Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v6.13.7
  1/* SPDX-License-Identifier: GPL-2.0-or-later */
  2/*
  3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  4 *		operating system.  INET  is implemented using the  BSD Socket
  5 *		interface as the means of communication with the user level.
  6 *
  7 *		Definitions for the IP router.
  8 *
  9 * Version:	@(#)route.h	1.0.4	05/27/93
 10 *
 11 * Authors:	Ross Biro
 12 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 13 * Fixes:
 14 *		Alan Cox	:	Reformatted. Added ip_rt_local()
 15 *		Alan Cox	:	Support for TCP parameters.
 16 *		Alexey Kuznetsov:	Major changes for new routing code.
 17 *		Mike McLagan    :	Routing by source
 18 *		Robert Olsson   :	Added rt_cache statistics
 19 */
 20#ifndef _ROUTE_H
 21#define _ROUTE_H
 22
 23#include <net/dst.h>
 24#include <net/inetpeer.h>
 25#include <net/flow.h>
 26#include <net/inet_sock.h>
 27#include <net/ip_fib.h>
 28#include <net/arp.h>
 29#include <net/ndisc.h>
 30#include <net/inet_dscp.h>
 31#include <linux/in_route.h>
 32#include <linux/rtnetlink.h>
 33#include <linux/rcupdate.h>
 34#include <linux/route.h>
 35#include <linux/ip.h>
 36#include <linux/cache.h>
 37#include <linux/security.h>
 38
 
 
 
 
 
 
 
 
 39static inline __u8 ip_sock_rt_scope(const struct sock *sk)
 40{
 41	if (sock_flag(sk, SOCK_LOCALROUTE))
 42		return RT_SCOPE_LINK;
 43
 44	return RT_SCOPE_UNIVERSE;
 45}
 46
 47static inline __u8 ip_sock_rt_tos(const struct sock *sk)
 48{
 49	return READ_ONCE(inet_sk(sk)->tos) & INET_DSCP_MASK;
 50}
 51
 52struct ip_tunnel_info;
 53struct fib_nh;
 54struct fib_info;
 55struct uncached_list;
 56struct rtable {
 57	struct dst_entry	dst;
 58
 59	int			rt_genid;
 60	unsigned int		rt_flags;
 61	__u16			rt_type;
 62	__u8			rt_is_input;
 63	__u8			rt_uses_gateway;
 64
 65	int			rt_iif;
 66
 67	u8			rt_gw_family;
 68	/* Info on neighbour */
 69	union {
 70		__be32		rt_gw4;
 71		struct in6_addr	rt_gw6;
 72	};
 73
 74	/* Miscellaneous cached information */
 75	u32			rt_mtu_locked:1,
 76				rt_pmtu:31;
 77};
 78
 79#define dst_rtable(_ptr) container_of_const(_ptr, struct rtable, dst)
 80
 81/**
 82 * skb_rtable - Returns the skb &rtable
 83 * @skb: buffer
 84 */
 85static inline struct rtable *skb_rtable(const struct sk_buff *skb)
 86{
 87	return dst_rtable(skb_dst(skb));
 88}
 89
 90static inline bool rt_is_input_route(const struct rtable *rt)
 91{
 92	return rt->rt_is_input != 0;
 93}
 94
 95static inline bool rt_is_output_route(const struct rtable *rt)
 96{
 97	return rt->rt_is_input == 0;
 98}
 99
100static inline __be32 rt_nexthop(const struct rtable *rt, __be32 daddr)
101{
102	if (rt->rt_gw_family == AF_INET)
103		return rt->rt_gw4;
104	return daddr;
105}
106
107struct ip_rt_acct {
108	__u32 	o_bytes;
109	__u32 	o_packets;
110	__u32 	i_bytes;
111	__u32 	i_packets;
112};
113
114struct rt_cache_stat {
115        unsigned int in_slow_tot;
116        unsigned int in_slow_mc;
117        unsigned int in_no_route;
118        unsigned int in_brd;
119        unsigned int in_martian_dst;
120        unsigned int in_martian_src;
121        unsigned int out_slow_tot;
122        unsigned int out_slow_mc;
123};
124
125extern struct ip_rt_acct __percpu *ip_rt_acct;
126
127struct in_device;
128
129int ip_rt_init(void);
130void rt_cache_flush(struct net *net);
131void rt_flush_dev(struct net_device *dev);
132struct rtable *ip_route_output_key_hash(struct net *net, struct flowi4 *flp,
133					const struct sk_buff *skb);
134struct rtable *ip_route_output_key_hash_rcu(struct net *net, struct flowi4 *flp,
135					    struct fib_result *res,
136					    const struct sk_buff *skb);
137
138static inline struct rtable *__ip_route_output_key(struct net *net,
139						   struct flowi4 *flp)
140{
141	return ip_route_output_key_hash(net, flp, NULL);
142}
143
144struct rtable *ip_route_output_flow(struct net *, struct flowi4 *flp,
145				    const struct sock *sk);
 
