Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_btree.h"
14#include "xfs_btree_staging.h"
15#include "xfs_alloc_btree.h"
16#include "xfs_alloc.h"
17#include "xfs_extent_busy.h"
18#include "xfs_error.h"
19#include "xfs_health.h"
20#include "xfs_trace.h"
21#include "xfs_trans.h"
22#include "xfs_ag.h"
23
24static struct kmem_cache *xfs_allocbt_cur_cache;
25
26STATIC struct xfs_btree_cur *
27xfs_bnobt_dup_cursor(
28 struct xfs_btree_cur *cur)
29{
30 return xfs_bnobt_init_cursor(cur->bc_mp, cur->bc_tp, cur->bc_ag.agbp,
31 to_perag(cur->bc_group));
32}
33
34STATIC struct xfs_btree_cur *
35xfs_cntbt_dup_cursor(
36 struct xfs_btree_cur *cur)
37{
38 return xfs_cntbt_init_cursor(cur->bc_mp, cur->bc_tp, cur->bc_ag.agbp,
39 to_perag(cur->bc_group));
40}
41
42STATIC void
43xfs_allocbt_set_root(
44 struct xfs_btree_cur *cur,
45 const union xfs_btree_ptr *ptr,
46 int inc)
47{
48 struct xfs_perag *pag = to_perag(cur->bc_group);
49 struct xfs_buf *agbp = cur->bc_ag.agbp;
50 struct xfs_agf *agf = agbp->b_addr;
51
52 ASSERT(ptr->s != 0);
53
54 if (xfs_btree_is_bno(cur->bc_ops)) {
55 agf->agf_bno_root = ptr->s;
56 be32_add_cpu(&agf->agf_bno_level, inc);
57 pag->pagf_bno_level += inc;
58 } else {
59 agf->agf_cnt_root = ptr->s;
60 be32_add_cpu(&agf->agf_cnt_level, inc);
61 pag->pagf_cnt_level += inc;
62 }
63
64 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
65}
66
67STATIC int
68xfs_allocbt_alloc_block(
69 struct xfs_btree_cur *cur,
70 const union xfs_btree_ptr *start,
71 union xfs_btree_ptr *new,
72 int *stat)
73{
74 int error;
75 xfs_agblock_t bno;
76
77 /* Allocate the new block from the freelist. If we can't, give up. */
78 error = xfs_alloc_get_freelist(to_perag(cur->bc_group), cur->bc_tp,
79 cur->bc_ag.agbp, &bno, 1);
80 if (error)
81 return error;
82
83 if (bno == NULLAGBLOCK) {
84 *stat = 0;
85 return 0;
86 }
87
88 atomic64_inc(&cur->bc_mp->m_allocbt_blks);
89 xfs_extent_busy_reuse(cur->bc_group, bno, 1, false);
90
91 new->s = cpu_to_be32(bno);
92
93 *stat = 1;
94 return 0;
95}
96
97STATIC int
98xfs_allocbt_free_block(
99 struct xfs_btree_cur *cur,
100 struct xfs_buf *bp)
101{
102 struct xfs_buf *agbp = cur->bc_ag.agbp;
103 xfs_agblock_t bno;
104 int error;
105
106 bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp));
107 error = xfs_alloc_put_freelist(to_perag(cur->bc_group), cur->bc_tp,
108 agbp, NULL, bno, 1);
109 if (error)
110 return error;
111
112 atomic64_dec(&cur->bc_mp->m_allocbt_blks);
113 xfs_extent_busy_insert(cur->bc_tp, pag_group(agbp->b_pag), bno, 1,
114 XFS_EXTENT_BUSY_SKIP_DISCARD);
115 return 0;
116}
117
118STATIC int
119xfs_allocbt_get_minrecs(
120 struct xfs_btree_cur *cur,
121 int level)
122{
123 return cur->bc_mp->m_alloc_mnr[level != 0];
124}
125
126STATIC int
127xfs_allocbt_get_maxrecs(
128 struct xfs_btree_cur *cur,
129 int level)
130{
131 return cur->bc_mp->m_alloc_mxr[level != 0];
132}
133
134STATIC void
135xfs_allocbt_init_key_from_rec(
136 union xfs_btree_key *key,
137 const union xfs_btree_rec *rec)
138{
139 key->alloc.ar_startblock = rec->alloc.ar_startblock;
140 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
141}
142
143STATIC void
144xfs_bnobt_init_high_key_from_rec(
145 union xfs_btree_key *key,
146 const union xfs_btree_rec *rec)
147{
148 __u32 x;
149
150 x = be32_to_cpu(rec->alloc.ar_startblock);
151 x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
152 key->alloc.ar_startblock = cpu_to_be32(x);
153 key->alloc.ar_blockcount = 0;
154}
155
156STATIC void
157xfs_cntbt_init_high_key_from_rec(
158 union xfs_btree_key *key,
159 const union xfs_btree_rec *rec)
160{
161 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
162 key->alloc.ar_startblock = 0;
163}
164
165STATIC void
166xfs_allocbt_init_rec_from_cur(
167 struct xfs_btree_cur *cur,
168 union xfs_btree_rec *rec)
169{
170 rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
171 rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
172}
173
174STATIC void
175xfs_allocbt_init_ptr_from_cur(
176 struct xfs_btree_cur *cur,
177 union xfs_btree_ptr *ptr)
178{
179 struct xfs_agf *agf = cur->bc_ag.agbp->b_addr;
180
181 ASSERT(cur->bc_group->xg_gno == be32_to_cpu(agf->agf_seqno));
182
183 if (xfs_btree_is_bno(cur->bc_ops))
184 ptr->s = agf->agf_bno_root;
185 else
186 ptr->s = agf->agf_cnt_root;
187}
188
