Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (C) 2021, Intel Corporation. */
   3
   4#include <linux/delay.h>
   5#include <linux/iopoll.h>
   6#include "ice_common.h"
   7#include "ice_ptp_hw.h"
   8#include "ice_ptp_consts.h"
   9#include "ice_cgu_regs.h"
  10
  11static struct dpll_pin_frequency ice_cgu_pin_freq_common[] = {
  12	DPLL_PIN_FREQUENCY_1PPS,
  13	DPLL_PIN_FREQUENCY_10MHZ,
  14};
  15
  16static struct dpll_pin_frequency ice_cgu_pin_freq_1_hz[] = {
  17	DPLL_PIN_FREQUENCY_1PPS,
  18};
  19
  20static struct dpll_pin_frequency ice_cgu_pin_freq_10_mhz[] = {
  21	DPLL_PIN_FREQUENCY_10MHZ,
  22};
  23
  24static const struct ice_cgu_pin_desc ice_e810t_sfp_cgu_inputs[] = {
  25	{ "CVL-SDP22",	  ZL_REF0P, DPLL_PIN_TYPE_INT_OSCILLATOR,
  26		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
  27	{ "CVL-SDP20",	  ZL_REF0N, DPLL_PIN_TYPE_INT_OSCILLATOR,
  28		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
  29	{ "C827_0-RCLKA", ZL_REF1P, DPLL_PIN_TYPE_MUX, 0, },
  30	{ "C827_0-RCLKB", ZL_REF1N, DPLL_PIN_TYPE_MUX, 0, },
  31	{ "SMA1",	  ZL_REF3P, DPLL_PIN_TYPE_EXT,
  32		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
  33	{ "SMA2/U.FL2",	  ZL_REF3N, DPLL_PIN_TYPE_EXT,
  34		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
  35	{ "GNSS-1PPS",	  ZL_REF4P, DPLL_PIN_TYPE_GNSS,
  36		ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
  37};
  38
  39static const struct ice_cgu_pin_desc ice_e810t_qsfp_cgu_inputs[] = {
  40	{ "CVL-SDP22",	  ZL_REF0P, DPLL_PIN_TYPE_INT_OSCILLATOR,
  41		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
  42	{ "CVL-SDP20",	  ZL_REF0N, DPLL_PIN_TYPE_INT_OSCILLATOR,
  43		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
  44	{ "C827_0-RCLKA", ZL_REF1P, DPLL_PIN_TYPE_MUX, },
  45	{ "C827_0-RCLKB", ZL_REF1N, DPLL_PIN_TYPE_MUX, },
  46	{ "C827_1-RCLKA", ZL_REF2P, DPLL_PIN_TYPE_MUX, },
  47	{ "C827_1-RCLKB", ZL_REF2N, DPLL_PIN_TYPE_MUX, },
  48	{ "SMA1",	  ZL_REF3P, DPLL_PIN_TYPE_EXT,
  49		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
  50	{ "SMA2/U.FL2",	  ZL_REF3N, DPLL_PIN_TYPE_EXT,
  51		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
  52	{ "GNSS-1PPS",	  ZL_REF4P, DPLL_PIN_TYPE_GNSS,
  53		ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
  54};
  55
  56static const struct ice_cgu_pin_desc ice_e810t_sfp_cgu_outputs[] = {
  57	{ "REF-SMA1",	    ZL_OUT0, DPLL_PIN_TYPE_EXT,
  58		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
  59	{ "REF-SMA2/U.FL2", ZL_OUT1, DPLL_PIN_TYPE_EXT,
  60		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
  61	{ "PHY-CLK",	    ZL_OUT2, DPLL_PIN_TYPE_SYNCE_ETH_PORT, },
  62	{ "MAC-CLK",	    ZL_OUT3, DPLL_PIN_TYPE_SYNCE_ETH_PORT, },
  63	{ "CVL-SDP21",	    ZL_OUT4, DPLL_PIN_TYPE_EXT,
  64		ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
  65	{ "CVL-SDP23",	    ZL_OUT5, DPLL_PIN_TYPE_EXT,
  66		ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
  67};
  68
  69static const struct ice_cgu_pin_desc ice_e810t_qsfp_cgu_outputs[] = {
  70	{ "REF-SMA1",	    ZL_OUT0, DPLL_PIN_TYPE_EXT,
  71		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
  72	{ "REF-SMA2/U.FL2", ZL_OUT1, DPLL_PIN_TYPE_EXT,
  73		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
  74	{ "PHY-CLK",	    ZL_OUT2, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
  75	{ "PHY2-CLK",	    ZL_OUT3, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
  76	{ "MAC-CLK",	    ZL_OUT4, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
  77	{ "CVL-SDP21",	    ZL_OUT5, DPLL_PIN_TYPE_EXT,
  78		ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
  79	{ "CVL-SDP23",	    ZL_OUT6, DPLL_PIN_TYPE_EXT,
  80		ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
  81};
  82
  83static const struct ice_cgu_pin_desc ice_e823_si_cgu_inputs[] = {
  84	{ "NONE",	  SI_REF0P, 0, 0 },
  85	{ "NONE",	  SI_REF0N, 0, 0 },
  86	{ "SYNCE0_DP",	  SI_REF1P, DPLL_PIN_TYPE_MUX, 0 },
  87	{ "SYNCE0_DN",	  SI_REF1N, DPLL_PIN_TYPE_MUX, 0 },
  88	{ "EXT_CLK_SYNC", SI_REF2P, DPLL_PIN_TYPE_EXT,
  89		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
  90	{ "NONE",	  SI_REF2N, 0, 0 },
  91	{ "EXT_PPS_OUT",  SI_REF3,  DPLL_PIN_TYPE_EXT,
  92		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
  93	{ "INT_PPS_OUT",  SI_REF4,  DPLL_PIN_TYPE_EXT,
  94		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
  95};
  96
  97static const struct ice_cgu_pin_desc ice_e823_si_cgu_outputs[] = {
  98	{ "1588-TIME_SYNC", SI_OUT0, DPLL_PIN_TYPE_EXT,
  99		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
 100	{ "PHY-CLK",	    SI_OUT1, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
 101	{ "10MHZ-SMA2",	    SI_OUT2, DPLL_PIN_TYPE_EXT,
 102		ARRAY_SIZE(ice_cgu_pin_freq_10_mhz), ice_cgu_pin_freq_10_mhz },
 103	{ "PPS-SMA1",	    SI_OUT3, DPLL_PIN_TYPE_EXT,
 104		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
 105};
 106
 107static const struct ice_cgu_pin_desc ice_e823_zl_cgu_inputs[] = {
 108	{ "NONE",	  ZL_REF0P, 0, 0 },
 109	{ "INT_PPS_OUT",  ZL_REF0N, DPLL_PIN_TYPE_EXT,
 110		ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
 111	{ "SYNCE0_DP",	  ZL_REF1P, DPLL_PIN_TYPE_MUX, 0 },
 112	{ "SYNCE0_DN",	  ZL_REF1N, DPLL_PIN_TYPE_MUX, 0 },
 113	{ "NONE",	  ZL_REF2P, 0, 0 },
 114	{ "NONE",	  ZL_REF2N, 0, 0 },
 115	{ "EXT_CLK_SYNC", ZL_REF3P, DPLL_PIN_TYPE_EXT,
 116		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
 117	{ "NONE",	  ZL_REF3N, 0, 0 },
 118	{ "EXT_PPS_OUT",  ZL_REF4P, DPLL_PIN_TYPE_EXT,
 119		ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
 120	{ "OCXO",	  ZL_REF4N, DPLL_PIN_TYPE_INT_OSCILLATOR, 0 },
 121};
 122
 123static const struct ice_cgu_pin_desc ice_e823_zl_cgu_outputs[] = {
 124	{ "PPS-SMA1",	   ZL_OUT0, DPLL_PIN_TYPE_EXT,
 125		ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
 126	{ "10MHZ-SMA2",	   ZL_OUT1, DPLL_PIN_TYPE_EXT,
 127		ARRAY_SIZE(ice_cgu_pin_freq_10_mhz), ice_cgu_pin_freq_10_mhz },
 128	{ "PHY-CLK",	   ZL_OUT2, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
 129	{ "1588-TIME_REF", ZL_OUT3, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
 130	{ "CPK-TIME_SYNC", ZL_OUT4, DPLL_PIN_TYPE_EXT,
 131		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
 132	{ "NONE",	   ZL_OUT5, 0, 0 },
 133};
 134
 135/* Low level functions for interacting with and managing the device clock used
 136 * for the Precision Time Protocol.
 137 *
 138 * The ice hardware represents the current time using three registers:
 139 *
 140 *    GLTSYN_TIME_H     GLTSYN_TIME_L     GLTSYN_TIME_R
 141 *  +---------------+ +---------------+ +---------------+
 142 *  |    32 bits    | |    32 bits    | |    32 bits    |
 143 *  +---------------+ +---------------+ +---------------+
 144 *
 145 * The registers are incremented every clock tick using a 40bit increment
 146 * value defined over two registers:
 147 *
 148 *                     GLTSYN_INCVAL_H   GLTSYN_INCVAL_L
 149 *                    +---------------+ +---------------+
 150 *                    |    8 bit s    | |    32 bits    |
 151 *                    +---------------+ +---------------+
 152 *
 153 * The increment value is added to the GLSTYN_TIME_R and GLSTYN_TIME_L
 154 * registers every clock source tick. Depending on the specific device
 155 * configuration, the clock source frequency could be one of a number of
 156 * values.
 157 *
 158 * For E810 devices, the increment frequency is 812.5 MHz
 159 *
 160 * For E822 devices the clock can be derived from different sources, and the
 161 * increment has an effective frequency of one of the following:
 162 * - 823.4375 MHz
 163 * - 783.36 MHz
 164 * - 796.875 MHz
 165 * - 816 MHz
 166 * - 830.078125 MHz
 167 * - 783.36 MHz
 168 *
 169 * The hardware captures timestamps in the PHY for incoming packets, and for
 170 * outgoing packets on request. To support this, the PHY maintains a timer
 171 * that matches the lower 64 bits of the global source timer.
 172 *
 173 * In order to ensure that the PHY timers and the source timer are equivalent,
 174 * shadow registers are used to prepare the desired initial values. A special
 175 * sync command is issued to trigger copying from the shadow registers into
 176 * the appropriate source and PHY registers simultaneously.
 177 *
 178 * The driver supports devices which have different PHYs with subtly different
 179 * mechanisms to program and control the timers. We divide the devices into
 180 * families named after the first major device, E810 and similar devices, and
 181 * E822 and similar devices.
 182 *
 183 * - E822 based devices have additional support for fine grained Vernier
 184 *   calibration which requires significant setup
 185 * - The layout of timestamp data in the PHY register blocks is different
 186 * - The way timer synchronization commands are issued is different.
 187 *
 188 * To support this, very low level functions have an e810 or e822 suffix
 189 * indicating what type of device they work on. Higher level abstractions for
 190 * tasks that can be done on both devices do not have the suffix and will
 191 * correctly look up the appropriate low level function when running.
 192 *
 193 * Functions which only make sense on a single device family may not have
 194 * a suitable generic implementation
 195 */
 196
 197/**
 198 * ice_get_ptp_src_clock_index - determine source clock index
 199 * @hw: pointer to HW struct
 200 *
 201 * Determine the source clock index currently in use, based on device
 202 * capabilities reported during initialization.
 203 */
 204u8 ice_get_ptp_src_clock_index(struct ice_hw *hw)
 205{
 206	return hw->func_caps.ts_func_info.tmr_index_assoc;
 207}
 208
 209/**
 210 * ice_ptp_read_src_incval - Read source timer increment value
 211 * @hw: pointer to HW struct
 212 *
 213 * Read the increment value of the source timer and return it.
 214 */
 215static u64 ice_ptp_read_src_incval(struct ice_hw *hw)
 216{
 217	u32 lo, hi;
 218	u8 tmr_idx;
 219
 220	tmr_idx = ice_get_ptp_src_clock_index(hw);
 221
 222	lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
 223	hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
 224
 225	return ((u64)(hi & INCVAL_HIGH_M) << 32) | lo;
 226}
 227
 228/**
 229 * ice_read_cgu_reg_e82x - Read a CGU register
 230 * @hw: pointer to the HW struct
 231 * @addr: Register address to read
 232 * @val: storage for register value read
 233 *
 234 * Read the contents of a register of the Clock Generation Unit. Only
 235 * applicable to E822 devices.
 236 *
 237 * Return: 0 on success, other error codes when failed to read from CGU
 238 */
 239static int ice_read_cgu_reg_e82x(struct ice_hw *hw, u32 addr, u32 *val)
 240{
 241	struct ice_sbq_msg_input cgu_msg = {
 242		.opcode = ice_sbq_msg_rd,
 243		.dest_dev = cgu,
 244		.msg_addr_low = addr
 245	};
 246	int err;
 247
 248	err = ice_sbq_rw_reg(hw, &cgu_msg, ICE_AQ_FLAG_RD);
 249	if (err) {
 250		ice_debug(hw, ICE_DBG_PTP, "Failed to read CGU register 0x%04x, err %d\n",
 251			  addr, err);
 252		return err;
 253	}
 254
 255	*val = cgu_msg.data;
 256
 257	return 0;
 258}
 259
 260/**
 261 * ice_write_cgu_reg_e82x - Write a CGU register
 262 * @hw: pointer to the HW struct
 263 * @addr: Register address to write
 264 * @val: value to write into the register
 265 *
 266 * Write the specified value to a register of the Clock Generation Unit. Only
 267 * applicable to E822 devices.
 268 *
 269 * Return: 0 on success, other error codes when failed to write to CGU
 270 */
 271static int ice_write_cgu_reg_e82x(struct ice_hw *hw, u32 addr, u32 val)
 272{
 273	struct ice_sbq_msg_input cgu_msg = {
 274		.opcode = ice_sbq_msg_wr,
 275		.dest_dev = cgu,
 276		.msg_addr_low = addr,
 277		.data = val
 278	};
 279	int err;
 280
 281	err = ice_sbq_rw_reg(hw, &cgu_msg, ICE_AQ_FLAG_RD);
 282	if (err) {
 283		ice_debug(hw, ICE_DBG_PTP, "Failed to write CGU register 0x%04x, err %d\n",
 284			  addr, err);
 285		return err;
 286	}
 287
 288	return err;
 289}
 290
 291/**
 292 * ice_clk_freq_str - Convert time_ref_freq to string
 293 * @clk_freq: Clock frequency
 294 *
 295 * Return: specified TIME_REF clock frequency converted to a string
 296 */
 297static const char *ice_clk_freq_str(enum ice_time_ref_freq clk_freq)
 298{
 299	switch (clk_freq) {
 300	case ICE_TIME_REF_FREQ_25_000:
 301		return "25 MHz";
 302	case ICE_TIME_REF_FREQ_122_880:
 303		return "122.88 MHz";
 304	case ICE_TIME_REF_FREQ_125_000:
 305		return "125 MHz";
 306	case ICE_TIME_REF_FREQ_153_600:
 307		return "153.6 MHz";
 308	case ICE_TIME_REF_FREQ_156_250:
 309		return "156.25 MHz";
 310	case ICE_TIME_REF_FREQ_245_760:
 311		return "245.76 MHz";
 312	default:
 313		return "Unknown";
 314	}
 315}
 316
 317/**
 318 * ice_clk_src_str - Convert time_ref_src to string
 319 * @clk_src: Clock source
 320 *
 321 * Return: specified clock source converted to its string name
 322 */
 323static const char *ice_clk_src_str(enum ice_clk_src clk_src)
 324{
 325	switch (clk_src) {
 326	case ICE_CLK_SRC_TCXO:
 327		return "TCXO";
 328	case ICE_CLK_SRC_TIME_REF:
 329		return "TIME_REF";
 330	default:
 331		return "Unknown";
 332	}
 333}
 334
 335/**
 336 * ice_cfg_cgu_pll_e82x - Configure the Clock Generation Unit
 337 * @hw: pointer to the HW struct
 338 * @clk_freq: Clock frequency to program
 339 * @clk_src: Clock source to select (TIME_REF, or TCXO)
 340 *
 341 * Configure the Clock Generation Unit with the desired clock frequency and
 342 * time reference, enabling the PLL which drives the PTP hardware clock.
