Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) 2012 Google, Inc.
  4 */
  5
  6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  7
  8#include <linux/device.h>
  9#include <linux/err.h>
 10#include <linux/errno.h>
 11#include <linux/init.h>
 12#include <linux/io.h>
 13#include <linux/kernel.h>
 14#include <linux/list.h>
 15#include <linux/memblock.h>
 16#include <linux/rslib.h>
 17#include <linux/slab.h>
 18#include <linux/uaccess.h>
 19#include <linux/vmalloc.h>
 20#include <linux/mm.h>
 21#include <asm/page.h>
 22
 23#include "ram_internal.h"
 24
 25/**
 26 * struct persistent_ram_buffer - persistent circular RAM buffer
 27 *
 28 * @sig: Signature to indicate header (PERSISTENT_RAM_SIG xor PRZ-type value)
 29 * @start: First valid byte in the buffer.
 30 * @size: Number of valid bytes in the buffer.
 31 * @data: The contents of the buffer.
 
 
 32 */
 33struct persistent_ram_buffer {
 34	uint32_t    sig;
 35	atomic_t    start;
 36	atomic_t    size;
 37	uint8_t     data[];
 38};
 39
 40#define PERSISTENT_RAM_SIG (0x43474244) /* DBGC */
 41
 42static inline size_t buffer_size(struct persistent_ram_zone *prz)
 43{
 44	return atomic_read(&prz->buffer->size);
 45}
 46
 47static inline size_t buffer_start(struct persistent_ram_zone *prz)
 48{
 49	return atomic_read(&prz->buffer->start);
 50}
 51
 52/* increase and wrap the start pointer, returning the old value */
 53static size_t buffer_start_add(struct persistent_ram_zone *prz, size_t a)
 54{
 55	int old;
 56	int new;
 57	unsigned long flags = 0;
 58
 59	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
 60		raw_spin_lock_irqsave(&prz->buffer_lock, flags);
 61
 62	old = atomic_read(&prz->buffer->start);
 63	new = old + a;
 64	while (unlikely(new >= prz->buffer_size))
 65		new -= prz->buffer_size;
 66	atomic_set(&prz->buffer->start, new);
 67
 68	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
 69		raw_spin_unlock_irqrestore(&prz->buffer_lock, flags);
 70
 71	return old;
 72}
 73
 74/* increase the size counter until it hits the max size */
 75static void buffer_size_add(struct persistent_ram_zone *prz, size_t a)
 76{
 77	size_t old;
 78	size_t new;
 79	unsigned long flags = 0;
 80
 81	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
 82		raw_spin_lock_irqsave(&prz->buffer_lock, flags);
 83
 84	old = atomic_read(&prz->buffer->size);
 85	if (old == prz->buffer_size)
 86		goto exit;
 87
 88	new = old + a;
 89	if (new > prz->buffer_size)
 90		new = prz->buffer_size;
 91	atomic_set(&prz->buffer->size, new);
 92
 93exit:
 94	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
 95		raw_spin_unlock_irqrestore(&prz->buffer_lock, flags);
 96}
 97
 98static void notrace persistent_ram_encode_rs8(struct persistent_ram_zone *prz,
 99	uint8_t *data, size_t len, uint8_t *ecc)
100{
101	int i;
102
103	/* Initialize the parity buffer */
104	memset(prz->ecc_info.par, 0,
105	       prz->ecc_info.ecc_size * sizeof(prz->ecc_info.par[0]));
106	encode_rs8(prz->rs_decoder, data, len, prz->ecc_info.par, 0);
107	for (i = 0; i < prz->ecc_info.ecc_size; i++)
108		ecc[i] = prz->ecc_info.par[i];
109}
110
111static int persistent_ram_decode_rs8(struct persistent_ram_zone *prz,
112	void *data, size_t len, uint8_t *ecc)
113{
114	int i;
115
116	for (i = 0; i < prz->ecc_info.ecc_size; i++)
117		prz->ecc_info.par[i] = ecc[i];
118	return decode_rs8(prz->rs_decoder, data, prz->ecc_info.par, len,
119				NULL, 0, NULL, 0, NULL);
120}
121
122static void notrace persistent_ram_update_ecc(struct persistent_ram_zone *prz,
123	unsigned int start, unsigned int count)
124{
125	struct persistent_ram_buffer *buffer = prz->buffer;
126	uint8_t *buffer_end = buffer->data + prz->buffer_size;
127	uint8_t *block;
128	uint8_t *par;
129	int ecc_block_size = prz->ecc_info.block_size;
130	int ecc_size = prz->ecc_info.ecc_size;
131	int size = ecc_block_size;
132
133	if (!ecc_size)
134		return;
135
136	block = buffer->data + (start & ~(ecc_block_size - 1));
137	par = prz->par_buffer + (start / ecc_block_size) * ecc_size;
138
139	do {
140		if (block + ecc_block_size > buffer_end)
141			size = buffer_end - block;
142		persistent_ram_encode_rs8(prz, block, size, par);
143		block += ecc_block_size;
144		par += ecc_size;
145	} while (block < buffer->data + start + count);
146}
147
148static void persistent_ram_update_header_ecc(struct persistent_ram_zone *prz)
