Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/f2fs/segment.c
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
   7 */
   8#include <linux/fs.h>
   9#include <linux/f2fs_fs.h>
  10#include <linux/bio.h>
  11#include <linux/blkdev.h>
  12#include <linux/sched/mm.h>
  13#include <linux/prefetch.h>
  14#include <linux/kthread.h>
  15#include <linux/swap.h>
  16#include <linux/timer.h>
  17#include <linux/freezer.h>
  18#include <linux/sched/signal.h>
  19#include <linux/random.h>
  20
  21#include "f2fs.h"
  22#include "segment.h"
  23#include "node.h"
  24#include "gc.h"
  25#include "iostat.h"
  26#include <trace/events/f2fs.h>
  27
  28#define __reverse_ffz(x) __reverse_ffs(~(x))
  29
  30static struct kmem_cache *discard_entry_slab;
  31static struct kmem_cache *discard_cmd_slab;
  32static struct kmem_cache *sit_entry_set_slab;
  33static struct kmem_cache *revoke_entry_slab;
  34
  35static unsigned long __reverse_ulong(unsigned char *str)
  36{
  37	unsigned long tmp = 0;
  38	int shift = 24, idx = 0;
  39
  40#if BITS_PER_LONG == 64
  41	shift = 56;
  42#endif
  43	while (shift >= 0) {
  44		tmp |= (unsigned long)str[idx++] << shift;
  45		shift -= BITS_PER_BYTE;
  46	}
  47	return tmp;
  48}
  49
  50/*
  51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  52 * MSB and LSB are reversed in a byte by f2fs_set_bit.
  53 */
  54static inline unsigned long __reverse_ffs(unsigned long word)
  55{
  56	int num = 0;
  57
  58#if BITS_PER_LONG == 64
  59	if ((word & 0xffffffff00000000UL) == 0)
  60		num += 32;
  61	else
  62		word >>= 32;
  63#endif
  64	if ((word & 0xffff0000) == 0)
  65		num += 16;
  66	else
  67		word >>= 16;
  68
  69	if ((word & 0xff00) == 0)
  70		num += 8;
  71	else
  72		word >>= 8;
  73
  74	if ((word & 0xf0) == 0)
  75		num += 4;
  76	else
  77		word >>= 4;
  78
  79	if ((word & 0xc) == 0)
  80		num += 2;
  81	else
  82		word >>= 2;
  83
  84	if ((word & 0x2) == 0)
  85		num += 1;
  86	return num;
  87}
  88
  89/*
  90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  91 * f2fs_set_bit makes MSB and LSB reversed in a byte.
  92 * @size must be integral times of unsigned long.
  93 * Example:
  94 *                             MSB <--> LSB
  95 *   f2fs_set_bit(0, bitmap) => 1000 0000
  96 *   f2fs_set_bit(7, bitmap) => 0000 0001
  97 */
  98static unsigned long __find_rev_next_bit(const unsigned long *addr,
  99			unsigned long size, unsigned long offset)
 100{
 101	const unsigned long *p = addr + BIT_WORD(offset);
 102	unsigned long result = size;
 103	unsigned long tmp;
 104
 105	if (offset >= size)
 106		return size;
 107
 108	size -= (offset & ~(BITS_PER_LONG - 1));
 109	offset %= BITS_PER_LONG;
 110
 111	while (1) {
 112		if (*p == 0)
 113			goto pass;
 114
 115		tmp = __reverse_ulong((unsigned char *)p);
 116
 117		tmp &= ~0UL >> offset;
 118		if (size < BITS_PER_LONG)
 119			tmp &= (~0UL << (BITS_PER_LONG - size));
 120		if (tmp)
 121			goto found;
 122pass:
 123		if (size <= BITS_PER_LONG)
 124			break;
 125		size -= BITS_PER_LONG;
 126		offset = 0;
 127		p++;
 128	}
 129	return result;
 130found:
 131	return result - size + __reverse_ffs(tmp);
 132}
 133
 134static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
 135			unsigned long size, unsigned long offset)
 136{
 137	const unsigned long *p = addr + BIT_WORD(offset);
 138	unsigned long result = size;
 139	unsigned long tmp;
 140
 141	if (offset >= size)
 142		return size;
 143
 144	size -= (offset & ~(BITS_PER_LONG - 1));
 145	offset %= BITS_PER_LONG;
 146
 147	while (1) {
 148		if (*p == ~0UL)
 149			goto pass;
 150
 151		tmp = __reverse_ulong((unsigned char *)p);
 152
 153		if (offset)
 154			tmp |= ~0UL << (BITS_PER_LONG - offset);
 155		if (size < BITS_PER_LONG)
 156			tmp |= ~0UL >> size;
 157		if (tmp != ~0UL)
 158			goto found;
 159pass:
 160		if (size <= BITS_PER_LONG)
 161			break;
 162		size -= BITS_PER_LONG;
 163		offset = 0;
 164		p++;
 165	}
 166	return result;
 167found:
 168	return result - size + __reverse_ffz(tmp);
 169}
 170
 171bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
 172{
 173	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
 174	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
 175	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
 176
 177	if (f2fs_lfs_mode(sbi))
 178		return false;
 179	if (sbi->gc_mode == GC_URGENT_HIGH)
 180		return true;
 181	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
 182		return true;
 183
 184	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
 185			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
 186}
 187
 188void f2fs_abort_atomic_write(struct inode *inode, bool clean)
 189{
 190	struct f2fs_inode_info *fi = F2FS_I(inode);
 191
 192	if (!f2fs_is_atomic_file(inode))
 193		return;
 194
 195	if (clean)
 196		truncate_inode_pages_final(inode->i_mapping);
 197
 198	release_atomic_write_cnt(inode);
 199	clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
 200	clear_inode_flag(inode, FI_ATOMIC_REPLACE);
 201	clear_inode_flag(inode, FI_ATOMIC_FILE);
 202	if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) {
 203		clear_inode_flag(inode, FI_ATOMIC_DIRTIED);
 204		f2fs_mark_inode_dirty_sync(inode, true);
 205	}
 206	stat_dec_atomic_inode(inode);
 207
 208	F2FS_I(inode)->atomic_write_task = NULL;
 209
 210	if (clean) {
 
 211		f2fs_i_size_write(inode, fi->original_i_size);
 212		fi->original_i_size = 0;
 213	}
 214	/* avoid stale dirty inode during eviction */
 215	sync_inode_metadata(inode, 0);
 216}
 217
 218static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
 219			block_t new_addr, block_t *old_addr, bool recover)
 220{
 221	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 222	struct dnode_of_data dn;
 223	struct node_info ni;
 224	int err;
 225
 226retry:
 227	set_new_dnode(&dn, inode, NULL, NULL, 0);
 228	err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
 229	if (err) {
 230		if (err == -ENOMEM) {
 231			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
 232			goto retry;
 233		}
 234		return err;
 235	}
 236
 237	err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
 238	if (err) {
 239		f2fs_put_dnode(&dn);
 240		return err;
 241	}
 242
 243	if (recover) {
 244		/* dn.data_blkaddr is always valid */
 245		if (!__is_valid_data_blkaddr(new_addr)) {
 246			if (new_addr == NULL_ADDR)
 247				dec_valid_block_count(sbi, inode, 1);
 248			f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
 249			f2fs_update_data_blkaddr(&dn, new_addr);
 250		} else {
 251			f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
 252				new_addr, ni.version, true, true);
 253		}
 254	} else {
 255		blkcnt_t count = 1;
 256
 257		err = inc_valid_block_count(sbi, inode, &count, true);
 258		if (err) {
 259			f2fs_put_dnode(&dn);
 260			return err;
 261		}
 262
 263		*old_addr = dn.data_blkaddr;
 264		f2fs_truncate_data_blocks_range(&dn, 1);
 265		dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
 266
 267		f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
 268					ni.version, true, false);
 269	}
 270
 271	f2fs_put_dnode(&dn);
 272
 273	trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode,
 274			index, old_addr ? *old_addr : 0, new_addr, recover);
 275	return 0;
 276}
 277
 278static void __complete_revoke_list(struct inode *inode, struct list_head *head,
 279					bool revoke)
 280{
 281	struct revoke_entry *cur, *tmp;
 282	pgoff_t start_index = 0;
 283	bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
 284
 285	list_for_each_entry_safe(cur, tmp, head, list) {
 286		if (revoke) {
 287			__replace_atomic_write_block(inode, cur->index,
 288						cur->old_addr, NULL, true);
 289		} else if (truncate) {
 290			f2fs_truncate_hole(inode, start_index, cur->index);
 291			start_index = cur->index + 1;
 292		}
 293
 294		list_del(&cur->list);
 295		kmem_cache_free(revoke_entry_slab, cur);
 296	}
 297
 298	if (!revoke && truncate)
 299		f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false);
 300}
 301
 302static int __f2fs_commit_atomic_write(struct inode *inode)
 303{
 304	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 305	struct f2fs_inode_info *fi = F2FS_I(inode);
 306	struct inode *cow_inode = fi->cow_inode;
 307	struct revoke_entry *new;
 308	struct list_head revoke_list;
 309	block_t blkaddr;
 310	struct dnode_of_data dn;
 311	pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
 312	pgoff_t off = 0, blen, index;
 313	int ret = 0, i;
 314
 315	INIT_LIST_HEAD(&revoke_list);
 316
 317	while (len) {
 318		blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
 319
 320		set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
 321		ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
 322		if (ret && ret != -ENOENT) {
 323			goto out;
 324		} else if (ret == -ENOENT) {
 325			ret = 0;
 326			if (dn.max_level == 0)
 327				goto out;
 328			goto next;
 329		}
 330
 331		blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
 332				len);
 333		index = off;
 334		for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
 335			blkaddr = f2fs_data_blkaddr(&dn);
 336
 337			if (!__is_valid_data_blkaddr(blkaddr)) {
 338				continue;
 339			} else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
 340					DATA_GENERIC_ENHANCE)) {
 341				f2fs_put_dnode(&dn);
 342				ret = -EFSCORRUPTED;
 
 
 343				goto out;
 344			}
 345
 346			new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
 347							true, NULL);
 348
 349			ret = __replace_atomic_write_block(inode, index, blkaddr,
 350							&new->old_addr, false);
 351			if (ret) {
 352				f2fs_put_dnode(&dn);
 353				kmem_cache_free(revoke_entry_slab, new);
 354				goto out;
 355			}
 356
 357			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
 358			new->index = index;
 359			list_add_tail(&new->list, &revoke_list);
 360		}
 361		f2fs_put_dnode(&dn);
 362next:
 363		off += blen;
 364		len -= blen;
 365	}
 366
 367out:
 368	if (ret) {
 369		sbi->revoked_atomic_block += fi->atomic_write_cnt;
 370	} else {
 371		sbi->committed_atomic_block += fi->atomic_write_cnt;
 372		set_inode_flag(inode, FI_ATOMIC_COMMITTED);
 373		if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) {
 374			clear_inode_flag(inode, FI_ATOMIC_DIRTIED);
 375			f2fs_mark_inode_dirty_sync(inode, true);
 376		}
 377	}
 378
 379	__complete_revoke_list(inode, &revoke_list, ret ? true : false);
 380
 381	return ret;
 382}
 383
 384int f2fs_commit_atomic_write(struct inode *inode)
 385{
 386	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 387	struct f2fs_inode_info *fi = F2FS_I(inode);
 388	int err;
 389
 390	err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
 391	if (err)
 392		return err;
 393
 394	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
 395	f2fs_lock_op(sbi);
 396
 397	err = __f2fs_commit_atomic_write(inode);
 398
 399	f2fs_unlock_op(sbi);
 400	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
 401
 402	return err;
 403}
 404
 405/*
 406 * This function balances dirty node and dentry pages.
 407 * In addition, it controls garbage collection.
 408 */
 409void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
 410{
 411	if (f2fs_cp_error(sbi))
 412		return;
 413
 414	if (time_to_inject(sbi, FAULT_CHECKPOINT))
 415		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
 
 416
 417	/* balance_fs_bg is able to be pending */
 418	if (need && excess_cached_nats(sbi))
 419		f2fs_balance_fs_bg(sbi, false);
 420
 421	if (!f2fs_is_checkpoint_ready(sbi))
 422		return;
 423
 424	/*
 425	 * We should do GC or end up with checkpoint, if there are so many dirty
 426	 * dir/node pages without enough free segments.
 427	 */
 428	if (has_enough_free_secs(sbi, 0, 0))
 429		return;
 430
 431	if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
 432				sbi->gc_thread->f2fs_gc_task) {
 433		DEFINE_WAIT(wait);
 434
 435		prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
 436					TASK_UNINTERRUPTIBLE);
 437		wake_up(&sbi->gc_thread->gc_wait_queue_head);
 438		io_schedule();
 439		finish_wait(&sbi->gc_thread->fggc_wq, &wait);
 440	} else {
 441		struct f2fs_gc_control gc_control = {
 442			.victim_segno = NULL_SEGNO,
 443			.init_gc_type = BG_GC,
 444			.no_bg_gc = true,
 445			.should_migrate_blocks = false,
 446			.err_gc_skipped = false,
 447			.nr_free_secs = 1 };
 448		f2fs_down_write(&sbi->gc_lock);
 449		stat_inc_gc_call_count(sbi, FOREGROUND);
 450		f2fs_gc(sbi, &gc_control);
 451	}
 452}
 453
 454static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
 455{
 456	int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
 457	unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
 458	unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
 459	unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
 460	unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
 461	unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
 462	unsigned int threshold =
 463		SEGS_TO_BLKS(sbi, (factor * DEFAULT_DIRTY_THRESHOLD));
 464	unsigned int global_threshold = threshold * 3 / 2;
 465
 466	if (dents >= threshold || qdata >= threshold ||
 467		nodes >= threshold || meta >= threshold ||
 468		imeta >= threshold)
 469		return true;
 470	return dents + qdata + nodes + meta + imeta >  global_threshold;
 471}
 472
 473void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
 474{
 475	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
 476		return;
 477
 478	/* try to shrink extent cache when there is no enough memory */
 479	if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
 480		f2fs_shrink_read_extent_tree(sbi,
 481				READ_EXTENT_CACHE_SHRINK_NUMBER);
 482
 483	/* try to shrink age extent cache when there is no enough memory */
 484	if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
 485		f2fs_shrink_age_extent_tree(sbi,
 486				AGE_EXTENT_CACHE_SHRINK_NUMBER);
 487
 488	/* check the # of cached NAT entries */
 489	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
 490		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
 491
 492	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
 493		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
 494	else
 495		f2fs_build_free_nids(sbi, false, false);
 496
 497	if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
 498		excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
 499		goto do_sync;
 500
 501	/* there is background inflight IO or foreground operation recently */
 502	if (is_inflight_io(sbi, REQ_TIME) ||
 503		(!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
 504		return;
 505
 506	/* exceed periodical checkpoint timeout threshold */
 507	if (f2fs_time_over(sbi, CP_TIME))
 508		goto do_sync;
 509
 510	/* checkpoint is the only way to shrink partial cached entries */
 511	if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
 512		f2fs_available_free_memory(sbi, INO_ENTRIES))
 513		return;
 514
 515do_sync:
 516	if (test_opt(sbi, DATA_FLUSH) && from_bg) {
 517		struct blk_plug plug;
 518
 519		mutex_lock(&sbi->flush_lock);
 520
 521		blk_start_plug(&plug);
 522		f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
 523		blk_finish_plug(&plug);
 524
 525		mutex_unlock(&sbi->flush_lock);
 526	}
 527	stat_inc_cp_call_count(sbi, BACKGROUND);
 528	f2fs_sync_fs(sbi->sb, 1);
 
 529}
 530
 531static int __submit_flush_wait(struct f2fs_sb_info *sbi,
 532				struct block_device *bdev)
 533{
 534	int ret = blkdev_issue_flush(bdev);
 535
 536	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
 537				test_opt(sbi, FLUSH_MERGE), ret);
 538	if (!ret)
 539		f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0);
 540	return ret;
 541}
 542
 543static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
 544{
 545	int ret = 0;
 546	int i;
 547
 548	if (!f2fs_is_multi_device(sbi))
 549		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
 550
 551	for (i = 0; i < sbi->s_ndevs; i++) {
 552		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
 553			continue;
 554		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
 555		if (ret)
 556			break;
 557	}
 558	return ret;
 559}
 560
 561static int issue_flush_thread(void *data)
 562{
 563	struct f2fs_sb_info *sbi = data;
 564	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 565	wait_queue_head_t *q = &fcc->flush_wait_queue;
 566repeat:
 567	if (kthread_should_stop())
 568		return 0;
 569
 570	if (!llist_empty(&fcc->issue_list)) {
 571		struct flush_cmd *cmd, *next;
 572		int ret;
 573
 574		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
 575		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
 576
 577		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
 578
 579		ret = submit_flush_wait(sbi, cmd->ino);
 580		atomic_inc(&fcc->issued_flush);
 581
 582		llist_for_each_entry_safe(cmd, next,
 583					  fcc->dispatch_list, llnode) {
 584			cmd->ret = ret;
 585			complete(&cmd->wait);
 586		}
 587		fcc->dispatch_list = NULL;
 588	}
 589
 590	wait_event_interruptible(*q,
 591		kthread_should_stop() || !llist_empty(&fcc->issue_list));
 592	goto repeat;
 593}
 594
 595int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
 596{
 597	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 598	struct flush_cmd cmd;
 599	int ret;
 600
 601	if (test_opt(sbi, NOBARRIER))
 602		return 0;
 603
 604	if (!test_opt(sbi, FLUSH_MERGE)) {
 605		atomic_inc(&fcc->queued_flush);
 606		ret = submit_flush_wait(sbi, ino);
 607		atomic_dec(&fcc->queued_flush);
 608		atomic_inc(&fcc->issued_flush);
 609		return ret;
 610	}
 611
 612	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
 613	    f2fs_is_multi_device(sbi)) {
 614		ret = submit_flush_wait(sbi, ino);
 615		atomic_dec(&fcc->queued_flush);
 616
 617		atomic_inc(&fcc->issued_flush);
 618		return ret;
 619	}
 620
 621	cmd.ino = ino;
 622	init_completion(&cmd.wait);
 623
 624	llist_add(&cmd.llnode, &fcc->issue_list);
 625
 626	/*
 627	 * update issue_list before we wake up issue_flush thread, this
 628	 * smp_mb() pairs with another barrier in ___wait_event(), see
 629	 * more details in comments of waitqueue_active().
 630	 */
 631	smp_mb();
 632
 633	if (waitqueue_active(&fcc->flush_wait_queue))
 634		wake_up(&fcc->flush_wait_queue);
 635
 636	if (fcc->f2fs_issue_flush) {
 637		wait_for_completion(&cmd.wait);
 638		atomic_dec(&fcc->queued_flush);
 639	} else {
 640		struct llist_node *list;
 641
 642		list = llist_del_all(&fcc->issue_list);
 643		if (!list) {
 644			wait_for_completion(&cmd.wait);
 645			atomic_dec(&fcc->queued_flush);
 646		} else {
 647			struct flush_cmd *tmp, *next;
 648
 649			ret = submit_flush_wait(sbi, ino);
 650
 651			llist_for_each_entry_safe(tmp, next, list, llnode) {
 652				if (tmp == &cmd) {
 653					cmd.ret = ret;
 654					atomic_dec(&fcc->queued_flush);
 655					continue;
 656				}
 657				tmp->ret = ret;
 658				complete(&tmp->wait);
 659			}
 660		}
 661	}
 662
 663	return cmd.ret;
 664}
 665
 666int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
 667{
 668	dev_t dev = sbi->sb->s_bdev->bd_dev;
 669	struct flush_cmd_control *fcc;
 670
 671	if (SM_I(sbi)->fcc_info) {
 672		fcc = SM_I(sbi)->fcc_info;
 673		if (fcc->f2fs_issue_flush)
 674			return 0;
 675		goto init_thread;
 676	}
 677
 678	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
 679	if (!fcc)
 680		return -ENOMEM;
 681	atomic_set(&fcc->issued_flush, 0);
 682	atomic_set(&fcc->queued_flush, 0);
 683	init_waitqueue_head(&fcc->flush_wait_queue);
 684	init_llist_head(&fcc->issue_list);
 685	SM_I(sbi)->fcc_info = fcc;
 686	if (!test_opt(sbi, FLUSH_MERGE))
 687		return 0;
 688
 689init_thread:
 690	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
 691				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
 692	if (IS_ERR(fcc->f2fs_issue_flush)) {
 693		int err = PTR_ERR(fcc->f2fs_issue_flush);
 694
 695		fcc->f2fs_issue_flush = NULL;
 696		return err;
 697	}
 698
 699	return 0;
 700}
 701
 702void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
 703{
 704	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 705
 706	if (fcc && fcc->f2fs_issue_flush) {
 707		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
 708
 709		fcc->f2fs_issue_flush = NULL;
 710		kthread_stop(flush_thread);
 711	}
 712	if (free) {
 713		kfree(fcc);
 714		SM_I(sbi)->fcc_info = NULL;
 715	}
 716}
 717
 718int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
 719{
 720	int ret = 0, i;
 721
 722	if (!f2fs_is_multi_device(sbi))
 723		return 0;
 724
 725	if (test_opt(sbi, NOBARRIER))
 726		return 0;
 727
 728	for (i = 1; i < sbi->s_ndevs; i++) {
 729		int count = DEFAULT_RETRY_IO_COUNT;
 730
 731		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
 732			continue;
 733
 734		do {
 735			ret = __submit_flush_wait(sbi, FDEV(i).bdev);
 736			if (ret)
 737				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
 738		} while (ret && --count);
 739
 740		if (ret) {
 741			f2fs_stop_checkpoint(sbi, false,
 742					STOP_CP_REASON_FLUSH_FAIL);
 743			break;
 744		}
 745
 746		spin_lock(&sbi->dev_lock);
 747		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
 748		spin_unlock(&sbi->dev_lock);
 749	}
 750
 751	return ret;
 752}
 753
 754static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 755		enum dirty_type dirty_type)
 756{
 757	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 758
 759	/* need not be added */
 760	if (IS_CURSEG(sbi, segno))
 761		return;
 762
 763	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 764		dirty_i->nr_dirty[dirty_type]++;
 765
 766	if (dirty_type == DIRTY) {
 767		struct seg_entry *sentry = get_seg_entry(sbi, segno);
 768		enum dirty_type t = sentry->type;
 769
 770		if (unlikely(t >= DIRTY)) {
 771			f2fs_bug_on(sbi, 1);
 772			return;
 773		}
 774		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
 775			dirty_i->nr_dirty[t]++;
 776
 777		if (__is_large_section(sbi)) {
 778			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
 779			block_t valid_blocks =
 780				get_valid_blocks(sbi, segno, true);
 781
 782			f2fs_bug_on(sbi,
 783				(!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
 784				!valid_blocks) ||
 785				valid_blocks == CAP_BLKS_PER_SEC(sbi));
 786
 787			if (!IS_CURSEC(sbi, secno))
 788				set_bit(secno, dirty_i->dirty_secmap);
 789		}
 790	}
 791}
 792
 793static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 794		enum dirty_type dirty_type)
 795{
 796	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 797	block_t valid_blocks;
 798
 799	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 800		dirty_i->nr_dirty[dirty_type]--;
 801
 802	if (dirty_type == DIRTY) {
 803		struct seg_entry *sentry = get_seg_entry(sbi, segno);
 804		enum dirty_type t = sentry->type;
 805
 806		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
 807			dirty_i->nr_dirty[t]--;
 808
 809		valid_blocks = get_valid_blocks(sbi, segno, true);
 810		if (valid_blocks == 0) {
 811			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
 812						dirty_i->victim_secmap);
 813#ifdef CONFIG_F2FS_CHECK_FS
 814			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
 815#endif
 816		}
 817		if (__is_large_section(sbi)) {
 818			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
 819
 820			if (!valid_blocks ||
 821					valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
 822				clear_bit(secno, dirty_i->dirty_secmap);
 823				return;
 824			}
 825
 826			if (!IS_CURSEC(sbi, secno))
 827				set_bit(secno, dirty_i->dirty_secmap);
 828		}
 829	}
 830}
 831
 832/*
 833 * Should not occur error such as -ENOMEM.
 834 * Adding dirty entry into seglist is not critical operation.
 835 * If a given segment is one of current working segments, it won't be added.
 836 */
 837static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
 838{
 839	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 840	unsigned short valid_blocks, ckpt_valid_blocks;
 841	unsigned int usable_blocks;
 842
 843	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
 844		return;
 845
 846	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
 847	mutex_lock(&dirty_i->seglist_lock);
 848
 849	valid_blocks = get_valid_blocks(sbi, segno, false);
 850	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
 851
 852	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
 853		ckpt_valid_blocks == usable_blocks)) {
 854		__locate_dirty_segment(sbi, segno, PRE);
 855		__remove_dirty_segment(sbi, segno, DIRTY);
 856	} else if (valid_blocks < usable_blocks) {
 857		__locate_dirty_segment(sbi, segno, DIRTY);
 858	} else {
 859		/* Recovery routine with SSR needs this */
 860		__remove_dirty_segment(sbi, segno, DIRTY);
 861	}
 862
 863	mutex_unlock(&dirty_i->seglist_lock);
 864}
 865
 866/* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
 867void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
 868{
 869	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 870	unsigned int segno;
 871
 872	mutex_lock(&dirty_i->seglist_lock);
 873	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 874		if (get_valid_blocks(sbi, segno, false))
 875			continue;
 876		if (IS_CURSEG(sbi, segno))
 877			continue;
 878		__locate_dirty_segment(sbi, segno, PRE);
 879		__remove_dirty_segment(sbi, segno, DIRTY);
 880	}
 881	mutex_unlock(&dirty_i->seglist_lock);
 882}
 883
 884block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
 885{
 886	int ovp_hole_segs =
 887		(overprovision_segments(sbi) - reserved_segments(sbi));
 888	block_t ovp_holes = SEGS_TO_BLKS(sbi, ovp_hole_segs);
 889	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 890	block_t holes[2] = {0, 0};	/* DATA and NODE */
 891	block_t unusable;
 892	struct seg_entry *se;
 893	unsigned int segno;
 894
 895	mutex_lock(&dirty_i->seglist_lock);
 896	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 897		se = get_seg_entry(sbi, segno);
 898		if (IS_NODESEG(se->type))
 899			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
 900							se->valid_blocks;
 901		else
 902			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
 903							se->valid_blocks;
 904	}
 905	mutex_unlock(&dirty_i->seglist_lock);
 906
 907	unusable = max(holes[DATA], holes[NODE]);
 908	if (unusable > ovp_holes)
 909		return unusable - ovp_holes;
 910	return 0;
 911}
 912
 913int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
 914{
 915	int ovp_hole_segs =
 916		(overprovision_segments(sbi) - reserved_segments(sbi));
 917
 918	if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
 919		return 0;
 920	if (unusable > F2FS_OPTION(sbi).unusable_cap)
 921		return -EAGAIN;
 922	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
 923		dirty_segments(sbi) > ovp_hole_segs)
 924		return -EAGAIN;
 925	if (has_not_enough_free_secs(sbi, 0, 0))
 926		return -EAGAIN;
 927	return 0;
 928}
 929
 930/* This is only used by SBI_CP_DISABLED */
 931static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
 932{
 933	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 934	unsigned int segno = 0;
 935
 936	mutex_lock(&dirty_i->seglist_lock);
 937	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 938		if (get_valid_blocks(sbi, segno, false))
 939			continue;
 940		if (get_ckpt_valid_blocks(sbi, segno, false))
 941			continue;
 942		mutex_unlock(&dirty_i->seglist_lock);
 943		return segno;
 944	}
 945	mutex_unlock(&dirty_i->seglist_lock);
 946	return NULL_SEGNO;
 947}
 948
 949static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
 950		struct block_device *bdev, block_t lstart,
 951		block_t start, block_t len)
 952{
 953	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 954	struct list_head *pend_list;
 955	struct discard_cmd *dc;
 956
 957	f2fs_bug_on(sbi, !len);
 958
 959	pend_list = &dcc->pend_list[plist_idx(len)];
 960
 961	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
 962	INIT_LIST_HEAD(&dc->list);
 963	dc->bdev = bdev;
 964	dc->di.lstart = lstart;
 965	dc->di.start = start;
 966	dc->di.len = len;
 967	dc->ref = 0;
 968	dc->state = D_PREP;
 969	dc->queued = 0;
 970	dc->error = 0;
 971	init_completion(&dc->wait);
 972	list_add_tail(&dc->list, pend_list);
 973	spin_lock_init(&dc->lock);
 974	dc->bio_ref = 0;
 975	atomic_inc(&dcc->discard_cmd_cnt);
 976	dcc->undiscard_blks += len;
 977
 978	return dc;
 979}
 980
 981static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi)
 982{
 983#ifdef CONFIG_F2FS_CHECK_FS
 984	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 985	struct rb_node *cur = rb_first_cached(&dcc->root), *next;
 986	struct discard_cmd *cur_dc, *next_dc;
 987
 988	while (cur) {
 989		next = rb_next(cur);
 990		if (!next)
 991			return true;
 992
 993		cur_dc = rb_entry(cur, struct discard_cmd, rb_node);
 994		next_dc = rb_entry(next, struct discard_cmd, rb_node);
 995
 996		if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) {
 997			f2fs_info(sbi, "broken discard_rbtree, "
 998				"cur(%u, %u) next(%u, %u)",
 999				cur_dc->di.lstart, cur_dc->di.len,
1000				next_dc->di.lstart, next_dc->di.len);
1001			return false;
1002		}
1003		cur = next;
1004	}
1005#endif
1006	return true;
1007}
1008
1009static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi,
1010						block_t blkaddr)
1011{
1012	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1013	struct rb_node *node = dcc->root.rb_root.rb_node;
1014	struct discard_cmd *dc;
1015
1016	while (node) {
1017		dc = rb_entry(node, struct discard_cmd, rb_node);
1018
1019		if (blkaddr < dc->di.lstart)
1020			node = node->rb_left;
1021		else if (blkaddr >= dc->di.lstart + dc->di.len)
1022			node = node->rb_right;
1023		else
1024			return dc;
1025	}
1026	return NULL;
1027}
1028
1029static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root,
1030				block_t blkaddr,
1031				struct discard_cmd **prev_entry,
1032				struct discard_cmd **next_entry,
1033				struct rb_node ***insert_p,
1034				struct rb_node **insert_parent)
1035{
1036	struct rb_node **pnode = &root->rb_root.rb_node;
1037	struct rb_node *parent = NULL, *tmp_node;
1038	struct discard_cmd *dc;
1039
1040	*insert_p = NULL;
1041	*insert_parent = NULL;
1042	*prev_entry = NULL;
1043	*next_entry = NULL;
1044
1045	if (RB_EMPTY_ROOT(&root->rb_root))
1046		return NULL;
1047
1048	while (*pnode) {
1049		parent = *pnode;
1050		dc = rb_entry(*pnode, struct discard_cmd, rb_node);
1051
1052		if (blkaddr < dc->di.lstart)
1053			pnode = &(*pnode)->rb_left;
1054		else if (blkaddr >= dc->di.lstart + dc->di.len)
1055			pnode = &(*pnode)->rb_right;
1056		else
1057			goto lookup_neighbors;
1058	}
1059
1060	*insert_p = pnode;
1061	*insert_parent = parent;
1062
1063	dc = rb_entry(parent, struct discard_cmd, rb_node);
1064	tmp_node = parent;
1065	if (parent && blkaddr > dc->di.lstart)
1066		tmp_node = rb_next(parent);
1067	*next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1068
1069	tmp_node = parent;
1070	if (parent && blkaddr < dc->di.lstart)
1071		tmp_node = rb_prev(parent);
1072	*prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1073	return NULL;
1074
1075lookup_neighbors:
1076	/* lookup prev node for merging backward later */
1077	tmp_node = rb_prev(&dc->rb_node);
1078	*prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1079
1080	/* lookup next node for merging frontward later */
1081	tmp_node = rb_next(&dc->rb_node);
1082	*next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1083	return dc;
1084}
1085
1086static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1087							struct discard_cmd *dc)
1088{
1089	if (dc->state == D_DONE)
1090		atomic_sub(dc->queued, &dcc->queued_discard);
1091
1092	list_del(&dc->list);
1093	rb_erase_cached(&dc->rb_node, &dcc->root);
1094	dcc->undiscard_blks -= dc->di.len;
1095
1096	kmem_cache_free(discard_cmd_slab, dc);
1097
1098	atomic_dec(&dcc->discard_cmd_cnt);
1099}
1100
1101static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1102							struct discard_cmd *dc)
1103{
1104	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1105	unsigned long flags;
1106
1107	trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len);
1108
1109	spin_lock_irqsave(&dc->lock, flags);
1110	if (dc->bio_ref) {
1111		spin_unlock_irqrestore(&dc->lock, flags);
1112		return;
1113	}
1114	spin_unlock_irqrestore(&dc->lock, flags);
1115
1116	f2fs_bug_on(sbi, dc->ref);
1117
1118	if (dc->error == -EOPNOTSUPP)
1119		dc->error = 0;
1120
1121	if (dc->error)
1122		f2fs_info_ratelimited(sbi,
1123			"Issue discard(%u, %u, %u) failed, ret: %d",
1124			dc->di.lstart, dc->di.start, dc->di.len, dc->error);
 
1125	__detach_discard_cmd(dcc, dc);
1126}
1127
1128static void f2fs_submit_discard_endio(struct bio *bio)
1129{
1130	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1131	unsigned long flags;
1132
1133	spin_lock_irqsave(&dc->lock, flags);
1134	if (!dc->error)
1135		dc->error = blk_status_to_errno(bio->bi_status);
1136	dc->bio_ref--;
1137	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1138		dc->state = D_DONE;
1139		complete_all(&dc->wait);
1140	}
1141	spin_unlock_irqrestore(&dc->lock, flags);
1142	bio_put(bio);
1143}
1144
1145static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1146				block_t start, block_t end)
1147{
1148#ifdef CONFIG_F2FS_CHECK_FS
1149	struct seg_entry *sentry;
1150	unsigned int segno;
1151	block_t blk = start;
1152	unsigned long offset, size, *map;
 
1153
1154	while (blk < end) {
1155		segno = GET_SEGNO(sbi, blk);
1156		sentry = get_seg_entry(sbi, segno);
1157		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1158
1159		if (end < START_BLOCK(sbi, segno + 1))
1160			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1161		else
1162			size = BLKS_PER_SEG(sbi);
1163		map = (unsigned long *)(sentry->cur_valid_map);
1164		offset = __find_rev_next_bit(map, size, offset);
1165		f2fs_bug_on(sbi, offset != size);
1166		blk = START_BLOCK(sbi, segno + 1);
1167	}
1168#endif
1169}
1170
1171static void __init_discard_policy(struct f2fs_sb_info *sbi,
1172				struct discard_policy *dpolicy,
1173				int discard_type, unsigned int granularity)
1174{
1175	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1176
1177	/* common policy */
1178	dpolicy->type = discard_type;
1179	dpolicy->sync = true;
1180	dpolicy->ordered = false;
1181	dpolicy->granularity = granularity;
1182
1183	dpolicy->max_requests = dcc->max_discard_request;
1184	dpolicy->io_aware_gran = dcc->discard_io_aware_gran;
1185	dpolicy->timeout = false;
1186
1187	if (discard_type == DPOLICY_BG) {
1188		dpolicy->min_interval = dcc->min_discard_issue_time;
1189		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1190		dpolicy->max_interval = dcc->max_discard_issue_time;
1191		if (dcc->discard_io_aware == DPOLICY_IO_AWARE_ENABLE)
1192			dpolicy->io_aware = true;
1193		else if (dcc->discard_io_aware == DPOLICY_IO_AWARE_DISABLE)
1194			dpolicy->io_aware = false;
1195		dpolicy->sync = false;
1196		dpolicy->ordered = true;
1197		if (utilization(sbi) > dcc->discard_urgent_util) {
1198			dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1199			if (atomic_read(&dcc->discard_cmd_cnt))
1200				dpolicy->max_interval =
1201					dcc->min_discard_issue_time;
1202		}
1203	} else if (discard_type == DPOLICY_FORCE) {
1204		dpolicy->min_interval = dcc->min_discard_issue_time;
1205		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1206		dpolicy->max_interval = dcc->max_discard_issue_time;
1207		dpolicy->io_aware = false;
1208	} else if (discard_type == DPOLICY_FSTRIM) {
1209		dpolicy->io_aware = false;
1210	} else if (discard_type == DPOLICY_UMOUNT) {
1211		dpolicy->io_aware = false;
1212		/* we need to issue all to keep CP_TRIMMED_FLAG */
1213		dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1214		dpolicy->timeout = true;
1215	}
1216}
1217
1218static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1219				struct block_device *bdev, block_t lstart,
1220				block_t start, block_t len);
1221
1222#ifdef CONFIG_BLK_DEV_ZONED
1223static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi,
1224				   struct discard_cmd *dc, blk_opf_t flag,
1225				   struct list_head *wait_list,
1226				   unsigned int *issued)
1227{
1228	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1229	struct block_device *bdev = dc->bdev;
1230	struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS);
1231	unsigned long flags;
1232
1233	trace_f2fs_issue_reset_zone(bdev, dc->di.start);
1234
1235	spin_lock_irqsave(&dc->lock, flags);
1236	dc->state = D_SUBMIT;
1237	dc->bio_ref++;
1238	spin_unlock_irqrestore(&dc->lock, flags);
1239
1240	if (issued)
1241		(*issued)++;
1242
1243	atomic_inc(&dcc->queued_discard);
1244	dc->queued++;
1245	list_move_tail(&dc->list, wait_list);
1246
1247	/* sanity check on discard range */
1248	__check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len);
1249
1250	bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start);
1251	bio->bi_private = dc;
1252	bio->bi_end_io = f2fs_submit_discard_endio;
1253	submit_bio(bio);
1254
1255	atomic_inc(&dcc->issued_discard);
1256	f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE);
1257}
1258#endif
1259
1260/* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1261static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1262				struct discard_policy *dpolicy,
1263				struct discard_cmd *dc, int *issued)
 
1264{
1265	struct block_device *bdev = dc->bdev;
1266	unsigned int max_discard_blocks =
1267			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1268	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1269	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1270					&(dcc->fstrim_list) : &(dcc->wait_list);
1271	blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1272	block_t lstart, start, len, total_len;
1273	int err = 0;
1274
1275	if (dc->state != D_PREP)
1276		return 0;
1277
1278	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1279		return 0;
1280
1281#ifdef CONFIG_BLK_DEV_ZONED
1282	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) {
1283		int devi = f2fs_bdev_index(sbi, bdev);
1284
1285		if (devi < 0)
1286			return -EINVAL;
1287
1288		if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1289			__submit_zone_reset_cmd(sbi, dc, flag,
1290						wait_list, issued);
1291			return 0;
1292		}
1293	}
1294#endif
1295
1296	/*
1297	 * stop issuing discard for any of below cases:
1298	 * 1. device is conventional zone, but it doesn't support discard.
1299	 * 2. device is regulare device, after snapshot it doesn't support
1300	 * discard.
1301	 */
1302	if (!bdev_max_discard_sectors(bdev))
1303		return -EOPNOTSUPP;
1304
1305	trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len);
1306
1307	lstart = dc->di.lstart;
1308	start = dc->di.start;
1309	len = dc->di.len;
1310	total_len = len;
1311
1312	dc->di.len = 0;
1313
1314	while (total_len && *issued < dpolicy->max_requests && !err) {
1315		struct bio *bio = NULL;
1316		unsigned long flags;
1317		bool last = true;
1318
1319		if (len > max_discard_blocks) {
1320			len = max_discard_blocks;
1321			last = false;
1322		}
1323
1324		(*issued)++;
1325		if (*issued == dpolicy->max_requests)
1326			last = true;
1327
1328		dc->di.len += len;
1329
1330		if (time_to_inject(sbi, FAULT_DISCARD)) {
 
1331			err = -EIO;
1332		} else {
1333			err = __blkdev_issue_discard(bdev,
1334					SECTOR_FROM_BLOCK(start),
1335					SECTOR_FROM_BLOCK(len),
1336					GFP_NOFS, &bio);
1337		}
1338		if (err) {
1339			spin_lock_irqsave(&dc->lock, flags);
1340			if (dc->state == D_PARTIAL)
1341				dc->state = D_SUBMIT;
1342			spin_unlock_irqrestore(&dc->lock, flags);
1343
1344			break;
1345		}
1346
1347		f2fs_bug_on(sbi, !bio);
1348
1349		/*
1350		 * should keep before submission to avoid D_DONE
1351		 * right away
1352		 */
1353		spin_lock_irqsave(&dc->lock, flags);
1354		if (last)
1355			dc->state = D_SUBMIT;
1356		else
1357			dc->state = D_PARTIAL;
1358		dc->bio_ref++;
1359		spin_unlock_irqrestore(&dc->lock, flags);
1360
1361		atomic_inc(&dcc->queued_discard);
1362		dc->queued++;
1363		list_move_tail(&dc->list, wait_list);
1364
1365		/* sanity check on discard range */
1366		__check_sit_bitmap(sbi, lstart, lstart + len);
1367
1368		bio->bi_private = dc;
1369		bio->bi_end_io = f2fs_submit_discard_endio;
1370		bio->bi_opf |= flag;
1371		submit_bio(bio);
1372
1373		atomic_inc(&dcc->issued_discard);
1374
1375		f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE);
1376
1377		lstart += len;
1378		start += len;
1379		total_len -= len;
1380		len = total_len;
1381	}
1382
1383	if (!err && len) {
1384		dcc->undiscard_blks -= len;
1385		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1386	}
1387	return err;
1388}
1389
1390static void __insert_discard_cmd(struct f2fs_sb_info *sbi,
1391				struct block_device *bdev, block_t lstart,
1392				block_t start, block_t len)
 
