise
978 * they would have formed disjoint trees (different "dsa,member" values).
979 */
980int dsa_tree_change_tag_proto(struct dsa_switch_tree *dst,
981 const struct dsa_device_ops *tag_ops,
982 const struct dsa_device_ops *old_tag_ops)
983{
984 struct dsa_notifier_tag_proto_info info;
985 struct dsa_port *dp;
986 int err = -EBUSY;
987
988 if (!rtnl_trylock())
989 return restart_syscall();
990
991 /* At the moment we don't allow changing the tag protocol under
992 * traffic. The rtnl_mutex also happens to serialize concurrent
993 * attempts to change the tagging protocol. If we ever lift the IFF_UP
994 * restriction, there needs to be another mutex which serializes this.
995 */
996 dsa_tree_for_each_user_port(dp, dst) {
997 if (dsa_port_to_conduit(dp)->flags & IFF_UP)
998 goto out_unlock;
999
1000 if (dp->user->flags & IFF_UP)
1001 goto out_unlock;
1002 }
1003
1004 /* Notify the tag protocol change */
1005 info.tag_ops = tag_ops;
1006 err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info);
1007 if (err)
1008 goto out_unwind_tagger;
1009
1010 err = dsa_tree_bind_tag_proto(dst, tag_ops);
1011 if (err)
1012 goto out_unwind_tagger;
1013
1014 rtnl_unlock();
1015
1016 return 0;
1017
1018out_unwind_tagger:
1019 info.tag_ops = old_tag_ops;
1020 dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info);
1021out_unlock:
1022 rtnl_unlock();
1023 return err;
1024}
1025
1026static void dsa_tree_conduit_state_change(struct dsa_switch_tree *dst,
1027 struct net_device *conduit)
1028{
1029 struct dsa_notifier_conduit_state_info info;
1030 struct dsa_port *cpu_dp = conduit->dsa_ptr;
1031
1032 info.conduit = conduit;
1033 info.operational = dsa_port_conduit_is_operational(cpu_dp);
1034
1035 dsa_tree_notify(dst, DSA_NOTIFIER_CONDUIT_STATE_CHANGE, &info);
1036}
1037
1038void dsa_tree_conduit_admin_state_change(struct dsa_switch_tree *dst,
1039 struct net_device *conduit,
1040 bool up)
1041{
1042 struct dsa_port *cpu_dp = conduit->dsa_ptr;
1043 bool notify = false;
1044
1045 /* Don't keep track of admin state on LAG DSA conduits,
1046 * but rather just of physical DSA conduits
1047 */
1048 if (netif_is_lag_master(conduit))
1049 return;
1050
1051 if ((dsa_port_conduit_is_operational(cpu_dp)) !=
1052 (up && cpu_dp->conduit_oper_up))
1053 notify = true;
1054
1055 cpu_dp->conduit_admin_up = up;
1056
1057 if (notify)
1058 dsa_tree_conduit_state_change(dst, conduit);
1059}
1060
1061void dsa_tree_conduit_oper_state_change(struct dsa_switch_tree *dst,
1062 struct net_device *conduit,
1063 bool up)
1064{
1065 struct dsa_port *cpu_dp = conduit->dsa_ptr;
1066 bool notify = false;
1067
1068 /* Don't keep track of oper state on LAG DSA conduits,
1069 * but rather just of physical DSA conduits
1070 */
1071 if (netif_is_lag_master(conduit))
1072 return;
1073
1074 if ((dsa_port_conduit_is_operational(cpu_dp)) !=
1075 (cpu_dp->conduit_admin_up && up))
1076 notify = true;
1077
1078 cpu_dp->conduit_oper_up = up;
1079
1080 if (notify)
1081 dsa_tree_conduit_state_change(dst, conduit);
1082}
1083
1084static struct dsa_port *dsa_port_touch(struct dsa_switch *ds, int index)
1085{
1086 struct dsa_switch_tree *dst = ds->dst;
1087 struct dsa_port *dp;
1088
1089 dsa_switch_for_each_port(dp, ds)
1090 if (dp->index == index)
1091 return dp;
1092
1093 dp = kzalloc(sizeof(*dp), GFP_KERNEL);
1094 if (!dp)
1095 return NULL;
1096
1097 dp->ds = ds;
1098 dp->index = index;
1099
1100 mutex_init(&dp->addr_lists_lock);
1101 mutex_init(&dp->vlans_lock);
1102 INIT_LIST_HEAD(&dp->fdbs);
1103 INIT_LIST_HEAD(&dp->mdbs);
1104 INIT_LIST_HEAD(&dp->vlans); /* also initializes &dp->user_vlans */
1105 INIT_LIST_HEAD(&dp->list);
1106 list_add_tail(&dp->list, &dst->ports);
1107
1108 return dp;
1109}
1110
1111static int dsa_port_parse_user(struct dsa_port *dp, const char *name)
1112{
1113 dp->type = DSA_PORT_TYPE_USER;
1114 dp->name = name;
1115
1116 return 0;
1117}
1118
1119static int dsa_port_parse_dsa(struct dsa_port *dp)
1120{
1121 dp->type = DSA_PORT_TYPE_DSA;
1122
1123 return 0;
1124}
1125
1126static enum dsa_tag_protocol dsa_get_tag_protocol(struct dsa_port *dp,
1127 struct net_device *conduit)
1128{
1129 enum dsa_tag_protocol tag_protocol = DSA_TAG_PROTO_NONE;
1130 struct dsa_switch *mds, *ds = dp->ds;
1131 unsigned int mdp_upstream;
1132 struct dsa_port *mdp;
1133
1134 /* It is possible to stack DSA switches onto one another when that
1135 * happens the switch driver may want to know if its tagging protocol
1136 * is going to work in such a configuration.
1137 */
1138 if (dsa_user_dev_check(conduit)) {
1139 mdp = dsa_user_to_port(conduit);
1140 mds = mdp->ds;
1141 mdp_upstream = dsa_upstream_port(mds, mdp->index);
1142 tag_protocol = mds->ops->get_tag_protocol(mds, mdp_upstream,
1143 DSA_TAG_PROTO_NONE);
1144 }
1145
1146 /* If the conduit device is not itself a DSA user in a disjoint DSA
1147 * tree, then return immediately.
1148 */
1149 return ds->ops->get_tag_protocol(ds, dp->index, tag_protocol);
1150}
1151
1152static int dsa_port_parse_cpu(struct dsa_port *dp, struct net_device *conduit,
1153 const char *user_protocol)
1154{
1155 const struct dsa_device_ops *tag_ops = NULL;
1156 struct dsa_switch *ds = dp->ds;
1157 struct dsa_switch_tree *dst = ds->dst;
1158 enum dsa_tag_protocol default_proto;
1159
1160 /* Find out which protocol the switch would prefer. */
1161 default_proto = dsa_get_tag_protocol(dp, conduit);
1162 if (dst->default_proto) {
1163 if (dst->default_proto != default_proto) {
1164 dev_err(ds->dev,
1165 "A DSA switch tree can have only one tagging protocol\n");
1166 return -EINVAL;
1167 }
1168 } else {
1169 dst->default_proto = default_proto;
1170 }
1171
1172 /* See if the user wants to override that preference. */
1173 if (user_protocol) {
1174 if (!ds->ops->change_tag_protocol) {
1175 dev_err(ds->dev, "Tag protocol cannot be modified\n");
1176 return -EINVAL;
1177 }
1178
1179 tag_ops = dsa_tag_driver_get_by_name(user_protocol);
1180 if (IS_ERR(tag_ops)) {
1181 dev_warn(ds->dev,
1182 "Failed to find a tagging driver for protocol %s, using default\n",
1183 user_protocol);
1184 tag_ops = NULL;
1185 }
1186 }
1187
1188 if (!tag_ops)
1189 tag_ops = dsa_tag_driver_get_by_id(default_proto);
1190
1191 if (IS_ERR(tag_ops)) {
1192 if (PTR_ERR(tag_ops) == -ENOPROTOOPT)
1193 return -EPROBE_DEFER;
1194
1195 dev_warn(ds->dev, "No tagger for this switch\n");
1196 return PTR_ERR(tag_ops);
1197 }
1198
1199 if (dst->tag_ops) {
1200 if (dst->tag_ops != tag_ops) {
1201 dev_err(ds->dev,
1202 "A DSA switch tree can have only one tagging protocol\n");
1203
1204 dsa_tag_driver_put(tag_ops);
1205 return -EINVAL;
1206 }
1207
1208 /* In the case of multiple CPU ports per switch, the tagging
1209 * protocol is still reference-counted only per switch tree.
1210 */
1211 dsa_tag_driver_put(tag_ops);
1212 } else {
1213 dst->tag_ops = tag_ops;
1214 }
1215
1216 dp->conduit = conduit;
1217 dp->type = DSA_PORT_TYPE_CPU;
1218 dsa_port_set_tag_protocol(dp, dst->tag_ops);
1219 dp->dst = dst;
1220
1221 /* At this point, the tree may be configured to use a different
1222 * tagger than the one chosen by the switch driver during
1223 * .setup, in the case when a user selects a custom protocol
1224 * through the DT.
1225 *
1226 * This is resolved by syncing the driver with the tree in
1227 * dsa_switch_setup_tag_protocol once .setup has run and the
1228 * driver is ready to accept calls to .change_tag_protocol. If
1229 * the driver does not support the custom protocol at that
1230 * point, the tree is wholly rejected, thereby ensuring that the
1231 * tree and driver are always in agreement on the protocol to
1232 * use.