149{
150	struct persistent_ram_buffer *buffer = prz->buffer;
151
152	if (!prz->ecc_info.ecc_size)
153		return;
154
155	persistent_ram_encode_rs8(prz, (uint8_t *)buffer, sizeof(*buffer),
156				  prz->par_header);
157}
158
159static void persistent_ram_ecc_old(struct persistent_ram_zone *prz)
160{
161	struct persistent_ram_buffer *buffer = prz->buffer;
162	uint8_t *block;
163	uint8_t *par;
164
165	if (!prz->ecc_info.ecc_size)
166		return;
167
168	block = buffer->data;
169	par = prz->par_buffer;
170	while (block < buffer->data + buffer_size(prz)) {
171		int numerr;
172		int size = prz->ecc_info.block_size;
173		if (block + size > buffer->data + prz->buffer_size)
174			size = buffer->data + prz->buffer_size - block;
175		numerr = persistent_ram_decode_rs8(prz, block, size, par);
176		if (numerr > 0) {
177			pr_devel("error in block %p, %d\n", block, numerr);
178			prz->corrected_bytes += numerr;
179		} else if (numerr < 0) {
180			pr_devel("uncorrectable error in block %p\n", block);
181			prz->bad_blocks++;
182		}
183		block += prz->ecc_info.block_size;
184		par += prz->ecc_info.ecc_size;
185	}
186}
187
188static int persistent_ram_init_ecc(struct persistent_ram_zone *prz,
189				   struct persistent_ram_ecc_info *ecc_info)
190{
191	int numerr;
192	struct persistent_ram_buffer *buffer = prz->buffer;
193	size_t ecc_blocks;
194	size_t ecc_total;
195
196	if (!ecc_info || !ecc_info->ecc_size)
197		return 0;
198
199	prz->ecc_info.block_size = ecc_info->block_size ?: 128;
200	prz->ecc_info.ecc_size = ecc_info->ecc_size ?: 16;
201	prz->ecc_info.symsize = ecc_info->symsize ?: 8;
202	prz->ecc_info.poly = ecc_info->poly ?: 0x11d;
203
204	ecc_blocks = DIV_ROUND_UP(prz->buffer_size - prz->ecc_info.ecc_size,
205				  prz->ecc_info.block_size +
206				  prz->ecc_info.ecc_size);
207	ecc_total = (ecc_blocks + 1) * prz->ecc_info.ecc_size;
208	if (ecc_total >= prz->buffer_size) {
209		pr_err("%s: invalid ecc_size %u (total %zu, buffer size %zu)\n",
210		       __func__, prz->ecc_info.ecc_size,
211		       ecc_total, prz->buffer_size);
212		return -EINVAL;
213	}
214
215	prz->buffer_size -= ecc_total;
216	prz->par_buffer = buffer->data + prz->buffer_size;
217	prz->par_header = prz->par_buffer +
218			  ecc_blocks * prz->ecc_info.ecc_size;
219
220	/*
221	 * first consecutive root is 0
222	 * primitive element to generate roots = 1
223	 */
224	prz->rs_decoder = init_rs(prz->ecc_info.symsize, prz->ecc_info.poly,
225				  0, 1, prz->ecc_info.ecc_size);
226	if (prz->rs_decoder == NULL) {
227		pr_info("init_rs failed\n");
228		return -EINVAL;
229	}
230
231	/* allocate workspace instead of using stack VLA */
232	prz->ecc_info.par = kmalloc_array(prz->ecc_info.ecc_size,
233					  sizeof(*prz->ecc_info.par),
234					  GFP_KERNEL);
235	if (!prz->ecc_info.par) {
236		pr_err("cannot allocate ECC parity workspace\n");
237		return -ENOMEM;
238	}
239
240	prz->corrected_bytes = 0;
241	prz->bad_blocks = 0;
242
243	numerr = persistent_ram_decode_rs8(prz, buffer, sizeof(*buffer),
244					   prz->par_header);
245	if (numerr > 0) {
246		pr_info("error in header, %d\n", numerr);
247		prz->corrected_bytes += numerr;
248	} else if (numerr < 0) {
249		pr_info_ratelimited("uncorrectable error in header\n");
250		prz->bad_blocks++;
251	}
252
253	return 0;
254}
255
256ssize_t persistent_ram_ecc_string(struct persistent_ram_zone *prz,
257	char *str, size_t len)
258{
259	ssize_t ret;
260
261	if (!prz->ecc_info.ecc_size)
262		return 0;
263
264	if (prz->corrected_bytes || prz->bad_blocks)
265		ret = snprintf(str, len, ""
266			"\nECC: %d Corrected bytes, %d unrecoverable blocks\n",
267			prz->corrected_bytes, prz->bad_blocks);
268	else
269		ret = snprintf(str, len, "\nECC: No errors detected\n");
270
271	return ret;
272}
273
274static void notrace persistent_ram_update(struct persistent_ram_zone *prz,
275	const void *s, unsigned int start, unsigned int count)
276{
277	struct persistent_ram_buffer *buffer = prz->buffer;
278	memcpy_toio(buffer->data + start, s, count);
279	persistent_ram_update_ecc(prz, start, count);
280}
281
282static int notrace persistent_ram_update_user(struct persistent_ram_zone *prz,
283	const void __user *s, unsigned int start, unsigned int count)
284{
285	struct persistent_ram_buffer *buffer = prz->buffer;
286	int ret = unlikely(copy_from_user(buffer->data + start, s, count)) ?