 
1393{
1394	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1395	struct rb_node **p = &dcc->root.rb_root.rb_node;
1396	struct rb_node *parent = NULL;
1397	struct discard_cmd *dc;
1398	bool leftmost = true;
1399
1400	/* look up rb tree to find parent node */
1401	while (*p) {
1402		parent = *p;
1403		dc = rb_entry(parent, struct discard_cmd, rb_node);
1404
1405		if (lstart < dc->di.lstart) {
1406			p = &(*p)->rb_left;
1407		} else if (lstart >= dc->di.lstart + dc->di.len) {
1408			p = &(*p)->rb_right;
1409			leftmost = false;
1410		} else {
1411			/* Let's skip to add, if exists */
1412			return;
1413		}
1414	}
1415
1416	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1417
1418	rb_link_node(&dc->rb_node, parent, p);
1419	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
 
1420}
1421
1422static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1423						struct discard_cmd *dc)
1424{
1425	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]);
1426}
1427
1428static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1429				struct discard_cmd *dc, block_t blkaddr)
1430{
1431	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1432	struct discard_info di = dc->di;
1433	bool modified = false;
1434
1435	if (dc->state == D_DONE || dc->di.len == 1) {
1436		__remove_discard_cmd(sbi, dc);
1437		return;
1438	}
1439
1440	dcc->undiscard_blks -= di.len;
1441
1442	if (blkaddr > di.lstart) {
1443		dc->di.len = blkaddr - dc->di.lstart;
1444		dcc->undiscard_blks += dc->di.len;
1445		__relocate_discard_cmd(dcc, dc);
1446		modified = true;
1447	}
1448
1449	if (blkaddr < di.lstart + di.len - 1) {
1450		if (modified) {
1451			__insert_discard_cmd(sbi, dc->bdev, blkaddr + 1,
1452					di.start + blkaddr + 1 - di.lstart,
1453					di.lstart + di.len - 1 - blkaddr);
 
1454		} else {
1455			dc->di.lstart++;
1456			dc->di.len--;
1457			dc->di.start++;
1458			dcc->undiscard_blks += dc->di.len;
1459			__relocate_discard_cmd(dcc, dc);
1460		}
1461	}
1462}
1463
1464static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1465				struct block_device *bdev, block_t lstart,
1466				block_t start, block_t len)
1467{
1468	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1469	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1470	struct discard_cmd *dc;
1471	struct discard_info di = {0};
1472	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1473	unsigned int max_discard_blocks =
1474			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1475	block_t end = lstart + len;
1476
1477	dc = __lookup_discard_cmd_ret(&dcc->root, lstart,
1478				&prev_dc, &next_dc, &insert_p, &insert_parent);
 
 
 
1479	if (dc)
1480		prev_dc = dc;
1481
1482	if (!prev_dc) {
1483		di.lstart = lstart;
1484		di.len = next_dc ? next_dc->di.lstart - lstart : len;
1485		di.len = min(di.len, len);
1486		di.start = start;
1487	}
1488
1489	while (1) {
1490		struct rb_node *node;
1491		bool merged = false;
1492		struct discard_cmd *tdc = NULL;
1493
1494		if (prev_dc) {
1495			di.lstart = prev_dc->di.lstart + prev_dc->di.len;
1496			if (di.lstart < lstart)
1497				di.lstart = lstart;
1498			if (di.lstart >= end)
1499				break;
1500
1501			if (!next_dc || next_dc->di.lstart > end)
1502				di.len = end - di.lstart;
1503			else
1504				di.len = next_dc->di.lstart - di.lstart;
1505			di.start = start + di.lstart - lstart;
1506		}
1507
1508		if (!di.len)
1509			goto next;
1510
1511		if (prev_dc && prev_dc->state == D_PREP &&
1512			prev_dc->bdev == bdev &&
1513			__is_discard_back_mergeable(&di, &prev_dc->di,
1514							max_discard_blocks)) {
1515			prev_dc->di.len += di.len;
1516			dcc->undiscard_blks += di.len;
1517			__relocate_discard_cmd(dcc, prev_dc);
1518			di = prev_dc->di;
1519			tdc = prev_dc;
1520			merged = true;
1521		}
1522
1523		if (next_dc && next_dc->state == D_PREP &&
1524			next_dc->bdev == bdev &&
1525			__is_discard_front_mergeable(&di, &next_dc->di,
1526							max_discard_blocks)) {
1527			next_dc->di.lstart = di.lstart;
1528			next_dc->di.len += di.len;
1529			next_dc->di.start = di.start;
1530			dcc->undiscard_blks += di.len;
1531			__relocate_discard_cmd(dcc, next_dc);
1532			if (tdc)
1533				__remove_discard_cmd(sbi, tdc);
1534			merged = true;
1535		}
1536
1537		if (!merged)
1538			__insert_discard_cmd(sbi, bdev,
1539						di.lstart, di.start, di.len);
 
1540 next:
1541		prev_dc = next_dc;
1542		if (!prev_dc)
1543			break;
1544
1545		node = rb_next(&prev_dc->rb_node);
1546		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1547	}
1548}
1549
1550#ifdef CONFIG_BLK_DEV_ZONED
1551static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi,
1552		struct block_device *bdev, block_t blkstart, block_t lblkstart,
1553		block_t blklen)
1554{
1555	trace_f2fs_queue_reset_zone(bdev, blkstart);
1556
1557	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1558	__insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen);
1559	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1560}
1561#endif
1562
1563static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1564		struct block_device *bdev, block_t blkstart, block_t blklen)
1565{
1566	block_t lblkstart = blkstart;
1567
1568	if (!f2fs_bdev_support_discard(bdev))
1569		return;
1570
1571	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1572
1573	if (f2fs_is_multi_device(sbi)) {
1574		int devi = f2fs_target_device_index(sbi, blkstart);
1575
1576		blkstart -= FDEV(devi).start_blk;
1577	}
1578	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1579	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1580	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1581}
1582
1583static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1584		struct discard_policy *dpolicy, int *issued)
1585{
1586	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1587	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1588	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1589	struct discard_cmd *dc;
1590	struct blk_plug plug;
 
 
1591	bool io_interrupted = false;
1592
1593	mutex_lock(&dcc->cmd_lock);
1594	dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos,
1595				&prev_dc, &next_dc, &insert_p, &insert_parent);
 
 
 
1596	if (!dc)
1597		dc = next_dc;
1598
1599	blk_start_plug(&plug);
1600
1601	while (dc) {
1602		struct rb_node *node;
1603		int err = 0;
1604
1605		if (dc->state != D_PREP)
1606			goto next;
1607
1608		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1609			io_interrupted = true;
1610			break;
1611		}
1612
1613		dcc->next_pos = dc->di.lstart + dc->di.len;
1614		err = __submit_discard_cmd(sbi, dpolicy, dc, issued);
1615
1616		if (*issued >= dpolicy->max_requests)
1617			break;
1618next:
1619		node = rb_next(&dc->rb_node);
1620		if (err)
1621			__remove_discard_cmd(sbi, dc);
1622		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1623	}
1624
1625	blk_finish_plug(&plug);
1626
1627	if (!dc)
1628		dcc->next_pos = 0;
1629
1630	mutex_unlock(&dcc->cmd_lock);
1631
1632	if (!(*issued) && io_interrupted)
1633		*issued = -1;
 
 
1634}
1635static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1636					struct discard_policy *dpolicy);
1637
1638static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1639					struct discard_policy *dpolicy)
1640{
1641	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1642	struct list_head *pend_list;
1643	struct discard_cmd *dc, *tmp;
1644	struct blk_plug plug;
1645	int i, issued;
1646	bool io_interrupted = false;
1647
1648	if (dpolicy->timeout)
1649		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1650
1651retry:
1652	issued = 0;
1653	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1654		if (dpolicy->timeout &&
1655				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1656			break;
1657
1658		if (i + 1 < dpolicy->granularity)
1659			break;
1660
1661		if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) {
1662			__issue_discard_cmd_orderly(sbi, dpolicy, &issued);
1663			return issued;
1664		}
1665
1666		pend_list = &dcc->pend_list[i];
1667
1668		mutex_lock(&dcc->cmd_lock);
1669		if (list_empty(pend_list))
1670			goto next;
1671		if (unlikely(dcc->rbtree_check))
1672			f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
 
1673		blk_start_plug(&plug);
1674		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1675			f2fs_bug_on(sbi, dc->state != D_PREP);
1676
1677			if (dpolicy->timeout &&
1678				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1679				break;
1680
1681			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1682						!is_idle(sbi, DISCARD_TIME)) {
1683				io_interrupted = true;
1684				break;
1685			}
1686
1687			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1688
1689			if (issued >= dpolicy->max_requests)
1690				break;
1691		}
1692		blk_finish_plug(&plug);
1693next:
1694		mutex_unlock(&dcc->cmd_lock);
1695
1696		if (issued >= dpolicy->max_requests || io_interrupted)
1697			break;
1698	}
1699
1700	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1701		__wait_all_discard_cmd(sbi, dpolicy);
1702		goto retry;
1703	}
1704
1705	if (!issued && io_interrupted)
1706		issued = -1;
1707
1708	return issued;
1709}
1710
1711static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1712{
1713	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1714	struct list_head *pend_list;
1715	struct discard_cmd *dc, *tmp;
1716	int i;
1717	bool dropped = false;
1718
1719	mutex_lock(&dcc->cmd_lock);
1720	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1721		pend_list = &dcc->pend_list[i];
1722		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1723			f2fs_bug_on(sbi, dc->state != D_PREP);
1724			__remove_discard_cmd(sbi, dc);
1725			dropped = true;
1726		}
1727	}
1728	mutex_unlock(&dcc->cmd_lock);
1729
1730	return dropped;
1731}
1732
1733void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1734{
1735	__drop_discard_cmd(sbi);
1736}
1737
1738static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1739							struct discard_cmd *dc)
1740{
1741	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1742	unsigned int len = 0;
1743
1744	wait_for_completion_io(&dc->wait);
1745	mutex_lock(&dcc->cmd_lock);
1746	f2fs_bug_on(sbi, dc->state != D_DONE);
1747	dc->ref--;
1748	if (!dc->ref) {
1749		if (!dc->error)
1750			len = dc->di.len;
1751		__remove_discard_cmd(sbi, dc);
1752	}
1753	mutex_unlock(&dcc->cmd_lock);
1754
1755	return len;
1756}
1757
1758static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1759						struct discard_policy *dpolicy,
1760						block_t start, block_t end)
1761{
1762	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1763	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1764					&(dcc->fstrim_list) : &(dcc->wait_list);
1765	struct discard_cmd *dc = NULL, *iter, *tmp;
1766	unsigned int trimmed = 0;
1767
1768next:
1769	dc = NULL;
1770
1771	mutex_lock(&dcc->cmd_lock);
1772	list_for_each_entry_safe(iter, tmp, wait_list, list) {
1773		if (iter->di.lstart + iter->di.len <= start ||
1774					end <= iter->di.lstart)
1775			continue;
1776		if (iter->di.len < dpolicy->granularity)
1777			continue;
1778		if (iter->state == D_DONE && !iter->ref) {
1779			wait_for_completion_io(&iter->wait);
1780			if (!iter->error)
1781				trimmed += iter->di.len;
1782			__remove_discard_cmd(sbi, iter);
1783		} else {
1784			iter->ref++;
1785			dc = iter;
1786			break;
1787		}
1788	}
1789	mutex_unlock(&dcc->cmd_lock);
1790
1791	if (dc) {
1792		trimmed += __wait_one_discard_bio(sbi, dc);
1793		goto next;
1794	}
1795
1796	return trimmed;
1797}
1798
1799static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1800						struct discard_policy *dpolicy)
1801{
1802	struct discard_policy dp;
1803	unsigned int discard_blks;
1804
1805	if (dpolicy)
1806		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1807
1808	/* wait all */
1809	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY);
1810	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1811	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY);
1812	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1813
1814	return discard_blks;
1815}
1816
1817/* This should be covered by global mutex, &sit_i->sentry_lock */
1818static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1819{
1820	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1821	struct discard_cmd *dc;
1822	bool need_wait = false;
1823
1824	mutex_lock(&dcc->cmd_lock);
1825	dc = __lookup_discard_cmd(sbi, blkaddr);
1826#ifdef CONFIG_BLK_DEV_ZONED
1827	if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) {
1828		int devi = f2fs_bdev_index(sbi, dc->bdev);
1829
1830		if (devi < 0) {
1831			mutex_unlock(&dcc->cmd_lock);
1832			return;
1833		}
1834
1835		if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1836			/* force submit zone reset */
1837			if (dc->state == D_PREP)
1838				__submit_zone_reset_cmd(sbi, dc, REQ_SYNC,
1839							&dcc->wait_list, NULL);
1840			dc->ref++;
1841			mutex_unlock(&dcc->cmd_lock);
1842			/* wait zone reset */
1843			__wait_one_discard_bio(sbi, dc);
1844			return;
1845		}
1846	}
1847#endif
1848	if (dc) {
1849		if (dc->state == D_PREP) {
1850			__punch_discard_cmd(sbi, dc, blkaddr);
1851		} else {
1852			dc->ref++;
1853			need_wait = true;
1854		}
1855	}
1856	mutex_unlock(&dcc->cmd_lock);
1857
1858	if (need_wait)
1859		__wait_one_discard_bio(sbi, dc);
1860}
1861
1862void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1863{
1864	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1865
1866	if (dcc && dcc->f2fs_issue_discard) {
1867		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1868
1869		dcc->f2fs_issue_discard = NULL;
1870		kthread_stop(discard_thread);
1871	}
1872}
1873
1874/**
1875 * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT
1876 * @sbi: the f2fs_sb_info data for discard cmd to issue
1877 *
1878 * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped
1879 *
1880 * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false.
1881 */
1882bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1883{
1884	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1885	struct discard_policy dpolicy;
1886	bool dropped;
1887
1888	if (!atomic_read(&dcc->discard_cmd_cnt))
1889		return true;
1890
1891	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1892					dcc->discard_granularity);
1893	__issue_discard_cmd(sbi, &dpolicy);
1894	dropped = __drop_discard_cmd(sbi);
1895
1896	/* just to make sure there is no pending discard commands */
1897	__wait_all_discard_cmd(sbi, NULL);
1898
1899	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1900	return !dropped;
1901}
1902
1903static int issue_discard_thread(void *data)
1904{
1905	struct f2fs_sb_info *sbi = data;
1906	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1907	wait_queue_head_t *q = &dcc->discard_wait_queue;
1908	struct discard_policy dpolicy;
1909	unsigned int wait_ms = dcc->min_discard_issue_time;
1910	int issued;
1911
1912	set_freezable();
1913
1914	do {
1915		wait_event_freezable_timeout(*q,
1916				kthread_should_stop() || dcc->discard_wake,
 
1917				msecs_to_jiffies(wait_ms));
1918
1919		if (sbi->gc_mode == GC_URGENT_HIGH ||
1920			!f2fs_available_free_memory(sbi, DISCARD_CACHE))
1921			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE,
1922						MIN_DISCARD_GRANULARITY);
1923		else
1924			__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1925						dcc->discard_granularity);
1926
1927		if (dcc->discard_wake)
1928			dcc->discard_wake = false;
1929
1930		/* clean up pending candidates before going to sleep */
1931		if (atomic_read(&dcc->queued_discard))
1932			__wait_all_discard_cmd(sbi, NULL);
1933
 
 
1934		if (f2fs_readonly(sbi->sb))
1935			continue;
1936		if (kthread_should_stop())
1937			return 0;
1938		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1939			!atomic_read(&dcc->discard_cmd_cnt)) {
1940			wait_ms = dpolicy.max_interval;
1941			continue;
1942		}
1943
1944		sb_start_intwrite(sbi->sb);
1945
1946		issued = __issue_discard_cmd(sbi, &dpolicy);
1947		if (issued > 0) {
1948			__wait_all_discard_cmd(sbi, &dpolicy);
1949			wait_ms = dpolicy.min_interval;
1950		} else if (issued == -1) {
1951			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1952			if (!wait_ms)
1953				wait_ms = dpolicy.mid_interval;
1954		} else {
1955			wait_ms = dpolicy.max_interval;
1956		}
1957		if (!atomic_read(&dcc->discard_cmd_cnt))
1958			wait_ms = dpolicy.max_interval;
1959
1960		sb_end_intwrite(sbi->sb);
1961
1962	} while (!kthread_should_stop());
1963	return 0;
1964}
1965
1966#ifdef CONFIG_BLK_DEV_ZONED
1967static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1968		struct block_device *bdev, block_t blkstart, block_t blklen)
1969{
1970	sector_t sector, nr_sects;
1971	block_t lblkstart = blkstart;
1972	int devi = 0;
1973	u64 remainder = 0;
1974
1975	if (f2fs_is_multi_device(sbi)) {
1976		devi = f2fs_target_device_index(sbi, blkstart);
1977		if (blkstart < FDEV(devi).start_blk ||
1978		    blkstart > FDEV(devi).end_blk) {
1979			f2fs_err(sbi, "Invalid block %x", blkstart);
1980			return -EIO;
1981		}
1982		blkstart -= FDEV(devi).start_blk;
1983	}
1984
1985	/* For sequential zones, reset the zone write pointer */
1986	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1987		sector = SECTOR_FROM_BLOCK(blkstart);
1988		nr_sects = SECTOR_FROM_BLOCK(blklen);
1989		div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder);
1990
1991		if (remainder || nr_sects != bdev_zone_sectors(bdev)) {
 
1992			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1993				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1994				 blkstart, blklen);
1995			return -EIO;
1996		}
1997
1998		if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) {
1999			unsigned int nofs_flags;
2000			int ret;
2001
2002			trace_f2fs_issue_reset_zone(bdev, blkstart);
2003			nofs_flags = memalloc_nofs_save();
2004			ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
2005						sector, nr_sects);
2006			memalloc_nofs_restore(nofs_flags);
2007			return ret;
2008		}
2009
2010		__queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen);
2011		return 0;
2012	}
2013
2014	/* For conventional zones, use regular discard if supported */
2015	__queue_discard_cmd(sbi, bdev, lblkstart, blklen);
2016	return 0;
2017}
2018#endif
2019
2020static int __issue_discard_async(struct f2fs_sb_info *sbi,
2021		struct block_device *bdev, block_t blkstart, block_t blklen)
2022{
2023#ifdef CONFIG_BLK_DEV_ZONED
2024	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
2025		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
2026#endif
2027	__queue_discard_cmd(sbi, bdev, blkstart, blklen);
2028	return 0;
2029}
2030
2031static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
2032				block_t blkstart, block_t blklen)
2033{
2034	sector_t start = blkstart, len = 0;
2035	struct block_device *bdev;
2036	struct seg_entry *se;
2037	unsigned int offset;
2038	block_t i;
2039	int err = 0;
2040
2041	bdev = f2fs_target_device(sbi, blkstart, NULL);
2042
2043	for (i = blkstart; i < blkstart + blklen; i++, len++) {
2044		if (i != start) {
2045			struct block_device *bdev2 =
2046				f2fs_target_device(sbi, i, NULL);
2047
2048			if (bdev2 != bdev) {
2049				err = __issue_discard_async(sbi, bdev,
2050						start, len);
2051				if (err)
2052					return err;
2053				bdev = bdev2;
2054				start = i;
2055				len = 0;
2056			}
2057		}
2058
2059		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
2060		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
2061
2062		if (f2fs_block_unit_discard(sbi) &&
2063				!f2fs_test_and_set_bit(offset, se->discard_map))
2064			sbi->discard_blks--;
2065	}
2066
2067	if (len)
2068		err = __issue_discard_async(sbi, bdev, start, len);
2069	return err;
2070}
2071
2072static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
2073							bool check_only)
2074{
2075	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
 
2076	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
2077	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2078	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2079	unsigned long *discard_map = (unsigned long *)se->discard_map;
2080	unsigned long *dmap = SIT_I(sbi)->tmp_map;
2081	unsigned int start = 0, end = -1;
2082	bool force = (cpc->reason & CP_DISCARD);
2083	struct discard_entry *de = NULL;
2084	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
2085	int i;
2086
2087	if (se->valid_blocks == BLKS_PER_SEG(sbi) ||
2088	    !f2fs_hw_support_discard(sbi) ||
2089	    !f2fs_block_unit_discard(sbi))
2090		return false;
2091
2092	if (!force) {
2093		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
2094			SM_I(sbi)->dcc_info->nr_discards >=
2095				SM_I(sbi)->dcc_info->max_discards)
2096			return false;
2097	}
2098
2099	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
2100	for (i = 0; i < entries; i++)
2101		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
2102				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
2103
2104	while (force || SM_I(sbi)->dcc_info->nr_discards <=
2105				SM_I(sbi)->dcc_info->max_discards) {
2106		start = __find_rev_next_bit(dmap, BLKS_PER_SEG(sbi), end + 1);
2107		if (start >= BLKS_PER_SEG(sbi))
2108			break;
2109
2110		end = __find_rev_next_zero_bit(dmap,
2111						BLKS_PER_SEG(sbi), start + 1);
2112		if (force && start && end != BLKS_PER_SEG(sbi) &&
2113		    (end - start) < cpc->trim_minlen)
2114			continue;
2115
2116		if (check_only)
2117			return true;
2118
2119		if (!de) {
2120			de = f2fs_kmem_cache_alloc(discard_entry_slab,
2121						GFP_F2FS_ZERO, true, NULL);
2122			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
2123			list_add_tail(&de->list, head);
2124		}
2125
2126		for (i = start; i < end; i++)
2127			__set_bit_le(i, (void *)de->discard_map);
2128
2129		SM_I(sbi)->dcc_info->nr_discards += end - start;
2130	}
2131	return false;
2132}
2133
2134static void release_discard_addr(struct discard_entry *entry)
2135{
2136	list_del(&entry->list);
2137	kmem_cache_free(discard_entry_slab, entry);
2138}
2139
2140void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2141{
2142	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2143	struct discard_entry *entry, *this;
2144
2145	/* drop caches */
2146	list_for_each_entry_safe(entry, this, head, list)
2147		release_discard_addr(entry);
2148}
2149
2150/*
2151 * Should call f2fs_clear_prefree_segments after checkpoint is done.
2152 */
2153static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2154{
2155	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2156	unsigned int segno;
2157
2158	mutex_lock(&dirty_i->seglist_lock);
2159	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2160		__set_test_and_free(sbi, segno, false);
2161	mutex_unlock(&dirty_i->seglist_lock);
2162}
2163
2164void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2165						struct cp_control *cpc)
2166{
2167	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2168	struct list_head *head = &dcc->entry_list;
2169	struct discard_entry *entry, *this;
2170	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2171	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2172	unsigned int start = 0, end = -1;
2173	unsigned int secno, start_segno;
2174	bool force = (cpc->reason & CP_DISCARD);
2175	bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2176						DISCARD_UNIT_SECTION;
2177
2178	if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2179		section_alignment = true;
2180
2181	mutex_lock(&dirty_i->seglist_lock);
2182
2183	while (1) {
2184		int i;
2185
2186		if (section_alignment && end != -1)
2187			end--;
2188		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2189		if (start >= MAIN_SEGS(sbi))
2190			break;
2191		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2192								start + 1);
2193
2194		if (section_alignment) {
2195			start = rounddown(start, SEGS_PER_SEC(sbi));
2196			end = roundup(end, SEGS_PER_SEC(sbi));
2197		}
2198
2199		for (i = start; i < end; i++) {
2200			if (test_and_clear_bit(i, prefree_map))
2201				dirty_i->nr_dirty[PRE]--;
2202		}
2203
2204		if (!f2fs_realtime_discard_enable(sbi))
2205			continue;
2206
2207		if (force && start >= cpc->trim_start &&
2208					(end - 1) <= cpc->trim_end)
2209			continue;
2210
2211		/* Should cover 2MB zoned device for zone-based reset */
2212		if (!f2fs_sb_has_blkzoned(sbi) &&
2213		    (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) {
2214			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2215				SEGS_TO_BLKS(sbi, end - start));
2216			continue;
2217		}
2218next:
2219		secno = GET_SEC_FROM_SEG(sbi, start);
2220		start_segno = GET_SEG_FROM_SEC(sbi, secno);
2221		if (!IS_CURSEC(sbi, secno) &&
2222			!get_valid_blocks(sbi, start, true))
2223			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2224						BLKS_PER_SEC(sbi));
2225
2226		start = start_segno + SEGS_PER_SEC(sbi);
2227		if (start < end)
2228			goto next;
2229		else
2230			end = start - 1;
2231	}
2232	mutex_unlock(&dirty_i->seglist_lock);
2233
2234	if (!f2fs_block_unit_discard(sbi))
2235		goto wakeup;
2236
2237	/* send small discards */
2238	list_for_each_entry_safe(entry, this, head, list) {
2239		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2240		bool is_valid = test_bit_le(0, entry->discard_map);
2241
2242find_next:
2243		if (is_valid) {
2244			next_pos = find_next_zero_bit_le(entry->discard_map,
2245						BLKS_PER_SEG(sbi), cur_pos);
2246			len = next_pos - cur_pos;
2247
2248			if (f2fs_sb_has_blkzoned(sbi) ||
2249			    (force && len < cpc->trim_minlen))
2250				goto skip;
2251
2252			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2253									len);
2254			total_len += len;
2255		} else {
2256			next_pos = find_next_bit_le(entry->discard_map,
2257						BLKS_PER_SEG(sbi), cur_pos);
2258		}
2259skip:
2260		cur_pos = next_pos;
2261		is_valid = !is_valid;
2262
2263		if (cur_pos < BLKS_PER_SEG(sbi))
2264			goto find_next;
2265
2266		release_discard_addr(entry);
2267		dcc->nr_discards -= total_len;
2268	}
2269
2270wakeup:
2271	wake_up_discard_thread(sbi, false);
2272}
2273
2274int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2275{
2276	dev_t dev = sbi->sb->s_bdev->bd_dev;
2277	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2278	int err = 0;
2279
2280	if (f2fs_sb_has_readonly(sbi)) {
2281		f2fs_info(sbi,
2282			"Skip to start discard thread for readonly image");
2283		return 0;
2284	}
2285
2286	if (!f2fs_realtime_discard_enable(sbi))
2287		return 0;
2288
2289	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2290				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2291	if (IS_ERR(dcc->f2fs_issue_discard)) {
2292		err = PTR_ERR(dcc->f2fs_issue_discard);
2293		dcc->f2fs_issue_discard = NULL;
2294	}
2295
2296	return err;
2297}
2298
2299static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2300{
2301	struct discard_cmd_control *dcc;
2302	int err = 0, i;
2303
2304	if (SM_I(sbi)->dcc_info) {
2305		dcc = SM_I(sbi)->dcc_info;
2306		goto init_thread;
2307	}
2308
2309	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2310	if (!dcc)
2311		return -ENOMEM;
2312
2313	dcc->discard_io_aware_gran = MAX_PLIST_NUM;
2314	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2315	dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2316	dcc->discard_io_aware = DPOLICY_IO_AWARE_ENABLE;
2317	if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2318		dcc->discard_granularity = BLKS_PER_SEG(sbi);
2319	else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2320		dcc->discard_granularity = BLKS_PER_SEC(sbi);
2321
2322	INIT_LIST_HEAD(&dcc->entry_list);
2323	for (i = 0; i < MAX_PLIST_NUM; i++)
2324		INIT_LIST_HEAD(&dcc->pend_list[i]);
2325	INIT_LIST_HEAD(&dcc->wait_list);
2326	INIT_LIST_HEAD(&dcc->fstrim_list);
2327	mutex_init(&dcc->cmd_lock);
2328	atomic_set(&dcc->issued_discard, 0);
2329	atomic_set(&dcc->queued_discard, 0);
2330	atomic_set(&dcc->discard_cmd_cnt, 0);
2331	dcc->nr_discards = 0;
2332	dcc->max_discards = SEGS_TO_BLKS(sbi, MAIN_SEGS(sbi));
2333	dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2334	dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2335	dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2336	dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2337	dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2338	dcc->undiscard_blks = 0;
2339	dcc->next_pos = 0;
2340	dcc->root = RB_ROOT_CACHED;
2341	dcc->rbtree_check = false;
2342
2343	init_waitqueue_head(&dcc->discard_wait_queue);
2344	SM_I(sbi)->dcc_info = dcc;
2345init_thread:
2346	err = f2fs_start_discard_thread(sbi);
2347	if (err) {
2348		kfree(dcc);
2349		SM_I(sbi)->dcc_info = NULL;
2350	}
2351
2352	return err;
2353}
2354
2355static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2356{
2357	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2358
2359	if (!dcc)
2360		return;
2361
2362	f2fs_stop_discard_thread(sbi);
2363
2364	/*
2365	 * Recovery can cache discard commands, so in error path of
2366	 * fill_super(), it needs to give a chance to handle them.
2367	 */
2368	f2fs_issue_discard_timeout(sbi);
2369
2370	kfree(dcc);
2371	SM_I(sbi)->dcc_info = NULL;
2372}
2373
2374static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2375{
2376	struct sit_info *sit_i = SIT_I(sbi);
2377
2378	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2379		sit_i->dirty_sentries++;
2380		return false;
2381	}
2382
2383	return true;
2384}
2385
2386static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2387					unsigned int segno, int modified)
2388{
2389	struct seg_entry *se = get_seg_entry(sbi, segno);
2390
2391	se->type = type;
2392	if (modified)
2393		__mark_sit_entry_dirty(sbi, segno);
2394}
2395
2396static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2397								block_t blkaddr)
2398{
2399	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2400
2401	if (segno == NULL_SEGNO)
2402		return 0;
2403	return get_seg_entry(sbi, segno)->mtime;
2404}
2405
2406static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2407						unsigned long long old_mtime)
2408{
2409	struct seg_entry *se;
2410	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2411	unsigned long long ctime = get_mtime(sbi, false);
2412	unsigned long long mtime = old_mtime ? old_mtime : ctime;
2413
2414	if (segno == NULL_SEGNO)
2415		return;
2416
2417	se = get_seg_entry(sbi, segno);
2418
2419	if (!se->mtime)
2420		se->mtime = mtime;
2421	else
2422		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2423						se->valid_blocks + 1);
2424
2425	if (ctime > SIT_I(sbi)->max_mtime)
2426		SIT_I(sbi)->max_mtime = ctime;
2427}
2428
2429static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2430{
2431	struct seg_entry *se;
2432	unsigned int segno, offset;
2433	long int new_vblocks;
2434	bool exist;
2435#ifdef CONFIG_F2FS_CHECK_FS
2436	bool mir_exist;
2437#endif
2438
2439	segno = GET_SEGNO(sbi, blkaddr);
2440	if (segno == NULL_SEGNO)
2441		return;
2442
2443	se = get_seg_entry(sbi, segno);
2444	new_vblocks = se->valid_blocks + del;
2445	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2446
2447	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2448			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2449
2450	se->valid_blocks = new_vblocks;
2451
2452	/* Update valid block bitmap */
2453	if (del > 0) {
2454		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2455#ifdef CONFIG_F2FS_CHECK_FS
2456		mir_exist = f2fs_test_and_set_bit(offset,
2457						se->cur_valid_map_mir);
2458		if (unlikely(exist != mir_exist)) {
2459			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2460				 blkaddr, exist);
2461			f2fs_bug_on(sbi, 1);
2462		}
2463#endif
2464		if (unlikely(exist)) {
2465			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2466				 blkaddr);
2467			f2fs_bug_on(sbi, 1);
2468			se->valid_blocks--;
2469			del = 0;
2470		}
2471
2472		if (f2fs_block_unit_discard(sbi) &&
2473				!f2fs_test_and_set_bit(offset, se->discard_map))
2474			sbi->discard_blks--;
2475
2476		/*
2477		 * SSR should never reuse block which is checkpointed
2478		 * or newly invalidated.
2479		 */
2480		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2481			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2482				se->ckpt_valid_blocks++;
2483		}
2484	} else {
2485		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2486#ifdef CONFIG_F2FS_CHECK_FS
2487		mir_exist = f2fs_test_and_clear_bit(offset,
2488						se->cur_valid_map_mir);
2489		if (unlikely(exist != mir_exist)) {
2490			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2491				 blkaddr, exist);
2492			f2fs_bug_on(sbi, 1);
2493		}
2494#endif
2495		if (unlikely(!exist)) {
2496			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2497				 blkaddr);
2498			f2fs_bug_on(sbi, 1);
2499			se->valid_blocks++;
2500			del = 0;
2501		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2502			/*
2503			 * If checkpoints are off, we must not reuse data that
2504			 * was used in the previous checkpoint. If it was used
2505			 * before, we must track that to know how much space we
2506			 * really have.
2507			 */
2508			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2509				spin_lock(&sbi->stat_lock);
2510				sbi->unusable_block_count++;
2511				spin_unlock(&sbi->stat_lock);
2512			}
2513		}
2514
2515		if (f2fs_block_unit_discard(sbi) &&
2516			f2fs_test_and_clear_bit(offset, se->discard_map))
2517			sbi->discard_blks++;
2518	}
2519	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2520		se->ckpt_valid_blocks += del;
2521
2522	__mark_sit_entry_dirty(sbi, segno);
2523
2524	/* update total number of valid blocks to be written in ckpt area */
2525	SIT_I(sbi)->written_valid_blocks += del;
2526
2527	if (__is_large_section(sbi))
2528		get_sec_entry(sbi, segno)->valid_blocks += del;
2529}
2530
2531void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2532{
2533	unsigned int segno = GET_SEGNO(sbi, addr);
2534	struct sit_info *sit_i = SIT_I(sbi);
2535
2536	f2fs_bug_on(sbi, addr == NULL_ADDR);
2537	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2538		return;
2539
2540	f2fs_invalidate_internal_cache(sbi, addr);
 
2541
2542	/* add it into sit main buffer */
2543	down_write(&sit_i->sentry_lock);
2544
2545	update_segment_mtime(sbi, addr, 0);
2546	update_sit_entry(sbi, addr, -1);
2547
2548	/* add it into dirty seglist */
2549	locate_dirty_segment(sbi, segno);
2550
2551	up_write(&sit_i->sentry_lock);
2552}
2553
2554bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2555{
2556	struct sit_info *sit_i = SIT_I(sbi);
2557	unsigned int segno, offset;
2558	struct seg_entry *se;
2559	bool is_cp = false;
2560
2561	if (!__is_valid_data_blkaddr(blkaddr))
2562		return true;
2563
2564	down_read(&sit_i->sentry_lock);
2565
2566	segno = GET_SEGNO(sbi, blkaddr);
2567	se = get_seg_entry(sbi, segno);
2568	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2569
2570	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2571		is_cp = true;
2572
2573	up_read(&sit_i->sentry_lock);
2574
2575	return is_cp;
2576}
2577
2578static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type)
 
 
 
 
2579{
2580	struct curseg_info *curseg = CURSEG_I(sbi, type);
 
2581
2582	if (sbi->ckpt->alloc_type[type] == SSR)
2583		return BLKS_PER_SEG(sbi);
2584	return curseg->next_blkoff;
2585}
2586
2587/*
2588 * Calculate the number of current summary pages for writing
2589 */
2590int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2591{
2592	int valid_sum_count = 0;
2593	int i, sum_in_page;
2594
2595	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2596		if (sbi->ckpt->alloc_type[i] != SSR && for_ra)
2597			valid_sum_count +=
2598				le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2599		else
2600			valid_sum_count += f2fs_curseg_valid_blocks(sbi, i);
 
 
 
 
2601	}
2602
2603	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2604			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2605	if (valid_sum_count <= sum_in_page)
2606		return 1;
2607	else if ((valid_sum_count - sum_in_page) <=
2608		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2609		return 2;
2610	return 3;
2611}
2612
2613/*
2614 * Caller should put this summary page
2615 */
2616struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2617{
2618	if (unlikely(f2fs_cp_error(sbi)))
2619		return ERR_PTR(-EIO);
2620	return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2621}
2622
2623void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2624					void *src, block_t blk_addr)
2625{
2626	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2627
2628	memcpy(page_address(page), src, PAGE_SIZE);
2629	set_page_dirty(page);
2630	f2fs_put_page(page, 1);
2631}
2632
2633static void write_sum_page(struct f2fs_sb_info *sbi,
2634			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2635{
2636	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2637}
2638
2639static void write_current_sum_page(struct f2fs_sb_info *sbi,
2640						int type, block_t blk_addr)
2641{
2642	struct curseg_info *curseg = CURSEG_I(sbi, type);
2643	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2644	struct f2fs_summary_block *src = curseg->sum_blk;
2645	struct f2fs_summary_block *dst;
2646
2647	dst = (struct f2fs_summary_block *)page_address(page);
2648	memset(dst, 0, PAGE_SIZE);
2649
2650	mutex_lock(&curseg->curseg_mutex);
2651
2652	down_read(&curseg->journal_rwsem);
2653	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2654	up_read(&curseg->journal_rwsem);
2655
2656	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2657	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2658
2659	mutex_unlock(&curseg->curseg_mutex);
2660
2661	set_page_dirty(page);
2662	f2fs_put_page(page, 1);
2663}
2664
2665static int is_next_segment_free(struct f2fs_sb_info *sbi,
2666				struct curseg_info *curseg)
2667{
2668	unsigned int segno = curseg->segno + 1;
2669	struct free_segmap_info *free_i = FREE_I(sbi);
2670
2671	if (segno < MAIN_SEGS(sbi) && segno % SEGS_PER_SEC(sbi))
2672		return !test_bit(segno, free_i->free_segmap);
2673	return 0;
2674}
2675
2676/*
2677 * Find a new segment from the free segments bitmap to right order
2678 * This function should be returned with success, otherwise BUG
2679 */
2680static int get_new_segment(struct f2fs_sb_info *sbi,
2681			unsigned int *newseg, bool new_sec, bool pinning)
2682{
2683	struct free_segmap_info *free_i = FREE_I(sbi);
2684	unsigned int segno, secno, zoneno;
2685	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2686	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2687	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
 
2688	bool init = true;
 
2689	int i;
2690	int ret = 0;
2691
2692	spin_lock(&free_i->segmap_lock);
2693
2694	if (time_to_inject(sbi, FAULT_NO_SEGMENT)) {
2695		ret = -ENOSPC;
2696		goto out_unlock;
2697	}
2698
2699	if (!new_sec && ((*newseg + 1) % SEGS_PER_SEC(sbi))) {
2700		segno = find_next_zero_bit(free_i->free_segmap,
2701			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2702		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2703			goto got_it;
2704	}
2705
2706#ifdef CONFIG_BLK_DEV_ZONED
2707	/*
2708	 * If we format f2fs on zoned storage, let's try to get pinned sections
2709	 * from beginning of the storage, which should be a conventional one.
2710	 */
2711	if (f2fs_sb_has_blkzoned(sbi)) {
2712		/* Prioritize writing to conventional zones */
2713		if (sbi->blkzone_alloc_policy == BLKZONE_ALLOC_PRIOR_CONV || pinning)
2714			segno = 0;
2715		else
2716			segno = max(sbi->first_zoned_segno, *newseg);
2717		hint = GET_SEC_FROM_SEG(sbi, segno);
2718	}
2719#endif
2720
2721find_other_zone:
2722	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2723
2724#ifdef CONFIG_BLK_DEV_ZONED
2725	if (secno >= MAIN_SECS(sbi) && f2fs_sb_has_blkzoned(sbi)) {
2726		/* Write only to sequential zones */
2727		if (sbi->blkzone_alloc_policy == BLKZONE_ALLOC_ONLY_SEQ) {
2728			hint = GET_SEC_FROM_SEG(sbi, sbi->first_zoned_segno);
2729			secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2730		} else
2731			secno = find_first_zero_bit(free_i->free_secmap,
2732								MAIN_SECS(sbi));
2733		if (secno >= MAIN_SECS(sbi)) {
2734			ret = -ENOSPC;
2735			f2fs_bug_on(sbi, 1);
2736			goto out_unlock;
2737		}
2738	}
2739#endif
 
2740
2741	if (secno >= MAIN_SECS(sbi)) {
2742		secno = find_first_zero_bit(free_i->free_secmap,
2743							MAIN_SECS(sbi));
2744		if (secno >= MAIN_SECS(sbi)) {
2745			ret = -ENOSPC;
2746			f2fs_bug_on(sbi, 1);
2747			goto out_unlock;
2748		}
 