 
 
 
 
 
146struct dst_entry *ipv4_blackhole_route(struct net *net,
147				       struct dst_entry *dst_orig);
148
149static inline struct rtable *ip_route_output_key(struct net *net, struct flowi4 *flp)
150{
151	return ip_route_output_flow(net, flp, NULL);
152}
153
154/* Simplistic IPv4 route lookup function.
155 * This is only suitable for some particular use cases: since the flowi4
156 * structure is only partially set, it may bypass some fib-rules.
157 */
158static inline struct rtable *ip_route_output(struct net *net, __be32 daddr,
159					     __be32 saddr, dscp_t dscp,
160					     int oif, __u8 scope)
161{
162	struct flowi4 fl4 = {
163		.flowi4_oif = oif,
164		.flowi4_tos = inet_dscp_to_dsfield(dscp),
165		.flowi4_scope = scope,
166		.daddr = daddr,
167		.saddr = saddr,
168	};
169
170	return ip_route_output_key(net, &fl4);
171}
172
173static inline struct rtable *ip_route_output_ports(struct net *net, struct flowi4 *fl4,
174						   const struct sock *sk,
175						   __be32 daddr, __be32 saddr,
176						   __be16 dport, __be16 sport,
177						   __u8 proto, __u8 tos, int oif)
178{
179	flowi4_init_output(fl4, oif, sk ? READ_ONCE(sk->sk_mark) : 0, tos,
180			   sk ? ip_sock_rt_scope(sk) : RT_SCOPE_UNIVERSE,
181			   proto, sk ? inet_sk_flowi_flags(sk) : 0,
182			   daddr, saddr, dport, sport, sock_net_uid(net, sk));
183	if (sk)
184		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
185	return ip_route_output_flow(net, fl4, sk);
186}
187
188static inline struct rtable *ip_route_output_gre(struct net *net, struct flowi4 *fl4,
189						 __be32 daddr, __be32 saddr,
190						 __be32 gre_key, __u8 tos, int oif)
191{
192	memset(fl4, 0, sizeof(*fl4));
193	fl4->flowi4_oif = oif;
194	fl4->daddr = daddr;
195	fl4->saddr = saddr;
196	fl4->flowi4_tos = tos;
197	fl4->flowi4_proto = IPPROTO_GRE;
198	fl4->fl4_gre_key = gre_key;
199	return ip_route_output_key(net, fl4);
200}
 
 
 
 
 
 
 