287		-EFAULT : 0;
288	persistent_ram_update_ecc(prz, start, count);
289	return ret;
290}
291
292void persistent_ram_save_old(struct persistent_ram_zone *prz)
293{
294	struct persistent_ram_buffer *buffer = prz->buffer;
295	size_t size = buffer_size(prz);
296	size_t start = buffer_start(prz);
297
298	if (!size)
299		return;
300
301	if (!prz->old_log) {
302		persistent_ram_ecc_old(prz);
303		prz->old_log = kvzalloc(size, GFP_KERNEL);
304	}
305	if (!prz->old_log) {
306		pr_err("failed to allocate buffer\n");
307		return;
308	}
309
310	prz->old_log_size = size;
311	memcpy_fromio(prz->old_log, &buffer->data[start], size - start);
312	memcpy_fromio(prz->old_log + size - start, &buffer->data[0], start);
313}
314
315int notrace persistent_ram_write(struct persistent_ram_zone *prz,
316	const void *s, unsigned int count)
317{
318	int rem;
319	int c = count;
320	size_t start;
321
322	if (unlikely(c > prz->buffer_size)) {
323		s += c - prz->buffer_size;
324		c = prz->buffer_size;
325	}
326
327	buffer_size_add(prz, c);
328
329	start = buffer_start_add(prz, c);
330
331	rem = prz->buffer_size - start;
332	if (unlikely(rem < c)) {
333		persistent_ram_update(prz, s, start, rem);
334		s += rem;
335		c -= rem;
336		start = 0;
337	}
338	persistent_ram_update(prz, s, start, c);
339
340	persistent_ram_update_header_ecc(prz);
341
342	return count;
343}
344
345int notrace persistent_ram_write_user(struct persistent_ram_zone *prz,
346	const void __user *s, unsigned int count)
347{
348	int rem, ret = 0, c = count;
349	size_t start;
350
351	if (unlikely(c > prz->buffer_size)) {
352		s += c - prz->buffer_size;
353		c = prz->buffer_size;
354	}
355
356	buffer_size_add(prz, c);
357
358	start = buffer_start_add(prz, c);
359
360	rem = prz->buffer_size - start;
361	if (unlikely(rem < c)) {
362		ret = persistent_ram_update_user(prz, s, start, rem);
363		s += rem;
364		c -= rem;
365		start = 0;
366	}
367	if (likely(!ret))
368		ret = persistent_ram_update_user(prz, s, start, c);
369
370	persistent_ram_update_header_ecc(prz);
371
372	return unlikely(ret) ? ret : count;
373}
374
375size_t persistent_ram_old_size(struct persistent_ram_zone *prz)
376{
377	return prz->old_log_size;
378}
379
380void *persistent_ram_old(struct persistent_ram_zone *prz)
381{
382	return prz->old_log;
383}
384
385void persistent_ram_free_old(struct persistent_ram_zone *prz)
386{
387	kvfree(prz->old_log);
388	prz->old_log = NULL;
389	prz->old_log_size = 0;
390}
391
392void persistent_ram_zap(struct persistent_ram_zone *prz)
393{
394	atomic_set(&prz->buffer->start, 0);
395	atomic_set(&prz->buffer->size, 0);
396	persistent_ram_update_header_ecc(prz);
397}
398
399#define MEM_TYPE_WCOMBINE	0
400#define MEM_TYPE_NONCACHED	1
401#define MEM_TYPE_NORMAL		2
402
403static void *persistent_ram_vmap(phys_addr_t start, size_t size,
404		unsigned int memtype)
405{
406	struct page **pages;
407	phys_addr_t page_start;
408	unsigned int page_count;
409	pgprot_t prot;
410	unsigned int i;
411	void *vaddr;
412
413	page_start = start - offset_in_page(start);
414	page_count = DIV_ROUND_UP(size + offset_in_page(start), PAGE_SIZE);
415
416	switch (memtype) {
417	case MEM_TYPE_NORMAL:
418		prot = PAGE_KERNEL;
419		break;
420	case MEM_TYPE_NONCACHED:
421		prot = pgprot_noncached(PAGE_KERNEL);
422		break;
423	case MEM_TYPE_WCOMBINE:
424		prot = pgprot_writecombine(PAGE_KERNEL);
425		break;
426	default:
427		pr_err("invalid mem_type=%d\n", memtype);
428		return NULL;
429	}
430
431	pages = kmalloc_array(page_count, sizeof(struct page *), GFP_KERNEL);
432	if (!pages) {
433		pr_err("%s: Failed to allocate array for %u pages\n",
434		       __func__, page_count);
435		return NULL;
436	}
437
438	for (i = 0; i < page_count; i++) {
439		phys_addr_t addr = page_start + i * PAGE_SIZE;
440		pages[i] = pfn_to_page(addr >> PAGE_SHIFT);
441	}
442	/*
443	 * VM_IOREMAP used here to bypass this region during vread()
444	 * and kmap_atomic() (i.e. kcore) to avoid __va() failures.
445	 */
446	vaddr = vmap(pages, page_count, VM_MAP | VM_IOREMAP, prot);
447	kfree(pages);
448
449	/*
450	 * Since vmap() uses page granularity, we must add the offset
451	 * into the page here, to get the byte granularity address
452	 * into the mapping to represent the actual "start" location.