 343 *
 344 * Return:
 345 * * %0       - success
 346 * * %-EINVAL - input parameters are incorrect
 347 * * %-EBUSY  - failed to lock TS PLL
 348 * * %other   - CGU read/write failure
 349 */
 350static int ice_cfg_cgu_pll_e82x(struct ice_hw *hw,
 351				enum ice_time_ref_freq clk_freq,
 352				enum ice_clk_src clk_src)
 353{
 354	union tspll_ro_bwm_lf bwm_lf;
 355	union nac_cgu_dword19 dw19;
 356	union nac_cgu_dword22 dw22;
 357	union nac_cgu_dword24 dw24;
 358	union nac_cgu_dword9 dw9;
 359	int err;
 360
 361	if (clk_freq >= NUM_ICE_TIME_REF_FREQ) {
 362		dev_warn(ice_hw_to_dev(hw), "Invalid TIME_REF frequency %u\n",
 363			 clk_freq);
 364		return -EINVAL;
 365	}
 366
 367	if (clk_src >= NUM_ICE_CLK_SRC) {
 368		dev_warn(ice_hw_to_dev(hw), "Invalid clock source %u\n",
 369			 clk_src);
 370		return -EINVAL;
 371	}
 372
 373	if (clk_src == ICE_CLK_SRC_TCXO &&
 374	    clk_freq != ICE_TIME_REF_FREQ_25_000) {
 375		dev_warn(ice_hw_to_dev(hw),
 376			 "TCXO only supports 25 MHz frequency\n");
 377		return -EINVAL;
 378	}
 379
 380	err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD9, &dw9.val);
 381	if (err)
 382		return err;
 383
 384	err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD24, &dw24.val);
 385	if (err)
 386		return err;
 387
 388	err = ice_read_cgu_reg_e82x(hw, TSPLL_RO_BWM_LF, &bwm_lf.val);
 389	if (err)
 390		return err;
 391
 392	/* Log the current clock configuration */
 393	ice_debug(hw, ICE_DBG_PTP, "Current CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
 394		  dw24.ts_pll_enable ? "enabled" : "disabled",
 395		  ice_clk_src_str(dw24.time_ref_sel),
 396		  ice_clk_freq_str(dw9.time_ref_freq_sel),
 397		  bwm_lf.plllock_true_lock_cri ? "locked" : "unlocked");
 398
 399	/* Disable the PLL before changing the clock source or frequency */
 400	if (dw24.ts_pll_enable) {
 401		dw24.ts_pll_enable = 0;
 402
 403		err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD24, dw24.val);
 404		if (err)
 405			return err;
 406	}
 407
 408	/* Set the frequency */
 409	dw9.time_ref_freq_sel = clk_freq;
 410	err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD9, dw9.val);
 411	if (err)
 412		return err;
 413
 414	/* Configure the TS PLL feedback divisor */
 415	err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD19, &dw19.val);
 416	if (err)
 417		return err;
 418
 419	dw19.tspll_fbdiv_intgr = e822_cgu_params[clk_freq].feedback_div;
 420	dw19.tspll_ndivratio = 1;
 421
 422	err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD19, dw19.val);
 423	if (err)
 424		return err;
 425
 426	/* Configure the TS PLL post divisor */
 427	err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD22, &dw22.val);
 428	if (err)
 429		return err;
 430
 431	dw22.time1588clk_div = e822_cgu_params[clk_freq].post_pll_div;
 432	dw22.time1588clk_sel_div2 = 0;
 433
 434	err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD22, dw22.val);
 435	if (err)
 436		return err;
 437
 438	/* Configure the TS PLL pre divisor and clock source */
 439	err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD24, &dw24.val);
 440	if (err)
 441		return err;
 442
 443	dw24.ref1588_ck_div = e822_cgu_params[clk_freq].refclk_pre_div;
 444	dw24.tspll_fbdiv_frac = e822_cgu_params[clk_freq].frac_n_div;
 445	dw24.time_ref_sel = clk_src;
 446
 447	err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD24, dw24.val);
 448	if (err)
 449		return err;
 450
 451	/* Finally, enable the PLL */
 452	dw24.ts_pll_enable = 1;
 453
 454	err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD24, dw24.val);
 455	if (err)
 456		return err;
 457
 458	/* Wait to verify if the PLL locks */
 459	usleep_range(1000, 5000);
 460
 461	err = ice_read_cgu_reg_e82x(hw, TSPLL_RO_BWM_LF, &bwm_lf.val);
 462	if (err)
 463		return err;
 464
 465	if (!bwm_lf.plllock_true_lock_cri) {
 466		dev_warn(ice_hw_to_dev(hw), "CGU PLL failed to lock\n");
 467		return -EBUSY;
 468	}
 469
 470	/* Log the current clock configuration */
 471	ice_debug(hw, ICE_DBG_PTP, "New CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
 472		  dw24.ts_pll_enable ? "enabled" : "disabled",
 473		  ice_clk_src_str(dw24.time_ref_sel),
 474		  ice_clk_freq_str(dw9.time_ref_freq_sel),
 475		  bwm_lf.plllock_true_lock_cri ? "locked" : "unlocked");
 476
 477	return 0;
 478}
 479
 480/**
 481 * ice_cfg_cgu_pll_e825c - Configure the Clock Generation Unit for E825-C
 482 * @hw: pointer to the HW struct
 483 * @clk_freq: Clock frequency to program
 484 * @clk_src: Clock source to select (TIME_REF, or TCXO)
 485 *
 486 * Configure the Clock Generation Unit with the desired clock frequency and
 487 * time reference, enabling the PLL which drives the PTP hardware clock.
 488 *
 489 * Return:
 490 * * %0       - success
 491 * * %-EINVAL - input parameters are incorrect
 492 * * %-EBUSY  - failed to lock TS PLL
 493 * * %other   - CGU read/write failure
 494 */
 495static int ice_cfg_cgu_pll_e825c(struct ice_hw *hw,
 496				 enum ice_time_ref_freq clk_freq,
 497				 enum ice_clk_src clk_src)
 498{
 499	union tspll_ro_lock_e825c ro_lock;
 500	union nac_cgu_dword16_e825c dw16;
 501	union nac_cgu_dword23_e825c dw23;
 502	union nac_cgu_dword19 dw19;
 503	union nac_cgu_dword22 dw22;
 504	union nac_cgu_dword24 dw24;
 505	union nac_cgu_dword9 dw9;
 506	int err;
 507
 508	if (clk_freq >= NUM_ICE_TIME_REF_FREQ) {
 509		dev_warn(ice_hw_to_dev(hw), "Invalid TIME_REF frequency %u\n",
 510			 clk_freq);
 511		return -EINVAL;
 512	}
 513
 514	if (clk_src >= NUM_ICE_CLK_SRC) {
 515		dev_warn(ice_hw_to_dev(hw), "Invalid clock source %u\n",
 516			 clk_src);
 517		return -EINVAL;
 518	}
 519
 520	if (clk_src == ICE_CLK_SRC_TCXO &&
 521	    clk_freq != ICE_TIME_REF_FREQ_156_250) {
 522		dev_warn(ice_hw_to_dev(hw),
 523			 "TCXO only supports 156.25 MHz frequency\n");
 524		return -EINVAL;
 525	}
 526
 527	err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD9, &dw9.val);
 528	if (err)
 529		return err;
 530
 531	err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD24, &dw24.val);
 532	if (err)
 533		return err;
 534
 535	err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD16_E825C, &dw16.val);
 536	if (err)
 537		return err;
 538
 539	err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C, &dw23.val);
 540	if (err)
 541		return err;
 542
 543	err = ice_read_cgu_reg_e82x(hw, TSPLL_RO_LOCK_E825C, &ro_lock.val);
 544	if (err)
 545		return err;
 546
 547	/* Log the current clock configuration */
 548	ice_debug(hw, ICE_DBG_PTP, "Current CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
 549		  dw24.ts_pll_enable ? "enabled" : "disabled",
 550		  ice_clk_src_str(dw23.time_ref_sel),
 551		  ice_clk_freq_str(dw9.time_ref_freq_sel),
 552		  ro_lock.plllock_true_lock_cri ? "locked" : "unlocked");
 553
 554	/* Disable the PLL before changing the clock source or frequency */
 555	if (dw23.ts_pll_enable) {
 556		dw23.ts_pll_enable = 0;
 557
 558		err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C,
 559					     dw23.val);
 560		if (err)
 561			return err;
 562	}
 563
 564	/* Set the frequency */
 565	dw9.time_ref_freq_sel = clk_freq;
 566
 567	/* Enable the correct receiver */
 568	if (clk_src == ICE_CLK_SRC_TCXO) {
 569		dw9.time_ref_en = 0;
 570		dw9.clk_eref0_en = 1;
 571	} else {
 572		dw9.time_ref_en = 1;
 573		dw9.clk_eref0_en = 0;
 574	}
 575	err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD9, dw9.val);
 576	if (err)
 577		return err;
 578
 579	/* Choose the referenced frequency */
 580	dw16.tspll_ck_refclkfreq =
 581	e825c_cgu_params[clk_freq].tspll_ck_refclkfreq;
 582	err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD16_E825C, dw16.val);
 583	if (err)
 584		return err;
 585
 586	/* Configure the TS PLL feedback divisor */
 587	err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD19, &dw19.val);
 588	if (err)
 589		return err;
 590
 591	dw19.tspll_fbdiv_intgr =
 592		e825c_cgu_params[clk_freq].tspll_fbdiv_intgr;
 593	dw19.tspll_ndivratio =
 594		e825c_cgu_params[clk_freq].tspll_ndivratio;
 595
 596	err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD19, dw19.val);
 597	if (err)
 598		return err;
 599
 600	/* Configure the TS PLL post divisor */
 601	err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD22, &dw22.val);
 602	if (err)
 603		return err;
 604
 605	/* These two are constant for E825C */
 606	dw22.time1588clk_div = 5;
 607	dw22.time1588clk_sel_div2 = 0;
 608
 609	err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD22, dw22.val);
 610	if (err)
 611		return err;
 612
 613	/* Configure the TS PLL pre divisor and clock source */
 614	err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C, &dw23.val);
 615	if (err)
 616		return err;
 617
 618	dw23.ref1588_ck_div =
 619		e825c_cgu_params[clk_freq].ref1588_ck_div;
 620	dw23.time_ref_sel = clk_src;
 621
 622	err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C, dw23.val);
 623	if (err)
 624		return err;
 625
 626	dw24.tspll_fbdiv_frac =
 627		e825c_cgu_params[clk_freq].tspll_fbdiv_frac;
 628
 629	err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD24, dw24.val);
 630	if (err)
 631		return err;
 632
 633	/* Finally, enable the PLL */
 634	dw23.ts_pll_enable = 1;
 635
 636	err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C, dw23.val);
 637	if (err)
 638		return err;
 639
 640	/* Wait to verify if the PLL locks */
 641	usleep_range(1000, 5000);
 642
 643	err = ice_read_cgu_reg_e82x(hw, TSPLL_RO_LOCK_E825C, &ro_lock.val);
 644	if (err)
 645		return err;
 646
 647	if (!ro_lock.plllock_true_lock_cri) {
 648		dev_warn(ice_hw_to_dev(hw), "CGU PLL failed to lock\n");
 649		return -EBUSY;
 650	}
 651
 652	/* Log the current clock configuration */
 653	ice_debug(hw, ICE_DBG_PTP, "New CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
 654		  dw24.ts_pll_enable ? "enabled" : "disabled",
 655		  ice_clk_src_str(dw23.time_ref_sel),
 656		  ice_clk_freq_str(dw9.time_ref_freq_sel),
 657		  ro_lock.plllock_true_lock_cri ? "locked" : "unlocked");
 658
 659	return 0;
 660}
 661
 662#define ICE_ONE_PPS_OUT_AMP_MAX 3
 663
 664/**
 665 * ice_cgu_cfg_pps_out - Configure 1PPS output from CGU
 666 * @hw: pointer to the HW struct
 667 * @enable: true to enable 1PPS output, false to disable it
 668 *
 669 * Return: 0 on success, other negative error code when CGU read/write failed
 670 */
 671int ice_cgu_cfg_pps_out(struct ice_hw *hw, bool enable)
 672{
 673	union nac_cgu_dword9 dw9;
 674	int err;
 675
 676	err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD9, &dw9.val);
 677	if (err)
 678		return err;
 679
 680	dw9.one_pps_out_en = enable;
 681	dw9.one_pps_out_amp = enable * ICE_ONE_PPS_OUT_AMP_MAX;
 682	return ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD9, dw9.val);
 683}
 684
 685/**
 686 * ice_cfg_cgu_pll_dis_sticky_bits_e82x - disable TS PLL sticky bits
 687 * @hw: pointer to the HW struct
 688 *
 689 * Configure the Clock Generation Unit TS PLL sticky bits so they don't latch on
 690 * losing TS PLL lock, but always show current state.
 691 *
 692 * Return: 0 on success, other error codes when failed to read/write CGU
 693 */
 694static int ice_cfg_cgu_pll_dis_sticky_bits_e82x(struct ice_hw *hw)
 695{
 696	union tspll_cntr_bist_settings cntr_bist;
 697	int err;
 698
 699	err = ice_read_cgu_reg_e82x(hw, TSPLL_CNTR_BIST_SETTINGS,
 700				    &cntr_bist.val);
 701	if (err)
 702		return err;
 703
 704	/* Disable sticky lock detection so lock err reported is accurate */
 705	cntr_bist.i_plllock_sel_0 = 0;
 706	cntr_bist.i_plllock_sel_1 = 0;
 707
 708	return ice_write_cgu_reg_e82x(hw, TSPLL_CNTR_BIST_SETTINGS,
 709				      cntr_bist.val);
 710}
 711
 712/**
 713 * ice_cfg_cgu_pll_dis_sticky_bits_e825c - disable TS PLL sticky bits for E825-C
 714 * @hw: pointer to the HW struct
 715 *
 716 * Configure the Clock Generation Unit TS PLL sticky bits so they don't latch on
 717 * losing TS PLL lock, but always show current state.
 718 *
 719 * Return: 0 on success, other error codes when failed to read/write CGU
 720 */
 721static int ice_cfg_cgu_pll_dis_sticky_bits_e825c(struct ice_hw *hw)
 722{
 723	union tspll_bw_tdc_e825c bw_tdc;
 724	int err;
 725
 726	err = ice_read_cgu_reg_e82x(hw, TSPLL_BW_TDC_E825C, &bw_tdc.val);
 727	if (err)
 728		return err;
 729
 730	bw_tdc.i_plllock_sel_1_0 = 0;
 731
 732	return ice_write_cgu_reg_e82x(hw, TSPLL_BW_TDC_E825C, bw_tdc.val);
 733}
 734
 735/**
 736 * ice_init_cgu_e82x - Initialize CGU with settings from firmware
 737 * @hw: pointer to the HW structure
 738 *
 739 * Initialize the Clock Generation Unit of the E822 device.
 740 *
 741 * Return: 0 on success, other error codes when failed to read/write/cfg CGU
 742 */
 743static int ice_init_cgu_e82x(struct ice_hw *hw)
 744{
 745	struct ice_ts_func_info *ts_info = &hw->func_caps.ts_func_info;
 746	int err;
 747
 748	/* Disable sticky lock detection so lock err reported is accurate */
 749	if (ice_is_e825c(hw))
 750		err = ice_cfg_cgu_pll_dis_sticky_bits_e825c(hw);
 751	else
 752		err = ice_cfg_cgu_pll_dis_sticky_bits_e82x(hw);
 753	if (err)
 754		return err;
 755
 756	/* Configure the CGU PLL using the parameters from the function
 757	 * capabilities.
