Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic helpers for smp ipi calls
   4 *
   5 * (C) Jens Axboe <jens.axboe@oracle.com> 2008
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/irq_work.h>
  11#include <linux/rcupdate.h>
  12#include <linux/rculist.h>
  13#include <linux/kernel.h>
  14#include <linux/export.h>
  15#include <linux/percpu.h>
  16#include <linux/init.h>
  17#include <linux/interrupt.h>
  18#include <linux/gfp.h>
  19#include <linux/smp.h>
  20#include <linux/cpu.h>
  21#include <linux/sched.h>
  22#include <linux/sched/idle.h>
  23#include <linux/hypervisor.h>
  24#include <linux/sched/clock.h>
  25#include <linux/nmi.h>
  26#include <linux/sched/debug.h>
  27#include <linux/jump_label.h>
  28#include <linux/string_choices.h>
  29
  30#include <trace/events/ipi.h>
  31#define CREATE_TRACE_POINTS
  32#include <trace/events/csd.h>
  33#undef CREATE_TRACE_POINTS
  34
  35#include "smpboot.h"
  36#include "sched/smp.h"
  37
  38#define CSD_TYPE(_csd)	((_csd)->node.u_flags & CSD_FLAG_TYPE_MASK)
  39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  40struct call_function_data {
  41	call_single_data_t	__percpu *csd;
  42	cpumask_var_t		cpumask;
  43	cpumask_var_t		cpumask_ipi;
  44};
  45
  46static DEFINE_PER_CPU_ALIGNED(struct call_function_data, cfd_data);
  47
  48static DEFINE_PER_CPU_SHARED_ALIGNED(struct llist_head, call_single_queue);
  49
  50static DEFINE_PER_CPU(atomic_t, trigger_backtrace) = ATOMIC_INIT(1);
  51
  52static void __flush_smp_call_function_queue(bool warn_cpu_offline);
  53
  54int smpcfd_prepare_cpu(unsigned int cpu)
  55{
  56	struct call_function_data *cfd = &per_cpu(cfd_data, cpu);
  57
  58	if (!zalloc_cpumask_var_node(&cfd->cpumask, GFP_KERNEL,
  59				     cpu_to_node(cpu)))
  60		return -ENOMEM;
  61	if (!zalloc_cpumask_var_node(&cfd->cpumask_ipi, GFP_KERNEL,
  62				     cpu_to_node(cpu))) {
  63		free_cpumask_var(cfd->cpumask);
  64		return -ENOMEM;
  65	}
  66	cfd->csd = alloc_percpu(call_single_data_t);
  67	if (!cfd->csd) {
  68		free_cpumask_var(cfd->cpumask);
  69		free_cpumask_var(cfd->cpumask_ipi);
  70		return -ENOMEM;
  71	}
  72
  73	return 0;
  74}
  75
  76int smpcfd_dead_cpu(unsigned int cpu)
  77{
  78	struct call_function_data *cfd = &per_cpu(cfd_data, cpu);
  79
  80	free_cpumask_var(cfd->cpumask);
  81	free_cpumask_var(cfd->cpumask_ipi);
  82	free_percpu(cfd->csd);
  83	return 0;
  84}
  85
  86int smpcfd_dying_cpu(unsigned int cpu)
  87{
  88	/*
  89	 * The IPIs for the smp-call-function callbacks queued by other
  90	 * CPUs might arrive late, either due to hardware latencies or
  91	 * because this CPU disabled interrupts (inside stop-machine)
  92	 * before the IPIs were sent. So flush out any pending callbacks
  93	 * explicitly (without waiting for the IPIs to arrive), to
  94	 * ensure that the outgoing CPU doesn't go offline with work
  95	 * still pending.
  96	 */
  97	__flush_smp_call_function_queue(false);
  98	irq_work_run();
  99	return 0;
 100}
 101
 102void __init call_function_init(void)
 103{
 104	int i;
 105
 106	for_each_possible_cpu(i)
 107		init_llist_head(&per_cpu(call_single_queue, i));
 108
 109	smpcfd_prepare_cpu(smp_processor_id());
 110}
 111
 112static __always_inline void
 113send_call_function_single_ipi(int cpu)
 114{
 115	if (call_function_single_prep_ipi(cpu)) {
 116		trace_ipi_send_cpu(cpu, _RET_IP_,
 117				   generic_smp_call_function_single_interrupt);
 118		arch_send_call_function_single_ipi(cpu);
 119	}
 120}
 121
 122static __always_inline void
 123send_call_function_ipi_mask(struct cpumask *mask)
 124{
 125	trace_ipi_send_cpumask(mask, _RET_IP_,
 126			       generic_smp_call_function_single_interrupt);
 127	arch_send_call_function_ipi_mask(mask);
 128}
 129
 130static __always_inline void
 131csd_do_func(smp_call_func_t func, void *info, call_single_data_t *csd)
 132{
 133	trace_csd_function_entry(func, csd);
 134	func(info);
 135	trace_csd_function_exit(func, csd);
 136}
 137
 138#ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
 139
 140static DEFINE_STATIC_KEY_MAYBE(CONFIG_CSD_LOCK_WAIT_DEBUG_DEFAULT, csdlock_debug_enabled);
 
 141
 142/*
 143 * Parse the csdlock_debug= kernel boot parameter.
 144 *
 145 * If you need to restore the old "ext" value that once provided
 146 * additional debugging information, reapply the following commits:
 147 *
 148 * de7b09ef658d ("locking/csd_lock: Prepare more CSD lock debugging")
 149 * a5aabace5fb8 ("locking/csd_lock: Add more data to CSD lock debugging")
 150 */
 151static int __init csdlock_debug(char *str)
 152{
 153	int ret;
 154	unsigned int val = 0;
 155
 156	ret = get_option(&str, &val);
 157	if (ret) {
 158		if (val)
 159			static_branch_enable(&csdlock_debug_enabled);
 160		else
 161			static_branch_disable(&csdlock_debug_enabled);
 162	}
 
 163
 164	return 1;
 165}
 166__setup("csdlock_debug=", csdlock_debug);
 167
 168static DEFINE_PER_CPU(call_single_data_t *, cur_csd);
 169static DEFINE_PER_CPU(smp_call_func_t, cur_csd_func);
 170static DEFINE_PER_CPU(void *, cur_csd_info);
 
 171
 172static ulong csd_lock_timeout = 5000;  /* CSD lock timeout in milliseconds. */
 173module_param(csd_lock_timeout, ulong, 0444);
 174static int panic_on_ipistall;  /* CSD panic timeout in milliseconds, 300000 for five minutes. */
 175module_param(panic_on_ipistall, int, 0444);
 176
 177static atomic_t csd_bug_count = ATOMIC_INIT(0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 178
 179/* Record current CSD work for current CPU, NULL to erase. */
 180static void __csd_lock_record(call_single_data_t *csd)
 181{
 182	if (!csd) {
 183		smp_mb(); /* NULL cur_csd after unlock. */
 184		__this_cpu_write(cur_csd, NULL);
 185		return;
 186	}
 187	__this_cpu_write(cur_csd_func, csd->func);
 188	__this_cpu_write(cur_csd_info, csd->info);
 189	smp_wmb(); /* func and info before csd. */
 190	__this_cpu_write(cur_csd, csd);
 191	smp_mb(); /* Update cur_csd before function call. */
 192		  /* Or before unlock, as the case may be. */
 193}
 194
 195static __always_inline void csd_lock_record(call_single_data_t *csd)
 196{
 197	if (static_branch_unlikely(&csdlock_debug_enabled))
 198		__csd_lock_record(csd);
 199}
 200
 201static int csd_lock_wait_getcpu(call_single_data_t *csd)
 202{
 203	unsigned int csd_type;
 204
 205	csd_type = CSD_TYPE(csd);
 206	if (csd_type == CSD_TYPE_ASYNC || csd_type == CSD_TYPE_SYNC)
 207		return csd->node.dst; /* Other CSD_TYPE_ values might not have ->dst. */
 208	return -1;
 209}
 210
 211static atomic_t n_csd_lock_stuck;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 212
 213/**
 214 * csd_lock_is_stuck - Has a CSD-lock acquisition been stuck too long?
 215 *
 216 * Returns @true if a CSD-lock acquisition is stuck and has been stuck
 217 * long enough for a "non-responsive CSD lock" message to be printed.
 218 */
 219bool csd_lock_is_stuck(void)
 220{
 221	return !!atomic_read(&n_csd_lock_stuck);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 222}
 223
 224/*
 225 * Complain if too much time spent waiting.  Note that only
 226 * the CSD_TYPE_SYNC/ASYNC types provide the destination CPU,
 227 * so waiting on other types gets much less information.
 228 */
 229static bool csd_lock_wait_toolong(call_single_data_t *csd, u64 ts0, u64 *ts1, int *bug_id, unsigned long *nmessages)
 230{
 231	int cpu = -1;
 232	int cpux;
 233	bool firsttime;
 234	u64 ts2, ts_delta;
 235	call_single_data_t *cpu_cur_csd;
 236	unsigned int flags = READ_ONCE(csd->node.u_flags);
 237	unsigned long long csd_lock_timeout_ns = csd_lock_timeout * NSEC_PER_MSEC;
 238
 239	if (!(flags & CSD_FLAG_LOCK)) {
 240		if (!unlikely(*bug_id))
 241			return true;
 242		cpu = csd_lock_wait_getcpu(csd);
 243		pr_alert("csd: CSD lock (#%d) got unstuck on CPU#%02d, CPU#%02d released the lock.\n",
 244			 *bug_id, raw_smp_processor_id(), cpu);
 245		atomic_dec(&n_csd_lock_stuck);
 246		return true;
 247	}
 248
 249	ts2 = ktime_get_mono_fast_ns();
 250	/* How long since we last checked for a stuck CSD lock.*/
 251	ts_delta = ts2 - *ts1;
 252	if (likely(ts_delta <= csd_lock_timeout_ns * (*nmessages + 1) *
 253			       (!*nmessages ? 1 : (ilog2(num_online_cpus()) / 2 + 1)) ||
 254		   csd_lock_timeout_ns == 0))
 255		return false;
 256
 257	if (ts0 > ts2) {
 258		/* Our own sched_clock went backward; don't blame another CPU. */
 259		ts_delta = ts0 - ts2;
 260		pr_alert("sched_clock on CPU %d went backward by %llu ns\n", raw_smp_processor_id(), ts_delta);
 261		*ts1 = ts2;
 262		return false;
 263	}
 264
 265	firsttime = !*bug_id;
 266	if (firsttime)
 267		*bug_id = atomic_inc_return(&csd_bug_count);
 268	cpu = csd_lock_wait_getcpu(csd);
 269	if (WARN_ONCE(cpu < 0 || cpu >= nr_cpu_ids, "%s: cpu = %d\n", __func__, cpu))
 270		cpux = 0;
 271	else
 272		cpux = cpu;
 273	cpu_cur_csd = smp_load_acquire(&per_cpu(cur_csd, cpux)); /* Before func and info. */
 274	/* How long since this CSD lock was stuck. */
 275	ts_delta = ts2 - ts0;
 276	pr_alert("csd: %s non-responsive CSD lock (#%d) on CPU#%d, waiting %lld ns for CPU#%02d %pS(%ps).\n",
 277		 firsttime ? "Detected" : "Continued", *bug_id, raw_smp_processor_id(), (s64)ts_delta,
 278		 cpu, csd->func, csd->info);
 279	(*nmessages)++;
 280	if (firsttime)
 281		atomic_inc(&n_csd_lock_stuck);
 282	/*
 283	 * If the CSD lock is still stuck after 5 minutes, it is unlikely
 284	 * to become unstuck. Use a signed comparison to avoid triggering
 285	 * on underflows when the TSC is out of sync between sockets.
 286	 */
 287	BUG_ON(panic_on_ipistall > 0 && (s64)ts_delta > ((s64)panic_on_ipistall * NSEC_PER_MSEC));
 288	if (cpu_cur_csd && csd != cpu_cur_csd) {
 289		pr_alert("\tcsd: CSD lock (#%d) handling prior %pS(%ps) request.\n",
 290			 *bug_id, READ_ONCE(per_cpu(cur_csd_func, cpux)),
 291			 READ_ONCE(per_cpu(cur_csd_info, cpux)));
 292	} else {
 293		pr_alert("\tcsd: CSD lock (#%d) %s.\n",
 294			 *bug_id, !cpu_cur_csd ? "unresponsive" : "handling this request");
 295	}
 296	if (cpu >= 0) {
 297		if (atomic_cmpxchg_acquire(&per_cpu(trigger_backtrace, cpu), 1, 0))
 298			dump_cpu_task(cpu);
 