453	 */
454	return vaddr + offset_in_page(start);
455}
456
457static void *persistent_ram_iomap(phys_addr_t start, size_t size,
458		unsigned int memtype, char *label)
459{
460	void *va;
461
462	if (!request_mem_region(start, size, label ?: "ramoops")) {
463		pr_err("request mem region (%s 0x%llx@0x%llx) failed\n",
464			label ?: "ramoops",
465			(unsigned long long)size, (unsigned long long)start);
466		return NULL;
467	}
468
469	if (memtype)
470		va = ioremap(start, size);
471	else
472		va = ioremap_wc(start, size);
473
474	/*
475	 * Since request_mem_region() and ioremap() are byte-granularity
476	 * there is no need handle anything special like we do when the
477	 * vmap() case in persistent_ram_vmap() above.
478	 */
479	return va;
480}
481
482static int persistent_ram_buffer_map(phys_addr_t start, phys_addr_t size,
483		struct persistent_ram_zone *prz, int memtype)
484{
485	prz->paddr = start;
486	prz->size = size;
487
488	if (pfn_valid(start >> PAGE_SHIFT))
489		prz->vaddr = persistent_ram_vmap(start, size, memtype);
490	else
491		prz->vaddr = persistent_ram_iomap(start, size, memtype,
492						  prz->label);
493
494	if (!prz->vaddr) {
495		pr_err("%s: Failed to map 0x%llx pages at 0x%llx\n", __func__,
496			(unsigned long long)size, (unsigned long long)start);
497		return -ENOMEM;
498	}
499
500	prz->buffer = prz->vaddr;
501	prz->buffer_size = size - sizeof(struct persistent_ram_buffer);
502
503	return 0;
504}
505
506static int persistent_ram_post_init(struct persistent_ram_zone *prz, u32 sig,
507				    struct persistent_ram_ecc_info *ecc_info)
508{
509	int ret;
510	bool zap = !!(prz->flags & PRZ_FLAG_ZAP_OLD);
511
512	ret = persistent_ram_init_ecc(prz, ecc_info);
513	if (ret) {
514		pr_warn("ECC failed %s\n", prz->label);
515		return ret;
516	}
517
518	sig ^= PERSISTENT_RAM_SIG;
519
520	if (prz->buffer->sig == sig) {
521		if (buffer_size(prz) == 0 && buffer_start(prz) == 0) {
522			pr_debug("found existing empty buffer\n");
523			return 0;
524		}
525
526		if (buffer_size(prz) > prz->buffer_size ||
527		    buffer_start(prz) > buffer_size(prz)) {
528			pr_info("found existing invalid buffer, size %zu, start %zu\n",
529				buffer_size(prz), buffer_start(prz));
530			zap = true;
531		} else {
532			pr_debug("found existing buffer, size %zu, start %zu\n",
533				 buffer_size(prz), buffer_start(prz));
534			persistent_ram_save_old(prz);
535		}
536	} else {
537		pr_debug("no valid data in buffer (sig = 0x%08x)\n",
538			 prz->buffer->sig);
539		prz->buffer->sig = sig;
540		zap = true;
541	}
542
543	/* Reset missing, invalid, or single-use memory area. */
544	if (zap)
545		persistent_ram_zap(prz);
546
547	return 0;
548}
549
550void persistent_ram_free(struct persistent_ram_zone **_prz)
551{
552	struct persistent_ram_zone *prz;
553
554	if (!_prz)
555		return;
556
557	prz = *_prz;
558	if (!prz)
559		return;
560
561	if (prz->vaddr) {
562		if (pfn_valid(prz->paddr >> PAGE_SHIFT)) {
563			/* We must vunmap() at page-granularity. */
564			vunmap(prz->vaddr - offset_in_page(prz->paddr));
565		} else {
566			iounmap(prz->vaddr);
567			release_mem_region(prz->paddr, prz->size);
568		}
569		prz->vaddr = NULL;
570	}
571	if (prz->rs_decoder) {
572		free_rs(prz->rs_decoder);
573		prz->rs_decoder = NULL;
574	}
575	kfree(prz->ecc_info.par);
576	prz->ecc_info.par = NULL;
577
578	persistent_ram_free_old(prz);
579	kfree(prz->label);
580	kfree(prz);
581	*_prz = NULL;
582}
583
584struct persistent_ram_zone *persistent_ram_new(phys_addr_t start, size_t size,
585			u32 sig, struct persistent_ram_ecc_info *ecc_info,
586			unsigned int memtype, u32 flags, char *label)
587{
588	struct persistent_ram_zone *prz;
589	int ret = -ENOMEM;
590
591	prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL);
592	if (!prz) {
593		pr_err("failed to allocate persistent ram zone\n");
594		goto err;
595	}
596
597	/* Initialize general buffer state. */
598	raw_spin_lock_init(&prz->buffer_lock);
599	prz->flags = flags;
600	prz->label = kstrdup(label, GFP_KERNEL);
601	if (!prz->label)
602		goto err;
603
604	ret = persistent_ram_buffer_map(start, size, prz, memtype);
605	if (ret)
606		goto err;
607
608	ret = persistent_ram_post_init(prz, sig, ecc_info);
609	if (ret)
610		goto err;
611
612	pr_debug("attached %s 0x%zx@0x%llx: %zu header, %zu data, %zu ecc (%d/%d)\n",
613		prz->label, prz->size, (unsigned long long)prz->paddr,
614		sizeof(*prz->buffer), prz->buffer_size,
615		prz->size - sizeof(*prz->buffer) - prz->buffer_size,
616		prz->ecc_info.ecc_size, prz->ecc_info.block_size);
617
618	return prz;
619err:
620	persistent_ram_free(&prz);
621	return ERR_PTR(ret);
622}
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) 2012 Google, Inc.