189STATIC int64_t
190xfs_bnobt_key_diff(
191 struct xfs_btree_cur *cur,
192 const union xfs_btree_key *key)
193{
194 struct xfs_alloc_rec_incore *rec = &cur->bc_rec.a;
195 const struct xfs_alloc_rec *kp = &key->alloc;
196
197 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
198}
199
200STATIC int64_t
201xfs_cntbt_key_diff(
202 struct xfs_btree_cur *cur,
203 const union xfs_btree_key *key)
204{
205 struct xfs_alloc_rec_incore *rec = &cur->bc_rec.a;
206 const struct xfs_alloc_rec *kp = &key->alloc;
207 int64_t diff;
208
209 diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
210 if (diff)
211 return diff;
212
213 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
214}
215
216STATIC int64_t
217xfs_bnobt_diff_two_keys(
218 struct xfs_btree_cur *cur,
219 const union xfs_btree_key *k1,
220 const union xfs_btree_key *k2,
221 const union xfs_btree_key *mask)
222{
223 ASSERT(!mask || mask->alloc.ar_startblock);
224
225 return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
226 be32_to_cpu(k2->alloc.ar_startblock);
227}
228
229STATIC int64_t
230xfs_cntbt_diff_two_keys(
231 struct xfs_btree_cur *cur,
232 const union xfs_btree_key *k1,
233 const union xfs_btree_key *k2,
234 const union xfs_btree_key *mask)
235{
236 int64_t diff;
237
238 ASSERT(!mask || (mask->alloc.ar_blockcount &&
239 mask->alloc.ar_startblock));
240
241 diff = be32_to_cpu(k1->alloc.ar_blockcount) -
242 be32_to_cpu(k2->alloc.ar_blockcount);
243 if (diff)
244 return diff;
245
246 return be32_to_cpu(k1->alloc.ar_startblock) -
247 be32_to_cpu(k2->alloc.ar_startblock);
248}
249
250static xfs_failaddr_t
251xfs_allocbt_verify(
252 struct xfs_buf *bp)
253{
254 struct xfs_mount *mp = bp->b_mount;
255 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
256 struct xfs_perag *pag = bp->b_pag;
257 xfs_failaddr_t fa;
258 unsigned int level;
259
260 if (!xfs_verify_magic(bp, block->bb_magic))
261 return __this_address;
262
263 if (xfs_has_crc(mp)) {
264 fa = xfs_btree_agblock_v5hdr_verify(bp);
265 if (fa)
266 return fa;
267 }
268
269 /*
270 * The perag may not be attached during grow operations or fully
271 * initialized from the AGF during log recovery. Therefore we can only
272 * check against maximum tree depth from those contexts.
273 *
274 * Otherwise check against the per-tree limit. Peek at one of the
275 * verifier magic values to determine the type of tree we're verifying
276 * against.
277 */
278 level = be16_to_cpu(block->bb_level);
279 if (pag && xfs_perag_initialised_agf(pag)) {
280 unsigned int maxlevel, repair_maxlevel = 0;
281
282 /*
283 * Online repair could be rewriting the free space btrees, so
284 * we'll validate against the larger of either tree while this
285 * is going on.
286 */
287 if (bp->b_ops->magic[0] == cpu_to_be32(XFS_ABTC_MAGIC)) {
288 maxlevel = pag->pagf_cnt_level;
289#ifdef CONFIG_XFS_ONLINE_REPAIR
290 repair_maxlevel = pag->pagf_repair_cnt_level;
291#endif
292 } else {
293 maxlevel = pag->pagf_bno_level;
294#ifdef CONFIG_XFS_ONLINE_REPAIR
295 repair_maxlevel = pag->pagf_repair_bno_level;
296#endif
297 }
298
299 if (level >= max(maxlevel, repair_maxlevel))
300 return __this_address;
301 } else if (level >= mp->m_alloc_maxlevels)
302 return __this_address;
303
304 return xfs_btree_agblock_verify(bp, mp->m_alloc_mxr[level != 0]);
305}
306
307static void
308xfs_allocbt_read_verify(
309 struct xfs_buf *bp)
310{
311 xfs_failaddr_t fa;
312
313 if (!xfs_btree_agblock_verify_crc(bp))
314 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
315 else {
316 fa = xfs_allocbt_verify(bp);
317 if (fa)
318 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
319 }
320
321 if (bp->b_error)
322 trace_xfs_btree_corrupt(bp, _RET_IP_);
323}
324
325static void
326xfs_allocbt_write_verify(
327 struct xfs_buf *bp)
328{
329 xfs_failaddr_t fa;
330
331 fa = xfs_allocbt_verify(bp);
332 if (fa) {
333 trace_xfs_btree_corrupt(bp, _RET_IP_);
334 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
335 return;
336 }
337 xfs_btree_agblock_calc_crc(bp);
338
339}
340
341const struct xfs_buf_ops xfs_bnobt_buf_ops = {
342 .name = "xfs_bnobt",
343 .magic = { cpu_to_be32(XFS_ABTB_MAGIC),
344 cpu_to_be32(XFS_ABTB_CRC_MAGIC) },
345 .verify_read = xfs_allocbt_read_verify,
346 .verify_write = xfs_allocbt_write_verify,
347 .verify_struct = xfs_allocbt_verify,