 299		if (!cpu_cur_csd) {
 300			pr_alert("csd: Re-sending CSD lock (#%d) IPI from CPU#%02d to CPU#%02d\n", *bug_id, raw_smp_processor_id(), cpu);
 301			arch_send_call_function_single_ipi(cpu);
 302		}
 303	}
 304	if (firsttime)
 305		dump_stack();
 306	*ts1 = ts2;
 307
 308	return false;
 309}
 310
 311/*
 312 * csd_lock/csd_unlock used to serialize access to per-cpu csd resources
 313 *
 314 * For non-synchronous ipi calls the csd can still be in use by the
 315 * previous function call. For multi-cpu calls its even more interesting
 316 * as we'll have to ensure no other cpu is observing our csd.
 317 */
 318static void __csd_lock_wait(call_single_data_t *csd)
 319{
 320	unsigned long nmessages = 0;
 321	int bug_id = 0;
 322	u64 ts0, ts1;
 323
 324	ts1 = ts0 = ktime_get_mono_fast_ns();
 325	for (;;) {
 326		if (csd_lock_wait_toolong(csd, ts0, &ts1, &bug_id, &nmessages))
 327			break;
 328		cpu_relax();
 329	}
 330	smp_acquire__after_ctrl_dep();
 331}
 332
 333static __always_inline void csd_lock_wait(call_single_data_t *csd)
 334{
 335	if (static_branch_unlikely(&csdlock_debug_enabled)) {
 336		__csd_lock_wait(csd);
 337		return;
 338	}
 339
 340	smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK));
 341}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 342#else
 343static void csd_lock_record(call_single_data_t *csd)
 
 
 344{
 345}
 346
 347static __always_inline void csd_lock_wait(call_single_data_t *csd)
 348{
 349	smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK));
 350}
 351#endif
 352
 353static __always_inline void csd_lock(call_single_data_t *csd)
 354{
 355	csd_lock_wait(csd);
 356	csd->node.u_flags |= CSD_FLAG_LOCK;
 357
 358	/*
 359	 * prevent CPU from reordering the above assignment
 360	 * to ->flags with any subsequent assignments to other
 361	 * fields of the specified call_single_data_t structure:
 362	 */
 363	smp_wmb();
 364}
 365
 366static __always_inline void csd_unlock(call_single_data_t *csd)
 367{
 368	WARN_ON(!(csd->node.u_flags & CSD_FLAG_LOCK));
 369
 370	/*
 371	 * ensure we're all done before releasing data:
 372	 */
 373	smp_store_release(&csd->node.u_flags, 0);
 374}
 375
 376static DEFINE_PER_CPU_SHARED_ALIGNED(call_single_data_t, csd_data);
 377
 378void __smp_call_single_queue(int cpu, struct llist_node *node)
 379{
 380	/*
 381	 * We have to check the type of the CSD before queueing it, because
 382	 * once queued it can have its flags cleared by
 383	 *   flush_smp_call_function_queue()
 384	 * even if we haven't sent the smp_call IPI yet (e.g. the stopper
 385	 * executes migration_cpu_stop() on the remote CPU).
 386	 */
 387	if (trace_csd_queue_cpu_enabled()) {
 388		call_single_data_t *csd;
 389		smp_call_func_t func;
 390
 391		csd = container_of(node, call_single_data_t, node.llist);
 392		func = CSD_TYPE(csd) == CSD_TYPE_TTWU ?
 393			sched_ttwu_pending : csd->func;
 394
 395		trace_csd_queue_cpu(cpu, _RET_IP_, func, csd);
 
 
 
 
 
 396	}
 
 397
 398	/*
 399	 * The list addition should be visible to the target CPU when it pops
 400	 * the head of the list to pull the entry off it in the IPI handler
 401	 * because of normal cache coherency rules implied by the underlying
 402	 * llist ops.
 403	 *
 404	 * If IPIs can go out of order to the cache coherency protocol
 405	 * in an architecture, sufficient synchronisation should be added
 406	 * to arch code to make it appear to obey cache coherency WRT
 407	 * locking and barrier primitives. Generic code isn't really
 408	 * equipped to do the right thing...
 409	 */
 410	if (llist_add(node, &per_cpu(call_single_queue, cpu)))
 411		send_call_function_single_ipi(cpu);
 412}
 413
 414/*
 415 * Insert a previously allocated call_single_data_t element
 416 * for execution on the given CPU. data must already have
 417 * ->func, ->info, and ->flags set.
 418 */
 419static int generic_exec_single(int cpu, call_single_data_t *csd)
 420{
 421	if (cpu == smp_processor_id()) {
 422		smp_call_func_t func = csd->func;
 423		void *info = csd->info;
 424		unsigned long flags;
 425
 426		/*
 427		 * We can unlock early even for the synchronous on-stack case,
 428		 * since we're doing this from the same CPU..
 429		 */
 430		csd_lock_record(csd);
 431		csd_unlock(csd);
 432		local_irq_save(flags);
 433		csd_do_func(func, info, NULL);
 434		csd_lock_record(NULL);
 435		local_irq_restore(flags);
 436		return 0;
 437	}
 438
 439	if ((unsigned)cpu >= nr_cpu_ids || !cpu_online(cpu)) {
 440		csd_unlock(csd);
 441		return -ENXIO;
 442	}
 443
 444	__smp_call_single_queue(cpu, &csd->node.llist);
 445
 446	return 0;
 447}
 448
 449/**
 450 * generic_smp_call_function_single_interrupt - Execute SMP IPI callbacks
 451 *
 452 * Invoked by arch to handle an IPI for call function single.
 453 * Must be called with interrupts disabled.
 454 */
 455void generic_smp_call_function_single_interrupt(void)
 456{
 
 
 457	__flush_smp_call_function_queue(true);
 458}
 459
 460/**
 461 * __flush_smp_call_function_queue - Flush pending smp-call-function callbacks
 462 *
 463 * @warn_cpu_offline: If set to 'true', warn if callbacks were queued on an
 464 *		      offline CPU. Skip this check if set to 'false'.
 465 *
 466 * Flush any pending smp-call-function callbacks queued on this CPU. This is
 467 * invoked by the generic IPI handler, as well as by a CPU about to go offline,
 468 * to ensure that all pending IPI callbacks are run before it goes completely
 469 * offline.
 470 *
 471 * Loop through the call_single_queue and run all the queued callbacks.
 472 * Must be called with interrupts disabled.
 473 */
 474static void __flush_smp_call_function_queue(bool warn_cpu_offline)
 475{
 476	call_single_data_t *csd, *csd_next;
 477	struct llist_node *entry, *prev;
 478	struct llist_head *head;
 479	static bool warned;
 480	atomic_t *tbt;
 481
 482	lockdep_assert_irqs_disabled();
 483
 484	/* Allow waiters to send backtrace NMI from here onwards */
 485	tbt = this_cpu_ptr(&trigger_backtrace);
 486	atomic_set_release(tbt, 1);
 487
 488	head = this_cpu_ptr(&call_single_queue);
 
 
 489	entry = llist_del_all(head);
 
 
 
 
 490	entry = llist_reverse_order(entry);
 491
 492	/* There shouldn't be any pending callbacks on an offline CPU. */
 493	if (unlikely(warn_cpu_offline && !cpu_online(smp_processor_id()) &&
 494		     !warned && entry != NULL)) {
 495		warned = true;
 496		WARN(1, "IPI on offline CPU %d\n", smp_processor_id());
 497
 498		/*
 499		 * We don't have to use the _safe() variant here
 500		 * because we are not invoking the IPI handlers yet.
 501		 */
 502		llist_for_each_entry(csd, entry, node.llist) {
 503			switch (CSD_TYPE(csd)) {
 504			case CSD_TYPE_ASYNC:
 505			case CSD_TYPE_SYNC:
 506			case CSD_TYPE_IRQ_WORK:
 507				pr_warn("IPI callback %pS sent to offline CPU\n",
 508					csd->func);
 509				break;
 510
 511			case CSD_TYPE_TTWU:
 512				pr_warn("IPI task-wakeup sent to offline CPU\n");
 513				break;
 514
 515			default:
 516				pr_warn("IPI callback, unknown type %d, sent to offline CPU\n",
 517					CSD_TYPE(csd));
 518				break;
 519			}
 520		}
 521	}
 522
 523	/*
 524	 * First; run all SYNC callbacks, people are waiting for us.
 525	 */
 526	prev = NULL;
 527	llist_for_each_entry_safe(csd, csd_next, entry, node.llist) {
 528		/* Do we wait until *after* callback? */
 529		if (CSD_TYPE(csd) == CSD_TYPE_SYNC) {
 530			smp_call_func_t func = csd->func;
 531			void *info = csd->info;
 532
 533			if (prev) {
 534				prev->next = &csd_next->node.llist;
 535			} else {
 536				entry = &csd_next->node.llist;
 537			}
 538
 539			csd_lock_record(csd);
 540			csd_do_func(func, info, csd);
 541			csd_unlock(csd);
 542			csd_lock_record(NULL);
 543		} else {
 544			prev = &csd->node.llist;
 545		}
 546	}
 547
 548	if (!entry)
 
 
 
 549		return;
 
 550
 551	/*
 552	 * Second; run all !SYNC callbacks.
 553	 */
 554	prev = NULL;
 555	llist_for_each_entry_safe(csd, csd_next, entry, node.llist) {
 556		int type = CSD_TYPE(csd);
 557
 558		if (type != CSD_TYPE_TTWU) {
 559			if (prev) {
 560				prev->next = &csd_next->node.llist;
 561			} else {
 562				entry = &csd_next->node.llist;
 563			}
 564
 565			if (type == CSD_TYPE_ASYNC) {
 566				smp_call_func_t func = csd->func;
 567				void *info = csd->info;
 568
 569				csd_lock_record(csd);
 570				csd_unlock(csd);
 571				csd_do_func(func, info, csd);
 572				csd_lock_record(NULL);
 573			} else if (type == CSD_TYPE_IRQ_WORK) {
 574				irq_work_single(csd);
 575			}
 576
 577		} else {
 578			prev = &csd->node.llist;
 579		}
 580	}
 581
 582	/*
 583	 * Third; only CSD_TYPE_TTWU is left, issue those.
 584	 */
 585	if (entry) {
 586		csd = llist_entry(entry, typeof(*csd), node.llist);
 587		csd_do_func(sched_ttwu_pending, entry, csd);
 588	}
 
 589}
 590
 591
 592/**
 593 * flush_smp_call_function_queue - Flush pending smp-call-function callbacks
 594 *				   from task context (idle, migration thread)
 595 *
 596 * When TIF_POLLING_NRFLAG is supported and a CPU is in idle and has it
 597 * set, then remote CPUs can avoid sending IPIs and wake the idle CPU by
 598 * setting TIF_NEED_RESCHED. The idle task on the woken up CPU has to
 599 * handle queued SMP function calls before scheduling.
 600 *
 601 * The migration thread has to ensure that an eventually pending wakeup has
 602 * been handled before it migrates a task.
 603 */
 604void flush_smp_call_function_queue(void)
 605{
 606	unsigned int was_pending;
 607	unsigned long flags;
 608
 609	if (llist_empty(this_cpu_ptr(&call_single_queue)))
 610		return;
 611
 