  4 */
  5
  6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  7
  8#include <linux/device.h>
  9#include <linux/err.h>
 10#include <linux/errno.h>
 11#include <linux/init.h>
 12#include <linux/io.h>
 13#include <linux/kernel.h>
 14#include <linux/list.h>
 15#include <linux/memblock.h>
 16#include <linux/rslib.h>
 17#include <linux/slab.h>
 18#include <linux/uaccess.h>
 19#include <linux/vmalloc.h>
 
 20#include <asm/page.h>
 21
 22#include "ram_internal.h"
 23
 24/**
 25 * struct persistent_ram_buffer - persistent circular RAM buffer
 26 *
 27 * @sig:
 28 *	signature to indicate header (PERSISTENT_RAM_SIG xor PRZ-type value)
 29 * @start:
 30 *	offset into @data where the beginning of the stored bytes begin
 31 * @size:
 32 *	number of valid bytes stored in @data
 33 */
 34struct persistent_ram_buffer {
 35	uint32_t    sig;
 36	atomic_t    start;
 37	atomic_t    size;
 38	uint8_t     data[];
 39};
 40
 41#define PERSISTENT_RAM_SIG (0x43474244) /* DBGC */
 42
 43static inline size_t buffer_size(struct persistent_ram_zone *prz)
 44{
 45	return atomic_read(&prz->buffer->size);
 46}
 47
 48static inline size_t buffer_start(struct persistent_ram_zone *prz)
 49{
 50	return atomic_read(&prz->buffer->start);
 51}
 52
 53/* increase and wrap the start pointer, returning the old value */
 54static size_t buffer_start_add(struct persistent_ram_zone *prz, size_t a)
 55{
 56	int old;
 57	int new;
 58	unsigned long flags = 0;
 59
 60	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
 61		raw_spin_lock_irqsave(&prz->buffer_lock, flags);
 62
 63	old = atomic_read(&prz->buffer->start);
 64	new = old + a;
 65	while (unlikely(new >= prz->buffer_size))
 66		new -= prz->buffer_size;
 67	atomic_set(&prz->buffer->start, new);
 68
 69	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
 70		raw_spin_unlock_irqrestore(&prz->buffer_lock, flags);
 71
 72	return old;
 73}
 74
 75/* increase the size counter until it hits the max size */
 76static void buffer_size_add(struct persistent_ram_zone *prz, size_t a)
 77{
 78	size_t old;
 79	size_t new;
 80	unsigned long flags = 0;
 81
 82	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
 83		raw_spin_lock_irqsave(&prz->buffer_lock, flags);
 84
 85	old = atomic_read(&prz->buffer->size);
 86	if (old == prz->buffer_size)
 87		goto exit;
 88
 89	new = old + a;
 90	if (new > prz->buffer_size)
 91		new = prz->buffer_size;
 92	atomic_set(&prz->buffer->size, new);
 93
 94exit:
 95	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
 96		raw_spin_unlock_irqrestore(&prz->buffer_lock, flags);
 97}
 98
 99static void notrace persistent_ram_encode_rs8(struct persistent_ram_zone *prz,
100	uint8_t *data, size_t len, uint8_t *ecc)
101{
102	int i;
103
104	/* Initialize the parity buffer */
105	memset(prz->ecc_info.par, 0,
106	       prz->ecc_info.ecc_size * sizeof(prz->ecc_info.par[0]));
107	encode_rs8(prz->rs_decoder, data, len, prz->ecc_info.par, 0);
108	for (i = 0; i < prz->ecc_info.ecc_size; i++)
109		ecc[i] = prz->ecc_info.par[i];
110}
111
112static int persistent_ram_decode_rs8(struct persistent_ram_zone *prz,
113	void *data, size_t len, uint8_t *ecc)
114{
115	int i;
116
117	for (i = 0; i < prz->ecc_info.ecc_size; i++)
118		prz->ecc_info.par[i] = ecc[i];
119	return decode_rs8(prz->rs_decoder, data, prz->ecc_info.par, len,
120				NULL, 0, NULL, 0, NULL);
121}
122
123static void notrace persistent_ram_update_ecc(struct persistent_ram_zone *prz,
124	unsigned int start, unsigned int count)
125{
126	struct persistent_ram_buffer *buffer = prz->buffer;
127	uint8_t *buffer_end = buffer->data + prz->buffer_size;
128	uint8_t *block;
129	uint8_t *par;
130	int ecc_block_size = prz->ecc_info.block_size;
131	int ecc_size = prz->ecc_info.ecc_size;
132	int size = ecc_block_size;
133
134	if (!ecc_size)
135		return;
136
137	block = buffer->data + (start & ~(ecc_block_size - 1));
138	par = prz->par_buffer + (start / ecc_block_size) * ecc_size;
139
140	do {
141		if (block + ecc_block_size > buffer_end)
142			size = buffer_end - block;
143		persistent_ram_encode_rs8(prz, block, size, par);
144		block += ecc_block_size;
145		par += ecc_size;
146	} while (block < buffer->data + start + count);
147}
148
149static void persistent_ram_update_header_ecc(struct persistent_ram_zone *prz)
150{