 
 
 
2749	}
 
 
2750	segno = GET_SEG_FROM_SEC(sbi, secno);
2751	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2752
2753	/* give up on finding another zone */
2754	if (!init)
2755		goto got_it;
2756	if (sbi->secs_per_zone == 1)
2757		goto got_it;
2758	if (zoneno == old_zoneno)
2759		goto got_it;
 
 
 
 
 
 
2760	for (i = 0; i < NR_CURSEG_TYPE; i++)
2761		if (CURSEG_I(sbi, i)->zone == zoneno)
2762			break;
2763
2764	if (i < NR_CURSEG_TYPE) {
2765		/* zone is in user, try another */
2766		if (zoneno + 1 >= total_zones)
 
 
2767			hint = 0;
2768		else
2769			hint = (zoneno + 1) * sbi->secs_per_zone;
2770		init = false;
2771		goto find_other_zone;
2772	}
2773got_it:
2774	/* set it as dirty segment in free segmap */
2775	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2776
2777	/* no free section in conventional zone */
2778	if (new_sec && pinning &&
2779		!f2fs_valid_pinned_area(sbi, START_BLOCK(sbi, segno))) {
2780		ret = -EAGAIN;
2781		goto out_unlock;
2782	}
2783	__set_inuse(sbi, segno);
2784	*newseg = segno;
2785out_unlock:
2786	spin_unlock(&free_i->segmap_lock);
2787
2788	if (ret == -ENOSPC)
2789		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_NO_SEGMENT);
2790	return ret;
2791}
2792
2793static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2794{
2795	struct curseg_info *curseg = CURSEG_I(sbi, type);
2796	struct summary_footer *sum_footer;
2797	unsigned short seg_type = curseg->seg_type;
2798
2799	/* only happen when get_new_segment() fails */
2800	if (curseg->next_segno == NULL_SEGNO)
2801		return;
2802
2803	curseg->inited = true;
2804	curseg->segno = curseg->next_segno;
2805	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2806	curseg->next_blkoff = 0;
2807	curseg->next_segno = NULL_SEGNO;
2808
2809	sum_footer = &(curseg->sum_blk->footer);
2810	memset(sum_footer, 0, sizeof(struct summary_footer));
2811
2812	sanity_check_seg_type(sbi, seg_type);
2813
2814	if (IS_DATASEG(seg_type))
2815		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2816	if (IS_NODESEG(seg_type))
2817		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2818	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2819}
2820
2821static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2822{
2823	struct curseg_info *curseg = CURSEG_I(sbi, type);
2824	unsigned short seg_type = curseg->seg_type;
2825
2826	sanity_check_seg_type(sbi, seg_type);
2827	if (__is_large_section(sbi)) {
2828		if (f2fs_need_rand_seg(sbi)) {
2829			unsigned int hint = GET_SEC_FROM_SEG(sbi, curseg->segno);
2830
2831			if (GET_SEC_FROM_SEG(sbi, curseg->segno + 1) != hint)
2832				return curseg->segno;
2833			return get_random_u32_inclusive(curseg->segno + 1,
2834					GET_SEG_FROM_SEC(sbi, hint + 1) - 1);
2835		}
2836		return curseg->segno;
2837	} else if (f2fs_need_rand_seg(sbi)) {
2838		return get_random_u32_below(MAIN_SECS(sbi) * SEGS_PER_SEC(sbi));
2839	}
2840
2841	/* inmem log may not locate on any segment after mount */
2842	if (!curseg->inited)
2843		return 0;
2844
2845	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2846		return 0;
2847
2848	if (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))
 
2849		return 0;
2850
2851	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2852		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2853
2854	/* find segments from 0 to reuse freed segments */
2855	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2856		return 0;
2857
2858	return curseg->segno;
2859}
2860
2861/*
2862 * Allocate a current working segment.
2863 * This function always allocates a free segment in LFS manner.
2864 */
2865static int new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2866{
2867	struct curseg_info *curseg = CURSEG_I(sbi, type);
 
2868	unsigned int segno = curseg->segno;
2869	bool pinning = type == CURSEG_COLD_DATA_PINNED;
2870	int ret;
2871
2872	if (curseg->inited)
2873		write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, segno));
 
 
 
2874
2875	segno = __get_next_segno(sbi, type);
2876	ret = get_new_segment(sbi, &segno, new_sec, pinning);
2877	if (ret) {
2878		if (ret == -ENOSPC)
2879			curseg->segno = NULL_SEGNO;
2880		return ret;
2881	}
2882
 
 
2883	curseg->next_segno = segno;
2884	reset_curseg(sbi, type, 1);
2885	curseg->alloc_type = LFS;
2886	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2887		curseg->fragment_remained_chunk =
2888				get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2889	return 0;
2890}
2891
2892static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2893					int segno, block_t start)
2894{
2895	struct seg_entry *se = get_seg_entry(sbi, segno);
2896	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2897	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2898	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2899	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2900	int i;
2901
2902	for (i = 0; i < entries; i++)
2903		target_map[i] = ckpt_map[i] | cur_map[i];
2904
2905	return __find_rev_next_zero_bit(target_map, BLKS_PER_SEG(sbi), start);
2906}
2907
2908static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi,
2909		struct curseg_info *seg)
 
 
 
 
 
2910{
2911	return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2912}
2913
2914bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2915{
2916	return __next_free_blkoff(sbi, segno, 0) < BLKS_PER_SEG(sbi);
2917}
2918
2919/*
2920 * This function always allocates a used segment(from dirty seglist) by SSR
2921 * manner, so it should recover the existing segment information of valid blocks
2922 */
2923static int change_curseg(struct f2fs_sb_info *sbi, int type)
2924{
2925	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2926	struct curseg_info *curseg = CURSEG_I(sbi, type);
2927	unsigned int new_segno = curseg->next_segno;
2928	struct f2fs_summary_block *sum_node;
2929	struct page *sum_page;
2930
2931	if (curseg->inited)
2932		write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
2933
2934	__set_test_and_inuse(sbi, new_segno);
2935
2936	mutex_lock(&dirty_i->seglist_lock);
2937	__remove_dirty_segment(sbi, new_segno, PRE);
2938	__remove_dirty_segment(sbi, new_segno, DIRTY);
2939	mutex_unlock(&dirty_i->seglist_lock);
2940
2941	reset_curseg(sbi, type, 1);
2942	curseg->alloc_type = SSR;
2943	curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2944
2945	sum_page = f2fs_get_sum_page(sbi, new_segno);
2946	if (IS_ERR(sum_page)) {
2947		/* GC won't be able to use stale summary pages by cp_error */
2948		memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2949		return PTR_ERR(sum_page);
2950	}
2951	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2952	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2953	f2fs_put_page(sum_page, 1);
2954	return 0;
2955}
2956
2957static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2958				int alloc_mode, unsigned long long age);
2959
2960static int get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2961					int target_type, int alloc_mode,
2962					unsigned long long age)
2963{
2964	struct curseg_info *curseg = CURSEG_I(sbi, type);
2965	int ret = 0;
2966
2967	curseg->seg_type = target_type;
2968
2969	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2970		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2971
2972		curseg->seg_type = se->type;
2973		ret = change_curseg(sbi, type);
2974	} else {
2975		/* allocate cold segment by default */
2976		curseg->seg_type = CURSEG_COLD_DATA;
2977		ret = new_curseg(sbi, type, true);
2978	}
2979	stat_inc_seg_type(sbi, curseg);
2980	return ret;
2981}
2982
2983static int __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi, bool force)
2984{
2985	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2986	int ret = 0;
2987
2988	if (!sbi->am.atgc_enabled && !force)
2989		return 0;
2990
2991	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2992
2993	mutex_lock(&curseg->curseg_mutex);
2994	down_write(&SIT_I(sbi)->sentry_lock);
2995
2996	ret = get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC,
2997					CURSEG_COLD_DATA, SSR, 0);
2998
2999	up_write(&SIT_I(sbi)->sentry_lock);
3000	mutex_unlock(&curseg->curseg_mutex);
3001
3002	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3003	return ret;
3004}
3005
3006int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
3007{
3008	return __f2fs_init_atgc_curseg(sbi, false);
3009}
3010
3011int f2fs_reinit_atgc_curseg(struct f2fs_sb_info *sbi)
3012{
3013	int ret;
3014
3015	if (!test_opt(sbi, ATGC))
3016		return 0;
3017	if (sbi->am.atgc_enabled)
3018		return 0;
3019	if (le64_to_cpu(F2FS_CKPT(sbi)->elapsed_time) <
3020			sbi->am.age_threshold)
3021		return 0;
3022
3023	ret = __f2fs_init_atgc_curseg(sbi, true);
3024	if (!ret) {
3025		sbi->am.atgc_enabled = true;
3026		f2fs_info(sbi, "reenabled age threshold GC");
3027	}
3028	return ret;
3029}
3030
3031static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
3032{
3033	struct curseg_info *curseg = CURSEG_I(sbi, type);
3034
3035	mutex_lock(&curseg->curseg_mutex);
3036	if (!curseg->inited)
3037		goto out;
3038
3039	if (get_valid_blocks(sbi, curseg->segno, false)) {
3040		write_sum_page(sbi, curseg->sum_blk,
3041				GET_SUM_BLOCK(sbi, curseg->segno));
3042	} else {
3043		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
3044		__set_test_and_free(sbi, curseg->segno, true);
3045		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
3046	}
3047out:
3048	mutex_unlock(&curseg->curseg_mutex);
3049}
3050
3051void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
3052{
3053	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
3054
3055	if (sbi->am.atgc_enabled)
3056		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
3057}
3058
3059static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
3060{
3061	struct curseg_info *curseg = CURSEG_I(sbi, type);
3062
3063	mutex_lock(&curseg->curseg_mutex);
3064	if (!curseg->inited)
3065		goto out;
3066	if (get_valid_blocks(sbi, curseg->segno, false))
3067		goto out;
3068
3069	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
3070	__set_test_and_inuse(sbi, curseg->segno);
3071	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
3072out:
3073	mutex_unlock(&curseg->curseg_mutex);
3074}
3075
3076void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
3077{
3078	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
3079
3080	if (sbi->am.atgc_enabled)
3081		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
3082}
3083
3084static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
3085				int alloc_mode, unsigned long long age)
3086{
3087	struct curseg_info *curseg = CURSEG_I(sbi, type);
 
3088	unsigned segno = NULL_SEGNO;
3089	unsigned short seg_type = curseg->seg_type;
3090	int i, cnt;
3091	bool reversed = false;
3092
3093	sanity_check_seg_type(sbi, seg_type);
3094
3095	/* f2fs_need_SSR() already forces to do this */
3096	if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type,
3097				alloc_mode, age, false)) {
3098		curseg->next_segno = segno;
3099		return 1;
3100	}
3101
3102	/* For node segments, let's do SSR more intensively */
3103	if (IS_NODESEG(seg_type)) {
3104		if (seg_type >= CURSEG_WARM_NODE) {
3105			reversed = true;
3106			i = CURSEG_COLD_NODE;
3107		} else {
3108			i = CURSEG_HOT_NODE;
3109		}
3110		cnt = NR_CURSEG_NODE_TYPE;
3111	} else {
3112		if (seg_type >= CURSEG_WARM_DATA) {
3113			reversed = true;
3114			i = CURSEG_COLD_DATA;
3115		} else {
3116			i = CURSEG_HOT_DATA;
3117		}
3118		cnt = NR_CURSEG_DATA_TYPE;
3119	}
3120
3121	for (; cnt-- > 0; reversed ? i-- : i++) {
3122		if (i == seg_type)
3123			continue;
3124		if (!f2fs_get_victim(sbi, &segno, BG_GC, i,
3125					alloc_mode, age, false)) {
3126			curseg->next_segno = segno;
3127			return 1;
3128		}
3129	}
3130
3131	/* find valid_blocks=0 in dirty list */
3132	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
3133		segno = get_free_segment(sbi);
3134		if (segno != NULL_SEGNO) {
3135			curseg->next_segno = segno;
3136			return 1;
3137		}
3138	}
3139	return 0;
3140}
3141
3142static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
3143{
3144	struct curseg_info *curseg = CURSEG_I(sbi, type);
3145
3146	if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
3147	    curseg->seg_type == CURSEG_WARM_NODE)
3148		return true;
3149	if (curseg->alloc_type == LFS && is_next_segment_free(sbi, curseg) &&
 
3150	    likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3151		return true;
3152	if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
3153		return true;
3154	return false;
3155}
3156
3157int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3158					unsigned int start, unsigned int end)
3159{
3160	struct curseg_info *curseg = CURSEG_I(sbi, type);
3161	unsigned int segno;
3162	int ret = 0;
3163
3164	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3165	mutex_lock(&curseg->curseg_mutex);
3166	down_write(&SIT_I(sbi)->sentry_lock);
3167
3168	segno = CURSEG_I(sbi, type)->segno;
3169	if (segno < start || segno > end)
3170		goto unlock;
3171
3172	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
3173		ret = change_curseg(sbi, type);
3174	else
3175		ret = new_curseg(sbi, type, true);
3176
3177	stat_inc_seg_type(sbi, curseg);
3178
3179	locate_dirty_segment(sbi, segno);
3180unlock:
3181	up_write(&SIT_I(sbi)->sentry_lock);
3182
3183	if (segno != curseg->segno)
3184		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3185			    type, segno, curseg->segno);
3186
3187	mutex_unlock(&curseg->curseg_mutex);
3188	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3189	return ret;
3190}
3191
3192static int __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3193						bool new_sec, bool force)
3194{
3195	struct curseg_info *curseg = CURSEG_I(sbi, type);
3196	unsigned int old_segno;
3197	int err = 0;
3198
3199	if (type == CURSEG_COLD_DATA_PINNED && !curseg->inited)
3200		goto allocate;
3201
3202	if (!force && curseg->inited &&
3203	    !curseg->next_blkoff &&
3204	    !get_valid_blocks(sbi, curseg->segno, new_sec) &&
3205	    !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3206		return 0;
3207
3208allocate:
 
 
3209	old_segno = curseg->segno;
3210	err = new_curseg(sbi, type, true);
3211	if (err)
3212		return err;
3213	stat_inc_seg_type(sbi, curseg);
3214	locate_dirty_segment(sbi, old_segno);
3215	return 0;
3216}
3217
3218int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
 
3219{
3220	int ret;
 
3221
 
 
3222	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3223	down_write(&SIT_I(sbi)->sentry_lock);
3224	ret = __allocate_new_segment(sbi, type, true, force);
3225	up_write(&SIT_I(sbi)->sentry_lock);
3226	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3227
3228	return ret;
3229}
3230
3231int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi)
3232{
3233	int err;
3234	bool gc_required = true;
3235
3236retry:
3237	f2fs_lock_op(sbi);
3238	err = f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3239	f2fs_unlock_op(sbi);
3240
3241	if (f2fs_sb_has_blkzoned(sbi) && err == -EAGAIN && gc_required) {
3242		f2fs_down_write(&sbi->gc_lock);
3243		err = f2fs_gc_range(sbi, 0, GET_SEGNO(sbi, FDEV(0).end_blk),
3244				true, ZONED_PIN_SEC_REQUIRED_COUNT);
3245		f2fs_up_write(&sbi->gc_lock);
3246
3247		gc_required = false;
3248		if (!err)
3249			goto retry;
3250	}
3251
3252	return err;
3253}
3254
3255int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3256{
3257	int i;
3258	int err = 0;
3259
3260	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3261	down_write(&SIT_I(sbi)->sentry_lock);
3262	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3263		err += __allocate_new_segment(sbi, i, false, false);
3264	up_write(&SIT_I(sbi)->sentry_lock);
3265	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3266
3267	return err;
3268}
3269
3270bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3271						struct cp_control *cpc)
3272{
3273	__u64 trim_start = cpc->trim_start;
3274	bool has_candidate = false;
3275
3276	down_write(&SIT_I(sbi)->sentry_lock);
3277	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3278		if (add_discard_addrs(sbi, cpc, true)) {
3279			has_candidate = true;
3280			break;
3281		}
3282	}
3283	up_write(&SIT_I(sbi)->sentry_lock);
3284
3285	cpc->trim_start = trim_start;
3286	return has_candidate;
3287}
3288
3289static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3290					struct discard_policy *dpolicy,
3291					unsigned int start, unsigned int end)
3292{
3293	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3294	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3295	struct rb_node **insert_p = NULL, *insert_parent = NULL;
3296	struct discard_cmd *dc;
3297	struct blk_plug plug;
3298	int issued;
3299	unsigned int trimmed = 0;
3300
3301next:
3302	issued = 0;
3303
3304	mutex_lock(&dcc->cmd_lock);
3305	if (unlikely(dcc->rbtree_check))
3306		f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
 
3307
3308	dc = __lookup_discard_cmd_ret(&dcc->root, start,
3309				&prev_dc, &next_dc, &insert_p, &insert_parent);
 
 
 
3310	if (!dc)
3311		dc = next_dc;
3312
3313	blk_start_plug(&plug);
3314
3315	while (dc && dc->di.lstart <= end) {
3316		struct rb_node *node;
3317		int err = 0;
3318
3319		if (dc->di.len < dpolicy->granularity)
3320			goto skip;
3321
3322		if (dc->state != D_PREP) {
3323			list_move_tail(&dc->list, &dcc->fstrim_list);
3324			goto skip;
3325		}
3326
3327		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3328
3329		if (issued >= dpolicy->max_requests) {
3330			start = dc->di.lstart + dc->di.len;
3331
3332			if (err)
3333				__remove_discard_cmd(sbi, dc);
3334
3335			blk_finish_plug(&plug);
3336			mutex_unlock(&dcc->cmd_lock);
3337			trimmed += __wait_all_discard_cmd(sbi, NULL);
3338			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3339			goto next;
3340		}
3341skip:
3342		node = rb_next(&dc->rb_node);
3343		if (err)
3344			__remove_discard_cmd(sbi, dc);
3345		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3346
3347		if (fatal_signal_pending(current))
3348			break;
3349	}
3350
3351	blk_finish_plug(&plug);
3352	mutex_unlock(&dcc->cmd_lock);
3353
3354	return trimmed;
3355}
3356
3357int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3358{
3359	__u64 start = F2FS_BYTES_TO_BLK(range->start);
3360	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3361	unsigned int start_segno, end_segno;
3362	block_t start_block, end_block;
3363	struct cp_control cpc;
3364	struct discard_policy dpolicy;
3365	unsigned long long trimmed = 0;
3366	int err = 0;
3367	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3368
3369	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3370		return -EINVAL;
3371
3372	if (end < MAIN_BLKADDR(sbi))
3373		goto out;
3374
3375	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3376		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3377		return -EFSCORRUPTED;
3378	}
3379
3380	/* start/end segment number in main_area */
3381	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3382	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3383						GET_SEGNO(sbi, end);
3384	if (need_align) {
3385		start_segno = rounddown(start_segno, SEGS_PER_SEC(sbi));
3386		end_segno = roundup(end_segno + 1, SEGS_PER_SEC(sbi)) - 1;
3387	}
3388
3389	cpc.reason = CP_DISCARD;
3390	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3391	cpc.trim_start = start_segno;
3392	cpc.trim_end = end_segno;
3393
3394	if (sbi->discard_blks == 0)
3395		goto out;
3396
3397	f2fs_down_write(&sbi->gc_lock);
3398	stat_inc_cp_call_count(sbi, TOTAL_CALL);
3399	err = f2fs_write_checkpoint(sbi, &cpc);
3400	f2fs_up_write(&sbi->gc_lock);
3401	if (err)
3402		goto out;
3403
3404	/*
3405	 * We filed discard candidates, but actually we don't need to wait for
3406	 * all of them, since they'll be issued in idle time along with runtime
3407	 * discard option. User configuration looks like using runtime discard
3408	 * or periodic fstrim instead of it.
3409	 */
3410	if (f2fs_realtime_discard_enable(sbi))
3411		goto out;
3412
3413	start_block = START_BLOCK(sbi, start_segno);
3414	end_block = START_BLOCK(sbi, end_segno + 1);
3415
3416	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3417	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3418					start_block, end_block);
3419
3420	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3421					start_block, end_block);
3422out:
3423	if (!err)
3424		range->len = F2FS_BLK_TO_BYTES(trimmed);
3425	return err;
3426}
3427
3428int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint)
 
3429{
3430	if (F2FS_OPTION(sbi).active_logs == 2)
3431		return CURSEG_HOT_DATA;
3432	else if (F2FS_OPTION(sbi).active_logs == 4)
3433		return CURSEG_COLD_DATA;
3434
3435	/* active_log == 6 */
 
3436	switch (hint) {
3437	case WRITE_LIFE_SHORT:
3438		return CURSEG_HOT_DATA;
3439	case WRITE_LIFE_EXTREME:
3440		return CURSEG_COLD_DATA;
3441	default:
3442		return CURSEG_WARM_DATA;
3443	}
3444}
3445
3446/*
3447 * This returns write hints for each segment type. This hints will be
3448 * passed down to block layer as below by default.
3449 *
3450 * User                  F2FS                     Block
3451 * ----                  ----                     -----
3452 *                       META                     WRITE_LIFE_NONE|REQ_META
3453 *                       HOT_NODE                 WRITE_LIFE_NONE
3454 *                       WARM_NODE                WRITE_LIFE_MEDIUM
3455 *                       COLD_NODE                WRITE_LIFE_LONG
3456 * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3457 * extension list        "                        "
3458 *
3459 * -- buffered io
3460 *                       COLD_DATA                WRITE_LIFE_EXTREME
3461 *                       HOT_DATA                 WRITE_LIFE_SHORT
3462 *                       WARM_DATA                WRITE_LIFE_NOT_SET
3463 *
3464 * -- direct io
3465 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3466 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3467 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3468 * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3469 * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3470 * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3471 */
3472enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3473				enum page_type type, enum temp_type temp)
3474{
3475	switch (type) {
3476	case DATA:
3477		switch (temp) {
3478		case WARM:
3479			return WRITE_LIFE_NOT_SET;
3480		case HOT:
3481			return WRITE_LIFE_SHORT;
3482		case COLD:
3483			return WRITE_LIFE_EXTREME;
3484		default:
3485			return WRITE_LIFE_NONE;
3486		}
3487	case NODE:
3488		switch (temp) {
3489		case WARM:
3490			return WRITE_LIFE_MEDIUM;
3491		case HOT:
3492			return WRITE_LIFE_NONE;
3493		case COLD:
3494			return WRITE_LIFE_LONG;
3495		default:
3496			return WRITE_LIFE_NONE;
3497		}
3498	case META:
3499		return WRITE_LIFE_NONE;
3500	default:
3501		return WRITE_LIFE_NONE;
3502	}
3503}
3504
3505static int __get_segment_type_2(struct f2fs_io_info *fio)
3506{
3507	if (fio->type == DATA)
3508		return CURSEG_HOT_DATA;
3509	else
3510		return CURSEG_HOT_NODE;
3511}
3512
3513static int __get_segment_type_4(struct f2fs_io_info *fio)
3514{
3515	if (fio->type == DATA) {
3516		struct inode *inode = fio->page->mapping->host;
3517
3518		if (S_ISDIR(inode->i_mode))
3519			return CURSEG_HOT_DATA;
3520		else
3521			return CURSEG_COLD_DATA;
3522	} else {
3523		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3524			return CURSEG_WARM_NODE;
3525		else
3526			return CURSEG_COLD_NODE;
3527	}
3528}
3529
3530static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3531{
3532	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3533	struct extent_info ei = {};
3534
3535	if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3536		if (!ei.age)
3537			return NO_CHECK_TYPE;
3538		if (ei.age <= sbi->hot_data_age_threshold)
3539			return CURSEG_HOT_DATA;
3540		if (ei.age <= sbi->warm_data_age_threshold)
3541			return CURSEG_WARM_DATA;
3542		return CURSEG_COLD_DATA;
3543	}
3544	return NO_CHECK_TYPE;
3545}
3546
3547static int __get_segment_type_6(struct f2fs_io_info *fio)
3548{
3549	if (fio->type == DATA) {
3550		struct inode *inode = fio->page->mapping->host;
3551		int type;
3552
3553		if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3554			return CURSEG_COLD_DATA_PINNED;
3555
3556		if (page_private_gcing(fio->page)) {
3557			if (fio->sbi->am.atgc_enabled &&
3558				(fio->io_type == FS_DATA_IO) &&
3559				(fio->sbi->gc_mode != GC_URGENT_HIGH) &&
3560				__is_valid_data_blkaddr(fio->old_blkaddr) &&
3561				!is_inode_flag_set(inode, FI_OPU_WRITE))
3562				return CURSEG_ALL_DATA_ATGC;
3563			else
3564				return CURSEG_COLD_DATA;
3565		}
3566		if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3567			return CURSEG_COLD_DATA;
3568
3569		type = __get_age_segment_type(inode,
3570				page_folio(fio->page)->index);
3571		if (type != NO_CHECK_TYPE)
3572			return type;
3573
3574		if (file_is_hot(inode) ||
3575				is_inode_flag_set(inode, FI_HOT_DATA) ||
3576				f2fs_is_cow_file(inode))
3577			return CURSEG_HOT_DATA;
3578		return f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode),
3579						inode->i_write_hint);
3580	} else {
3581		if (IS_DNODE(fio->page))
3582			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3583						CURSEG_HOT_NODE;
3584		return CURSEG_COLD_NODE;
3585	}
3586}
3587
3588enum temp_type f2fs_get_segment_temp(struct f2fs_sb_info *sbi,
3589						enum log_type type)
3590{
3591	struct curseg_info *curseg = CURSEG_I(sbi, type);
3592	enum temp_type temp = COLD;
3593
3594	switch (curseg->seg_type) {
3595	case CURSEG_HOT_NODE:
3596	case CURSEG_HOT_DATA:
3597		temp = HOT;
3598		break;
3599	case CURSEG_WARM_NODE:
3600	case CURSEG_WARM_DATA:
3601		temp = WARM;
3602		break;
3603	case CURSEG_COLD_NODE:
3604	case CURSEG_COLD_DATA:
3605		temp = COLD;
3606		break;
3607	default:
3608		f2fs_bug_on(sbi, 1);
3609	}
3610
3611	return temp;
3612}
3613
3614static int __get_segment_type(struct f2fs_io_info *fio)
3615{
3616	enum log_type type = CURSEG_HOT_DATA;
3617
3618	switch (F2FS_OPTION(fio->sbi).active_logs) {
3619	case 2:
3620		type = __get_segment_type_2(fio);
3621		break;
3622	case 4:
3623		type = __get_segment_type_4(fio);
3624		break;
3625	case 6:
3626		type = __get_segment_type_6(fio);
3627		break;
3628	default:
3629		f2fs_bug_on(fio->sbi, true);
3630	}
3631
3632	fio->temp = f2fs_get_segment_temp(fio->sbi, type);
3633
 
 
 
 
3634	return type;
3635}
3636
3637static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi,
3638		struct curseg_info *seg)
3639{
3640	/* To allocate block chunks in different sizes, use random number */
3641	if (--seg->fragment_remained_chunk > 0)
3642		return;
3643
3644	seg->fragment_remained_chunk =
3645		get_random_u32_inclusive(1, sbi->max_fragment_chunk);
3646	seg->next_blkoff +=
3647		get_random_u32_inclusive(1, sbi->max_fragment_hole);
3648}
3649
3650static void reset_curseg_fields(struct curseg_info *curseg)
3651{
3652	curseg->inited = false;
3653	curseg->segno = NULL_SEGNO;
3654	curseg->next_segno = 0;
3655}
3656
3657int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3658		block_t old_blkaddr, block_t *new_blkaddr,
3659		struct f2fs_summary *sum, int type,
3660		struct f2fs_io_info *fio)
3661{
3662	struct sit_info *sit_i = SIT_I(sbi);
3663	struct curseg_info *curseg = CURSEG_I(sbi, type);
3664	unsigned long long old_mtime;
3665	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3666	struct seg_entry *se = NULL;
3667	bool segment_full = false;
3668	int ret = 0;
3669
3670	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3671
3672	mutex_lock(&curseg->curseg_mutex);
3673	down_write(&sit_i->sentry_lock);
3674
3675	if (curseg->segno == NULL_SEGNO) {
3676		ret = -ENOSPC;
3677		goto out_err;
3678	}
3679
3680	if (from_gc) {
3681		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3682		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3683		sanity_check_seg_type(sbi, se->type);
3684		f2fs_bug_on(sbi, IS_NODESEG(se->type));
3685	}
3686	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3687
3688	f2fs_bug_on(sbi, curseg->next_blkoff >= BLKS_PER_SEG(sbi));
3689
3690	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3691
3692	curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3693	if (curseg->alloc_type == SSR) {
3694		curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg);
3695	} else {
3696		curseg->next_blkoff++;
3697		if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
3698			f2fs_randomize_chunk(sbi, curseg);
3699	}
3700	if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno))
3701		segment_full = true;
3702	stat_inc_block_count(sbi, curseg);
3703
3704	if (from_gc) {
3705		old_mtime = get_segment_mtime(sbi, old_blkaddr);
3706	} else {
3707		update_segment_mtime(sbi, old_blkaddr, 0);
3708		old_mtime = 0;
3709	}
3710	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3711
3712	/*
3713	 * SIT information should be updated before segment allocation,
3714	 * since SSR needs latest valid block information.
3715	 */
3716	update_sit_entry(sbi, *new_blkaddr, 1);
3717	update_sit_entry(sbi, old_blkaddr, -1);
3718
3719	/*
3720	 * If the current segment is full, flush it out and replace it with a
3721	 * new segment.
3722	 */
3723	if (segment_full) {
3724		if (type == CURSEG_COLD_DATA_PINNED &&
3725		    !((curseg->segno + 1) % sbi->segs_per_sec)) {
3726			write_sum_page(sbi, curseg->sum_blk,
3727					GET_SUM_BLOCK(sbi, curseg->segno));
3728			reset_curseg_fields(curseg);
3729			goto skip_new_segment;
3730		}
3731
 
 
 
 
3732		if (from_gc) {
3733			ret = get_atssr_segment(sbi, type, se->type,
3734						AT_SSR, se->mtime);
3735		} else {
3736			if (need_new_seg(sbi, type))
3737				ret = new_curseg(sbi, type, false);
3738			else
3739				ret = change_curseg(sbi, type);
3740			stat_inc_seg_type(sbi, curseg);
3741		}
3742
3743		if (ret)
3744			goto out_err;
3745	}
3746
3747skip_new_segment:
3748	/*
3749	 * segment dirty status should be updated after segment allocation,
3750	 * so we just need to update status only one time after previous
3751	 * segment being closed.
3752	 */
3753	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3754	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3755
3756	if (IS_DATASEG(curseg->seg_type))
3757		atomic64_inc(&sbi->allocated_data_blocks);
3758
3759	up_write(&sit_i->sentry_lock);
3760
3761	if (page && IS_NODESEG(curseg->seg_type)) {
3762		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3763
3764		f2fs_inode_chksum_set(sbi, page);
3765	}
3766
3767	if (fio) {
3768		struct f2fs_bio_info *io;
3769
 
 
 
3770		INIT_LIST_HEAD(&fio->list);
3771		fio->in_list = 1;
3772		io = sbi->write_io[fio->type] + fio->temp;
3773		spin_lock(&io->io_lock);
3774		list_add_tail(&fio->list, &io->io_list);
3775		spin_unlock(&io->io_lock);
3776	}
3777
3778	mutex_unlock(&curseg->curseg_mutex);
3779	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3780	return 0;
3781
3782out_err:
3783	*new_blkaddr = NULL_ADDR;
3784	up_write(&sit_i->sentry_lock);
3785	mutex_unlock(&curseg->curseg_mutex);
3786	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3787	return ret;
3788}
3789
3790void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3791					block_t blkaddr, unsigned int blkcnt)
3792{
3793	if (!f2fs_is_multi_device(sbi))
3794		return;
3795
3796	while (1) {
3797		unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3798		unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3799
3800		/* update device state for fsync */
3801		f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3802
3803		/* update device state for checkpoint */
3804		if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3805			spin_lock(&sbi->dev_lock);
3806			f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3807			spin_unlock(&sbi->dev_lock);
3808		}
3809
3810		if (blkcnt <= blks)
3811			break;
3812		blkcnt -= blks;
3813		blkaddr += blks;
3814	}
3815}
3816
3817static int log_type_to_seg_type(enum log_type type)
3818{
3819	int seg_type = CURSEG_COLD_DATA;
3820
3821	switch (type) {
3822	case CURSEG_HOT_DATA:
3823	case CURSEG_WARM_DATA:
3824	case CURSEG_COLD_DATA:
3825	case CURSEG_HOT_NODE:
3826	case CURSEG_WARM_NODE:
3827	case CURSEG_COLD_NODE:
3828		seg_type = (int)type;
3829		break;
3830	case CURSEG_COLD_DATA_PINNED:
3831	case CURSEG_ALL_DATA_ATGC:
3832		seg_type = CURSEG_COLD_DATA;
3833		break;
3834	default:
3835		break;
3836	}
3837	return seg_type;
3838}
3839
3840static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3841{
3842	enum log_type type = __get_segment_type(fio);
3843	int seg_type = log_type_to_seg_type(type);
3844	bool keep_order = (f2fs_lfs_mode(fio->sbi) &&
3845				seg_type == CURSEG_COLD_DATA);
3846
3847	if (keep_order)
3848		f2fs_down_read(&fio->sbi->io_order_lock);
3849
3850	if (f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3851			&fio->new_blkaddr, sum, type, fio)) {
3852		if (fscrypt_inode_uses_fs_layer_crypto(fio->page->mapping->host))
3853			fscrypt_finalize_bounce_page(&fio->encrypted_page);
3854		end_page_writeback(fio->page);
3855		if (f2fs_in_warm_node_list(fio->sbi, fio->page))
3856			f2fs_del_fsync_node_entry(fio->sbi, fio->page);
3857		goto out;
3858	}
3859	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3860		f2fs_invalidate_internal_cache(fio->sbi, fio->old_blkaddr);
3861
3862	/* writeout dirty page into bdev */
3863	f2fs_submit_page_write(fio);
 
 
 
 
3864
3865	f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3866out:
3867	if (keep_order)
3868		f2fs_up_read(&fio->sbi->io_order_lock);
3869}
3870
3871void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct folio *folio,
3872					enum iostat_type io_type)
3873{
3874	struct f2fs_io_info fio = {
3875		.sbi = sbi,
3876		.type = META,
3877		.temp = HOT,
3878		.op = REQ_OP_WRITE,
3879		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3880		.old_blkaddr = folio->index,
3881		.new_blkaddr = folio->index,
3882		.page = folio_page(folio, 0),
3883		.encrypted_page = NULL,
3884		.in_list = 0,
3885	};
3886
3887	if (unlikely(folio->index >= MAIN_BLKADDR(sbi)))
3888		fio.op_flags &= ~REQ_META;
3889
3890	folio_start_writeback(folio);
 
3891	f2fs_submit_page_write(&fio);
3892
3893	stat_inc_meta_count(sbi, folio->index);
3894	f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3895}
3896
3897void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3898{
3899	struct f2fs_summary sum;
3900
3901	set_summary(&sum, nid, 0, 0);
3902	do_write_page(&sum, fio);
3903
3904	f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3905}
3906
3907void f2fs_outplace_write_data(struct dnode_of_data *dn,
3908					struct f2fs_io_info *fio)
3909{
3910	struct f2fs_sb_info *sbi = fio->sbi;
3911	struct f2fs_summary sum;
3912
3913	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3914	if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
3915		f2fs_update_age_extent_cache(dn);
3916	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3917	do_write_page(&sum, fio);
3918	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3919
3920	f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
3921}
3922
3923int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3924{
3925	int err;
3926	struct f2fs_sb_info *sbi = fio->sbi;
3927	unsigned int segno;
3928
3929	fio->new_blkaddr = fio->old_blkaddr;
3930	/* i/o temperature is needed for passing down write hints */
3931	__get_segment_type(fio);
3932
3933	segno = GET_SEGNO(sbi, fio->new_blkaddr);
3934
3935	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3936		set_sbi_flag(sbi, SBI_NEED_FSCK);
3937		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3938			  __func__, segno);
3939		err = -EFSCORRUPTED;
3940		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
3941		goto drop_bio;
3942	}
3943
3944	if (f2fs_cp_error(sbi)) {
3945		err = -EIO;
3946		goto drop_bio;
3947	}
3948
3949	if (fio->meta_gc)
3950		f2fs_truncate_meta_inode_pages(sbi, fio->new_blkaddr, 1);
 
3951
3952	stat_inc_inplace_blocks(fio->sbi);
3953
3954	if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi))
3955		err = f2fs_merge_page_bio(fio);
3956	else
3957		err = f2fs_submit_page_bio(fio);
3958	if (!err) {
3959		f2fs_update_device_state(fio->sbi, fio->ino,
3960						fio->new_blkaddr, 1);
3961		f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
3962						fio->io_type, F2FS_BLKSIZE);
3963	}
3964
3965	return err;
3966drop_bio:
3967	if (fio->bio && *(fio->bio)) {
3968		struct bio *bio = *(fio->bio);
3969
3970		bio->bi_status = BLK_STS_IOERR;
3971		bio_endio(bio);
3972		*(fio->bio) = NULL;
3973	}
3974	return err;
3975}
3976
3977static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3978						unsigned int segno)
3979{
3980	int i;
3981
3982	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3983		if (CURSEG_I(sbi, i)->segno == segno)
3984			break;
3985	}
3986	return i;
3987}
3988
3989void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3990				block_t old_blkaddr, block_t new_blkaddr,
3991				bool recover_curseg, bool recover_newaddr,
3992				bool from_gc)
3993{
3994	struct sit_info *sit_i = SIT_I(sbi);
3995	struct curseg_info *curseg;
3996	unsigned int segno, old_cursegno;
3997	struct seg_entry *se;
3998	int type;
3999	unsigned short old_blkoff;
4000	unsigned char old_alloc_type;
4001
4002	segno = GET_SEGNO(sbi, new_blkaddr);
4003	se = get_seg_entry(sbi, segno);
4004	type = se->type;
4005
4006	f2fs_down_write(&SM_I(sbi)->curseg_lock);
4007
4008	if (!recover_curseg) {
4009		/* for recovery flow */
4010		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
4011			if (old_blkaddr == NULL_ADDR)
4012				type = CURSEG_COLD_DATA;
4013			else
4014				type = CURSEG_WARM_DATA;
4015		}
4016	} else {
4017		if (IS_CURSEG(sbi, segno)) {
4018			/* se->type is volatile as SSR allocation */
4019			type = __f2fs_get_curseg(sbi, segno);
4020			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
4021		} else {
4022			type = CURSEG_WARM_DATA;
4023		}
4024	}
4025
 
4026	curseg = CURSEG_I(sbi, type);
4027	f2fs_bug_on(sbi, !IS_DATASEG(curseg->seg_type));
4028
4029	mutex_lock(&curseg->curseg_mutex);
4030	down_write(&sit_i->sentry_lock);
4031
4032	old_cursegno = curseg->segno;
4033	old_blkoff = curseg->next_blkoff;
4034	old_alloc_type = curseg->alloc_type;
4035
4036	/* change the current segment */
4037	if (segno != curseg->segno) {
4038		curseg->next_segno = segno;
4039		if (change_curseg(sbi, type))
4040			goto out_unlock;
4041	}
4042
4043	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
4044	curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
4045
4046	if (!recover_curseg || recover_newaddr) {
4047		if (!from_gc)
4048			update_segment_mtime(sbi, new_blkaddr, 0);
4049		update_sit_entry(sbi, new_blkaddr, 1);
4050	}
4051	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
4052		f2fs_invalidate_internal_cache(sbi, old_blkaddr);
 