 
 612	local_irq_save(flags);
 613	/* Get the already pending soft interrupts for RT enabled kernels */
 614	was_pending = local_softirq_pending();
 615	__flush_smp_call_function_queue(true);
 616	if (local_softirq_pending())
 617		do_softirq_post_smp_call_flush(was_pending);
 618
 619	local_irq_restore(flags);
 620}
 621
 622/*
 623 * smp_call_function_single - Run a function on a specific CPU
 624 * @func: The function to run. This must be fast and non-blocking.
 625 * @info: An arbitrary pointer to pass to the function.
 626 * @wait: If true, wait until function has completed on other CPUs.
 627 *
 628 * Returns 0 on success, else a negative status code.
 629 */
 630int smp_call_function_single(int cpu, smp_call_func_t func, void *info,
 631			     int wait)
 632{
 633	call_single_data_t *csd;
 634	call_single_data_t csd_stack = {
 635		.node = { .u_flags = CSD_FLAG_LOCK | CSD_TYPE_SYNC, },
 636	};
 637	int this_cpu;
 638	int err;
 639
 640	/*
 641	 * prevent preemption and reschedule on another processor,
 642	 * as well as CPU removal
 643	 */
 644	this_cpu = get_cpu();
 645
 646	/*
 647	 * Can deadlock when called with interrupts disabled.
 648	 * We allow cpu's that are not yet online though, as no one else can
 649	 * send smp call function interrupt to this cpu and as such deadlocks
 650	 * can't happen.
 651	 */
 652	WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled()
 653		     && !oops_in_progress);
 654
 655	/*
 656	 * When @wait we can deadlock when we interrupt between llist_add() and
 657	 * arch_send_call_function_ipi*(); when !@wait we can deadlock due to
 658	 * csd_lock() on because the interrupt context uses the same csd
 659	 * storage.
 660	 */
 661	WARN_ON_ONCE(!in_task());
 662
 663	csd = &csd_stack;
 664	if (!wait) {
 665		csd = this_cpu_ptr(&csd_data);
 666		csd_lock(csd);
 667	}
 668
 669	csd->func = func;
 670	csd->info = info;
 671#ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
 672	csd->node.src = smp_processor_id();
 673	csd->node.dst = cpu;
 674#endif
 675
 676	err = generic_exec_single(cpu, csd);
 677
 678	if (wait)
 679		csd_lock_wait(csd);
 680
 681	put_cpu();
 682
 683	return err;
 684}
 685EXPORT_SYMBOL(smp_call_function_single);
 686
 687/**
 688 * smp_call_function_single_async() - Run an asynchronous function on a
 689 * 			         specific CPU.
 690 * @cpu: The CPU to run on.
 691 * @csd: Pre-allocated and setup data structure
 692 *
 693 * Like smp_call_function_single(), but the call is asynchonous and
 694 * can thus be done from contexts with disabled interrupts.
 695 *
 696 * The caller passes his own pre-allocated data structure
 697 * (ie: embedded in an object) and is responsible for synchronizing it
 698 * such that the IPIs performed on the @csd are strictly serialized.
 699 *
 700 * If the function is called with one csd which has not yet been
 701 * processed by previous call to smp_call_function_single_async(), the
 702 * function will return immediately with -EBUSY showing that the csd
 703 * object is still in progress.
 704 *
 705 * NOTE: Be careful, there is unfortunately no current debugging facility to
 706 * validate the correctness of this serialization.
 707 *
 708 * Return: %0 on success or negative errno value on error
 709 */
 710int smp_call_function_single_async(int cpu, call_single_data_t *csd)
 711{
 712	int err = 0;
 713
 714	preempt_disable();
 715
 716	if (csd->node.u_flags & CSD_FLAG_LOCK) {
 717		err = -EBUSY;
 718		goto out;
 719	}
 720
 721	csd->node.u_flags = CSD_FLAG_LOCK;
 722	smp_wmb();
 723
 724	err = generic_exec_single(cpu, csd);
 725
 726out:
 727	preempt_enable();
 728
 729	return err;
 730}
 731EXPORT_SYMBOL_GPL(smp_call_function_single_async);
 732
 733/*
 734 * smp_call_function_any - Run a function on any of the given cpus
 735 * @mask: The mask of cpus it can run on.
 736 * @func: The function to run. This must be fast and non-blocking.
 737 * @info: An arbitrary pointer to pass to the function.
 738 * @wait: If true, wait until function has completed.
 739 *
 740 * Returns 0 on success, else a negative status code (if no cpus were online).
 741 *
 742 * Selection preference:
 743 *	1) current cpu if in @mask
 744 *	2) any cpu of current node if in @mask
 745 *	3) any other online cpu in @mask
 746 */
 747int smp_call_function_any(const struct cpumask *mask,
 748			  smp_call_func_t func, void *info, int wait)
 749{
 750	unsigned int cpu;
 751	const struct cpumask *nodemask;
 752	int ret;
 753
 754	/* Try for same CPU (cheapest) */
 755	cpu = get_cpu();
 756	if (cpumask_test_cpu(cpu, mask))
 757		goto call;
 758
 759	/* Try for same node. */
 760	nodemask = cpumask_of_node(cpu_to_node(cpu));
 761	for (cpu = cpumask_first_and(nodemask, mask); cpu < nr_cpu_ids;
 762	     cpu = cpumask_next_and(cpu, nodemask, mask)) {
 763		if (cpu_online(cpu))
 764			goto call;
 765	}
 766
 767	/* Any online will do: smp_call_function_single handles nr_cpu_ids. */
 768	cpu = cpumask_any_and(mask, cpu_online_mask);
 769call:
 770	ret = smp_call_function_single(cpu, func, info, wait);
 771	put_cpu();
 772	return ret;
 773}
 774EXPORT_SYMBOL_GPL(smp_call_function_any);
 775
 776/*
 777 * Flags to be used as scf_flags argument of smp_call_function_many_cond().
 778 *
 779 * %SCF_WAIT:		Wait until function execution is completed
 780 * %SCF_RUN_LOCAL:	Run also locally if local cpu is set in cpumask
 781 */
 782#define SCF_WAIT	(1U << 0)
 783#define SCF_RUN_LOCAL	(1U << 1)
 784
 785static void smp_call_function_many_cond(const struct cpumask *mask,
 786					smp_call_func_t func, void *info,
 787					unsigned int scf_flags,
 788					smp_cond_func_t cond_func)
 789{
 790	int cpu, last_cpu, this_cpu = smp_processor_id();
 791	struct call_function_data *cfd;
 792	bool wait = scf_flags & SCF_WAIT;
 793	int nr_cpus = 0;
 794	bool run_remote = false;
 795	bool run_local = false;
 
 796
 797	lockdep_assert_preemption_disabled();
 798
 799	/*
 800	 * Can deadlock when called with interrupts disabled.
 801	 * We allow cpu's that are not yet online though, as no one else can
 802	 * send smp call function interrupt to this cpu and as such deadlocks
 803	 * can't happen.
 804	 */
 805	if (cpu_online(this_cpu) && !oops_in_progress &&
 806	    !early_boot_irqs_disabled)
 807		lockdep_assert_irqs_enabled();
 808
 809	/*
 810	 * When @wait we can deadlock when we interrupt between llist_add() and
 811	 * arch_send_call_function_ipi*(); when !@wait we can deadlock due to
 812	 * csd_lock() on because the interrupt context uses the same csd
 813	 * storage.
 814	 */
 815	WARN_ON_ONCE(!in_task());
 816
 817	/* Check if we need local execution. */
 818	if ((scf_flags & SCF_RUN_LOCAL) && cpumask_test_cpu(this_cpu, mask))
 819		run_local = true;
 820
 821	/* Check if we need remote execution, i.e., any CPU excluding this one. */
 822	cpu = cpumask_first_and(mask, cpu_online_mask);
 823	if (cpu == this_cpu)
 824		cpu = cpumask_next_and(cpu, mask, cpu_online_mask);
 825	if (cpu < nr_cpu_ids)
 826		run_remote = true;
 827
 828	if (run_remote) {
 829		cfd = this_cpu_ptr(&cfd_data);
 830		cpumask_and(cfd->cpumask, mask, cpu_online_mask);
 831		__cpumask_clear_cpu(this_cpu, cfd->cpumask);
 832
 833		cpumask_clear(cfd->cpumask_ipi);
 834		for_each_cpu(cpu, cfd->cpumask) {
 835			call_single_data_t *csd = per_cpu_ptr(cfd->csd, cpu);
 
 836
 837			if (cond_func && !cond_func(cpu, info)) {
 838				__cpumask_clear_cpu(cpu, cfd->cpumask);
 839				continue;
 840			}
 841
 842			csd_lock(csd);
 843			if (wait)
 844				csd->node.u_flags |= CSD_TYPE_SYNC;
 845			csd->func = func;
 846			csd->info = info;
 847#ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
 848			csd->node.src = smp_processor_id();
 849			csd->node.dst = cpu;
 850#endif
 851			trace_csd_queue_cpu(cpu, _RET_IP_, func, csd);
 852
 853			if (llist_add(&csd->node.llist, &per_cpu(call_single_queue, cpu))) {
 854				__cpumask_set_cpu(cpu, cfd->cpumask_ipi);
 855				nr_cpus++;
 856				last_cpu = cpu;
 
 
 
 
 857			}
 858		}
 859
 
 
 860		/*
 861		 * Choose the most efficient way to send an IPI. Note that the
 862		 * number of CPUs might be zero due to concurrent changes to the
 863		 * provided mask.
 864		 */
 865		if (nr_cpus == 1)
 866			send_call_function_single_ipi(last_cpu);
 867		else if (likely(nr_cpus > 1))
 868			send_call_function_ipi_mask(cfd->cpumask_ipi);
 