 758	 */
 759	if (ice_is_e825c(hw))
 760		err = ice_cfg_cgu_pll_e825c(hw, ts_info->time_ref,
 761					    (enum ice_clk_src)ts_info->clk_src);
 762	else
 763		err = ice_cfg_cgu_pll_e82x(hw, ts_info->time_ref,
 764					   (enum ice_clk_src)ts_info->clk_src);
 765
 766	return err;
 767}
 768
 769/**
 770 * ice_ptp_tmr_cmd_to_src_reg - Convert to source timer command value
 771 * @hw: pointer to HW struct
 772 * @cmd: Timer command
 773 *
 774 * Return: the source timer command register value for the given PTP timer
 775 * command.
 776 */
 777static u32 ice_ptp_tmr_cmd_to_src_reg(struct ice_hw *hw,
 778				      enum ice_ptp_tmr_cmd cmd)
 779{
 780	u32 cmd_val, tmr_idx;
 781
 782	switch (cmd) {
 783	case ICE_PTP_INIT_TIME:
 784		cmd_val = GLTSYN_CMD_INIT_TIME;
 785		break;
 786	case ICE_PTP_INIT_INCVAL:
 787		cmd_val = GLTSYN_CMD_INIT_INCVAL;
 788		break;
 789	case ICE_PTP_ADJ_TIME:
 790		cmd_val = GLTSYN_CMD_ADJ_TIME;
 791		break;
 792	case ICE_PTP_ADJ_TIME_AT_TIME:
 793		cmd_val = GLTSYN_CMD_ADJ_INIT_TIME;
 794		break;
 795	case ICE_PTP_NOP:
 796	case ICE_PTP_READ_TIME:
 797		cmd_val = GLTSYN_CMD_READ_TIME;
 798		break;
 799	default:
 800		dev_warn(ice_hw_to_dev(hw),
 801			 "Ignoring unrecognized timer command %u\n", cmd);
 802		cmd_val = 0;
 803	}
 804
 805	tmr_idx = ice_get_ptp_src_clock_index(hw);
 806
 807	return tmr_idx << SEL_CPK_SRC | cmd_val;
 808}
 809
 810/**
 811 * ice_ptp_tmr_cmd_to_port_reg- Convert to port timer command value
 812 * @hw: pointer to HW struct
 813 * @cmd: Timer command
 814 *
 815 * Note that some hardware families use a different command register value for
 816 * the PHY ports, while other hardware families use the same register values
 817 * as the source timer.
 818 *
 819 * Return: the PHY port timer command register value for the given PTP timer
 820 * command.
 821 */
 822static u32 ice_ptp_tmr_cmd_to_port_reg(struct ice_hw *hw,
 823				       enum ice_ptp_tmr_cmd cmd)
 824{
 825	u32 cmd_val, tmr_idx;
 826
 827	/* Certain hardware families share the same register values for the
 828	 * port register and source timer register.
 829	 */
 830	switch (ice_get_phy_model(hw)) {
 831	case ICE_PHY_E810:
 832		return ice_ptp_tmr_cmd_to_src_reg(hw, cmd) & TS_CMD_MASK_E810;
 833	default:
 834		break;
 835	}
 836
 837	switch (cmd) {
 838	case ICE_PTP_INIT_TIME:
 839		cmd_val = PHY_CMD_INIT_TIME;
 840		break;
 841	case ICE_PTP_INIT_INCVAL:
 842		cmd_val = PHY_CMD_INIT_INCVAL;
 843		break;
 844	case ICE_PTP_ADJ_TIME:
 845		cmd_val = PHY_CMD_ADJ_TIME;
 846		break;
 847	case ICE_PTP_ADJ_TIME_AT_TIME:
 848		cmd_val = PHY_CMD_ADJ_TIME_AT_TIME;
 849		break;
 850	case ICE_PTP_READ_TIME:
 851		cmd_val = PHY_CMD_READ_TIME;
 852		break;
 853	case ICE_PTP_NOP:
 854		cmd_val = 0;
 855		break;
 856	default:
 857		dev_warn(ice_hw_to_dev(hw),
 858			 "Ignoring unrecognized timer command %u\n", cmd);
 859		cmd_val = 0;
 860	}
 861
 862	tmr_idx = ice_get_ptp_src_clock_index(hw);
 863
 864	return tmr_idx << SEL_PHY_SRC | cmd_val;
 865}
 866
 867/**
 868 * ice_ptp_src_cmd - Prepare source timer for a timer command
 869 * @hw: pointer to HW structure
 870 * @cmd: Timer command
 871 *
 872 * Prepare the source timer for an upcoming timer sync command.
 873 */
 874void ice_ptp_src_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
 875{
 876	u32 cmd_val = ice_ptp_tmr_cmd_to_src_reg(hw, cmd);
 877
 878	wr32(hw, GLTSYN_CMD, cmd_val);
 879}
 880
 881/**
 882 * ice_ptp_exec_tmr_cmd - Execute all prepared timer commands
 883 * @hw: pointer to HW struct
 884 *
 885 * Write the SYNC_EXEC_CMD bit to the GLTSYN_CMD_SYNC register, and flush the
 886 * write immediately. This triggers the hardware to begin executing all of the
 887 * source and PHY timer commands synchronously.
 888 */
 889static void ice_ptp_exec_tmr_cmd(struct ice_hw *hw)
 890{
 891	struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
 892
 893	guard(spinlock)(&pf->adapter->ptp_gltsyn_time_lock);
 894	wr32(hw, GLTSYN_CMD_SYNC, SYNC_EXEC_CMD);
 895	ice_flush(hw);
 896}
 897
 898/* 56G PHY device functions
 899 *
 900 * The following functions operate on devices with the ETH 56G PHY.
 901 */
 902
 903/**
 904 * ice_ptp_get_dest_dev_e825 - get destination PHY for given port number
 905 * @hw: pointer to the HW struct
 906 * @port: destination port
 907 *
 908 * Return: destination sideband queue PHY device.
 909 */
 910static enum ice_sbq_msg_dev ice_ptp_get_dest_dev_e825(struct ice_hw *hw,
 911						      u8 port)
 912{
 913	/* On a single complex E825, PHY 0 is always destination device phy_0
 914	 * and PHY 1 is phy_0_peer.
 915	 */
 916	if (port >= hw->ptp.ports_per_phy)
 917		return eth56g_phy_1;
 918	else
 919		return eth56g_phy_0;
 920}
 921
 922/**
 923 * ice_write_phy_eth56g - Write a PHY port register
 924 * @hw: pointer to the HW struct
 925 * @port: destination port
 926 * @addr: PHY register address
 927 * @val: Value to write
 928 *
 929 * Return: 0 on success, other error codes when failed to write to PHY
 930 */
 931static int ice_write_phy_eth56g(struct ice_hw *hw, u8 port, u32 addr, u32 val)
 932{
 933	struct ice_sbq_msg_input msg = {
 934		.dest_dev = ice_ptp_get_dest_dev_e825(hw, port),
 935		.opcode = ice_sbq_msg_wr,
 936		.msg_addr_low = lower_16_bits(addr),
 937		.msg_addr_high = upper_16_bits(addr),
 938		.data = val
 939	};
 940	int err;
 941
 942	err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
 943	if (err)
 944		ice_debug(hw, ICE_DBG_PTP, "PTP failed to send msg to phy %d\n",
 945			  err);
 946
 947	return err;
 948}
 949
 950/**
 951 * ice_read_phy_eth56g - Read a PHY port register
 952 * @hw: pointer to the HW struct
 953 * @port: destination port
 954 * @addr: PHY register address
 955 * @val: Value to write
 956 *
 957 * Return: 0 on success, other error codes when failed to read from PHY
 958 */
 959static int ice_read_phy_eth56g(struct ice_hw *hw, u8 port, u32 addr, u32 *val)
 960{
 961	struct ice_sbq_msg_input msg = {
 962		.dest_dev = ice_ptp_get_dest_dev_e825(hw, port),
 963		.opcode = ice_sbq_msg_rd,
 964		.msg_addr_low = lower_16_bits(addr),
 965		.msg_addr_high = upper_16_bits(addr)
 966	};
 967	int err;
 968
 969	err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
 970	if (err)
 971		ice_debug(hw, ICE_DBG_PTP, "PTP failed to send msg to phy %d\n",
 972			  err);
 973	else
 974		*val = msg.data;
 975
 976	return err;
 977}
 978
 979/**
 980 * ice_phy_res_address_eth56g - Calculate a PHY port register address
 981 * @hw: pointer to the HW struct
 982 * @lane: Lane number to be written
 983 * @res_type: resource type (register/memory)
 984 * @offset: Offset from PHY port register base
 985 * @addr: The result address
 986 *
 987 * Return:
 988 * * %0      - success
 989 * * %EINVAL - invalid port number or resource type
 990 */
 991static int ice_phy_res_address_eth56g(struct ice_hw *hw, u8 lane,
 992				      enum eth56g_res_type res_type,
 993				      u32 offset,
 994				      u32 *addr)
 995{
 996	if (res_type >= NUM_ETH56G_PHY_RES)
 997		return -EINVAL;
 998
 999	/* Lanes 4..7 are in fact 0..3 on a second PHY */
1000	lane %= hw->ptp.ports_per_phy;
1001	*addr = eth56g_phy_res[res_type].base[0] +
1002		lane * eth56g_phy_res[res_type].step + offset;
1003
1004	return 0;
1005}
1006
1007/**
1008 * ice_write_port_eth56g - Write a PHY port register
1009 * @hw: pointer to the HW struct
1010 * @offset: PHY register offset
1011 * @port: Port number
1012 * @val: Value to write
1013 * @res_type: resource type (register/memory)
1014 *
1015 * Return:
1016 * * %0      - success
1017 * * %EINVAL - invalid port number or resource type
1018 * * %other  - failed to write to PHY
1019 */
1020static int ice_write_port_eth56g(struct ice_hw *hw, u8 port, u32 offset,
1021				 u32 val, enum eth56g_res_type res_type)
1022{
1023	u32 addr;
1024	int err;
1025
1026	if (port >= hw->ptp.num_lports)
1027		return -EINVAL;
1028
1029	err = ice_phy_res_address_eth56g(hw, port, res_type, offset, &addr);
1030	if (err)
1031		return err;
1032
1033	return ice_write_phy_eth56g(hw, port, addr, val);
1034}
1035
1036/**
1037 * ice_read_port_eth56g - Read a PHY port register
1038 * @hw: pointer to the HW struct
1039 * @offset: PHY register offset
1040 * @port: Port number
1041 * @val: Value to write
1042 * @res_type: resource type (register/memory)
1043 *
1044 * Return:
1045 * * %0      - success
1046 * * %EINVAL - invalid port number or resource type
1047 * * %other  - failed to read from PHY
1048 */
1049static int ice_read_port_eth56g(struct ice_hw *hw, u8 port, u32 offset,
1050				u32 *val, enum eth56g_res_type res_type)
1051{
1052	u32 addr;
1053	int err;
1054
1055	if (port >= hw->ptp.num_lports)
1056		return -EINVAL;
1057
1058	err = ice_phy_res_address_eth56g(hw, port, res_type, offset, &addr);
1059	if (err)
1060		return err;
1061
1062	return ice_read_phy_eth56g(hw, port, addr, val);
1063}
1064
1065/**
1066 * ice_write_ptp_reg_eth56g - Write a PHY port register
1067 * @hw: pointer to the HW struct
1068 * @port: Port number to be written
1069 * @offset: Offset from PHY port register base
1070 * @val: Value to write
1071 *
1072 * Return:
1073 * * %0      - success
1074 * * %EINVAL - invalid port number or resource type
1075 * * %other  - failed to write to PHY
1076 */
1077static int ice_write_ptp_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset,
1078				    u32 val)
1079{
1080	return ice_write_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_PTP);
1081}
1082
1083/**
1084 * ice_write_mac_reg_eth56g - Write a MAC PHY port register
1085 * parameter
1086 * @hw: pointer to the HW struct
1087 * @port: Port number to be written
1088 * @offset: Offset from PHY port register base
1089 * @val: Value to write
1090 *
1091 * Return:
1092 * * %0      - success
1093 * * %EINVAL - invalid port number or resource type
1094 * * %other  - failed to write to PHY
1095 */
1096static int ice_write_mac_reg_eth56g(struct ice_hw *hw, u8 port, u32 offset,
1097				    u32 val)
1098{
1099	return ice_write_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_MAC);
1100}
1101
1102/**
1103 * ice_write_xpcs_reg_eth56g - Write a PHY port register
1104 * @hw: pointer to the HW struct
1105 * @port: Port number to be written
1106 * @offset: Offset from PHY port register base
1107 * @val: Value to write
1108 *
1109 * Return:
1110 * * %0      - success
1111 * * %EINVAL - invalid port number or resource type
1112 * * %other  - failed to write to PHY
1113 */
1114static int ice_write_xpcs_reg_eth56g(struct ice_hw *hw, u8 port, u32 offset,
1115				     u32 val)
1116{
1117	return ice_write_port_eth56g(hw, port, offset, val,
1118				     ETH56G_PHY_REG_XPCS);
1119}
1120
1121/**
1122 * ice_read_ptp_reg_eth56g - Read a PHY port register
1123 * @hw: pointer to the HW struct
1124 * @port: Port number to be read
1125 * @offset: Offset from PHY port register base
1126 * @val: Pointer to the value to read (out param)
1127 *
1128 * Return:
1129 * * %0      - success
1130 * * %EINVAL - invalid port number or resource type
1131 * * %other  - failed to read from PHY
1132 */
1133static int ice_read_ptp_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset,
1134				   u32 *val)
1135{
1136	return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_PTP);
1137}
1138
1139/**
1140 * ice_read_mac_reg_eth56g - Read a PHY port register
1141 * @hw: pointer to the HW struct
1142 * @port: Port number to be read
1143 * @offset: Offset from PHY port register base
1144 * @val: Pointer to the value to read (out param)
1145 *
1146 * Return:
1147 * * %0      - success
1148 * * %EINVAL - invalid port number or resource type
1149 * * %other  - failed to read from PHY
1150 */
1151static int ice_read_mac_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset,
1152				   u32 *val)
1153{
1154	return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_MAC);
1155}
1156
1157/**
1158 * ice_read_gpcs_reg_eth56g - Read a PHY port register
1159 * @hw: pointer to the HW struct
1160 * @port: Port number to be read
1161 * @offset: Offset from PHY port register base
1162 * @val: Pointer to the value to read (out param)
1163 *
1164 * Return:
1165 * * %0      - success
1166 * * %EINVAL - invalid port number or resource type
1167 * * %other  - failed to read from PHY
1168 */
1169static int ice_read_gpcs_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset,
1170				    u32 *val)
1171{
1172	return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_GPCS);
1173}
1174
1175/**
1176 * ice_read_port_mem_eth56g - Read a PHY port memory location
1177 * @hw: pointer to the HW struct
1178 * @port: Port number to be read
1179 * @offset: Offset from PHY port register base
1180 * @val: Pointer to the value to read (out param)
1181 *
1182 * Return:
1183 * * %0      - success
1184 * * %EINVAL - invalid port number or resource type
1185 * * %other  - failed to read from PHY
1186 */
1187static int ice_read_port_mem_eth56g(struct ice_hw *hw, u8 port, u16 offset,
1188				    u32 *val)
1189{
1190	return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_MEM_PTP);
1191}
1192
1193/**
1194 * ice_write_port_mem_eth56g - Write a PHY port memory location
1195 * @hw: pointer to the HW struct
1196 * @port: Port number to be read
1197 * @offset: Offset from PHY port register base
1198 * @val: Pointer to the value to read (out param)
1199 *
1200 * Return:
1201 * * %0      - success
1202 * * %EINVAL - invalid port number or resource type
1203 * * %other  - failed to write to PHY
1204 */
1205static int ice_write_port_mem_eth56g(struct ice_hw *hw, u8 port, u16 offset,
1206				     u32 val)
1207{
1208	return ice_write_port_eth56g(hw, port, offset, val, ETH56G_PHY_MEM_PTP);
1209}
1210
1211/**
1212 * ice_write_quad_ptp_reg_eth56g - Write a PHY quad register
1213 * @hw: pointer to the HW struct
1214 * @offset: PHY register offset
1215 * @port: Port number
1216 * @val: Value to write
1217 *
1218 * Return:
1219 * * %0     - success
1220 * * %EIO  - invalid port number or resource type
1221 * * %other - failed to write to PHY
1222 */
1223static int ice_write_quad_ptp_reg_eth56g(struct ice_hw *hw, u8 port,
1224					 u32 offset, u32 val)
1225{
1226	u32 addr;
1227
1228	if (port >= hw->ptp.num_lports)
1229		return -EIO;
1230
1231	addr = eth56g_phy_res[ETH56G_PHY_REG_PTP].base[0] + offset;
1232
1233	return ice_write_phy_eth56g(hw, port, addr, val);
1234}
1235
1236/**
1237 * ice_read_quad_ptp_reg_eth56g - Read a PHY quad register
1238 * @hw: pointer to the HW struct
1239 * @offset: PHY register offset
1240 * @port: Port number
1241 * @val: Value to read
1242 *
1243 * Return:
1244 * * %0     - success
1245 * * %EIO  - invalid port number or resource type
1246 * * %other - failed to read from PHY
1247 */
1248static int ice_read_quad_ptp_reg_eth56g(struct ice_hw *hw, u8 port,
1249					u32 offset, u32 *val)
1250{
1251	u32 addr;
1252
1253	if (port >= hw->ptp.num_lports)
1254		return -EIO;
1255
1256	addr = eth56g_phy_res[ETH56G_PHY_REG_PTP].base[0] + offset;
1257
1258	return ice_read_phy_eth56g(hw, port, addr, val);
1259}
1260
1261/**
1262 * ice_is_64b_phy_reg_eth56g - Check if this is a 64bit PHY register
1263 * @low_addr: the low address to check
1264 * @high_addr: on return, contains the high address of the 64bit register
1265 *
1266 * Write the appropriate high register offset to use.