 
4053		if (!from_gc)
4054			update_segment_mtime(sbi, old_blkaddr, 0);
4055		update_sit_entry(sbi, old_blkaddr, -1);
4056	}
4057
4058	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
4059	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
4060
4061	locate_dirty_segment(sbi, old_cursegno);
4062
4063	if (recover_curseg) {
4064		if (old_cursegno != curseg->segno) {
4065			curseg->next_segno = old_cursegno;
4066			if (change_curseg(sbi, type))
4067				goto out_unlock;
4068		}
4069		curseg->next_blkoff = old_blkoff;
4070		curseg->alloc_type = old_alloc_type;
4071	}
4072
4073out_unlock:
4074	up_write(&sit_i->sentry_lock);
4075	mutex_unlock(&curseg->curseg_mutex);
4076	f2fs_up_write(&SM_I(sbi)->curseg_lock);
4077}
4078
4079void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
4080				block_t old_addr, block_t new_addr,
4081				unsigned char version, bool recover_curseg,
4082				bool recover_newaddr)
4083{
4084	struct f2fs_summary sum;
4085
4086	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
4087
4088	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
4089					recover_curseg, recover_newaddr, false);
4090
4091	f2fs_update_data_blkaddr(dn, new_addr);
4092}
4093
4094void f2fs_wait_on_page_writeback(struct page *page,
4095				enum page_type type, bool ordered, bool locked)
4096{
4097	if (folio_test_writeback(page_folio(page))) {
4098		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
4099
4100		/* submit cached LFS IO */
4101		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
4102		/* submit cached IPU IO */
4103		f2fs_submit_merged_ipu_write(sbi, NULL, page);
4104		if (ordered) {
4105			wait_on_page_writeback(page);
4106			f2fs_bug_on(sbi, locked &&
4107				folio_test_writeback(page_folio(page)));
4108		} else {
4109			wait_for_stable_page(page);
4110		}
4111	}
4112}
4113
4114void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
4115{
4116	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4117	struct page *cpage;
4118
4119	if (!f2fs_meta_inode_gc_required(inode))
4120		return;
4121
4122	if (!__is_valid_data_blkaddr(blkaddr))
4123		return;
4124
4125	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
4126	if (cpage) {
4127		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
4128		f2fs_put_page(cpage, 1);
4129	}
4130}
4131
4132void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
4133								block_t len)
4134{
4135	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4136	block_t i;
4137
4138	if (!f2fs_meta_inode_gc_required(inode))
4139		return;
4140
4141	for (i = 0; i < len; i++)
4142		f2fs_wait_on_block_writeback(inode, blkaddr + i);
4143
4144	f2fs_truncate_meta_inode_pages(sbi, blkaddr, len);
4145}
4146
4147static int read_compacted_summaries(struct f2fs_sb_info *sbi)
4148{
4149	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4150	struct curseg_info *seg_i;
4151	unsigned char *kaddr;
4152	struct page *page;
4153	block_t start;
4154	int i, j, offset;
4155
4156	start = start_sum_block(sbi);
4157
4158	page = f2fs_get_meta_page(sbi, start++);
4159	if (IS_ERR(page))
4160		return PTR_ERR(page);
4161	kaddr = (unsigned char *)page_address(page);
4162
4163	/* Step 1: restore nat cache */
4164	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4165	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
4166
4167	/* Step 2: restore sit cache */
4168	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4169	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
4170	offset = 2 * SUM_JOURNAL_SIZE;
4171
4172	/* Step 3: restore summary entries */
4173	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4174		unsigned short blk_off;
4175		unsigned int segno;
4176
4177		seg_i = CURSEG_I(sbi, i);
4178		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
4179		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
4180		seg_i->next_segno = segno;
4181		reset_curseg(sbi, i, 0);
4182		seg_i->alloc_type = ckpt->alloc_type[i];
4183		seg_i->next_blkoff = blk_off;
4184
4185		if (seg_i->alloc_type == SSR)
4186			blk_off = BLKS_PER_SEG(sbi);
4187
4188		for (j = 0; j < blk_off; j++) {
4189			struct f2fs_summary *s;
4190
4191			s = (struct f2fs_summary *)(kaddr + offset);
4192			seg_i->sum_blk->entries[j] = *s;
4193			offset += SUMMARY_SIZE;
4194			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
4195						SUM_FOOTER_SIZE)
4196				continue;
4197
4198			f2fs_put_page(page, 1);
4199			page = NULL;
4200
4201			page = f2fs_get_meta_page(sbi, start++);
4202			if (IS_ERR(page))
4203				return PTR_ERR(page);
4204			kaddr = (unsigned char *)page_address(page);
4205			offset = 0;
4206		}
4207	}
4208	f2fs_put_page(page, 1);
4209	return 0;
4210}
4211
4212static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
4213{
4214	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4215	struct f2fs_summary_block *sum;
4216	struct curseg_info *curseg;
4217	struct page *new;
4218	unsigned short blk_off;
4219	unsigned int segno = 0;
4220	block_t blk_addr = 0;
4221	int err = 0;
4222
4223	/* get segment number and block addr */
4224	if (IS_DATASEG(type)) {
4225		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
4226		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
4227							CURSEG_HOT_DATA]);
4228		if (__exist_node_summaries(sbi))
4229			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
4230		else
4231			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
4232	} else {
4233		segno = le32_to_cpu(ckpt->cur_node_segno[type -
4234							CURSEG_HOT_NODE]);
4235		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
4236							CURSEG_HOT_NODE]);
4237		if (__exist_node_summaries(sbi))
4238			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
4239							type - CURSEG_HOT_NODE);
4240		else
4241			blk_addr = GET_SUM_BLOCK(sbi, segno);
4242	}
4243
4244	new = f2fs_get_meta_page(sbi, blk_addr);
4245	if (IS_ERR(new))
4246		return PTR_ERR(new);
4247	sum = (struct f2fs_summary_block *)page_address(new);
4248
4249	if (IS_NODESEG(type)) {
4250		if (__exist_node_summaries(sbi)) {
4251			struct f2fs_summary *ns = &sum->entries[0];
4252			int i;
4253
4254			for (i = 0; i < BLKS_PER_SEG(sbi); i++, ns++) {
4255				ns->version = 0;
4256				ns->ofs_in_node = 0;
4257			}
4258		} else {
4259			err = f2fs_restore_node_summary(sbi, segno, sum);
4260			if (err)
4261				goto out;
4262		}
4263	}
4264
4265	/* set uncompleted segment to curseg */
4266	curseg = CURSEG_I(sbi, type);
4267	mutex_lock(&curseg->curseg_mutex);
4268
4269	/* update journal info */
4270	down_write(&curseg->journal_rwsem);
4271	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
4272	up_write(&curseg->journal_rwsem);
4273
4274	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
4275	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
4276	curseg->next_segno = segno;
4277	reset_curseg(sbi, type, 0);
4278	curseg->alloc_type = ckpt->alloc_type[type];
4279	curseg->next_blkoff = blk_off;
4280	mutex_unlock(&curseg->curseg_mutex);
4281out:
4282	f2fs_put_page(new, 1);
4283	return err;
4284}
4285
4286static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
4287{
4288	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
4289	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
4290	int type = CURSEG_HOT_DATA;
4291	int err;
4292
4293	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
4294		int npages = f2fs_npages_for_summary_flush(sbi, true);
4295
4296		if (npages >= 2)
4297			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
4298							META_CP, true);
4299
4300		/* restore for compacted data summary */
4301		err = read_compacted_summaries(sbi);
4302		if (err)
4303			return err;
4304		type = CURSEG_HOT_NODE;
4305	}
4306
4307	if (__exist_node_summaries(sbi))
4308		f2fs_ra_meta_pages(sbi,
4309				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4310				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4311
4312	for (; type <= CURSEG_COLD_NODE; type++) {
4313		err = read_normal_summaries(sbi, type);
4314		if (err)
4315			return err;
4316	}
4317
4318	/* sanity check for summary blocks */
4319	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4320			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4321		f2fs_err(sbi, "invalid journal entries nats %u sits %u",
4322			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4323		return -EINVAL;
4324	}
4325
4326	return 0;
4327}
4328
4329static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4330{
4331	struct page *page;
4332	unsigned char *kaddr;
4333	struct f2fs_summary *summary;
4334	struct curseg_info *seg_i;
4335	int written_size = 0;
4336	int i, j;
4337
4338	page = f2fs_grab_meta_page(sbi, blkaddr++);
4339	kaddr = (unsigned char *)page_address(page);
4340	memset(kaddr, 0, PAGE_SIZE);
4341
4342	/* Step 1: write nat cache */
4343	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4344	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4345	written_size += SUM_JOURNAL_SIZE;
4346
4347	/* Step 2: write sit cache */
4348	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4349	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4350	written_size += SUM_JOURNAL_SIZE;
4351
4352	/* Step 3: write summary entries */
4353	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
 
 
4354		seg_i = CURSEG_I(sbi, i);
4355		for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) {
 
 
 
 
 
4356			if (!page) {
4357				page = f2fs_grab_meta_page(sbi, blkaddr++);
4358				kaddr = (unsigned char *)page_address(page);
4359				memset(kaddr, 0, PAGE_SIZE);
4360				written_size = 0;
4361			}
4362			summary = (struct f2fs_summary *)(kaddr + written_size);
4363			*summary = seg_i->sum_blk->entries[j];
4364			written_size += SUMMARY_SIZE;
4365
4366			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4367							SUM_FOOTER_SIZE)
4368				continue;
4369
4370			set_page_dirty(page);
4371			f2fs_put_page(page, 1);
4372			page = NULL;
4373		}
4374	}
4375	if (page) {
4376		set_page_dirty(page);
4377		f2fs_put_page(page, 1);
4378	}
4379}
4380
4381static void write_normal_summaries(struct f2fs_sb_info *sbi,
4382					block_t blkaddr, int type)
4383{
4384	int i, end;
4385
4386	if (IS_DATASEG(type))
4387		end = type + NR_CURSEG_DATA_TYPE;
4388	else
4389		end = type + NR_CURSEG_NODE_TYPE;
4390
4391	for (i = type; i < end; i++)
4392		write_current_sum_page(sbi, i, blkaddr + (i - type));
4393}
4394
4395void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4396{
4397	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4398		write_compacted_summaries(sbi, start_blk);
4399	else
4400		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4401}
4402
4403void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4404{
4405	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4406}
4407
4408int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4409					unsigned int val, int alloc)
4410{
4411	int i;
4412
4413	if (type == NAT_JOURNAL) {
4414		for (i = 0; i < nats_in_cursum(journal); i++) {
4415			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4416				return i;
4417		}
4418		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4419			return update_nats_in_cursum(journal, 1);
4420	} else if (type == SIT_JOURNAL) {
4421		for (i = 0; i < sits_in_cursum(journal); i++)
4422			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4423				return i;
4424		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4425			return update_sits_in_cursum(journal, 1);
4426	}
4427	return -1;
4428}
4429
4430static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4431					unsigned int segno)
4432{
4433	return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4434}
4435
4436static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4437					unsigned int start)
4438{
4439	struct sit_info *sit_i = SIT_I(sbi);
4440	struct page *page;
4441	pgoff_t src_off, dst_off;
4442
4443	src_off = current_sit_addr(sbi, start);
4444	dst_off = next_sit_addr(sbi, src_off);
4445
4446	page = f2fs_grab_meta_page(sbi, dst_off);
4447	seg_info_to_sit_page(sbi, page, start);
4448
4449	set_page_dirty(page);
4450	set_to_next_sit(sit_i, start);
4451
4452	return page;
4453}
4454
4455static struct sit_entry_set *grab_sit_entry_set(void)
4456{
4457	struct sit_entry_set *ses =
4458			f2fs_kmem_cache_alloc(sit_entry_set_slab,
4459						GFP_NOFS, true, NULL);
4460
4461	ses->entry_cnt = 0;
4462	INIT_LIST_HEAD(&ses->set_list);
4463	return ses;
4464}
4465
4466static void release_sit_entry_set(struct sit_entry_set *ses)
4467{
4468	list_del(&ses->set_list);
4469	kmem_cache_free(sit_entry_set_slab, ses);
4470}
4471
4472static void adjust_sit_entry_set(struct sit_entry_set *ses,
4473						struct list_head *head)
4474{
4475	struct sit_entry_set *next = ses;
4476
4477	if (list_is_last(&ses->set_list, head))
4478		return;
4479
4480	list_for_each_entry_continue(next, head, set_list)
4481		if (ses->entry_cnt <= next->entry_cnt) {
4482			list_move_tail(&ses->set_list, &next->set_list);
4483			return;
4484		}
4485
4486	list_move_tail(&ses->set_list, head);
4487}
4488
4489static void add_sit_entry(unsigned int segno, struct list_head *head)
4490{
4491	struct sit_entry_set *ses;
4492	unsigned int start_segno = START_SEGNO(segno);
4493
4494	list_for_each_entry(ses, head, set_list) {
4495		if (ses->start_segno == start_segno) {
4496			ses->entry_cnt++;
4497			adjust_sit_entry_set(ses, head);
4498			return;
4499		}
4500	}
4501
4502	ses = grab_sit_entry_set();
4503
4504	ses->start_segno = start_segno;
4505	ses->entry_cnt++;
4506	list_add(&ses->set_list, head);
4507}
4508
4509static void add_sits_in_set(struct f2fs_sb_info *sbi)
4510{
4511	struct f2fs_sm_info *sm_info = SM_I(sbi);
4512	struct list_head *set_list = &sm_info->sit_entry_set;
4513	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4514	unsigned int segno;
4515
4516	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4517		add_sit_entry(segno, set_list);
4518}
4519
4520static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4521{
4522	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4523	struct f2fs_journal *journal = curseg->journal;
4524	int i;
4525
4526	down_write(&curseg->journal_rwsem);
4527	for (i = 0; i < sits_in_cursum(journal); i++) {
4528		unsigned int segno;
4529		bool dirtied;
4530
4531		segno = le32_to_cpu(segno_in_journal(journal, i));
4532		dirtied = __mark_sit_entry_dirty(sbi, segno);
4533
4534		if (!dirtied)
4535			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4536	}
4537	update_sits_in_cursum(journal, -i);
4538	up_write(&curseg->journal_rwsem);
4539}
4540
4541/*
4542 * CP calls this function, which flushes SIT entries including sit_journal,
4543 * and moves prefree segs to free segs.
4544 */
4545void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4546{
4547	struct sit_info *sit_i = SIT_I(sbi);
4548	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4549	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4550	struct f2fs_journal *journal = curseg->journal;
4551	struct sit_entry_set *ses, *tmp;
4552	struct list_head *head = &SM_I(sbi)->sit_entry_set;
4553	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4554	struct seg_entry *se;
4555
4556	down_write(&sit_i->sentry_lock);
4557
4558	if (!sit_i->dirty_sentries)
4559		goto out;
4560
4561	/*
4562	 * add and account sit entries of dirty bitmap in sit entry
4563	 * set temporarily
4564	 */
4565	add_sits_in_set(sbi);
4566
4567	/*
4568	 * if there are no enough space in journal to store dirty sit
4569	 * entries, remove all entries from journal and add and account
4570	 * them in sit entry set.
4571	 */
4572	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4573								!to_journal)
4574		remove_sits_in_journal(sbi);
4575
4576	/*
4577	 * there are two steps to flush sit entries:
4578	 * #1, flush sit entries to journal in current cold data summary block.
4579	 * #2, flush sit entries to sit page.
4580	 */
4581	list_for_each_entry_safe(ses, tmp, head, set_list) {
4582		struct page *page = NULL;
4583		struct f2fs_sit_block *raw_sit = NULL;
4584		unsigned int start_segno = ses->start_segno;
4585		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4586						(unsigned long)MAIN_SEGS(sbi));
4587		unsigned int segno = start_segno;
4588
4589		if (to_journal &&
4590			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4591			to_journal = false;
4592
4593		if (to_journal) {
4594			down_write(&curseg->journal_rwsem);
4595		} else {
4596			page = get_next_sit_page(sbi, start_segno);
4597			raw_sit = page_address(page);
4598		}
4599
4600		/* flush dirty sit entries in region of current sit set */
4601		for_each_set_bit_from(segno, bitmap, end) {
4602			int offset, sit_offset;
4603
4604			se = get_seg_entry(sbi, segno);
4605#ifdef CONFIG_F2FS_CHECK_FS
4606			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4607						SIT_VBLOCK_MAP_SIZE))
4608				f2fs_bug_on(sbi, 1);
4609#endif
4610
4611			/* add discard candidates */
4612			if (!(cpc->reason & CP_DISCARD)) {
4613				cpc->trim_start = segno;
4614				add_discard_addrs(sbi, cpc, false);
4615			}
4616
4617			if (to_journal) {
4618				offset = f2fs_lookup_journal_in_cursum(journal,
4619							SIT_JOURNAL, segno, 1);
4620				f2fs_bug_on(sbi, offset < 0);
4621				segno_in_journal(journal, offset) =
4622							cpu_to_le32(segno);
4623				seg_info_to_raw_sit(se,
4624					&sit_in_journal(journal, offset));
4625				check_block_count(sbi, segno,
4626					&sit_in_journal(journal, offset));
4627			} else {
4628				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4629				seg_info_to_raw_sit(se,
4630						&raw_sit->entries[sit_offset]);
4631				check_block_count(sbi, segno,
4632						&raw_sit->entries[sit_offset]);
4633			}
4634
4635			__clear_bit(segno, bitmap);
4636			sit_i->dirty_sentries--;
4637			ses->entry_cnt--;
4638		}
4639
4640		if (to_journal)
4641			up_write(&curseg->journal_rwsem);
4642		else
4643			f2fs_put_page(page, 1);
4644
4645		f2fs_bug_on(sbi, ses->entry_cnt);
4646		release_sit_entry_set(ses);
4647	}
4648
4649	f2fs_bug_on(sbi, !list_empty(head));
4650	f2fs_bug_on(sbi, sit_i->dirty_sentries);
4651out:
4652	if (cpc->reason & CP_DISCARD) {
4653		__u64 trim_start = cpc->trim_start;
4654
4655		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4656			add_discard_addrs(sbi, cpc, false);
4657
4658		cpc->trim_start = trim_start;
4659	}
4660	up_write(&sit_i->sentry_lock);
4661
4662	set_prefree_as_free_segments(sbi);
4663}
4664
4665static int build_sit_info(struct f2fs_sb_info *sbi)
4666{
4667	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4668	struct sit_info *sit_i;
4669	unsigned int sit_segs, start;
4670	char *src_bitmap, *bitmap;
4671	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4672	unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4673
4674	/* allocate memory for SIT information */
4675	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4676	if (!sit_i)
4677		return -ENOMEM;
4678
4679	SM_I(sbi)->sit_info = sit_i;
4680
4681	sit_i->sentries =
4682		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4683					      MAIN_SEGS(sbi)),
4684			      GFP_KERNEL);
4685	if (!sit_i->sentries)
4686		return -ENOMEM;
4687
4688	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4689	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4690								GFP_KERNEL);
4691	if (!sit_i->dirty_sentries_bitmap)
4692		return -ENOMEM;
4693
4694#ifdef CONFIG_F2FS_CHECK_FS
4695	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4696#else
4697	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4698#endif
4699	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4700	if (!sit_i->bitmap)
4701		return -ENOMEM;
4702
4703	bitmap = sit_i->bitmap;
4704
4705	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4706		sit_i->sentries[start].cur_valid_map = bitmap;
4707		bitmap += SIT_VBLOCK_MAP_SIZE;
4708
4709		sit_i->sentries[start].ckpt_valid_map = bitmap;
4710		bitmap += SIT_VBLOCK_MAP_SIZE;
4711
4712#ifdef CONFIG_F2FS_CHECK_FS
4713		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4714		bitmap += SIT_VBLOCK_MAP_SIZE;
4715#endif
4716
4717		if (discard_map) {
4718			sit_i->sentries[start].discard_map = bitmap;
4719			bitmap += SIT_VBLOCK_MAP_SIZE;
4720		}
4721	}
4722
4723	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4724	if (!sit_i->tmp_map)
4725		return -ENOMEM;
4726
4727	if (__is_large_section(sbi)) {
4728		sit_i->sec_entries =
4729			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4730						      MAIN_SECS(sbi)),
4731				      GFP_KERNEL);
4732		if (!sit_i->sec_entries)
4733			return -ENOMEM;
4734	}
4735
4736	/* get information related with SIT */
4737	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4738
4739	/* setup SIT bitmap from ckeckpoint pack */
4740	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4741	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4742
4743	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4744	if (!sit_i->sit_bitmap)
4745		return -ENOMEM;
4746
4747#ifdef CONFIG_F2FS_CHECK_FS
4748	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4749					sit_bitmap_size, GFP_KERNEL);
4750	if (!sit_i->sit_bitmap_mir)
4751		return -ENOMEM;
4752
4753	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4754					main_bitmap_size, GFP_KERNEL);
4755	if (!sit_i->invalid_segmap)
4756		return -ENOMEM;
4757#endif
4758
4759	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4760	sit_i->sit_blocks = SEGS_TO_BLKS(sbi, sit_segs);
4761	sit_i->written_valid_blocks = 0;
4762	sit_i->bitmap_size = sit_bitmap_size;
4763	sit_i->dirty_sentries = 0;
4764	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4765	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4766	sit_i->mounted_time = ktime_get_boottime_seconds();
4767	init_rwsem(&sit_i->sentry_lock);
4768	return 0;
4769}
4770
4771static int build_free_segmap(struct f2fs_sb_info *sbi)
4772{
4773	struct free_segmap_info *free_i;
4774	unsigned int bitmap_size, sec_bitmap_size;
4775
4776	/* allocate memory for free segmap information */
4777	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4778	if (!free_i)
4779		return -ENOMEM;
4780
4781	SM_I(sbi)->free_info = free_i;
4782
4783	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4784	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4785	if (!free_i->free_segmap)
4786		return -ENOMEM;
4787
4788	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4789	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4790	if (!free_i->free_secmap)
4791		return -ENOMEM;
4792
4793	/* set all segments as dirty temporarily */
4794	memset(free_i->free_segmap, 0xff, bitmap_size);
4795	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4796
4797	/* init free segmap information */
4798	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4799	free_i->free_segments = 0;
4800	free_i->free_sections = 0;
4801	spin_lock_init(&free_i->segmap_lock);
4802	return 0;
4803}
4804
4805static int build_curseg(struct f2fs_sb_info *sbi)
4806{
4807	struct curseg_info *array;
4808	int i;
4809
4810	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4811					sizeof(*array)), GFP_KERNEL);
4812	if (!array)
4813		return -ENOMEM;
4814
4815	SM_I(sbi)->curseg_array = array;
4816
4817	for (i = 0; i < NO_CHECK_TYPE; i++) {
4818		mutex_init(&array[i].curseg_mutex);
4819		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4820		if (!array[i].sum_blk)
4821			return -ENOMEM;
4822		init_rwsem(&array[i].journal_rwsem);
4823		array[i].journal = f2fs_kzalloc(sbi,
4824				sizeof(struct f2fs_journal), GFP_KERNEL);
4825		if (!array[i].journal)
4826			return -ENOMEM;
4827		array[i].seg_type = log_type_to_seg_type(i);
4828		reset_curseg_fields(&array[i]);
 
 
 
 
 
 
 
4829	}
4830	return restore_curseg_summaries(sbi);
4831}
4832
4833static int build_sit_entries(struct f2fs_sb_info *sbi)
4834{
4835	struct sit_info *sit_i = SIT_I(sbi);
4836	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4837	struct f2fs_journal *journal = curseg->journal;
4838	struct seg_entry *se;
4839	struct f2fs_sit_entry sit;
4840	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4841	unsigned int i, start, end;
4842	unsigned int readed, start_blk = 0;
4843	int err = 0;
4844	block_t sit_valid_blocks[2] = {0, 0};
4845
4846	do {
4847		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4848							META_SIT, true);
4849
4850		start = start_blk * sit_i->sents_per_block;
4851		end = (start_blk + readed) * sit_i->sents_per_block;
4852
4853		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4854			struct f2fs_sit_block *sit_blk;
4855			struct page *page;
4856
4857			se = &sit_i->sentries[start];
4858			page = get_current_sit_page(sbi, start);
4859			if (IS_ERR(page))
4860				return PTR_ERR(page);
4861			sit_blk = (struct f2fs_sit_block *)page_address(page);
4862			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4863			f2fs_put_page(page, 1);
4864
4865			err = check_block_count(sbi, start, &sit);
4866			if (err)
4867				return err;
4868			seg_info_from_raw_sit(se, &sit);
4869
4870			if (se->type >= NR_PERSISTENT_LOG) {
4871				f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4872							se->type, start);
4873				f2fs_handle_error(sbi,
4874						ERROR_INCONSISTENT_SUM_TYPE);
4875				return -EFSCORRUPTED;
4876			}
4877
4878			sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4879
4880			if (!f2fs_block_unit_discard(sbi))
4881				goto init_discard_map_done;
4882
4883			/* build discard map only one time */
4884			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4885				memset(se->discard_map, 0xff,
4886						SIT_VBLOCK_MAP_SIZE);
4887				goto init_discard_map_done;
4888			}
4889			memcpy(se->discard_map, se->cur_valid_map,
4890						SIT_VBLOCK_MAP_SIZE);
4891			sbi->discard_blks += BLKS_PER_SEG(sbi) -
 
4892						se->valid_blocks;
4893init_discard_map_done:
 
 
4894			if (__is_large_section(sbi))
4895				get_sec_entry(sbi, start)->valid_blocks +=
4896							se->valid_blocks;
4897		}
4898		start_blk += readed;
4899	} while (start_blk < sit_blk_cnt);
4900
4901	down_read(&curseg->journal_rwsem);
4902	for (i = 0; i < sits_in_cursum(journal); i++) {
4903		unsigned int old_valid_blocks;
4904
4905		start = le32_to_cpu(segno_in_journal(journal, i));
4906		if (start >= MAIN_SEGS(sbi)) {
4907			f2fs_err(sbi, "Wrong journal entry on segno %u",
4908				 start);
4909			err = -EFSCORRUPTED;
4910			f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
4911			break;
4912		}
4913
4914		se = &sit_i->sentries[start];
4915		sit = sit_in_journal(journal, i);
4916
4917		old_valid_blocks = se->valid_blocks;
4918
4919		sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4920
4921		err = check_block_count(sbi, start, &sit);
4922		if (err)
4923			break;
4924		seg_info_from_raw_sit(se, &sit);
4925
4926		if (se->type >= NR_PERSISTENT_LOG) {
4927			f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4928							se->type, start);
4929			err = -EFSCORRUPTED;
4930			f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4931			break;
4932		}
4933
4934		sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4935
4936		if (f2fs_block_unit_discard(sbi)) {
4937			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4938				memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4939			} else {
4940				memcpy(se->discard_map, se->cur_valid_map,
4941							SIT_VBLOCK_MAP_SIZE);
4942				sbi->discard_blks += old_valid_blocks;
4943				sbi->discard_blks -= se->valid_blocks;
4944			}
4945		}
4946
4947		if (__is_large_section(sbi)) {
4948			get_sec_entry(sbi, start)->valid_blocks +=
4949							se->valid_blocks;
4950			get_sec_entry(sbi, start)->valid_blocks -=
4951							old_valid_blocks;
4952		}
4953	}
4954	up_read(&curseg->journal_rwsem);
4955
4956	if (err)
4957		return err;
4958
4959	if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4960		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4961			 sit_valid_blocks[NODE], valid_node_count(sbi));
4962		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
4963		return -EFSCORRUPTED;
4964	}
4965
4966	if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4967				valid_user_blocks(sbi)) {
4968		f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4969			 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4970			 valid_user_blocks(sbi));
4971		f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
4972		return -EFSCORRUPTED;
4973	}
4974
4975	return 0;
4976}
4977
4978static void init_free_segmap(struct f2fs_sb_info *sbi)
4979{
4980	unsigned int start;
4981	int type;
4982	struct seg_entry *sentry;
4983
4984	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4985		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4986			continue;
4987		sentry = get_seg_entry(sbi, start);
4988		if (!sentry->valid_blocks)
4989			__set_free(sbi, start);
4990		else
4991			SIT_I(sbi)->written_valid_blocks +=
4992						sentry->valid_blocks;
4993	}
4994
4995	/* set use the current segments */
4996	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4997		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4998
4999		__set_test_and_inuse(sbi, curseg_t->segno);
5000	}
5001}
5002
5003static void init_dirty_segmap(struct f2fs_sb_info *sbi)
5004{
5005	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5006	struct free_segmap_info *free_i = FREE_I(sbi);
5007	unsigned int segno = 0, offset = 0, secno;
5008	block_t valid_blocks, usable_blks_in_seg;
5009
5010	while (1) {
5011		/* find dirty segment based on free segmap */
5012		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
5013		if (segno >= MAIN_SEGS(sbi))
5014			break;
5015		offset = segno + 1;
5016		valid_blocks = get_valid_blocks(sbi, segno, false);
5017		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
5018		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
5019			continue;
5020		if (valid_blocks > usable_blks_in_seg) {
5021			f2fs_bug_on(sbi, 1);
5022			continue;
5023		}
5024		mutex_lock(&dirty_i->seglist_lock);
5025		__locate_dirty_segment(sbi, segno, DIRTY);
5026		mutex_unlock(&dirty_i->seglist_lock);
5027	}
5028
5029	if (!__is_large_section(sbi))
5030		return;
5031
5032	mutex_lock(&dirty_i->seglist_lock);
5033	for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5034		valid_blocks = get_valid_blocks(sbi, segno, true);
5035		secno = GET_SEC_FROM_SEG(sbi, segno);
5036
5037		if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
5038			continue;
5039		if (IS_CURSEC(sbi, secno))
5040			continue;
5041		set_bit(secno, dirty_i->dirty_secmap);
5042	}
5043	mutex_unlock(&dirty_i->seglist_lock);
5044}
5045
5046static int init_victim_secmap(struct f2fs_sb_info *sbi)
5047{
5048	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5049	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
5050
5051	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
5052	if (!dirty_i->victim_secmap)
5053		return -ENOMEM;
5054
5055	dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
5056	if (!dirty_i->pinned_secmap)
5057		return -ENOMEM;
5058
5059	dirty_i->pinned_secmap_cnt = 0;
5060	dirty_i->enable_pin_section = true;
5061	return 0;
5062}
5063
5064static int build_dirty_segmap(struct f2fs_sb_info *sbi)
5065{
5066	struct dirty_seglist_info *dirty_i;
5067	unsigned int bitmap_size, i;
5068
5069	/* allocate memory for dirty segments list information */
5070	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
5071								GFP_KERNEL);
5072	if (!dirty_i)
5073		return -ENOMEM;
5074
5075	SM_I(sbi)->dirty_info = dirty_i;
5076	mutex_init(&dirty_i->seglist_lock);
5077
5078	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
5079
5080	for (i = 0; i < NR_DIRTY_TYPE; i++) {
5081		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
5082								GFP_KERNEL);
5083		if (!dirty_i->dirty_segmap[i])
5084			return -ENOMEM;
5085	}
5086
5087	if (__is_large_section(sbi)) {
5088		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
5089		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
5090						bitmap_size, GFP_KERNEL);
5091		if (!dirty_i->dirty_secmap)
5092			return -ENOMEM;
5093	}
5094
5095	init_dirty_segmap(sbi);
5096	return init_victim_secmap(sbi);
5097}
5098
5099static int sanity_check_curseg(struct f2fs_sb_info *sbi)
5100{
5101	int i;
5102
5103	/*
5104	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
5105	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
5106	 */
5107	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5108		struct curseg_info *curseg = CURSEG_I(sbi, i);
5109		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
5110		unsigned int blkofs = curseg->next_blkoff;
5111
5112		if (f2fs_sb_has_readonly(sbi) &&
5113			i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
5114			continue;
5115
5116		sanity_check_seg_type(sbi, curseg->seg_type);
5117
5118		if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
5119			f2fs_err(sbi,
5120				 "Current segment has invalid alloc_type:%d",
5121				 curseg->alloc_type);
5122			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
5123			return -EFSCORRUPTED;
5124		}
5125
5126		if (f2fs_test_bit(blkofs, se->cur_valid_map))
5127			goto out;
5128
5129		if (curseg->alloc_type == SSR)
5130			continue;
5131
5132		for (blkofs += 1; blkofs < BLKS_PER_SEG(sbi); blkofs++) {
5133			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
5134				continue;
5135out:
5136			f2fs_err(sbi,
5137				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
5138				 i, curseg->segno, curseg->alloc_type,
5139				 curseg->next_blkoff, blkofs);
5140			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
5141			return -EFSCORRUPTED;
5142		}
5143	}
5144	return 0;
5145}
5146
5147#ifdef CONFIG_BLK_DEV_ZONED
 
5148static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
5149				    struct f2fs_dev_info *fdev,
5150				    struct blk_zone *zone)
5151{
5152	unsigned int zone_segno;
5153	block_t zone_block, valid_block_cnt;
5154	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5155	int ret;
5156	unsigned int nofs_flags;
5157
5158	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5159		return 0;
5160
 
 
 
5161	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
5162	zone_segno = GET_SEGNO(sbi, zone_block);
 
 
 
 
5163
5164	/*
5165	 * Skip check of zones cursegs point to, since
5166	 * fix_curseg_write_pointer() checks them.
5167	 */
5168	if (zone_segno >= MAIN_SEGS(sbi))
5169		return 0;
 
 
5170
5171	/*
5172	 * Get # of valid block of the zone.
5173	 */
5174	valid_block_cnt = get_valid_blocks(sbi, zone_segno, true);
5175	if (IS_CURSEC(sbi, GET_SEC_FROM_SEG(sbi, zone_segno))) {
5176		f2fs_notice(sbi, "Open zones: valid block[0x%x,0x%x] cond[%s]",
5177				zone_segno, valid_block_cnt,
5178				blk_zone_cond_str(zone->cond));
5179		return 0;
 
 
 
 
 
5180	}
5181
5182	if ((!valid_block_cnt && zone->cond == BLK_ZONE_COND_EMPTY) ||
5183	    (valid_block_cnt && zone->cond == BLK_ZONE_COND_FULL))
 
 
 
 
 
 
 
 
 
 
5184		return 0;
 
5185
5186	if (!valid_block_cnt) {
5187		f2fs_notice(sbi, "Zone without valid block has non-zero write "
5188			    "pointer. Reset the write pointer: cond[%s]",
5189			    blk_zone_cond_str(zone->cond));
 
 
 
 
 
5190		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
5191					zone->len >> log_sectors_per_block);
5192		if (ret)
5193			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5194				 fdev->path, ret);
5195		return ret;
5196	}
5197
5198	/*
5199	 * If there are valid blocks and the write pointer doesn't match
5200	 * with them, we need to report the inconsistency and fill
5201	 * the zone till the end to close the zone. This inconsistency
5202	 * does not cause write error because the zone will not be
5203	 * selected for write operation until it get discarded.
5204	 */
5205	f2fs_notice(sbi, "Valid blocks are not aligned with write "
5206		    "pointer: valid block[0x%x,0x%x] cond[%s]",
5207		    zone_segno, valid_block_cnt, blk_zone_cond_str(zone->cond));
5208
5209	nofs_flags = memalloc_nofs_save();
5210	ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH,
5211				zone->start, zone->len);
5212	memalloc_nofs_restore(nofs_flags);
5213	if (ret == -EOPNOTSUPP) {
5214		ret = blkdev_issue_zeroout(fdev->bdev, zone->wp,
5215					zone->len - (zone->wp - zone->start),
5216					GFP_NOFS, 0);
5217		if (ret)
5218			f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)",
5219					fdev->path, ret);
5220	} else if (ret) {
5221		f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)",
5222				fdev->path, ret);
5223	}
5224
5225	return ret;
5226}
5227
5228static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
5229						  block_t zone_blkaddr)
5230{
5231	int i;
5232
5233	for (i = 0; i < sbi->s_ndevs; i++) {
5234		if (!bdev_is_zoned(FDEV(i).bdev))
5235			continue;
5236		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
5237				zone_blkaddr <= FDEV(i).end_blk))
5238			return &FDEV(i);
5239	}
5240
5241	return NULL;
5242}
5243
5244static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
5245			      void *data)
5246{
5247	memcpy(data, zone, sizeof(struct blk_zone));
5248	return 0;
5249}
5250
5251static int do_fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
5252{
5253	struct curseg_info *cs = CURSEG_I(sbi, type);
5254	struct f2fs_dev_info *zbd;
5255	struct blk_zone zone;
5256	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
5257	block_t cs_zone_block, wp_block;
5258	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5259	sector_t zone_sector;
5260	int err;
5261
5262	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5263	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5264
5265	zbd = get_target_zoned_dev(sbi, cs_zone_block);
5266	if (!zbd)
5267		return 0;
5268
5269	/* report zone for the sector the curseg points to */
5270	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5271		<< log_sectors_per_block;
5272	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5273				  report_one_zone_cb, &zone);
5274	if (err != 1) {
5275		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5276			 zbd->path, err);
5277		return err;
5278	}
5279
5280	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5281		return 0;
5282
5283	/*
5284	 * When safely unmounted in the previous mount, we could use current
5285	 * segments. Otherwise, allocate new sections.
5286	 */
5287	if (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
5288		wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
5289		wp_segno = GET_SEGNO(sbi, wp_block);
5290		wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
5291		wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
5292
5293		if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
5294				wp_sector_off == 0)
5295			return 0;
5296
5297		f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
5298			    "curseg[0x%x,0x%x] wp[0x%x,0x%x]", type, cs->segno,
5299			    cs->next_blkoff, wp_segno, wp_blkoff);
5300	}
5301
5302	/* Allocate a new section if it's not new. */
5303	if (cs->next_blkoff ||
5304	    cs->segno != GET_SEG_FROM_SEC(sbi, GET_ZONE_FROM_SEC(sbi, cs_section))) {
5305		unsigned int old_segno = cs->segno, old_blkoff = cs->next_blkoff;
5306
5307		f2fs_allocate_new_section(sbi, type, true);
5308		f2fs_notice(sbi, "Assign new section to curseg[%d]: "
5309				"[0x%x,0x%x] -> [0x%x,0x%x]",
5310				type, old_segno, old_blkoff,
5311				cs->segno, cs->next_blkoff);
5312	}
5313
5314	/* check consistency of the zone curseg pointed to */
5315	if (check_zone_write_pointer(sbi, zbd, &zone))
5316		return -EIO;
5317
5318	/* check newly assigned zone */
5319	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5320	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5321
5322	zbd = get_target_zoned_dev(sbi, cs_zone_block);
5323	if (!zbd)
5324		return 0;
5325
5326	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5327		<< log_sectors_per_block;
5328	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5329				  report_one_zone_cb, &zone);
5330	if (err != 1) {
5331		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5332			 zbd->path, err);
5333		return err;
5334	}
5335
5336	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5337		return 0;
5338
5339	if (zone.wp != zone.start) {
5340		f2fs_notice(sbi,
5341			    "New zone for curseg[%d] is not yet discarded. "
5342			    "Reset the zone: curseg[0x%x,0x%x]",
5343			    type, cs->segno, cs->next_blkoff);
5344		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,	cs_zone_block,
5345					zone.len >> log_sectors_per_block);
 
5346		if (err) {
5347			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5348				 zbd->path, err);
5349			return err;
5350		}
5351	}
5352
5353	return 0;
5354}
5355
5356static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5357{
5358	int i, ret;
5359
5360	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5361		ret = do_fix_curseg_write_pointer(sbi, i);
5362		if (ret)
5363			return ret;
5364	}
5365
5366	return 0;
5367}
5368
5369struct check_zone_write_pointer_args {
5370	struct f2fs_sb_info *sbi;
5371	struct f2fs_dev_info *fdev;
5372};
5373
5374static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5375				      void *data)
5376{
5377	struct check_zone_write_pointer_args *args;
5378
5379	args = (struct check_zone_write_pointer_args *)data;
5380
5381	return check_zone_write_pointer(args->sbi, args->fdev, zone);
5382}
5383
5384static int check_write_pointer(struct f2fs_sb_info *sbi)
5385{
5386	int i, ret;
5387	struct check_zone_write_pointer_args args;
5388
5389	for (i = 0; i < sbi->s_ndevs; i++) {
5390		if (!bdev_is_zoned(FDEV(i).bdev))
5391			continue;
5392
5393		args.sbi = sbi;
5394		args.fdev = &FDEV(i);
5395		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5396					  check_zone_write_pointer_cb, &args);
5397		if (ret < 0)
5398			return ret;
5399	}
5400
5401	return 0;
5402}
5403
5404int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi)
 
5405{
5406	int ret;
 
 
 
5407
5408	if (!f2fs_sb_has_blkzoned(sbi) || f2fs_readonly(sbi->sb))
5409		return 0;
 
 
 
5410
5411	f2fs_notice(sbi, "Checking entire write pointers");
5412	ret = fix_curseg_write_pointer(sbi);
5413	if (!ret)
5414		ret = check_write_pointer(sbi);
5415	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5416}
5417
5418/*
5419 * Return the number of usable blocks in a segment. The number of blocks
5420 * returned is always equal to the number of blocks in a segment for
5421 * segments fully contained within a sequential zone capacity or a
5422 * conventional zone. For segments partially contained in a sequential
5423 * zone capacity, the number of usable blocks up to the zone capacity
5424 * is returned. 0 is returned in all other cases.
5425 */
5426static inline unsigned int f2fs_usable_zone_blks_in_seg(
5427			struct f2fs_sb_info *sbi, unsigned int segno)
5428{
5429	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5430	unsigned int secno;
5431
5432	if (!sbi->unusable_blocks_per_sec)
5433		return BLKS_PER_SEG(sbi);
5434
5435	secno = GET_SEC_FROM_SEG(sbi, segno);
5436	seg_start = START_BLOCK(sbi, segno);
 
 
 
 
 
 
 
 
 
 
 
 
 
5437	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5438	sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5439
5440	/*
5441	 * If segment starts before zone capacity and spans beyond
5442	 * zone capacity, then usable blocks are from seg start to
5443	 * zone capacity. If the segment starts after the zone capacity,
5444	 * then there are no usable blocks.
5445	 */
5446	if (seg_start >= sec_cap_blkaddr)
5447		return 0;
5448	if (seg_start + BLKS_PER_SEG(sbi) > sec_cap_blkaddr)
5449		return sec_cap_blkaddr - seg_start;
5450
5451	return BLKS_PER_SEG(sbi);
5452}
5453#else
5454int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi)
 