1233 */
1234 return 0;
1235}
1236
1237static int dsa_port_parse_of(struct dsa_port *dp, struct device_node *dn)
1238{
1239 struct device_node *ethernet = of_parse_phandle(dn, "ethernet", 0);
1240 const char *name = of_get_property(dn, "label", NULL);
1241 bool link = of_property_read_bool(dn, "link");
1242
1243 dp->dn = dn;
1244
1245 if (ethernet) {
1246 struct net_device *conduit;
1247 const char *user_protocol;
1248
1249 conduit = of_find_net_device_by_node(ethernet);
1250 of_node_put(ethernet);
1251 if (!conduit)
1252 return -EPROBE_DEFER;
1253
1254 user_protocol = of_get_property(dn, "dsa-tag-protocol", NULL);
1255 return dsa_port_parse_cpu(dp, conduit, user_protocol);
1256 }
1257
1258 if (link)
1259 return dsa_port_parse_dsa(dp);
1260
1261 return dsa_port_parse_user(dp, name);
1262}
1263
1264static int dsa_switch_parse_ports_of(struct dsa_switch *ds,
1265 struct device_node *dn)
1266{
1267 struct device_node *ports, *port;
1268 struct dsa_port *dp;
1269 int err = 0;
1270 u32 reg;
1271
1272 ports = of_get_child_by_name(dn, "ports");
1273 if (!ports) {
1274 /* The second possibility is "ethernet-ports" */
1275 ports = of_get_child_by_name(dn, "ethernet-ports");
1276 if (!ports) {
1277 dev_err(ds->dev, "no ports child node found\n");
1278 return -EINVAL;
1279 }
1280 }
1281
1282 for_each_available_child_of_node(ports, port) {
1283 err = of_property_read_u32(port, "reg", ®);
1284 if (err) {
1285 of_node_put(port);
1286 goto out_put_node;
1287 }
1288
1289 if (reg >= ds->num_ports) {
1290 dev_err(ds->dev, "port %pOF index %u exceeds num_ports (%u)\n",
1291 port, reg, ds->num_ports);
1292 of_node_put(port);
1293 err = -EINVAL;
1294 goto out_put_node;
1295 }
1296
1297 dp = dsa_to_port(ds, reg);
1298
1299 err = dsa_port_parse_of(dp, port);
1300 if (err) {
1301 of_node_put(port);
1302 goto out_put_node;
1303 }
1304 }
1305
1306out_put_node:
1307 of_node_put(ports);
1308 return err;
1309}
1310
1311static int dsa_switch_parse_member_of(struct dsa_switch *ds,
1312 struct device_node *dn)
1313{
1314 u32 m[2] = { 0, 0 };
1315 int sz;
1316
1317 /* Don't error out if this optional property isn't found */
1318 sz = of_property_read_variable_u32_array(dn, "dsa,member", m, 2, 2);
1319 if (sz < 0 && sz != -EINVAL)
1320 return sz;
1321
1322 ds->index = m[1];
1323
1324 ds->dst = dsa_tree_touch(m[0]);
1325 if (!ds->dst)
1326 return -ENOMEM;
1327
1328 if (dsa_switch_find(ds->dst->index, ds->index)) {
1329 dev_err(ds->dev,
1330 "A DSA switch with index %d already exists in tree %d\n",
1331 ds->index, ds->dst->index);
1332 return -EEXIST;
1333 }
1334
1335 if (ds->dst->last_switch < ds->index)
1336 ds->dst->last_switch = ds->index;
1337
1338 return 0;
1339}
1340
1341static int dsa_switch_touch_ports(struct dsa_switch *ds)
1342{
1343 struct dsa_port *dp;
1344 int port;
1345
1346 for (port = 0; port < ds->num_ports; port++) {
1347 dp = dsa_port_touch(ds, port);
1348 if (!dp)
1349 return -ENOMEM;
1350 }
1351
1352 return 0;
1353}
1354
1355static int dsa_switch_parse_of(struct dsa_switch *ds, struct device_node *dn)
1356{
1357 int err;
1358
1359 err = dsa_switch_parse_member_of(ds, dn);
1360 if (err)
1361 return err;
1362
1363 err = dsa_switch_touch_ports(ds);
1364 if (err)
1365 return err;
1366
1367 return dsa_switch_parse_ports_of(ds, dn);
1368}
1369
1370static int dev_is_class(struct device *dev, void *class)
1371{
1372 if (dev->class != NULL && !strcmp(dev->class->name, class))
1373 return 1;
1374
1375 return 0;
1376}
1377
1378static struct device *dev_find_class(struct device *parent, char *class)
1379{
1380 if (dev_is_class(parent, class)) {
1381 get_device(parent);
1382 return parent;
1383 }
1384
1385 return device_find_child(parent, class, dev_is_class);
1386}
1387
1388static struct net_device *dsa_dev_to_net_device(struct device *dev)
1389{
1390 struct device *d;
1391
1392 d = dev_find_class(dev, "net");
1393 if (d != NULL) {
1394 struct net_device *nd;
1395
1396 nd = to_net_dev(d);
1397 dev_hold(nd);
1398 put_device(d);
1399
1400 return nd;
1401 }
1402
1403 return NULL;
1404}
1405
1406static int dsa_port_parse(struct dsa_port *dp, const char *name,
1407 struct device *dev)
1408{
1409 if (!strcmp(name, "cpu")) {
1410 struct net_device *conduit;
1411
1412 conduit = dsa_dev_to_net_device(dev);
1413 if (!conduit)
1414 return -EPROBE_DEFER;
1415
1416 dev_put(conduit);
1417
1418 return dsa_port_parse_cpu(dp, conduit, NULL);
1419 }
1420
1421 if (!strcmp(name, "dsa"))
1422 return dsa_port_parse_dsa(dp);
1423
1424 return dsa_port_parse_user(dp, name);
1425}
1426
1427static int dsa_switch_parse_ports(struct dsa_switch *ds,
1428 struct dsa_chip_data *cd)
1429{
1430 bool valid_name_found = false;
1431 struct dsa_port *dp;
1432 struct device *dev;
1433 const char *name;
1434 unsigned int i;
1435 int err;
1436
1437 for (i = 0; i < DSA_MAX_PORTS; i++) {
1438 name = cd->port_names[i];
1439 dev = cd->netdev[i];
1440 dp = dsa_to_port(ds, i);
1441
1442 if (!name)
1443 continue;
1444
1445 err = dsa_port_parse(dp, name, dev);
1446 if (err)
1447 return err;
1448
1449 valid_name_found = true;
1450 }
1451
1452 if (!valid_name_found && i == DSA_MAX_PORTS)
1453 return -EINVAL;
1454
1455 return 0;
1456}
1457
1458static int dsa_switch_parse(struct dsa_switch *ds, struct dsa_chip_data *cd)
1459{
1460 int err;
1461
1462 ds->cd = cd;
1463
1464 /* We don't support interconnected switches nor multiple trees via
1465 * platform data, so this is the unique switch of the tree.
1466 */
1467 ds->index = 0;
1468 ds->dst = dsa_tree_touch(0);
1469 if (!ds->dst)
1470 return -ENOMEM;
1471
1472 err = dsa_switch_touch_ports(ds);
1473 if (err)
1474 return err;
1475
1476 return dsa_switch_parse_ports(ds, cd);
1477}
1478
1479static void dsa_switch_release_ports(struct dsa_switch *ds)
1480{
1481 struct dsa_port *dp, *next;
1482
1483 dsa_switch_for_each_port_safe(dp, next, ds) {
1484 WARN_ON(!list_empty(&dp->fdbs));
1485 WARN_ON(!list_empty(&dp->mdbs));
1486 WARN_ON(!list_empty(&dp->vlans));
1487 list_del(&dp->list);
1488 kfree(dp);
1489 }
1490}
1491
1492static int dsa_switch_probe(struct dsa_switch *ds)
1493{
1494 struct dsa_switch_tree *dst;
1495 struct dsa_chip_data *pdata;
1496 struct device_node *np;
1497 int err;
1498
1499 if (!ds->dev)
1500 return -ENODEV;
1501
1502 pdata = ds->dev->platform_data;
1503 np = ds->dev->of_node;
1504
1505 if (!ds->num_ports)
1506 return -EINVAL;
1507
1508 if (np) {
1509 err = dsa_switch_parse_of(ds, np);
1510 if (err)
1511 dsa_switch_release_ports(ds);
1512 } else if (pdata) {
1513 err = dsa_switch_parse(ds, pdata);
1514 if (err)
1515 dsa_switch_release_ports(ds);
1516 } else {
1517 err = -ENODEV;
1518 }
1519
1520 if (err)
1521 return err;
1522
1523 dst = ds->dst;
1524 dsa_tree_get(dst);
1525 err = dsa_tree_setup(dst);
1526 if (err) {
1527 dsa_switch_release_ports(ds);
1528 dsa_tree_put(dst);
1529 }
1530
1531 return err;
1532}
1533
1534int dsa_register_switch(struct dsa_switch *ds)
1535{
1536 int err;
1537
1538 mutex_lock(&dsa2_mutex);
1539 err = dsa_switch_probe(ds);
1540 dsa_tree_put(ds->dst);
1541 mutex_unlock(&dsa2_mutex);
1542
1543 return err;
1544}
1545EXPORT_SYMBOL_GPL(dsa_register_switch);
1546
1547static void dsa_switch_remove(struct dsa_switch *ds)
1548{
1549 struct dsa_switch_tree *dst = ds->dst;
1550
1551 dsa_tree_teardown(dst);
1552 dsa_switch_release_ports(ds);
1553 dsa_tree_put(dst);
1554}
1555
1556void dsa_unregister_switch(struct dsa_switch *ds)
1557{
1558 mutex_lock(&dsa2_mutex);
1559 dsa_switch_remove(ds);
1560 mutex_unlock(&dsa2_mutex);
1561}
1562EXPORT_SYMBOL_GPL(dsa_unregister_switch);
1563
1564/* If the DSA conduit chooses to unregister its net_device on .shutdown, DSA is
1565 * blocking that operation from completion, due to the dev_hold taken inside
1566 * netdev_upper_dev_link. Unlink the DSA user interfaces from being uppers of
1567 * the DSA conduit, so that the system can reboot successfully.
1568 */
1569void dsa_switch_shutdown(struct dsa_switch *ds)
1570{
1571 struct net_device *conduit, *user_dev;
1572 LIST_HEAD(close_list);
1573 struct dsa_port *dp;
1574
1575 mutex_lock(&dsa2_mutex);
1576
1577 if (!ds->setup)
1578 goto out;
1579
1580 rtnl_lock();
1581
1582 dsa_switch_for_each_cpu_port(dp, ds)
1583 list_add(&dp->conduit->close_list, &close_list);
1584
1585 dev_close_many(&close_list, true);
1586
1587 dsa_switch_for_each_user_port(dp, ds) {
1588 conduit = dsa_port_to_conduit(dp);
1589 user_dev = dp->user;
1590
1591 netif_device_detach(user_dev);
1592 netdev_upper_dev_unlink(conduit, user_dev);
1593 }
1594
1595 /* Disconnect from further netdevice notifiers on the conduit,
1596 * since netdev_uses_dsa() will now return false.