1267 *
1268 * Return: true if the provided low address is one of the known 64bit PHY values
1269 * represented as two 32bit registers, false otherwise.
1270 */
1271static bool ice_is_64b_phy_reg_eth56g(u16 low_addr, u16 *high_addr)
1272{
1273	switch (low_addr) {
1274	case PHY_REG_TX_TIMER_INC_PRE_L:
1275		*high_addr = PHY_REG_TX_TIMER_INC_PRE_U;
1276		return true;
1277	case PHY_REG_RX_TIMER_INC_PRE_L:
1278		*high_addr = PHY_REG_RX_TIMER_INC_PRE_U;
1279		return true;
1280	case PHY_REG_TX_CAPTURE_L:
1281		*high_addr = PHY_REG_TX_CAPTURE_U;
1282		return true;
1283	case PHY_REG_RX_CAPTURE_L:
1284		*high_addr = PHY_REG_RX_CAPTURE_U;
1285		return true;
1286	case PHY_REG_TOTAL_TX_OFFSET_L:
1287		*high_addr = PHY_REG_TOTAL_TX_OFFSET_U;
1288		return true;
1289	case PHY_REG_TOTAL_RX_OFFSET_L:
1290		*high_addr = PHY_REG_TOTAL_RX_OFFSET_U;
1291		return true;
1292	case PHY_REG_TX_MEMORY_STATUS_L:
1293		*high_addr = PHY_REG_TX_MEMORY_STATUS_U;
1294		return true;
1295	default:
1296		return false;
1297	}
1298}
1299
1300/**
1301 * ice_is_40b_phy_reg_eth56g - Check if this is a 40bit PHY register
1302 * @low_addr: the low address to check
1303 * @high_addr: on return, contains the high address of the 40bit value
1304 *
1305 * Write the appropriate high register offset to use.
1306 *
1307 * Return: true if the provided low address is one of the known 40bit PHY
1308 * values split into two registers with the lower 8 bits in the low register and
1309 * the upper 32 bits in the high register, false otherwise.
1310 */
1311static bool ice_is_40b_phy_reg_eth56g(u16 low_addr, u16 *high_addr)
1312{
1313	switch (low_addr) {
1314	case PHY_REG_TIMETUS_L:
1315		*high_addr = PHY_REG_TIMETUS_U;
1316		return true;
1317	case PHY_PCS_REF_TUS_L:
1318		*high_addr = PHY_PCS_REF_TUS_U;
1319		return true;
1320	case PHY_PCS_REF_INC_L:
1321		*high_addr = PHY_PCS_REF_INC_U;
1322		return true;
1323	default:
1324		return false;
1325	}
1326}
1327
1328/**
1329 * ice_read_64b_phy_reg_eth56g - Read a 64bit value from PHY registers
1330 * @hw: pointer to the HW struct
1331 * @port: PHY port to read from
1332 * @low_addr: offset of the lower register to read from
1333 * @val: on return, the contents of the 64bit value from the PHY registers
1334 * @res_type: resource type
1335 *
1336 * Check if the caller has specified a known 40 bit register offset and read
1337 * the two registers associated with a 40bit value and return it in the val
1338 * pointer.
1339 *
1340 * Return:
1341 * * %0      - success
1342 * * %EINVAL - not a 64 bit register
1343 * * %other  - failed to read from PHY
1344 */
1345static int ice_read_64b_phy_reg_eth56g(struct ice_hw *hw, u8 port, u16 low_addr,
1346				       u64 *val, enum eth56g_res_type res_type)
1347{
1348	u16 high_addr;
1349	u32 lo, hi;
1350	int err;
1351
1352	if (!ice_is_64b_phy_reg_eth56g(low_addr, &high_addr))
1353		return -EINVAL;
1354
1355	err = ice_read_port_eth56g(hw, port, low_addr, &lo, res_type);
1356	if (err) {
1357		ice_debug(hw, ICE_DBG_PTP, "Failed to read from low register %#08x\n, err %d",
1358			  low_addr, err);
1359		return err;
1360	}
1361
1362	err = ice_read_port_eth56g(hw, port, high_addr, &hi, res_type);
1363	if (err) {
1364		ice_debug(hw, ICE_DBG_PTP, "Failed to read from high register %#08x\n, err %d",
1365			  high_addr, err);
1366		return err;
1367	}
1368
1369	*val = ((u64)hi << 32) | lo;
1370
1371	return 0;
1372}
1373
1374/**
1375 * ice_read_64b_ptp_reg_eth56g - Read a 64bit value from PHY registers
1376 * @hw: pointer to the HW struct
1377 * @port: PHY port to read from
1378 * @low_addr: offset of the lower register to read from
1379 * @val: on return, the contents of the 64bit value from the PHY registers
1380 *
1381 * Check if the caller has specified a known 40 bit register offset and read
1382 * the two registers associated with a 40bit value and return it in the val
1383 * pointer.
1384 *
1385 * Return:
1386 * * %0      - success
1387 * * %EINVAL - not a 64 bit register
1388 * * %other  - failed to read from PHY
1389 */
1390static int ice_read_64b_ptp_reg_eth56g(struct ice_hw *hw, u8 port, u16 low_addr,
1391				       u64 *val)
1392{
1393	return ice_read_64b_phy_reg_eth56g(hw, port, low_addr, val,
1394					   ETH56G_PHY_REG_PTP);
1395}
1396
1397/**
1398 * ice_write_40b_phy_reg_eth56g - Write a 40b value to the PHY
1399 * @hw: pointer to the HW struct
1400 * @port: port to write to
1401 * @low_addr: offset of the low register
1402 * @val: 40b value to write
1403 * @res_type: resource type
1404 *
1405 * Check if the caller has specified a known 40 bit register offset and write
1406 * provided 40b value to the two associated registers by splitting it up into
1407 * two chunks, the lower 8 bits and the upper 32 bits.
1408 *
1409 * Return:
1410 * * %0      - success
1411 * * %EINVAL - not a 40 bit register
1412 * * %other  - failed to write to PHY
1413 */
1414static int ice_write_40b_phy_reg_eth56g(struct ice_hw *hw, u8 port,
1415					u16 low_addr, u64 val,
1416					enum eth56g_res_type res_type)
1417{
1418	u16 high_addr;
1419	u32 lo, hi;
1420	int err;
1421
1422	if (!ice_is_40b_phy_reg_eth56g(low_addr, &high_addr))
1423		return -EINVAL;
1424
1425	lo = FIELD_GET(P_REG_40B_LOW_M, val);
1426	hi = (u32)(val >> P_REG_40B_HIGH_S);
1427
1428	err = ice_write_port_eth56g(hw, port, low_addr, lo, res_type);
1429	if (err) {
1430		ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
1431			  low_addr, err);
1432		return err;
1433	}
1434
1435	err = ice_write_port_eth56g(hw, port, high_addr, hi, res_type);
1436	if (err) {
1437		ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
1438			  high_addr, err);
1439		return err;
1440	}
1441
1442	return 0;
1443}
1444
1445/**
1446 * ice_write_40b_ptp_reg_eth56g - Write a 40b value to the PHY
1447 * @hw: pointer to the HW struct
1448 * @port: port to write to
1449 * @low_addr: offset of the low register
1450 * @val: 40b value to write
1451 *
1452 * Check if the caller has specified a known 40 bit register offset and write
1453 * provided 40b value to the two associated registers by splitting it up into
1454 * two chunks, the lower 8 bits and the upper 32 bits.
1455 *
1456 * Return:
1457 * * %0      - success
1458 * * %EINVAL - not a 40 bit register
1459 * * %other  - failed to write to PHY
1460 */
1461static int ice_write_40b_ptp_reg_eth56g(struct ice_hw *hw, u8 port,
1462					u16 low_addr, u64 val)
1463{
1464	return ice_write_40b_phy_reg_eth56g(hw, port, low_addr, val,
1465					    ETH56G_PHY_REG_PTP);
1466}
1467
1468/**
1469 * ice_write_64b_phy_reg_eth56g - Write a 64bit value to PHY registers
1470 * @hw: pointer to the HW struct
1471 * @port: PHY port to read from
1472 * @low_addr: offset of the lower register to read from
1473 * @val: the contents of the 64bit value to write to PHY
1474 * @res_type: resource type
1475 *
1476 * Check if the caller has specified a known 64 bit register offset and write
1477 * the 64bit value to the two associated 32bit PHY registers.
1478 *
1479 * Return:
1480 * * %0      - success
1481 * * %EINVAL - not a 64 bit register
1482 * * %other  - failed to write to PHY
1483 */
1484static int ice_write_64b_phy_reg_eth56g(struct ice_hw *hw, u8 port,
1485					u16 low_addr, u64 val,
1486					enum eth56g_res_type res_type)
1487{
1488	u16 high_addr;
1489	u32 lo, hi;
1490	int err;
1491
1492	if (!ice_is_64b_phy_reg_eth56g(low_addr, &high_addr))
1493		return -EINVAL;
1494
1495	lo = lower_32_bits(val);
1496	hi = upper_32_bits(val);
1497
1498	err = ice_write_port_eth56g(hw, port, low_addr, lo, res_type);
1499	if (err) {
1500		ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
1501			  low_addr, err);
1502		return err;
1503	}
1504
1505	err = ice_write_port_eth56g(hw, port, high_addr, hi, res_type);
1506	if (err) {
1507		ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
1508			  high_addr, err);
1509		return err;
1510	}
1511
1512	return 0;
1513}
1514
1515/**
1516 * ice_write_64b_ptp_reg_eth56g - Write a 64bit value to PHY registers
1517 * @hw: pointer to the HW struct
1518 * @port: PHY port to read from
1519 * @low_addr: offset of the lower register to read from
1520 * @val: the contents of the 64bit value to write to PHY
1521 *
1522 * Check if the caller has specified a known 64 bit register offset and write
1523 * the 64bit value to the two associated 32bit PHY registers.
1524 *
1525 * Return:
1526 * * %0      - success
1527 * * %EINVAL - not a 64 bit register
1528 * * %other  - failed to write to PHY
1529 */
1530static int ice_write_64b_ptp_reg_eth56g(struct ice_hw *hw, u8 port,
1531					u16 low_addr, u64 val)
1532{
1533	return ice_write_64b_phy_reg_eth56g(hw, port, low_addr, val,
1534					    ETH56G_PHY_REG_PTP);
1535}
1536
1537/**
1538 * ice_read_ptp_tstamp_eth56g - Read a PHY timestamp out of the port memory
1539 * @hw: pointer to the HW struct
1540 * @port: the port to read from
1541 * @idx: the timestamp index to read
1542 * @tstamp: on return, the 40bit timestamp value
1543 *
1544 * Read a 40bit timestamp value out of the two associated entries in the
1545 * port memory block of the internal PHYs of the 56G devices.
1546 *
1547 * Return:
1548 * * %0     - success
1549 * * %other - failed to read from PHY
1550 */
1551static int ice_read_ptp_tstamp_eth56g(struct ice_hw *hw, u8 port, u8 idx,
1552				      u64 *tstamp)
1553{
1554	u16 lo_addr, hi_addr;
1555	u32 lo, hi;
1556	int err;
1557
1558	lo_addr = (u16)PHY_TSTAMP_L(idx);
1559	hi_addr = (u16)PHY_TSTAMP_U(idx);
1560
1561	err = ice_read_port_mem_eth56g(hw, port, lo_addr, &lo);
1562	if (err) {
1563		ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
1564			  err);
1565		return err;
1566	}
1567
1568	err = ice_read_port_mem_eth56g(hw, port, hi_addr, &hi);
1569	if (err) {
1570		ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
1571			  err);
1572		return err;
1573	}
1574
1575	/* For 56G based internal PHYs, the timestamp is reported with the
1576	 * lower 8 bits in the low register, and the upper 32 bits in the high
1577	 * register.
1578	 */
1579	*tstamp = FIELD_PREP(TS_PHY_HIGH_M, hi) |
1580		  FIELD_PREP(TS_PHY_LOW_M, lo);
1581
1582	return 0;
1583}
1584
1585/**
1586 * ice_clear_ptp_tstamp_eth56g - Clear a timestamp from the quad block
1587 * @hw: pointer to the HW struct
1588 * @port: the quad to read from
1589 * @idx: the timestamp index to reset
1590 *
1591 * Read and then forcibly clear the timestamp index to ensure the valid bit is
1592 * cleared and the timestamp status bit is reset in the PHY port memory of
1593 * internal PHYs of the 56G devices.
1594 *
1595 * To directly clear the contents of the timestamp block entirely, discarding
1596 * all timestamp data at once, software should instead use
1597 * ice_ptp_reset_ts_memory_quad_eth56g().
1598 *
1599 * This function should only be called on an idx whose bit is set according to
1600 * ice_get_phy_tx_tstamp_ready().
1601 *
1602 * Return:
1603 * * %0     - success
1604 * * %other - failed to write to PHY
1605 */
1606static int ice_clear_ptp_tstamp_eth56g(struct ice_hw *hw, u8 port, u8 idx)
1607{
1608	u64 unused_tstamp;
1609	u16 lo_addr;
1610	int err;
1611
1612	/* Read the timestamp register to ensure the timestamp status bit is
1613	 * cleared.
1614	 */
1615	err = ice_read_ptp_tstamp_eth56g(hw, port, idx, &unused_tstamp);
1616	if (err) {
1617		ice_debug(hw, ICE_DBG_PTP, "Failed to read the PHY timestamp register for port %u, idx %u, err %d\n",
1618			  port, idx, err);
1619	}
1620
1621	lo_addr = (u16)PHY_TSTAMP_L(idx);
1622
1623	err = ice_write_port_mem_eth56g(hw, port, lo_addr, 0);
1624	if (err) {
1625		ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register for port %u, idx %u, err %d\n",
1626			  port, idx, err);
1627		return err;
1628	}
1629
1630	return 0;
1631}
1632
1633/**
1634 * ice_ptp_reset_ts_memory_eth56g - Clear all timestamps from the port block
1635 * @hw: pointer to the HW struct
1636 */
1637static void ice_ptp_reset_ts_memory_eth56g(struct ice_hw *hw)
1638{
1639	unsigned int port;
1640
1641	for (port = 0; port < hw->ptp.num_lports; port++) {
1642		ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_MEMORY_STATUS_L,
1643					 0);
1644		ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_MEMORY_STATUS_U,
1645					 0);
1646	}
1647}
1648
1649/**
1650 * ice_ptp_prep_port_time_eth56g - Prepare one PHY port with initial time
1651 * @hw: pointer to the HW struct
1652 * @port: port number
1653 * @time: time to initialize the PHY port clocks to
1654 *
1655 * Write a new initial time value into registers of a specific PHY port.