151	struct persistent_ram_buffer *buffer = prz->buffer;
152
153	if (!prz->ecc_info.ecc_size)
154		return;
155
156	persistent_ram_encode_rs8(prz, (uint8_t *)buffer, sizeof(*buffer),
157				  prz->par_header);
158}
159
160static void persistent_ram_ecc_old(struct persistent_ram_zone *prz)
161{
162	struct persistent_ram_buffer *buffer = prz->buffer;
163	uint8_t *block;
164	uint8_t *par;
165
166	if (!prz->ecc_info.ecc_size)
167		return;
168
169	block = buffer->data;
170	par = prz->par_buffer;
171	while (block < buffer->data + buffer_size(prz)) {
172		int numerr;
173		int size = prz->ecc_info.block_size;
174		if (block + size > buffer->data + prz->buffer_size)
175			size = buffer->data + prz->buffer_size - block;
176		numerr = persistent_ram_decode_rs8(prz, block, size, par);
177		if (numerr > 0) {
178			pr_devel("error in block %p, %d\n", block, numerr);
179			prz->corrected_bytes += numerr;
180		} else if (numerr < 0) {
181			pr_devel("uncorrectable error in block %p\n", block);
182			prz->bad_blocks++;
183		}
184		block += prz->ecc_info.block_size;
185		par += prz->ecc_info.ecc_size;
186	}
187}
188
189static int persistent_ram_init_ecc(struct persistent_ram_zone *prz,
190				   struct persistent_ram_ecc_info *ecc_info)
191{
192	int numerr;
193	struct persistent_ram_buffer *buffer = prz->buffer;
194	int ecc_blocks;
195	size_t ecc_total;
196
197	if (!ecc_info || !ecc_info->ecc_size)
198		return 0;
199
200	prz->ecc_info.block_size = ecc_info->block_size ?: 128;
201	prz->ecc_info.ecc_size = ecc_info->ecc_size ?: 16;
202	prz->ecc_info.symsize = ecc_info->symsize ?: 8;
203	prz->ecc_info.poly = ecc_info->poly ?: 0x11d;
204
205	ecc_blocks = DIV_ROUND_UP(prz->buffer_size - prz->ecc_info.ecc_size,
206				  prz->ecc_info.block_size +
207				  prz->ecc_info.ecc_size);
208	ecc_total = (ecc_blocks + 1) * prz->ecc_info.ecc_size;
209	if (ecc_total >= prz->buffer_size) {
210		pr_err("%s: invalid ecc_size %u (total %zu, buffer size %zu)\n",
211		       __func__, prz->ecc_info.ecc_size,
212		       ecc_total, prz->buffer_size);
213		return -EINVAL;
214	}
215
216	prz->buffer_size -= ecc_total;
217	prz->par_buffer = buffer->data + prz->buffer_size;
218	prz->par_header = prz->par_buffer +
219			  ecc_blocks * prz->ecc_info.ecc_size;
220
221	/*
222	 * first consecutive root is 0
223	 * primitive element to generate roots = 1
224	 */
225	prz->rs_decoder = init_rs(prz->ecc_info.symsize, prz->ecc_info.poly,
226				  0, 1, prz->ecc_info.ecc_size);
227	if (prz->rs_decoder == NULL) {
228		pr_info("init_rs failed\n");
229		return -EINVAL;
230	}
231
232	/* allocate workspace instead of using stack VLA */
233	prz->ecc_info.par = kmalloc_array(prz->ecc_info.ecc_size,
234					  sizeof(*prz->ecc_info.par),
235					  GFP_KERNEL);
236	if (!prz->ecc_info.par) {
237		pr_err("cannot allocate ECC parity workspace\n");
238		return -ENOMEM;
239	}
240
241	prz->corrected_bytes = 0;
242	prz->bad_blocks = 0;
243
244	numerr = persistent_ram_decode_rs8(prz, buffer, sizeof(*buffer),
245					   prz->par_header);
246	if (numerr > 0) {
247		pr_info("error in header, %d\n", numerr);
248		prz->corrected_bytes += numerr;
249	} else if (numerr < 0) {
250		pr_info_ratelimited("uncorrectable error in header\n");
251		prz->bad_blocks++;
252	}
253
254	return 0;
255}
256
257ssize_t persistent_ram_ecc_string(struct persistent_ram_zone *prz,
258	char *str, size_t len)
259{
260	ssize_t ret;
261
262	if (!prz->ecc_info.ecc_size)
263		return 0;
264
265	if (prz->corrected_bytes || prz->bad_blocks)
266		ret = snprintf(str, len, ""
267			"\nECC: %d Corrected bytes, %d unrecoverable blocks\n",
268			prz->corrected_bytes, prz->bad_blocks);
269	else
270		ret = snprintf(str, len, "\nECC: No errors detected\n");
271
272	return ret;
273}
274
275static void notrace persistent_ram_update(struct persistent_ram_zone *prz,
276	const void *s, unsigned int start, unsigned int count)
277{
278	struct persistent_ram_buffer *buffer = prz->buffer;
279	memcpy_toio(buffer->data + start, s, count);
280	persistent_ram_update_ecc(prz, start, count);
281}
282
283static int notrace persistent_ram_update_user(struct persistent_ram_zone *prz,
284	const void __user *s, unsigned int start, unsigned int count)
285{
286	struct persistent_ram_buffer *buffer = prz->buffer;
287	int ret = unlikely(copy_from_user(buffer->data + start, s, count)) ?