348};
349
350const struct xfs_buf_ops xfs_cntbt_buf_ops = {
351 .name = "xfs_cntbt",
352 .magic = { cpu_to_be32(XFS_ABTC_MAGIC),
353 cpu_to_be32(XFS_ABTC_CRC_MAGIC) },
354 .verify_read = xfs_allocbt_read_verify,
355 .verify_write = xfs_allocbt_write_verify,
356 .verify_struct = xfs_allocbt_verify,
357};
358
359STATIC int
360xfs_bnobt_keys_inorder(
361 struct xfs_btree_cur *cur,
362 const union xfs_btree_key *k1,
363 const union xfs_btree_key *k2)
364{
365 return be32_to_cpu(k1->alloc.ar_startblock) <
366 be32_to_cpu(k2->alloc.ar_startblock);
367}
368
369STATIC int
370xfs_bnobt_recs_inorder(
371 struct xfs_btree_cur *cur,
372 const union xfs_btree_rec *r1,
373 const union xfs_btree_rec *r2)
374{
375 return be32_to_cpu(r1->alloc.ar_startblock) +
376 be32_to_cpu(r1->alloc.ar_blockcount) <=
377 be32_to_cpu(r2->alloc.ar_startblock);
378}
379
380STATIC int
381xfs_cntbt_keys_inorder(
382 struct xfs_btree_cur *cur,
383 const union xfs_btree_key *k1,
384 const union xfs_btree_key *k2)
385{
386 return be32_to_cpu(k1->alloc.ar_blockcount) <
387 be32_to_cpu(k2->alloc.ar_blockcount) ||
388 (k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
389 be32_to_cpu(k1->alloc.ar_startblock) <
390 be32_to_cpu(k2->alloc.ar_startblock));
391}
392
393STATIC int
394xfs_cntbt_recs_inorder(
395 struct xfs_btree_cur *cur,
396 const union xfs_btree_rec *r1,
397 const union xfs_btree_rec *r2)
398{
399 return be32_to_cpu(r1->alloc.ar_blockcount) <
400 be32_to_cpu(r2->alloc.ar_blockcount) ||
401 (r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
402 be32_to_cpu(r1->alloc.ar_startblock) <
403 be32_to_cpu(r2->alloc.ar_startblock));
404}
405
406STATIC enum xbtree_key_contig
407xfs_allocbt_keys_contiguous(
408 struct xfs_btree_cur *cur,
409 const union xfs_btree_key *key1,
410 const union xfs_btree_key *key2,
411 const union xfs_btree_key *mask)
412{
413 ASSERT(!mask || mask->alloc.ar_startblock);
414
415 return xbtree_key_contig(be32_to_cpu(key1->alloc.ar_startblock),
416 be32_to_cpu(key2->alloc.ar_startblock));
417}
418
419const struct xfs_btree_ops xfs_bnobt_ops = {
420 .name = "bno",
421 .type = XFS_BTREE_TYPE_AG,
422
423 .rec_len = sizeof(xfs_alloc_rec_t),
424 .key_len = sizeof(xfs_alloc_key_t),
425 .ptr_len = XFS_BTREE_SHORT_PTR_LEN,
426
427 .lru_refs = XFS_ALLOC_BTREE_REF,
428 .statoff = XFS_STATS_CALC_INDEX(xs_abtb_2),
429 .sick_mask = XFS_SICK_AG_BNOBT,
430
431 .dup_cursor = xfs_bnobt_dup_cursor,
432 .set_root = xfs_allocbt_set_root,
433 .alloc_block = xfs_allocbt_alloc_block,
434 .free_block = xfs_allocbt_free_block,
435 .get_minrecs = xfs_allocbt_get_minrecs,
436 .get_maxrecs = xfs_allocbt_get_maxrecs,
437 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
438 .init_high_key_from_rec = xfs_bnobt_init_high_key_from_rec,
439 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
440 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
441 .key_diff = xfs_bnobt_key_diff,
442 .buf_ops = &xfs_bnobt_buf_ops,
443 .diff_two_keys = xfs_bnobt_diff_two_keys,
444 .keys_inorder = xfs_bnobt_keys_inorder,
445 .recs_inorder = xfs_bnobt_recs_inorder,
446 .keys_contiguous = xfs_allocbt_keys_contiguous,
447};
448
449const struct xfs_btree_ops xfs_cntbt_ops = {
450 .name = "cnt",
451 .type = XFS_BTREE_TYPE_AG,
452
453 .rec_len = sizeof(xfs_alloc_rec_t),
454 .key_len = sizeof(xfs_alloc_key_t),
455 .ptr_len = XFS_BTREE_SHORT_PTR_LEN,
456
457 .lru_refs = XFS_ALLOC_BTREE_REF,
458 .statoff = XFS_STATS_CALC_INDEX(xs_abtc_2),
459 .sick_mask = XFS_SICK_AG_CNTBT,
460
461 .dup_cursor = xfs_cntbt_dup_cursor,
462 .set_root = xfs_allocbt_set_root,
463 .alloc_block = xfs_allocbt_alloc_block,
464 .free_block = xfs_allocbt_free_block,
465 .get_minrecs = xfs_allocbt_get_minrecs,
466 .get_maxrecs = xfs_allocbt_get_maxrecs,
467 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
468 .init_high_key_from_rec = xfs_cntbt_init_high_key_from_rec,
469 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
470 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
471 .key_diff = xfs_cntbt_key_diff,
472 .buf_ops = &xfs_cntbt_buf_ops,
473 .diff_two_keys = xfs_cntbt_diff_two_keys,
474 .keys_inorder = xfs_cntbt_keys_inorder,
475 .recs_inorder = xfs_cntbt_recs_inorder,
476 .keys_contiguous = NULL, /* not needed right now */
477};
478
479/*
480 * Allocate a new bnobt cursor.