1656 *
1657 * Return:
1658 * * %0     - success
1659 * * %other - failed to write to PHY
1660 */
1661static int ice_ptp_prep_port_time_eth56g(struct ice_hw *hw, u8 port,
1662					 u64 time)
1663{
1664	int err;
1665
1666	/* Tx case */
1667	err = ice_write_64b_ptp_reg_eth56g(hw, port, PHY_REG_TX_TIMER_INC_PRE_L,
1668					   time);
1669	if (err)
1670		return err;
1671
1672	/* Rx case */
1673	return ice_write_64b_ptp_reg_eth56g(hw, port,
1674					    PHY_REG_RX_TIMER_INC_PRE_L, time);
1675}
1676
1677/**
1678 * ice_ptp_prep_phy_time_eth56g - Prepare PHY port with initial time
1679 * @hw: pointer to the HW struct
1680 * @time: Time to initialize the PHY port clocks to
1681 *
1682 * Program the PHY port registers with a new initial time value. The port
1683 * clock will be initialized once the driver issues an ICE_PTP_INIT_TIME sync
1684 * command. The time value is the upper 32 bits of the PHY timer, usually in
1685 * units of nominal nanoseconds.
1686 *
1687 * Return:
1688 * * %0     - success
1689 * * %other - failed to write to PHY
1690 */
1691static int ice_ptp_prep_phy_time_eth56g(struct ice_hw *hw, u32 time)
1692{
1693	u64 phy_time;
1694	u8 port;
1695
1696	/* The time represents the upper 32 bits of the PHY timer, so we need
1697	 * to shift to account for this when programming.
1698	 */
1699	phy_time = (u64)time << 32;
1700
1701	for (port = 0; port < hw->ptp.num_lports; port++) {
1702		int err;
1703
1704		err = ice_ptp_prep_port_time_eth56g(hw, port, phy_time);
1705		if (err) {
1706			ice_debug(hw, ICE_DBG_PTP, "Failed to write init time for port %u, err %d\n",
1707				  port, err);
1708			return err;
1709		}
1710	}
1711
1712	return 0;
1713}
1714
1715/**
1716 * ice_ptp_prep_port_adj_eth56g - Prepare a single port for time adjust
1717 * @hw: pointer to HW struct
1718 * @port: Port number to be programmed
1719 * @time: time in cycles to adjust the port clocks
1720 *
1721 * Program the port for an atomic adjustment by writing the Tx and Rx timer
1722 * registers. The atomic adjustment won't be completed until the driver issues
1723 * an ICE_PTP_ADJ_TIME command.
1724 *
1725 * Note that time is not in units of nanoseconds. It is in clock time
1726 * including the lower sub-nanosecond portion of the port timer.
1727 *
1728 * Negative adjustments are supported using 2s complement arithmetic.
1729 *
1730 * Return:
1731 * * %0     - success
1732 * * %other - failed to write to PHY
1733 */
1734static int ice_ptp_prep_port_adj_eth56g(struct ice_hw *hw, u8 port, s64 time)
1735{
1736	u32 l_time, u_time;
1737	int err;
1738
1739	l_time = lower_32_bits(time);
1740	u_time = upper_32_bits(time);
1741
1742	/* Tx case */
1743	err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_TIMER_INC_PRE_L,
1744				       l_time);
1745	if (err)
1746		goto exit_err;
1747
1748	err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_TIMER_INC_PRE_U,
1749				       u_time);
1750	if (err)
1751		goto exit_err;
1752
1753	/* Rx case */
1754	err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_TIMER_INC_PRE_L,
1755				       l_time);
1756	if (err)
1757		goto exit_err;
1758
1759	err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_TIMER_INC_PRE_U,
1760				       u_time);
1761	if (err)
1762		goto exit_err;
1763
1764	return 0;
1765
1766exit_err:
1767	ice_debug(hw, ICE_DBG_PTP, "Failed to write time adjust for port %u, err %d\n",
1768		  port, err);
1769	return err;
1770}
1771
1772/**
1773 * ice_ptp_prep_phy_adj_eth56g - Prep PHY ports for a time adjustment
1774 * @hw: pointer to HW struct
1775 * @adj: adjustment in nanoseconds
1776 *
1777 * Prepare the PHY ports for an atomic time adjustment by programming the PHY
1778 * Tx and Rx port registers. The actual adjustment is completed by issuing an
1779 * ICE_PTP_ADJ_TIME or ICE_PTP_ADJ_TIME_AT_TIME sync command.
1780 *
1781 * Return:
1782 * * %0     - success
1783 * * %other - failed to write to PHY
1784 */
1785static int ice_ptp_prep_phy_adj_eth56g(struct ice_hw *hw, s32 adj)
1786{
1787	s64 cycles;
1788	u8 port;
1789
1790	/* The port clock supports adjustment of the sub-nanosecond portion of
1791	 * the clock (lowest 32 bits). We shift the provided adjustment in
1792	 * nanoseconds by 32 to calculate the appropriate adjustment to program
1793	 * into the PHY ports.
1794	 */
1795	cycles = (s64)adj << 32;
1796
1797	for (port = 0; port < hw->ptp.num_lports; port++) {
1798		int err;
1799
1800		err = ice_ptp_prep_port_adj_eth56g(hw, port, cycles);
1801		if (err)
1802			return err;
1803	}
1804
1805	return 0;
1806}
1807
1808/**
1809 * ice_ptp_prep_phy_incval_eth56g - Prepare PHY ports for time adjustment
1810 * @hw: pointer to HW struct
1811 * @incval: new increment value to prepare
1812 *
1813 * Prepare each of the PHY ports for a new increment value by programming the
1814 * port's TIMETUS registers. The new increment value will be updated after
1815 * issuing an ICE_PTP_INIT_INCVAL command.
1816 *
1817 * Return:
1818 * * %0     - success
1819 * * %other - failed to write to PHY
1820 */
1821static int ice_ptp_prep_phy_incval_eth56g(struct ice_hw *hw, u64 incval)
1822{
1823	u8 port;
1824
1825	for (port = 0; port < hw->ptp.num_lports; port++) {
1826		int err;
1827
1828		err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_REG_TIMETUS_L,
1829						   incval);
1830		if (err) {
1831			ice_debug(hw, ICE_DBG_PTP, "Failed to write incval for port %u, err %d\n",
1832				  port, err);
1833			return err;
1834		}
1835	}
1836
1837	return 0;
1838}
1839
1840/**
1841 * ice_ptp_read_port_capture_eth56g - Read a port's local time capture
1842 * @hw: pointer to HW struct
1843 * @port: Port number to read
1844 * @tx_ts: on return, the Tx port time capture
1845 * @rx_ts: on return, the Rx port time capture
1846 *
1847 * Read the port's Tx and Rx local time capture values.
1848 *
1849 * Return:
1850 * * %0     - success
1851 * * %other - failed to read from PHY
1852 */
1853static int ice_ptp_read_port_capture_eth56g(struct ice_hw *hw, u8 port,
1854					    u64 *tx_ts, u64 *rx_ts)
1855{
1856	int err;
1857
1858	/* Tx case */
1859	err = ice_read_64b_ptp_reg_eth56g(hw, port, PHY_REG_TX_CAPTURE_L,
1860					  tx_ts);
1861	if (err) {
1862		ice_debug(hw, ICE_DBG_PTP, "Failed to read REG_TX_CAPTURE, err %d\n",
1863			  err);
1864		return err;
1865	}
1866
1867	ice_debug(hw, ICE_DBG_PTP, "tx_init = %#016llx\n", *tx_ts);
1868
1869	/* Rx case */
1870	err = ice_read_64b_ptp_reg_eth56g(hw, port, PHY_REG_RX_CAPTURE_L,
1871					  rx_ts);
1872	if (err) {
1873		ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_CAPTURE, err %d\n",
1874			  err);
1875		return err;
1876	}
1877
1878	ice_debug(hw, ICE_DBG_PTP, "rx_init = %#016llx\n", *rx_ts);
1879
1880	return 0;
1881}
1882
1883/**
1884 * ice_ptp_write_port_cmd_eth56g - Prepare a single PHY port for a timer command
1885 * @hw: pointer to HW struct
1886 * @port: Port to which cmd has to be sent
1887 * @cmd: Command to be sent to the port
1888 *
1889 * Prepare the requested port for an upcoming timer sync command.
1890 *
1891 * Return:
1892 * * %0     - success
1893 * * %other - failed to write to PHY
1894 */
1895static int ice_ptp_write_port_cmd_eth56g(struct ice_hw *hw, u8 port,
1896					 enum ice_ptp_tmr_cmd cmd)
1897{
1898	u32 val = ice_ptp_tmr_cmd_to_port_reg(hw, cmd);
1899	int err;
1900
1901	/* Tx case */
1902	err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_TMR_CMD, val);
1903	if (err) {
1904		ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_TMR_CMD, err %d\n",
1905			  err);
1906		return err;
1907	}
1908
1909	/* Rx case */
1910	err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_TMR_CMD, val);
1911	if (err) {
1912		ice_debug(hw, ICE_DBG_PTP, "Failed to write back RX_TMR_CMD, err %d\n",
1913			  err);
1914		return err;
1915	}
1916
1917	return 0;
1918}
1919
1920/**
1921 * ice_phy_get_speed_eth56g - Get link speed based on PHY link type
1922 * @li: pointer to link information struct
1923 *
1924 * Return: simplified ETH56G PHY speed
1925 */
1926static enum ice_eth56g_link_spd
1927ice_phy_get_speed_eth56g(struct ice_link_status *li)
1928{
1929	u16 speed = ice_get_link_speed_based_on_phy_type(li->phy_type_low,
1930							 li->phy_type_high);
1931
1932	switch (speed) {
1933	case ICE_AQ_LINK_SPEED_1000MB:
1934		return ICE_ETH56G_LNK_SPD_1G;
1935	case ICE_AQ_LINK_SPEED_2500MB:
1936		return ICE_ETH56G_LNK_SPD_2_5G;
1937	case ICE_AQ_LINK_SPEED_10GB:
1938		return ICE_ETH56G_LNK_SPD_10G;
1939	case ICE_AQ_LINK_SPEED_25GB:
1940		return ICE_ETH56G_LNK_SPD_25G;
1941	case ICE_AQ_LINK_SPEED_40GB:
1942		return ICE_ETH56G_LNK_SPD_40G;
1943	case ICE_AQ_LINK_SPEED_50GB:
1944		switch (li->phy_type_low) {
1945		case ICE_PHY_TYPE_LOW_50GBASE_SR:
1946		case ICE_PHY_TYPE_LOW_50GBASE_FR:
1947		case ICE_PHY_TYPE_LOW_50GBASE_LR:
1948		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
1949		case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
1950		case ICE_PHY_TYPE_LOW_50G_AUI1:
1951			return ICE_ETH56G_LNK_SPD_50G;
1952		default:
1953			return ICE_ETH56G_LNK_SPD_50G2;
1954		}
1955	case ICE_AQ_LINK_SPEED_100GB:
1956		if (li->phy_type_high ||
1957		    li->phy_type_low == ICE_PHY_TYPE_LOW_100GBASE_SR2)
1958			return ICE_ETH56G_LNK_SPD_100G2;
1959		else
1960			return ICE_ETH56G_LNK_SPD_100G;
1961	default:
1962		return ICE_ETH56G_LNK_SPD_1G;
1963	}
1964}
1965
1966/**
1967 * ice_phy_cfg_parpcs_eth56g - Configure TUs per PAR/PCS clock cycle
1968 * @hw: pointer to the HW struct
1969 * @port: port to configure
1970 *
1971 * Configure the number of TUs for the PAR and PCS clocks used as part of the
1972 * timestamp calibration process.