 
 
 
 
5455{
5456	return 0;
5457}
5458
5459static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5460							unsigned int segno)
5461{
5462	return 0;
5463}
5464
 
 
 
 
 
5465#endif
5466unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5467					unsigned int segno)
5468{
5469	if (f2fs_sb_has_blkzoned(sbi))
5470		return f2fs_usable_zone_blks_in_seg(sbi, segno);
5471
5472	return BLKS_PER_SEG(sbi);
5473}
5474
5475unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi)
 
5476{
5477	if (f2fs_sb_has_blkzoned(sbi))
5478		return CAP_SEGS_PER_SEC(sbi);
5479
5480	return SEGS_PER_SEC(sbi);
5481}
5482
5483unsigned long long f2fs_get_section_mtime(struct f2fs_sb_info *sbi,
5484	unsigned int segno)
5485{
5486	unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi);
5487	unsigned int secno = 0, start = 0;
5488	unsigned int total_valid_blocks = 0;
5489	unsigned long long mtime = 0;
5490	unsigned int i = 0;
5491
5492	secno = GET_SEC_FROM_SEG(sbi, segno);
5493	start = GET_SEG_FROM_SEC(sbi, secno);
5494
5495	if (!__is_large_section(sbi))
5496		return get_seg_entry(sbi, start + i)->mtime;
5497
5498	for (i = 0; i < usable_segs_per_sec; i++) {
5499		/* for large section, only check the mtime of valid segments */
5500		struct seg_entry *se = get_seg_entry(sbi, start+i);
5501
5502		mtime += se->mtime * se->valid_blocks;
5503		total_valid_blocks += se->valid_blocks;
5504	}
5505
5506	if (total_valid_blocks == 0)
5507		return INVALID_MTIME;
5508
5509	return div_u64(mtime, total_valid_blocks);
5510}
5511
5512/*
5513 * Update min, max modified time for cost-benefit GC algorithm
5514 */
5515static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5516{
5517	struct sit_info *sit_i = SIT_I(sbi);
5518	unsigned int segno;
5519
5520	down_write(&sit_i->sentry_lock);
5521
5522	sit_i->min_mtime = ULLONG_MAX;
5523
5524	for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
 
5525		unsigned long long mtime = 0;
5526
5527		mtime = f2fs_get_section_mtime(sbi, segno);
 
 
 
5528
5529		if (sit_i->min_mtime > mtime)
5530			sit_i->min_mtime = mtime;
5531	}
5532	sit_i->max_mtime = get_mtime(sbi, false);
5533	sit_i->dirty_max_mtime = 0;
5534	up_write(&sit_i->sentry_lock);
5535}
5536
5537int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5538{
5539	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5540	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5541	struct f2fs_sm_info *sm_info;
5542	int err;
5543
5544	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5545	if (!sm_info)
5546		return -ENOMEM;
5547
5548	/* init sm info */
5549	sbi->sm_info = sm_info;
5550	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5551	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5552	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5553	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5554	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5555	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5556	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5557	sm_info->rec_prefree_segments = sm_info->main_segments *
5558					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5559	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5560		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5561
5562	if (!f2fs_lfs_mode(sbi))
5563		sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC);
5564	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5565	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5566	sm_info->min_seq_blocks = BLKS_PER_SEG(sbi);
5567	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5568	sm_info->min_ssr_sections = reserved_sections(sbi);
5569
5570	INIT_LIST_HEAD(&sm_info->sit_entry_set);
5571
5572	init_f2fs_rwsem(&sm_info->curseg_lock);
5573
5574	err = f2fs_create_flush_cmd_control(sbi);
5575	if (err)
5576		return err;
5577
5578	err = create_discard_cmd_control(sbi);
5579	if (err)
5580		return err;
5581
5582	err = build_sit_info(sbi);
5583	if (err)
5584		return err;
5585	err = build_free_segmap(sbi);
5586	if (err)
5587		return err;
5588	err = build_curseg(sbi);
5589	if (err)
5590		return err;
5591
5592	/* reinit free segmap based on SIT */
5593	err = build_sit_entries(sbi);
5594	if (err)
5595		return err;
5596
5597	init_free_segmap(sbi);
5598	err = build_dirty_segmap(sbi);
5599	if (err)
5600		return err;
5601
5602	err = sanity_check_curseg(sbi);
5603	if (err)
5604		return err;
5605
5606	init_min_max_mtime(sbi);
5607	return 0;
5608}
5609
5610static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5611		enum dirty_type dirty_type)
5612{
5613	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5614
5615	mutex_lock(&dirty_i->seglist_lock);
5616	kvfree(dirty_i->dirty_segmap[dirty_type]);
5617	dirty_i->nr_dirty[dirty_type] = 0;
5618	mutex_unlock(&dirty_i->seglist_lock);
5619}
5620
5621static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5622{
5623	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5624
5625	kvfree(dirty_i->pinned_secmap);
5626	kvfree(dirty_i->victim_secmap);
5627}
5628
5629static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5630{
5631	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5632	int i;
5633
5634	if (!dirty_i)
5635		return;
5636
5637	/* discard pre-free/dirty segments list */
5638	for (i = 0; i < NR_DIRTY_TYPE; i++)
5639		discard_dirty_segmap(sbi, i);
5640
5641	if (__is_large_section(sbi)) {
5642		mutex_lock(&dirty_i->seglist_lock);
5643		kvfree(dirty_i->dirty_secmap);
5644		mutex_unlock(&dirty_i->seglist_lock);
5645	}
5646
5647	destroy_victim_secmap(sbi);
5648	SM_I(sbi)->dirty_info = NULL;
5649	kfree(dirty_i);
5650}
5651
5652static void destroy_curseg(struct f2fs_sb_info *sbi)
5653{
5654	struct curseg_info *array = SM_I(sbi)->curseg_array;
5655	int i;
5656
5657	if (!array)
5658		return;
5659	SM_I(sbi)->curseg_array = NULL;
5660	for (i = 0; i < NR_CURSEG_TYPE; i++) {
5661		kfree(array[i].sum_blk);
5662		kfree(array[i].journal);
5663	}
5664	kfree(array);
5665}
5666
5667static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5668{
5669	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5670
5671	if (!free_i)
5672		return;
5673	SM_I(sbi)->free_info = NULL;
5674	kvfree(free_i->free_segmap);
5675	kvfree(free_i->free_secmap);
5676	kfree(free_i);
5677}
5678
5679static void destroy_sit_info(struct f2fs_sb_info *sbi)
5680{
5681	struct sit_info *sit_i = SIT_I(sbi);
5682
5683	if (!sit_i)
5684		return;
5685
5686	if (sit_i->sentries)
5687		kvfree(sit_i->bitmap);
5688	kfree(sit_i->tmp_map);
5689
5690	kvfree(sit_i->sentries);
5691	kvfree(sit_i->sec_entries);
5692	kvfree(sit_i->dirty_sentries_bitmap);
5693
5694	SM_I(sbi)->sit_info = NULL;
5695	kvfree(sit_i->sit_bitmap);
5696#ifdef CONFIG_F2FS_CHECK_FS
5697	kvfree(sit_i->sit_bitmap_mir);
5698	kvfree(sit_i->invalid_segmap);
5699#endif
5700	kfree(sit_i);
5701}
5702
5703void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5704{
5705	struct f2fs_sm_info *sm_info = SM_I(sbi);
5706
5707	if (!sm_info)
5708		return;
5709	f2fs_destroy_flush_cmd_control(sbi, true);
5710	destroy_discard_cmd_control(sbi);
5711	destroy_dirty_segmap(sbi);
5712	destroy_curseg(sbi);
5713	destroy_free_segmap(sbi);
5714	destroy_sit_info(sbi);
5715	sbi->sm_info = NULL;
5716	kfree(sm_info);
5717}
5718
5719int __init f2fs_create_segment_manager_caches(void)
5720{
5721	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5722			sizeof(struct discard_entry));
5723	if (!discard_entry_slab)
5724		goto fail;
5725
5726	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5727			sizeof(struct discard_cmd));
5728	if (!discard_cmd_slab)
5729		goto destroy_discard_entry;
5730
5731	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5732			sizeof(struct sit_entry_set));
5733	if (!sit_entry_set_slab)
5734		goto destroy_discard_cmd;
5735
5736	revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5737			sizeof(struct revoke_entry));
5738	if (!revoke_entry_slab)
5739		goto destroy_sit_entry_set;
5740	return 0;
5741
5742destroy_sit_entry_set:
5743	kmem_cache_destroy(sit_entry_set_slab);
5744destroy_discard_cmd:
5745	kmem_cache_destroy(discard_cmd_slab);
5746destroy_discard_entry:
5747	kmem_cache_destroy(discard_entry_slab);
5748fail:
5749	return -ENOMEM;
5750}
5751
5752void f2fs_destroy_segment_manager_caches(void)
5753{
5754	kmem_cache_destroy(sit_entry_set_slab);
5755	kmem_cache_destroy(discard_cmd_slab);
5756	kmem_cache_destroy(discard_entry_slab);
5757	kmem_cache_destroy(revoke_entry_slab);
5758}
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/f2fs/segment.c
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
   7 */
   8#include <linux/fs.h>
   9#include <linux/f2fs_fs.h>
  10#include <linux/bio.h>
  11#include <linux/blkdev.h>
  12#include <linux/sched/mm.h>
  13#include <linux/prefetch.h>
  14#include <linux/kthread.h>
  15#include <linux/swap.h>
  16#include <linux/timer.h>
  17#include <linux/freezer.h>
  18#include <linux/sched/signal.h>
  19#include <linux/random.h>
  20
  21#include "f2fs.h"
  22#include "segment.h"
  23#include "node.h"
  24#include "gc.h"
  25#include "iostat.h"
  26#include <trace/events/f2fs.h>
  27
  28#define __reverse_ffz(x) __reverse_ffs(~(x))
  29
  30static struct kmem_cache *discard_entry_slab;
  31static struct kmem_cache *discard_cmd_slab;
  32static struct kmem_cache *sit_entry_set_slab;
  33static struct kmem_cache *revoke_entry_slab;
  34
  35static unsigned long __reverse_ulong(unsigned char *str)
  36{
  37	unsigned long tmp = 0;
  38	int shift = 24, idx = 0;
  39
  40#if BITS_PER_LONG == 64
  41	shift = 56;
  42#endif
  43	while (shift >= 0) {
  44		tmp |= (unsigned long)str[idx++] << shift;
  45		shift -= BITS_PER_BYTE;
  46	}
  47	return tmp;
  48}
  49
  50/*
  51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  52 * MSB and LSB are reversed in a byte by f2fs_set_bit.
  53 */
  54static inline unsigned long __reverse_ffs(unsigned long word)
  55{
  56	int num = 0;
  57
  58#if BITS_PER_LONG == 64
  59	if ((word & 0xffffffff00000000UL) == 0)
  60		num += 32;
  61	else
  62		word >>= 32;
  63#endif
  64	if ((word & 0xffff0000) == 0)
  65		num += 16;
  66	else
  67		word >>= 16;
  68
  69	if ((word & 0xff00) == 0)
  70		num += 8;
  71	else
  72		word >>= 8;
  73
  74	if ((word & 0xf0) == 0)
  75		num += 4;
  76	else
  77		word >>= 4;
  78
  79	if ((word & 0xc) == 0)
  80		num += 2;
  81	else
  82		word >>= 2;
  83
  84	if ((word & 0x2) == 0)
  85		num += 1;
  86	return num;
  87}
  88
  89/*
  90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  91 * f2fs_set_bit makes MSB and LSB reversed in a byte.
  92 * @size must be integral times of unsigned long.
  93 * Example:
  94 *                             MSB <--> LSB
  95 *   f2fs_set_bit(0, bitmap) => 1000 0000
  96 *   f2fs_set_bit(7, bitmap) => 0000 0001
  97 */
  98static unsigned long __find_rev_next_bit(const unsigned long *addr,
  99			unsigned long size, unsigned long offset)
 100{
 101	const unsigned long *p = addr + BIT_WORD(offset);
 102	unsigned long result = size;
 103	unsigned long tmp;
 104
 105	if (offset >= size)
 106		return size;
 107
 108	size -= (offset & ~(BITS_PER_LONG - 1));
 109	offset %= BITS_PER_LONG;
 110
 111	while (1) {
 112		if (*p == 0)
 113			goto pass;
 114
 115		tmp = __reverse_ulong((unsigned char *)p);
 116
 117		tmp &= ~0UL >> offset;
 118		if (size < BITS_PER_LONG)
 119			tmp &= (~0UL << (BITS_PER_LONG - size));
 120		if (tmp)
 121			goto found;
 122pass:
 123		if (size <= BITS_PER_LONG)
 124			break;
 125		size -= BITS_PER_LONG;
 126		offset = 0;
 127		p++;
 128	}
 129	return result;
 130found:
 131	return result - size + __reverse_ffs(tmp);
 132}
 133
 134static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
 135			unsigned long size, unsigned long offset)
 136{
 137	const unsigned long *p = addr + BIT_WORD(offset);
 138	unsigned long result = size;
 139	unsigned long tmp;
 140
 141	if (offset >= size)
 142		return size;
 143
 144	size -= (offset & ~(BITS_PER_LONG - 1));
 145	offset %= BITS_PER_LONG;
 146
 147	while (1) {
 148		if (*p == ~0UL)
 149			goto pass;
 150
 151		tmp = __reverse_ulong((unsigned char *)p);
 152
 153		if (offset)
 154			tmp |= ~0UL << (BITS_PER_LONG - offset);
 155		if (size < BITS_PER_LONG)
 156			tmp |= ~0UL >> size;
 157		if (tmp != ~0UL)
 158			goto found;
 159pass:
 160		if (size <= BITS_PER_LONG)
 161			break;
 162		size -= BITS_PER_LONG;
 163		offset = 0;
 164		p++;
 165	}
 166	return result;
 167found:
 168	return result - size + __reverse_ffz(tmp);
 169}
 170
 171bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
 172{
 173	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
 174	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
 175	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
 176
 177	if (f2fs_lfs_mode(sbi))
 178		return false;
 179	if (sbi->gc_mode == GC_URGENT_HIGH)
 180		return true;
 181	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
 182		return true;
 183
 184	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
 185			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
 186}
 187
 188void f2fs_abort_atomic_write(struct inode *inode, bool clean)
 189{
 190	struct f2fs_inode_info *fi = F2FS_I(inode);
 191
 192	if (!f2fs_is_atomic_file(inode))
 193		return;
 194
 195	clear_inode_flag(fi->cow_inode, FI_COW_FILE);
 196	iput(fi->cow_inode);
 197	fi->cow_inode = NULL;
 198	release_atomic_write_cnt(inode);
 199	clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
 200	clear_inode_flag(inode, FI_ATOMIC_REPLACE);
 201	clear_inode_flag(inode, FI_ATOMIC_FILE);
 
 
 
 
 202	stat_dec_atomic_inode(inode);
 203
 
 
 204	if (clean) {
 205		truncate_inode_pages_final(inode->i_mapping);
 206		f2fs_i_size_write(inode, fi->original_i_size);
 
 207	}
 
 
 208}
 209
 210static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
 211			block_t new_addr, block_t *old_addr, bool recover)
 212{
 213	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 214	struct dnode_of_data dn;
 215	struct node_info ni;
 216	int err;
 217
 218retry:
 219	set_new_dnode(&dn, inode, NULL, NULL, 0);
 220	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE_RA);
 221	if (err) {
 222		if (err == -ENOMEM) {
 223			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
 224			goto retry;
 225		}
 226		return err;
 227	}
 228
 229	err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
 230	if (err) {
 231		f2fs_put_dnode(&dn);
 232		return err;
 233	}
 234
 235	if (recover) {
 236		/* dn.data_blkaddr is always valid */
 237		if (!__is_valid_data_blkaddr(new_addr)) {
 238			if (new_addr == NULL_ADDR)
 239				dec_valid_block_count(sbi, inode, 1);
 240			f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
 241			f2fs_update_data_blkaddr(&dn, new_addr);
 242		} else {
 243			f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
 244				new_addr, ni.version, true, true);
 245		}
 246	} else {
 247		blkcnt_t count = 1;
 248
 
 
 
 
 
 
 249		*old_addr = dn.data_blkaddr;
 250		f2fs_truncate_data_blocks_range(&dn, 1);
 251		dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
 252		inc_valid_block_count(sbi, inode, &count);
 253		f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
 254					ni.version, true, false);
 255	}
 256
 257	f2fs_put_dnode(&dn);
 
 
 
 258	return 0;
 259}
 260
 261static void __complete_revoke_list(struct inode *inode, struct list_head *head,
 262					bool revoke)
 263{
 264	struct revoke_entry *cur, *tmp;
 
 265	bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
 266
 267	list_for_each_entry_safe(cur, tmp, head, list) {
 268		if (revoke)
 269			__replace_atomic_write_block(inode, cur->index,
 270						cur->old_addr, NULL, true);
 
 
 
 
 271
 272		list_del(&cur->list);
 273		kmem_cache_free(revoke_entry_slab, cur);
 274	}
 275
 276	if (!revoke && truncate)
 277		f2fs_do_truncate_blocks(inode, 0, false);
 278}
 279
 280static int __f2fs_commit_atomic_write(struct inode *inode)
 281{
 282	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 283	struct f2fs_inode_info *fi = F2FS_I(inode);
 284	struct inode *cow_inode = fi->cow_inode;
 285	struct revoke_entry *new;
 286	struct list_head revoke_list;
 287	block_t blkaddr;
 288	struct dnode_of_data dn;
 289	pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
 290	pgoff_t off = 0, blen, index;
 291	int ret = 0, i;
 292
 293	INIT_LIST_HEAD(&revoke_list);
 294
 295	while (len) {
 296		blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
 297
 298		set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
 299		ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
 300		if (ret && ret != -ENOENT) {
 301			goto out;
 302		} else if (ret == -ENOENT) {
 303			ret = 0;
 304			if (dn.max_level == 0)
 305				goto out;
 306			goto next;
 307		}
 308
 309		blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
 310				len);
 311		index = off;
 312		for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
 313			blkaddr = f2fs_data_blkaddr(&dn);
 314
 315			if (!__is_valid_data_blkaddr(blkaddr)) {
 316				continue;
 317			} else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
 318					DATA_GENERIC_ENHANCE)) {
 319				f2fs_put_dnode(&dn);
 320				ret = -EFSCORRUPTED;
 321				f2fs_handle_error(sbi,
 322						ERROR_INVALID_BLKADDR);
 323				goto out;
 324			}
 325
 326			new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
 327							true, NULL);
 328
 329			ret = __replace_atomic_write_block(inode, index, blkaddr,
 330							&new->old_addr, false);
 331			if (ret) {
 332				f2fs_put_dnode(&dn);
 333				kmem_cache_free(revoke_entry_slab, new);
 334				goto out;
 335			}
 336
 337			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
 338			new->index = index;
 339			list_add_tail(&new->list, &revoke_list);
 340		}
 341		f2fs_put_dnode(&dn);
 342next:
 343		off += blen;
 344		len -= blen;
 345	}
 346
 347out:
 348	if (ret) {
 349		sbi->revoked_atomic_block += fi->atomic_write_cnt;
 350	} else {
 351		sbi->committed_atomic_block += fi->atomic_write_cnt;
 352		set_inode_flag(inode, FI_ATOMIC_COMMITTED);
 
 
 
 
 353	}
 354
 355	__complete_revoke_list(inode, &revoke_list, ret ? true : false);
 356
 357	return ret;
 358}
 359
 360int f2fs_commit_atomic_write(struct inode *inode)
 361{
 362	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 363	struct f2fs_inode_info *fi = F2FS_I(inode);
 364	int err;
 365
 366	err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
 367	if (err)
 368		return err;
 369
 370	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
 371	f2fs_lock_op(sbi);
 372
 373	err = __f2fs_commit_atomic_write(inode);
 374
 375	f2fs_unlock_op(sbi);
 376	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
 377
 378	return err;
 379}
 380
 381/*
 382 * This function balances dirty node and dentry pages.
 383 * In addition, it controls garbage collection.
 384 */
 385void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
 386{
 387	if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
 388		f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
 
 
 389		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
 390	}
 391
 392	/* balance_fs_bg is able to be pending */
 393	if (need && excess_cached_nats(sbi))
 394		f2fs_balance_fs_bg(sbi, false);
 395
 396	if (!f2fs_is_checkpoint_ready(sbi))
 397		return;
 398
 399	/*
 400	 * We should do GC or end up with checkpoint, if there are so many dirty
 401	 * dir/node pages without enough free segments.
 402	 */
 403	if (has_not_enough_free_secs(sbi, 0, 0)) {
 404		if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
 405					sbi->gc_thread->f2fs_gc_task) {
 406			DEFINE_WAIT(wait);
 407
 408			prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
 409						TASK_UNINTERRUPTIBLE);
 410			wake_up(&sbi->gc_thread->gc_wait_queue_head);
 411			io_schedule();
 412			finish_wait(&sbi->gc_thread->fggc_wq, &wait);
 413		} else {
 414			struct f2fs_gc_control gc_control = {
 415				.victim_segno = NULL_SEGNO,
 416				.init_gc_type = BG_GC,
 417				.no_bg_gc = true,
 418				.should_migrate_blocks = false,
 419				.err_gc_skipped = false,
 420				.nr_free_secs = 1 };
 421			f2fs_down_write(&sbi->gc_lock);
 422			f2fs_gc(sbi, &gc_control);
 423		}
 
 
 424	}
 425}
 426
 427static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
 428{
 429	int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
 430	unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
 431	unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
 432	unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
 433	unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
 434	unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
 435	unsigned int threshold = sbi->blocks_per_seg * factor *
 436					DEFAULT_DIRTY_THRESHOLD;
 437	unsigned int global_threshold = threshold * 3 / 2;
 438
 439	if (dents >= threshold || qdata >= threshold ||
 440		nodes >= threshold || meta >= threshold ||
 441		imeta >= threshold)
 442		return true;
 443	return dents + qdata + nodes + meta + imeta >  global_threshold;
 444}
 445
 446void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
 447{
 448	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
 449		return;
 450
 451	/* try to shrink extent cache when there is no enough memory */
 452	if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
 453		f2fs_shrink_read_extent_tree(sbi,
 454				READ_EXTENT_CACHE_SHRINK_NUMBER);
 455
 456	/* try to shrink age extent cache when there is no enough memory */
 457	if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
 458		f2fs_shrink_age_extent_tree(sbi,
 459				AGE_EXTENT_CACHE_SHRINK_NUMBER);
 460
 461	/* check the # of cached NAT entries */
 462	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
 463		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
 464
 465	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
 466		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
 467	else
 468		f2fs_build_free_nids(sbi, false, false);
 469
 470	if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
 471		excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
 472		goto do_sync;
 473
 474	/* there is background inflight IO or foreground operation recently */
 475	if (is_inflight_io(sbi, REQ_TIME) ||
 476		(!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
 477		return;
 478
 479	/* exceed periodical checkpoint timeout threshold */
 480	if (f2fs_time_over(sbi, CP_TIME))
 481		goto do_sync;
 482
 483	/* checkpoint is the only way to shrink partial cached entries */
 484	if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
 485		f2fs_available_free_memory(sbi, INO_ENTRIES))
 486		return;
 487
 488do_sync:
 489	if (test_opt(sbi, DATA_FLUSH) && from_bg) {
 490		struct blk_plug plug;
 491
 492		mutex_lock(&sbi->flush_lock);
 493
 494		blk_start_plug(&plug);
 495		f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
 496		blk_finish_plug(&plug);
 497
 498		mutex_unlock(&sbi->flush_lock);
 499	}
 
 500	f2fs_sync_fs(sbi->sb, 1);
 501	stat_inc_bg_cp_count(sbi->stat_info);
 502}
 503
 504static int __submit_flush_wait(struct f2fs_sb_info *sbi,
 505				struct block_device *bdev)
 506{
 507	int ret = blkdev_issue_flush(bdev);
 508
 509	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
 510				test_opt(sbi, FLUSH_MERGE), ret);
 
 
 511	return ret;
 512}
 513
 514static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
 515{
 516	int ret = 0;
 517	int i;
 518
 519	if (!f2fs_is_multi_device(sbi))
 520		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
 521
 522	for (i = 0; i < sbi->s_ndevs; i++) {
 523		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
 524			continue;
 525		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
 526		if (ret)
 527			break;
 528	}
 529	return ret;
 530}
 531
 532static int issue_flush_thread(void *data)
 533{
 534	struct f2fs_sb_info *sbi = data;
 535	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 536	wait_queue_head_t *q = &fcc->flush_wait_queue;
 537repeat:
 538	if (kthread_should_stop())
 539		return 0;
 540
 541	if (!llist_empty(&fcc->issue_list)) {
 542		struct flush_cmd *cmd, *next;
 543		int ret;
 544
 545		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
 546		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
 547
 548		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
 549
 550		ret = submit_flush_wait(sbi, cmd->ino);
 551		atomic_inc(&fcc->issued_flush);
 552
 553		llist_for_each_entry_safe(cmd, next,
 554					  fcc->dispatch_list, llnode) {
 555			cmd->ret = ret;
 556			complete(&cmd->wait);
 557		}
 558		fcc->dispatch_list = NULL;
 559	}
 560
 561	wait_event_interruptible(*q,
 562		kthread_should_stop() || !llist_empty(&fcc->issue_list));
 563	goto repeat;
 564}
 565
 566int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
 567{
 568	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 569	struct flush_cmd cmd;
 570	int ret;
 571
 572	if (test_opt(sbi, NOBARRIER))
 573		return 0;
 574
 575	if (!test_opt(sbi, FLUSH_MERGE)) {
 576		atomic_inc(&fcc->queued_flush);
 577		ret = submit_flush_wait(sbi, ino);
 578		atomic_dec(&fcc->queued_flush);
 579		atomic_inc(&fcc->issued_flush);
 580		return ret;
 581	}
 582
 583	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
 584	    f2fs_is_multi_device(sbi)) {
 585		ret = submit_flush_wait(sbi, ino);
 586		atomic_dec(&fcc->queued_flush);
 587
 588		atomic_inc(&fcc->issued_flush);
 589		return ret;
 590	}
 591
 592	cmd.ino = ino;
 593	init_completion(&cmd.wait);
 594
 595	llist_add(&cmd.llnode, &fcc->issue_list);
 596
 597	/*
 598	 * update issue_list before we wake up issue_flush thread, this
 599	 * smp_mb() pairs with another barrier in ___wait_event(), see
 600	 * more details in comments of waitqueue_active().
 601	 */
 602	smp_mb();
 603
 604	if (waitqueue_active(&fcc->flush_wait_queue))
 605		wake_up(&fcc->flush_wait_queue);
 606
 607	if (fcc->f2fs_issue_flush) {
 608		wait_for_completion(&cmd.wait);
 609		atomic_dec(&fcc->queued_flush);
 610	} else {
 611		struct llist_node *list;
 612
 613		list = llist_del_all(&fcc->issue_list);
 614		if (!list) {
 615			wait_for_completion(&cmd.wait);
 616			atomic_dec(&fcc->queued_flush);
 617		} else {
 618			struct flush_cmd *tmp, *next;
 619
 620			ret = submit_flush_wait(sbi, ino);
 621
 622			llist_for_each_entry_safe(tmp, next, list, llnode) {
 623				if (tmp == &cmd) {
 624					cmd.ret = ret;
 625					atomic_dec(&fcc->queued_flush);
 626					continue;
 627				}
 628				tmp->ret = ret;
 629				complete(&tmp->wait);
 630			}
 631		}
 632	}
 633
 634	return cmd.ret;
 635}
 636
 637int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
 638{
 639	dev_t dev = sbi->sb->s_bdev->bd_dev;
 640	struct flush_cmd_control *fcc;
 641
 642	if (SM_I(sbi)->fcc_info) {
 643		fcc = SM_I(sbi)->fcc_info;
 644		if (fcc->f2fs_issue_flush)
 645			return 0;
 646		goto init_thread;
 647	}
 648
 649	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
 650	if (!fcc)
 651		return -ENOMEM;
 652	atomic_set(&fcc->issued_flush, 0);
 653	atomic_set(&fcc->queued_flush, 0);
 654	init_waitqueue_head(&fcc->flush_wait_queue);
 655	init_llist_head(&fcc->issue_list);
 656	SM_I(sbi)->fcc_info = fcc;
 657	if (!test_opt(sbi, FLUSH_MERGE))
 658		return 0;
 659
 660init_thread:
 661	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
 662				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
 663	if (IS_ERR(fcc->f2fs_issue_flush)) {
 664		int err = PTR_ERR(fcc->f2fs_issue_flush);
 665
 666		fcc->f2fs_issue_flush = NULL;
 667		return err;
 668	}
 669
 670	return 0;
 671}
 672
 673void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
 674{
 675	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 676
 677	if (fcc && fcc->f2fs_issue_flush) {
 678		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
 679
 680		fcc->f2fs_issue_flush = NULL;
 681		kthread_stop(flush_thread);
 682	}
 683	if (free) {
 684		kfree(fcc);
 685		SM_I(sbi)->fcc_info = NULL;
 686	}
 687}
 688
 689int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
 690{
 691	int ret = 0, i;
 692
 693	if (!f2fs_is_multi_device(sbi))
 694		return 0;
 695
 696	if (test_opt(sbi, NOBARRIER))
 697		return 0;
 698
 699	for (i = 1; i < sbi->s_ndevs; i++) {
 700		int count = DEFAULT_RETRY_IO_COUNT;
 701
 702		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
 703			continue;
 704
 705		do {
 706			ret = __submit_flush_wait(sbi, FDEV(i).bdev);
 707			if (ret)
 708				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
 709		} while (ret && --count);
 710
 711		if (ret) {
 712			f2fs_stop_checkpoint(sbi, false,
 713					STOP_CP_REASON_FLUSH_FAIL);
 714			break;
 715		}
 716
 717		spin_lock(&sbi->dev_lock);
 718		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
 719		spin_unlock(&sbi->dev_lock);
 720	}
 721
 722	return ret;
 723}
 724
 725static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 726		enum dirty_type dirty_type)
 727{
 728	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 729
 730	/* need not be added */
 731	if (IS_CURSEG(sbi, segno))
 732		return;
 733
 734	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 735		dirty_i->nr_dirty[dirty_type]++;
 736
 737	if (dirty_type == DIRTY) {
 738		struct seg_entry *sentry = get_seg_entry(sbi, segno);
 739		enum dirty_type t = sentry->type;
 740
 741		if (unlikely(t >= DIRTY)) {
 742			f2fs_bug_on(sbi, 1);
 743			return;
 744		}
 745		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
 746			dirty_i->nr_dirty[t]++;
 747
 748		if (__is_large_section(sbi)) {
 749			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
 750			block_t valid_blocks =
 751				get_valid_blocks(sbi, segno, true);
 752
 753			f2fs_bug_on(sbi, unlikely(!valid_blocks ||
 754					valid_blocks == CAP_BLKS_PER_SEC(sbi)));
 
 
 755
 756			if (!IS_CURSEC(sbi, secno))
 757				set_bit(secno, dirty_i->dirty_secmap);
 758		}
 759	}
 760}
 761
 762static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 763		enum dirty_type dirty_type)
 764{
 765	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 766	block_t valid_blocks;
 767
 768	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 769		dirty_i->nr_dirty[dirty_type]--;
 770
 771	if (dirty_type == DIRTY) {
 772		struct seg_entry *sentry = get_seg_entry(sbi, segno);
 773		enum dirty_type t = sentry->type;
 774
 775		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
 776			dirty_i->nr_dirty[t]--;
 777
 778		valid_blocks = get_valid_blocks(sbi, segno, true);
 779		if (valid_blocks == 0) {
 780			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
 781						dirty_i->victim_secmap);
 782#ifdef CONFIG_F2FS_CHECK_FS
 783			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
 784#endif
 785		}
 786		if (__is_large_section(sbi)) {
 787			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
 788
 789			if (!valid_blocks ||
 790					valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
 791				clear_bit(secno, dirty_i->dirty_secmap);
 792				return;
 793			}
 794
 795			if (!IS_CURSEC(sbi, secno))
 796				set_bit(secno, dirty_i->dirty_secmap);
 797		}
 798	}
 799}
 800
 801/*
 802 * Should not occur error such as -ENOMEM.
 803 * Adding dirty entry into seglist is not critical operation.
 804 * If a given segment is one of current working segments, it won't be added.
 805 */
 806static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
 807{
 808	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 809	unsigned short valid_blocks, ckpt_valid_blocks;
 810	unsigned int usable_blocks;
 811
 812	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
 813		return;
 814
 815	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
 816	mutex_lock(&dirty_i->seglist_lock);
 817
 818	valid_blocks = get_valid_blocks(sbi, segno, false);
 819	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
 820
 821	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
 822		ckpt_valid_blocks == usable_blocks)) {
 823		__locate_dirty_segment(sbi, segno, PRE);
 824		__remove_dirty_segment(sbi, segno, DIRTY);
 825	} else if (valid_blocks < usable_blocks) {
 826		__locate_dirty_segment(sbi, segno, DIRTY);
 827	} else {
 828		/* Recovery routine with SSR needs this */
 829		__remove_dirty_segment(sbi, segno, DIRTY);
 830	}
 831
 832	mutex_unlock(&dirty_i->seglist_lock);
 833}
 834
 835/* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
 836void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
 837{
 838	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 839	unsigned int segno;
 840
 841	mutex_lock(&dirty_i->seglist_lock);
 842	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 843		if (get_valid_blocks(sbi, segno, false))
 844			continue;
 845		if (IS_CURSEG(sbi, segno))
 846			continue;
 847		__locate_dirty_segment(sbi, segno, PRE);
 848		__remove_dirty_segment(sbi, segno, DIRTY);
 849	}
 850	mutex_unlock(&dirty_i->seglist_lock);
 851}
 852
 853block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
 854{
 855	int ovp_hole_segs =
 856		(overprovision_segments(sbi) - reserved_segments(sbi));
 857	block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
 858	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 859	block_t holes[2] = {0, 0};	/* DATA and NODE */
 860	block_t unusable;
 861	struct seg_entry *se;
 862	unsigned int segno;
 863
 864	mutex_lock(&dirty_i->seglist_lock);
 865	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 866		se = get_seg_entry(sbi, segno);
 867		if (IS_NODESEG(se->type))
 868			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
 869							se->valid_blocks;
 870		else
 871			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
 872							se->valid_blocks;
 873	}
 874	mutex_unlock(&dirty_i->seglist_lock);
 875
 876	unusable = max(holes[DATA], holes[NODE]);
 877	if (unusable > ovp_holes)
 878		return unusable - ovp_holes;
 879	return 0;
 880}
 881
 882int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
 883{
 884	int ovp_hole_segs =
 885		(overprovision_segments(sbi) - reserved_segments(sbi));
 
 
 
 886	if (unusable > F2FS_OPTION(sbi).unusable_cap)
 887		return -EAGAIN;
 888	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
 889		dirty_segments(sbi) > ovp_hole_segs)
 890		return -EAGAIN;
 
 
 891	return 0;
 892}
 893
 894/* This is only used by SBI_CP_DISABLED */
 895static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
 896{
 897	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 898	unsigned int segno = 0;
 899
 900	mutex_lock(&dirty_i->seglist_lock);
 901	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 902		if (get_valid_blocks(sbi, segno, false))
 903			continue;
 904		if (get_ckpt_valid_blocks(sbi, segno, false))
 905			continue;
 906		mutex_unlock(&dirty_i->seglist_lock);
 907		return segno;
 908	}
 909	mutex_unlock(&dirty_i->seglist_lock);
 910	return NULL_SEGNO;
 911}
 912
 913static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
 914		struct block_device *bdev, block_t lstart,
 915		block_t start, block_t len)
 916{
 917	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 918	struct list_head *pend_list;
 919	struct discard_cmd *dc;
 920
 921	f2fs_bug_on(sbi, !len);
 922
 923	pend_list = &dcc->pend_list[plist_idx(len)];
 924
 925	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
 926	INIT_LIST_HEAD(&dc->list);
 927	dc->bdev = bdev;
 928	dc->lstart = lstart;
 929	dc->start = start;
 930	dc->len = len;
 931	dc->ref = 0;
 932	dc->state = D_PREP;
 933	dc->queued = 0;
 934	dc->error = 0;
 935	init_completion(&dc->wait);
 936	list_add_tail(&dc->list, pend_list);
 937	spin_lock_init(&dc->lock);
 938	dc->bio_ref = 0;
 939	atomic_inc(&dcc->discard_cmd_cnt);
 940	dcc->undiscard_blks += len;
 941
 942	return dc;
 943}
 944
 945static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
 946				struct block_device *bdev, block_t lstart,
 947				block_t start, block_t len,
 948				struct rb_node *parent, struct rb_node **p,
 949				bool leftmost)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 950{
 951	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 
 952	struct discard_cmd *dc;
 953
 954	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 955
 956	rb_link_node(&dc->rb_node, parent, p);
 957	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
 
 
 
 
 
 
 
 
 
 958
 
 
 
 
 
 
 
 
 959	return dc;
 960}
 961
 962static void __detach_discard_cmd(struct discard_cmd_control *dcc,
 963							struct discard_cmd *dc)
 964{
 965	if (dc->state == D_DONE)
 966		atomic_sub(dc->queued, &dcc->queued_discard);
 967
 968	list_del(&dc->list);
 969	rb_erase_cached(&dc->rb_node, &dcc->root);
 970	dcc->undiscard_blks -= dc->len;
 971
 972	kmem_cache_free(discard_cmd_slab, dc);
 973
 974	atomic_dec(&dcc->discard_cmd_cnt);
 975}
 976
 977static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
 978							struct discard_cmd *dc)
 979{
 980	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 981	unsigned long flags;
 982
 983	trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
 984
 985	spin_lock_irqsave(&dc->lock, flags);
 986	if (dc->bio_ref) {
 987		spin_unlock_irqrestore(&dc->lock, flags);
 988		return;
 989	}
 990	spin_unlock_irqrestore(&dc->lock, flags);
 991
 992	f2fs_bug_on(sbi, dc->ref);
 993
 994	if (dc->error == -EOPNOTSUPP)
 995		dc->error = 0;
 996
 997	if (dc->error)
 998		printk_ratelimited(
 999			"%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1000			KERN_INFO, sbi->sb->s_id,
1001			dc->lstart, dc->start, dc->len, dc->error);
1002	__detach_discard_cmd(dcc, dc);
1003}
1004
1005static void f2fs_submit_discard_endio(struct bio *bio)
1006{
1007	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1008	unsigned long flags;
1009
1010	spin_lock_irqsave(&dc->lock, flags);
1011	if (!dc->error)
1012		dc->error = blk_status_to_errno(bio->bi_status);
1013	dc->bio_ref--;
1014	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1015		dc->state = D_DONE;
1016		complete_all(&dc->wait);
1017	}
1018	spin_unlock_irqrestore(&dc->lock, flags);
1019	bio_put(bio);
1020}
1021
1022static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1023				block_t start, block_t end)
1024{
1025#ifdef CONFIG_F2FS_CHECK_FS
1026	struct seg_entry *sentry;
1027	unsigned int segno;
1028	block_t blk = start;
1029	unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1030	unsigned long *map;
1031
1032	while (blk < end) {
1033		segno = GET_SEGNO(sbi, blk);
1034		sentry = get_seg_entry(sbi, segno);
1035		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1036
1037		if (end < START_BLOCK(sbi, segno + 1))
1038			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1039		else
1040			size = max_blocks;
1041		map = (unsigned long *)(sentry->cur_valid_map);
1042		offset = __find_rev_next_bit(map, size, offset);
1043		f2fs_bug_on(sbi, offset != size);
1044		blk = START_BLOCK(sbi, segno + 1);
1045	}
1046#endif
1047}
1048
1049static void __init_discard_policy(struct f2fs_sb_info *sbi,
1050				struct discard_policy *dpolicy,
1051				int discard_type, unsigned int granularity)
1052{
1053	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1054
1055	/* common policy */
1056	dpolicy->type = discard_type;
1057	dpolicy->sync = true;
1058	dpolicy->ordered = false;
1059	dpolicy->granularity = granularity;
1060
1061	dpolicy->max_requests = dcc->max_discard_request;
1062	dpolicy->io_aware_gran = MAX_PLIST_NUM;
1063	dpolicy->timeout = false;
1064
1065	if (discard_type == DPOLICY_BG) {
1066		dpolicy->min_interval = dcc->min_discard_issue_time;
1067		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1068		dpolicy->max_interval = dcc->max_discard_issue_time;
1069		dpolicy->io_aware = true;
 
 
 