1597 */
1598 dsa_switch_for_each_cpu_port(dp, ds)
1599 dp->conduit->dsa_ptr = NULL;
1600
1601 rtnl_unlock();
1602out:
1603 mutex_unlock(&dsa2_mutex);
1604}
1605EXPORT_SYMBOL_GPL(dsa_switch_shutdown);
1606
1607#ifdef CONFIG_PM_SLEEP
1608static bool dsa_port_is_initialized(const struct dsa_port *dp)
1609{
1610 return dp->type == DSA_PORT_TYPE_USER && dp->user;
1611}
1612
1613int dsa_switch_suspend(struct dsa_switch *ds)
1614{
1615 struct dsa_port *dp;
1616 int ret = 0;
1617
1618 /* Suspend user network devices */
1619 dsa_switch_for_each_port(dp, ds) {
1620 if (!dsa_port_is_initialized(dp))
1621 continue;
1622
1623 ret = dsa_user_suspend(dp->user);
1624 if (ret)
1625 return ret;
1626 }
1627
1628 if (ds->ops->suspend)
1629 ret = ds->ops->suspend(ds);
1630
1631 return ret;
1632}
1633EXPORT_SYMBOL_GPL(dsa_switch_suspend);
1634
1635int dsa_switch_resume(struct dsa_switch *ds)
1636{
1637 struct dsa_port *dp;
1638 int ret = 0;
1639
1640 if (ds->ops->resume)
1641 ret = ds->ops->resume(ds);
1642
1643 if (ret)
1644 return ret;
1645
1646 /* Resume user network devices */
1647 dsa_switch_for_each_port(dp, ds) {
1648 if (!dsa_port_is_initialized(dp))
1649 continue;
1650
1651 ret = dsa_user_resume(dp->user);
1652 if (ret)
1653 return ret;
1654 }
1655
1656 return 0;
1657}
1658EXPORT_SYMBOL_GPL(dsa_switch_resume);
1659#endif
1660
1661struct dsa_port *dsa_port_from_netdev(struct net_device *netdev)
1662{
1663 if (!netdev || !dsa_user_dev_check(netdev))
1664 return ERR_PTR(-ENODEV);
1665
1666 return dsa_user_to_port(netdev);
1667}
1668EXPORT_SYMBOL_GPL(dsa_port_from_netdev);
1669
1670bool dsa_db_equal(const struct dsa_db *a, const struct dsa_db *b)
1671{
1672 if (a->type != b->type)
1673 return false;
1674
1675 switch (a->type) {
1676 case DSA_DB_PORT:
1677 return a->dp == b->dp;
1678 case DSA_DB_LAG:
1679 return a->lag.dev == b->lag.dev;
1680 case DSA_DB_BRIDGE:
1681 return a->bridge.num == b->bridge.num;
1682 default:
1683 WARN_ON(1);
1684 return false;
1685 }
1686}
1687
1688bool dsa_fdb_present_in_other_db(struct dsa_switch *ds, int port,
1689 const unsigned char *addr, u16 vid,
1690 struct dsa_db db)
1691{
1692 struct dsa_port *dp = dsa_to_port(ds, port);
1693 struct dsa_mac_addr *a;
1694
1695 lockdep_assert_held(&dp->addr_lists_lock);
1696
1697 list_for_each_entry(a, &dp->fdbs, list) {
1698 if (!ether_addr_equal(a->addr, addr) || a->vid != vid)
1699 continue;
1700
1701 if (a->db.type == db.type && !dsa_db_equal(&a->db, &db))
1702 return true;
1703 }
1704
1705 return false;
1706}
1707EXPORT_SYMBOL_GPL(dsa_fdb_present_in_other_db);
1708
1709bool dsa_mdb_present_in_other_db(struct dsa_switch *ds, int port,
1710 const struct switchdev_obj_port_mdb *mdb,
1711 struct dsa_db db)
1712{
1713 struct dsa_port *dp = dsa_to_port(ds, port);
1714 struct dsa_mac_addr *a;
1715
1716 lockdep_assert_held(&dp->addr_lists_lock);
1717
1718 list_for_each_entry(a, &dp->mdbs, list) {
1719 if (!ether_addr_equal(a->addr, mdb->addr) || a->vid != mdb->vid)
1720 continue;
1721
1722 if (a->db.type == db.type && !dsa_db_equal(&a->db, &db))
1723 return true;
1724 }
1725
1726 return false;
1727}
1728EXPORT_SYMBOL_GPL(dsa_mdb_present_in_other_db);
1729
1730static const struct dsa_stubs __dsa_stubs = {
1731 .conduit_hwtstamp_validate = __dsa_conduit_hwtstamp_validate,
1732};
1733
1734static void dsa_register_stubs(void)
1735{
1736 dsa_stubs = &__dsa_stubs;
1737}
1738
1739static void dsa_unregister_stubs(void)
1740{
1741 dsa_stubs = NULL;
1742}
1743
1744static int __init dsa_init_module(void)
1745{
1746 int rc;
1747
1748 dsa_owq = alloc_ordered_workqueue("dsa_ordered",
1749 WQ_MEM_RECLAIM);
1750 if (!dsa_owq)
1751 return -ENOMEM;
1752
1753 rc = dsa_user_register_notifier();
1754 if (rc)
1755 goto register_notifier_fail;
1756
1757 dev_add_pack(&dsa_pack_type);
1758
1759 rc = rtnl_link_register(&dsa_link_ops);
1760 if (rc)
1761 goto netlink_register_fail;
1762
1763 dsa_register_stubs();
1764
1765 return 0;
1766
1767netlink_register_fail:
1768 dsa_user_unregister_notifier();
1769 dev_remove_pack(&dsa_pack_type);
1770register_notifier_fail:
1771 destroy_workqueue(dsa_owq);
1772
1773 return rc;
1774}
1775module_init(dsa_init_module);
1776
1777static void __exit dsa_cleanup_module(void)
1778{
1779 dsa_unregister_stubs();
1780
1781 rtnl_link_unregister(&dsa_link_ops);
1782
1783 dsa_user_unregister_notifier();
1784 dev_remove_pack(&dsa_pack_type);
1785 destroy_workqueue(dsa_owq);
1786}
1787module_exit(dsa_cleanup_module);
1788
1789MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
1790MODULE_DESCRIPTION("Driver for Distributed Switch Architecture switch chips");
1791MODULE_LICENSE("GPL");
1792MODULE_ALIAS("platform:dsa");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * DSA topology and switch handling
4 *
5 * Copyright (c) 2008-2009 Marvell Semiconductor
6 * Copyright (c) 2013 Florian Fainelli <florian@openwrt.org>
7 * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
8 */
9
10#include <linux/device.h>
11#include <linux/err.h>
12#include <linux/list.h>
13#include <linux/module.h>
14#include <linux/netdevice.h>
15#include <linux/slab.h>
16#include <linux/rtnetlink.h>
17#include <linux/of.h>
18#include <linux/of_mdio.h>
19#include <linux/of_net.h>
20#include <net/sch_generic.h>
21
22#include "devlink.h"
23#include "dsa.h"
24#include "master.h"
25#include "netlink.h"
26#include "port.h"
27#include "slave.h"
28#include "switch.h"
29#include "tag.h"
30
31#define DSA_MAX_NUM_OFFLOADING_BRIDGES BITS_PER_LONG
32
33static DEFINE_MUTEX(dsa2_mutex);
34LIST_HEAD(dsa_tree_list);
35
36static struct workqueue_struct *dsa_owq;
37
38/* Track the bridges with forwarding offload enabled */
39static unsigned long dsa_fwd_offloading_bridges;
40
41bool dsa_schedule_work(struct work_struct *work)
42{
43 return queue_work(dsa_owq, work);
44}
45
46void dsa_flush_workqueue(void)
47{
48 flush_workqueue(dsa_owq);
49}
50EXPORT_SYMBOL_GPL(dsa_flush_workqueue);
51
52/**
53 * dsa_lag_map() - Map LAG structure to a linear LAG array
54 * @dst: Tree in which to record the mapping.
55 * @lag: LAG structure that is to be mapped to the tree's array.
56 *
57 * dsa_lag_id/dsa_lag_by_id can then be used to translate between the
58 * two spaces. The size of the mapping space is determined by the
59 * driver by setting ds->num_lag_ids. It is perfectly legal to leave
60 * it unset if it is not needed, in which case these functions become
61 * no-ops.
62 */
63void dsa_lag_map(struct dsa_switch_tree *dst, struct dsa_lag *lag)
64{
65 unsigned int id;
66
67 for (id = 1; id <= dst->lags_len; id++) {
68 if (!dsa_lag_by_id(dst, id)) {
69 dst->lags[id - 1] = lag;
70 lag->id = id;
71 return;
72 }
73 }
74
75 /* No IDs left, which is OK. Some drivers do not need it. The
76 * ones that do, e.g. mv88e6xxx, will discover that dsa_lag_id
77 * returns an error for this device when joining the LAG. The
78 * driver can then return -EOPNOTSUPP back to DSA, which will
79 * fall back to a software LAG.
80 */
81}
82
83/**
84 * dsa_lag_unmap() - Remove a LAG ID mapping
85 * @dst: Tree in which the mapping is recorded.
86 * @lag: LAG structure that was mapped.
87 *
88 * As there may be multiple users of the mapping, it is only removed
89 * if there are no other references to it.