481 *
482 * For staging cursors tp and agbp are NULL.
483 */
484struct xfs_btree_cur *
485xfs_bnobt_init_cursor(
486 struct xfs_mount *mp,
487 struct xfs_trans *tp,
488 struct xfs_buf *agbp,
489 struct xfs_perag *pag)
490{
491 struct xfs_btree_cur *cur;
492
493 cur = xfs_btree_alloc_cursor(mp, tp, &xfs_bnobt_ops,
494 mp->m_alloc_maxlevels, xfs_allocbt_cur_cache);
495 cur->bc_group = xfs_group_hold(pag_group(pag));
496 cur->bc_ag.agbp = agbp;
497 if (agbp) {
498 struct xfs_agf *agf = agbp->b_addr;
499
500 cur->bc_nlevels = be32_to_cpu(agf->agf_bno_level);
501 }
502 return cur;
503}
504
505/*
506 * Allocate a new cntbt cursor.
507 *
508 * For staging cursors tp and agbp are NULL.
509 */
510struct xfs_btree_cur *
511xfs_cntbt_init_cursor(
512 struct xfs_mount *mp,
513 struct xfs_trans *tp,
514 struct xfs_buf *agbp,
515 struct xfs_perag *pag)
516{
517 struct xfs_btree_cur *cur;
518
519 cur = xfs_btree_alloc_cursor(mp, tp, &xfs_cntbt_ops,
520 mp->m_alloc_maxlevels, xfs_allocbt_cur_cache);
521 cur->bc_group = xfs_group_hold(pag_group(pag));
522 cur->bc_ag.agbp = agbp;
523 if (agbp) {
524 struct xfs_agf *agf = agbp->b_addr;
525
526 cur->bc_nlevels = be32_to_cpu(agf->agf_cnt_level);
527 }
528 return cur;
529}
530
531/*
532 * Install a new free space btree root. Caller is responsible for invalidating
533 * and freeing the old btree blocks.
534 */
535void
536xfs_allocbt_commit_staged_btree(
537 struct xfs_btree_cur *cur,
538 struct xfs_trans *tp,
539 struct xfs_buf *agbp)
540{
541 struct xfs_agf *agf = agbp->b_addr;
542 struct xbtree_afakeroot *afake = cur->bc_ag.afake;
543
544 ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
545
546 if (xfs_btree_is_bno(cur->bc_ops)) {
547 agf->agf_bno_root = cpu_to_be32(afake->af_root);
548 agf->agf_bno_level = cpu_to_be32(afake->af_levels);
549 } else {
550 agf->agf_cnt_root = cpu_to_be32(afake->af_root);
551 agf->agf_cnt_level = cpu_to_be32(afake->af_levels);
552 }
553 xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
554
555 xfs_btree_commit_afakeroot(cur, tp, agbp);
556}
557
558/* Calculate number of records in an alloc btree block. */
559static inline unsigned int
560xfs_allocbt_block_maxrecs(
561 unsigned int blocklen,
562 bool leaf)
563{
564 if (leaf)
565 return blocklen / sizeof(xfs_alloc_rec_t);
566 return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
567}
568
569/*
570 * Calculate number of records in an alloc btree block.