288		-EFAULT : 0;
289	persistent_ram_update_ecc(prz, start, count);
290	return ret;
291}
292
293void persistent_ram_save_old(struct persistent_ram_zone *prz)
294{
295	struct persistent_ram_buffer *buffer = prz->buffer;
296	size_t size = buffer_size(prz);
297	size_t start = buffer_start(prz);
298
299	if (!size)
300		return;
301
302	if (!prz->old_log) {
303		persistent_ram_ecc_old(prz);
304		prz->old_log = kmalloc(size, GFP_KERNEL);
305	}
306	if (!prz->old_log) {
307		pr_err("failed to allocate buffer\n");
308		return;
309	}
310
311	prz->old_log_size = size;
312	memcpy_fromio(prz->old_log, &buffer->data[start], size - start);
313	memcpy_fromio(prz->old_log + size - start, &buffer->data[0], start);
314}
315
316int notrace persistent_ram_write(struct persistent_ram_zone *prz,
317	const void *s, unsigned int count)
318{
319	int rem;
320	int c = count;
321	size_t start;
322
323	if (unlikely(c > prz->buffer_size)) {
324		s += c - prz->buffer_size;
325		c = prz->buffer_size;
326	}
327
328	buffer_size_add(prz, c);
329
330	start = buffer_start_add(prz, c);
331
332	rem = prz->buffer_size - start;
333	if (unlikely(rem < c)) {
334		persistent_ram_update(prz, s, start, rem);
335		s += rem;
336		c -= rem;
337		start = 0;
338	}
339	persistent_ram_update(prz, s, start, c);
340
341	persistent_ram_update_header_ecc(prz);
342
343	return count;
344}
345
346int notrace persistent_ram_write_user(struct persistent_ram_zone *prz,
347	const void __user *s, unsigned int count)
348{
349	int rem, ret = 0, c = count;
350	size_t start;
351
352	if (unlikely(c > prz->buffer_size)) {
353		s += c - prz->buffer_size;
354		c = prz->buffer_size;
355	}
356
357	buffer_size_add(prz, c);
358
359	start = buffer_start_add(prz, c);
360
361	rem = prz->buffer_size - start;
362	if (unlikely(rem < c)) {
363		ret = persistent_ram_update_user(prz, s, start, rem);
364		s += rem;
365		c -= rem;
366		start = 0;
367	}
368	if (likely(!ret))
369		ret = persistent_ram_update_user(prz, s, start, c);
370
371	persistent_ram_update_header_ecc(prz);
372
373	return unlikely(ret) ? ret : count;
374}
375
376size_t persistent_ram_old_size(struct persistent_ram_zone *prz)
377{
378	return prz->old_log_size;
379}
380
381void *persistent_ram_old(struct persistent_ram_zone *prz)
382{
383	return prz->old_log;
384}
385
386void persistent_ram_free_old(struct persistent_ram_zone *prz)
387{
388	kfree(prz->old_log);
389	prz->old_log = NULL;
390	prz->old_log_size = 0;
391}
392
393void persistent_ram_zap(struct persistent_ram_zone *prz)
394{
395	atomic_set(&prz->buffer->start, 0);
396	atomic_set(&prz->buffer->size, 0);
397	persistent_ram_update_header_ecc(prz);
398}
399
400#define MEM_TYPE_WCOMBINE	0
401#define MEM_TYPE_NONCACHED	1
402#define MEM_TYPE_NORMAL		2
403
404static void *persistent_ram_vmap(phys_addr_t start, size_t size,
405		unsigned int memtype)
406{
407	struct page **pages;
408	phys_addr_t page_start;
409	unsigned int page_count;
410	pgprot_t prot;
411	unsigned int i;
412	void *vaddr;
413
414	page_start = start - offset_in_page(start);
415	page_count = DIV_ROUND_UP(size + offset_in_page(start), PAGE_SIZE);
416
417	switch (memtype) {
418	case MEM_TYPE_NORMAL:
419		prot = PAGE_KERNEL;
420		break;
421	case MEM_TYPE_NONCACHED:
422		prot = pgprot_noncached(PAGE_KERNEL);
423		break;
424	case MEM_TYPE_WCOMBINE:
425		prot = pgprot_writecombine(PAGE_KERNEL);
426		break;
427	default:
428		pr_err("invalid mem_type=%d\n", memtype);
429		return NULL;
430	}
431
432	pages = kmalloc_array(page_count, sizeof(struct page *), GFP_KERNEL);
433	if (!pages) {
434		pr_err("%s: Failed to allocate array for %u pages\n",
435		       __func__, page_count);
436		return NULL;
437	}
438
439	for (i = 0; i < page_count; i++) {
440		phys_addr_t addr = page_start + i * PAGE_SIZE;
441		pages[i] = pfn_to_page(addr >> PAGE_SHIFT);
442	}
443	/*
444	 * VM_IOREMAP used here to bypass this region during vread()
445	 * and kmap_atomic() (i.e. kcore) to avoid __va() failures.
446	 */
447	vaddr = vmap(pages, page_count, VM_MAP | VM_IOREMAP, prot);
448	kfree(pages);
449
450	/*
451	 * Since vmap() uses page granularity, we must add the offset
452	 * into the page here, to get the byte granularity address
453	 * into the mapping to represent the actual "start" location.