1070		dpolicy->sync = false;
1071		dpolicy->ordered = true;
1072		if (utilization(sbi) > dcc->discard_urgent_util) {
1073			dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1074			if (atomic_read(&dcc->discard_cmd_cnt))
1075				dpolicy->max_interval =
1076					dcc->min_discard_issue_time;
1077		}
1078	} else if (discard_type == DPOLICY_FORCE) {
1079		dpolicy->min_interval = dcc->min_discard_issue_time;
1080		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1081		dpolicy->max_interval = dcc->max_discard_issue_time;
1082		dpolicy->io_aware = false;
1083	} else if (discard_type == DPOLICY_FSTRIM) {
1084		dpolicy->io_aware = false;
1085	} else if (discard_type == DPOLICY_UMOUNT) {
1086		dpolicy->io_aware = false;
1087		/* we need to issue all to keep CP_TRIMMED_FLAG */
1088		dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1089		dpolicy->timeout = true;
1090	}
1091}
1092
1093static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1094				struct block_device *bdev, block_t lstart,
1095				block_t start, block_t len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1096/* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1097static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1098						struct discard_policy *dpolicy,
1099						struct discard_cmd *dc,
1100						unsigned int *issued)
1101{
1102	struct block_device *bdev = dc->bdev;
1103	unsigned int max_discard_blocks =
1104			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1105	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1106	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1107					&(dcc->fstrim_list) : &(dcc->wait_list);
1108	blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1109	block_t lstart, start, len, total_len;
1110	int err = 0;
1111
1112	if (dc->state != D_PREP)
1113		return 0;
1114
1115	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1116		return 0;
1117
1118	trace_f2fs_issue_discard(bdev, dc->start, dc->len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1119
1120	lstart = dc->lstart;
1121	start = dc->start;
1122	len = dc->len;
 
 
1123	total_len = len;
1124
1125	dc->len = 0;
1126
1127	while (total_len && *issued < dpolicy->max_requests && !err) {
1128		struct bio *bio = NULL;
1129		unsigned long flags;
1130		bool last = true;
1131
1132		if (len > max_discard_blocks) {
1133			len = max_discard_blocks;
1134			last = false;
1135		}
1136
1137		(*issued)++;
1138		if (*issued == dpolicy->max_requests)
1139			last = true;
1140
1141		dc->len += len;
1142
1143		if (time_to_inject(sbi, FAULT_DISCARD)) {
1144			f2fs_show_injection_info(sbi, FAULT_DISCARD);
1145			err = -EIO;
1146		} else {
1147			err = __blkdev_issue_discard(bdev,
1148					SECTOR_FROM_BLOCK(start),
1149					SECTOR_FROM_BLOCK(len),
1150					GFP_NOFS, &bio);
1151		}
1152		if (err) {
1153			spin_lock_irqsave(&dc->lock, flags);
1154			if (dc->state == D_PARTIAL)
1155				dc->state = D_SUBMIT;
1156			spin_unlock_irqrestore(&dc->lock, flags);
1157
1158			break;
1159		}
1160
1161		f2fs_bug_on(sbi, !bio);
1162
1163		/*
1164		 * should keep before submission to avoid D_DONE
1165		 * right away
1166		 */
1167		spin_lock_irqsave(&dc->lock, flags);
1168		if (last)
1169			dc->state = D_SUBMIT;
1170		else
1171			dc->state = D_PARTIAL;
1172		dc->bio_ref++;
1173		spin_unlock_irqrestore(&dc->lock, flags);
1174
1175		atomic_inc(&dcc->queued_discard);
1176		dc->queued++;
1177		list_move_tail(&dc->list, wait_list);
1178
1179		/* sanity check on discard range */
1180		__check_sit_bitmap(sbi, lstart, lstart + len);
1181
1182		bio->bi_private = dc;
1183		bio->bi_end_io = f2fs_submit_discard_endio;
1184		bio->bi_opf |= flag;
1185		submit_bio(bio);
1186
1187		atomic_inc(&dcc->issued_discard);
1188
1189		f2fs_update_iostat(sbi, NULL, FS_DISCARD, len * F2FS_BLKSIZE);
1190
1191		lstart += len;
1192		start += len;
1193		total_len -= len;
1194		len = total_len;
1195	}
1196
1197	if (!err && len) {
1198		dcc->undiscard_blks -= len;
1199		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1200	}
1201	return err;
1202}
1203
1204static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1205				struct block_device *bdev, block_t lstart,
1206				block_t start, block_t len,
1207				struct rb_node **insert_p,
1208				struct rb_node *insert_parent)
1209{
1210	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1211	struct rb_node **p;
1212	struct rb_node *parent = NULL;
 
1213	bool leftmost = true;
1214
1215	if (insert_p && insert_parent) {
1216		parent = insert_parent;
1217		p = insert_p;
1218		goto do_insert;
 
 
 
 
 
 
 
 
 
 
1219	}
1220
1221	p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1222							lstart, &leftmost);
1223do_insert:
1224	__attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1225								p, leftmost);
1226}
1227
1228static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1229						struct discard_cmd *dc)
1230{
1231	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1232}
1233
1234static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1235				struct discard_cmd *dc, block_t blkaddr)
1236{
1237	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1238	struct discard_info di = dc->di;
1239	bool modified = false;
1240
1241	if (dc->state == D_DONE || dc->len == 1) {
1242		__remove_discard_cmd(sbi, dc);
1243		return;
1244	}
1245
1246	dcc->undiscard_blks -= di.len;
1247
1248	if (blkaddr > di.lstart) {
1249		dc->len = blkaddr - dc->lstart;
1250		dcc->undiscard_blks += dc->len;
1251		__relocate_discard_cmd(dcc, dc);
1252		modified = true;
1253	}
1254
1255	if (blkaddr < di.lstart + di.len - 1) {
1256		if (modified) {
1257			__insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1258					di.start + blkaddr + 1 - di.lstart,
1259					di.lstart + di.len - 1 - blkaddr,
1260					NULL, NULL);
1261		} else {
1262			dc->lstart++;
1263			dc->len--;
1264			dc->start++;
1265			dcc->undiscard_blks += dc->len;
1266			__relocate_discard_cmd(dcc, dc);
1267		}
1268	}
1269}
1270
1271static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1272				struct block_device *bdev, block_t lstart,
1273				block_t start, block_t len)
1274{
1275	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1276	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1277	struct discard_cmd *dc;
1278	struct discard_info di = {0};
1279	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1280	unsigned int max_discard_blocks =
1281			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1282	block_t end = lstart + len;
1283
1284	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1285					NULL, lstart,
1286					(struct rb_entry **)&prev_dc,
1287					(struct rb_entry **)&next_dc,
1288					&insert_p, &insert_parent, true, NULL);
1289	if (dc)
1290		prev_dc = dc;
1291
1292	if (!prev_dc) {
1293		di.lstart = lstart;
1294		di.len = next_dc ? next_dc->lstart - lstart : len;
1295		di.len = min(di.len, len);
1296		di.start = start;
1297	}
1298
1299	while (1) {
1300		struct rb_node *node;
1301		bool merged = false;
1302		struct discard_cmd *tdc = NULL;
1303
1304		if (prev_dc) {
1305			di.lstart = prev_dc->lstart + prev_dc->len;
1306			if (di.lstart < lstart)
1307				di.lstart = lstart;
1308			if (di.lstart >= end)
1309				break;
1310
1311			if (!next_dc || next_dc->lstart > end)
1312				di.len = end - di.lstart;
1313			else
1314				di.len = next_dc->lstart - di.lstart;
1315			di.start = start + di.lstart - lstart;
1316		}
1317
1318		if (!di.len)
1319			goto next;
1320
1321		if (prev_dc && prev_dc->state == D_PREP &&
1322			prev_dc->bdev == bdev &&
1323			__is_discard_back_mergeable(&di, &prev_dc->di,
1324							max_discard_blocks)) {
1325			prev_dc->di.len += di.len;
1326			dcc->undiscard_blks += di.len;
1327			__relocate_discard_cmd(dcc, prev_dc);
1328			di = prev_dc->di;
1329			tdc = prev_dc;
1330			merged = true;
1331		}
1332
1333		if (next_dc && next_dc->state == D_PREP &&
1334			next_dc->bdev == bdev &&
1335			__is_discard_front_mergeable(&di, &next_dc->di,
1336							max_discard_blocks)) {
1337			next_dc->di.lstart = di.lstart;
1338			next_dc->di.len += di.len;
1339			next_dc->di.start = di.start;
1340			dcc->undiscard_blks += di.len;
1341			__relocate_discard_cmd(dcc, next_dc);
1342			if (tdc)
1343				__remove_discard_cmd(sbi, tdc);
1344			merged = true;
1345		}
1346
1347		if (!merged) {
1348			__insert_discard_tree(sbi, bdev, di.lstart, di.start,
1349							di.len, NULL, NULL);
1350		}
1351 next:
1352		prev_dc = next_dc;
1353		if (!prev_dc)
1354			break;
1355
1356		node = rb_next(&prev_dc->rb_node);
1357		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1358	}
1359}
1360
 
 
 
 
 
 
 
 
 
 
 
 
 
1361static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1362		struct block_device *bdev, block_t blkstart, block_t blklen)
1363{
1364	block_t lblkstart = blkstart;
1365
1366	if (!f2fs_bdev_support_discard(bdev))
1367		return;
1368
1369	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1370
1371	if (f2fs_is_multi_device(sbi)) {
1372		int devi = f2fs_target_device_index(sbi, blkstart);
1373
1374		blkstart -= FDEV(devi).start_blk;
1375	}
1376	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1377	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1378	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1379}
1380
1381static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1382					struct discard_policy *dpolicy)
1383{
1384	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1385	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1386	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1387	struct discard_cmd *dc;
1388	struct blk_plug plug;
1389	unsigned int pos = dcc->next_pos;
1390	unsigned int issued = 0;
1391	bool io_interrupted = false;
1392
1393	mutex_lock(&dcc->cmd_lock);
1394	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1395					NULL, pos,
1396					(struct rb_entry **)&prev_dc,
1397					(struct rb_entry **)&next_dc,
1398					&insert_p, &insert_parent, true, NULL);
1399	if (!dc)
1400		dc = next_dc;
1401
1402	blk_start_plug(&plug);
1403
1404	while (dc) {
1405		struct rb_node *node;
1406		int err = 0;
1407
1408		if (dc->state != D_PREP)
1409			goto next;
1410
1411		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1412			io_interrupted = true;
1413			break;
1414		}
1415
1416		dcc->next_pos = dc->lstart + dc->len;
1417		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1418
1419		if (issued >= dpolicy->max_requests)
1420			break;
1421next:
1422		node = rb_next(&dc->rb_node);
1423		if (err)
1424			__remove_discard_cmd(sbi, dc);
1425		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1426	}
1427
1428	blk_finish_plug(&plug);
1429
1430	if (!dc)
1431		dcc->next_pos = 0;
1432
1433	mutex_unlock(&dcc->cmd_lock);
1434
1435	if (!issued && io_interrupted)
1436		issued = -1;
1437
1438	return issued;
1439}
1440static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1441					struct discard_policy *dpolicy);
1442
1443static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1444					struct discard_policy *dpolicy)
1445{
1446	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1447	struct list_head *pend_list;
1448	struct discard_cmd *dc, *tmp;
1449	struct blk_plug plug;
1450	int i, issued;
1451	bool io_interrupted = false;
1452
1453	if (dpolicy->timeout)
1454		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1455
1456retry:
1457	issued = 0;
1458	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1459		if (dpolicy->timeout &&
1460				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1461			break;
1462
1463		if (i + 1 < dpolicy->granularity)
1464			break;
1465
1466		if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered)
1467			return __issue_discard_cmd_orderly(sbi, dpolicy);
 
 
1468
1469		pend_list = &dcc->pend_list[i];
1470
1471		mutex_lock(&dcc->cmd_lock);
1472		if (list_empty(pend_list))
1473			goto next;
1474		if (unlikely(dcc->rbtree_check))
1475			f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1476							&dcc->root, false));
1477		blk_start_plug(&plug);
1478		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1479			f2fs_bug_on(sbi, dc->state != D_PREP);
1480
1481			if (dpolicy->timeout &&
1482				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1483				break;
1484
1485			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1486						!is_idle(sbi, DISCARD_TIME)) {
1487				io_interrupted = true;
1488				break;
1489			}
1490
1491			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1492
1493			if (issued >= dpolicy->max_requests)
1494				break;
1495		}
1496		blk_finish_plug(&plug);
1497next:
1498		mutex_unlock(&dcc->cmd_lock);
1499
1500		if (issued >= dpolicy->max_requests || io_interrupted)
1501			break;
1502	}
1503
1504	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1505		__wait_all_discard_cmd(sbi, dpolicy);
1506		goto retry;
1507	}
1508
1509	if (!issued && io_interrupted)
1510		issued = -1;
1511
1512	return issued;
1513}
1514
1515static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1516{
1517	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1518	struct list_head *pend_list;
1519	struct discard_cmd *dc, *tmp;
1520	int i;
1521	bool dropped = false;
1522
1523	mutex_lock(&dcc->cmd_lock);
1524	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1525		pend_list = &dcc->pend_list[i];
1526		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1527			f2fs_bug_on(sbi, dc->state != D_PREP);
1528			__remove_discard_cmd(sbi, dc);
1529			dropped = true;
1530		}
1531	}
1532	mutex_unlock(&dcc->cmd_lock);
1533
1534	return dropped;
1535}
1536
1537void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1538{
1539	__drop_discard_cmd(sbi);
1540}
1541
1542static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1543							struct discard_cmd *dc)
1544{
1545	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1546	unsigned int len = 0;
1547
1548	wait_for_completion_io(&dc->wait);
1549	mutex_lock(&dcc->cmd_lock);
1550	f2fs_bug_on(sbi, dc->state != D_DONE);
1551	dc->ref--;
1552	if (!dc->ref) {
1553		if (!dc->error)
1554			len = dc->len;
1555		__remove_discard_cmd(sbi, dc);
1556	}
1557	mutex_unlock(&dcc->cmd_lock);
1558
1559	return len;
1560}
1561
1562static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1563						struct discard_policy *dpolicy,
1564						block_t start, block_t end)
1565{
1566	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1567	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1568					&(dcc->fstrim_list) : &(dcc->wait_list);
1569	struct discard_cmd *dc = NULL, *iter, *tmp;
1570	unsigned int trimmed = 0;
1571
1572next:
1573	dc = NULL;
1574
1575	mutex_lock(&dcc->cmd_lock);
1576	list_for_each_entry_safe(iter, tmp, wait_list, list) {
1577		if (iter->lstart + iter->len <= start || end <= iter->lstart)
 
1578			continue;
1579		if (iter->len < dpolicy->granularity)
1580			continue;
1581		if (iter->state == D_DONE && !iter->ref) {
1582			wait_for_completion_io(&iter->wait);
1583			if (!iter->error)
1584				trimmed += iter->len;
1585			__remove_discard_cmd(sbi, iter);
1586		} else {
1587			iter->ref++;
1588			dc = iter;
1589			break;
1590		}
1591	}
1592	mutex_unlock(&dcc->cmd_lock);
1593
1594	if (dc) {
1595		trimmed += __wait_one_discard_bio(sbi, dc);
1596		goto next;
1597	}
1598
1599	return trimmed;
1600}
1601
1602static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1603						struct discard_policy *dpolicy)
1604{
1605	struct discard_policy dp;
1606	unsigned int discard_blks;
1607
1608	if (dpolicy)
1609		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1610
1611	/* wait all */
1612	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1613	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1614	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1615	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1616
1617	return discard_blks;
1618}
1619
1620/* This should be covered by global mutex, &sit_i->sentry_lock */
1621static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1622{
1623	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1624	struct discard_cmd *dc;
1625	bool need_wait = false;
1626
1627	mutex_lock(&dcc->cmd_lock);
1628	dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1629							NULL, blkaddr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1630	if (dc) {
1631		if (dc->state == D_PREP) {
1632			__punch_discard_cmd(sbi, dc, blkaddr);
1633		} else {
1634			dc->ref++;
1635			need_wait = true;
1636		}
1637	}
1638	mutex_unlock(&dcc->cmd_lock);
1639
1640	if (need_wait)
1641		__wait_one_discard_bio(sbi, dc);
1642}
1643
1644void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1645{
1646	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1647
1648	if (dcc && dcc->f2fs_issue_discard) {
1649		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1650
1651		dcc->f2fs_issue_discard = NULL;
1652		kthread_stop(discard_thread);
1653	}
1654}
1655
1656/* This comes from f2fs_put_super */
 
 
 
 
 
 
 
1657bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1658{
1659	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1660	struct discard_policy dpolicy;
1661	bool dropped;
1662
1663	if (!atomic_read(&dcc->discard_cmd_cnt))
1664		return false;
1665
1666	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1667					dcc->discard_granularity);
1668	__issue_discard_cmd(sbi, &dpolicy);
1669	dropped = __drop_discard_cmd(sbi);
1670
1671	/* just to make sure there is no pending discard commands */
1672	__wait_all_discard_cmd(sbi, NULL);
1673
1674	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1675	return dropped;
1676}
1677
1678static int issue_discard_thread(void *data)
1679{
1680	struct f2fs_sb_info *sbi = data;
1681	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1682	wait_queue_head_t *q = &dcc->discard_wait_queue;
1683	struct discard_policy dpolicy;
1684	unsigned int wait_ms = dcc->min_discard_issue_time;
1685	int issued;
1686
1687	set_freezable();
1688
1689	do {
1690		wait_event_interruptible_timeout(*q,
1691				kthread_should_stop() || freezing(current) ||
1692				dcc->discard_wake,
1693				msecs_to_jiffies(wait_ms));
1694
1695		if (sbi->gc_mode == GC_URGENT_HIGH ||
1696			!f2fs_available_free_memory(sbi, DISCARD_CACHE))
1697			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
 
1698		else
1699			__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1700						dcc->discard_granularity);
1701
1702		if (dcc->discard_wake)
1703			dcc->discard_wake = 0;
1704
1705		/* clean up pending candidates before going to sleep */
1706		if (atomic_read(&dcc->queued_discard))
1707			__wait_all_discard_cmd(sbi, NULL);
1708
1709		if (try_to_freeze())
1710			continue;
1711		if (f2fs_readonly(sbi->sb))
1712			continue;
1713		if (kthread_should_stop())
1714			return 0;
1715		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1716			!atomic_read(&dcc->discard_cmd_cnt)) {
1717			wait_ms = dpolicy.max_interval;
1718			continue;
1719		}
1720
1721		sb_start_intwrite(sbi->sb);
1722
1723		issued = __issue_discard_cmd(sbi, &dpolicy);
1724		if (issued > 0) {
1725			__wait_all_discard_cmd(sbi, &dpolicy);
1726			wait_ms = dpolicy.min_interval;
1727		} else if (issued == -1) {
1728			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1729			if (!wait_ms)
1730				wait_ms = dpolicy.mid_interval;
1731		} else {
1732			wait_ms = dpolicy.max_interval;
1733		}
1734		if (!atomic_read(&dcc->discard_cmd_cnt))
1735			wait_ms = dpolicy.max_interval;
1736
1737		sb_end_intwrite(sbi->sb);
1738
1739	} while (!kthread_should_stop());
1740	return 0;
1741}
1742
1743#ifdef CONFIG_BLK_DEV_ZONED
1744static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1745		struct block_device *bdev, block_t blkstart, block_t blklen)
1746{
1747	sector_t sector, nr_sects;
1748	block_t lblkstart = blkstart;
1749	int devi = 0;
 
1750
1751	if (f2fs_is_multi_device(sbi)) {
1752		devi = f2fs_target_device_index(sbi, blkstart);
1753		if (blkstart < FDEV(devi).start_blk ||
1754		    blkstart > FDEV(devi).end_blk) {
1755			f2fs_err(sbi, "Invalid block %x", blkstart);
1756			return -EIO;
1757		}
1758		blkstart -= FDEV(devi).start_blk;
1759	}
1760
1761	/* For sequential zones, reset the zone write pointer */
1762	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1763		sector = SECTOR_FROM_BLOCK(blkstart);
1764		nr_sects = SECTOR_FROM_BLOCK(blklen);
 
1765
1766		if (sector & (bdev_zone_sectors(bdev) - 1) ||
1767				nr_sects != bdev_zone_sectors(bdev)) {
1768			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1769				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1770				 blkstart, blklen);
1771			return -EIO;
1772		}
1773		trace_f2fs_issue_reset_zone(bdev, blkstart);
1774		return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1775					sector, nr_sects, GFP_NOFS);
 
 
 
 
 
 
 
 
 
 
 
 
1776	}
1777
1778	/* For conventional zones, use regular discard if supported */
1779	__queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1780	return 0;
1781}
1782#endif
1783
1784static int __issue_discard_async(struct f2fs_sb_info *sbi,
1785		struct block_device *bdev, block_t blkstart, block_t blklen)
1786{
1787#ifdef CONFIG_BLK_DEV_ZONED
1788	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1789		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1790#endif
1791	__queue_discard_cmd(sbi, bdev, blkstart, blklen);
1792	return 0;
1793}
1794
1795static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1796				block_t blkstart, block_t blklen)
1797{
1798	sector_t start = blkstart, len = 0;
1799	struct block_device *bdev;
1800	struct seg_entry *se;
1801	unsigned int offset;
1802	block_t i;
1803	int err = 0;
1804
1805	bdev = f2fs_target_device(sbi, blkstart, NULL);
1806
1807	for (i = blkstart; i < blkstart + blklen; i++, len++) {
1808		if (i != start) {
1809			struct block_device *bdev2 =
1810				f2fs_target_device(sbi, i, NULL);
1811
1812			if (bdev2 != bdev) {
1813				err = __issue_discard_async(sbi, bdev,
1814						start, len);
1815				if (err)
1816					return err;
1817				bdev = bdev2;
1818				start = i;
1819				len = 0;
1820			}
1821		}
1822
1823		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1824		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1825
1826		if (f2fs_block_unit_discard(sbi) &&
1827				!f2fs_test_and_set_bit(offset, se->discard_map))
1828			sbi->discard_blks--;
1829	}
1830
1831	if (len)
1832		err = __issue_discard_async(sbi, bdev, start, len);
1833	return err;
1834}
1835
1836static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1837							bool check_only)
1838{
1839	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1840	int max_blocks = sbi->blocks_per_seg;
1841	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1842	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1843	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1844	unsigned long *discard_map = (unsigned long *)se->discard_map;
1845	unsigned long *dmap = SIT_I(sbi)->tmp_map;
1846	unsigned int start = 0, end = -1;
1847	bool force = (cpc->reason & CP_DISCARD);
1848	struct discard_entry *de = NULL;
1849	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1850	int i;
1851
1852	if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) ||
1853			!f2fs_block_unit_discard(sbi))
 
1854		return false;
1855
1856	if (!force) {
1857		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1858			SM_I(sbi)->dcc_info->nr_discards >=
1859				SM_I(sbi)->dcc_info->max_discards)
1860			return false;
1861	}
1862
1863	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1864	for (i = 0; i < entries; i++)
1865		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1866				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1867
1868	while (force || SM_I(sbi)->dcc_info->nr_discards <=
1869				SM_I(sbi)->dcc_info->max_discards) {
1870		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1871		if (start >= max_blocks)
1872			break;
1873
1874		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1875		if (force && start && end != max_blocks
1876					&& (end - start) < cpc->trim_minlen)
 
1877			continue;
1878
1879		if (check_only)
1880			return true;
1881
1882		if (!de) {
1883			de = f2fs_kmem_cache_alloc(discard_entry_slab,
1884						GFP_F2FS_ZERO, true, NULL);
1885			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1886			list_add_tail(&de->list, head);
1887		}
1888
1889		for (i = start; i < end; i++)
1890			__set_bit_le(i, (void *)de->discard_map);
1891
1892		SM_I(sbi)->dcc_info->nr_discards += end - start;
1893	}
1894	return false;
1895}
1896
1897static void release_discard_addr(struct discard_entry *entry)
1898{
1899	list_del(&entry->list);
1900	kmem_cache_free(discard_entry_slab, entry);
1901}
1902
1903void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1904{
1905	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1906	struct discard_entry *entry, *this;
1907
1908	/* drop caches */
1909	list_for_each_entry_safe(entry, this, head, list)
1910		release_discard_addr(entry);
1911}
1912
1913/*
1914 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1915 */
1916static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1917{
1918	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1919	unsigned int segno;
1920
1921	mutex_lock(&dirty_i->seglist_lock);
1922	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1923		__set_test_and_free(sbi, segno, false);
1924	mutex_unlock(&dirty_i->seglist_lock);
1925}
1926
1927void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1928						struct cp_control *cpc)
1929{
1930	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1931	struct list_head *head = &dcc->entry_list;
1932	struct discard_entry *entry, *this;
1933	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1934	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1935	unsigned int start = 0, end = -1;
1936	unsigned int secno, start_segno;
1937	bool force = (cpc->reason & CP_DISCARD);
1938	bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
1939						DISCARD_UNIT_SECTION;
1940
1941	if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
1942		section_alignment = true;
1943
1944	mutex_lock(&dirty_i->seglist_lock);
1945
1946	while (1) {
1947		int i;
1948
1949		if (section_alignment && end != -1)
1950			end--;
1951		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1952		if (start >= MAIN_SEGS(sbi))
1953			break;
1954		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1955								start + 1);
1956
1957		if (section_alignment) {
1958			start = rounddown(start, sbi->segs_per_sec);
1959			end = roundup(end, sbi->segs_per_sec);
1960		}
1961
1962		for (i = start; i < end; i++) {
1963			if (test_and_clear_bit(i, prefree_map))
1964				dirty_i->nr_dirty[PRE]--;
1965		}
1966
1967		if (!f2fs_realtime_discard_enable(sbi))
1968			continue;
1969
1970		if (force && start >= cpc->trim_start &&
1971					(end - 1) <= cpc->trim_end)
1972				continue;
1973
1974		if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
 
 
1975			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1976				(end - start) << sbi->log_blocks_per_seg);
1977			continue;
1978		}
1979next:
1980		secno = GET_SEC_FROM_SEG(sbi, start);
1981		start_segno = GET_SEG_FROM_SEC(sbi, secno);
1982		if (!IS_CURSEC(sbi, secno) &&
1983			!get_valid_blocks(sbi, start, true))
1984			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1985				sbi->segs_per_sec << sbi->log_blocks_per_seg);
1986
1987		start = start_segno + sbi->segs_per_sec;
1988		if (start < end)
1989			goto next;
1990		else
1991			end = start - 1;
1992	}
1993	mutex_unlock(&dirty_i->seglist_lock);
1994
1995	if (!f2fs_block_unit_discard(sbi))
1996		goto wakeup;
1997
1998	/* send small discards */
1999	list_for_each_entry_safe(entry, this, head, list) {
2000		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2001		bool is_valid = test_bit_le(0, entry->discard_map);
2002
2003find_next:
2004		if (is_valid) {
2005			next_pos = find_next_zero_bit_le(entry->discard_map,
2006					sbi->blocks_per_seg, cur_pos);
2007			len = next_pos - cur_pos;
2008
2009			if (f2fs_sb_has_blkzoned(sbi) ||
2010			    (force && len < cpc->trim_minlen))
2011				goto skip;
2012
2013			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2014									len);
2015			total_len += len;
2016		} else {
2017			next_pos = find_next_bit_le(entry->discard_map,
2018					sbi->blocks_per_seg, cur_pos);
2019		}
2020skip:
2021		cur_pos = next_pos;
2022		is_valid = !is_valid;
2023
2024		if (cur_pos < sbi->blocks_per_seg)
2025			goto find_next;
2026
2027		release_discard_addr(entry);
2028		dcc->nr_discards -= total_len;
2029	}
2030
2031wakeup:
2032	wake_up_discard_thread(sbi, false);
2033}
2034
2035int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2036{
2037	dev_t dev = sbi->sb->s_bdev->bd_dev;
2038	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2039	int err = 0;
2040
 
 
 
 
 
 
2041	if (!f2fs_realtime_discard_enable(sbi))
2042		return 0;
2043
2044	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2045				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2046	if (IS_ERR(dcc->f2fs_issue_discard)) {
2047		err = PTR_ERR(dcc->f2fs_issue_discard);
2048		dcc->f2fs_issue_discard = NULL;
2049	}
2050
2051	return err;
2052}
2053
2054static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2055{
2056	struct discard_cmd_control *dcc;
2057	int err = 0, i;
2058
2059	if (SM_I(sbi)->dcc_info) {
2060		dcc = SM_I(sbi)->dcc_info;
2061		goto init_thread;
2062	}
2063
2064	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2065	if (!dcc)
2066		return -ENOMEM;
2067
 
2068	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2069	dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
 
2070	if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2071		dcc->discard_granularity = sbi->blocks_per_seg;
2072	else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2073		dcc->discard_granularity = BLKS_PER_SEC(sbi);
2074
2075	INIT_LIST_HEAD(&dcc->entry_list);
2076	for (i = 0; i < MAX_PLIST_NUM; i++)
2077		INIT_LIST_HEAD(&dcc->pend_list[i]);
2078	INIT_LIST_HEAD(&dcc->wait_list);
2079	INIT_LIST_HEAD(&dcc->fstrim_list);
2080	mutex_init(&dcc->cmd_lock);
2081	atomic_set(&dcc->issued_discard, 0);
2082	atomic_set(&dcc->queued_discard, 0);
2083	atomic_set(&dcc->discard_cmd_cnt, 0);
2084	dcc->nr_discards = 0;
2085	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2086	dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2087	dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2088	dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2089	dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2090	dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2091	dcc->undiscard_blks = 0;
2092	dcc->next_pos = 0;
2093	dcc->root = RB_ROOT_CACHED;
2094	dcc->rbtree_check = false;
2095
2096	init_waitqueue_head(&dcc->discard_wait_queue);
2097	SM_I(sbi)->dcc_info = dcc;
2098init_thread:
2099	err = f2fs_start_discard_thread(sbi);
2100	if (err) {
2101		kfree(dcc);
2102		SM_I(sbi)->dcc_info = NULL;
2103	}
2104
2105	return err;
2106}
2107
2108static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2109{
2110	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2111
2112	if (!dcc)
2113		return;
2114
2115	f2fs_stop_discard_thread(sbi);
2116
2117	/*
2118	 * Recovery can cache discard commands, so in error path of
2119	 * fill_super(), it needs to give a chance to handle them.
2120	 */
2121	f2fs_issue_discard_timeout(sbi);
2122
2123	kfree(dcc);
2124	SM_I(sbi)->dcc_info = NULL;
2125}
2126
2127static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2128{
2129	struct sit_info *sit_i = SIT_I(sbi);
2130
2131	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2132		sit_i->dirty_sentries++;
2133		return false;
2134	}
2135
2136	return true;
2137}
2138
2139static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2140					unsigned int segno, int modified)
2141{
2142	struct seg_entry *se = get_seg_entry(sbi, segno);
2143
2144	se->type = type;
2145	if (modified)
2146		__mark_sit_entry_dirty(sbi, segno);
2147}
2148
2149static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2150								block_t blkaddr)
2151{
2152	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2153
2154	if (segno == NULL_SEGNO)
2155		return 0;
2156	return get_seg_entry(sbi, segno)->mtime;
2157}
2158
2159static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2160						unsigned long long old_mtime)
2161{
2162	struct seg_entry *se;
2163	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2164	unsigned long long ctime = get_mtime(sbi, false);
2165	unsigned long long mtime = old_mtime ? old_mtime : ctime;
2166
2167	if (segno == NULL_SEGNO)
2168		return;
2169
2170	se = get_seg_entry(sbi, segno);
2171
2172	if (!se->mtime)
2173		se->mtime = mtime;
2174	else
2175		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2176						se->valid_blocks + 1);
2177
2178	if (ctime > SIT_I(sbi)->max_mtime)
2179		SIT_I(sbi)->max_mtime = ctime;
2180}
2181
2182static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2183{
2184	struct seg_entry *se;
2185	unsigned int segno, offset;
2186	long int new_vblocks;
2187	bool exist;
2188#ifdef CONFIG_F2FS_CHECK_FS
2189	bool mir_exist;
2190#endif
2191
2192	segno = GET_SEGNO(sbi, blkaddr);
 
 
2193
2194	se = get_seg_entry(sbi, segno);
2195	new_vblocks = se->valid_blocks + del;
2196	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2197
2198	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2199			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2200
2201	se->valid_blocks = new_vblocks;
2202
2203	/* Update valid block bitmap */
2204	if (del > 0) {
2205		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2206#ifdef CONFIG_F2FS_CHECK_FS
2207		mir_exist = f2fs_test_and_set_bit(offset,
2208						se->cur_valid_map_mir);
2209		if (unlikely(exist != mir_exist)) {
2210			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2211				 blkaddr, exist);
2212			f2fs_bug_on(sbi, 1);
2213		}
2214#endif
2215		if (unlikely(exist)) {
2216			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2217				 blkaddr);
2218			f2fs_bug_on(sbi, 1);
2219			se->valid_blocks--;
2220			del = 0;
2221		}
2222
2223		if (f2fs_block_unit_discard(sbi) &&
2224				!f2fs_test_and_set_bit(offset, se->discard_map))
2225			sbi->discard_blks--;
2226
2227		/*
2228		 * SSR should never reuse block which is checkpointed
2229		 * or newly invalidated.
2230		 */
2231		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2232			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2233				se->ckpt_valid_blocks++;
2234		}
2235	} else {
2236		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2237#ifdef CONFIG_F2FS_CHECK_FS
2238		mir_exist = f2fs_test_and_clear_bit(offset,
2239						se->cur_valid_map_mir);
2240		if (unlikely(exist != mir_exist)) {
2241			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2242				 blkaddr, exist);
2243			f2fs_bug_on(sbi, 1);
2244		}
2245#endif
2246		if (unlikely(!exist)) {
2247			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2248				 blkaddr);
2249			f2fs_bug_on(sbi, 1);
2250			se->valid_blocks++;
2251			del = 0;
2252		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2253			/*
2254			 * If checkpoints are off, we must not reuse data that
2255			 * was used in the previous checkpoint. If it was used
2256			 * before, we must track that to know how much space we
2257			 * really have.
2258			 */
2259			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2260				spin_lock(&sbi->stat_lock);
2261				sbi->unusable_block_count++;
2262				spin_unlock(&sbi->stat_lock);
2263			}
2264		}
2265
2266		if (f2fs_block_unit_discard(sbi) &&
2267			f2fs_test_and_clear_bit(offset, se->discard_map))
2268			sbi->discard_blks++;
2269	}
2270	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2271		se->ckpt_valid_blocks += del;
2272
2273	__mark_sit_entry_dirty(sbi, segno);
2274
2275	/* update total number of valid blocks to be written in ckpt area */
2276	SIT_I(sbi)->written_valid_blocks += del;
2277
2278	if (__is_large_section(sbi))
2279		get_sec_entry(sbi, segno)->valid_blocks += del;
2280}
2281
2282void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2283{
2284	unsigned int segno = GET_SEGNO(sbi, addr);
2285	struct sit_info *sit_i = SIT_I(sbi);
2286
2287	f2fs_bug_on(sbi, addr == NULL_ADDR);
2288	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2289		return;
2290
2291	invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2292	f2fs_invalidate_compress_page(sbi, addr);
2293
2294	/* add it into sit main buffer */
2295	down_write(&sit_i->sentry_lock);
2296
2297	update_segment_mtime(sbi, addr, 0);
2298	update_sit_entry(sbi, addr, -1);
2299
2300	/* add it into dirty seglist */
2301	locate_dirty_segment(sbi, segno);
2302
2303	up_write(&sit_i->sentry_lock);
2304}
2305
2306bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2307{
2308	struct sit_info *sit_i = SIT_I(sbi);
2309	unsigned int segno, offset;
2310	struct seg_entry *se;
2311	bool is_cp = false;
2312
2313	if (!__is_valid_data_blkaddr(blkaddr))
2314		return true;
2315
2316	down_read(&sit_i->sentry_lock);
2317
2318	segno = GET_SEGNO(sbi, blkaddr);
2319	se = get_seg_entry(sbi, segno);
2320	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2321
2322	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2323		is_cp = true;
2324
2325	up_read(&sit_i->sentry_lock);
2326
2327	return is_cp;
2328}
2329
2330/*
2331 * This function should be resided under the curseg_mutex lock
2332 */
2333static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2334					struct f2fs_summary *sum)
2335{
2336	struct curseg_info *curseg = CURSEG_I(sbi, type);
2337	void *addr = curseg->sum_blk;
2338
2339	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2340	memcpy(addr, sum, sizeof(struct f2fs_summary));
 
2341}
2342
2343/*
2344 * Calculate the number of current summary pages for writing
2345 */
2346int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2347{
2348	int valid_sum_count = 0;
2349	int i, sum_in_page;
2350
2351	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2352		if (sbi->ckpt->alloc_type[i] == SSR)
2353			valid_sum_count += sbi->blocks_per_seg;
2354		else {
2355			if (for_ra)
2356				valid_sum_count += le16_to_cpu(
2357					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2358			else
2359				valid_sum_count += curseg_blkoff(sbi, i);
2360		}
2361	}
2362
2363	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2364			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2365	if (valid_sum_count <= sum_in_page)
2366		return 1;
2367	else if ((valid_sum_count - sum_in_page) <=
2368		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2369		return 2;
2370	return 3;
2371}
2372
2373/*
2374 * Caller should put this summary page
2375 */
2376struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2377{
2378	if (unlikely(f2fs_cp_error(sbi)))
2379		return ERR_PTR(-EIO);
2380	return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2381}
2382
2383void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2384					void *src, block_t blk_addr)
2385{
2386	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2387
2388	memcpy(page_address(page), src, PAGE_SIZE);
2389	set_page_dirty(page);
2390	f2fs_put_page(page, 1);
2391}
2392
2393static void write_sum_page(struct f2fs_sb_info *sbi,
2394			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2395{
2396	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2397}
2398
2399static void write_current_sum_page(struct f2fs_sb_info *sbi,
2400						int type, block_t blk_addr)
2401{
2402	struct curseg_info *curseg = CURSEG_I(sbi, type);
2403	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2404	struct f2fs_summary_block *src = curseg->sum_blk;
2405	struct f2fs_summary_block *dst;
2406
2407	dst = (struct f2fs_summary_block *)page_address(page);
2408	memset(dst, 0, PAGE_SIZE);
2409
2410	mutex_lock(&curseg->curseg_mutex);
2411
2412	down_read(&curseg->journal_rwsem);
2413	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2414	up_read(&curseg->journal_rwsem);
2415
2416	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2417	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2418
2419	mutex_unlock(&curseg->curseg_mutex);
2420
2421	set_page_dirty(page);
2422	f2fs_put_page(page, 1);
2423}
2424
2425static int is_next_segment_free(struct f2fs_sb_info *sbi,
2426				struct curseg_info *curseg, int type)
2427{
2428	unsigned int segno = curseg->segno + 1;
2429	struct free_segmap_info *free_i = FREE_I(sbi);
2430
2431	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2432		return !test_bit(segno, free_i->free_segmap);
2433	return 0;
2434}
2435
2436/*
2437 * Find a new segment from the free segments bitmap to right order
2438 * This function should be returned with success, otherwise BUG
2439 */
2440static void get_new_segment(struct f2fs_sb_info *sbi,
2441			unsigned int *newseg, bool new_sec, int dir)
2442{
2443	struct free_segmap_info *free_i = FREE_I(sbi);
2444	unsigned int segno, secno, zoneno;
2445	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2446	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2447	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2448	unsigned int left_start = hint;
2449	bool init = true;
2450	int go_left = 0;
2451	int i;
 
2452
2453	spin_lock(&free_i->segmap_lock);
2454
2455	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
 
 
 
 
 
2456		segno = find_next_zero_bit(free_i->free_segmap,
2457			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2458		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2459			goto got_it;
2460	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2461find_other_zone:
2462	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2463	if (secno >= MAIN_SECS(sbi)) {
2464		if (dir == ALLOC_RIGHT) {
 
 
 
 
 
 
2465			secno = find_first_zero_bit(free_i->free_secmap,
2466							MAIN_SECS(sbi));
2467			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2468		} else {
2469			go_left = 1;
2470			left_start = hint - 1;
2471		}
2472	}
2473	if (go_left == 0)
2474		goto skip_left;
2475
2476	while (test_bit(left_start, free_i->free_secmap)) {
2477		if (left_start > 0) {
2478			left_start--;
2479			continue;
 
 
 