 
 869	}
 870
 871	if (run_local && (!cond_func || cond_func(this_cpu, info))) {
 872		unsigned long flags;
 873
 874		local_irq_save(flags);
 875		csd_do_func(func, info, NULL);
 876		local_irq_restore(flags);
 877	}
 878
 879	if (run_remote && wait) {
 880		for_each_cpu(cpu, cfd->cpumask) {
 881			call_single_data_t *csd;
 882
 883			csd = per_cpu_ptr(cfd->csd, cpu);
 884			csd_lock_wait(csd);
 885		}
 886	}
 887}
 888
 889/**
 890 * smp_call_function_many(): Run a function on a set of CPUs.
 891 * @mask: The set of cpus to run on (only runs on online subset).
 892 * @func: The function to run. This must be fast and non-blocking.
 893 * @info: An arbitrary pointer to pass to the function.
 894 * @wait: Bitmask that controls the operation. If %SCF_WAIT is set, wait
 895 *        (atomically) until function has completed on other CPUs. If
 896 *        %SCF_RUN_LOCAL is set, the function will also be run locally
 897 *        if the local CPU is set in the @cpumask.
 898 *
 899 * If @wait is true, then returns once @func has returned.
 900 *
 901 * You must not call this function with disabled interrupts or from a
 902 * hardware interrupt handler or from a bottom half handler. Preemption
 903 * must be disabled when calling this function.
 904 */
 905void smp_call_function_many(const struct cpumask *mask,
 906			    smp_call_func_t func, void *info, bool wait)
 907{
 908	smp_call_function_many_cond(mask, func, info, wait * SCF_WAIT, NULL);
 909}
 910EXPORT_SYMBOL(smp_call_function_many);
 911
 912/**
 913 * smp_call_function(): Run a function on all other CPUs.
 914 * @func: The function to run. This must be fast and non-blocking.
 915 * @info: An arbitrary pointer to pass to the function.
 916 * @wait: If true, wait (atomically) until function has completed
 917 *        on other CPUs.
 918 *
 919 * Returns 0.
 920 *
 921 * If @wait is true, then returns once @func has returned; otherwise
 922 * it returns just before the target cpu calls @func.
 923 *
 924 * You must not call this function with disabled interrupts or from a
 925 * hardware interrupt handler or from a bottom half handler.
 926 */
 927void smp_call_function(smp_call_func_t func, void *info, int wait)
 928{
 929	preempt_disable();
 930	smp_call_function_many(cpu_online_mask, func, info, wait);
 931	preempt_enable();
 932}
 933EXPORT_SYMBOL(smp_call_function);
 934
 935/* Setup configured maximum number of CPUs to activate */
 936unsigned int setup_max_cpus = NR_CPUS;
 937EXPORT_SYMBOL(setup_max_cpus);
 938
 939
 940/*
 941 * Setup routine for controlling SMP activation
 942 *
 943 * Command-line option of "nosmp" or "maxcpus=0" will disable SMP
 944 * activation entirely (the MPS table probe still happens, though).
 945 *
 946 * Command-line option of "maxcpus=<NUM>", where <NUM> is an integer
 947 * greater than 0, limits the maximum number of CPUs activated in
 948 * SMP mode to <NUM>.
 949 */
 950
 951void __weak __init arch_disable_smp_support(void) { }
 952
 953static int __init nosmp(char *str)
 954{
 955	setup_max_cpus = 0;
 956	arch_disable_smp_support();
 957
 958	return 0;
 959}
 960
 961early_param("nosmp", nosmp);
 962
 963/* this is hard limit */
 964static int __init nrcpus(char *str)
 965{
 966	int nr_cpus;
 967
 968	if (get_option(&str, &nr_cpus) && nr_cpus > 0 && nr_cpus < nr_cpu_ids)
 969		set_nr_cpu_ids(nr_cpus);
 970
 971	return 0;
 972}
 973
 974early_param("nr_cpus", nrcpus);
 975
 976static int __init maxcpus(char *str)
 977{
 978	get_option(&str, &setup_max_cpus);
 979	if (setup_max_cpus == 0)
 980		arch_disable_smp_support();
 981
 982	return 0;
 983}
 984
 985early_param("maxcpus", maxcpus);
 986
 987#if (NR_CPUS > 1) && !defined(CONFIG_FORCE_NR_CPUS)
 988/* Setup number of possible processor ids */
 989unsigned int nr_cpu_ids __read_mostly = NR_CPUS;
 990EXPORT_SYMBOL(nr_cpu_ids);
 991#endif
 992
 993/* An arch may set nr_cpu_ids earlier if needed, so this would be redundant */
 994void __init setup_nr_cpu_ids(void)
 995{
 996	set_nr_cpu_ids(find_last_bit(cpumask_bits(cpu_possible_mask), NR_CPUS) + 1);
 997}
 998
 999/* Called by boot processor to activate the rest. */
1000void __init smp_init(void)
1001{
1002	int num_nodes, num_cpus;
1003
1004	idle_threads_init();
1005	cpuhp_threads_init();
1006
1007	pr_info("Bringing up secondary CPUs ...\n");
1008
1009	bringup_nonboot_cpus(setup_max_cpus);
1010
1011	num_nodes = num_online_nodes();
1012	num_cpus  = num_online_cpus();
1013	pr_info("Brought up %d node%s, %d CPU%s\n",
1014		num_nodes, str_plural(num_nodes), num_cpus, str_plural(num_cpus));
 
1015
1016	/* Any cleanup work */
1017	smp_cpus_done(setup_max_cpus);
1018}
1019
1020/*
1021 * on_each_cpu_cond(): Call a function on each processor for which
1022 * the supplied function cond_func returns true, optionally waiting
1023 * for all the required CPUs to finish. This may include the local
1024 * processor.
1025 * @cond_func:	A callback function that is passed a cpu id and
1026 *		the info parameter. The function is called
1027 *		with preemption disabled. The function should
1028 *		return a blooean value indicating whether to IPI
1029 *		the specified CPU.
1030 * @func:	The function to run on all applicable CPUs.
1031 *		This must be fast and non-blocking.
1032 * @info:	An arbitrary pointer to pass to both functions.
1033 * @wait:	If true, wait (atomically) until function has
1034 *		completed on other CPUs.
1035 *
1036 * Preemption is disabled to protect against CPUs going offline but not online.
1037 * CPUs going online during the call will not be seen or sent an IPI.
1038 *
1039 * You must not call this function with disabled interrupts or
1040 * from a hardware interrupt handler or from a bottom half handler.
1041 */
1042void on_each_cpu_cond_mask(smp_cond_func_t cond_func, smp_call_func_t func,
1043			   void *info, bool wait, const struct cpumask *mask)
1044{
1045	unsigned int scf_flags = SCF_RUN_LOCAL;
1046
1047	if (wait)
1048		scf_flags |= SCF_WAIT;
1049
1050	preempt_disable();
1051	smp_call_function_many_cond(mask, func, info, scf_flags, cond_func);
1052	preempt_enable();
1053}
1054EXPORT_SYMBOL(on_each_cpu_cond_mask);
1055
1056static void do_nothing(void *unused)
1057{
1058}
1059
1060/**
1061 * kick_all_cpus_sync - Force all cpus out of idle
1062 *
1063 * Used to synchronize the update of pm_idle function pointer. It's
1064 * called after the pointer is updated and returns after the dummy
1065 * callback function has been executed on all cpus. The execution of
1066 * the function can only happen on the remote cpus after they have
1067 * left the idle function which had been called via pm_idle function
1068 * pointer. So it's guaranteed that nothing uses the previous pointer
1069 * anymore.
1070 */
1071void kick_all_cpus_sync(void)
1072{
1073	/* Make sure the change is visible before we kick the cpus */
1074	smp_mb();
1075	smp_call_function(do_nothing, NULL, 1);
1076}
1077EXPORT_SYMBOL_GPL(kick_all_cpus_sync);
1078
1079/**
1080 * wake_up_all_idle_cpus - break all cpus out of idle
1081 * wake_up_all_idle_cpus try to break all cpus which is in idle state even
1082 * including idle polling cpus, for non-idle cpus, we will do nothing
1083 * for them.
1084 */
1085void wake_up_all_idle_cpus(void)
1086{
1087	int cpu;
1088
1089	for_each_possible_cpu(cpu) {
1090		preempt_disable();
1091		if (cpu != smp_processor_id() && cpu_online(cpu))
1092			wake_up_if_idle(cpu);
1093		preempt_enable();
1094	}
1095}
1096EXPORT_SYMBOL_GPL(wake_up_all_idle_cpus);
1097
1098/**
1099 * struct smp_call_on_cpu_struct - Call a function on a specific CPU
1100 * @work: &work_struct
1101 * @done: &completion to signal
1102 * @func: function to call
1103 * @data: function's data argument
1104 * @ret: return value from @func
1105 * @cpu: target CPU (%-1 for any CPU)
1106 *
1107 * Used to call a function on a specific cpu and wait for it to return.
1108 * Optionally make sure the call is done on a specified physical cpu via vcpu
1109 * pinning in order to support virtualized environments.
1110 */
1111struct smp_call_on_cpu_struct {
1112	struct work_struct	work;
1113	struct completion	done;
1114	int			(*func)(void *);
1115	void			*data;
1116	int			ret;
1117	int			cpu;
1118};
1119
1120static void smp_call_on_cpu_callback(struct work_struct *work)
1121{
1122	struct smp_call_on_cpu_struct *sscs;
1123
1124	sscs = container_of(work, struct smp_call_on_cpu_struct, work);
1125	if (sscs->cpu >= 0)
1126		hypervisor_pin_vcpu(sscs->cpu);
1127	sscs->ret = sscs->func(sscs->data);
1128	if (sscs->cpu >= 0)
1129		hypervisor_pin_vcpu(-1);
1130
1131	complete(&sscs->done);
1132}
1133
1134int smp_call_on_cpu(unsigned int cpu, int (*func)(void *), void *par, bool phys)
1135{
1136	struct smp_call_on_cpu_struct sscs = {
1137		.done = COMPLETION_INITIALIZER_ONSTACK(sscs.done),
1138		.func = func,
1139		.data = par,
1140		.cpu  = phys ? cpu : -1,
1141	};
1142
1143	INIT_WORK_ONSTACK(&sscs.work, smp_call_on_cpu_callback);
1144
1145	if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1146		return -ENXIO;
1147
1148	queue_work_on(cpu, system_wq, &sscs.work);
1149	wait_for_completion(&sscs.done);
1150	destroy_work_on_stack(&sscs.work);
1151
1152	return sscs.ret;
1153}
1154EXPORT_SYMBOL_GPL(smp_call_on_cpu);
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic helpers for smp ipi calls
   4 *
   5 * (C) Jens Axboe <jens.axboe@oracle.com> 2008
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/irq_work.h>
  11#include <linux/rcupdate.h>
  12#include <linux/rculist.h>
  13#include <linux/kernel.h>
  14#include <linux/export.h>
  15#include <linux/percpu.h>
  16#include <linux/init.h>
  17#include <linux/interrupt.h>
  18#include <linux/gfp.h>
  19#include <linux/smp.h>
  20#include <linux/cpu.h>
  21#include <linux/sched.h>
  22#include <linux/sched/idle.h>
  23#include <linux/hypervisor.h>
  24#include <linux/sched/clock.h>
  25#include <linux/nmi.h>
  26#include <linux/sched/debug.h>
  27#include <linux/jump_label.h>
 
 
 
 
 
 
  28
  29#include "smpboot.h"
  30#include "sched/smp.h"
  31
  32#define CSD_TYPE(_csd)	((_csd)->node.u_flags & CSD_FLAG_TYPE_MASK)
  33
  34#ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
  35union cfd_seq_cnt {
  36	u64		val;
  37	struct {
  38		u64	src:16;
  39		u64	dst:16;
  40#define CFD_SEQ_NOCPU	0xffff
  41		u64	type:4;
  42#define CFD_SEQ_QUEUE	0
  43#define CFD_SEQ_IPI	1
  44#define CFD_SEQ_NOIPI	2
  45#define CFD_SEQ_PING	3
  46#define CFD_SEQ_PINGED	4
  47#define CFD_SEQ_HANDLE	5
  48#define CFD_SEQ_DEQUEUE	6
  49#define CFD_SEQ_IDLE	7
  50#define CFD_SEQ_GOTIPI	8
  51#define CFD_SEQ_HDLEND	9
  52		u64	cnt:28;
  53	}		u;
  54};
  55
  56static char *seq_type[] = {
  57	[CFD_SEQ_QUEUE]		= "queue",
  58	[CFD_SEQ_IPI]		= "ipi",
  59	[CFD_SEQ_NOIPI]		= "noipi",
  60	[CFD_SEQ_PING]		= "ping",
  61	[CFD_SEQ_PINGED]	= "pinged",
  62	[CFD_SEQ_HANDLE]	= "handle",
  63	[CFD_SEQ_DEQUEUE]	= "dequeue (src CPU 0 == empty)",
  64	[CFD_SEQ_IDLE]		= "idle",
  65	[CFD_SEQ_GOTIPI]	= "gotipi",
  66	[CFD_SEQ_HDLEND]	= "hdlend (src CPU 0 == early)",
  67};
  68
  69struct cfd_seq_local {
  70	u64	ping;
  71	u64	pinged;
  72	u64	handle;
  73	u64	dequeue;
  74	u64	idle;
  75	u64	gotipi;
  76	u64	hdlend;
  77};
  78#endif
  79
  80struct cfd_percpu {
  81	call_single_data_t	csd;
  82#ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
  83	u64	seq_queue;
  84	u64	seq_ipi;
  85	u64	seq_noipi;
  86#endif
  87};
  88
  89struct call_function_data {
  90	struct cfd_percpu	__percpu *pcpu;
  91	cpumask_var_t		cpumask;
  92	cpumask_var_t		cpumask_ipi;
  93};
  94
  95static DEFINE_PER_CPU_ALIGNED(struct call_function_data, cfd_data);
  96
  97static DEFINE_PER_CPU_SHARED_ALIGNED(struct llist_head, call_single_queue);
  98
 