454	 */
455	return vaddr + offset_in_page(start);
456}
457
458static void *persistent_ram_iomap(phys_addr_t start, size_t size,
459		unsigned int memtype, char *label)
460{
461	void *va;
462
463	if (!request_mem_region(start, size, label ?: "ramoops")) {
464		pr_err("request mem region (%s 0x%llx@0x%llx) failed\n",
465			label ?: "ramoops",
466			(unsigned long long)size, (unsigned long long)start);
467		return NULL;
468	}
469
470	if (memtype)
471		va = ioremap(start, size);
472	else
473		va = ioremap_wc(start, size);
474
475	/*
476	 * Since request_mem_region() and ioremap() are byte-granularity
477	 * there is no need handle anything special like we do when the
478	 * vmap() case in persistent_ram_vmap() above.
479	 */
480	return va;
481}
482
483static int persistent_ram_buffer_map(phys_addr_t start, phys_addr_t size,
484		struct persistent_ram_zone *prz, int memtype)
485{
486	prz->paddr = start;
487	prz->size = size;
488
489	if (pfn_valid(start >> PAGE_SHIFT))
490		prz->vaddr = persistent_ram_vmap(start, size, memtype);
491	else
492		prz->vaddr = persistent_ram_iomap(start, size, memtype,
493						  prz->label);
494
495	if (!prz->vaddr) {
496		pr_err("%s: Failed to map 0x%llx pages at 0x%llx\n", __func__,
497			(unsigned long long)size, (unsigned long long)start);
498		return -ENOMEM;
499	}
500
501	prz->buffer = prz->vaddr;
502	prz->buffer_size = size - sizeof(struct persistent_ram_buffer);
503
504	return 0;
505}
506
507static int persistent_ram_post_init(struct persistent_ram_zone *prz, u32 sig,
508				    struct persistent_ram_ecc_info *ecc_info)
509{
510	int ret;
511	bool zap = !!(prz->flags & PRZ_FLAG_ZAP_OLD);
512
513	ret = persistent_ram_init_ecc(prz, ecc_info);
514	if (ret) {
515		pr_warn("ECC failed %s\n", prz->label);
516		return ret;
517	}
518
519	sig ^= PERSISTENT_RAM_SIG;
520
521	if (prz->buffer->sig == sig) {
522		if (buffer_size(prz) == 0) {
523			pr_debug("found existing empty buffer\n");
524			return 0;
525		}
526
527		if (buffer_size(prz) > prz->buffer_size ||
528		    buffer_start(prz) > buffer_size(prz)) {
529			pr_info("found existing invalid buffer, size %zu, start %zu\n",
530				buffer_size(prz), buffer_start(prz));
531			zap = true;
532		} else {
533			pr_debug("found existing buffer, size %zu, start %zu\n",
534				 buffer_size(prz), buffer_start(prz));
535			persistent_ram_save_old(prz);
536		}
537	} else {
538		pr_debug("no valid data in buffer (sig = 0x%08x)\n",
539			 prz->buffer->sig);
540		prz->buffer->sig = sig;
541		zap = true;
542	}
543
544	/* Reset missing, invalid, or single-use memory area. */
545	if (zap)
546		persistent_ram_zap(prz);
547
548	return 0;
549}
550
551void persistent_ram_free(struct persistent_ram_zone **_prz)
552{
553	struct persistent_ram_zone *prz;
554
555	if (!_prz)
556		return;
557
558	prz = *_prz;
559	if (!prz)
560		return;
561
562	if (prz->vaddr) {
563		if (pfn_valid(prz->paddr >> PAGE_SHIFT)) {
564			/* We must vunmap() at page-granularity. */
565			vunmap(prz->vaddr - offset_in_page(prz->paddr));
566		} else {
567			iounmap(prz->vaddr);
568			release_mem_region(prz->paddr, prz->size);
569		}
570		prz->vaddr = NULL;
571	}
572	if (prz->rs_decoder) {
573		free_rs(prz->rs_decoder);
574		prz->rs_decoder = NULL;
575	}
576	kfree(prz->ecc_info.par);
577	prz->ecc_info.par = NULL;
578
579	persistent_ram_free_old(prz);
580	kfree(prz->label);
581	kfree(prz);
582	*_prz = NULL;
583}
584
585struct persistent_ram_zone *persistent_ram_new(phys_addr_t start, size_t size,
586			u32 sig, struct persistent_ram_ecc_info *ecc_info,
587			unsigned int memtype, u32 flags, char *label)
588{
589	struct persistent_ram_zone *prz;
590	int ret = -ENOMEM;
591
592	prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL);
593	if (!prz) {
594		pr_err("failed to allocate persistent ram zone\n");
595		goto err;
596	}
597
598	/* Initialize general buffer state. */
599	raw_spin_lock_init(&prz->buffer_lock);
600	prz->flags = flags;
601	prz->label = kstrdup(label, GFP_KERNEL);
 
 
602
603	ret = persistent_ram_buffer_map(start, size, prz, memtype);
604	if (ret)
605		goto err;
606
607	ret = persistent_ram_post_init(prz, sig, ecc_info);
608	if (ret)
609		goto err;
610
611	pr_debug("attached %s 0x%zx@0x%llx: %zu header, %zu data, %zu ecc (%d/%d)\n",
612		prz->label, prz->size, (unsigned long long)prz->paddr,
613		sizeof(*prz->buffer), prz->buffer_size,
614		prz->size - sizeof(*prz->buffer) - prz->buffer_size,
615		prz->ecc_info.ecc_size, prz->ecc_info.block_size);
616
617	return prz;
618err:
619	persistent_ram_free(&prz);
620	return ERR_PTR(ret);
621}