 
201
202enum skb_drop_reason
203ip_mc_validate_source(struct sk_buff *skb, __be32 daddr, __be32 saddr,
204		      dscp_t dscp, struct net_device *dev,
205		      struct in_device *in_dev, u32 *itag);
206enum skb_drop_reason
207ip_route_input_noref(struct sk_buff *skb, __be32 daddr, __be32 saddr,
208		     dscp_t dscp, struct net_device *dev);
209enum skb_drop_reason
210ip_route_use_hint(struct sk_buff *skb, __be32 daddr, __be32 saddr,
211		  dscp_t dscp, struct net_device *dev,
212		  const struct sk_buff *hint);
213
214static inline enum skb_drop_reason
215ip_route_input(struct sk_buff *skb, __be32 dst, __be32 src, dscp_t dscp,
216	       struct net_device *devin)
217{
218	enum skb_drop_reason reason;
219
220	rcu_read_lock();
221	reason = ip_route_input_noref(skb, dst, src, dscp, devin);
222	if (!reason) {
223		skb_dst_force(skb);
224		if (!skb_dst(skb))
225			reason = SKB_DROP_REASON_NOT_SPECIFIED;
226	}
227	rcu_read_unlock();
228
229	return reason;
230}
231
232void ipv4_update_pmtu(struct sk_buff *skb, struct net *net, u32 mtu, int oif,
233		      u8 protocol);
234void ipv4_sk_update_pmtu(struct sk_buff *skb, struct sock *sk, u32 mtu);
235void ipv4_redirect(struct sk_buff *skb, struct net *net, int oif, u8 protocol);
236void ipv4_sk_redirect(struct sk_buff *skb, struct sock *sk);
237void ip_rt_send_redirect(struct sk_buff *skb);
238
239unsigned int inet_addr_type(struct net *net, __be32 addr);
240unsigned int inet_addr_type_table(struct net *net, __be32 addr, u32 tb_id);
241unsigned int inet_dev_addr_type(struct net *net, const struct net_device *dev,
242				__be32 addr);
243unsigned int inet_addr_type_dev_table(struct net *net,
244				      const struct net_device *dev,
245				      __be32 addr);
246void ip_rt_multicast_event(struct in_device *);
247int ip_rt_ioctl(struct net *, unsigned int cmd, struct rtentry *rt);
248void ip_rt_get_source(u8 *src, struct sk_buff *skb, struct rtable *rt);
249struct rtable *rt_dst_alloc(struct net_device *dev,
250			    unsigned int flags, u16 type, bool noxfrm);
251struct rtable *rt_dst_clone(struct net_device *dev, struct rtable *rt);
252
253struct in_ifaddr;
254void fib_add_ifaddr(struct in_ifaddr *);
255void fib_del_ifaddr(struct in_ifaddr *, struct in_ifaddr *);
256void fib_modify_prefix_metric(struct in_ifaddr *ifa, u32 new_metric);
257
258void rt_add_uncached_list(struct rtable *rt);
259void rt_del_uncached_list(struct rtable *rt);
260
261int fib_dump_info_fnhe(struct sk_buff *skb, struct netlink_callback *cb,
262		       u32 table_id, struct fib_info *fi,
263		       int *fa_index, int fa_start, unsigned int flags);
264
265static inline void ip_rt_put(struct rtable *rt)
266{
267	/* dst_release() accepts a NULL parameter.
268	 * We rely on dst being first structure in struct rtable
269	 */
270	BUILD_BUG_ON(offsetof(struct rtable, dst) != 0);
271	dst_release(&rt->dst);
272}
273
 