 
  99static void __flush_smp_call_function_queue(bool warn_cpu_offline);
 100
 101int smpcfd_prepare_cpu(unsigned int cpu)
 102{
 103	struct call_function_data *cfd = &per_cpu(cfd_data, cpu);
 104
 105	if (!zalloc_cpumask_var_node(&cfd->cpumask, GFP_KERNEL,
 106				     cpu_to_node(cpu)))
 107		return -ENOMEM;
 108	if (!zalloc_cpumask_var_node(&cfd->cpumask_ipi, GFP_KERNEL,
 109				     cpu_to_node(cpu))) {
 110		free_cpumask_var(cfd->cpumask);
 111		return -ENOMEM;
 112	}
 113	cfd->pcpu = alloc_percpu(struct cfd_percpu);
 114	if (!cfd->pcpu) {
 115		free_cpumask_var(cfd->cpumask);
 116		free_cpumask_var(cfd->cpumask_ipi);
 117		return -ENOMEM;
 118	}
 119
 120	return 0;
 121}
 122
 123int smpcfd_dead_cpu(unsigned int cpu)
 124{
 125	struct call_function_data *cfd = &per_cpu(cfd_data, cpu);
 126
 127	free_cpumask_var(cfd->cpumask);
 128	free_cpumask_var(cfd->cpumask_ipi);
 129	free_percpu(cfd->pcpu);
 130	return 0;
 131}
 132
 133int smpcfd_dying_cpu(unsigned int cpu)
 134{
 135	/*
 136	 * The IPIs for the smp-call-function callbacks queued by other
 137	 * CPUs might arrive late, either due to hardware latencies or
 138	 * because this CPU disabled interrupts (inside stop-machine)
 139	 * before the IPIs were sent. So flush out any pending callbacks
 140	 * explicitly (without waiting for the IPIs to arrive), to
 141	 * ensure that the outgoing CPU doesn't go offline with work
 142	 * still pending.
 143	 */
 144	__flush_smp_call_function_queue(false);
 145	irq_work_run();
 146	return 0;
 147}
 148
 149void __init call_function_init(void)
 150{
 151	int i;
 152
 153	for_each_possible_cpu(i)
 154		init_llist_head(&per_cpu(call_single_queue, i));
 155
 156	smpcfd_prepare_cpu(smp_processor_id());
 157}
 158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 159#ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
 160
 161static DEFINE_STATIC_KEY_FALSE(csdlock_debug_enabled);
 162static DEFINE_STATIC_KEY_FALSE(csdlock_debug_extended);
 163
 
 
 
 
 
 
 
 
 
 164static int __init csdlock_debug(char *str)
 165{
 
 166	unsigned int val = 0;
 167
 168	if (str && !strcmp(str, "ext")) {
 169		val = 1;
 170		static_branch_enable(&csdlock_debug_extended);
 171	} else
 172		get_option(&str, &val);
 173
 174	if (val)
 175		static_branch_enable(&csdlock_debug_enabled);
 176
 177	return 1;
 178}
 179__setup("csdlock_debug=", csdlock_debug);
 180
 181static DEFINE_PER_CPU(call_single_data_t *, cur_csd);
 182static DEFINE_PER_CPU(smp_call_func_t, cur_csd_func);
 183static DEFINE_PER_CPU(void *, cur_csd_info);
 184static DEFINE_PER_CPU(struct cfd_seq_local, cfd_seq_local);
 185
 186static ulong csd_lock_timeout = 5000;  /* CSD lock timeout in milliseconds. */
 187module_param(csd_lock_timeout, ulong, 0444);
 
 
 188
 189static atomic_t csd_bug_count = ATOMIC_INIT(0);
 190static u64 cfd_seq;
 191
 192#define CFD_SEQ(s, d, t, c)	\
 193	(union cfd_seq_cnt){ .u.src = s, .u.dst = d, .u.type = t, .u.cnt = c }
 194
 195static u64 cfd_seq_inc(unsigned int src, unsigned int dst, unsigned int type)
 196{
 197	union cfd_seq_cnt new, old;
 198
 199	new = CFD_SEQ(src, dst, type, 0);
 200
 201	do {
 202		old.val = READ_ONCE(cfd_seq);
 203		new.u.cnt = old.u.cnt + 1;
 204	} while (cmpxchg(&cfd_seq, old.val, new.val) != old.val);
 205
 206	return old.val;
 207}
 208
 209#define cfd_seq_store(var, src, dst, type)				\
 210	do {								\
 211		if (static_branch_unlikely(&csdlock_debug_extended))	\
 212			var = cfd_seq_inc(src, dst, type);		\
 213	} while (0)
 214
 215/* Record current CSD work for current CPU, NULL to erase. */
 216static void __csd_lock_record(struct __call_single_data *csd)
 217{
 218	if (!csd) {
 219		smp_mb(); /* NULL cur_csd after unlock. */
 220		__this_cpu_write(cur_csd, NULL);
 221		return;
 222	}
 223	__this_cpu_write(cur_csd_func, csd->func);
 224	__this_cpu_write(cur_csd_info, csd->info);
 225	smp_wmb(); /* func and info before csd. */
 226	__this_cpu_write(cur_csd, csd);
 227	smp_mb(); /* Update cur_csd before function call. */
 228		  /* Or before unlock, as the case may be. */
 229}
 230
 231static __always_inline void csd_lock_record(struct __call_single_data *csd)
 232{
 233	if (static_branch_unlikely(&csdlock_debug_enabled))
 234		__csd_lock_record(csd);
 235}
 236
 237static int csd_lock_wait_getcpu(struct __call_single_data *csd)
 238{
 239	unsigned int csd_type;
 240
 241	csd_type = CSD_TYPE(csd);
 242	if (csd_type == CSD_TYPE_ASYNC || csd_type == CSD_TYPE_SYNC)
 243		return csd->node.dst; /* Other CSD_TYPE_ values might not have ->dst. */
 244	return -1;
 245}
 246
 247static void cfd_seq_data_add(u64 val, unsigned int src, unsigned int dst,
 248			     unsigned int type, union cfd_seq_cnt *data,
 249			     unsigned int *n_data, unsigned int now)
 250{
 251	union cfd_seq_cnt new[2];
 252	unsigned int i, j, k;
 253
 254	new[0].val = val;
 255	new[1] = CFD_SEQ(src, dst, type, new[0].u.cnt + 1);
 256
 257	for (i = 0; i < 2; i++) {
 258		if (new[i].u.cnt <= now)
 259			new[i].u.cnt |= 0x80000000U;
 260		for (j = 0; j < *n_data; j++) {
 261			if (new[i].u.cnt == data[j].u.cnt) {
 262				/* Direct read value trumps generated one. */
 263				if (i == 0)
 264					data[j].val = new[i].val;
 265				break;
 266			}
 267			if (new[i].u.cnt < data[j].u.cnt) {
 268				for (k = *n_data; k > j; k--)
 269					data[k].val = data[k - 1].val;
 270				data[j].val = new[i].val;
 271				(*n_data)++;
 272				break;
 273			}
 274		}
 275		if (j == *n_data) {
 276			data[j].val = new[i].val;
 277			(*n_data)++;
 278		}
 279	}
 280}
 281
 282static const char *csd_lock_get_type(unsigned int type)
 283{
 284	return (type >= ARRAY_SIZE(seq_type)) ? "?" : seq_type[type];
 285}
 286
 287static void csd_lock_print_extended(struct __call_single_data *csd, int cpu)
 
 
 
 
 
 
 288{
 289	struct cfd_seq_local *seq = &per_cpu(cfd_seq_local, cpu);
 290	unsigned int srccpu = csd->node.src;
 291	struct call_function_data *cfd = per_cpu_ptr(&cfd_data, srccpu);
 292	struct cfd_percpu *pcpu = per_cpu_ptr(cfd->pcpu, cpu);
 293	unsigned int now;
 294	union cfd_seq_cnt data[2 * ARRAY_SIZE(seq_type)];
 295	unsigned int n_data = 0, i;
 296
 297	data[0].val = READ_ONCE(cfd_seq);
 298	now = data[0].u.cnt;
 299
 300	cfd_seq_data_add(pcpu->seq_queue,			srccpu, cpu,	       CFD_SEQ_QUEUE,  data, &n_data, now);
 301	cfd_seq_data_add(pcpu->seq_ipi,				srccpu, cpu,	       CFD_SEQ_IPI,    data, &n_data, now);
 302	cfd_seq_data_add(pcpu->seq_noipi,			srccpu, cpu,	       CFD_SEQ_NOIPI,  data, &n_data, now);
 303
 304	cfd_seq_data_add(per_cpu(cfd_seq_local.ping, srccpu),	srccpu, CFD_SEQ_NOCPU, CFD_SEQ_PING,   data, &n_data, now);
 305	cfd_seq_data_add(per_cpu(cfd_seq_local.pinged, srccpu), srccpu, CFD_SEQ_NOCPU, CFD_SEQ_PINGED, data, &n_data, now);
 306
 307	cfd_seq_data_add(seq->idle,    CFD_SEQ_NOCPU, cpu, CFD_SEQ_IDLE,    data, &n_data, now);
 308	cfd_seq_data_add(seq->gotipi,  CFD_SEQ_NOCPU, cpu, CFD_SEQ_GOTIPI,  data, &n_data, now);
 309	cfd_seq_data_add(seq->handle,  CFD_SEQ_NOCPU, cpu, CFD_SEQ_HANDLE,  data, &n_data, now);
 310	cfd_seq_data_add(seq->dequeue, CFD_SEQ_NOCPU, cpu, CFD_SEQ_DEQUEUE, data, &n_data, now);
 311	cfd_seq_data_add(seq->hdlend,  CFD_SEQ_NOCPU, cpu, CFD_SEQ_HDLEND,  data, &n_data, now);
 312
 313	for (i = 0; i < n_data; i++) {
 314		pr_alert("\tcsd: cnt(%07x): %04x->%04x %s\n",
 315			 data[i].u.cnt & ~0x80000000U, data[i].u.src,
 316			 data[i].u.dst, csd_lock_get_type(data[i].u.type));
 317	}
 318	pr_alert("\tcsd: cnt now: %07x\n", now);
 319}
 320
 321/*
 322 * Complain if too much time spent waiting.  Note that only
 323 * the CSD_TYPE_SYNC/ASYNC types provide the destination CPU,
 324 * so waiting on other types gets much less information.
 325 */
 326static bool csd_lock_wait_toolong(struct __call_single_data *csd, u64 ts0, u64 *ts1, int *bug_id)
 327{
 328	int cpu = -1;
 329	int cpux;
 330	bool firsttime;
 331	u64 ts2, ts_delta;
 332	call_single_data_t *cpu_cur_csd;
 333	unsigned int flags = READ_ONCE(csd->node.u_flags);
 334	unsigned long long csd_lock_timeout_ns = csd_lock_timeout * NSEC_PER_MSEC;
 335
 336	if (!(flags & CSD_FLAG_LOCK)) {
 337		if (!unlikely(*bug_id))
 338			return true;
 339		cpu = csd_lock_wait_getcpu(csd);
 340		pr_alert("csd: CSD lock (#%d) got unstuck on CPU#%02d, CPU#%02d released the lock.\n",
 341			 *bug_id, raw_smp_processor_id(), cpu);
 