571 */
572unsigned int
573xfs_allocbt_maxrecs(
574 struct xfs_mount *mp,
575 unsigned int blocklen,
576 bool leaf)
577{
578 blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
579 return xfs_allocbt_block_maxrecs(blocklen, leaf);
580}
581
582/* Free space btrees are at their largest when every other block is free. */
583#define XFS_MAX_FREESP_RECORDS ((XFS_MAX_AG_BLOCKS + 1) / 2)
584
585/* Compute the max possible height for free space btrees. */
586unsigned int
587xfs_allocbt_maxlevels_ondisk(void)
588{
589 unsigned int minrecs[2];
590 unsigned int blocklen;
591
592 blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
593 XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
594
595 minrecs[0] = xfs_allocbt_block_maxrecs(blocklen, true) / 2;
596 minrecs[1] = xfs_allocbt_block_maxrecs(blocklen, false) / 2;
597
598 return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_FREESP_RECORDS);
599}
600
601/* Calculate the freespace btree size for some records. */
602xfs_extlen_t
603xfs_allocbt_calc_size(
604 struct xfs_mount *mp,
605 unsigned long long len)
606{
607 return xfs_btree_calc_size(mp->m_alloc_mnr, len);
608}
609
610int __init
611xfs_allocbt_init_cur_cache(void)
612{
613 xfs_allocbt_cur_cache = kmem_cache_create("xfs_bnobt_cur",
614 xfs_btree_cur_sizeof(xfs_allocbt_maxlevels_ondisk()),
615 0, 0, NULL);
616
617 if (!xfs_allocbt_cur_cache)
618 return -ENOMEM;
619 return 0;
620}
621
622void
623xfs_allocbt_destroy_cur_cache(void)
624{
625 kmem_cache_destroy(xfs_allocbt_cur_cache);
626 xfs_allocbt_cur_cache = NULL;
627}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_btree.h"
14#include "xfs_btree_staging.h"
15#include "xfs_alloc_btree.h"
16#include "xfs_alloc.h"
17#include "xfs_extent_busy.h"
18#include "xfs_error.h"
19#include "xfs_trace.h"
20#include "xfs_trans.h"
21#include "xfs_ag.h"
22
23static struct kmem_cache *xfs_allocbt_cur_cache;
24
25STATIC struct xfs_btree_cur *
26xfs_allocbt_dup_cursor(
27 struct xfs_btree_cur *cur)
28{
29 return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp,
30 cur->bc_ag.agbp, cur->bc_ag.pag, cur->bc_btnum);
31}
32
33STATIC void
34xfs_allocbt_set_root(
35 struct xfs_btree_cur *cur,
36 const union xfs_btree_ptr *ptr,
37 int inc)
38{
39 struct xfs_buf *agbp = cur->bc_ag.agbp;
40 struct xfs_agf *agf = agbp->b_addr;
41 int btnum = cur->bc_btnum;
42
43 ASSERT(ptr->s != 0);
44
45 agf->agf_roots[btnum] = ptr->s;
46 be32_add_cpu(&agf->agf_levels[btnum], inc);
47 cur->bc_ag.pag->pagf_levels[btnum] += inc;
48
49 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
50}
51
52STATIC int
53xfs_allocbt_alloc_block(
54 struct xfs_btree_cur *cur,
55 const union xfs_btree_ptr *start,
56 union xfs_btree_ptr *new,
57 int *stat)
58{
59 int error;
60 xfs_agblock_t bno;
61
62 /* Allocate the new block from the freelist. If we can't, give up. */
63 error = xfs_alloc_get_freelist(cur->bc_ag.pag, cur->bc_tp,
64 cur->bc_ag.agbp, &bno, 1);
65 if (error)
66 return error;
67
68 if (bno == NULLAGBLOCK) {
69 *stat = 0;
70 return 0;
71 }
72
73 atomic64_inc(&cur->bc_mp->m_allocbt_blks);
74 xfs_extent_busy_reuse(cur->bc_mp, cur->bc_ag.pag, bno, 1, false);
75
76 new->s = cpu_to_be32(bno);
77
78 *stat = 1;
79 return 0;
80}
81
82STATIC int
83xfs_allocbt_free_block(
84 struct xfs_btree_cur *cur,
85 struct xfs_buf *bp)
86{
87 struct xfs_buf *agbp = cur->bc_ag.agbp;
88 xfs_agblock_t bno;
89 int error;
90
91 bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp));
92 error = xfs_alloc_put_freelist(cur->bc_ag.pag, cur->bc_tp, agbp, NULL,
93 bno, 1);
94 if (error)
95 return error;
96
97 atomic64_dec(&cur->bc_mp->m_allocbt_blks);
98 xfs_extent_busy_insert(cur->bc_tp, agbp->b_pag, bno, 1,
99 XFS_EXTENT_BUSY_SKIP_DISCARD);
100 return 0;
101}
102
103/*
104 * Update the longest extent in the AGF
105 */
106STATIC void
107xfs_allocbt_update_lastrec(
108 struct xfs_btree_cur *cur,
109 const struct xfs_btree_block *block,
110 const union xfs_btree_rec *rec,
111 int ptr,
112 int reason)
113{
114 struct xfs_agf *agf = cur->bc_ag.agbp->b_addr;
115 struct xfs_perag *pag;
116 __be32 len;
117 int numrecs;
118
119 ASSERT(cur->bc_btnum == XFS_BTNUM_CNT);
120
121 switch (reason) {
122 case LASTREC_UPDATE:
123 /*
124 * If this is the last leaf block and it's the last record,
125 * then update the size of the longest extent in the AG.