 
274extern const __u8 ip_tos2prio[16];
275
276static inline char rt_tos2priority(u8 tos)
277{
278	return ip_tos2prio[IPTOS_TOS(tos)>>1];
279}
280
281/* ip_route_connect() and ip_route_newports() work in tandem whilst
282 * binding a socket for a new outgoing connection.
283 *
284 * In order to use IPSEC properly, we must, in the end, have a
285 * route that was looked up using all available keys including source
286 * and destination ports.
287 *
288 * However, if a source port needs to be allocated (the user specified
289 * a wildcard source port) we need to obtain addressing information
290 * in order to perform that allocation.
291 *
292 * So ip_route_connect() looks up a route using wildcarded source and
293 * destination ports in the key, simply so that we can get a pair of
294 * addresses to use for port allocation.
295 *
296 * Later, once the ports are allocated, ip_route_newports() will make
297 * another route lookup if needed to make sure we catch any IPSEC
298 * rules keyed on the port information.
299 *
300 * The callers allocate the flow key on their stack, and must pass in
301 * the same flowi4 object to both the ip_route_connect() and the
302 * ip_route_newports() calls.
303 */
304
305static inline void ip_route_connect_init(struct flowi4 *fl4, __be32 dst,
306					 __be32 src, int oif, u8 protocol,
307					 __be16 sport, __be16 dport,
308					 const struct sock *sk)
309{
310	__u8 flow_flags = 0;
311
312	if (inet_test_bit(TRANSPARENT, sk))
313		flow_flags |= FLOWI_FLAG_ANYSRC;
314
315	flowi4_init_output(fl4, oif, READ_ONCE(sk->sk_mark), ip_sock_rt_tos(sk),
316			   ip_sock_rt_scope(sk), protocol, flow_flags, dst,
317			   src, dport, sport, sk->sk_uid);
318}
319
320static inline struct rtable *ip_route_connect(struct flowi4 *fl4, __be32 dst,
321					      __be32 src, int oif, u8 protocol,
322					      __be16 sport, __be16 dport,
323					      const struct sock *sk)
324{
325	struct net *net = sock_net(sk);
326	struct rtable *rt;
327
328	ip_route_connect_init(fl4, dst, src, oif, protocol, sport, dport, sk);
329
330	if (!dst || !src) {
331		rt = __ip_route_output_key(net, fl4);
332		if (IS_ERR(rt))
333			return rt;
334		ip_rt_put(rt);
335		flowi4_update_output(fl4, oif, fl4->daddr, fl4->saddr);
 
336	}
337	security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
338	return ip_route_output_flow(net, fl4, sk);
339}
340
341static inline struct rtable *ip_route_newports(struct flowi4 *fl4, struct rtable *rt,
342					       __be16 orig_sport, __be16 orig_dport,
343					       __be16 sport, __be16 dport,
344					       const struct sock *sk)
345{
346	if (sport != orig_sport || dport != orig_dport) {
347		fl4->fl4_dport = dport;
348		fl4->fl4_sport = sport;
349		ip_rt_put(rt);
350		flowi4_update_output(fl4, sk->sk_bound_dev_if, fl4->daddr,
 
351				     fl4->saddr);
352		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
353		return ip_route_output_flow(sock_net(sk), fl4, sk);
354	}
355	return rt;
356}
357
358static inline int inet_iif(const struct sk_buff *skb)
359{
360	struct rtable *rt = skb_rtable(skb);
361
362	if (rt && rt->rt_iif)
363		return rt->rt_iif;
364
365	return skb->skb_iif;
366}
367
368static inline int ip4_dst_hoplimit(const struct dst_entry *dst)
369{
370	int hoplimit = dst_metric_raw(dst, RTAX_HOPLIMIT);
 
371
372	if (hoplimit == 0) {
373		const struct net *net;
374
375		rcu_read_lock();
376		net = dev_net_rcu(dst->dev);
377		hoplimit = READ_ONCE(net->ipv4.sysctl_ip_default_ttl);
378		rcu_read_unlock();
379	}
380	return hoplimit;
381}
382
383static inline struct neighbour *ip_neigh_gw4(struct net_device *dev,
384					     __be32 daddr)
385{
386	struct neighbour *neigh;
387
388	neigh = __ipv4_neigh_lookup_noref(dev, (__force u32)daddr);
389	if (unlikely(!neigh))
390		neigh = __neigh_create(&arp_tbl, &daddr, dev, false);
391
392	return neigh;
393}
394
395static inline struct neighbour *ip_neigh_for_gw(struct rtable *rt,
396						struct sk_buff *skb,
397						bool *is_v6gw)
398{
399	struct net_device *dev = rt->dst.dev;
400	struct neighbour *neigh;
401
402	if (likely(rt->rt_gw_family == AF_INET)) {
403		neigh = ip_neigh_gw4(dev, rt->rt_gw4);
404	} else if (rt->rt_gw_family == AF_INET6) {
405		neigh = ip_neigh_gw6(dev, &rt->rt_gw6);
406		*is_v6gw = true;
407	} else {
408		neigh = ip_neigh_gw4(dev, ip_hdr(skb)->daddr);
409	}
410	return neigh;
411}
412
413#endif	/* _ROUTE_H */
v6.2
  1/* SPDX-License-Identifier: GPL-2.0-or-later */
  2/*
  3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  4 *		operating system.  INET  is implemented using the  BSD Socket
  5 *		interface as the means of communication with the user level.
  6 *
  7 *		Definitions for the IP router.
  8 *
  9 * Version:	@(#)route.h	1.0.4	05/27/93
 10 *
 11 * Authors:	Ross Biro
 12 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 13 * Fixes:
 14 *		Alan Cox	:	Reformatted. Added ip_rt_local()
 15 *		Alan Cox	:	Support for TCP parameters.
 16 *		Alexey Kuznetsov:	Major changes for new routing code.
 17 *		Mike McLagan    :	Routing by source
 18 *		Robert Olsson   :	Added rt_cache statistics
 19 */
 20#ifndef _ROUTE_H
 21#define _ROUTE_H
 22
 23#include <net/dst.h>
 24#include <net/inetpeer.h>
 25#include <net/flow.h>
 26#include <net/inet_sock.h>
 27#include <net/ip_fib.h>
 28#include <net/arp.h>
 29#include <net/ndisc.h>
 