 342		return true;
 343	}
 344
 345	ts2 = sched_clock();
 
 346	ts_delta = ts2 - *ts1;
 347	if (likely(ts_delta <= csd_lock_timeout_ns || csd_lock_timeout_ns == 0))
 
 
 
 
 
 
 
 
 
 348		return false;
 
 349
 350	firsttime = !*bug_id;
 351	if (firsttime)
 352		*bug_id = atomic_inc_return(&csd_bug_count);
 353	cpu = csd_lock_wait_getcpu(csd);
 354	if (WARN_ONCE(cpu < 0 || cpu >= nr_cpu_ids, "%s: cpu = %d\n", __func__, cpu))
 355		cpux = 0;
 356	else
 357		cpux = cpu;
 358	cpu_cur_csd = smp_load_acquire(&per_cpu(cur_csd, cpux)); /* Before func and info. */
 359	pr_alert("csd: %s non-responsive CSD lock (#%d) on CPU#%d, waiting %llu ns for CPU#%02d %pS(%ps).\n",
 360		 firsttime ? "Detected" : "Continued", *bug_id, raw_smp_processor_id(), ts2 - ts0,
 
 
 361		 cpu, csd->func, csd->info);
 
 
 
 
 
 
 
 
 
 362	if (cpu_cur_csd && csd != cpu_cur_csd) {
 363		pr_alert("\tcsd: CSD lock (#%d) handling prior %pS(%ps) request.\n",
 364			 *bug_id, READ_ONCE(per_cpu(cur_csd_func, cpux)),
 365			 READ_ONCE(per_cpu(cur_csd_info, cpux)));
 366	} else {
 367		pr_alert("\tcsd: CSD lock (#%d) %s.\n",
 368			 *bug_id, !cpu_cur_csd ? "unresponsive" : "handling this request");
 369	}
 370	if (cpu >= 0) {
 371		if (static_branch_unlikely(&csdlock_debug_extended))
 372			csd_lock_print_extended(csd, cpu);
 373		dump_cpu_task(cpu);
 374		if (!cpu_cur_csd) {
 375			pr_alert("csd: Re-sending CSD lock (#%d) IPI from CPU#%02d to CPU#%02d\n", *bug_id, raw_smp_processor_id(), cpu);
 376			arch_send_call_function_single_ipi(cpu);
 377		}
 378	}
 379	dump_stack();
 
 380	*ts1 = ts2;
 381
 382	return false;
 383}
 384
 385/*
 386 * csd_lock/csd_unlock used to serialize access to per-cpu csd resources
 387 *
 388 * For non-synchronous ipi calls the csd can still be in use by the
 389 * previous function call. For multi-cpu calls its even more interesting
 390 * as we'll have to ensure no other cpu is observing our csd.
 391 */
 392static void __csd_lock_wait(struct __call_single_data *csd)
 393{
 
 394	int bug_id = 0;
 395	u64 ts0, ts1;
 396
 397	ts1 = ts0 = sched_clock();
 398	for (;;) {
 399		if (csd_lock_wait_toolong(csd, ts0, &ts1, &bug_id))
 400			break;
 401		cpu_relax();
 402	}
 403	smp_acquire__after_ctrl_dep();
 404}
 405
 406static __always_inline void csd_lock_wait(struct __call_single_data *csd)
 407{
 408	if (static_branch_unlikely(&csdlock_debug_enabled)) {
 409		__csd_lock_wait(csd);
 410		return;
 411	}
 412
 413	smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK));
 414}
 415
 416static void __smp_call_single_queue_debug(int cpu, struct llist_node *node)
 417{
 418	unsigned int this_cpu = smp_processor_id();
 419	struct cfd_seq_local *seq = this_cpu_ptr(&cfd_seq_local);
 420	struct call_function_data *cfd = this_cpu_ptr(&cfd_data);
 421	struct cfd_percpu *pcpu = per_cpu_ptr(cfd->pcpu, cpu);
 422
 423	cfd_seq_store(pcpu->seq_queue, this_cpu, cpu, CFD_SEQ_QUEUE);
 424	if (llist_add(node, &per_cpu(call_single_queue, cpu))) {
 425		cfd_seq_store(pcpu->seq_ipi, this_cpu, cpu, CFD_SEQ_IPI);
 426		cfd_seq_store(seq->ping, this_cpu, cpu, CFD_SEQ_PING);
 427		send_call_function_single_ipi(cpu);
 428		cfd_seq_store(seq->pinged, this_cpu, cpu, CFD_SEQ_PINGED);
 429	} else {
 430		cfd_seq_store(pcpu->seq_noipi, this_cpu, cpu, CFD_SEQ_NOIPI);
 431	}
 432}
 433#else
 434#define cfd_seq_store(var, src, dst, type)
 435
 436static void csd_lock_record(struct __call_single_data *csd)
 437{
 438}
 439
 440static __always_inline void csd_lock_wait(struct __call_single_data *csd)
 441{
 442	smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK));
 443}
 444#endif
 445
 446static __always_inline void csd_lock(struct __call_single_data *csd)
 447{
 448	csd_lock_wait(csd);
 449	csd->node.u_flags |= CSD_FLAG_LOCK;
 450
 451	/*
 452	 * prevent CPU from reordering the above assignment
 453	 * to ->flags with any subsequent assignments to other
 454	 * fields of the specified call_single_data_t structure:
 455	 */
 456	smp_wmb();
 457}
 458
 459static __always_inline void csd_unlock(struct __call_single_data *csd)
 460{
 461	WARN_ON(!(csd->node.u_flags & CSD_FLAG_LOCK));
 462
 463	/*
 464	 * ensure we're all done before releasing data:
 465	 */
 466	smp_store_release(&csd->node.u_flags, 0);
 467}
 468
 469static DEFINE_PER_CPU_SHARED_ALIGNED(call_single_data_t, csd_data);
 470
 471void __smp_call_single_queue(int cpu, struct llist_node *node)
 472{
 473#ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
 474	if (static_branch_unlikely(&csdlock_debug_extended)) {
 475		unsigned int type;
 
 
 
 
 
 
 
 
 
 
 
 476
 477		type = CSD_TYPE(container_of(node, call_single_data_t,
 478					     node.llist));
 479		if (type == CSD_TYPE_SYNC || type == CSD_TYPE_ASYNC) {
 480			__smp_call_single_queue_debug(cpu, node);
 481			return;
 482		}
 483	}
 484#endif
 485
 486	/*
 487	 * The list addition should be visible before sending the IPI
 488	 * handler locks the list to pull the entry off it because of
 489	 * normal cache coherency rules implied by spinlocks.
 
 490	 *
 491	 * If IPIs can go out of order to the cache coherency protocol
 492	 * in an architecture, sufficient synchronisation should be added
 493	 * to arch code to make it appear to obey cache coherency WRT
 494	 * locking and barrier primitives. Generic code isn't really
 495	 * equipped to do the right thing...
 496	 */
 497	if (llist_add(node, &per_cpu(call_single_queue, cpu)))
 498		send_call_function_single_ipi(cpu);
 499}
 500
 501/*
 502 * Insert a previously allocated call_single_data_t element
 503 * for execution on the given CPU. data must already have
 504 * ->func, ->info, and ->flags set.
 505 */
 506static int generic_exec_single(int cpu, struct __call_single_data *csd)
 507{
 508	if (cpu == smp_processor_id()) {
 509		smp_call_func_t func = csd->func;
 510		void *info = csd->info;
 511		unsigned long flags;
 512
 513		/*
 514		 * We can unlock early even for the synchronous on-stack case,
 515		 * since we're doing this from the same CPU..
 516		 */
 517		csd_lock_record(csd);
 518		csd_unlock(csd);
 519		local_irq_save(flags);
 520		func(info);
 521		csd_lock_record(NULL);
 522		local_irq_restore(flags);
 523		return 0;
 524	}
 525
 526	if ((unsigned)cpu >= nr_cpu_ids || !cpu_online(cpu)) {
 527		csd_unlock(csd);
 528		return -ENXIO;
 529	}
 530
 531	__smp_call_single_queue(cpu, &csd->node.llist);
 532
 533	return 0;
 534}
 535
 536/**
 537 * generic_smp_call_function_single_interrupt - Execute SMP IPI callbacks
 538 *
 539 * Invoked by arch to handle an IPI for call function single.
 540 * Must be called with interrupts disabled.
 541 */
 542void generic_smp_call_function_single_interrupt(void)
 543{
 544	cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->gotipi, CFD_SEQ_NOCPU,
 545		      smp_processor_id(), CFD_SEQ_GOTIPI);
 546	__flush_smp_call_function_queue(true);
 547}
 548
 549/**
 550 * __flush_smp_call_function_queue - Flush pending smp-call-function callbacks
 551 *
 552 * @warn_cpu_offline: If set to 'true', warn if callbacks were queued on an
 553 *		      offline CPU. Skip this check if set to 'false'.
 554 *
 555 * Flush any pending smp-call-function callbacks queued on this CPU. This is
 556 * invoked by the generic IPI handler, as well as by a CPU about to go offline,
 557 * to ensure that all pending IPI callbacks are run before it goes completely
 558 * offline.
 559 *
 560 * Loop through the call_single_queue and run all the queued callbacks.
 561 * Must be called with interrupts disabled.
 562 */
 563static void __flush_smp_call_function_queue(bool warn_cpu_offline)
 564{
 565	call_single_data_t *csd, *csd_next;
 566	struct llist_node *entry, *prev;
 567	struct llist_head *head;
 568	static bool warned;
 
 569
 570	lockdep_assert_irqs_disabled();
 571
 
 
 