2480		}
2481		left_start = find_first_zero_bit(free_i->free_secmap,
2482							MAIN_SECS(sbi));
2483		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2484		break;
2485	}
2486	secno = left_start;
2487skip_left:
2488	segno = GET_SEG_FROM_SEC(sbi, secno);
2489	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2490
2491	/* give up on finding another zone */
2492	if (!init)
2493		goto got_it;
2494	if (sbi->secs_per_zone == 1)
2495		goto got_it;
2496	if (zoneno == old_zoneno)
2497		goto got_it;
2498	if (dir == ALLOC_LEFT) {
2499		if (!go_left && zoneno + 1 >= total_zones)
2500			goto got_it;
2501		if (go_left && zoneno == 0)
2502			goto got_it;
2503	}
2504	for (i = 0; i < NR_CURSEG_TYPE; i++)
2505		if (CURSEG_I(sbi, i)->zone == zoneno)
2506			break;
2507
2508	if (i < NR_CURSEG_TYPE) {
2509		/* zone is in user, try another */
2510		if (go_left)
2511			hint = zoneno * sbi->secs_per_zone - 1;
2512		else if (zoneno + 1 >= total_zones)
2513			hint = 0;
2514		else
2515			hint = (zoneno + 1) * sbi->secs_per_zone;
2516		init = false;
2517		goto find_other_zone;
2518	}
2519got_it:
2520	/* set it as dirty segment in free segmap */
2521	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
 
 
 
 
 
 
 
2522	__set_inuse(sbi, segno);
2523	*newseg = segno;
 
2524	spin_unlock(&free_i->segmap_lock);
 
 
 
 
2525}
2526
2527static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2528{
2529	struct curseg_info *curseg = CURSEG_I(sbi, type);
2530	struct summary_footer *sum_footer;
2531	unsigned short seg_type = curseg->seg_type;
2532
 
 
 
 
2533	curseg->inited = true;
2534	curseg->segno = curseg->next_segno;
2535	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2536	curseg->next_blkoff = 0;
2537	curseg->next_segno = NULL_SEGNO;
2538
2539	sum_footer = &(curseg->sum_blk->footer);
2540	memset(sum_footer, 0, sizeof(struct summary_footer));
2541
2542	sanity_check_seg_type(sbi, seg_type);
2543
2544	if (IS_DATASEG(seg_type))
2545		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2546	if (IS_NODESEG(seg_type))
2547		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2548	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2549}
2550
2551static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2552{
2553	struct curseg_info *curseg = CURSEG_I(sbi, type);
2554	unsigned short seg_type = curseg->seg_type;
2555
2556	sanity_check_seg_type(sbi, seg_type);
2557	if (f2fs_need_rand_seg(sbi))
2558		return get_random_u32_below(MAIN_SECS(sbi) * sbi->segs_per_sec);
 
2559
2560	/* if segs_per_sec is large than 1, we need to keep original policy. */
2561	if (__is_large_section(sbi))
 
 
 
2562		return curseg->segno;
 
 
 
2563
2564	/* inmem log may not locate on any segment after mount */
2565	if (!curseg->inited)
2566		return 0;
2567
2568	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2569		return 0;
2570
2571	if (test_opt(sbi, NOHEAP) &&
2572		(seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2573		return 0;
2574
2575	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2576		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2577
2578	/* find segments from 0 to reuse freed segments */
2579	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2580		return 0;
2581
2582	return curseg->segno;
2583}
2584
2585/*
2586 * Allocate a current working segment.
2587 * This function always allocates a free segment in LFS manner.
2588 */
2589static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2590{
2591	struct curseg_info *curseg = CURSEG_I(sbi, type);
2592	unsigned short seg_type = curseg->seg_type;
2593	unsigned int segno = curseg->segno;
2594	int dir = ALLOC_LEFT;
 
2595
2596	if (curseg->inited)
2597		write_sum_page(sbi, curseg->sum_blk,
2598				GET_SUM_BLOCK(sbi, segno));
2599	if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2600		dir = ALLOC_RIGHT;
2601
2602	if (test_opt(sbi, NOHEAP))
2603		dir = ALLOC_RIGHT;
 
 
 
 
 
2604
2605	segno = __get_next_segno(sbi, type);
2606	get_new_segment(sbi, &segno, new_sec, dir);
2607	curseg->next_segno = segno;
2608	reset_curseg(sbi, type, 1);
2609	curseg->alloc_type = LFS;
2610	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2611		curseg->fragment_remained_chunk =
2612				get_random_u32_inclusive(1, sbi->max_fragment_chunk);
 
2613}
2614
2615static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2616					int segno, block_t start)
2617{
2618	struct seg_entry *se = get_seg_entry(sbi, segno);
2619	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2620	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2621	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2622	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2623	int i;
2624
2625	for (i = 0; i < entries; i++)
2626		target_map[i] = ckpt_map[i] | cur_map[i];
2627
2628	return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2629}
2630
2631/*
2632 * If a segment is written by LFS manner, next block offset is just obtained
2633 * by increasing the current block offset. However, if a segment is written by
2634 * SSR manner, next block offset obtained by calling __next_free_blkoff
2635 */
2636static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2637				struct curseg_info *seg)
2638{
2639	if (seg->alloc_type == SSR) {
2640		seg->next_blkoff =
2641			__next_free_blkoff(sbi, seg->segno,
2642						seg->next_blkoff + 1);
2643	} else {
2644		seg->next_blkoff++;
2645		if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) {
2646			/* To allocate block chunks in different sizes, use random number */
2647			if (--seg->fragment_remained_chunk <= 0) {
2648				seg->fragment_remained_chunk =
2649				   get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2650				seg->next_blkoff +=
2651				   get_random_u32_inclusive(1, sbi->max_fragment_hole);
2652			}
2653		}
2654	}
2655}
2656
2657bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2658{
2659	return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2660}
2661
2662/*
2663 * This function always allocates a used segment(from dirty seglist) by SSR
2664 * manner, so it should recover the existing segment information of valid blocks
2665 */
2666static void change_curseg(struct f2fs_sb_info *sbi, int type)
2667{
2668	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2669	struct curseg_info *curseg = CURSEG_I(sbi, type);
2670	unsigned int new_segno = curseg->next_segno;
2671	struct f2fs_summary_block *sum_node;
2672	struct page *sum_page;
2673
2674	write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
 
2675
2676	__set_test_and_inuse(sbi, new_segno);
2677
2678	mutex_lock(&dirty_i->seglist_lock);
2679	__remove_dirty_segment(sbi, new_segno, PRE);
2680	__remove_dirty_segment(sbi, new_segno, DIRTY);
2681	mutex_unlock(&dirty_i->seglist_lock);
2682
2683	reset_curseg(sbi, type, 1);
2684	curseg->alloc_type = SSR;
2685	curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2686
2687	sum_page = f2fs_get_sum_page(sbi, new_segno);
2688	if (IS_ERR(sum_page)) {
2689		/* GC won't be able to use stale summary pages by cp_error */
2690		memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2691		return;
2692	}
2693	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2694	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2695	f2fs_put_page(sum_page, 1);
 
2696}
2697
2698static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2699				int alloc_mode, unsigned long long age);
2700
2701static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2702					int target_type, int alloc_mode,
2703					unsigned long long age)
2704{
2705	struct curseg_info *curseg = CURSEG_I(sbi, type);
 
2706
2707	curseg->seg_type = target_type;
2708
2709	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2710		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2711
2712		curseg->seg_type = se->type;
2713		change_curseg(sbi, type);
2714	} else {
2715		/* allocate cold segment by default */
2716		curseg->seg_type = CURSEG_COLD_DATA;
2717		new_curseg(sbi, type, true);
2718	}
2719	stat_inc_seg_type(sbi, curseg);
 
2720}
2721
2722static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2723{
2724	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
 
2725
2726	if (!sbi->am.atgc_enabled)
2727		return;
2728
2729	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2730
2731	mutex_lock(&curseg->curseg_mutex);
2732	down_write(&SIT_I(sbi)->sentry_lock);
2733
2734	get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
 
2735
2736	up_write(&SIT_I(sbi)->sentry_lock);
2737	mutex_unlock(&curseg->curseg_mutex);
2738
2739	f2fs_up_read(&SM_I(sbi)->curseg_lock);
 
 
2740
 
 
 
2741}
2742void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
 
2743{
2744	__f2fs_init_atgc_curseg(sbi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2745}
2746
2747static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2748{
2749	struct curseg_info *curseg = CURSEG_I(sbi, type);
2750
2751	mutex_lock(&curseg->curseg_mutex);
2752	if (!curseg->inited)
2753		goto out;
2754
2755	if (get_valid_blocks(sbi, curseg->segno, false)) {
2756		write_sum_page(sbi, curseg->sum_blk,
2757				GET_SUM_BLOCK(sbi, curseg->segno));
2758	} else {
2759		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2760		__set_test_and_free(sbi, curseg->segno, true);
2761		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2762	}
2763out:
2764	mutex_unlock(&curseg->curseg_mutex);
2765}
2766
2767void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2768{
2769	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2770
2771	if (sbi->am.atgc_enabled)
2772		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2773}
2774
2775static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2776{
2777	struct curseg_info *curseg = CURSEG_I(sbi, type);
2778
2779	mutex_lock(&curseg->curseg_mutex);
2780	if (!curseg->inited)
2781		goto out;
2782	if (get_valid_blocks(sbi, curseg->segno, false))
2783		goto out;
2784
2785	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2786	__set_test_and_inuse(sbi, curseg->segno);
2787	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2788out:
2789	mutex_unlock(&curseg->curseg_mutex);
2790}
2791
2792void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2793{
2794	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2795
2796	if (sbi->am.atgc_enabled)
2797		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2798}
2799
2800static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2801				int alloc_mode, unsigned long long age)
2802{
2803	struct curseg_info *curseg = CURSEG_I(sbi, type);
2804	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2805	unsigned segno = NULL_SEGNO;
2806	unsigned short seg_type = curseg->seg_type;
2807	int i, cnt;
2808	bool reversed = false;
2809
2810	sanity_check_seg_type(sbi, seg_type);
2811
2812	/* f2fs_need_SSR() already forces to do this */
2813	if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
 
2814		curseg->next_segno = segno;
2815		return 1;
2816	}
2817
2818	/* For node segments, let's do SSR more intensively */
2819	if (IS_NODESEG(seg_type)) {
2820		if (seg_type >= CURSEG_WARM_NODE) {
2821			reversed = true;
2822			i = CURSEG_COLD_NODE;
2823		} else {
2824			i = CURSEG_HOT_NODE;
2825		}
2826		cnt = NR_CURSEG_NODE_TYPE;
2827	} else {
2828		if (seg_type >= CURSEG_WARM_DATA) {
2829			reversed = true;
2830			i = CURSEG_COLD_DATA;
2831		} else {
2832			i = CURSEG_HOT_DATA;
2833		}
2834		cnt = NR_CURSEG_DATA_TYPE;
2835	}
2836
2837	for (; cnt-- > 0; reversed ? i-- : i++) {
2838		if (i == seg_type)
2839			continue;
2840		if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
 
2841			curseg->next_segno = segno;
2842			return 1;
2843		}
2844	}
2845
2846	/* find valid_blocks=0 in dirty list */
2847	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2848		segno = get_free_segment(sbi);
2849		if (segno != NULL_SEGNO) {
2850			curseg->next_segno = segno;
2851			return 1;
2852		}
2853	}
2854	return 0;
2855}
2856
2857static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
2858{
2859	struct curseg_info *curseg = CURSEG_I(sbi, type);
2860
2861	if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2862	    curseg->seg_type == CURSEG_WARM_NODE)
2863		return true;
2864	if (curseg->alloc_type == LFS &&
2865	    is_next_segment_free(sbi, curseg, type) &&
2866	    likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2867		return true;
2868	if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
2869		return true;
2870	return false;
2871}
2872
2873void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2874					unsigned int start, unsigned int end)
2875{
2876	struct curseg_info *curseg = CURSEG_I(sbi, type);
2877	unsigned int segno;
 
2878
2879	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2880	mutex_lock(&curseg->curseg_mutex);
2881	down_write(&SIT_I(sbi)->sentry_lock);
2882
2883	segno = CURSEG_I(sbi, type)->segno;
2884	if (segno < start || segno > end)
2885		goto unlock;
2886
2887	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2888		change_curseg(sbi, type);
2889	else
2890		new_curseg(sbi, type, true);
2891
2892	stat_inc_seg_type(sbi, curseg);
2893
2894	locate_dirty_segment(sbi, segno);
2895unlock:
2896	up_write(&SIT_I(sbi)->sentry_lock);
2897
2898	if (segno != curseg->segno)
2899		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2900			    type, segno, curseg->segno);
2901
2902	mutex_unlock(&curseg->curseg_mutex);
2903	f2fs_up_read(&SM_I(sbi)->curseg_lock);
 
2904}
2905
2906static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
2907						bool new_sec, bool force)
2908{
2909	struct curseg_info *curseg = CURSEG_I(sbi, type);
2910	unsigned int old_segno;
 
2911
2912	if (!curseg->inited)
2913		goto alloc;
2914
2915	if (force || curseg->next_blkoff ||
2916		get_valid_blocks(sbi, curseg->segno, new_sec))
2917		goto alloc;
 
 
2918
2919	if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
2920		return;
2921alloc:
2922	old_segno = curseg->segno;
2923	new_curseg(sbi, type, true);
 
 
2924	stat_inc_seg_type(sbi, curseg);
2925	locate_dirty_segment(sbi, old_segno);
 
2926}
2927
2928static void __allocate_new_section(struct f2fs_sb_info *sbi,
2929						int type, bool force)
2930{
2931	__allocate_new_segment(sbi, type, true, force);
2932}
2933
2934void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
2935{
2936	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2937	down_write(&SIT_I(sbi)->sentry_lock);
2938	__allocate_new_section(sbi, type, force);
2939	up_write(&SIT_I(sbi)->sentry_lock);
2940	f2fs_up_read(&SM_I(sbi)->curseg_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2941}
2942
2943void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2944{
2945	int i;
 
2946
2947	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2948	down_write(&SIT_I(sbi)->sentry_lock);
2949	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
2950		__allocate_new_segment(sbi, i, false, false);
2951	up_write(&SIT_I(sbi)->sentry_lock);
2952	f2fs_up_read(&SM_I(sbi)->curseg_lock);
 
 
2953}
2954
2955bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2956						struct cp_control *cpc)
2957{
2958	__u64 trim_start = cpc->trim_start;
2959	bool has_candidate = false;
2960
2961	down_write(&SIT_I(sbi)->sentry_lock);
2962	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2963		if (add_discard_addrs(sbi, cpc, true)) {
2964			has_candidate = true;
2965			break;
2966		}
2967	}
2968	up_write(&SIT_I(sbi)->sentry_lock);
2969
2970	cpc->trim_start = trim_start;
2971	return has_candidate;
2972}
2973
2974static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2975					struct discard_policy *dpolicy,
2976					unsigned int start, unsigned int end)
2977{
2978	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2979	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2980	struct rb_node **insert_p = NULL, *insert_parent = NULL;
2981	struct discard_cmd *dc;
2982	struct blk_plug plug;
2983	int issued;
2984	unsigned int trimmed = 0;
2985
2986next:
2987	issued = 0;
2988
2989	mutex_lock(&dcc->cmd_lock);
2990	if (unlikely(dcc->rbtree_check))
2991		f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2992							&dcc->root, false));
2993
2994	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2995					NULL, start,
2996					(struct rb_entry **)&prev_dc,
2997					(struct rb_entry **)&next_dc,
2998					&insert_p, &insert_parent, true, NULL);
2999	if (!dc)
3000		dc = next_dc;
3001
3002	blk_start_plug(&plug);
3003
3004	while (dc && dc->lstart <= end) {
3005		struct rb_node *node;
3006		int err = 0;
3007
3008		if (dc->len < dpolicy->granularity)
3009			goto skip;
3010
3011		if (dc->state != D_PREP) {
3012			list_move_tail(&dc->list, &dcc->fstrim_list);
3013			goto skip;
3014		}
3015
3016		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3017
3018		if (issued >= dpolicy->max_requests) {
3019			start = dc->lstart + dc->len;
3020
3021			if (err)
3022				__remove_discard_cmd(sbi, dc);
3023
3024			blk_finish_plug(&plug);
3025			mutex_unlock(&dcc->cmd_lock);
3026			trimmed += __wait_all_discard_cmd(sbi, NULL);
3027			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3028			goto next;
3029		}
3030skip:
3031		node = rb_next(&dc->rb_node);
3032		if (err)
3033			__remove_discard_cmd(sbi, dc);
3034		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3035
3036		if (fatal_signal_pending(current))
3037			break;
3038	}
3039
3040	blk_finish_plug(&plug);
3041	mutex_unlock(&dcc->cmd_lock);
3042
3043	return trimmed;
3044}
3045
3046int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3047{
3048	__u64 start = F2FS_BYTES_TO_BLK(range->start);
3049	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3050	unsigned int start_segno, end_segno;
3051	block_t start_block, end_block;
3052	struct cp_control cpc;
3053	struct discard_policy dpolicy;
3054	unsigned long long trimmed = 0;
3055	int err = 0;
3056	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3057
3058	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3059		return -EINVAL;
3060
3061	if (end < MAIN_BLKADDR(sbi))
3062		goto out;
3063
3064	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3065		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3066		return -EFSCORRUPTED;
3067	}
3068
3069	/* start/end segment number in main_area */
3070	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3071	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3072						GET_SEGNO(sbi, end);
3073	if (need_align) {
3074		start_segno = rounddown(start_segno, sbi->segs_per_sec);
3075		end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3076	}
3077
3078	cpc.reason = CP_DISCARD;
3079	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3080	cpc.trim_start = start_segno;
3081	cpc.trim_end = end_segno;
3082
3083	if (sbi->discard_blks == 0)
3084		goto out;
3085
3086	f2fs_down_write(&sbi->gc_lock);
 
3087	err = f2fs_write_checkpoint(sbi, &cpc);
3088	f2fs_up_write(&sbi->gc_lock);
3089	if (err)
3090		goto out;
3091
3092	/*
3093	 * We filed discard candidates, but actually we don't need to wait for
3094	 * all of them, since they'll be issued in idle time along with runtime
3095	 * discard option. User configuration looks like using runtime discard
3096	 * or periodic fstrim instead of it.
3097	 */
3098	if (f2fs_realtime_discard_enable(sbi))
3099		goto out;
3100
3101	start_block = START_BLOCK(sbi, start_segno);
3102	end_block = START_BLOCK(sbi, end_segno + 1);
3103
3104	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3105	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3106					start_block, end_block);
3107
3108	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3109					start_block, end_block);
3110out:
3111	if (!err)
3112		range->len = F2FS_BLK_TO_BYTES(trimmed);
3113	return err;
3114}
3115
3116static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3117					struct curseg_info *curseg)
3118{
3119	return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3120							curseg->segno);
3121}
 
3122
3123int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3124{
3125	switch (hint) {
3126	case WRITE_LIFE_SHORT:
3127		return CURSEG_HOT_DATA;
3128	case WRITE_LIFE_EXTREME:
3129		return CURSEG_COLD_DATA;
3130	default:
3131		return CURSEG_WARM_DATA;
3132	}
3133}
3134
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3135static int __get_segment_type_2(struct f2fs_io_info *fio)
3136{
3137	if (fio->type == DATA)
3138		return CURSEG_HOT_DATA;
3139	else
3140		return CURSEG_HOT_NODE;
3141}
3142
3143static int __get_segment_type_4(struct f2fs_io_info *fio)
3144{
3145	if (fio->type == DATA) {
3146		struct inode *inode = fio->page->mapping->host;
3147
3148		if (S_ISDIR(inode->i_mode))
3149			return CURSEG_HOT_DATA;
3150		else
3151			return CURSEG_COLD_DATA;
3152	} else {
3153		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3154			return CURSEG_WARM_NODE;
3155		else
3156			return CURSEG_COLD_NODE;
3157	}
3158}
3159
3160static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3161{
3162	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3163	struct extent_info ei = {};
3164
3165	if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3166		if (!ei.age)
3167			return NO_CHECK_TYPE;
3168		if (ei.age <= sbi->hot_data_age_threshold)
3169			return CURSEG_HOT_DATA;
3170		if (ei.age <= sbi->warm_data_age_threshold)
3171			return CURSEG_WARM_DATA;
3172		return CURSEG_COLD_DATA;
3173	}
3174	return NO_CHECK_TYPE;
3175}
3176
3177static int __get_segment_type_6(struct f2fs_io_info *fio)
3178{
3179	if (fio->type == DATA) {
3180		struct inode *inode = fio->page->mapping->host;
3181		int type;
3182
3183		if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3184			return CURSEG_COLD_DATA_PINNED;
3185
3186		if (page_private_gcing(fio->page)) {
3187			if (fio->sbi->am.atgc_enabled &&
3188				(fio->io_type == FS_DATA_IO) &&
3189				(fio->sbi->gc_mode != GC_URGENT_HIGH))
 
 
3190				return CURSEG_ALL_DATA_ATGC;
3191			else
3192				return CURSEG_COLD_DATA;
3193		}
3194		if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3195			return CURSEG_COLD_DATA;
3196
3197		type = __get_age_segment_type(inode, fio->page->index);
 
3198		if (type != NO_CHECK_TYPE)
3199			return type;
3200
3201		if (file_is_hot(inode) ||
3202				is_inode_flag_set(inode, FI_HOT_DATA) ||
3203				f2fs_is_cow_file(inode))
3204			return CURSEG_HOT_DATA;
3205		return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
 
3206	} else {
3207		if (IS_DNODE(fio->page))
3208			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3209						CURSEG_HOT_NODE;
3210		return CURSEG_COLD_NODE;
3211	}
3212}
3213
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3214static int __get_segment_type(struct f2fs_io_info *fio)
3215{
3216	int type = 0;
3217
3218	switch (F2FS_OPTION(fio->sbi).active_logs) {
3219	case 2:
3220		type = __get_segment_type_2(fio);
3221		break;
3222	case 4:
3223		type = __get_segment_type_4(fio);
3224		break;
3225	case 6:
3226		type = __get_segment_type_6(fio);
3227		break;
3228	default:
3229		f2fs_bug_on(fio->sbi, true);
3230	}
3231
3232	if (IS_HOT(type))
3233		fio->temp = HOT;
3234	else if (IS_WARM(type))
3235		fio->temp = WARM;
3236	else
3237		fio->temp = COLD;
3238	return type;
3239}
3240
3241void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3242		block_t old_blkaddr, block_t *new_blkaddr,
3243		struct f2fs_summary *sum, int type,
3244		struct f2fs_io_info *fio)
3245{
3246	struct sit_info *sit_i = SIT_I(sbi);
3247	struct curseg_info *curseg = CURSEG_I(sbi, type);
3248	unsigned long long old_mtime;
3249	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3250	struct seg_entry *se = NULL;
 
 
3251
3252	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3253
3254	mutex_lock(&curseg->curseg_mutex);
3255	down_write(&sit_i->sentry_lock);
3256
 
 
 
 
 
3257	if (from_gc) {
3258		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3259		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3260		sanity_check_seg_type(sbi, se->type);
3261		f2fs_bug_on(sbi, IS_NODESEG(se->type));
3262	}
3263	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3264
3265	f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3266
3267	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3268
3269	/*
3270	 * __add_sum_entry should be resided under the curseg_mutex
3271	 * because, this function updates a summary entry in the
3272	 * current summary block.
3273	 */
3274	__add_sum_entry(sbi, type, sum);
3275
3276	__refresh_next_blkoff(sbi, curseg);
3277
 
3278	stat_inc_block_count(sbi, curseg);
3279
3280	if (from_gc) {
3281		old_mtime = get_segment_mtime(sbi, old_blkaddr);
3282	} else {
3283		update_segment_mtime(sbi, old_blkaddr, 0);
3284		old_mtime = 0;
3285	}
3286	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3287
3288	/*
3289	 * SIT information should be updated before segment allocation,
3290	 * since SSR needs latest valid block information.
3291	 */
3292	update_sit_entry(sbi, *new_blkaddr, 1);
3293	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3294		update_sit_entry(sbi, old_blkaddr, -1);
 
 
 
 
 
 
 
 
 
 
 
 
3295
3296	if (!__has_curseg_space(sbi, curseg)) {
3297		/*
3298		 * Flush out current segment and replace it with new segment.
3299		 */
3300		if (from_gc) {
3301			get_atssr_segment(sbi, type, se->type,
3302						AT_SSR, se->mtime);
3303		} else {
3304			if (need_new_seg(sbi, type))
3305				new_curseg(sbi, type, false);
3306			else
3307				change_curseg(sbi, type);
3308			stat_inc_seg_type(sbi, curseg);
3309		}
 
 
 
3310	}
 
 
3311	/*
3312	 * segment dirty status should be updated after segment allocation,
3313	 * so we just need to update status only one time after previous
3314	 * segment being closed.
3315	 */
3316	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3317	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3318
3319	if (IS_DATASEG(type))
3320		atomic64_inc(&sbi->allocated_data_blocks);
3321
3322	up_write(&sit_i->sentry_lock);
3323
3324	if (page && IS_NODESEG(type)) {
3325		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3326
3327		f2fs_inode_chksum_set(sbi, page);
3328	}
3329
3330	if (fio) {
3331		struct f2fs_bio_info *io;
3332
3333		if (F2FS_IO_ALIGNED(sbi))
3334			fio->retry = false;
3335
3336		INIT_LIST_HEAD(&fio->list);
3337		fio->in_list = true;
3338		io = sbi->write_io[fio->type] + fio->temp;
3339		spin_lock(&io->io_lock);
3340		list_add_tail(&fio->list, &io->io_list);
3341		spin_unlock(&io->io_lock);
3342	}
3343
3344	mutex_unlock(&curseg->curseg_mutex);
 
 
3345
 
 
 
 
3346	f2fs_up_read(&SM_I(sbi)->curseg_lock);
 
3347}
3348
3349void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3350					block_t blkaddr, unsigned int blkcnt)
3351{
3352	if (!f2fs_is_multi_device(sbi))
3353		return;
3354
3355	while (1) {
3356		unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3357		unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3358
3359		/* update device state for fsync */
3360		f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3361
3362		/* update device state for checkpoint */
3363		if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3364			spin_lock(&sbi->dev_lock);
3365			f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3366			spin_unlock(&sbi->dev_lock);
3367		}
3368
3369		if (blkcnt <= blks)
3370			break;
3371		blkcnt -= blks;
3372		blkaddr += blks;
3373	}
3374}
3375
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3376static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3377{
3378	int type = __get_segment_type(fio);
3379	bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
 
 
3380
3381	if (keep_order)
3382		f2fs_down_read(&fio->sbi->io_order_lock);
3383reallocate:
3384	f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3385			&fio->new_blkaddr, sum, type, fio);
3386	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3387		invalidate_mapping_pages(META_MAPPING(fio->sbi),
3388					fio->old_blkaddr, fio->old_blkaddr);
3389		f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
 
 
3390	}
 
 
3391
3392	/* writeout dirty page into bdev */
3393	f2fs_submit_page_write(fio);
3394	if (fio->retry) {
3395		fio->old_blkaddr = fio->new_blkaddr;
3396		goto reallocate;
3397	}
3398
3399	f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3400
3401	if (keep_order)
3402		f2fs_up_read(&fio->sbi->io_order_lock);
3403}
3404
3405void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3406					enum iostat_type io_type)
3407{
3408	struct f2fs_io_info fio = {
3409		.sbi = sbi,
3410		.type = META,
3411		.temp = HOT,
3412		.op = REQ_OP_WRITE,
3413		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3414		.old_blkaddr = page->index,
3415		.new_blkaddr = page->index,
3416		.page = page,
3417		.encrypted_page = NULL,
3418		.in_list = false,
3419	};
3420
3421	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3422		fio.op_flags &= ~REQ_META;
3423
3424	set_page_writeback(page);
3425	ClearPageError(page);
3426	f2fs_submit_page_write(&fio);
3427
3428	stat_inc_meta_count(sbi, page->index);
3429	f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3430}
3431
3432void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3433{
3434	struct f2fs_summary sum;
3435
3436	set_summary(&sum, nid, 0, 0);
3437	do_write_page(&sum, fio);
3438
3439	f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3440}
3441
3442void f2fs_outplace_write_data(struct dnode_of_data *dn,
3443					struct f2fs_io_info *fio)
3444{
3445	struct f2fs_sb_info *sbi = fio->sbi;
3446	struct f2fs_summary sum;
3447
3448	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3449	if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
3450		f2fs_update_age_extent_cache(dn);
3451	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3452	do_write_page(&sum, fio);
3453	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3454
3455	f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
3456}
3457
3458int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3459{
3460	int err;
3461	struct f2fs_sb_info *sbi = fio->sbi;
3462	unsigned int segno;
3463
3464	fio->new_blkaddr = fio->old_blkaddr;
3465	/* i/o temperature is needed for passing down write hints */
3466	__get_segment_type(fio);
3467
3468	segno = GET_SEGNO(sbi, fio->new_blkaddr);
3469
3470	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3471		set_sbi_flag(sbi, SBI_NEED_FSCK);
3472		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3473			  __func__, segno);
3474		err = -EFSCORRUPTED;
3475		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
3476		goto drop_bio;
3477	}
3478
3479	if (f2fs_cp_error(sbi)) {
3480		err = -EIO;
3481		goto drop_bio;
3482	}
3483
3484	if (fio->post_read)
3485		invalidate_mapping_pages(META_MAPPING(sbi),
3486				fio->new_blkaddr, fio->new_blkaddr);
3487
3488	stat_inc_inplace_blocks(fio->sbi);
3489
3490	if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3491		err = f2fs_merge_page_bio(fio);
3492	else
3493		err = f2fs_submit_page_bio(fio);
3494	if (!err) {
3495		f2fs_update_device_state(fio->sbi, fio->ino,
3496						fio->new_blkaddr, 1);
3497		f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
3498						fio->io_type, F2FS_BLKSIZE);
3499	}
3500
3501	return err;
3502drop_bio:
3503	if (fio->bio && *(fio->bio)) {
3504		struct bio *bio = *(fio->bio);
3505
3506		bio->bi_status = BLK_STS_IOERR;
3507		bio_endio(bio);
3508		*(fio->bio) = NULL;
3509	}
3510	return err;
3511}
3512
3513static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3514						unsigned int segno)
3515{
3516	int i;
3517
3518	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3519		if (CURSEG_I(sbi, i)->segno == segno)
3520			break;
3521	}
3522	return i;
3523}
3524
3525void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3526				block_t old_blkaddr, block_t new_blkaddr,
3527				bool recover_curseg, bool recover_newaddr,
3528				bool from_gc)
3529{
3530	struct sit_info *sit_i = SIT_I(sbi);
3531	struct curseg_info *curseg;
3532	unsigned int segno, old_cursegno;
3533	struct seg_entry *se;
3534	int type;
3535	unsigned short old_blkoff;
3536	unsigned char old_alloc_type;
3537
3538	segno = GET_SEGNO(sbi, new_blkaddr);
3539	se = get_seg_entry(sbi, segno);
3540	type = se->type;
3541
3542	f2fs_down_write(&SM_I(sbi)->curseg_lock);
3543
3544	if (!recover_curseg) {
3545		/* for recovery flow */
3546		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3547			if (old_blkaddr == NULL_ADDR)
3548				type = CURSEG_COLD_DATA;
3549			else
3550				type = CURSEG_WARM_DATA;
3551		}
3552	} else {
3553		if (IS_CURSEG(sbi, segno)) {
3554			/* se->type is volatile as SSR allocation */
3555			type = __f2fs_get_curseg(sbi, segno);
3556			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3557		} else {
3558			type = CURSEG_WARM_DATA;
3559		}
3560	}
3561
3562	f2fs_bug_on(sbi, !IS_DATASEG(type));
3563	curseg = CURSEG_I(sbi, type);
 
3564
3565	mutex_lock(&curseg->curseg_mutex);
3566	down_write(&sit_i->sentry_lock);
3567
3568	old_cursegno = curseg->segno;
3569	old_blkoff = curseg->next_blkoff;
3570	old_alloc_type = curseg->alloc_type;
3571
3572	/* change the current segment */
3573	if (segno != curseg->segno) {
3574		curseg->next_segno = segno;
3575		change_curseg(sbi, type);
 
3576	}
3577
3578	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3579	__add_sum_entry(sbi, type, sum);
3580
3581	if (!recover_curseg || recover_newaddr) {
3582		if (!from_gc)
3583			update_segment_mtime(sbi, new_blkaddr, 0);
3584		update_sit_entry(sbi, new_blkaddr, 1);
3585	}
3586	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3587		invalidate_mapping_pages(META_MAPPING(sbi),
3588					old_blkaddr, old_blkaddr);
3589		f2fs_invalidate_compress_page(sbi, old_blkaddr);
3590		if (!from_gc)
3591			update_segment_mtime(sbi, old_blkaddr, 0);
3592		update_sit_entry(sbi, old_blkaddr, -1);
3593	}
3594
3595	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3596	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3597
3598	locate_dirty_segment(sbi, old_cursegno);
3599
3600	if (recover_curseg) {
3601		if (old_cursegno != curseg->segno) {
3602			curseg->next_segno = old_cursegno;
3603			change_curseg(sbi, type);
 
3604		}
3605		curseg->next_blkoff = old_blkoff;
3606		curseg->alloc_type = old_alloc_type;
3607	}
3608
 
3609	up_write(&sit_i->sentry_lock);
3610	mutex_unlock(&curseg->curseg_mutex);
3611	f2fs_up_write(&SM_I(sbi)->curseg_lock);
3612}
3613
3614void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3615				block_t old_addr, block_t new_addr,
3616				unsigned char version, bool recover_curseg,
3617				bool recover_newaddr)
3618{
3619	struct f2fs_summary sum;
3620
3621	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3622
3623	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3624					recover_curseg, recover_newaddr, false);
3625
3626	f2fs_update_data_blkaddr(dn, new_addr);
3627}
3628
3629void f2fs_wait_on_page_writeback(struct page *page,
3630				enum page_type type, bool ordered, bool locked)
3631{
3632	if (PageWriteback(page)) {
3633		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3634
3635		/* submit cached LFS IO */
3636		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3637		/* sbumit cached IPU IO */
3638		f2fs_submit_merged_ipu_write(sbi, NULL, page);
3639		if (ordered) {
3640			wait_on_page_writeback(page);
3641			f2fs_bug_on(sbi, locked && PageWriteback(page));
 