 30#include <linux/in_route.h>
 31#include <linux/rtnetlink.h>
 32#include <linux/rcupdate.h>
 33#include <linux/route.h>
 34#include <linux/ip.h>
 35#include <linux/cache.h>
 36#include <linux/security.h>
 37
 38/* IPv4 datagram length is stored into 16bit field (tot_len) */
 39#define IP_MAX_MTU	0xFFFFU
 40
 41#define RTO_ONLINK	0x01
 42
 43#define RT_CONN_FLAGS(sk)   (RT_TOS(inet_sk(sk)->tos) | sock_flag(sk, SOCK_LOCALROUTE))
 44#define RT_CONN_FLAGS_TOS(sk,tos)   (RT_TOS(tos) | sock_flag(sk, SOCK_LOCALROUTE))
 45
 46static inline __u8 ip_sock_rt_scope(const struct sock *sk)
 47{
 48	if (sock_flag(sk, SOCK_LOCALROUTE))
 49		return RT_SCOPE_LINK;
 50
 51	return RT_SCOPE_UNIVERSE;
 52}
 53
 54static inline __u8 ip_sock_rt_tos(const struct sock *sk)
 55{
 56	return RT_TOS(inet_sk(sk)->tos);
 57}
 58
 59struct ip_tunnel_info;
 60struct fib_nh;
 61struct fib_info;
 62struct uncached_list;
 63struct rtable {
 64	struct dst_entry	dst;
 65
 66	int			rt_genid;
 67	unsigned int		rt_flags;
 68	__u16			rt_type;
 69	__u8			rt_is_input;
 70	__u8			rt_uses_gateway;
 71
 72	int			rt_iif;
 73
 74	u8			rt_gw_family;
 75	/* Info on neighbour */
 76	union {
 77		__be32		rt_gw4;
 78		struct in6_addr	rt_gw6;
 79	};
 80
 81	/* Miscellaneous cached information */
 82	u32			rt_mtu_locked:1,
 83				rt_pmtu:31;
 
 84
 85	struct list_head	rt_uncached;
 86	struct uncached_list	*rt_uncached_list;
 87};
 
 
 
 
 
 
 