 
 572	head = this_cpu_ptr(&call_single_queue);
 573	cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->handle, CFD_SEQ_NOCPU,
 574		      smp_processor_id(), CFD_SEQ_HANDLE);
 575	entry = llist_del_all(head);
 576	cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->dequeue,
 577		      /* Special meaning of source cpu: 0 == queue empty */
 578		      entry ? CFD_SEQ_NOCPU : 0,
 579		      smp_processor_id(), CFD_SEQ_DEQUEUE);
 580	entry = llist_reverse_order(entry);
 581
 582	/* There shouldn't be any pending callbacks on an offline CPU. */
 583	if (unlikely(warn_cpu_offline && !cpu_online(smp_processor_id()) &&
 584		     !warned && entry != NULL)) {
 585		warned = true;
 586		WARN(1, "IPI on offline CPU %d\n", smp_processor_id());
 587
 588		/*
 589		 * We don't have to use the _safe() variant here
 590		 * because we are not invoking the IPI handlers yet.
 591		 */
 592		llist_for_each_entry(csd, entry, node.llist) {
 593			switch (CSD_TYPE(csd)) {
 594			case CSD_TYPE_ASYNC:
 595			case CSD_TYPE_SYNC:
 596			case CSD_TYPE_IRQ_WORK:
 597				pr_warn("IPI callback %pS sent to offline CPU\n",
 598					csd->func);
 599				break;
 600
 601			case CSD_TYPE_TTWU:
 602				pr_warn("IPI task-wakeup sent to offline CPU\n");
 603				break;
 604
 605			default:
 606				pr_warn("IPI callback, unknown type %d, sent to offline CPU\n",
 607					CSD_TYPE(csd));
 608				break;
 609			}
 610		}
 611	}
 612
 613	/*
 614	 * First; run all SYNC callbacks, people are waiting for us.
 615	 */
 616	prev = NULL;
 617	llist_for_each_entry_safe(csd, csd_next, entry, node.llist) {
 618		/* Do we wait until *after* callback? */
 619		if (CSD_TYPE(csd) == CSD_TYPE_SYNC) {
 620			smp_call_func_t func = csd->func;
 621			void *info = csd->info;
 622
 623			if (prev) {
 624				prev->next = &csd_next->node.llist;
 625			} else {
 626				entry = &csd_next->node.llist;
 627			}
 628
 629			csd_lock_record(csd);
 630			func(info);
 631			csd_unlock(csd);
 632			csd_lock_record(NULL);
 633		} else {
 634			prev = &csd->node.llist;
 635		}
 636	}
 637
 638	if (!entry) {
 639		cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->hdlend,
 640			      0, smp_processor_id(),
 641			      CFD_SEQ_HDLEND);
 642		return;
 643	}
 644
 645	/*
 646	 * Second; run all !SYNC callbacks.
 647	 */
 648	prev = NULL;
 649	llist_for_each_entry_safe(csd, csd_next, entry, node.llist) {
 650		int type = CSD_TYPE(csd);
 651
 652		if (type != CSD_TYPE_TTWU) {
 653			if (prev) {
 654				prev->next = &csd_next->node.llist;
 655			} else {
 656				entry = &csd_next->node.llist;
 657			}
 658
 659			if (type == CSD_TYPE_ASYNC) {
 660				smp_call_func_t func = csd->func;
 661				void *info = csd->info;
 662
 663				csd_lock_record(csd);
 664				csd_unlock(csd);
 665				func(info);
 666				csd_lock_record(NULL);
 667			} else if (type == CSD_TYPE_IRQ_WORK) {
 668				irq_work_single(csd);
 669			}
 670
 671		} else {
 672			prev = &csd->node.llist;
 673		}
 674	}
 675
 676	/*
 677	 * Third; only CSD_TYPE_TTWU is left, issue those.
 678	 */
 679	if (entry)
 680		sched_ttwu_pending(entry);
 681
 682	cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->hdlend, CFD_SEQ_NOCPU,
 683		      smp_processor_id(), CFD_SEQ_HDLEND);
 684}
 685
 686
 687/**
 688 * flush_smp_call_function_queue - Flush pending smp-call-function callbacks
 689 *				   from task context (idle, migration thread)
 690 *
 691 * When TIF_POLLING_NRFLAG is supported and a CPU is in idle and has it
 692 * set, then remote CPUs can avoid sending IPIs and wake the idle CPU by
 693 * setting TIF_NEED_RESCHED. The idle task on the woken up CPU has to
 694 * handle queued SMP function calls before scheduling.
 695 *
 696 * The migration thread has to ensure that an eventually pending wakeup has
 697 * been handled before it migrates a task.
 698 */
 699void flush_smp_call_function_queue(void)
 700{
 701	unsigned int was_pending;
 702	unsigned long flags;
 703
 704	if (llist_empty(this_cpu_ptr(&call_single_queue)))
 705		return;
 706
 707	cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->idle, CFD_SEQ_NOCPU,
 708		      smp_processor_id(), CFD_SEQ_IDLE);
 709	local_irq_save(flags);
 710	/* Get the already pending soft interrupts for RT enabled kernels */
 711	was_pending = local_softirq_pending();
 712	__flush_smp_call_function_queue(true);
 713	if (local_softirq_pending())
 714		do_softirq_post_smp_call_flush(was_pending);
 715
 716	local_irq_restore(flags);
 717}
 718
 719/*
 720 * smp_call_function_single - Run a function on a specific CPU
 721 * @func: The function to run. This must be fast and non-blocking.
 722 * @info: An arbitrary pointer to pass to the function.
 723 * @wait: If true, wait until function has completed on other CPUs.
 724 *
 725 * Returns 0 on success, else a negative status code.
 726 */
 727int smp_call_function_single(int cpu, smp_call_func_t func, void *info,
 728			     int wait)
 729{
 730	call_single_data_t *csd;
 731	call_single_data_t csd_stack = {
 732		.node = { .u_flags = CSD_FLAG_LOCK | CSD_TYPE_SYNC, },
 733	};
 734	int this_cpu;
 735	int err;
 736
 737	/*
 738	 * prevent preemption and reschedule on another processor,
 739	 * as well as CPU removal
 740	 */
 741	this_cpu = get_cpu();
 742
 743	/*
 744	 * Can deadlock when called with interrupts disabled.
 745	 * We allow cpu's that are not yet online though, as no one else can
 746	 * send smp call function interrupt to this cpu and as such deadlocks
 747	 * can't happen.
 748	 */
 749	WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled()
 750		     && !oops_in_progress);
 751
 752	/*
 753	 * When @wait we can deadlock when we interrupt between llist_add() and
 754	 * arch_send_call_function_ipi*(); when !@wait we can deadlock due to
 755	 * csd_lock() on because the interrupt context uses the same csd
 756	 * storage.
 757	 */
 758	WARN_ON_ONCE(!in_task());
 759
 760	csd = &csd_stack;
 761	if (!wait) {
 762		csd = this_cpu_ptr(&csd_data);
 763		csd_lock(csd);
 764	}
 765
 766	csd->func = func;
 767	csd->info = info;
 768#ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
 769	csd->node.src = smp_processor_id();
 770	csd->node.dst = cpu;
 771#endif
 772
 773	err = generic_exec_single(cpu, csd);
 774
 775	if (wait)
 776		csd_lock_wait(csd);
 777
 778	put_cpu();
 779
 780	return err;
 781}
 782EXPORT_SYMBOL(smp_call_function_single);
 783
 784/**
 785 * smp_call_function_single_async() - Run an asynchronous function on a
 786 * 			         specific CPU.
 787 * @cpu: The CPU to run on.
 788 * @csd: Pre-allocated and setup data structure
 789 *
 790 * Like smp_call_function_single(), but the call is asynchonous and
 791 * can thus be done from contexts with disabled interrupts.
 792 *
 793 * The caller passes his own pre-allocated data structure
 794 * (ie: embedded in an object) and is responsible for synchronizing it
 795 * such that the IPIs performed on the @csd are strictly serialized.
 796 *
 797 * If the function is called with one csd which has not yet been
 798 * processed by previous call to smp_call_function_single_async(), the
 799 * function will return immediately with -EBUSY showing that the csd
 800 * object is still in progress.
 801 *
 802 * NOTE: Be careful, there is unfortunately no current debugging facility to
 803 * validate the correctness of this serialization.
 804 *
 805 * Return: %0 on success or negative errno value on error
 806 */
 807int smp_call_function_single_async(int cpu, struct __call_single_data *csd)
 808{
 809	int err = 0;
 810
 811	preempt_disable();
 812
 813	if (csd->node.u_flags & CSD_FLAG_LOCK) {
 814		err = -EBUSY;
 815		goto out;
 816	}
 817
 818	csd->node.u_flags = CSD_FLAG_LOCK;
 819	smp_wmb();
 820
 821	err = generic_exec_single(cpu, csd);
 822
 823out:
 824	preempt_enable();
 825
 826	return err;
 827}
 828EXPORT_SYMBOL_GPL(smp_call_function_single_async);
 829
 830/*
 831 * smp_call_function_any - Run a function on any of the given cpus
 832 * @mask: The mask of cpus it can run on.
 833 * @func: The function to run. This must be fast and non-blocking.
 834 * @info: An arbitrary pointer to pass to the function.
 835 * @wait: If true, wait until function has completed.
 836 *
 837 * Returns 0 on success, else a negative status code (if no cpus were online).
 838 *
 839 * Selection preference:
 840 *	1) current cpu if in @mask
 841 *	2) any cpu of current node if in @mask
 842 *	3) any other online cpu in @mask
 843 */
 844int smp_call_function_any(const struct cpumask *mask,
 845			  smp_call_func_t func, void *info, int wait)
 846{
 847	unsigned int cpu;
 848	const struct cpumask *nodemask;
 849	int ret;
 850
 851	/* Try for same CPU (cheapest) */
 852	cpu = get_cpu();
 853	if (cpumask_test_cpu(cpu, mask))
 854		goto call;
 855
 856	/* Try for same node. */
 857	nodemask = cpumask_of_node(cpu_to_node(cpu));
 858	for (cpu = cpumask_first_and(nodemask, mask); cpu < nr_cpu_ids;
 859	     cpu = cpumask_next_and(cpu, nodemask, mask)) {
 860		if (cpu_online(cpu))
 861			goto call;
 862	}
 863
 864	/* Any online will do: smp_call_function_single handles nr_cpu_ids. */
 865	cpu = cpumask_any_and(mask, cpu_online_mask);
 866call:
 867	ret = smp_call_function_single(cpu, func, info, wait);
 868	put_cpu();
 869	return ret;
 870}
 871EXPORT_SYMBOL_GPL(smp_call_function_any);
 872
 873/*
 874 * Flags to be used as scf_flags argument of smp_call_function_many_cond().
 875 *
 876 * %SCF_WAIT:		Wait until function execution is completed
 877 * %SCF_RUN_LOCAL:	Run also locally if local cpu is set in cpumask
 878 */
 879#define SCF_WAIT	(1U << 0)
 880#define SCF_RUN_LOCAL	(1U << 1)
 881
 882static void smp_call_function_many_cond(const struct cpumask *mask,
 883					smp_call_func_t func, void *info,
 884					unsigned int scf_flags,
 885					smp_cond_func_t cond_func)
 886{
 887	int cpu, last_cpu, this_cpu = smp_processor_id();
 888	struct call_function_data *cfd;
 889	bool wait = scf_flags & SCF_WAIT;
 
 890	bool run_remote = false;
 891	bool run_local = false;
 892	int nr_cpus = 0;
 893
 894	lockdep_assert_preemption_disabled();
 895
 896	/*
 897	 * Can deadlock when called with interrupts disabled.
 898	 * We allow cpu's that are not yet online though, as no one else can
 899	 * send smp call function interrupt to this cpu and as such deadlocks
 900	 * can't happen.
 901	 */
 902	if (cpu_online(this_cpu) && !oops_in_progress &&
 903	    !early_boot_irqs_disabled)
 904		lockdep_assert_irqs_enabled();
 905
 906	/*
 907	 * When @wait we can deadlock when we interrupt between llist_add() and
 908	 * arch_send_call_function_ipi*(); when !@wait we can deadlock due to
 909	 * csd_lock() on because the interrupt context uses the same csd
 910	 * storage.
 911	 */
 912	WARN_ON_ONCE(!in_task());
 913
 914	/* Check if we need local execution. */
 915	if ((scf_flags & SCF_RUN_LOCAL) && cpumask_test_cpu(this_cpu, mask))
 916		run_local = true;
 917
 918	/* Check if we need remote execution, i.e., any CPU excluding this one. */
 919	cpu = cpumask_first_and(mask, cpu_online_mask);
 920	if (cpu == this_cpu)
 921		cpu = cpumask_next_and(cpu, mask, cpu_online_mask);
 922	if (cpu < nr_cpu_ids)
 923		run_remote = true;
 924
 925	if (run_remote) {
 926		cfd = this_cpu_ptr(&cfd_data);
 927		cpumask_and(cfd->cpumask, mask, cpu_online_mask);
 928		__cpumask_clear_cpu(this_cpu, cfd->cpumask);
 929
 930		cpumask_clear(cfd->cpumask_ipi);
 931		for_each_cpu(cpu, cfd->cpumask) {
 932			struct cfd_percpu *pcpu = per_cpu_ptr(cfd->pcpu, cpu);
 933			call_single_data_t *csd = &pcpu->csd;
 934
 935			if (cond_func && !cond_func(cpu, info))
 
 936				continue;
 
 937
 938			csd_lock(csd);
 939			if (wait)
 940				csd->node.u_flags |= CSD_TYPE_SYNC;
 941			csd->func = func;
 942			csd->info = info;
 943#ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
 944			csd->node.src = smp_processor_id();
 945			csd->node.dst = cpu;
 946#endif
 947			cfd_seq_store(pcpu->seq_queue, this_cpu, cpu, CFD_SEQ_QUEUE);
 