90 */
91void dsa_lag_unmap(struct dsa_switch_tree *dst, struct dsa_lag *lag)
92{
93 unsigned int id;
94
95 dsa_lags_foreach_id(id, dst) {
96 if (dsa_lag_by_id(dst, id) == lag) {
97 dst->lags[id - 1] = NULL;
98 lag->id = 0;
99 break;
100 }
101 }
102}
103
104struct dsa_lag *dsa_tree_lag_find(struct dsa_switch_tree *dst,
105 const struct net_device *lag_dev)
106{
107 struct dsa_port *dp;
108
109 list_for_each_entry(dp, &dst->ports, list)
110 if (dsa_port_lag_dev_get(dp) == lag_dev)
111 return dp->lag;
112
113 return NULL;
114}
115
116struct dsa_bridge *dsa_tree_bridge_find(struct dsa_switch_tree *dst,
117 const struct net_device *br)
118{
119 struct dsa_port *dp;
120
121 list_for_each_entry(dp, &dst->ports, list)
122 if (dsa_port_bridge_dev_get(dp) == br)
123 return dp->bridge;
124
125 return NULL;
126}
127
128static int dsa_bridge_num_find(const struct net_device *bridge_dev)
129{
130 struct dsa_switch_tree *dst;
131
132 list_for_each_entry(dst, &dsa_tree_list, list) {
133 struct dsa_bridge *bridge;
134
135 bridge = dsa_tree_bridge_find(dst, bridge_dev);
136 if (bridge)
137 return bridge->num;
138 }
139
140 return 0;
141}
142
143unsigned int dsa_bridge_num_get(const struct net_device *bridge_dev, int max)
144{
145 unsigned int bridge_num = dsa_bridge_num_find(bridge_dev);
146
147 /* Switches without FDB isolation support don't get unique
148 * bridge numbering
149 */
150 if (!max)
151 return 0;
152
153 if (!bridge_num) {
154 /* First port that requests FDB isolation or TX forwarding
155 * offload for this bridge
156 */
157 bridge_num = find_next_zero_bit(&dsa_fwd_offloading_bridges,
158 DSA_MAX_NUM_OFFLOADING_BRIDGES,
159 1);
160 if (bridge_num >= max)
161 return 0;
162
163 set_bit(bridge_num, &dsa_fwd_offloading_bridges);
164 }
165
166 return bridge_num;
167}
168
169void dsa_bridge_num_put(const struct net_device *bridge_dev,
170 unsigned int bridge_num)
171{
172 /* Since we refcount bridges, we know that when we call this function
173 * it is no longer in use, so we can just go ahead and remove it from
174 * the bit mask.
175 */
176 clear_bit(bridge_num, &dsa_fwd_offloading_bridges);
177}
178
179struct dsa_switch *dsa_switch_find(int tree_index, int sw_index)
180{
181 struct dsa_switch_tree *dst;
182 struct dsa_port *dp;
183
184 list_for_each_entry(dst, &dsa_tree_list, list) {
185 if (dst->index != tree_index)
186 continue;
187
188 list_for_each_entry(dp, &dst->ports, list) {
189 if (dp->ds->index != sw_index)
190 continue;
191
192 return dp->ds;
193 }
194 }
195
196 return NULL;
197}
198EXPORT_SYMBOL_GPL(dsa_switch_find);
199
200static struct dsa_switch_tree *dsa_tree_find(int index)
201{
202 struct dsa_switch_tree *dst;
203
204 list_for_each_entry(dst, &dsa_tree_list, list)
205 if (dst->index == index)
206 return dst;
207
208 return NULL;
209}
210
211static struct dsa_switch_tree *dsa_tree_alloc(int index)
212{
213 struct dsa_switch_tree *dst;
214
215 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
216 if (!dst)
217 return NULL;
218
219 dst->index = index;
220
221 INIT_LIST_HEAD(&dst->rtable);
222
223 INIT_LIST_HEAD(&dst->ports);
224
225 INIT_LIST_HEAD(&dst->list);
226 list_add_tail(&dst->list, &dsa_tree_list);
227
228 kref_init(&dst->refcount);
229
230 return dst;
231}
232
233static void dsa_tree_free(struct dsa_switch_tree *dst)
234{
235 if (dst->tag_ops)
236 dsa_tag_driver_put(dst->tag_ops);
237 list_del(&dst->list);
238 kfree(dst);
239}
240
241static struct dsa_switch_tree *dsa_tree_get(struct dsa_switch_tree *dst)
242{
243 if (dst)
244 kref_get(&dst->refcount);
245
246 return dst;
247}
248
249static struct dsa_switch_tree *dsa_tree_touch(int index)
250{
251 struct dsa_switch_tree *dst;
252
253 dst = dsa_tree_find(index);
254 if (dst)
255 return dsa_tree_get(dst);
256 else
257 return dsa_tree_alloc(index);
258}
259
260static void dsa_tree_release(struct kref *ref)
261{
262 struct dsa_switch_tree *dst;
263
264 dst = container_of(ref, struct dsa_switch_tree, refcount);
265
266 dsa_tree_free(dst);
267}
268
269static void dsa_tree_put(struct dsa_switch_tree *dst)
270{
271 if (dst)
272 kref_put(&dst->refcount, dsa_tree_release);
273}
274
275static struct dsa_port *dsa_tree_find_port_by_node(struct dsa_switch_tree *dst,
276 struct device_node *dn)
277{
278 struct dsa_port *dp;
279
280 list_for_each_entry(dp, &dst->ports, list)
281 if (dp->dn == dn)
282 return dp;
283
284 return NULL;
285}
286
287static struct dsa_link *dsa_link_touch(struct dsa_port *dp,
288 struct dsa_port *link_dp)
289{
290 struct dsa_switch *ds = dp->ds;
291 struct dsa_switch_tree *dst;
292 struct dsa_link *dl;
293
294 dst = ds->dst;
295
296 list_for_each_entry(dl, &dst->rtable, list)
297 if (dl->dp == dp && dl->link_dp == link_dp)
298 return dl;
299
300 dl = kzalloc(sizeof(*dl), GFP_KERNEL);
301 if (!dl)
302 return NULL;
303
304 dl->dp = dp;
305 dl->link_dp = link_dp;
306
307 INIT_LIST_HEAD(&dl->list);
308 list_add_tail(&dl->list, &dst->rtable);
309
310 return dl;
311}
312
313static bool dsa_port_setup_routing_table(struct dsa_port *dp)
314{
315 struct dsa_switch *ds = dp->ds;
316 struct dsa_switch_tree *dst = ds->dst;
317 struct device_node *dn = dp->dn;
318 struct of_phandle_iterator it;
319 struct dsa_port *link_dp;
320 struct dsa_link *dl;
321 int err;
322
323 of_for_each_phandle(&it, err, dn, "link", NULL, 0) {
324 link_dp = dsa_tree_find_port_by_node(dst, it.node);
325 if (!link_dp) {
326 of_node_put(it.node);
327 return false;
328 }
329
330 dl = dsa_link_touch(dp, link_dp);
331 if (!dl) {
332 of_node_put(it.node);
333 return false;
334 }
335 }
336
337 return true;
338}
339
340static bool dsa_tree_setup_routing_table(struct dsa_switch_tree *dst)
341{
342 bool complete = true;
343 struct dsa_port *dp;
344
345 list_for_each_entry(dp, &dst->ports, list) {
346 if (dsa_port_is_dsa(dp)) {
347 complete = dsa_port_setup_routing_table(dp);
348 if (!complete)
349 break;
350 }
351 }
352
353 return complete;
354}
355
356static struct dsa_port *dsa_tree_find_first_cpu(struct dsa_switch_tree *dst)
357{
358 struct dsa_port *dp;
359
360 list_for_each_entry(dp, &dst->ports, list)
361 if (dsa_port_is_cpu(dp))
362 return dp;
363
364 return NULL;
365}
366
367struct net_device *dsa_tree_find_first_master(struct dsa_switch_tree *dst)
368{
369 struct device_node *ethernet;
370 struct net_device *master;
371 struct dsa_port *cpu_dp;
372
373 cpu_dp = dsa_tree_find_first_cpu(dst);
374 ethernet = of_parse_phandle(cpu_dp->dn, "ethernet", 0);
375 master = of_find_net_device_by_node(ethernet);
376 of_node_put(ethernet);
377
378 return master;
379}
380
381/* Assign the default CPU port (the first one in the tree) to all ports of the
382 * fabric which don't already have one as part of their own switch.
383 */
384static int dsa_tree_setup_default_cpu(struct dsa_switch_tree *dst)
385{
386 struct dsa_port *cpu_dp, *dp;
387
388 cpu_dp = dsa_tree_find_first_cpu(dst);
389 if (!cpu_dp) {
390 pr_err("DSA: tree %d has no CPU port\n", dst->index);
391 return -EINVAL;
392 }
393
394 list_for_each_entry(dp, &dst->ports, list) {
395 if (dp->cpu_dp)
396 continue;
397
398 if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
399 dp->cpu_dp = cpu_dp;
400 }
401
402 return 0;
403}
404
405/* Perform initial assignment of CPU ports to user ports and DSA links in the
406 * fabric, giving preference to CPU ports local to each switch. Default to
407 * using the first CPU port in the switch tree if the port does not have a CPU
408 * port local to this switch.