126 */
127 if (ptr != xfs_btree_get_numrecs(block))
128 return;
129 len = rec->alloc.ar_blockcount;
130 break;
131 case LASTREC_INSREC:
132 if (be32_to_cpu(rec->alloc.ar_blockcount) <=
133 be32_to_cpu(agf->agf_longest))
134 return;
135 len = rec->alloc.ar_blockcount;
136 break;
137 case LASTREC_DELREC:
138 numrecs = xfs_btree_get_numrecs(block);
139 if (ptr <= numrecs)
140 return;
141 ASSERT(ptr == numrecs + 1);
142
143 if (numrecs) {
144 xfs_alloc_rec_t *rrp;
145
146 rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
147 len = rrp->ar_blockcount;
148 } else {
149 len = 0;
150 }
151
152 break;
153 default:
154 ASSERT(0);
155 return;
156 }
157
158 agf->agf_longest = len;
159 pag = cur->bc_ag.agbp->b_pag;
160 pag->pagf_longest = be32_to_cpu(len);
161 xfs_alloc_log_agf(cur->bc_tp, cur->bc_ag.agbp, XFS_AGF_LONGEST);
162}
163
164STATIC int
165xfs_allocbt_get_minrecs(
166 struct xfs_btree_cur *cur,
167 int level)
168{
169 return cur->bc_mp->m_alloc_mnr[level != 0];
170}
171
172STATIC int
173xfs_allocbt_get_maxrecs(
174 struct xfs_btree_cur *cur,
175 int level)
176{
177 return cur->bc_mp->m_alloc_mxr[level != 0];
178}
179
180STATIC void
181xfs_allocbt_init_key_from_rec(
182 union xfs_btree_key *key,
183 const union xfs_btree_rec *rec)
184{
185 key->alloc.ar_startblock = rec->alloc.ar_startblock;
186 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
187}
188
189STATIC void
190xfs_bnobt_init_high_key_from_rec(
191 union xfs_btree_key *key,
192 const union xfs_btree_rec *rec)
193{
194 __u32 x;
195
196 x = be32_to_cpu(rec->alloc.ar_startblock);
197 x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
198 key->alloc.ar_startblock = cpu_to_be32(x);
199 key->alloc.ar_blockcount = 0;
200}
201
202STATIC void
203xfs_cntbt_init_high_key_from_rec(
204 union xfs_btree_key *key,
205 const union xfs_btree_rec *rec)
206{
207 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
208 key->alloc.ar_startblock = 0;
209}
210
211STATIC void
212xfs_allocbt_init_rec_from_cur(
213 struct xfs_btree_cur *cur,
214 union xfs_btree_rec *rec)
215{
216 rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
217 rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
218}
219
220STATIC void
221xfs_allocbt_init_ptr_from_cur(
222 struct xfs_btree_cur *cur,
223 union xfs_btree_ptr *ptr)
224{
225 struct xfs_agf *agf = cur->bc_ag.agbp->b_addr;
226
227 ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agf->agf_seqno));
228
229 ptr->s = agf->agf_roots[cur->bc_btnum];
230}
231
232STATIC int64_t
233xfs_bnobt_key_diff(
234 struct xfs_btree_cur *cur,
235 const union xfs_btree_key *key)
236{
237 struct xfs_alloc_rec_incore *rec = &cur->bc_rec.a;
238 const struct xfs_alloc_rec *kp = &key->alloc;
239
240 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
241}
242
243STATIC int64_t
244xfs_cntbt_key_diff(
245 struct xfs_btree_cur *cur,
246 const union xfs_btree_key *key)
247{
248 struct xfs_alloc_rec_incore *rec = &cur->bc_rec.a;
249 const struct xfs_alloc_rec *kp = &key->alloc;
250 int64_t diff;
251
252 diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
253 if (diff)
254 return diff;
255
256 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
257}
258
259STATIC int64_t
260xfs_bnobt_diff_two_keys(
261 struct xfs_btree_cur *cur,
262 const union xfs_btree_key *k1,
263 const union xfs_btree_key *k2)
264{
265 return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
266 be32_to_cpu(k2->alloc.ar_startblock);
267}
268
269STATIC int64_t
270xfs_cntbt_diff_two_keys(
271 struct xfs_btree_cur *cur,
272 const union xfs_btree_key *k1,
273 const union xfs_btree_key *k2)
274{
275 int64_t diff;
276
277 diff = be32_to_cpu(k1->alloc.ar_blockcount) -
278 be32_to_cpu(k2->alloc.ar_blockcount);
279 if (diff)
280 return diff;
281
282 return be32_to_cpu(k1->alloc.ar_startblock) -
283 be32_to_cpu(k2->alloc.ar_startblock);
284}
285
286static xfs_failaddr_t
287xfs_allocbt_verify(
288 struct xfs_buf *bp)
289{
290 struct xfs_mount *mp = bp->b_mount;
291 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
292 struct xfs_perag *pag = bp->b_pag;
293 xfs_failaddr_t fa;
294 unsigned int level;
295 xfs_btnum_t btnum = XFS_BTNUM_BNOi;
296
297 if (!xfs_verify_magic(bp, block->bb_magic))
298 return __this_address;
299
300 if (xfs_has_crc(mp)) {
301 fa = xfs_btree_sblock_v5hdr_verify(bp);
302 if (fa)
303 return fa;
304 }
305
306 /*
307 * The perag may not be attached during grow operations or fully
308 * initialized from the AGF during log recovery. Therefore we can only
309 * check against maximum tree depth from those contexts.
310 *
311 * Otherwise check against the per-tree limit. Peek at one of the
312 * verifier magic values to determine the type of tree we're verifying
313 * against.