 948			if (llist_add(&csd->node.llist, &per_cpu(call_single_queue, cpu))) {
 949				__cpumask_set_cpu(cpu, cfd->cpumask_ipi);
 950				nr_cpus++;
 951				last_cpu = cpu;
 952
 953				cfd_seq_store(pcpu->seq_ipi, this_cpu, cpu, CFD_SEQ_IPI);
 954			} else {
 955				cfd_seq_store(pcpu->seq_noipi, this_cpu, cpu, CFD_SEQ_NOIPI);
 956			}
 957		}
 958
 959		cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->ping, this_cpu, CFD_SEQ_NOCPU, CFD_SEQ_PING);
 960
 961		/*
 962		 * Choose the most efficient way to send an IPI. Note that the
 963		 * number of CPUs might be zero due to concurrent changes to the
 964		 * provided mask.
 965		 */
 966		if (nr_cpus == 1)
 967			send_call_function_single_ipi(last_cpu);
 968		else if (likely(nr_cpus > 1))
 969			arch_send_call_function_ipi_mask(cfd->cpumask_ipi);
 970
 971		cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->pinged, this_cpu, CFD_SEQ_NOCPU, CFD_SEQ_PINGED);
 972	}
 973
 974	if (run_local && (!cond_func || cond_func(this_cpu, info))) {
 975		unsigned long flags;
 976
 977		local_irq_save(flags);
 978		func(info);
 979		local_irq_restore(flags);
 980	}
 981
 982	if (run_remote && wait) {
 983		for_each_cpu(cpu, cfd->cpumask) {
 984			call_single_data_t *csd;
 985
 986			csd = &per_cpu_ptr(cfd->pcpu, cpu)->csd;
 987			csd_lock_wait(csd);
 988		}
 989	}
 990}
 991
 992/**
 993 * smp_call_function_many(): Run a function on a set of CPUs.
 994 * @mask: The set of cpus to run on (only runs on online subset).
 995 * @func: The function to run. This must be fast and non-blocking.
 996 * @info: An arbitrary pointer to pass to the function.
 997 * @wait: Bitmask that controls the operation. If %SCF_WAIT is set, wait
 998 *        (atomically) until function has completed on other CPUs. If
 999 *        %SCF_RUN_LOCAL is set, the function will also be run locally
1000 *        if the local CPU is set in the @cpumask.
1001 *
1002 * If @wait is true, then returns once @func has returned.
1003 *
1004 * You must not call this function with disabled interrupts or from a
1005 * hardware interrupt handler or from a bottom half handler. Preemption
1006 * must be disabled when calling this function.
1007 */
1008void smp_call_function_many(const struct cpumask *mask,
1009			    smp_call_func_t func, void *info, bool wait)
1010{
1011	smp_call_function_many_cond(mask, func, info, wait * SCF_WAIT, NULL);
1012}
1013EXPORT_SYMBOL(smp_call_function_many);
1014
1015/**
1016 * smp_call_function(): Run a function on all other CPUs.
1017 * @func: The function to run. This must be fast and non-blocking.
1018 * @info: An arbitrary pointer to pass to the function.
1019 * @wait: If true, wait (atomically) until function has completed
1020 *        on other CPUs.
1021 *
1022 * Returns 0.
1023 *
1024 * If @wait is true, then returns once @func has returned; otherwise
1025 * it returns just before the target cpu calls @func.
1026 *
1027 * You must not call this function with disabled interrupts or from a
1028 * hardware interrupt handler or from a bottom half handler.
1029 */
1030void smp_call_function(smp_call_func_t func, void *info, int wait)
1031{
1032	preempt_disable();
1033	smp_call_function_many(cpu_online_mask, func, info, wait);
1034	preempt_enable();
1035}
1036EXPORT_SYMBOL(smp_call_function);
1037
1038/* Setup configured maximum number of CPUs to activate */
1039unsigned int setup_max_cpus = NR_CPUS;
1040EXPORT_SYMBOL(setup_max_cpus);
1041
1042
1043/*
1044 * Setup routine for controlling SMP activation
1045 *
1046 * Command-line option of "nosmp" or "maxcpus=0" will disable SMP
1047 * activation entirely (the MPS table probe still happens, though).
1048 *
1049 * Command-line option of "maxcpus=<NUM>", where <NUM> is an integer
1050 * greater than 0, limits the maximum number of CPUs activated in
1051 * SMP mode to <NUM>.
1052 */
1053
1054void __weak arch_disable_smp_support(void) { }
1055
1056static int __init nosmp(char *str)
1057{
1058	setup_max_cpus = 0;
1059	arch_disable_smp_support();
1060
1061	return 0;
1062}
1063
1064early_param("nosmp", nosmp);
1065
1066/* this is hard limit */
1067static int __init nrcpus(char *str)
1068{
1069	int nr_cpus;
1070
1071	if (get_option(&str, &nr_cpus) && nr_cpus > 0 && nr_cpus < nr_cpu_ids)
1072		set_nr_cpu_ids(nr_cpus);
1073
1074	return 0;
1075}
1076
1077early_param("nr_cpus", nrcpus);
1078
1079static int __init maxcpus(char *str)
1080{
1081	get_option(&str, &setup_max_cpus);
1082	if (setup_max_cpus == 0)
1083		arch_disable_smp_support();
1084
1085	return 0;
1086}
1087
1088early_param("maxcpus", maxcpus);
1089
1090#if (NR_CPUS > 1) && !defined(CONFIG_FORCE_NR_CPUS)
1091/* Setup number of possible processor ids */
1092unsigned int nr_cpu_ids __read_mostly = NR_CPUS;
1093EXPORT_SYMBOL(nr_cpu_ids);
1094#endif
1095
1096/* An arch may set nr_cpu_ids earlier if needed, so this would be redundant */
1097void __init setup_nr_cpu_ids(void)
1098{
1099	set_nr_cpu_ids(find_last_bit(cpumask_bits(cpu_possible_mask), NR_CPUS) + 1);
1100}
1101
1102/* Called by boot processor to activate the rest. */
1103void __init smp_init(void)
1104{
1105	int num_nodes, num_cpus;
1106
1107	idle_threads_init();
1108	cpuhp_threads_init();
1109
1110	pr_info("Bringing up secondary CPUs ...\n");
1111
1112	bringup_nonboot_cpus(setup_max_cpus);
1113
1114	num_nodes = num_online_nodes();
1115	num_cpus  = num_online_cpus();
1116	pr_info("Brought up %d node%s, %d CPU%s\n",
1117		num_nodes, (num_nodes > 1 ? "s" : ""),
1118		num_cpus,  (num_cpus  > 1 ? "s" : ""));
1119
1120	/* Any cleanup work */
1121	smp_cpus_done(setup_max_cpus);
1122}
1123
1124/*
1125 * on_each_cpu_cond(): Call a function on each processor for which
1126 * the supplied function cond_func returns true, optionally waiting
1127 * for all the required CPUs to finish. This may include the local
1128 * processor.
1129 * @cond_func:	A callback function that is passed a cpu id and
1130 *		the info parameter. The function is called
1131 *		with preemption disabled. The function should
1132 *		return a blooean value indicating whether to IPI
1133 *		the specified CPU.
1134 * @func:	The function to run on all applicable CPUs.
1135 *		This must be fast and non-blocking.
1136 * @info:	An arbitrary pointer to pass to both functions.
1137 * @wait:	If true, wait (atomically) until function has
1138 *		completed on other CPUs.
1139 *
1140 * Preemption is disabled to protect against CPUs going offline but not online.
1141 * CPUs going online during the call will not be seen or sent an IPI.
1142 *
1143 * You must not call this function with disabled interrupts or
1144 * from a hardware interrupt handler or from a bottom half handler.
1145 */
1146void on_each_cpu_cond_mask(smp_cond_func_t cond_func, smp_call_func_t func,
1147			   void *info, bool wait, const struct cpumask *mask)
1148{
1149	unsigned int scf_flags = SCF_RUN_LOCAL;
1150
1151	if (wait)
1152		scf_flags |= SCF_WAIT;
1153
1154	preempt_disable();
1155	smp_call_function_many_cond(mask, func, info, scf_flags, cond_func);
1156	preempt_enable();
1157}
1158EXPORT_SYMBOL(on_each_cpu_cond_mask);
1159
1160static void do_nothing(void *unused)
1161{
1162}
1163
1164/**
1165 * kick_all_cpus_sync - Force all cpus out of idle
1166 *
1167 * Used to synchronize the update of pm_idle function pointer. It's
1168 * called after the pointer is updated and returns after the dummy
1169 * callback function has been executed on all cpus. The execution of
1170 * the function can only happen on the remote cpus after they have
1171 * left the idle function which had been called via pm_idle function
1172 * pointer. So it's guaranteed that nothing uses the previous pointer
1173 * anymore.
1174 */
1175void kick_all_cpus_sync(void)
1176{
1177	/* Make sure the change is visible before we kick the cpus */
1178	smp_mb();
1179	smp_call_function(do_nothing, NULL, 1);
1180}
1181EXPORT_SYMBOL_GPL(kick_all_cpus_sync);
1182
1183/**
1184 * wake_up_all_idle_cpus - break all cpus out of idle
1185 * wake_up_all_idle_cpus try to break all cpus which is in idle state even
1186 * including idle polling cpus, for non-idle cpus, we will do nothing
1187 * for them.
1188 */
1189void wake_up_all_idle_cpus(void)
1190{
1191	int cpu;
1192
1193	for_each_possible_cpu(cpu) {
1194		preempt_disable();
1195		if (cpu != smp_processor_id() && cpu_online(cpu))
1196			wake_up_if_idle(cpu);
1197		preempt_enable();
1198	}
1199}
1200EXPORT_SYMBOL_GPL(wake_up_all_idle_cpus);
1201
1202/**
1203 * struct smp_call_on_cpu_struct - Call a function on a specific CPU
1204 * @work: &work_struct
1205 * @done: &completion to signal
1206 * @func: function to call
1207 * @data: function's data argument
1208 * @ret: return value from @func
1209 * @cpu: target CPU (%-1 for any CPU)
1210 *
1211 * Used to call a function on a specific cpu and wait for it to return.
1212 * Optionally make sure the call is done on a specified physical cpu via vcpu
1213 * pinning in order to support virtualized environments.
1214 */
1215struct smp_call_on_cpu_struct {
1216	struct work_struct	work;
1217	struct completion	done;
1218	int			(*func)(void *);
1219	void			*data;
1220	int			ret;
1221	int			cpu;
1222};
1223
1224static void smp_call_on_cpu_callback(struct work_struct *work)
1225{
1226	struct smp_call_on_cpu_struct *sscs;
1227
1228	sscs = container_of(work, struct smp_call_on_cpu_struct, work);
1229	if (sscs->cpu >= 0)
1230		hypervisor_pin_vcpu(sscs->cpu);
1231	sscs->ret = sscs->func(sscs->data);
1232	if (sscs->cpu >= 0)
1233		hypervisor_pin_vcpu(-1);
1234
1235	complete(&sscs->done);
1236}
1237
1238int smp_call_on_cpu(unsigned int cpu, int (*func)(void *), void *par, bool phys)
1239{
1240	struct smp_call_on_cpu_struct sscs = {
1241		.done = COMPLETION_INITIALIZER_ONSTACK(sscs.done),
1242		.func = func,
1243		.data = par,
1244		.cpu  = phys ? cpu : -1,
1245	};
1246
1247	INIT_WORK_ONSTACK(&sscs.work, smp_call_on_cpu_callback);
1248
1249	if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1250		return -ENXIO;
1251
1252	queue_work_on(cpu, system_wq, &sscs.work);
1253	wait_for_completion(&sscs.done);
 
1254
1255	return sscs.ret;
1256}
1257EXPORT_SYMBOL_GPL(smp_call_on_cpu);