1973 *
1974 * Return:
1975 * * %0     - success
1976 * * %other - PHY read/write failed
1977 */
1978static int ice_phy_cfg_parpcs_eth56g(struct ice_hw *hw, u8 port)
1979{
1980	u32 val;
1981	int err;
1982
1983	err = ice_write_xpcs_reg_eth56g(hw, port, PHY_VENDOR_TXLANE_THRESH,
1984					ICE_ETH56G_NOMINAL_THRESH4);
1985	if (err) {
1986		ice_debug(hw, ICE_DBG_PTP, "Failed to read VENDOR_TXLANE_THRESH, status: %d",
1987			  err);
1988		return err;
1989	}
1990
1991	switch (ice_phy_get_speed_eth56g(&hw->port_info->phy.link_info)) {
1992	case ICE_ETH56G_LNK_SPD_1G:
1993	case ICE_ETH56G_LNK_SPD_2_5G:
1994		err = ice_read_quad_ptp_reg_eth56g(hw, port,
1995						   PHY_GPCS_CONFIG_REG0, &val);
1996		if (err) {
1997			ice_debug(hw, ICE_DBG_PTP, "Failed to read PHY_GPCS_CONFIG_REG0, status: %d",
1998				  err);
1999			return err;
2000		}
2001
2002		val &= ~PHY_GPCS_CONFIG_REG0_TX_THR_M;
2003		val |= FIELD_PREP(PHY_GPCS_CONFIG_REG0_TX_THR_M,
2004				  ICE_ETH56G_NOMINAL_TX_THRESH);
2005
2006		err = ice_write_quad_ptp_reg_eth56g(hw, port,
2007						    PHY_GPCS_CONFIG_REG0, val);
2008		if (err) {
2009			ice_debug(hw, ICE_DBG_PTP, "Failed to write PHY_GPCS_CONFIG_REG0, status: %d",
2010				  err);
2011			return err;
2012		}
2013		break;
2014	default:
2015		break;
2016	}
2017
2018	err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_PCS_REF_TUS_L,
2019					   ICE_ETH56G_NOMINAL_PCS_REF_TUS);
2020	if (err) {
2021		ice_debug(hw, ICE_DBG_PTP, "Failed to write PHY_PCS_REF_TUS, status: %d",
2022			  err);
2023		return err;
2024	}
2025
2026	err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_PCS_REF_INC_L,
2027					   ICE_ETH56G_NOMINAL_PCS_REF_INC);
2028	if (err) {
2029		ice_debug(hw, ICE_DBG_PTP, "Failed to write PHY_PCS_REF_INC, status: %d",
2030			  err);
2031		return err;
2032	}
2033
2034	return 0;
2035}
2036
2037/**
2038 * ice_phy_cfg_ptp_1step_eth56g - Configure 1-step PTP settings
2039 * @hw: Pointer to the HW struct
2040 * @port: Port to configure
2041 *
2042 * Return:
2043 * * %0     - success
2044 * * %other - PHY read/write failed
2045 */
2046int ice_phy_cfg_ptp_1step_eth56g(struct ice_hw *hw, u8 port)
2047{
2048	u8 quad_lane = port % ICE_PORTS_PER_QUAD;
2049	u32 addr, val, peer_delay;
2050	bool enable, sfd_ena;
2051	int err;
2052
2053	enable = hw->ptp.phy.eth56g.onestep_ena;
2054	peer_delay = hw->ptp.phy.eth56g.peer_delay;
2055	sfd_ena = hw->ptp.phy.eth56g.sfd_ena;
2056
2057	addr = PHY_PTP_1STEP_CONFIG;
2058	err = ice_read_quad_ptp_reg_eth56g(hw, port, addr, &val);
2059	if (err)
2060		return err;
2061
2062	if (enable)
2063		val |= BIT(quad_lane);
2064	else
2065		val &= ~BIT(quad_lane);
2066
2067	val &= ~(PHY_PTP_1STEP_T1S_UP64_M | PHY_PTP_1STEP_T1S_DELTA_M);
2068
2069	err = ice_write_quad_ptp_reg_eth56g(hw, port, addr, val);
2070	if (err)
2071		return err;
2072
2073	addr = PHY_PTP_1STEP_PEER_DELAY(quad_lane);
2074	val = FIELD_PREP(PHY_PTP_1STEP_PD_DELAY_M, peer_delay);
2075	if (peer_delay)
2076		val |= PHY_PTP_1STEP_PD_ADD_PD_M;
2077	val |= PHY_PTP_1STEP_PD_DLY_V_M;
2078	err = ice_write_quad_ptp_reg_eth56g(hw, port, addr, val);
2079	if (err)
2080		return err;
2081
2082	val &= ~PHY_PTP_1STEP_PD_DLY_V_M;
2083	err = ice_write_quad_ptp_reg_eth56g(hw, port, addr, val);
2084	if (err)
2085		return err;
2086
2087	addr = PHY_MAC_XIF_MODE;
2088	err = ice_read_mac_reg_eth56g(hw, port, addr, &val);
2089	if (err)
2090		return err;
2091
2092	val &= ~(PHY_MAC_XIF_1STEP_ENA_M | PHY_MAC_XIF_TS_BIN_MODE_M |
2093		 PHY_MAC_XIF_TS_SFD_ENA_M | PHY_MAC_XIF_GMII_TS_SEL_M);
2094
2095	switch (ice_phy_get_speed_eth56g(&hw->port_info->phy.link_info)) {
2096	case ICE_ETH56G_LNK_SPD_1G:
2097	case ICE_ETH56G_LNK_SPD_2_5G:
2098		val |= PHY_MAC_XIF_GMII_TS_SEL_M;
2099		break;
2100	default:
2101		break;
2102	}
2103
2104	val |= FIELD_PREP(PHY_MAC_XIF_1STEP_ENA_M, enable) |
2105	       FIELD_PREP(PHY_MAC_XIF_TS_BIN_MODE_M, enable) |
2106	       FIELD_PREP(PHY_MAC_XIF_TS_SFD_ENA_M, sfd_ena);
2107
2108	return ice_write_mac_reg_eth56g(hw, port, addr, val);
2109}
2110
2111/**
2112 * mul_u32_u32_fx_q9 - Multiply two u32 fixed point Q9 values
2113 * @a: multiplier value
2114 * @b: multiplicand value
2115 *
2116 * Return: result of multiplication
2117 */
2118static u32 mul_u32_u32_fx_q9(u32 a, u32 b)
2119{
2120	return (u32)(((u64)a * b) >> ICE_ETH56G_MAC_CFG_FRAC_W);
2121}
2122
2123/**
2124 * add_u32_u32_fx - Add two u32 fixed point values and discard overflow
2125 * @a: first value
2126 * @b: second value
2127 *
2128 * Return: result of addition
2129 */
2130static u32 add_u32_u32_fx(u32 a, u32 b)
2131{
2132	return lower_32_bits(((u64)a + b));
2133}
2134
2135/**
2136 * ice_ptp_calc_bitslip_eth56g - Calculate bitslip value
2137 * @hw: pointer to the HW struct
2138 * @port: port to configure
2139 * @bs: bitslip multiplier
2140 * @fc: FC-FEC enabled
2141 * @rs: RS-FEC enabled
2142 * @spd: link speed
2143 *
2144 * Return: calculated bitslip value
2145 */
2146static u32 ice_ptp_calc_bitslip_eth56g(struct ice_hw *hw, u8 port, u32 bs,
2147				       bool fc, bool rs,
2148				       enum ice_eth56g_link_spd spd)
2149{
2150	u32 bitslip;
2151	int err;
2152
2153	if (!bs || rs)
2154		return 0;
2155
2156	if (spd == ICE_ETH56G_LNK_SPD_1G || spd == ICE_ETH56G_LNK_SPD_2_5G) {
2157		err = ice_read_gpcs_reg_eth56g(hw, port, PHY_GPCS_BITSLIP,
2158					       &bitslip);
2159	} else {
2160		u8 quad_lane = port % ICE_PORTS_PER_QUAD;
2161		u32 addr;
2162
2163		addr = PHY_REG_SD_BIT_SLIP(quad_lane);
2164		err = ice_read_quad_ptp_reg_eth56g(hw, port, addr, &bitslip);
2165	}
2166	if (err)
2167		return 0;
2168
2169	if (spd == ICE_ETH56G_LNK_SPD_1G && !bitslip) {
2170		/* Bitslip register value of 0 corresponds to 10 so substitute
2171		 * it for calculations
2172		 */
2173		bitslip = 10;
2174	} else if (spd == ICE_ETH56G_LNK_SPD_10G ||
2175		   spd == ICE_ETH56G_LNK_SPD_25G) {
2176		if (fc)
2177			bitslip = bitslip * 2 + 32;
2178		else
2179			bitslip = (u32)((s32)bitslip * -1 + 20);
2180	}
2181
2182	bitslip <<= ICE_ETH56G_MAC_CFG_FRAC_W;
2183	return mul_u32_u32_fx_q9(bitslip, bs);
2184}
2185
2186/**
2187 * ice_ptp_calc_deskew_eth56g - Calculate deskew value
2188 * @hw: pointer to the HW struct
2189 * @port: port to configure
2190 * @ds: deskew multiplier
2191 * @rs: RS-FEC enabled
2192 * @spd: link speed
2193 *
2194 * Return: calculated deskew value
2195 */
2196static u32 ice_ptp_calc_deskew_eth56g(struct ice_hw *hw, u8 port, u32 ds,
2197				      bool rs, enum ice_eth56g_link_spd spd)
2198{
2199	u32 deskew_i, deskew_f;
2200	int err;
2201
2202	if (!ds)
2203		return 0;
2204
2205	read_poll_timeout(ice_read_ptp_reg_eth56g, err,
2206			  FIELD_GET(PHY_REG_DESKEW_0_VALID, deskew_i), 500,
2207			  50 * USEC_PER_MSEC, false, hw, port, PHY_REG_DESKEW_0,
2208			  &deskew_i);
2209	if (err)
2210		return err;
2211
2212	deskew_f = FIELD_GET(PHY_REG_DESKEW_0_RLEVEL_FRAC, deskew_i);
2213	deskew_i = FIELD_GET(PHY_REG_DESKEW_0_RLEVEL, deskew_i);
2214
2215	if (rs && spd == ICE_ETH56G_LNK_SPD_50G2)
2216		ds = 0x633; /* 3.1 */
2217	else if (rs && spd == ICE_ETH56G_LNK_SPD_100G)
2218		ds = 0x31b; /* 1.552 */
2219
2220	deskew_i = FIELD_PREP(ICE_ETH56G_MAC_CFG_RX_OFFSET_INT, deskew_i);
2221	/* Shift 3 fractional bits to the end of the integer part */
2222	deskew_f <<= ICE_ETH56G_MAC_CFG_FRAC_W - PHY_REG_DESKEW_0_RLEVEL_FRAC_W;
2223	return mul_u32_u32_fx_q9(deskew_i | deskew_f, ds);
2224}
2225
2226/**
2227 * ice_phy_set_offsets_eth56g - Set Tx/Rx offset values
2228 * @hw: pointer to the HW struct
2229 * @port: port to configure
2230 * @spd: link speed
2231 * @cfg: structure to store output values
2232 * @fc: FC-FEC enabled
2233 * @rs: RS-FEC enabled
2234 *
2235 * Return:
2236 * * %0     - success
2237 * * %other - failed to write to PHY
2238 */
2239static int ice_phy_set_offsets_eth56g(struct ice_hw *hw, u8 port,
2240				      enum ice_eth56g_link_spd spd,
2241				      const struct ice_eth56g_mac_reg_cfg *cfg,
2242				      bool fc, bool rs)
2243{
2244	u32 rx_offset, tx_offset, bs_ds;
2245	bool onestep, sfd;
2246
2247	onestep = hw->ptp.phy.eth56g.onestep_ena;
2248	sfd = hw->ptp.phy.eth56g.sfd_ena;
2249	bs_ds = cfg->rx_offset.bs_ds;
2250
2251	if (fc)
2252		rx_offset = cfg->rx_offset.fc;
2253	else if (rs)
2254		rx_offset = cfg->rx_offset.rs;
2255	else
2256		rx_offset = cfg->rx_offset.no_fec;
2257
2258	rx_offset = add_u32_u32_fx(rx_offset, cfg->rx_offset.serdes);
2259	if (sfd)
2260		rx_offset = add_u32_u32_fx(rx_offset, cfg->rx_offset.sfd);
2261
2262	if (spd < ICE_ETH56G_LNK_SPD_40G)
2263		bs_ds = ice_ptp_calc_bitslip_eth56g(hw, port, bs_ds, fc, rs,
2264						    spd);
2265	else
2266		bs_ds = ice_ptp_calc_deskew_eth56g(hw, port, bs_ds, rs, spd);
2267	rx_offset = add_u32_u32_fx(rx_offset, bs_ds);
2268	rx_offset &= ICE_ETH56G_MAC_CFG_RX_OFFSET_INT |
2269		     ICE_ETH56G_MAC_CFG_RX_OFFSET_FRAC;
2270
2271	if (fc)
2272		tx_offset = cfg->tx_offset.fc;
2273	else if (rs)
2274		tx_offset = cfg->tx_offset.rs;
2275	else
2276		tx_offset = cfg->tx_offset.no_fec;
2277	tx_offset += cfg->tx_offset.serdes + cfg->tx_offset.sfd * sfd +
2278		     cfg->tx_offset.onestep * onestep;
2279
2280	ice_write_mac_reg_eth56g(hw, port, PHY_MAC_RX_OFFSET, rx_offset);
2281	return ice_write_mac_reg_eth56g(hw, port, PHY_MAC_TX_OFFSET, tx_offset);
2282}
2283
2284/**
2285 * ice_phy_cfg_mac_eth56g - Configure MAC for PTP
2286 * @hw: Pointer to the HW struct
2287 * @port: Port to configure
2288 *
2289 * Return:
2290 * * %0     - success
2291 * * %other - failed to write to PHY
2292 */
2293static int ice_phy_cfg_mac_eth56g(struct ice_hw *hw, u8 port)
2294{
2295	const struct ice_eth56g_mac_reg_cfg *cfg;
2296	enum ice_eth56g_link_spd spd;
2297	struct ice_link_status *li;
2298	bool fc = false;
2299	bool rs = false;
2300	bool onestep;
2301	u32 val;
2302	int err;
2303
2304	onestep = hw->ptp.phy.eth56g.onestep_ena;
2305	li = &hw->port_info->phy.link_info;
2306	spd = ice_phy_get_speed_eth56g(li);
2307	if (!!(li->an_info & ICE_AQ_FEC_EN)) {
2308		if (spd == ICE_ETH56G_LNK_SPD_10G) {
2309			fc = true;
2310		} else {
2311			fc = !!(li->fec_info & ICE_AQ_LINK_25G_KR_FEC_EN);
2312			rs = !!(li->fec_info & ~ICE_AQ_LINK_25G_KR_FEC_EN);
2313		}
2314	}
2315	cfg = &eth56g_mac_cfg[spd];
2316
2317	err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_RX_MODULO, 0);
2318	if (err)
2319		return err;
2320
2321	err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_TX_MODULO, 0);
2322	if (err)
2323		return err;
2324
2325	val = FIELD_PREP(PHY_MAC_TSU_CFG_TX_MODE_M,
2326			 cfg->tx_mode.def + rs * cfg->tx_mode.rs) |
2327	      FIELD_PREP(PHY_MAC_TSU_CFG_TX_MII_MK_DLY_M, cfg->tx_mk_dly) |
2328	      FIELD_PREP(PHY_MAC_TSU_CFG_TX_MII_CW_DLY_M,
2329			 cfg->tx_cw_dly.def +
2330			 onestep * cfg->tx_cw_dly.onestep) |
2331	      FIELD_PREP(PHY_MAC_TSU_CFG_RX_MODE_M,
2332			 cfg->rx_mode.def + rs * cfg->rx_mode.rs) |
2333	      FIELD_PREP(PHY_MAC_TSU_CFG_RX_MII_MK_DLY_M,
2334			 cfg->rx_mk_dly.def + rs * cfg->rx_mk_dly.rs) |
2335	      FIELD_PREP(PHY_MAC_TSU_CFG_RX_MII_CW_DLY_M,
2336			 cfg->rx_cw_dly.def + rs * cfg->rx_cw_dly.rs) |
2337	      FIELD_PREP(PHY_MAC_TSU_CFG_BLKS_PER_CLK_M, cfg->blks_per_clk);
2338	err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_TSU_CONFIG, val);
2339	if (err)
2340		return err;
2341
2342	err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_BLOCKTIME,
2343				       cfg->blktime);
2344	if (err)
2345		return err;
2346
2347	err = ice_phy_set_offsets_eth56g(hw, port, spd, cfg, fc, rs);
2348	if (err)
2349		return err;
2350
2351	if (spd == ICE_ETH56G_LNK_SPD_25G && !rs)
2352		val = 0;
2353	else
2354		val = cfg->mktime;
2355
2356	return ice_write_mac_reg_eth56g(hw, port, PHY_MAC_MARKERTIME, val);
2357}
2358
2359/**
2360 * ice_phy_cfg_intr_eth56g - Configure TX timestamp interrupt
2361 * @hw: pointer to the HW struct
2362 * @port: the timestamp port
2363 * @ena: enable or disable interrupt
2364 * @threshold: interrupt threshold
2365 *
2366 * Configure TX timestamp interrupt for the specified port
2367 *
2368 * Return:
2369 * * %0     - success
2370 * * %other - PHY read/write failed
2371 */
2372int ice_phy_cfg_intr_eth56g(struct ice_hw *hw, u8 port, bool ena, u8 threshold)
2373{
2374	int err;
2375	u32 val;
2376
2377	err = ice_read_ptp_reg_eth56g(hw, port, PHY_REG_TS_INT_CONFIG, &val);
2378	if (err)
2379		return err;
2380
2381	if (ena) {
2382		val |= PHY_TS_INT_CONFIG_ENA_M;
2383		val &= ~PHY_TS_INT_CONFIG_THRESHOLD_M;
2384		val |= FIELD_PREP(PHY_TS_INT_CONFIG_THRESHOLD_M, threshold);
2385	} else {
2386		val &= ~PHY_TS_INT_CONFIG_ENA_M;
2387	}
2388
2389	return ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TS_INT_CONFIG, val);
2390}
2391
2392/**
2393 * ice_read_phy_and_phc_time_eth56g - Simultaneously capture PHC and PHY time
2394 * @hw: pointer to the HW struct
2395 * @port: the PHY port to read
2396 * @phy_time: on return, the 64bit PHY timer value
2397 * @phc_time: on return, the lower 64bits of PHC time
2398 *
2399 * Issue a ICE_PTP_READ_TIME timer command to simultaneously capture the PHY
2400 * and PHC timer values.
2401 *
2402 * Return:
2403 * * %0     - success
2404 * * %other - PHY read/write failed
2405 */
2406static int ice_read_phy_and_phc_time_eth56g(struct ice_hw *hw, u8 port,
2407					    u64 *phy_time, u64 *phc_time)
2408{
2409	u64 tx_time, rx_time;
2410	u32 zo, lo;
2411	u8 tmr_idx;
2412	int err;
2413
2414	tmr_idx = ice_get_ptp_src_clock_index(hw);
2415
2416	/* Prepare the PHC timer for a ICE_PTP_READ_TIME capture command */
2417	ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME);
2418
2419	/* Prepare the PHY timer for a ICE_PTP_READ_TIME capture command */
2420	err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_READ_TIME);
2421	if (err)
2422		return err;
2423
2424	/* Issue the sync to start the ICE_PTP_READ_TIME capture */
2425	ice_ptp_exec_tmr_cmd(hw);
2426
2427	/* Read the captured PHC time from the shadow time registers */
2428	zo = rd32(hw, GLTSYN_SHTIME_0(tmr_idx));
2429	lo = rd32(hw, GLTSYN_SHTIME_L(tmr_idx));
2430	*phc_time = (u64)lo << 32 | zo;
2431
2432	/* Read the captured PHY time from the PHY shadow registers */
2433	err = ice_ptp_read_port_capture_eth56g(hw, port, &tx_time, &rx_time);
2434	if (err)
2435		return err;
2436
2437	/* If the PHY Tx and Rx timers don't match, log a warning message.