314 */
315 level = be16_to_cpu(block->bb_level);
316 if (bp->b_ops->magic[0] == cpu_to_be32(XFS_ABTC_MAGIC))
317 btnum = XFS_BTNUM_CNTi;
318 if (pag && pag->pagf_init) {
319 if (level >= pag->pagf_levels[btnum])
320 return __this_address;
321 } else if (level >= mp->m_alloc_maxlevels)
322 return __this_address;
323
324 return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]);
325}
326
327static void
328xfs_allocbt_read_verify(
329 struct xfs_buf *bp)
330{
331 xfs_failaddr_t fa;
332
333 if (!xfs_btree_sblock_verify_crc(bp))
334 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
335 else {
336 fa = xfs_allocbt_verify(bp);
337 if (fa)
338 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
339 }
340
341 if (bp->b_error)
342 trace_xfs_btree_corrupt(bp, _RET_IP_);
343}
344
345static void
346xfs_allocbt_write_verify(
347 struct xfs_buf *bp)
348{
349 xfs_failaddr_t fa;
350
351 fa = xfs_allocbt_verify(bp);
352 if (fa) {
353 trace_xfs_btree_corrupt(bp, _RET_IP_);
354 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
355 return;
356 }
357 xfs_btree_sblock_calc_crc(bp);
358
359}
360
361const struct xfs_buf_ops xfs_bnobt_buf_ops = {
362 .name = "xfs_bnobt",
363 .magic = { cpu_to_be32(XFS_ABTB_MAGIC),
364 cpu_to_be32(XFS_ABTB_CRC_MAGIC) },
365 .verify_read = xfs_allocbt_read_verify,
366 .verify_write = xfs_allocbt_write_verify,
367 .verify_struct = xfs_allocbt_verify,
368};
369
370const struct xfs_buf_ops xfs_cntbt_buf_ops = {
371 .name = "xfs_cntbt",
372 .magic = { cpu_to_be32(XFS_ABTC_MAGIC),
373 cpu_to_be32(XFS_ABTC_CRC_MAGIC) },
374 .verify_read = xfs_allocbt_read_verify,
375 .verify_write = xfs_allocbt_write_verify,
376 .verify_struct = xfs_allocbt_verify,
377};
378
379STATIC int
380xfs_bnobt_keys_inorder(
381 struct xfs_btree_cur *cur,
382 const union xfs_btree_key *k1,
383 const union xfs_btree_key *k2)
384{
385 return be32_to_cpu(k1->alloc.ar_startblock) <
386 be32_to_cpu(k2->alloc.ar_startblock);
387}
388
389STATIC int
390xfs_bnobt_recs_inorder(
391 struct xfs_btree_cur *cur,
392 const union xfs_btree_rec *r1,
393 const union xfs_btree_rec *r2)
394{
395 return be32_to_cpu(r1->alloc.ar_startblock) +
396 be32_to_cpu(r1->alloc.ar_blockcount) <=
397 be32_to_cpu(r2->alloc.ar_startblock);
398}
399
400STATIC int
401xfs_cntbt_keys_inorder(
402 struct xfs_btree_cur *cur,
403 const union xfs_btree_key *k1,
404 const union xfs_btree_key *k2)
405{
406 return be32_to_cpu(k1->alloc.ar_blockcount) <
407 be32_to_cpu(k2->alloc.ar_blockcount) ||
408 (k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
409 be32_to_cpu(k1->alloc.ar_startblock) <
410 be32_to_cpu(k2->alloc.ar_startblock));
411}
412
413STATIC int
414xfs_cntbt_recs_inorder(
415 struct xfs_btree_cur *cur,
416 const union xfs_btree_rec *r1,
417 const union xfs_btree_rec *r2)
418{
419 return be32_to_cpu(r1->alloc.ar_blockcount) <
420 be32_to_cpu(r2->alloc.ar_blockcount) ||
421 (r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
422 be32_to_cpu(r1->alloc.ar_startblock) <
423 be32_to_cpu(r2->alloc.ar_startblock));
424}
425
426static const struct xfs_btree_ops xfs_bnobt_ops = {
427 .rec_len = sizeof(xfs_alloc_rec_t),
428 .key_len = sizeof(xfs_alloc_key_t),
429
430 .dup_cursor = xfs_allocbt_dup_cursor,
431 .set_root = xfs_allocbt_set_root,
432 .alloc_block = xfs_allocbt_alloc_block,
433 .free_block = xfs_allocbt_free_block,
434 .update_lastrec = xfs_allocbt_update_lastrec,
435 .get_minrecs = xfs_allocbt_get_minrecs,
436 .get_maxrecs = xfs_allocbt_get_maxrecs,
437 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
438 .init_high_key_from_rec = xfs_bnobt_init_high_key_from_rec,
439 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
440 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
441 .key_diff = xfs_bnobt_key_diff,
442 .buf_ops = &xfs_bnobt_buf_ops,
443 .diff_two_keys = xfs_bnobt_diff_two_keys,
444 .keys_inorder = xfs_bnobt_keys_inorder,
445 .recs_inorder = xfs_bnobt_recs_inorder,
446};
447
448static const struct xfs_btree_ops xfs_cntbt_ops = {
449 .rec_len = sizeof(xfs_alloc_rec_t),
450 .key_len = sizeof(xfs_alloc_key_t),
451
452 .dup_cursor = xfs_allocbt_dup_cursor,
453 .set_root = xfs_allocbt_set_root,
454 .alloc_block = xfs_allocbt_alloc_block,
455 .free_block = xfs_allocbt_free_block,
456 .update_lastrec = xfs_allocbt_update_lastrec,
457 .get_minrecs = xfs_allocbt_get_minrecs,
458 .get_maxrecs = xfs_allocbt_get_maxrecs,
459 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
460 .init_high_key_from_rec = xfs_cntbt_init_high_key_from_rec,
461 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
462 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
463 .key_diff = xfs_cntbt_key_diff,
464 .buf_ops = &xfs_cntbt_buf_ops,
465 .diff_two_keys = xfs_cntbt_diff_two_keys,
466 .keys_inorder = xfs_cntbt_keys_inorder,
467 .recs_inorder = xfs_cntbt_recs_inorder,
468};
469
470/* Allocate most of a new allocation btree cursor. */
471STATIC struct xfs_btree_cur *
472xfs_allocbt_init_common(
473 struct xfs_mount *mp,
474 struct xfs_trans *tp,
475 struct xfs_perag *pag,
476 xfs_btnum_t btnum)
477{
478 struct xfs_btree_cur *cur;
479
480 ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT);
481
482 cur = xfs_btree_alloc_cursor(mp, tp, btnum, mp->m_alloc_maxlevels,
483 xfs_allocbt_cur_cache);
484 cur->bc_ag.abt.active = false;
485
486 if (btnum == XFS_BTNUM_CNT) {
487 cur->bc_ops = &xfs_cntbt_ops;
488 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtc_2);
489 cur->bc_flags = XFS_BTREE_LASTREC_UPDATE;
490 } else {
491 cur->bc_ops = &xfs_bnobt_ops;
492 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtb_2);
493 }
494
495 /* take a reference for the cursor */
496 atomic_inc(&pag->pag_ref);
497 cur->bc_ag.pag = pag;
498
499 if (xfs_has_crc(mp))
500 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
501
502 return cur;
503}
504
505/*
506 * Allocate a new allocation btree cursor.