 88
 89static inline bool rt_is_input_route(const struct rtable *rt)
 90{
 91	return rt->rt_is_input != 0;
 92}
 93
 94static inline bool rt_is_output_route(const struct rtable *rt)
 95{
 96	return rt->rt_is_input == 0;
 97}
 98
 99static inline __be32 rt_nexthop(const struct rtable *rt, __be32 daddr)
100{
101	if (rt->rt_gw_family == AF_INET)
102		return rt->rt_gw4;
103	return daddr;
104}
105
106struct ip_rt_acct {
107	__u32 	o_bytes;
108	__u32 	o_packets;
109	__u32 	i_bytes;
110	__u32 	i_packets;
111};
112
113struct rt_cache_stat {
114        unsigned int in_slow_tot;
115        unsigned int in_slow_mc;
116        unsigned int in_no_route;
117        unsigned int in_brd;
118        unsigned int in_martian_dst;
119        unsigned int in_martian_src;
120        unsigned int out_slow_tot;
121        unsigned int out_slow_mc;
122};
123
124extern struct ip_rt_acct __percpu *ip_rt_acct;
125
126struct in_device;
127
128int ip_rt_init(void);
129void rt_cache_flush(struct net *net);
130void rt_flush_dev(struct net_device *dev);
131struct rtable *ip_route_output_key_hash(struct net *net, struct flowi4 *flp,
132					const struct sk_buff *skb);
133struct rtable *ip_route_output_key_hash_rcu(struct net *net, struct flowi4 *flp,
134					    struct fib_result *res,
135					    const struct sk_buff *skb);
136
137static inline struct rtable *__ip_route_output_key(struct net *net,
138						   struct flowi4 *flp)
139{
140	return ip_route_output_key_hash(net, flp, NULL);
141}
142
143struct rtable *ip_route_output_flow(struct net *, struct flowi4 *flp,
144				    const struct sock *sk);
145struct rtable *ip_route_output_tunnel(struct sk_buff *skb,
146				      struct net_device *dev,
147				      struct net *net, __be32 *saddr,
148				      const struct ip_tunnel_info *info,
149				      u8 protocol, bool use_cache);
150
151struct dst_entry *ipv4_blackhole_route(struct net *net,
152				       struct dst_entry *dst_orig);
153
154static inline struct rtable *ip_route_output_key(struct net *net, struct flowi4 *flp)
155{
156	return ip_route_output_flow(net, flp, NULL);
157}
158
 
 
 
 
159static inline struct rtable *ip_route_output(struct net *net, __be32 daddr,
160					     __be32 saddr, u8 tos, int oif)
 
161{
162	struct flowi4 fl4 = {
163		.flowi4_oif = oif,
164		.flowi4_tos = tos,
 
165		.daddr = daddr,
166		.saddr = saddr,
167	};
 
168	return ip_route_output_key(net, &fl4);
169}
170
171static inline struct rtable *ip_route_output_ports(struct net *net, struct flowi4 *fl4,
172						   struct sock *sk,
173						   __be32 daddr, __be32 saddr,
174						   __be16 dport, __be16 sport,
175						   __u8 proto, __u8 tos, int oif)
176{
177	flowi4_init_output(fl4, oif, sk ? sk->sk_mark : 0, tos,
178			   RT_SCOPE_UNIVERSE, proto,
179			   sk ? inet_sk_flowi_flags(sk) : 0,
180			   daddr, saddr, dport, sport, sock_net_uid(net, sk));
181	if (sk)
182		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
183	return ip_route_output_flow(net, fl4, sk);
184}
185
186static inline struct rtable *ip_route_output_gre(struct net *net, struct flowi4 *fl4,
187						 __be32 daddr, __be32 saddr,
188						 __be32 gre_key, __u8 tos, int oif)
189{
190	memset(fl4, 0, sizeof(*fl4));
191	fl4->flowi4_oif = oif;
192	fl4->daddr = daddr;
193	fl4->saddr = saddr;
194	fl4->flowi4_tos = tos;
195	fl4->flowi4_proto = IPPROTO_GRE;
196	fl4->fl4_gre_key = gre_key;
197	return ip_route_output_key(net, fl4);
198}
199int ip_mc_validate_source(struct sk_buff *skb, __be32 daddr, __be32 saddr,
200			  u8 tos, struct net_device *dev,
201			  struct in_device *in_dev, u32 *itag);
202int ip_route_input_noref(struct sk_buff *skb, __be32 dst, __be32 src,
203			 u8 tos, struct net_device *devin);
204int ip_route_use_hint(struct sk_buff *skb, __be32 dst, __be32 src,
205		      u8 tos, struct net_device *devin,
206		      const struct sk_buff *hint);
207
208static inline int ip_route_input(struct sk_buff *skb, __be32 dst, __be32 src,
209				 u8 tos, struct net_device *devin)
 