409 */
410static int dsa_tree_setup_cpu_ports(struct dsa_switch_tree *dst)
411{
412 struct dsa_port *cpu_dp, *dp;
413
414 list_for_each_entry(cpu_dp, &dst->ports, list) {
415 if (!dsa_port_is_cpu(cpu_dp))
416 continue;
417
418 /* Prefer a local CPU port */
419 dsa_switch_for_each_port(dp, cpu_dp->ds) {
420 /* Prefer the first local CPU port found */
421 if (dp->cpu_dp)
422 continue;
423
424 if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
425 dp->cpu_dp = cpu_dp;
426 }
427 }
428
429 return dsa_tree_setup_default_cpu(dst);
430}
431
432static void dsa_tree_teardown_cpu_ports(struct dsa_switch_tree *dst)
433{
434 struct dsa_port *dp;
435
436 list_for_each_entry(dp, &dst->ports, list)
437 if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
438 dp->cpu_dp = NULL;
439}
440
441static int dsa_port_setup(struct dsa_port *dp)
442{
443 bool dsa_port_link_registered = false;
444 struct dsa_switch *ds = dp->ds;
445 bool dsa_port_enabled = false;
446 int err = 0;
447
448 if (dp->setup)
449 return 0;
450
451 err = dsa_port_devlink_setup(dp);
452 if (err)
453 return err;
454
455 switch (dp->type) {
456 case DSA_PORT_TYPE_UNUSED:
457 dsa_port_disable(dp);
458 break;
459 case DSA_PORT_TYPE_CPU:
460 if (dp->dn) {
461 err = dsa_shared_port_link_register_of(dp);
462 if (err)
463 break;
464 dsa_port_link_registered = true;
465 } else {
466 dev_warn(ds->dev,
467 "skipping link registration for CPU port %d\n",
468 dp->index);
469 }
470
471 err = dsa_port_enable(dp, NULL);
472 if (err)
473 break;
474 dsa_port_enabled = true;
475
476 break;
477 case DSA_PORT_TYPE_DSA:
478 if (dp->dn) {
479 err = dsa_shared_port_link_register_of(dp);
480 if (err)
481 break;
482 dsa_port_link_registered = true;
483 } else {
484 dev_warn(ds->dev,
485 "skipping link registration for DSA port %d\n",
486 dp->index);
487 }
488
489 err = dsa_port_enable(dp, NULL);
490 if (err)
491 break;
492 dsa_port_enabled = true;
493
494 break;
495 case DSA_PORT_TYPE_USER:
496 of_get_mac_address(dp->dn, dp->mac);
497 err = dsa_slave_create(dp);
498 break;
499 }
500
501 if (err && dsa_port_enabled)
502 dsa_port_disable(dp);
503 if (err && dsa_port_link_registered)
504 dsa_shared_port_link_unregister_of(dp);
505 if (err) {
506 dsa_port_devlink_teardown(dp);
507 return err;
508 }
509
510 dp->setup = true;
511
512 return 0;
513}
514
515static void dsa_port_teardown(struct dsa_port *dp)
516{
517 if (!dp->setup)
518 return;
519
520 switch (dp->type) {
521 case DSA_PORT_TYPE_UNUSED:
522 break;
523 case DSA_PORT_TYPE_CPU:
524 dsa_port_disable(dp);
525 if (dp->dn)
526 dsa_shared_port_link_unregister_of(dp);
527 break;
528 case DSA_PORT_TYPE_DSA:
529 dsa_port_disable(dp);
530 if (dp->dn)
531 dsa_shared_port_link_unregister_of(dp);
532 break;
533 case DSA_PORT_TYPE_USER:
534 if (dp->slave) {
535 dsa_slave_destroy(dp->slave);
536 dp->slave = NULL;
537 }
538 break;
539 }
540
541 dsa_port_devlink_teardown(dp);
542
543 dp->setup = false;
544}
545
546static int dsa_port_setup_as_unused(struct dsa_port *dp)
547{
548 dp->type = DSA_PORT_TYPE_UNUSED;
549 return dsa_port_setup(dp);
550}
551
552static int dsa_switch_setup_tag_protocol(struct dsa_switch *ds)
553{
554 const struct dsa_device_ops *tag_ops = ds->dst->tag_ops;
555 struct dsa_switch_tree *dst = ds->dst;
556 int err;
557
558 if (tag_ops->proto == dst->default_proto)
559 goto connect;
560
561 rtnl_lock();
562 err = ds->ops->change_tag_protocol(ds, tag_ops->proto);
563 rtnl_unlock();
564 if (err) {
565 dev_err(ds->dev, "Unable to use tag protocol \"%s\": %pe\n",
566 tag_ops->name, ERR_PTR(err));
567 return err;
568 }
569
570connect:
571 if (tag_ops->connect) {
572 err = tag_ops->connect(ds);
573 if (err)
574 return err;
575 }
576
577 if (ds->ops->connect_tag_protocol) {
578 err = ds->ops->connect_tag_protocol(ds, tag_ops->proto);
579 if (err) {
580 dev_err(ds->dev,
581 "Unable to connect to tag protocol \"%s\": %pe\n",
582 tag_ops->name, ERR_PTR(err));
583 goto disconnect;
584 }
585 }
586
587 return 0;
588
589disconnect:
590 if (tag_ops->disconnect)
591 tag_ops->disconnect(ds);
592
593 return err;
594}
595
596static void dsa_switch_teardown_tag_protocol(struct dsa_switch *ds)
597{
598 const struct dsa_device_ops *tag_ops = ds->dst->tag_ops;
599
600 if (tag_ops->disconnect)
601 tag_ops->disconnect(ds);
602}
603
604static int dsa_switch_setup(struct dsa_switch *ds)
605{
606 struct device_node *dn;
607 int err;
608
609 if (ds->setup)
610 return 0;
611
612 /* Initialize ds->phys_mii_mask before registering the slave MDIO bus
613 * driver and before ops->setup() has run, since the switch drivers and
614 * the slave MDIO bus driver rely on these values for probing PHY
615 * devices or not
616 */
617 ds->phys_mii_mask |= dsa_user_ports(ds);
618
619 err = dsa_switch_devlink_alloc(ds);
620 if (err)
621 return err;
622
623 err = dsa_switch_register_notifier(ds);
624 if (err)
625 goto devlink_free;
626
627 ds->configure_vlan_while_not_filtering = true;
628
629 err = ds->ops->setup(ds);
630 if (err < 0)
631 goto unregister_notifier;
632
633 err = dsa_switch_setup_tag_protocol(ds);
634 if (err)
635 goto teardown;
636
637 if (!ds->slave_mii_bus && ds->ops->phy_read) {
638 ds->slave_mii_bus = mdiobus_alloc();
639 if (!ds->slave_mii_bus) {
640 err = -ENOMEM;
641 goto teardown;
642 }
643
644 dsa_slave_mii_bus_init(ds);
645
646 dn = of_get_child_by_name(ds->dev->of_node, "mdio");
647
648 err = of_mdiobus_register(ds->slave_mii_bus, dn);
649 of_node_put(dn);
650 if (err < 0)
651 goto free_slave_mii_bus;
652 }
653
654 dsa_switch_devlink_register(ds);
655
656 ds->setup = true;
657 return 0;
658
659free_slave_mii_bus:
660 if (ds->slave_mii_bus && ds->ops->phy_read)
661 mdiobus_free(ds->slave_mii_bus);
662teardown:
663 if (ds->ops->teardown)
664 ds->ops->teardown(ds);
665unregister_notifier:
666 dsa_switch_unregister_notifier(ds);
667devlink_free:
668 dsa_switch_devlink_free(ds);
669 return err;
670}
671
672static void dsa_switch_teardown(struct dsa_switch *ds)
673{
674 if (!ds->setup)
675 return;
676
677 dsa_switch_devlink_unregister(ds);
678
679 if (ds->slave_mii_bus && ds->ops->phy_read) {
680 mdiobus_unregister(ds->slave_mii_bus);
681 mdiobus_free(ds->slave_mii_bus);
682 ds->slave_mii_bus = NULL;
683 }
684
685 dsa_switch_teardown_tag_protocol(ds);
686
687 if (ds->ops->teardown)
688 ds->ops->teardown(ds);
689
690 dsa_switch_unregister_notifier(ds);
691
692 dsa_switch_devlink_free(ds);
693
694 ds->setup = false;
695}
696
697/* First tear down the non-shared, then the shared ports. This ensures that
698 * all work items scheduled by our switchdev handlers for user ports have
699 * completed before we destroy the refcounting kept on the shared ports.
700 */
701static void dsa_tree_teardown_ports(struct dsa_switch_tree *dst)
702{
703 struct dsa_port *dp;
704
705 list_for_each_entry(dp, &dst->ports, list)
706 if (dsa_port_is_user(dp) || dsa_port_is_unused(dp))
707 dsa_port_teardown(dp);
708
709 dsa_flush_workqueue();
710
711 list_for_each_entry(dp, &dst->ports, list)
712 if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp))
713 dsa_port_teardown(dp);
714}
715
716static void dsa_tree_teardown_switches(struct dsa_switch_tree *dst)
717{
718 struct dsa_port *dp;
719
720 list_for_each_entry(dp, &dst->ports, list)
721 dsa_switch_teardown(dp->ds);
722}
723
724/* Bring shared ports up first, then non-shared ports */
725static int dsa_tree_setup_ports(struct dsa_switch_tree *dst)
726{
727 struct dsa_port *dp;
728 int err = 0;
729
730 list_for_each_entry(dp, &dst->ports, list) {
731 if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp)) {
732 err = dsa_port_setup(dp);
733 if (err)
734 goto teardown;
735 }
736 }
737
738 list_for_each_entry(dp, &dst->ports, list) {
739 if (dsa_port_is_user(dp) || dsa_port_is_unused(dp)) {
740 err = dsa_port_setup(dp);
741 if (err) {
742 err = dsa_port_setup_as_unused(dp);
743 if (err)
744 goto teardown;
745 }
746 }
747 }
748
749 return 0;
750
751teardown:
752 dsa_tree_teardown_ports(dst);
753
754 return err;
755}
756
757static int dsa_tree_setup_switches(struct dsa_switch_tree *dst)
758{
759 struct dsa_port *dp;
760 int err = 0;
761
762 list_for_each_entry(dp, &dst->ports, list) {
763 err = dsa_switch_setup(dp->ds);
764 if (err) {
765 dsa_tree_teardown_switches(dst);
766 break;
767 }
768 }
769
770 return err;
771}
772
773static int dsa_tree_setup_master(struct dsa_switch_tree *dst)
774{
775 struct dsa_port *cpu_dp;
776 int err = 0;
777
778 rtnl_lock();
779
780 dsa_tree_for_each_cpu_port(cpu_dp, dst) {
781 struct net_device *master = cpu_dp->master;
782 bool admin_up = (master->flags & IFF_UP) &&
783 !qdisc_tx_is_noop(master);
784
785 err = dsa_master_setup(master, cpu_dp);
786 if (err)
787 break;
788
789 /* Replay master state event */
790 dsa_tree_master_admin_state_change(dst, master, admin_up);
791 dsa_tree_master_oper_state_change(dst, master,
792 netif_oper_up(master));
793 }
794
795 rtnl_unlock();
796
797 return err;
798}
799
800static void dsa_tree_teardown_master(struct dsa_switch_tree *dst)
801{
802 struct dsa_port *cpu_dp;
803
804 rtnl_lock();
805
806 dsa_tree_for_each_cpu_port(cpu_dp, dst) {
807 struct net_device *master = cpu_dp->master;
808
809 /* Synthesizing an "admin down" state is sufficient for
810 * the switches to get a notification if the master is
811 * currently up and running.