507 */
508struct xfs_btree_cur * /* new alloc btree cursor */
509xfs_allocbt_init_cursor(
510 struct xfs_mount *mp, /* file system mount point */
511 struct xfs_trans *tp, /* transaction pointer */
512 struct xfs_buf *agbp, /* buffer for agf structure */
513 struct xfs_perag *pag,
514 xfs_btnum_t btnum) /* btree identifier */
515{
516 struct xfs_agf *agf = agbp->b_addr;
517 struct xfs_btree_cur *cur;
518
519 cur = xfs_allocbt_init_common(mp, tp, pag, btnum);
520 if (btnum == XFS_BTNUM_CNT)
521 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]);
522 else
523 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]);
524
525 cur->bc_ag.agbp = agbp;
526
527 return cur;
528}
529
530/* Create a free space btree cursor with a fake root for staging. */
531struct xfs_btree_cur *
532xfs_allocbt_stage_cursor(
533 struct xfs_mount *mp,
534 struct xbtree_afakeroot *afake,
535 struct xfs_perag *pag,
536 xfs_btnum_t btnum)
537{
538 struct xfs_btree_cur *cur;
539
540 cur = xfs_allocbt_init_common(mp, NULL, pag, btnum);
541 xfs_btree_stage_afakeroot(cur, afake);
542 return cur;
543}
544
545/*
546 * Install a new free space btree root. Caller is responsible for invalidating
547 * and freeing the old btree blocks.
548 */
549void
550xfs_allocbt_commit_staged_btree(
551 struct xfs_btree_cur *cur,
552 struct xfs_trans *tp,
553 struct xfs_buf *agbp)
554{
555 struct xfs_agf *agf = agbp->b_addr;
556 struct xbtree_afakeroot *afake = cur->bc_ag.afake;
557
558 ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
559
560 agf->agf_roots[cur->bc_btnum] = cpu_to_be32(afake->af_root);
561 agf->agf_levels[cur->bc_btnum] = cpu_to_be32(afake->af_levels);
562 xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
563
564 if (cur->bc_btnum == XFS_BTNUM_BNO) {
565 xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_bnobt_ops);
566 } else {
567 cur->bc_flags |= XFS_BTREE_LASTREC_UPDATE;
568 xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_cntbt_ops);
569 }
570}
571
572/* Calculate number of records in an alloc btree block. */
573static inline unsigned int
574xfs_allocbt_block_maxrecs(
575 unsigned int blocklen,
576 bool leaf)
577{
578 if (leaf)
579 return blocklen / sizeof(xfs_alloc_rec_t);
580 return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
581}
582
583/*
584 * Calculate number of records in an alloc btree block.
585 */
586int
587xfs_allocbt_maxrecs(
588 struct xfs_mount *mp,
589 int blocklen,
590 int leaf)
591{
592 blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
593 return xfs_allocbt_block_maxrecs(blocklen, leaf);
594}
595
596/* Free space btrees are at their largest when every other block is free. */
597#define XFS_MAX_FREESP_RECORDS ((XFS_MAX_AG_BLOCKS + 1) / 2)
598
599/* Compute the max possible height for free space btrees. */
600unsigned int
601xfs_allocbt_maxlevels_ondisk(void)
602{
603 unsigned int minrecs[2];
604 unsigned int blocklen;
605
606 blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
607 XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
608
609 minrecs[0] = xfs_allocbt_block_maxrecs(blocklen, true) / 2;
610 minrecs[1] = xfs_allocbt_block_maxrecs(blocklen, false) / 2;
611
612 return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_FREESP_RECORDS);
613}
614
615/* Calculate the freespace btree size for some records. */
616xfs_extlen_t
617xfs_allocbt_calc_size(
618 struct xfs_mount *mp,
619 unsigned long long len)
620{
621 return xfs_btree_calc_size(mp->m_alloc_mnr, len);
622}
623
624int __init
625xfs_allocbt_init_cur_cache(void)
626{
627 xfs_allocbt_cur_cache = kmem_cache_create("xfs_bnobt_cur",
628 xfs_btree_cur_sizeof(xfs_allocbt_maxlevels_ondisk()),
629 0, 0, NULL);
630
631 if (!xfs_allocbt_cur_cache)
632 return -ENOMEM;
633 return 0;
634}
635
636void
637xfs_allocbt_destroy_cur_cache(void)
638{
639 kmem_cache_destroy(xfs_allocbt_cur_cache);
640 xfs_allocbt_cur_cache = NULL;
641}