 
 
 
 
 
 
 
 
 
 
 
 
210{
211	int err;
212
213	rcu_read_lock();
214	err = ip_route_input_noref(skb, dst, src, tos, devin);
215	if (!err) {
216		skb_dst_force(skb);
217		if (!skb_dst(skb))
218			err = -EINVAL;
219	}
220	rcu_read_unlock();
221
222	return err;
223}
224
225void ipv4_update_pmtu(struct sk_buff *skb, struct net *net, u32 mtu, int oif,
226		      u8 protocol);
227void ipv4_sk_update_pmtu(struct sk_buff *skb, struct sock *sk, u32 mtu);
228void ipv4_redirect(struct sk_buff *skb, struct net *net, int oif, u8 protocol);
229void ipv4_sk_redirect(struct sk_buff *skb, struct sock *sk);
230void ip_rt_send_redirect(struct sk_buff *skb);
231
232unsigned int inet_addr_type(struct net *net, __be32 addr);
233unsigned int inet_addr_type_table(struct net *net, __be32 addr, u32 tb_id);
234unsigned int inet_dev_addr_type(struct net *net, const struct net_device *dev,
235				__be32 addr);
236unsigned int inet_addr_type_dev_table(struct net *net,
237				      const struct net_device *dev,
238				      __be32 addr);
239void ip_rt_multicast_event(struct in_device *);
240int ip_rt_ioctl(struct net *, unsigned int cmd, struct rtentry *rt);
241void ip_rt_get_source(u8 *src, struct sk_buff *skb, struct rtable *rt);
242struct rtable *rt_dst_alloc(struct net_device *dev,
243			    unsigned int flags, u16 type, bool noxfrm);
244struct rtable *rt_dst_clone(struct net_device *dev, struct rtable *rt);
245
246struct in_ifaddr;
247void fib_add_ifaddr(struct in_ifaddr *);
248void fib_del_ifaddr(struct in_ifaddr *, struct in_ifaddr *);
249void fib_modify_prefix_metric(struct in_ifaddr *ifa, u32 new_metric);
250
251void rt_add_uncached_list(struct rtable *rt);
252void rt_del_uncached_list(struct rtable *rt);
253
254int fib_dump_info_fnhe(struct sk_buff *skb, struct netlink_callback *cb,
255		       u32 table_id, struct fib_info *fi,
256		       int *fa_index, int fa_start, unsigned int flags);
257
258static inline void ip_rt_put(struct rtable *rt)
259{
260	/* dst_release() accepts a NULL parameter.
261	 * We rely on dst being first structure in struct rtable
262	 */
263	BUILD_BUG_ON(offsetof(struct rtable, dst) != 0);
264	dst_release(&rt->dst);
265}
266
267#define IPTOS_RT_MASK	(IPTOS_TOS_MASK & ~3)
268
269extern const __u8 ip_tos2prio[16];
270
271static inline char rt_tos2priority(u8 tos)
272{
273	return ip_tos2prio[IPTOS_TOS(tos)>>1];
274}
275
276/* ip_route_connect() and ip_route_newports() work in tandem whilst
277 * binding a socket for a new outgoing connection.
278 *
279 * In order to use IPSEC properly, we must, in the end, have a
280 * route that was looked up using all available keys including source
281 * and destination ports.
282 *
283 * However, if a source port needs to be allocated (the user specified
284 * a wildcard source port) we need to obtain addressing information
285 * in order to perform that allocation.
286 *
287 * So ip_route_connect() looks up a route using wildcarded source and
288 * destination ports in the key, simply so that we can get a pair of
289 * addresses to use for port allocation.
290 *
291 * Later, once the ports are allocated, ip_route_newports() will make
292 * another route lookup if needed to make sure we catch any IPSEC
293 * rules keyed on the port information.
294 *
295 * The callers allocate the flow key on their stack, and must pass in
296 * the same flowi4 object to both the ip_route_connect() and the
297 * ip_route_newports() calls.
298 */
299
300static inline void ip_route_connect_init(struct flowi4 *fl4, __be32 dst,
301					 __be32 src, int oif, u8 protocol,
302					 __be16 sport, __be16 dport,
303					 const struct sock *sk)
304{
305	__u8 flow_flags = 0;
306
307	if (inet_sk(sk)->transparent)
308		flow_flags |= FLOWI_FLAG_ANYSRC;
309
310	flowi4_init_output(fl4, oif, sk->sk_mark, ip_sock_rt_tos(sk),
311			   ip_sock_rt_scope(sk), protocol, flow_flags, dst,
312			   src, dport, sport, sk->sk_uid);
313}
314
315static inline struct rtable *ip_route_connect(struct flowi4 *fl4, __be32 dst,
316					      __be32 src, int oif, u8 protocol,
317					      __be16 sport, __be16 dport,
318					      struct sock *sk)
319{
320	struct net *net = sock_net(sk);
321	struct rtable *rt;
322
323	ip_route_connect_init(fl4, dst, src, oif, protocol, sport, dport, sk);
324
325	if (!dst || !src) {
326		rt = __ip_route_output_key(net, fl4);
327		if (IS_ERR(rt))
328			return rt;
329		ip_rt_put(rt);
330		flowi4_update_output(fl4, oif, fl4->flowi4_tos, fl4->daddr,
331				     fl4->saddr);
332	}
333	security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
334	return ip_route_output_flow(net, fl4, sk);
335}
336
337static inline struct rtable *ip_route_newports(struct flowi4 *fl4, struct rtable *rt,
338					       __be16 orig_sport, __be16 orig_dport,
339					       __be16 sport, __be16 dport,
340					       struct sock *sk)
341{
342	if (sport != orig_sport || dport != orig_dport) {
343		fl4->fl4_dport = dport;
344		fl4->fl4_sport = sport;
345		ip_rt_put(rt);
346		flowi4_update_output(fl4, sk->sk_bound_dev_if,
347				     RT_CONN_FLAGS(sk), fl4->daddr,
348				     fl4->saddr);
349		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
350		return ip_route_output_flow(sock_net(sk), fl4, sk);
351	}
352	return rt;
353}
354
355static inline int inet_iif(const struct sk_buff *skb)
356{
357	struct rtable *rt = skb_rtable(skb);
358
359	if (rt && rt->rt_iif)
360		return rt->rt_iif;
361
362	return skb->skb_iif;
363}
364
365static inline int ip4_dst_hoplimit(const struct dst_entry *dst)
366{
367	int hoplimit = dst_metric_raw(dst, RTAX_HOPLIMIT);
368	struct net *net = dev_net(dst->dev);
369
370	if (hoplimit == 0)
 