2438	 * Note that this should not happen in normal circumstances since the
2439	 * driver always programs them together.
2440	 */
2441	if (tx_time != rx_time)
2442		dev_warn(ice_hw_to_dev(hw), "PHY port %u Tx and Rx timers do not match, tx_time 0x%016llX, rx_time 0x%016llX\n",
2443			 port, tx_time, rx_time);
2444
2445	*phy_time = tx_time;
2446
2447	return 0;
2448}
2449
2450/**
2451 * ice_sync_phy_timer_eth56g - Synchronize the PHY timer with PHC timer
2452 * @hw: pointer to the HW struct
2453 * @port: the PHY port to synchronize
2454 *
2455 * Perform an adjustment to ensure that the PHY and PHC timers are in sync.
2456 * This is done by issuing a ICE_PTP_READ_TIME command which triggers a
2457 * simultaneous read of the PHY timer and PHC timer. Then we use the
2458 * difference to calculate an appropriate 2s complement addition to add
2459 * to the PHY timer in order to ensure it reads the same value as the
2460 * primary PHC timer.
2461 *
2462 * Return:
2463 * * %0     - success
2464 * * %-EBUSY- failed to acquire PTP semaphore
2465 * * %other - PHY read/write failed
2466 */
2467static int ice_sync_phy_timer_eth56g(struct ice_hw *hw, u8 port)
2468{
2469	u64 phc_time, phy_time, difference;
2470	int err;
2471
2472	if (!ice_ptp_lock(hw)) {
2473		ice_debug(hw, ICE_DBG_PTP, "Failed to acquire PTP semaphore\n");
2474		return -EBUSY;
2475	}
2476
2477	err = ice_read_phy_and_phc_time_eth56g(hw, port, &phy_time, &phc_time);
2478	if (err)
2479		goto err_unlock;
2480
2481	/* Calculate the amount required to add to the port time in order for
2482	 * it to match the PHC time.
2483	 *
2484	 * Note that the port adjustment is done using 2s complement
2485	 * arithmetic. This is convenient since it means that we can simply
2486	 * calculate the difference between the PHC time and the port time,
2487	 * and it will be interpreted correctly.
2488	 */
2489
2490	ice_ptp_src_cmd(hw, ICE_PTP_NOP);
2491	difference = phc_time - phy_time;
2492
2493	err = ice_ptp_prep_port_adj_eth56g(hw, port, (s64)difference);
2494	if (err)
2495		goto err_unlock;
2496
2497	err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_ADJ_TIME);
2498	if (err)
2499		goto err_unlock;
2500
2501	/* Issue the sync to activate the time adjustment */
2502	ice_ptp_exec_tmr_cmd(hw);
2503
2504	/* Re-capture the timer values to flush the command registers and
2505	 * verify that the time was properly adjusted.
2506	 */
2507	err = ice_read_phy_and_phc_time_eth56g(hw, port, &phy_time, &phc_time);
2508	if (err)
2509		goto err_unlock;
2510
2511	dev_info(ice_hw_to_dev(hw),
2512		 "Port %u PHY time synced to PHC: 0x%016llX, 0x%016llX\n",
2513		 port, phy_time, phc_time);
2514
2515err_unlock:
2516	ice_ptp_unlock(hw);
2517	return err;
2518}
2519
2520/**
2521 * ice_stop_phy_timer_eth56g - Stop the PHY clock timer
2522 * @hw: pointer to the HW struct
2523 * @port: the PHY port to stop
2524 * @soft_reset: if true, hold the SOFT_RESET bit of PHY_REG_PS
2525 *
2526 * Stop the clock of a PHY port. This must be done as part of the flow to
2527 * re-calibrate Tx and Rx timestamping offsets whenever the clock time is
2528 * initialized or when link speed changes.
2529 *
2530 * Return:
2531 * * %0     - success
2532 * * %other - failed to write to PHY
2533 */
2534int ice_stop_phy_timer_eth56g(struct ice_hw *hw, u8 port, bool soft_reset)
2535{
2536	int err;
2537
2538	err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_OFFSET_READY, 0);
2539	if (err)
2540		return err;
2541
2542	err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_OFFSET_READY, 0);
2543	if (err)
2544		return err;
2545
2546	ice_debug(hw, ICE_DBG_PTP, "Disabled clock on PHY port %u\n", port);
2547
2548	return 0;
2549}
2550
2551/**
2552 * ice_start_phy_timer_eth56g - Start the PHY clock timer
2553 * @hw: pointer to the HW struct
2554 * @port: the PHY port to start
2555 *
2556 * Start the clock of a PHY port. This must be done as part of the flow to
2557 * re-calibrate Tx and Rx timestamping offsets whenever the clock time is
2558 * initialized or when link speed changes.
2559 *
2560 * Return:
2561 * * %0     - success
2562 * * %other - PHY read/write failed
2563 */
2564int ice_start_phy_timer_eth56g(struct ice_hw *hw, u8 port)
2565{
2566	u32 lo, hi;
2567	u64 incval;
2568	u8 tmr_idx;
2569	int err;
2570
2571	tmr_idx = ice_get_ptp_src_clock_index(hw);
2572
2573	err = ice_stop_phy_timer_eth56g(hw, port, false);
2574	if (err)
2575		return err;
2576
2577	ice_ptp_src_cmd(hw, ICE_PTP_NOP);
2578
2579	err = ice_phy_cfg_parpcs_eth56g(hw, port);
2580	if (err)
2581		return err;
2582
2583	err = ice_phy_cfg_ptp_1step_eth56g(hw, port);
2584	if (err)
2585		return err;
2586
2587	err = ice_phy_cfg_mac_eth56g(hw, port);
2588	if (err)
2589		return err;
2590
2591	lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
2592	hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
2593	incval = (u64)hi << 32 | lo;
2594
2595	err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_REG_TIMETUS_L, incval);
2596	if (err)
2597		return err;
2598
2599	err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_INIT_INCVAL);
2600	if (err)
2601		return err;
2602
2603	ice_ptp_exec_tmr_cmd(hw);
2604
2605	err = ice_sync_phy_timer_eth56g(hw, port);
2606	if (err)
2607		return err;
2608
2609	err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_OFFSET_READY, 1);
2610	if (err)
2611		return err;
2612
2613	err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_OFFSET_READY, 1);
2614	if (err)
2615		return err;
2616
2617	ice_debug(hw, ICE_DBG_PTP, "Enabled clock on PHY port %u\n", port);
2618
2619	return 0;
2620}
2621
2622/**
2623 * ice_sb_access_ena_eth56g - Enable SB devices (PHY and others) access
2624 * @hw: pointer to HW struct
2625 * @enable: Enable or disable access
2626 *
2627 * Enable sideband devices (PHY and others) access.
2628 */
2629static void ice_sb_access_ena_eth56g(struct ice_hw *hw, bool enable)
2630{
2631	u32 val = rd32(hw, PF_SB_REM_DEV_CTL);
2632
2633	if (enable)
2634		val |= BIT(eth56g_phy_0) | BIT(cgu) | BIT(eth56g_phy_1);
2635	else
2636		val &= ~(BIT(eth56g_phy_0) | BIT(cgu) | BIT(eth56g_phy_1));
2637
2638	wr32(hw, PF_SB_REM_DEV_CTL, val);
2639}
2640
2641/**
2642 * ice_ptp_init_phc_eth56g - Perform E82X specific PHC initialization
2643 * @hw: pointer to HW struct
2644 *
2645 * Perform PHC initialization steps specific to E82X devices.
2646 *
2647 * Return:
2648 * * %0     - success
2649 * * %other - failed to initialize CGU
2650 */
2651static int ice_ptp_init_phc_eth56g(struct ice_hw *hw)
2652{
2653	ice_sb_access_ena_eth56g(hw, true);
2654	/* Initialize the Clock Generation Unit */
2655	return ice_init_cgu_e82x(hw);
2656}
2657
2658/**
2659 * ice_ptp_read_tx_hwtstamp_status_eth56g - Get TX timestamp status
2660 * @hw: pointer to the HW struct
2661 * @ts_status: the timestamp mask pointer
2662 *
2663 * Read the PHY Tx timestamp status mask indicating which ports have Tx
2664 * timestamps available.
2665 *
2666 * Return:
2667 * * %0     - success
2668 * * %other - failed to read from PHY
2669 */
2670int ice_ptp_read_tx_hwtstamp_status_eth56g(struct ice_hw *hw, u32 *ts_status)
2671{
2672	const struct ice_eth56g_params *params = &hw->ptp.phy.eth56g;
2673	u8 phy, mask;
2674	u32 status;
2675
2676	mask = (1 << hw->ptp.ports_per_phy) - 1;
2677	*ts_status = 0;
2678
2679	for (phy = 0; phy < params->num_phys; phy++) {
2680		int err;
2681
2682		err = ice_read_phy_eth56g(hw, phy, PHY_PTP_INT_STATUS, &status);
2683		if (err)
2684			return err;
2685
2686		*ts_status |= (status & mask) << (phy * hw->ptp.ports_per_phy);
2687	}
2688
2689	ice_debug(hw, ICE_DBG_PTP, "PHY interrupt err: %x\n", *ts_status);
2690
2691	return 0;
2692}
2693
2694/**
2695 * ice_get_phy_tx_tstamp_ready_eth56g - Read the Tx memory status register
2696 * @hw: pointer to the HW struct
2697 * @port: the PHY port to read from
2698 * @tstamp_ready: contents of the Tx memory status register
2699 *
2700 * Read the PHY_REG_TX_MEMORY_STATUS register indicating which timestamps in
2701 * the PHY are ready. A set bit means the corresponding timestamp is valid and
2702 * ready to be captured from the PHY timestamp block.
2703 *
2704 * Return:
2705 * * %0     - success
2706 * * %other - failed to read from PHY
2707 */
2708static int ice_get_phy_tx_tstamp_ready_eth56g(struct ice_hw *hw, u8 port,
2709					      u64 *tstamp_ready)
2710{
2711	int err;
2712
2713	err = ice_read_64b_ptp_reg_eth56g(hw, port, PHY_REG_TX_MEMORY_STATUS_L,
2714					  tstamp_ready);
2715	if (err) {
2716		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS for port %u, err %d\n",
2717			  port, err);
2718		return err;
2719	}
2720
2721	return 0;
2722}
2723
2724/**
2725 * ice_ptp_init_phy_e825 - initialize PHY parameters
2726 * @hw: pointer to the HW struct
2727 */
2728static void ice_ptp_init_phy_e825(struct ice_hw *hw)
2729{
2730	struct ice_ptp_hw *ptp = &hw->ptp;
2731	struct ice_eth56g_params *params;
2732	u32 phy_rev;
2733	int err;
2734
2735	ptp->phy_model = ICE_PHY_ETH56G;
2736	params = &ptp->phy.eth56g;
2737	params->onestep_ena = false;
2738	params->peer_delay = 0;
2739	params->sfd_ena = false;
2740	params->num_phys = 2;
2741	ptp->ports_per_phy = 4;
2742	ptp->num_lports = params->num_phys * ptp->ports_per_phy;
2743
2744	ice_sb_access_ena_eth56g(hw, true);
2745	err = ice_read_phy_eth56g(hw, hw->pf_id, PHY_REG_REVISION, &phy_rev);
2746	if (err || phy_rev != PHY_REVISION_ETH56G)
2747		ptp->phy_model = ICE_PHY_UNSUP;
2748}
2749
2750/* E822 family functions
2751 *
2752 * The following functions operate on the E822 family of devices.
2753 */
2754
2755/**
2756 * ice_fill_phy_msg_e82x - Fill message data for a PHY register access
2757 * @hw: pointer to the HW struct
2758 * @msg: the PHY message buffer to fill in
2759 * @port: the port to access
2760 * @offset: the register offset
2761 */
2762static void ice_fill_phy_msg_e82x(struct ice_hw *hw,
2763				  struct ice_sbq_msg_input *msg, u8 port,
2764				  u16 offset)
2765{
2766	int phy_port, quadtype;
2767
2768	phy_port = port % hw->ptp.ports_per_phy;
2769	quadtype = ICE_GET_QUAD_NUM(port) %
2770		   ICE_GET_QUAD_NUM(hw->ptp.ports_per_phy);
2771
2772	if (quadtype == 0) {
2773		msg->msg_addr_low = P_Q0_L(P_0_BASE + offset, phy_port);
2774		msg->msg_addr_high = P_Q0_H(P_0_BASE + offset, phy_port);
2775	} else {
2776		msg->msg_addr_low = P_Q1_L(P_4_BASE + offset, phy_port);
2777		msg->msg_addr_high = P_Q1_H(P_4_BASE + offset, phy_port);
2778	}
2779
2780	msg->dest_dev = rmn_0;
 
 
 
 
 
2781}
2782
2783/**
2784 * ice_is_64b_phy_reg_e82x - Check if this is a 64bit PHY register
2785 * @low_addr: the low address to check
2786 * @high_addr: on return, contains the high address of the 64bit register
2787 *
2788 * Checks if the provided low address is one of the known 64bit PHY values
2789 * represented as two 32bit registers. If it is, return the appropriate high
2790 * register offset to use.
2791 */
2792static bool ice_is_64b_phy_reg_e82x(u16 low_addr, u16 *high_addr)
2793{
2794	switch (low_addr) {
2795	case P_REG_PAR_PCS_TX_OFFSET_L:
2796		*high_addr = P_REG_PAR_PCS_TX_OFFSET_U;
2797		return true;
2798	case P_REG_PAR_PCS_RX_OFFSET_L:
2799		*high_addr = P_REG_PAR_PCS_RX_OFFSET_U;
2800		return true;
2801	case P_REG_PAR_TX_TIME_L:
2802		*high_addr = P_REG_PAR_TX_TIME_U;
2803		return true;
2804	case P_REG_PAR_RX_TIME_L:
2805		*high_addr = P_REG_PAR_RX_TIME_U;
2806		return true;
2807	case P_REG_TOTAL_TX_OFFSET_L:
2808		*high_addr = P_REG_TOTAL_TX_OFFSET_U;
2809		return true;
2810	case P_REG_TOTAL_RX_OFFSET_L:
2811		*high_addr = P_REG_TOTAL_RX_OFFSET_U;
2812		return true;
2813	case P_REG_UIX66_10G_40G_L:
2814		*high_addr = P_REG_UIX66_10G_40G_U;
2815		return true;
2816	case P_REG_UIX66_25G_100G_L:
2817		*high_addr = P_REG_UIX66_25G_100G_U;
2818		return true;
2819	case P_REG_TX_CAPTURE_L:
2820		*high_addr = P_REG_TX_CAPTURE_U;
2821		return true;
2822	case P_REG_RX_CAPTURE_L:
2823		*high_addr = P_REG_RX_CAPTURE_U;
2824		return true;
2825	case P_REG_TX_TIMER_INC_PRE_L:
2826		*high_addr = P_REG_TX_TIMER_INC_PRE_U;
2827		return true;
2828	case P_REG_RX_TIMER_INC_PRE_L:
2829		*high_addr = P_REG_RX_TIMER_INC_PRE_U;
2830		return true;
2831	default:
2832		return false;
2833	}
2834}
2835
2836/**
2837 * ice_is_40b_phy_reg_e82x - Check if this is a 40bit PHY register
2838 * @low_addr: the low address to check
2839 * @high_addr: on return, contains the high address of the 40bit value
2840 *
2841 * Checks if the provided low address is one of the known 40bit PHY values
2842 * split into two registers with the lower 8 bits in the low register and the
2843 * upper 32 bits in the high register. If it is, return the appropriate high
2844 * register offset to use.