3642		} else {
3643			wait_for_stable_page(page);
3644		}
3645	}
3646}
3647
3648void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3649{
3650	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3651	struct page *cpage;
3652
3653	if (!f2fs_post_read_required(inode))
3654		return;
3655
3656	if (!__is_valid_data_blkaddr(blkaddr))
3657		return;
3658
3659	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3660	if (cpage) {
3661		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3662		f2fs_put_page(cpage, 1);
3663	}
3664}
3665
3666void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3667								block_t len)
3668{
3669	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3670	block_t i;
3671
3672	if (!f2fs_post_read_required(inode))
3673		return;
3674
3675	for (i = 0; i < len; i++)
3676		f2fs_wait_on_block_writeback(inode, blkaddr + i);
3677
3678	invalidate_mapping_pages(META_MAPPING(sbi), blkaddr, blkaddr + len - 1);
3679}
3680
3681static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3682{
3683	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3684	struct curseg_info *seg_i;
3685	unsigned char *kaddr;
3686	struct page *page;
3687	block_t start;
3688	int i, j, offset;
3689
3690	start = start_sum_block(sbi);
3691
3692	page = f2fs_get_meta_page(sbi, start++);
3693	if (IS_ERR(page))
3694		return PTR_ERR(page);
3695	kaddr = (unsigned char *)page_address(page);
3696
3697	/* Step 1: restore nat cache */
3698	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3699	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3700
3701	/* Step 2: restore sit cache */
3702	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3703	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3704	offset = 2 * SUM_JOURNAL_SIZE;
3705
3706	/* Step 3: restore summary entries */
3707	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3708		unsigned short blk_off;
3709		unsigned int segno;
3710
3711		seg_i = CURSEG_I(sbi, i);
3712		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3713		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3714		seg_i->next_segno = segno;
3715		reset_curseg(sbi, i, 0);
3716		seg_i->alloc_type = ckpt->alloc_type[i];
3717		seg_i->next_blkoff = blk_off;
3718
3719		if (seg_i->alloc_type == SSR)
3720			blk_off = sbi->blocks_per_seg;
3721
3722		for (j = 0; j < blk_off; j++) {
3723			struct f2fs_summary *s;
3724
3725			s = (struct f2fs_summary *)(kaddr + offset);
3726			seg_i->sum_blk->entries[j] = *s;
3727			offset += SUMMARY_SIZE;
3728			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3729						SUM_FOOTER_SIZE)
3730				continue;
3731
3732			f2fs_put_page(page, 1);
3733			page = NULL;
3734
3735			page = f2fs_get_meta_page(sbi, start++);
3736			if (IS_ERR(page))
3737				return PTR_ERR(page);
3738			kaddr = (unsigned char *)page_address(page);
3739			offset = 0;
3740		}
3741	}
3742	f2fs_put_page(page, 1);
3743	return 0;
3744}
3745
3746static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3747{
3748	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3749	struct f2fs_summary_block *sum;
3750	struct curseg_info *curseg;
3751	struct page *new;
3752	unsigned short blk_off;
3753	unsigned int segno = 0;
3754	block_t blk_addr = 0;
3755	int err = 0;
3756
3757	/* get segment number and block addr */
3758	if (IS_DATASEG(type)) {
3759		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3760		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3761							CURSEG_HOT_DATA]);
3762		if (__exist_node_summaries(sbi))
3763			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3764		else
3765			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3766	} else {
3767		segno = le32_to_cpu(ckpt->cur_node_segno[type -
3768							CURSEG_HOT_NODE]);
3769		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3770							CURSEG_HOT_NODE]);
3771		if (__exist_node_summaries(sbi))
3772			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3773							type - CURSEG_HOT_NODE);
3774		else
3775			blk_addr = GET_SUM_BLOCK(sbi, segno);
3776	}
3777
3778	new = f2fs_get_meta_page(sbi, blk_addr);
3779	if (IS_ERR(new))
3780		return PTR_ERR(new);
3781	sum = (struct f2fs_summary_block *)page_address(new);
3782
3783	if (IS_NODESEG(type)) {
3784		if (__exist_node_summaries(sbi)) {
3785			struct f2fs_summary *ns = &sum->entries[0];
3786			int i;
3787
3788			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3789				ns->version = 0;
3790				ns->ofs_in_node = 0;
3791			}
3792		} else {
3793			err = f2fs_restore_node_summary(sbi, segno, sum);
3794			if (err)
3795				goto out;
3796		}
3797	}
3798
3799	/* set uncompleted segment to curseg */
3800	curseg = CURSEG_I(sbi, type);
3801	mutex_lock(&curseg->curseg_mutex);
3802
3803	/* update journal info */
3804	down_write(&curseg->journal_rwsem);
3805	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3806	up_write(&curseg->journal_rwsem);
3807
3808	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3809	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3810	curseg->next_segno = segno;
3811	reset_curseg(sbi, type, 0);
3812	curseg->alloc_type = ckpt->alloc_type[type];
3813	curseg->next_blkoff = blk_off;
3814	mutex_unlock(&curseg->curseg_mutex);
3815out:
3816	f2fs_put_page(new, 1);
3817	return err;
3818}
3819
3820static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3821{
3822	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3823	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3824	int type = CURSEG_HOT_DATA;
3825	int err;
3826
3827	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3828		int npages = f2fs_npages_for_summary_flush(sbi, true);
3829
3830		if (npages >= 2)
3831			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3832							META_CP, true);
3833
3834		/* restore for compacted data summary */
3835		err = read_compacted_summaries(sbi);
3836		if (err)
3837			return err;
3838		type = CURSEG_HOT_NODE;
3839	}
3840
3841	if (__exist_node_summaries(sbi))
3842		f2fs_ra_meta_pages(sbi,
3843				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3844				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3845
3846	for (; type <= CURSEG_COLD_NODE; type++) {
3847		err = read_normal_summaries(sbi, type);
3848		if (err)
3849			return err;
3850	}
3851
3852	/* sanity check for summary blocks */
3853	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3854			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3855		f2fs_err(sbi, "invalid journal entries nats %u sits %u",
3856			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3857		return -EINVAL;
3858	}
3859
3860	return 0;
3861}
3862
3863static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3864{
3865	struct page *page;
3866	unsigned char *kaddr;
3867	struct f2fs_summary *summary;
3868	struct curseg_info *seg_i;
3869	int written_size = 0;
3870	int i, j;
3871
3872	page = f2fs_grab_meta_page(sbi, blkaddr++);
3873	kaddr = (unsigned char *)page_address(page);
3874	memset(kaddr, 0, PAGE_SIZE);
3875
3876	/* Step 1: write nat cache */
3877	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3878	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3879	written_size += SUM_JOURNAL_SIZE;
3880
3881	/* Step 2: write sit cache */
3882	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3883	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3884	written_size += SUM_JOURNAL_SIZE;
3885
3886	/* Step 3: write summary entries */
3887	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3888		unsigned short blkoff;
3889
3890		seg_i = CURSEG_I(sbi, i);
3891		if (sbi->ckpt->alloc_type[i] == SSR)
3892			blkoff = sbi->blocks_per_seg;
3893		else
3894			blkoff = curseg_blkoff(sbi, i);
3895
3896		for (j = 0; j < blkoff; j++) {
3897			if (!page) {
3898				page = f2fs_grab_meta_page(sbi, blkaddr++);
3899				kaddr = (unsigned char *)page_address(page);
3900				memset(kaddr, 0, PAGE_SIZE);
3901				written_size = 0;
3902			}
3903			summary = (struct f2fs_summary *)(kaddr + written_size);
3904			*summary = seg_i->sum_blk->entries[j];
3905			written_size += SUMMARY_SIZE;
3906
3907			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3908							SUM_FOOTER_SIZE)
3909				continue;
3910
3911			set_page_dirty(page);
3912			f2fs_put_page(page, 1);
3913			page = NULL;
3914		}
3915	}
3916	if (page) {
3917		set_page_dirty(page);
3918		f2fs_put_page(page, 1);
3919	}
3920}
3921
3922static void write_normal_summaries(struct f2fs_sb_info *sbi,
3923					block_t blkaddr, int type)
3924{
3925	int i, end;
3926
3927	if (IS_DATASEG(type))
3928		end = type + NR_CURSEG_DATA_TYPE;
3929	else
3930		end = type + NR_CURSEG_NODE_TYPE;
3931
3932	for (i = type; i < end; i++)
3933		write_current_sum_page(sbi, i, blkaddr + (i - type));
3934}
3935
3936void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3937{
3938	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3939		write_compacted_summaries(sbi, start_blk);
3940	else
3941		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3942}
3943
3944void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3945{
3946	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3947}
3948
3949int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3950					unsigned int val, int alloc)
3951{
3952	int i;
3953
3954	if (type == NAT_JOURNAL) {
3955		for (i = 0; i < nats_in_cursum(journal); i++) {
3956			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3957				return i;
3958		}
3959		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3960			return update_nats_in_cursum(journal, 1);
3961	} else if (type == SIT_JOURNAL) {
3962		for (i = 0; i < sits_in_cursum(journal); i++)
3963			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3964				return i;
3965		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3966			return update_sits_in_cursum(journal, 1);
3967	}
3968	return -1;
3969}
3970
3971static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3972					unsigned int segno)
3973{
3974	return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
3975}
3976
3977static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3978					unsigned int start)
3979{
3980	struct sit_info *sit_i = SIT_I(sbi);
3981	struct page *page;
3982	pgoff_t src_off, dst_off;
3983
3984	src_off = current_sit_addr(sbi, start);
3985	dst_off = next_sit_addr(sbi, src_off);
3986
3987	page = f2fs_grab_meta_page(sbi, dst_off);
3988	seg_info_to_sit_page(sbi, page, start);
3989
3990	set_page_dirty(page);
3991	set_to_next_sit(sit_i, start);
3992
3993	return page;
3994}
3995
3996static struct sit_entry_set *grab_sit_entry_set(void)
3997{
3998	struct sit_entry_set *ses =
3999			f2fs_kmem_cache_alloc(sit_entry_set_slab,
4000						GFP_NOFS, true, NULL);
4001
4002	ses->entry_cnt = 0;
4003	INIT_LIST_HEAD(&ses->set_list);
4004	return ses;
4005}
4006
4007static void release_sit_entry_set(struct sit_entry_set *ses)
4008{
4009	list_del(&ses->set_list);
4010	kmem_cache_free(sit_entry_set_slab, ses);
4011}
4012
4013static void adjust_sit_entry_set(struct sit_entry_set *ses,
4014						struct list_head *head)
4015{
4016	struct sit_entry_set *next = ses;
4017
4018	if (list_is_last(&ses->set_list, head))
4019		return;
4020
4021	list_for_each_entry_continue(next, head, set_list)
4022		if (ses->entry_cnt <= next->entry_cnt) {
4023			list_move_tail(&ses->set_list, &next->set_list);
4024			return;
4025		}
4026
4027	list_move_tail(&ses->set_list, head);
4028}
4029
4030static void add_sit_entry(unsigned int segno, struct list_head *head)
4031{
4032	struct sit_entry_set *ses;
4033	unsigned int start_segno = START_SEGNO(segno);
4034
4035	list_for_each_entry(ses, head, set_list) {
4036		if (ses->start_segno == start_segno) {
4037			ses->entry_cnt++;
4038			adjust_sit_entry_set(ses, head);
4039			return;
4040		}
4041	}
4042
4043	ses = grab_sit_entry_set();
4044
4045	ses->start_segno = start_segno;
4046	ses->entry_cnt++;
4047	list_add(&ses->set_list, head);
4048}
4049
4050static void add_sits_in_set(struct f2fs_sb_info *sbi)
4051{
4052	struct f2fs_sm_info *sm_info = SM_I(sbi);
4053	struct list_head *set_list = &sm_info->sit_entry_set;
4054	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4055	unsigned int segno;
4056
4057	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4058		add_sit_entry(segno, set_list);
4059}
4060
4061static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4062{
4063	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4064	struct f2fs_journal *journal = curseg->journal;
4065	int i;
4066
4067	down_write(&curseg->journal_rwsem);
4068	for (i = 0; i < sits_in_cursum(journal); i++) {
4069		unsigned int segno;
4070		bool dirtied;
4071
4072		segno = le32_to_cpu(segno_in_journal(journal, i));
4073		dirtied = __mark_sit_entry_dirty(sbi, segno);
4074
4075		if (!dirtied)
4076			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4077	}
4078	update_sits_in_cursum(journal, -i);
4079	up_write(&curseg->journal_rwsem);
4080}
4081
4082/*
4083 * CP calls this function, which flushes SIT entries including sit_journal,
4084 * and moves prefree segs to free segs.
4085 */
4086void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4087{
4088	struct sit_info *sit_i = SIT_I(sbi);
4089	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4090	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4091	struct f2fs_journal *journal = curseg->journal;
4092	struct sit_entry_set *ses, *tmp;
4093	struct list_head *head = &SM_I(sbi)->sit_entry_set;
4094	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4095	struct seg_entry *se;
4096
4097	down_write(&sit_i->sentry_lock);
4098
4099	if (!sit_i->dirty_sentries)
4100		goto out;
4101
4102	/*
4103	 * add and account sit entries of dirty bitmap in sit entry
4104	 * set temporarily
4105	 */
4106	add_sits_in_set(sbi);
4107
4108	/*
4109	 * if there are no enough space in journal to store dirty sit
4110	 * entries, remove all entries from journal and add and account
4111	 * them in sit entry set.
4112	 */
4113	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4114								!to_journal)
4115		remove_sits_in_journal(sbi);
4116
4117	/*
4118	 * there are two steps to flush sit entries:
4119	 * #1, flush sit entries to journal in current cold data summary block.
4120	 * #2, flush sit entries to sit page.
4121	 */
4122	list_for_each_entry_safe(ses, tmp, head, set_list) {
4123		struct page *page = NULL;
4124		struct f2fs_sit_block *raw_sit = NULL;
4125		unsigned int start_segno = ses->start_segno;
4126		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4127						(unsigned long)MAIN_SEGS(sbi));
4128		unsigned int segno = start_segno;
4129
4130		if (to_journal &&
4131			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4132			to_journal = false;
4133
4134		if (to_journal) {
4135			down_write(&curseg->journal_rwsem);
4136		} else {
4137			page = get_next_sit_page(sbi, start_segno);
4138			raw_sit = page_address(page);
4139		}
4140
4141		/* flush dirty sit entries in region of current sit set */
4142		for_each_set_bit_from(segno, bitmap, end) {
4143			int offset, sit_offset;
4144
4145			se = get_seg_entry(sbi, segno);
4146#ifdef CONFIG_F2FS_CHECK_FS
4147			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4148						SIT_VBLOCK_MAP_SIZE))
4149				f2fs_bug_on(sbi, 1);
4150#endif
4151
4152			/* add discard candidates */
4153			if (!(cpc->reason & CP_DISCARD)) {
4154				cpc->trim_start = segno;
4155				add_discard_addrs(sbi, cpc, false);
4156			}
4157
4158			if (to_journal) {
4159				offset = f2fs_lookup_journal_in_cursum(journal,
4160							SIT_JOURNAL, segno, 1);
4161				f2fs_bug_on(sbi, offset < 0);
4162				segno_in_journal(journal, offset) =
4163							cpu_to_le32(segno);
4164				seg_info_to_raw_sit(se,
4165					&sit_in_journal(journal, offset));
4166				check_block_count(sbi, segno,
4167					&sit_in_journal(journal, offset));
4168			} else {
4169				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4170				seg_info_to_raw_sit(se,
4171						&raw_sit->entries[sit_offset]);
4172				check_block_count(sbi, segno,
4173						&raw_sit->entries[sit_offset]);
4174			}
4175
4176			__clear_bit(segno, bitmap);
4177			sit_i->dirty_sentries--;
4178			ses->entry_cnt--;
4179		}
4180
4181		if (to_journal)
4182			up_write(&curseg->journal_rwsem);
4183		else
4184			f2fs_put_page(page, 1);
4185
4186		f2fs_bug_on(sbi, ses->entry_cnt);
4187		release_sit_entry_set(ses);
4188	}
4189
4190	f2fs_bug_on(sbi, !list_empty(head));
4191	f2fs_bug_on(sbi, sit_i->dirty_sentries);
4192out:
4193	if (cpc->reason & CP_DISCARD) {
4194		__u64 trim_start = cpc->trim_start;
4195
4196		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4197			add_discard_addrs(sbi, cpc, false);
4198
4199		cpc->trim_start = trim_start;
4200	}
4201	up_write(&sit_i->sentry_lock);
4202
4203	set_prefree_as_free_segments(sbi);
4204}
4205
4206static int build_sit_info(struct f2fs_sb_info *sbi)
4207{
4208	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4209	struct sit_info *sit_i;
4210	unsigned int sit_segs, start;
4211	char *src_bitmap, *bitmap;
4212	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4213	unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4214
4215	/* allocate memory for SIT information */
4216	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4217	if (!sit_i)
4218		return -ENOMEM;
4219
4220	SM_I(sbi)->sit_info = sit_i;
4221
4222	sit_i->sentries =
4223		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4224					      MAIN_SEGS(sbi)),
4225			      GFP_KERNEL);
4226	if (!sit_i->sentries)
4227		return -ENOMEM;
4228
4229	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4230	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4231								GFP_KERNEL);
4232	if (!sit_i->dirty_sentries_bitmap)
4233		return -ENOMEM;
4234
4235#ifdef CONFIG_F2FS_CHECK_FS
4236	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4237#else
4238	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4239#endif
4240	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4241	if (!sit_i->bitmap)
4242		return -ENOMEM;
4243
4244	bitmap = sit_i->bitmap;
4245
4246	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4247		sit_i->sentries[start].cur_valid_map = bitmap;
4248		bitmap += SIT_VBLOCK_MAP_SIZE;
4249
4250		sit_i->sentries[start].ckpt_valid_map = bitmap;
4251		bitmap += SIT_VBLOCK_MAP_SIZE;
4252
4253#ifdef CONFIG_F2FS_CHECK_FS
4254		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4255		bitmap += SIT_VBLOCK_MAP_SIZE;
4256#endif
4257
4258		if (discard_map) {
4259			sit_i->sentries[start].discard_map = bitmap;
4260			bitmap += SIT_VBLOCK_MAP_SIZE;
4261		}
4262	}
4263
4264	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4265	if (!sit_i->tmp_map)
4266		return -ENOMEM;
4267
4268	if (__is_large_section(sbi)) {
4269		sit_i->sec_entries =
4270			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4271						      MAIN_SECS(sbi)),
4272				      GFP_KERNEL);
4273		if (!sit_i->sec_entries)
4274			return -ENOMEM;
4275	}
4276
4277	/* get information related with SIT */
4278	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4279
4280	/* setup SIT bitmap from ckeckpoint pack */
4281	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4282	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4283
4284	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4285	if (!sit_i->sit_bitmap)
4286		return -ENOMEM;
4287
4288#ifdef CONFIG_F2FS_CHECK_FS
4289	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4290					sit_bitmap_size, GFP_KERNEL);
4291	if (!sit_i->sit_bitmap_mir)
4292		return -ENOMEM;
4293
4294	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4295					main_bitmap_size, GFP_KERNEL);
4296	if (!sit_i->invalid_segmap)
4297		return -ENOMEM;
4298#endif
4299
4300	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4301	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4302	sit_i->written_valid_blocks = 0;
4303	sit_i->bitmap_size = sit_bitmap_size;
4304	sit_i->dirty_sentries = 0;
4305	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4306	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4307	sit_i->mounted_time = ktime_get_boottime_seconds();
4308	init_rwsem(&sit_i->sentry_lock);
4309	return 0;
4310}
4311
4312static int build_free_segmap(struct f2fs_sb_info *sbi)
4313{
4314	struct free_segmap_info *free_i;
4315	unsigned int bitmap_size, sec_bitmap_size;
4316
4317	/* allocate memory for free segmap information */
4318	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4319	if (!free_i)
4320		return -ENOMEM;
4321
4322	SM_I(sbi)->free_info = free_i;
4323
4324	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4325	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4326	if (!free_i->free_segmap)
4327		return -ENOMEM;
4328
4329	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4330	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4331	if (!free_i->free_secmap)
4332		return -ENOMEM;
4333
4334	/* set all segments as dirty temporarily */
4335	memset(free_i->free_segmap, 0xff, bitmap_size);
4336	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4337
4338	/* init free segmap information */
4339	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4340	free_i->free_segments = 0;
4341	free_i->free_sections = 0;
4342	spin_lock_init(&free_i->segmap_lock);
4343	return 0;
4344}
4345
4346static int build_curseg(struct f2fs_sb_info *sbi)
4347{
4348	struct curseg_info *array;
4349	int i;
4350
4351	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4352					sizeof(*array)), GFP_KERNEL);
4353	if (!array)
4354		return -ENOMEM;
4355
4356	SM_I(sbi)->curseg_array = array;
4357
4358	for (i = 0; i < NO_CHECK_TYPE; i++) {
4359		mutex_init(&array[i].curseg_mutex);
4360		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4361		if (!array[i].sum_blk)
4362			return -ENOMEM;
4363		init_rwsem(&array[i].journal_rwsem);
4364		array[i].journal = f2fs_kzalloc(sbi,
4365				sizeof(struct f2fs_journal), GFP_KERNEL);
4366		if (!array[i].journal)
4367			return -ENOMEM;
4368		if (i < NR_PERSISTENT_LOG)
4369			array[i].seg_type = CURSEG_HOT_DATA + i;
4370		else if (i == CURSEG_COLD_DATA_PINNED)
4371			array[i].seg_type = CURSEG_COLD_DATA;
4372		else if (i == CURSEG_ALL_DATA_ATGC)
4373			array[i].seg_type = CURSEG_COLD_DATA;
4374		array[i].segno = NULL_SEGNO;
4375		array[i].next_blkoff = 0;
4376		array[i].inited = false;
4377	}
4378	return restore_curseg_summaries(sbi);
4379}
4380
4381static int build_sit_entries(struct f2fs_sb_info *sbi)
4382{
4383	struct sit_info *sit_i = SIT_I(sbi);
4384	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4385	struct f2fs_journal *journal = curseg->journal;
4386	struct seg_entry *se;
4387	struct f2fs_sit_entry sit;
4388	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4389	unsigned int i, start, end;
4390	unsigned int readed, start_blk = 0;
4391	int err = 0;
4392	block_t sit_valid_blocks[2] = {0, 0};
4393
4394	do {
4395		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4396							META_SIT, true);
4397
4398		start = start_blk * sit_i->sents_per_block;
4399		end = (start_blk + readed) * sit_i->sents_per_block;
4400
4401		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4402			struct f2fs_sit_block *sit_blk;
4403			struct page *page;
4404
4405			se = &sit_i->sentries[start];
4406			page = get_current_sit_page(sbi, start);
4407			if (IS_ERR(page))
4408				return PTR_ERR(page);
4409			sit_blk = (struct f2fs_sit_block *)page_address(page);
4410			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4411			f2fs_put_page(page, 1);
4412
4413			err = check_block_count(sbi, start, &sit);
4414			if (err)
4415				return err;
4416			seg_info_from_raw_sit(se, &sit);
4417
4418			if (se->type >= NR_PERSISTENT_LOG) {
4419				f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4420							se->type, start);
4421				f2fs_handle_error(sbi,
4422						ERROR_INCONSISTENT_SUM_TYPE);
4423				return -EFSCORRUPTED;
4424			}
4425
4426			sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4427
4428			if (f2fs_block_unit_discard(sbi)) {
4429				/* build discard map only one time */
4430				if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4431					memset(se->discard_map, 0xff,
 
 
4432						SIT_VBLOCK_MAP_SIZE);
4433				} else {
4434					memcpy(se->discard_map,
4435						se->cur_valid_map,
4436						SIT_VBLOCK_MAP_SIZE);
4437					sbi->discard_blks +=
4438						sbi->blocks_per_seg -
4439						se->valid_blocks;
4440				}
4441			}
4442
4443			if (__is_large_section(sbi))
4444				get_sec_entry(sbi, start)->valid_blocks +=
4445							se->valid_blocks;
4446		}
4447		start_blk += readed;
4448	} while (start_blk < sit_blk_cnt);
4449
4450	down_read(&curseg->journal_rwsem);
4451	for (i = 0; i < sits_in_cursum(journal); i++) {
4452		unsigned int old_valid_blocks;
4453
4454		start = le32_to_cpu(segno_in_journal(journal, i));
4455		if (start >= MAIN_SEGS(sbi)) {
4456			f2fs_err(sbi, "Wrong journal entry on segno %u",
4457				 start);
4458			err = -EFSCORRUPTED;
4459			f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
4460			break;
4461		}
4462
4463		se = &sit_i->sentries[start];
4464		sit = sit_in_journal(journal, i);
4465
4466		old_valid_blocks = se->valid_blocks;
4467
4468		sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4469
4470		err = check_block_count(sbi, start, &sit);
4471		if (err)
4472			break;
4473		seg_info_from_raw_sit(se, &sit);
4474
4475		if (se->type >= NR_PERSISTENT_LOG) {
4476			f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4477							se->type, start);
4478			err = -EFSCORRUPTED;
4479			f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4480			break;
4481		}
4482
4483		sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4484
4485		if (f2fs_block_unit_discard(sbi)) {
4486			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4487				memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4488			} else {
4489				memcpy(se->discard_map, se->cur_valid_map,
4490							SIT_VBLOCK_MAP_SIZE);
4491				sbi->discard_blks += old_valid_blocks;
4492				sbi->discard_blks -= se->valid_blocks;
4493			}
4494		}
4495
4496		if (__is_large_section(sbi)) {
4497			get_sec_entry(sbi, start)->valid_blocks +=
4498							se->valid_blocks;
4499			get_sec_entry(sbi, start)->valid_blocks -=
4500							old_valid_blocks;
4501		}
4502	}
4503	up_read(&curseg->journal_rwsem);
4504
4505	if (err)
4506		return err;
4507
4508	if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4509		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4510			 sit_valid_blocks[NODE], valid_node_count(sbi));
4511		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
4512		return -EFSCORRUPTED;
4513	}
4514
4515	if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4516				valid_user_blocks(sbi)) {
4517		f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4518			 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4519			 valid_user_blocks(sbi));
4520		f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
4521		return -EFSCORRUPTED;
4522	}
4523
4524	return 0;
4525}
4526
4527static void init_free_segmap(struct f2fs_sb_info *sbi)
4528{
4529	unsigned int start;
4530	int type;
4531	struct seg_entry *sentry;
4532
4533	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4534		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4535			continue;
4536		sentry = get_seg_entry(sbi, start);
4537		if (!sentry->valid_blocks)
4538			__set_free(sbi, start);
4539		else
4540			SIT_I(sbi)->written_valid_blocks +=
4541						sentry->valid_blocks;
4542	}
4543
4544	/* set use the current segments */
4545	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4546		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4547
4548		__set_test_and_inuse(sbi, curseg_t->segno);
4549	}
4550}
4551
4552static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4553{
4554	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4555	struct free_segmap_info *free_i = FREE_I(sbi);
4556	unsigned int segno = 0, offset = 0, secno;
4557	block_t valid_blocks, usable_blks_in_seg;
4558
4559	while (1) {
4560		/* find dirty segment based on free segmap */
4561		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4562		if (segno >= MAIN_SEGS(sbi))
4563			break;
4564		offset = segno + 1;
4565		valid_blocks = get_valid_blocks(sbi, segno, false);
4566		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4567		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4568			continue;
4569		if (valid_blocks > usable_blks_in_seg) {
4570			f2fs_bug_on(sbi, 1);
4571			continue;
4572		}
4573		mutex_lock(&dirty_i->seglist_lock);
4574		__locate_dirty_segment(sbi, segno, DIRTY);
4575		mutex_unlock(&dirty_i->seglist_lock);
4576	}
4577
4578	if (!__is_large_section(sbi))
4579		return;
4580
4581	mutex_lock(&dirty_i->seglist_lock);
4582	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4583		valid_blocks = get_valid_blocks(sbi, segno, true);
4584		secno = GET_SEC_FROM_SEG(sbi, segno);
4585
4586		if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
4587			continue;
4588		if (IS_CURSEC(sbi, secno))
4589			continue;
4590		set_bit(secno, dirty_i->dirty_secmap);
4591	}
4592	mutex_unlock(&dirty_i->seglist_lock);
4593}
4594
4595static int init_victim_secmap(struct f2fs_sb_info *sbi)
4596{
4597	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4598	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4599
4600	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4601	if (!dirty_i->victim_secmap)
4602		return -ENOMEM;
4603
4604	dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4605	if (!dirty_i->pinned_secmap)
4606		return -ENOMEM;
4607
4608	dirty_i->pinned_secmap_cnt = 0;
4609	dirty_i->enable_pin_section = true;
4610	return 0;
4611}
4612
4613static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4614{
4615	struct dirty_seglist_info *dirty_i;
4616	unsigned int bitmap_size, i;
4617
4618	/* allocate memory for dirty segments list information */
4619	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4620								GFP_KERNEL);
4621	if (!dirty_i)
4622		return -ENOMEM;
4623
4624	SM_I(sbi)->dirty_info = dirty_i;
4625	mutex_init(&dirty_i->seglist_lock);
4626
4627	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4628
4629	for (i = 0; i < NR_DIRTY_TYPE; i++) {
4630		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4631								GFP_KERNEL);
4632		if (!dirty_i->dirty_segmap[i])
4633			return -ENOMEM;
4634	}
4635
4636	if (__is_large_section(sbi)) {
4637		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4638		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4639						bitmap_size, GFP_KERNEL);
4640		if (!dirty_i->dirty_secmap)
4641			return -ENOMEM;
4642	}
4643
4644	init_dirty_segmap(sbi);
4645	return init_victim_secmap(sbi);
4646}
4647
4648static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4649{
4650	int i;
4651
4652	/*
4653	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4654	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4655	 */
4656	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4657		struct curseg_info *curseg = CURSEG_I(sbi, i);
4658		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4659		unsigned int blkofs = curseg->next_blkoff;
4660
4661		if (f2fs_sb_has_readonly(sbi) &&
4662			i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4663			continue;
4664
4665		sanity_check_seg_type(sbi, curseg->seg_type);
4666
4667		if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
4668			f2fs_err(sbi,
4669				 "Current segment has invalid alloc_type:%d",
4670				 curseg->alloc_type);
4671			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4672			return -EFSCORRUPTED;
4673		}
4674
4675		if (f2fs_test_bit(blkofs, se->cur_valid_map))
4676			goto out;
4677
4678		if (curseg->alloc_type == SSR)
4679			continue;
4680
4681		for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4682			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4683				continue;
4684out:
4685			f2fs_err(sbi,
4686				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4687				 i, curseg->segno, curseg->alloc_type,
4688				 curseg->next_blkoff, blkofs);
4689			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4690			return -EFSCORRUPTED;
4691		}
4692	}
4693	return 0;
4694}
4695
4696#ifdef CONFIG_BLK_DEV_ZONED
4697
4698static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4699				    struct f2fs_dev_info *fdev,
4700				    struct blk_zone *zone)
4701{
4702	unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4703	block_t zone_block, wp_block, last_valid_block;
4704	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4705	int i, s, b, ret;
4706	struct seg_entry *se;
4707
4708	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4709		return 0;
4710
4711	wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4712	wp_segno = GET_SEGNO(sbi, wp_block);
4713	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4714	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4715	zone_segno = GET_SEGNO(sbi, zone_block);
4716	zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4717
4718	if (zone_segno >= MAIN_SEGS(sbi))
4719		return 0;
4720
4721	/*
4722	 * Skip check of zones cursegs point to, since
4723	 * fix_curseg_write_pointer() checks them.
4724	 */
4725	for (i = 0; i < NO_CHECK_TYPE; i++)
4726		if (zone_secno == GET_SEC_FROM_SEG(sbi,
4727						   CURSEG_I(sbi, i)->segno))
4728			return 0;
4729
4730	/*
4731	 * Get last valid block of the zone.
4732	 */
4733	last_valid_block = zone_block - 1;
4734	for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4735		segno = zone_segno + s;
4736		se = get_seg_entry(sbi, segno);
4737		for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4738			if (f2fs_test_bit(b, se->cur_valid_map)) {
4739				last_valid_block = START_BLOCK(sbi, segno) + b;
4740				break;
4741			}
4742		if (last_valid_block >= zone_block)
4743			break;
4744	}
4745
4746	/*
4747	 * If last valid block is beyond the write pointer, report the
4748	 * inconsistency. This inconsistency does not cause write error
4749	 * because the zone will not be selected for write operation until
4750	 * it get discarded. Just report it.
4751	 */
4752	if (last_valid_block >= wp_block) {
4753		f2fs_notice(sbi, "Valid block beyond write pointer: "
4754			    "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4755			    GET_SEGNO(sbi, last_valid_block),
4756			    GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4757			    wp_segno, wp_blkoff);
4758		return 0;
4759	}
4760
4761	/*
4762	 * If there is no valid block in the zone and if write pointer is
4763	 * not at zone start, reset the write pointer.
4764	 */
4765	if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4766		f2fs_notice(sbi,
4767			    "Zone without valid block has non-zero write "
4768			    "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4769			    wp_segno, wp_blkoff);
4770		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4771					zone->len >> log_sectors_per_block);
4772		if (ret) {
4773			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4774				 fdev->path, ret);
4775			return ret;
4776		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4777	}
4778
4779	return 0;
4780}
4781
4782static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4783						  block_t zone_blkaddr)
4784{
4785	int i;
4786
4787	for (i = 0; i < sbi->s_ndevs; i++) {
4788		if (!bdev_is_zoned(FDEV(i).bdev))
4789			continue;
4790		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4791				zone_blkaddr <= FDEV(i).end_blk))
4792			return &FDEV(i);
4793	}
4794
4795	return NULL;
4796}
4797
4798static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4799			      void *data)
4800{
4801	memcpy(data, zone, sizeof(struct blk_zone));
4802	return 0;
4803}
4804
4805static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4806{
4807	struct curseg_info *cs = CURSEG_I(sbi, type);
4808	struct f2fs_dev_info *zbd;
4809	struct blk_zone zone;
4810	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4811	block_t cs_zone_block, wp_block;
4812	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4813	sector_t zone_sector;
4814	int err;
4815
4816	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4817	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4818
4819	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4820	if (!zbd)
4821		return 0;
4822
4823	/* report zone for the sector the curseg points to */
4824	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4825		<< log_sectors_per_block;
4826	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4827				  report_one_zone_cb, &zone);
4828	if (err != 1) {
4829		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4830			 zbd->path, err);
4831		return err;
4832	}
4833
4834	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4835		return 0;
4836
4837	wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4838	wp_segno = GET_SEGNO(sbi, wp_block);
4839	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4840	wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
 
 
 
 
 
4841
4842	if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4843		wp_sector_off == 0)
4844		return 0;
4845
4846	f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4847		    "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4848		    type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
 
4849
4850	f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4851		    "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4852
4853	f2fs_allocate_new_section(sbi, type, true);
 
 
 
 
 
 
 
4854
4855	/* check consistency of the zone curseg pointed to */
4856	if (check_zone_write_pointer(sbi, zbd, &zone))
4857		return -EIO;
4858
4859	/* check newly assigned zone */
4860	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4861	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4862
4863	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4864	if (!zbd)
4865		return 0;
4866
4867	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4868		<< log_sectors_per_block;
4869	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4870				  report_one_zone_cb, &zone);
4871	if (err != 1) {
4872		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4873			 zbd->path, err);
4874		return err;
4875	}
4876
4877	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4878		return 0;
4879
4880	if (zone.wp != zone.start) {
4881		f2fs_notice(sbi,
4882			    "New zone for curseg[%d] is not yet discarded. "
4883			    "Reset the zone: curseg[0x%x,0x%x]",
4884			    type, cs->segno, cs->next_blkoff);
4885		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4886				zone_sector >> log_sectors_per_block,
4887				zone.len >> log_sectors_per_block);
4888		if (err) {
4889			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4890				 zbd->path, err);
4891			return err;
4892		}
4893	}
4894
4895	return 0;
4896}
4897
4898int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4899{
4900	int i, ret;
4901
4902	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4903		ret = fix_curseg_write_pointer(sbi, i);
4904		if (ret)
4905			return ret;
4906	}
4907
4908	return 0;
4909}
4910
4911struct check_zone_write_pointer_args {
4912	struct f2fs_sb_info *sbi;
4913	struct f2fs_dev_info *fdev;
4914};
4915
4916static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4917				      void *data)
4918{
4919	struct check_zone_write_pointer_args *args;
4920
4921	args = (struct check_zone_write_pointer_args *)data;
4922
4923	return check_zone_write_pointer(args->sbi, args->fdev, zone);
4924}
4925
4926int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4927{
4928	int i, ret;
4929	struct check_zone_write_pointer_args args;
4930
4931	for (i = 0; i < sbi->s_ndevs; i++) {
4932		if (!bdev_is_zoned(FDEV(i).bdev))
4933			continue;
4934
4935		args.sbi = sbi;
4936		args.fdev = &FDEV(i);
4937		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4938					  check_zone_write_pointer_cb, &args);
4939		if (ret < 0)
4940			return ret;
4941	}
4942
4943	return 0;
4944}
4945
4946static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
4947						unsigned int dev_idx)
4948{
4949	if (!bdev_is_zoned(FDEV(dev_idx).bdev))
4950		return true;
4951	return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
4952}
4953
4954/* Return the zone index in the given device */
4955static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
4956					int dev_idx)
4957{
4958	block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4959
4960	return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
4961						sbi->log_blocks_per_blkz;
4962}
4963
4964/*
4965 * Return the usable segments in a section based on the zone's
4966 * corresponding zone capacity. Zone is equal to a section.
4967 */
4968static inline unsigned int f2fs_usable_zone_segs_in_sec(
4969		struct f2fs_sb_info *sbi, unsigned int segno)
4970{
4971	unsigned int dev_idx, zone_idx;
4972
4973	dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
4974	zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
4975
4976	/* Conventional zone's capacity is always equal to zone size */
4977	if (is_conv_zone(sbi, zone_idx, dev_idx))
4978		return sbi->segs_per_sec;
4979
4980	if (!sbi->unusable_blocks_per_sec)
4981		return sbi->segs_per_sec;
4982
4983	/* Get the segment count beyond zone capacity block */
4984	return sbi->segs_per_sec - (sbi->unusable_blocks_per_sec >>
4985						sbi->log_blocks_per_seg);
4986}
4987
4988/*
4989 * Return the number of usable blocks in a segment. The number of blocks
4990 * returned is always equal to the number of blocks in a segment for
4991 * segments fully contained within a sequential zone capacity or a
4992 * conventional zone. For segments partially contained in a sequential
4993 * zone capacity, the number of usable blocks up to the zone capacity
4994 * is returned. 0 is returned in all other cases.
4995 */
4996static inline unsigned int f2fs_usable_zone_blks_in_seg(
4997			struct f2fs_sb_info *sbi, unsigned int segno)
4998{
4999	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5000	unsigned int zone_idx, dev_idx, secno;
 
 
 
5001
5002	secno = GET_SEC_FROM_SEG(sbi, segno);
5003	seg_start = START_BLOCK(sbi, segno);
5004	dev_idx = f2fs_target_device_index(sbi, seg_start);
5005	zone_idx = get_zone_idx(sbi, secno, dev_idx);
5006
5007	/*
5008	 * Conventional zone's capacity is always equal to zone size,
5009	 * so, blocks per segment is unchanged.
5010	 */
5011	if (is_conv_zone(sbi, zone_idx, dev_idx))
5012		return sbi->blocks_per_seg;
5013
5014	if (!sbi->unusable_blocks_per_sec)
5015		return sbi->blocks_per_seg;
5016
5017	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5018	sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5019
5020	/*
5021	 * If segment starts before zone capacity and spans beyond
5022	 * zone capacity, then usable blocks are from seg start to
5023	 * zone capacity. If the segment starts after the zone capacity,
5024	 * then there are no usable blocks.
5025	 */
5026	if (seg_start >= sec_cap_blkaddr)
5027		return 0;
5028	if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5029		return sec_cap_blkaddr - seg_start;
5030
5031	return sbi->blocks_per_seg;
5032}
5033#else
5034int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5035{
5036	return 0;
5037}
5038
5039int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5040{
5041	return 0;
5042}
5043
5044static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5045							unsigned int segno)
5046{
5047	return 0;
5048}
5049
5050static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
5051							unsigned int segno)
5052{
5053	return 0;
5054}
5055#endif
5056unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5057					unsigned int segno)
5058{
5059	if (f2fs_sb_has_blkzoned(sbi))
5060		return f2fs_usable_zone_blks_in_seg(sbi, segno);
5061
5062	return sbi->blocks_per_seg;
5063}
5064
5065unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5066					unsigned int segno)
5067{
5068	if (f2fs_sb_has_blkzoned(sbi))
5069		return f2fs_usable_zone_segs_in_sec(sbi, segno);
5070
5071	return sbi->segs_per_sec;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5072}
5073
5074/*
5075 * Update min, max modified time for cost-benefit GC algorithm
5076 */
5077static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5078{
5079	struct sit_info *sit_i = SIT_I(sbi);
5080	unsigned int segno;
5081
5082	down_write(&sit_i->sentry_lock);
5083
5084	sit_i->min_mtime = ULLONG_MAX;
5085
5086	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5087		unsigned int i;
5088		unsigned long long mtime = 0;
5089
5090		for (i = 0; i < sbi->segs_per_sec; i++)
5091			mtime += get_seg_entry(sbi, segno + i)->mtime;
5092
5093		mtime = div_u64(mtime, sbi->segs_per_sec);
5094
5095		if (sit_i->min_mtime > mtime)
5096			sit_i->min_mtime = mtime;
5097	}
5098	sit_i->max_mtime = get_mtime(sbi, false);
5099	sit_i->dirty_max_mtime = 0;
5100	up_write(&sit_i->sentry_lock);
5101}
5102
5103int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5104{
5105	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5106	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5107	struct f2fs_sm_info *sm_info;
5108	int err;
5109
5110	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5111	if (!sm_info)
5112		return -ENOMEM;
5113
5114	/* init sm info */
5115	sbi->sm_info = sm_info;
5116	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5117	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5118	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5119	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5120	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5121	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5122	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5123	sm_info->rec_prefree_segments = sm_info->main_segments *
5124					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5125	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5126		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5127
5128	if (!f2fs_lfs_mode(sbi))
5129		sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5130	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5131	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5132	sm_info->min_seq_blocks = sbi->blocks_per_seg;
5133	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5134	sm_info->min_ssr_sections = reserved_sections(sbi);
5135
5136	INIT_LIST_HEAD(&sm_info->sit_entry_set);
5137
5138	init_f2fs_rwsem(&sm_info->curseg_lock);
5139
5140	err = f2fs_create_flush_cmd_control(sbi);
5141	if (err)
5142		return err;
5143
5144	err = create_discard_cmd_control(sbi);
5145	if (err)
5146		return err;
5147
5148	err = build_sit_info(sbi);
5149	if (err)
5150		return err;
5151	err = build_free_segmap(sbi);
5152	if (err)
5153		return err;
5154	err = build_curseg(sbi);
5155	if (err)
5156		return err;
5157
5158	/* reinit free segmap based on SIT */
5159	err = build_sit_entries(sbi);
5160	if (err)
5161		return err;
5162
5163	init_free_segmap(sbi);
5164	err = build_dirty_segmap(sbi);
5165	if (err)
5166		return err;
5167
5168	err = sanity_check_curseg(sbi);
5169	if (err)
5170		return err;
5171
5172	init_min_max_mtime(sbi);
5173	return 0;
5174}
5175
5176static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5177		enum dirty_type dirty_type)
5178{
5179	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5180
5181	mutex_lock(&dirty_i->seglist_lock);
5182	kvfree(dirty_i->dirty_segmap[dirty_type]);
5183	dirty_i->nr_dirty[dirty_type] = 0;
5184	mutex_unlock(&dirty_i->seglist_lock);
5185}
5186
5187static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5188{
5189	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5190
5191	kvfree(dirty_i->pinned_secmap);
5192	kvfree(dirty_i->victim_secmap);
5193}
5194
5195static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5196{
5197	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5198	int i;
5199
5200	if (!dirty_i)
5201		return;
5202
5203	/* discard pre-free/dirty segments list */
5204	for (i = 0; i < NR_DIRTY_TYPE; i++)
5205		discard_dirty_segmap(sbi, i);
5206
5207	if (__is_large_section(sbi)) {
5208		mutex_lock(&dirty_i->seglist_lock);
5209		kvfree(dirty_i->dirty_secmap);
5210		mutex_unlock(&dirty_i->seglist_lock);
5211	}
5212
5213	destroy_victim_secmap(sbi);
5214	SM_I(sbi)->dirty_info = NULL;
5215	kfree(dirty_i);
5216}
5217
5218static void destroy_curseg(struct f2fs_sb_info *sbi)
5219{
5220	struct curseg_info *array = SM_I(sbi)->curseg_array;
5221	int i;
5222
5223	if (!array)
5224		return;
5225	SM_I(sbi)->curseg_array = NULL;
5226	for (i = 0; i < NR_CURSEG_TYPE; i++) {
5227		kfree(array[i].sum_blk);
5228		kfree(array[i].journal);
5229	}
5230	kfree(array);
5231}
5232
5233static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5234{
5235	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5236
5237	if (!free_i)
5238		return;
5239	SM_I(sbi)->free_info = NULL;
5240	kvfree(free_i->free_segmap);
5241	kvfree(free_i->free_secmap);
5242	kfree(free_i);
5243}
5244
5245static void destroy_sit_info(struct f2fs_sb_info *sbi)
5246{
5247	struct sit_info *sit_i = SIT_I(sbi);
5248
5249	if (!sit_i)
5250		return;
5251
5252	if (sit_i->sentries)
5253		kvfree(sit_i->bitmap);
5254	kfree(sit_i->tmp_map);
5255
5256	kvfree(sit_i->sentries);
5257	kvfree(sit_i->sec_entries);
5258	kvfree(sit_i->dirty_sentries_bitmap);
5259
5260	SM_I(sbi)->sit_info = NULL;
5261	kvfree(sit_i->sit_bitmap);
5262#ifdef CONFIG_F2FS_CHECK_FS
5263	kvfree(sit_i->sit_bitmap_mir);
5264	kvfree(sit_i->invalid_segmap);
5265#endif
5266	kfree(sit_i);
5267}
5268
5269void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5270{
5271	struct f2fs_sm_info *sm_info = SM_I(sbi);
5272
5273	if (!sm_info)
5274		return;
5275	f2fs_destroy_flush_cmd_control(sbi, true);
5276	destroy_discard_cmd_control(sbi);
5277	destroy_dirty_segmap(sbi);
5278	destroy_curseg(sbi);
5279	destroy_free_segmap(sbi);
5280	destroy_sit_info(sbi);
5281	sbi->sm_info = NULL;
5282	kfree(sm_info);
5283}
5284
5285int __init f2fs_create_segment_manager_caches(void)
5286{
5287	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5288			sizeof(struct discard_entry));
5289	if (!discard_entry_slab)
5290		goto fail;
5291
5292	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5293			sizeof(struct discard_cmd));
5294	if (!discard_cmd_slab)
5295		goto destroy_discard_entry;
5296
5297	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5298			sizeof(struct sit_entry_set));
5299	if (!sit_entry_set_slab)
5300		goto destroy_discard_cmd;
5301
5302	revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5303			sizeof(struct revoke_entry));
5304	if (!revoke_entry_slab)
5305		goto destroy_sit_entry_set;
5306	return 0;
5307
5308destroy_sit_entry_set:
5309	kmem_cache_destroy(sit_entry_set_slab);
5310destroy_discard_cmd:
5311	kmem_cache_destroy(discard_cmd_slab);
5312destroy_discard_entry:
5313	kmem_cache_destroy(discard_entry_slab);
5314fail:
5315	return -ENOMEM;
5316}
5317
5318void f2fs_destroy_segment_manager_caches(void)
5319{
5320	kmem_cache_destroy(sit_entry_set_slab);
5321	kmem_cache_destroy(discard_cmd_slab);
5322	kmem_cache_destroy(discard_entry_slab);
5323	kmem_cache_destroy(revoke_entry_slab);
5324}