 
 
 
371		hoplimit = READ_ONCE(net->ipv4.sysctl_ip_default_ttl);
 
 
372	return hoplimit;
373}
374
375static inline struct neighbour *ip_neigh_gw4(struct net_device *dev,
376					     __be32 daddr)
377{
378	struct neighbour *neigh;
379
380	neigh = __ipv4_neigh_lookup_noref(dev, (__force u32)daddr);
381	if (unlikely(!neigh))
382		neigh = __neigh_create(&arp_tbl, &daddr, dev, false);
383
384	return neigh;
385}
386
387static inline struct neighbour *ip_neigh_for_gw(struct rtable *rt,
388						struct sk_buff *skb,
389						bool *is_v6gw)
390{
391	struct net_device *dev = rt->dst.dev;
392	struct neighbour *neigh;
393
394	if (likely(rt->rt_gw_family == AF_INET)) {
395		neigh = ip_neigh_gw4(dev, rt->rt_gw4);
396	} else if (rt->rt_gw_family == AF_INET6) {
397		neigh = ip_neigh_gw6(dev, &rt->rt_gw6);
398		*is_v6gw = true;
399	} else {
400		neigh = ip_neigh_gw4(dev, ip_hdr(skb)->daddr);
401	}
402	return neigh;
403}
404
405#endif	/* _ROUTE_H */