812 */
813 dsa_tree_master_admin_state_change(dst, master, false);
814
815 dsa_master_teardown(master);
816 }
817
818 rtnl_unlock();
819}
820
821static int dsa_tree_setup_lags(struct dsa_switch_tree *dst)
822{
823 unsigned int len = 0;
824 struct dsa_port *dp;
825
826 list_for_each_entry(dp, &dst->ports, list) {
827 if (dp->ds->num_lag_ids > len)
828 len = dp->ds->num_lag_ids;
829 }
830
831 if (!len)
832 return 0;
833
834 dst->lags = kcalloc(len, sizeof(*dst->lags), GFP_KERNEL);
835 if (!dst->lags)
836 return -ENOMEM;
837
838 dst->lags_len = len;
839 return 0;
840}
841
842static void dsa_tree_teardown_lags(struct dsa_switch_tree *dst)
843{
844 kfree(dst->lags);
845}
846
847static int dsa_tree_setup(struct dsa_switch_tree *dst)
848{
849 bool complete;
850 int err;
851
852 if (dst->setup) {
853 pr_err("DSA: tree %d already setup! Disjoint trees?\n",
854 dst->index);
855 return -EEXIST;
856 }
857
858 complete = dsa_tree_setup_routing_table(dst);
859 if (!complete)
860 return 0;
861
862 err = dsa_tree_setup_cpu_ports(dst);
863 if (err)
864 return err;
865
866 err = dsa_tree_setup_switches(dst);
867 if (err)
868 goto teardown_cpu_ports;
869
870 err = dsa_tree_setup_ports(dst);
871 if (err)
872 goto teardown_switches;
873
874 err = dsa_tree_setup_master(dst);
875 if (err)
876 goto teardown_ports;
877
878 err = dsa_tree_setup_lags(dst);
879 if (err)
880 goto teardown_master;
881
882 dst->setup = true;
883
884 pr_info("DSA: tree %d setup\n", dst->index);
885
886 return 0;
887
888teardown_master:
889 dsa_tree_teardown_master(dst);
890teardown_ports:
891 dsa_tree_teardown_ports(dst);
892teardown_switches:
893 dsa_tree_teardown_switches(dst);
894teardown_cpu_ports:
895 dsa_tree_teardown_cpu_ports(dst);
896
897 return err;
898}
899
900static void dsa_tree_teardown(struct dsa_switch_tree *dst)
901{
902 struct dsa_link *dl, *next;
903
904 if (!dst->setup)
905 return;
906
907 dsa_tree_teardown_lags(dst);
908
909 dsa_tree_teardown_master(dst);
910
911 dsa_tree_teardown_ports(dst);
912
913 dsa_tree_teardown_switches(dst);
914
915 dsa_tree_teardown_cpu_ports(dst);
916
917 list_for_each_entry_safe(dl, next, &dst->rtable, list) {
918 list_del(&dl->list);
919 kfree(dl);
920 }
921
922 pr_info("DSA: tree %d torn down\n", dst->index);
923
924 dst->setup = false;
925}
926
927static int dsa_tree_bind_tag_proto(struct dsa_switch_tree *dst,
928 const struct dsa_device_ops *tag_ops)
929{
930 const struct dsa_device_ops *old_tag_ops = dst->tag_ops;
931 struct dsa_notifier_tag_proto_info info;
932 int err;
933
934 dst->tag_ops = tag_ops;
935
936 /* Notify the switches from this tree about the connection
937 * to the new tagger
938 */
939 info.tag_ops = tag_ops;
940 err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_CONNECT, &info);
941 if (err && err != -EOPNOTSUPP)
942 goto out_disconnect;
943
944 /* Notify the old tagger about the disconnection from this tree */
945 info.tag_ops = old_tag_ops;
946 dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info);
947
948 return 0;
949
950out_disconnect:
951 info.tag_ops = tag_ops;
952 dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info);
953 dst->tag_ops = old_tag_ops;
954
955 return err;
956}
957
958/* Since the dsa/tagging sysfs device attribute is per master, the assumption
959 * is that all DSA switches within a tree share the same tagger, otherwise
960 * they would have formed disjoint trees (different "dsa,member" values).
961 */
962int dsa_tree_change_tag_proto(struct dsa_switch_tree *dst,
963 const struct dsa_device_ops *tag_ops,
964 const struct dsa_device_ops *old_tag_ops)
965{
966 struct dsa_notifier_tag_proto_info info;
967 struct dsa_port *dp;
968 int err = -EBUSY;
969
970 if (!rtnl_trylock())
971 return restart_syscall();
972
973 /* At the moment we don't allow changing the tag protocol under
974 * traffic. The rtnl_mutex also happens to serialize concurrent
975 * attempts to change the tagging protocol. If we ever lift the IFF_UP
976 * restriction, there needs to be another mutex which serializes this.
977 */
978 dsa_tree_for_each_user_port(dp, dst) {
979 if (dsa_port_to_master(dp)->flags & IFF_UP)
980 goto out_unlock;
981
982 if (dp->slave->flags & IFF_UP)
983 goto out_unlock;
984 }
985
986 /* Notify the tag protocol change */
987 info.tag_ops = tag_ops;
988 err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info);
989 if (err)
990 goto out_unwind_tagger;
991
992 err = dsa_tree_bind_tag_proto(dst, tag_ops);
993 if (err)
994 goto out_unwind_tagger;
995
996 rtnl_unlock();
997
998 return 0;
999
1000out_unwind_tagger:
1001 info.tag_ops = old_tag_ops;
1002 dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info);
1003out_unlock:
1004 rtnl_unlock();
1005 return err;
1006}
1007
1008static void dsa_tree_master_state_change(struct dsa_switch_tree *dst,
1009 struct net_device *master)
1010{
1011 struct dsa_notifier_master_state_info info;
1012 struct dsa_port *cpu_dp = master->dsa_ptr;
1013
1014 info.master = master;
1015 info.operational = dsa_port_master_is_operational(cpu_dp);
1016
1017 dsa_tree_notify(dst, DSA_NOTIFIER_MASTER_STATE_CHANGE, &info);
1018}
1019
1020void dsa_tree_master_admin_state_change(struct dsa_switch_tree *dst,
1021 struct net_device *master,
1022 bool up)
1023{
1024 struct dsa_port *cpu_dp = master->dsa_ptr;
1025 bool notify = false;
1026
1027 /* Don't keep track of admin state on LAG DSA masters,
1028 * but rather just of physical DSA masters
1029 */
1030 if (netif_is_lag_master(master))
1031 return;
1032
1033 if ((dsa_port_master_is_operational(cpu_dp)) !=
1034 (up && cpu_dp->master_oper_up))
1035 notify = true;
1036
1037 cpu_dp->master_admin_up = up;
1038
1039 if (notify)
1040 dsa_tree_master_state_change(dst, master);
1041}
1042
1043void dsa_tree_master_oper_state_change(struct dsa_switch_tree *dst,
1044 struct net_device *master,
1045 bool up)
1046{
1047 struct dsa_port *cpu_dp = master->dsa_ptr;
1048 bool notify = false;
1049
1050 /* Don't keep track of oper state on LAG DSA masters,
1051 * but rather just of physical DSA masters
1052 */
1053 if (netif_is_lag_master(master))
1054 return;
1055
1056 if ((dsa_port_master_is_operational(cpu_dp)) !=
1057 (cpu_dp->master_admin_up && up))
1058 notify = true;
1059
1060 cpu_dp->master_oper_up = up;
1061
1062 if (notify)
1063 dsa_tree_master_state_change(dst, master);
1064}
1065
1066static struct dsa_port *dsa_port_touch(struct dsa_switch *ds, int index)
1067{
1068 struct dsa_switch_tree *dst = ds->dst;
1069 struct dsa_port *dp;
1070
1071 dsa_switch_for_each_port(dp, ds)
1072 if (dp->index == index)
1073 return dp;
1074
1075 dp = kzalloc(sizeof(*dp), GFP_KERNEL);
1076 if (!dp)
1077 return NULL;
1078
1079 dp->ds = ds;
1080 dp->index = index;
1081
1082 mutex_init(&dp->addr_lists_lock);
1083 mutex_init(&dp->vlans_lock);
1084 INIT_LIST_HEAD(&dp->fdbs);
1085 INIT_LIST_HEAD(&dp->mdbs);
1086 INIT_LIST_HEAD(&dp->vlans);
1087 INIT_LIST_HEAD(&dp->list);
1088 list_add_tail(&dp->list, &dst->ports);
1089
1090 return dp;
1091}
1092
1093static int dsa_port_parse_user(struct dsa_port *dp, const char *name)
1094{
1095 dp->type = DSA_PORT_TYPE_USER;
1096 dp->name = name;
1097
1098 return 0;
1099}
1100
1101static int dsa_port_parse_dsa(struct dsa_port *dp)
1102{
1103 dp->type = DSA_PORT_TYPE_DSA;
1104
1105 return 0;
1106}
1107
1108static enum dsa_tag_protocol dsa_get_tag_protocol(struct dsa_port *dp,
1109 struct net_device *master)
1110{
1111 enum dsa_tag_protocol tag_protocol = DSA_TAG_PROTO_NONE;
1112 struct dsa_switch *mds, *ds = dp->ds;
1113 unsigned int mdp_upstream;
1114 struct dsa_port *mdp;
1115
1116 /* It is possible to stack DSA switches onto one another when that
1117 * happens the switch driver may want to know if its tagging protocol
1118 * is going to work in such a configuration.
1119 */
1120 if (dsa_slave_dev_check(master)) {
1121 mdp = dsa_slave_to_port(master);
1122 mds = mdp->ds;
1123 mdp_upstream = dsa_upstream_port(mds, mdp->index);
1124 tag_protocol = mds->ops->get_tag_protocol(mds, mdp_upstream,
1125 DSA_TAG_PROTO_NONE);
1126 }
1127
1128 /* If the master device is not itself a DSA slave in a disjoint DSA
1129 * tree, then return immediately.
1130 */
1131 return ds->ops->get_tag_protocol(ds, dp->index, tag_protocol);
1132}
1133
1134static int dsa_port_parse_cpu(struct dsa_port *dp, struct net_device *master,
1135 const char *user_protocol)
1136{
1137 const struct dsa_device_ops *tag_ops = NULL;
1138 struct dsa_switch *ds = dp->ds;
1139 struct dsa_switch_tree *dst = ds->dst;
1140 enum dsa_tag_protocol default_proto;
1141
1142 /* Find out which protocol the switch would prefer. */
1143 default_proto = dsa_get_tag_protocol(dp, master);
1144 if (dst->default_proto) {
1145 if (dst->default_proto != default_proto) {
1146 dev_err(ds->dev,
1147 "A DSA switch tree can have only one tagging protocol\n");
1148 return -EINVAL;
1149 }
1150 } else {
1151 dst->default_proto = default_proto;
1152 }
1153
1154 /* See if the user wants to override that preference. */
1155 if (user_protocol) {
1156 if (!ds->ops->change_tag_protocol) {
1157 dev_err(ds->dev, "Tag protocol cannot be modified\n");
1158 return -EINVAL;
1159 }
1160
1161 tag_ops = dsa_tag_driver_get_by_name(user_protocol);
1162 if (IS_ERR(tag_ops)) {
1163 dev_warn(ds->dev,
1164 "Failed to find a tagging driver for protocol %s, using default\n",
1165 user_protocol);
1166 tag_ops = NULL;
1167 }
1168 }
1169
1170 if (!tag_ops)
1171 tag_ops = dsa_tag_driver_get_by_id(default_proto);
1172
1173 if (IS_ERR(tag_ops)) {
1174 if (PTR_ERR(tag_ops) == -ENOPROTOOPT)
1175 return -EPROBE_DEFER;
1176
1177 dev_warn(ds->dev, "No tagger for this switch\n");
1178 return PTR_ERR(tag_ops);
1179 }
1180
1181 if (dst->tag_ops) {
1182 if (dst->tag_ops != tag_ops) {
1183 dev_err(ds->dev,
1184 "A DSA switch tree can have only one tagging protocol\n");
1185
1186 dsa_tag_driver_put(tag_ops);
1187 return -EINVAL;
1188 }
1189
1190 /* In the case of multiple CPU ports per switch, the tagging
1191 * protocol is still reference-counted only per switch tree.
1192 */
1193 dsa_tag_driver_put(tag_ops);
1194 } else {
1195 dst->tag_ops = tag_ops;
1196 }
1197
1198 dp->master = master;
1199 dp->type = DSA_PORT_TYPE_CPU;
1200 dsa_port_set_tag_protocol(dp, dst->tag_ops);
1201 dp->dst = dst;
1202
1203 /* At this point, the tree may be configured to use a different
1204 * tagger than the one chosen by the switch driver during
1205 * .setup, in the case when a user selects a custom protocol
1206 * through the DT.
1207 *
1208 * This is resolved by syncing the driver with the tree in
1209 * dsa_switch_setup_tag_protocol once .setup has run and the
1210 * driver is ready to accept calls to .change_tag_protocol. If
1211 * the driver does not support the custom protocol at that
1212 * point, the tree is wholly rejected, thereby ensuring that the
1213 * tree and driver are always in agreement on the protocol to
1214 * use.
1215 */
1216 return 0;
1217}
1218
1219static int dsa_port_parse_of(struct dsa_port *dp, struct device_node *dn)
1220{
1221 struct device_node *ethernet = of_parse_phandle(dn, "ethernet", 0);
1222 const char *name = of_get_property(dn, "label", NULL);
1223 bool link = of_property_read_bool(dn, "link");
1224
1225 dp->dn = dn;
1226
1227 if (ethernet) {
1228 struct net_device *master;
1229 const char *user_protocol;
1230
1231 master = of_find_net_device_by_node(ethernet);
1232 of_node_put(ethernet);
1233 if (!master)
1234 return -EPROBE_DEFER;
1235
1236 user_protocol = of_get_property(dn, "dsa-tag-protocol", NULL);
1237 return dsa_port_parse_cpu(dp, master, user_protocol);
1238 }
1239
1240 if (link)
1241 return dsa_port_parse_dsa(dp);
1242
1243 return dsa_port_parse_user(dp, name);
1244}
1245
1246static int dsa_switch_parse_ports_of(struct dsa_switch *ds,
1247 struct device_node *dn)
1248{
1249 struct device_node *ports, *port;
1250 struct dsa_port *dp;
1251 int err = 0;
1252 u32 reg;
1253
1254 ports = of_get_child_by_name(dn, "ports");
1255 if (!ports) {
1256 /* The second possibility is "ethernet-ports" */
1257 ports = of_get_child_by_name(dn, "ethernet-ports");
1258 if (!ports) {
1259 dev_err(ds->dev, "no ports child node found\n");
1260 return -EINVAL;
1261 }
1262 }
1263
1264 for_each_available_child_of_node(ports, port) {
1265 err = of_property_read_u32(port, "reg", ®);
1266 if (err) {
1267 of_node_put(port);
1268 goto out_put_node;
1269 }
1270
1271 if (reg >= ds->num_ports) {
1272 dev_err(ds->dev, "port %pOF index %u exceeds num_ports (%u)\n",
1273 port, reg, ds->num_ports);
1274 of_node_put(port);
1275 err = -EINVAL;
1276 goto out_put_node;
1277 }
1278
1279 dp = dsa_to_port(ds, reg);
1280
1281 err = dsa_port_parse_of(dp, port);
1282 if (err) {
1283 of_node_put(port);
1284 goto out_put_node;
1285 }
1286 }
1287
1288out_put_node:
1289 of_node_put(ports);
1290 return err;
1291}
1292
1293static int dsa_switch_parse_member_of(struct dsa_switch *ds,
1294 struct device_node *dn)
1295{
1296 u32 m[2] = { 0, 0 };
1297 int sz;
1298
1299 /* Don't error out if this optional property isn't found */
1300 sz = of_property_read_variable_u32_array(dn, "dsa,member", m, 2, 2);
1301 if (sz < 0 && sz != -EINVAL)
1302 return sz;
1303
1304 ds->index = m[1];
1305
1306 ds->dst = dsa_tree_touch(m[0]);
1307 if (!ds->dst)
1308 return -ENOMEM;
1309
1310 if (dsa_switch_find(ds->dst->index, ds->index)) {
1311 dev_err(ds->dev,
1312 "A DSA switch with index %d already exists in tree %d\n",
1313 ds->index, ds->dst->index);
1314 return -EEXIST;
1315 }
1316
1317 if (ds->dst->last_switch < ds->index)
1318 ds->dst->last_switch = ds->index;
1319
1320 return 0;
1321}
1322
1323static int dsa_switch_touch_ports(struct dsa_switch *ds)
1324{
1325 struct dsa_port *dp;
1326 int port;
1327
1328 for (port = 0; port < ds->num_ports; port++) {
1329 dp = dsa_port_touch(ds, port);
1330 if (!dp)
1331 return -ENOMEM;
1332 }
1333
1334 return 0;
1335}
1336
1337static int dsa_switch_parse_of(struct dsa_switch *ds, struct device_node *dn)
1338{
1339 int err;
1340
1341 err = dsa_switch_parse_member_of(ds, dn);
1342 if (err)
1343 return err;
1344
1345 err = dsa_switch_touch_ports(ds);
1346 if (err)
1347 return err;
1348
1349 return dsa_switch_parse_ports_of(ds, dn);
1350}
1351
1352static int dev_is_class(struct device *dev, void *class)
1353{
1354 if (dev->class != NULL && !strcmp(dev->class->name, class))
1355 return 1;
1356
1357 return 0;
1358}
1359
1360static struct device *dev_find_class(struct device *parent, char *class)
1361{
1362 if (dev_is_class(parent, class)) {
1363 get_device(parent);
1364 return parent;
1365 }
1366
1367 return device_find_child(parent, class, dev_is_class);
1368}
1369
1370static struct net_device *dsa_dev_to_net_device(struct device *dev)
1371{
1372 struct device *d;
1373
1374 d = dev_find_class(dev, "net");
1375 if (d != NULL) {
1376 struct net_device *nd;
1377
1378 nd = to_net_dev(d);
1379 dev_hold(nd);
1380 put_device(d);
1381
1382 return nd;
1383 }
1384
1385 return NULL;
1386}
1387
1388static int dsa_port_parse(struct dsa_port *dp, const char *name,
1389 struct device *dev)
1390{
1391 if (!strcmp(name, "cpu")) {
1392 struct net_device *master;
1393
1394 master = dsa_dev_to_net_device(dev);
1395 if (!master)
1396 return -EPROBE_DEFER;
1397
1398 dev_put(master);
1399
1400 return dsa_port_parse_cpu(dp, master, NULL);
1401 }
1402
1403 if (!strcmp(name, "dsa"))
1404 return dsa_port_parse_dsa(dp);
1405
1406 return dsa_port_parse_user(dp, name);
1407}
1408
1409static int dsa_switch_parse_ports(struct dsa_switch *ds,
1410 struct dsa_chip_data *cd)
1411{
1412 bool valid_name_found = false;
1413 struct dsa_port *dp;
1414 struct device *dev;
1415 const char *name;
1416 unsigned int i;
1417 int err;
1418
1419 for (i = 0; i < DSA_MAX_PORTS; i++) {
1420 name = cd->port_names[i];
1421 dev = cd->netdev[i];
1422 dp = dsa_to_port(ds, i);
1423
1424 if (!name)
1425 continue;
1426
1427 err = dsa_port_parse(dp, name, dev);
1428 if (err)
1429 return err;
1430
1431 valid_name_found = true;
1432 }
1433
1434 if (!valid_name_found && i == DSA_MAX_PORTS)
1435 return -EINVAL;
1436
1437 return 0;
1438}
1439
1440static int dsa_switch_parse(struct dsa_switch *ds, struct dsa_chip_data *cd)
1441{
1442 int err;
1443
1444 ds->cd = cd;
1445
1446 /* We don't support interconnected switches nor multiple trees via
1447 * platform data, so this is the unique switch of the tree.
1448 */
1449 ds->index = 0;
1450 ds->dst = dsa_tree_touch(0);
1451 if (!ds->dst)
1452 return -ENOMEM;
1453
1454 err = dsa_switch_touch_ports(ds);
1455 if (err)
1456 return err;
1457
1458 return dsa_switch_parse_ports(ds, cd);
1459}
1460
1461static void dsa_switch_release_ports(struct dsa_switch *ds)
1462{
1463 struct dsa_port *dp, *next;
1464
1465 dsa_switch_for_each_port_safe(dp, next, ds) {
1466 WARN_ON(!list_empty(&dp->fdbs));
1467 WARN_ON(!list_empty(&dp->mdbs));
1468 WARN_ON(!list_empty(&dp->vlans));
1469 list_del(&dp->list);
1470 kfree(dp);
1471 }
1472}
1473
1474static int dsa_switch_probe(struct dsa_switch *ds)
1475{
1476 struct dsa_switch_tree *dst;
1477 struct dsa_chip_data *pdata;
1478 struct device_node *np;
1479 int err;
1480
1481 if (!ds->dev)
1482 return -ENODEV;
1483
1484 pdata = ds->dev->platform_data;
1485 np = ds->dev->of_node;
1486
1487 if (!ds->num_ports)
1488 return -EINVAL;
1489
1490 if (np) {
1491 err = dsa_switch_parse_of(ds, np);
1492 if (err)
1493 dsa_switch_release_ports(ds);
1494 } else if (pdata) {
1495 err = dsa_switch_parse(ds, pdata);
1496 if (err)
1497 dsa_switch_release_ports(ds);
1498 } else {
1499 err = -ENODEV;
1500 }
1501
1502 if (err)
1503 return err;
1504
1505 dst = ds->dst;
1506 dsa_tree_get(dst);
1507 err = dsa_tree_setup(dst);
1508 if (err) {
1509 dsa_switch_release_ports(ds);
1510 dsa_tree_put(dst);
1511 }
1512
1513 return err;
1514}
1515
1516int dsa_register_switch(struct dsa_switch *ds)
1517{
1518 int err;
1519
1520 mutex_lock(&dsa2_mutex);
1521 err = dsa_switch_probe(ds);
1522 dsa_tree_put(ds->dst);
1523 mutex_unlock(&dsa2_mutex);
1524
1525 return err;
1526}
1527EXPORT_SYMBOL_GPL(dsa_register_switch);
1528
1529static void dsa_switch_remove(struct dsa_switch *ds)
1530{
1531 struct dsa_switch_tree *dst = ds->dst;
1532
1533 dsa_tree_teardown(dst);
1534 dsa_switch_release_ports(ds);
1535 dsa_tree_put(dst);
1536}
1537
1538void dsa_unregister_switch(struct dsa_switch *ds)
1539{
1540 mutex_lock(&dsa2_mutex);
1541 dsa_switch_remove(ds);
1542 mutex_unlock(&dsa2_mutex);
1543}
1544EXPORT_SYMBOL_GPL(dsa_unregister_switch);
1545
1546/* If the DSA master chooses to unregister its net_device on .shutdown, DSA is
1547 * blocking that operation from completion, due to the dev_hold taken inside
1548 * netdev_upper_dev_link. Unlink the DSA slave interfaces from being uppers of
1549 * the DSA master, so that the system can reboot successfully.
1550 */
1551void dsa_switch_shutdown(struct dsa_switch *ds)
1552{
1553 struct net_device *master, *slave_dev;
1554 struct dsa_port *dp;
1555
1556 mutex_lock(&dsa2_mutex);
1557
1558 if (!ds->setup)
1559 goto out;
1560
1561 rtnl_lock();
1562
1563 dsa_switch_for_each_user_port(dp, ds) {
1564 master = dsa_port_to_master(dp);
1565 slave_dev = dp->slave;
1566
1567 netdev_upper_dev_unlink(master, slave_dev);
1568 }
1569
1570 /* Disconnect from further netdevice notifiers on the master,
1571 * since netdev_uses_dsa() will now return false.
1572 */
1573 dsa_switch_for_each_cpu_port(dp, ds)
1574 dp->master->dsa_ptr = NULL;
1575
1576 rtnl_unlock();
1577out:
1578 mutex_unlock(&dsa2_mutex);
1579}
1580EXPORT_SYMBOL_GPL(dsa_switch_shutdown);
1581
1582#ifdef CONFIG_PM_SLEEP
1583static bool dsa_port_is_initialized(const struct dsa_port *dp)
1584{
1585 return dp->type == DSA_PORT_TYPE_USER && dp->slave;
1586}
1587
1588int dsa_switch_suspend(struct dsa_switch *ds)
1589{
1590 struct dsa_port *dp;
1591 int ret = 0;
1592
1593 /* Suspend slave network devices */
1594 dsa_switch_for_each_port(dp, ds) {
1595 if (!dsa_port_is_initialized(dp))
1596 continue;
1597
1598 ret = dsa_slave_suspend(dp->slave);
1599 if (ret)
1600 return ret;
1601 }
1602
1603 if (ds->ops->suspend)
1604 ret = ds->ops->suspend(ds);
1605
1606 return ret;
1607}
1608EXPORT_SYMBOL_GPL(dsa_switch_suspend);
1609
1610int dsa_switch_resume(struct dsa_switch *ds)
1611{
1612 struct dsa_port *dp;
1613 int ret = 0;
1614
1615 if (ds->ops->resume)
1616 ret = ds->ops->resume(ds);
1617
1618 if (ret)
1619 return ret;
1620
1621 /* Resume slave network devices */
1622 dsa_switch_for_each_port(dp, ds) {
1623 if (!dsa_port_is_initialized(dp))
1624 continue;
1625
1626 ret = dsa_slave_resume(dp->slave);
1627 if (ret)
1628 return ret;
1629 }
1630
1631 return 0;
1632}
1633EXPORT_SYMBOL_GPL(dsa_switch_resume);
1634#endif
1635
1636struct dsa_port *dsa_port_from_netdev(struct net_device *netdev)
1637{
1638 if (!netdev || !dsa_slave_dev_check(netdev))
1639 return ERR_PTR(-ENODEV);
1640
1641 return dsa_slave_to_port(netdev);
1642}
1643EXPORT_SYMBOL_GPL(dsa_port_from_netdev);
1644
1645bool dsa_db_equal(const struct dsa_db *a, const struct dsa_db *b)
1646{
1647 if (a->type != b->type)
1648 return false;
1649
1650 switch (a->type) {
1651 case DSA_DB_PORT:
1652 return a->dp == b->dp;
1653 case DSA_DB_LAG:
1654 return a->lag.dev == b->lag.dev;
1655 case DSA_DB_BRIDGE:
1656 return a->bridge.num == b->bridge.num;
1657 default:
1658 WARN_ON(1);
1659 return false;
1660 }
1661}
1662
1663bool dsa_fdb_present_in_other_db(struct dsa_switch *ds, int port,
1664 const unsigned char *addr, u16 vid,
1665 struct dsa_db db)
1666{
1667 struct dsa_port *dp = dsa_to_port(ds, port);
1668 struct dsa_mac_addr *a;
1669
1670 lockdep_assert_held(&dp->addr_lists_lock);
1671
1672 list_for_each_entry(a, &dp->fdbs, list) {
1673 if (!ether_addr_equal(a->addr, addr) || a->vid != vid)
1674 continue;
1675
1676 if (a->db.type == db.type && !dsa_db_equal(&a->db, &db))
1677 return true;
1678 }
1679
1680 return false;
1681}
1682EXPORT_SYMBOL_GPL(dsa_fdb_present_in_other_db);
1683
1684bool dsa_mdb_present_in_other_db(struct dsa_switch *ds, int port,
1685 const struct switchdev_obj_port_mdb *mdb,
1686 struct dsa_db db)
1687{
1688 struct dsa_port *dp = dsa_to_port(ds, port);
1689 struct dsa_mac_addr *a;
1690
1691 lockdep_assert_held(&dp->addr_lists_lock);
1692
1693 list_for_each_entry(a, &dp->mdbs, list) {
1694 if (!ether_addr_equal(a->addr, mdb->addr) || a->vid != mdb->vid)
1695 continue;
1696
1697 if (a->db.type == db.type && !dsa_db_equal(&a->db, &db))
1698 return true;
1699 }
1700
1701 return false;
1702}
1703EXPORT_SYMBOL_GPL(dsa_mdb_present_in_other_db);
1704
1705static int __init dsa_init_module(void)
1706{
1707 int rc;
1708
1709 dsa_owq = alloc_ordered_workqueue("dsa_ordered",
1710 WQ_MEM_RECLAIM);
1711 if (!dsa_owq)
1712 return -ENOMEM;
1713
1714 rc = dsa_slave_register_notifier();
1715 if (rc)
1716 goto register_notifier_fail;
1717
1718 dev_add_pack(&dsa_pack_type);
1719
1720 rc = rtnl_link_register(&dsa_link_ops);
1721 if (rc)
1722 goto netlink_register_fail;
1723
1724 return 0;
1725
1726netlink_register_fail:
1727 dsa_slave_unregister_notifier();
1728 dev_remove_pack(&dsa_pack_type);
1729register_notifier_fail:
1730 destroy_workqueue(dsa_owq);
1731
1732 return rc;
1733}
1734module_init(dsa_init_module);
1735
1736static void __exit dsa_cleanup_module(void)
1737{
1738 rtnl_link_unregister(&dsa_link_ops);
1739
1740 dsa_slave_unregister_notifier();
1741 dev_remove_pack(&dsa_pack_type);
1742 destroy_workqueue(dsa_owq);
1743}
1744module_exit(dsa_cleanup_module);
1745
1746MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
1747MODULE_DESCRIPTION("Driver for Distributed Switch Architecture switch chips");
1748MODULE_LICENSE("GPL");
1749MODULE_ALIAS("platform:dsa");