2845 */
2846static bool ice_is_40b_phy_reg_e82x(u16 low_addr, u16 *high_addr)
2847{
2848	switch (low_addr) {
2849	case P_REG_TIMETUS_L:
2850		*high_addr = P_REG_TIMETUS_U;
2851		return true;
2852	case P_REG_PAR_RX_TUS_L:
2853		*high_addr = P_REG_PAR_RX_TUS_U;
2854		return true;
2855	case P_REG_PAR_TX_TUS_L:
2856		*high_addr = P_REG_PAR_TX_TUS_U;
2857		return true;
2858	case P_REG_PCS_RX_TUS_L:
2859		*high_addr = P_REG_PCS_RX_TUS_U;
2860		return true;
2861	case P_REG_PCS_TX_TUS_L:
2862		*high_addr = P_REG_PCS_TX_TUS_U;
2863		return true;
2864	case P_REG_DESK_PAR_RX_TUS_L:
2865		*high_addr = P_REG_DESK_PAR_RX_TUS_U;
2866		return true;
2867	case P_REG_DESK_PAR_TX_TUS_L:
2868		*high_addr = P_REG_DESK_PAR_TX_TUS_U;
2869		return true;
2870	case P_REG_DESK_PCS_RX_TUS_L:
2871		*high_addr = P_REG_DESK_PCS_RX_TUS_U;
2872		return true;
2873	case P_REG_DESK_PCS_TX_TUS_L:
2874		*high_addr = P_REG_DESK_PCS_TX_TUS_U;
2875		return true;
2876	default:
2877		return false;
2878	}
2879}
2880
2881/**
2882 * ice_read_phy_reg_e82x - Read a PHY register
2883 * @hw: pointer to the HW struct
2884 * @port: PHY port to read from
2885 * @offset: PHY register offset to read
2886 * @val: on return, the contents read from the PHY
2887 *
2888 * Read a PHY register for the given port over the device sideband queue.
2889 */
2890static int
2891ice_read_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 offset, u32 *val)
2892{
2893	struct ice_sbq_msg_input msg = {0};
2894	int err;
2895
2896	ice_fill_phy_msg_e82x(hw, &msg, port, offset);
2897	msg.opcode = ice_sbq_msg_rd;
2898
2899	err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
2900	if (err) {
2901		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
2902			  err);
2903		return err;
2904	}
2905
2906	*val = msg.data;
2907
2908	return 0;
2909}
2910
2911/**
2912 * ice_read_64b_phy_reg_e82x - Read a 64bit value from PHY registers
2913 * @hw: pointer to the HW struct
2914 * @port: PHY port to read from
2915 * @low_addr: offset of the lower register to read from
2916 * @val: on return, the contents of the 64bit value from the PHY registers
2917 *
2918 * Reads the two registers associated with a 64bit value and returns it in the
2919 * val pointer. The offset always specifies the lower register offset to use.
2920 * The high offset is looked up. This function only operates on registers
2921 * known to be two parts of a 64bit value.
2922 */
2923static int
2924ice_read_64b_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 low_addr, u64 *val)
2925{
2926	u32 low, high;
2927	u16 high_addr;
2928	int err;
2929
2930	/* Only operate on registers known to be split into two 32bit
2931	 * registers.
2932	 */
2933	if (!ice_is_64b_phy_reg_e82x(low_addr, &high_addr)) {
2934		ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n",
2935			  low_addr);
2936		return -EINVAL;
2937	}
2938
2939	err = ice_read_phy_reg_e82x(hw, port, low_addr, &low);
2940	if (err) {
2941		ice_debug(hw, ICE_DBG_PTP, "Failed to read from low register 0x%08x\n, err %d",
2942			  low_addr, err);
2943		return err;
2944	}
2945
2946	err = ice_read_phy_reg_e82x(hw, port, high_addr, &high);
2947	if (err) {
2948		ice_debug(hw, ICE_DBG_PTP, "Failed to read from high register 0x%08x\n, err %d",
2949			  high_addr, err);
2950		return err;
2951	}
2952
2953	*val = (u64)high << 32 | low;
2954
2955	return 0;
2956}
2957
2958/**
2959 * ice_write_phy_reg_e82x - Write a PHY register
2960 * @hw: pointer to the HW struct
2961 * @port: PHY port to write to
2962 * @offset: PHY register offset to write
2963 * @val: The value to write to the register
2964 *
2965 * Write a PHY register for the given port over the device sideband queue.
2966 */
2967static int
2968ice_write_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 offset, u32 val)
2969{
2970	struct ice_sbq_msg_input msg = {0};
2971	int err;
2972
2973	ice_fill_phy_msg_e82x(hw, &msg, port, offset);
2974	msg.opcode = ice_sbq_msg_wr;
2975	msg.data = val;
2976
2977	err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
2978	if (err) {
2979		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
2980			  err);
2981		return err;
2982	}
2983
2984	return 0;
2985}
2986
2987/**
2988 * ice_write_40b_phy_reg_e82x - Write a 40b value to the PHY
2989 * @hw: pointer to the HW struct
2990 * @port: port to write to
2991 * @low_addr: offset of the low register
2992 * @val: 40b value to write
2993 *
2994 * Write the provided 40b value to the two associated registers by splitting
2995 * it up into two chunks, the lower 8 bits and the upper 32 bits.
2996 */
2997static int
2998ice_write_40b_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 low_addr, u64 val)
2999{
3000	u32 low, high;
3001	u16 high_addr;
3002	int err;
3003
3004	/* Only operate on registers known to be split into a lower 8 bit
3005	 * register and an upper 32 bit register.
3006	 */
3007	if (!ice_is_40b_phy_reg_e82x(low_addr, &high_addr)) {
3008		ice_debug(hw, ICE_DBG_PTP, "Invalid 40b register addr 0x%08x\n",
3009			  low_addr);
3010		return -EINVAL;
3011	}
3012	low = FIELD_GET(P_REG_40B_LOW_M, val);
 
3013	high = (u32)(val >> P_REG_40B_HIGH_S);
3014
3015	err = ice_write_phy_reg_e82x(hw, port, low_addr, low);
3016	if (err) {
3017		ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
3018			  low_addr, err);
3019		return err;
3020	}
3021
3022	err = ice_write_phy_reg_e82x(hw, port, high_addr, high);
3023	if (err) {
3024		ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
3025			  high_addr, err);
3026		return err;
3027	}
3028
3029	return 0;
3030}
3031
3032/**
3033 * ice_write_64b_phy_reg_e82x - Write a 64bit value to PHY registers
3034 * @hw: pointer to the HW struct
3035 * @port: PHY port to read from
3036 * @low_addr: offset of the lower register to read from
3037 * @val: the contents of the 64bit value to write to PHY
3038 *
3039 * Write the 64bit value to the two associated 32bit PHY registers. The offset
3040 * is always specified as the lower register, and the high address is looked
3041 * up. This function only operates on registers known to be two parts of
3042 * a 64bit value.
3043 */
3044static int
3045ice_write_64b_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 low_addr, u64 val)
3046{
3047	u32 low, high;
3048	u16 high_addr;
3049	int err;
3050
3051	/* Only operate on registers known to be split into two 32bit
3052	 * registers.
3053	 */
3054	if (!ice_is_64b_phy_reg_e82x(low_addr, &high_addr)) {
3055		ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n",
3056			  low_addr);
3057		return -EINVAL;
3058	}
3059
3060	low = lower_32_bits(val);
3061	high = upper_32_bits(val);
3062
3063	err = ice_write_phy_reg_e82x(hw, port, low_addr, low);
3064	if (err) {
3065		ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
3066			  low_addr, err);
3067		return err;
3068	}
3069
3070	err = ice_write_phy_reg_e82x(hw, port, high_addr, high);
3071	if (err) {
3072		ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
3073			  high_addr, err);
3074		return err;
3075	}
3076
3077	return 0;
3078}
3079
3080/**
3081 * ice_fill_quad_msg_e82x - Fill message data for quad register access
3082 * @hw: pointer to the HW struct
3083 * @msg: the PHY message buffer to fill in
3084 * @quad: the quad to access
3085 * @offset: the register offset
3086 *
3087 * Fill a message buffer for accessing a register in a quad shared between
3088 * multiple PHYs.
3089 *
3090 * Return:
3091 * * %0       - OK
3092 * * %-EINVAL - invalid quad number
3093 */
3094static int ice_fill_quad_msg_e82x(struct ice_hw *hw,
3095				  struct ice_sbq_msg_input *msg, u8 quad,
3096				  u16 offset)
3097{
3098	u32 addr;
3099
3100	if (quad >= ICE_GET_QUAD_NUM(hw->ptp.num_lports))
3101		return -EINVAL;
3102
3103	msg->dest_dev = rmn_0;
3104
3105	if (!(quad % ICE_GET_QUAD_NUM(hw->ptp.ports_per_phy)))
3106		addr = Q_0_BASE + offset;
3107	else
3108		addr = Q_1_BASE + offset;
3109
3110	msg->msg_addr_low = lower_16_bits(addr);
3111	msg->msg_addr_high = upper_16_bits(addr);
3112
3113	return 0;
3114}
3115
3116/**
3117 * ice_read_quad_reg_e82x - Read a PHY quad register
3118 * @hw: pointer to the HW struct
3119 * @quad: quad to read from
3120 * @offset: quad register offset to read
3121 * @val: on return, the contents read from the quad
3122 *
3123 * Read a quad register over the device sideband queue. Quad registers are
3124 * shared between multiple PHYs.
3125 */
3126int
3127ice_read_quad_reg_e82x(struct ice_hw *hw, u8 quad, u16 offset, u32 *val)
3128{
3129	struct ice_sbq_msg_input msg = {0};
3130	int err;
3131
3132	err = ice_fill_quad_msg_e82x(hw, &msg, quad, offset);
3133	if (err)
3134		return err;
3135
 
3136	msg.opcode = ice_sbq_msg_rd;
3137
3138	err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
3139	if (err) {
3140		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
3141			  err);
3142		return err;
3143	}
3144
3145	*val = msg.data;
3146
3147	return 0;
3148}
3149
3150/**
3151 * ice_write_quad_reg_e82x - Write a PHY quad register
3152 * @hw: pointer to the HW struct
3153 * @quad: quad to write to
3154 * @offset: quad register offset to write
3155 * @val: The value to write to the register
3156 *
3157 * Write a quad register over the device sideband queue. Quad registers are
3158 * shared between multiple PHYs.
3159 */
3160int
3161ice_write_quad_reg_e82x(struct ice_hw *hw, u8 quad, u16 offset, u32 val)
3162{
3163	struct ice_sbq_msg_input msg = {0};
3164	int err;
3165
3166	err = ice_fill_quad_msg_e82x(hw, &msg, quad, offset);
3167	if (err)
3168		return err;
3169
 
3170	msg.opcode = ice_sbq_msg_wr;
3171	msg.data = val;
3172
3173	err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
3174	if (err) {
3175		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
3176			  err);
3177		return err;
3178	}
3179
3180	return 0;
3181}
3182
3183/**
3184 * ice_read_phy_tstamp_e82x - Read a PHY timestamp out of the quad block
3185 * @hw: pointer to the HW struct
3186 * @quad: the quad to read from
3187 * @idx: the timestamp index to read
3188 * @tstamp: on return, the 40bit timestamp value
3189 *
3190 * Read a 40bit timestamp value out of the two associated registers in the
3191 * quad memory block that is shared between the internal PHYs of the E822
3192 * family of devices.
3193 */
3194static int
3195ice_read_phy_tstamp_e82x(struct ice_hw *hw, u8 quad, u8 idx, u64 *tstamp)
3196{
3197	u16 lo_addr, hi_addr;
3198	u32 lo, hi;
3199	int err;
3200
3201	lo_addr = (u16)TS_L(Q_REG_TX_MEMORY_BANK_START, idx);
3202	hi_addr = (u16)TS_H(Q_REG_TX_MEMORY_BANK_START, idx);
3203
3204	err = ice_read_quad_reg_e82x(hw, quad, lo_addr, &lo);
3205	if (err) {
3206		ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
3207			  err);
3208		return err;
3209	}
3210
3211	err = ice_read_quad_reg_e82x(hw, quad, hi_addr, &hi);
3212	if (err) {
3213		ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
3214			  err);
3215		return err;
3216	}
3217
3218	/* For E822 based internal PHYs, the timestamp is reported with the
3219	 * lower 8 bits in the low register, and the upper 32 bits in the high
3220	 * register.
3221	 */
3222	*tstamp = FIELD_PREP(TS_PHY_HIGH_M, hi) | FIELD_PREP(TS_PHY_LOW_M, lo);
3223
3224	return 0;
3225}
3226
3227/**
3228 * ice_clear_phy_tstamp_e82x - Clear a timestamp from the quad block
3229 * @hw: pointer to the HW struct
3230 * @quad: the quad to read from
3231 * @idx: the timestamp index to reset
3232 *
3233 * Read the timestamp out of the quad to clear its timestamp status bit from
3234 * the PHY quad block that is shared between the internal PHYs of the E822
3235 * devices.
3236 *
3237 * Note that unlike E810, software cannot directly write to the quad memory
3238 * bank registers. E822 relies on the ice_get_phy_tx_tstamp_ready() function
3239 * to determine which timestamps are valid. Reading a timestamp auto-clears
3240 * the valid bit.
3241 *
3242 * To directly clear the contents of the timestamp block entirely, discarding
3243 * all timestamp data at once, software should instead use
3244 * ice_ptp_reset_ts_memory_quad_e82x().
3245 *
3246 * This function should only be called on an idx whose bit is set according to
3247 * ice_get_phy_tx_tstamp_ready().
3248 */
3249static int
3250ice_clear_phy_tstamp_e82x(struct ice_hw *hw, u8 quad, u8 idx)
3251{
3252	u64 unused_tstamp;
3253	int err;
3254
3255	err = ice_read_phy_tstamp_e82x(hw, quad, idx, &unused_tstamp);
 
 
 
3256	if (err) {
3257		ice_debug(hw, ICE_DBG_PTP, "Failed to read the timestamp register for quad %u, idx %u, err %d\n",
3258			  quad, idx, err);
 
 
 
 
 
 
 
3259		return err;
3260	}
3261
3262	return 0;
3263}
3264
3265/**
3266 * ice_ptp_reset_ts_memory_quad_e82x - Clear all timestamps from the quad block
3267 * @hw: pointer to the HW struct
3268 * @quad: the quad to read from
3269 *
3270 * Clear all timestamps from the PHY quad block that is shared between the
3271 * internal PHYs on the E822 devices.
3272 */
3273void ice_ptp_reset_ts_memory_quad_e82x(struct ice_hw *hw, u8 quad)
3274{
3275	ice_write_quad_reg_e82x(hw, quad, Q_REG_TS_CTRL, Q_REG_TS_CTRL_M);
3276	ice_write_quad_reg_e82x(hw, quad, Q_REG_TS_CTRL, ~(u32)Q_REG_TS_CTRL_M);
3277}
3278
3279/**
3280 * ice_ptp_reset_ts_memory_e82x - Clear all timestamps from all quad blocks
3281 * @hw: pointer to the HW struct
3282 */
3283static void ice_ptp_reset_ts_memory_e82x(struct ice_hw *hw)
3284{
3285	unsigned int quad;
3286
3287	for (quad = 0; quad < ICE_GET_QUAD_NUM(hw->ptp.num_lports); quad++)
3288		ice_ptp_reset_ts_memory_quad_e82x(hw, quad);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3289}
3290
3291/**
3292 * ice_ptp_set_vernier_wl - Set the window length for vernier calibration
3293 * @hw: pointer to the HW struct
3294 *
3295 * Set the window length used for the vernier port calibration process.
3296 */
3297static int ice_ptp_set_vernier_wl(struct ice_hw *hw)
3298{
3299	u8 port;
3300
3301	for (port = 0; port < hw->ptp.num_lports; port++) {
3302		int err;
3303
3304		err = ice_write_phy_reg_e82x(hw, port, P_REG_WL,
3305					     PTP_VERNIER_WL);
3306		if (err) {
3307			ice_debug(hw, ICE_DBG_PTP, "Failed to set vernier window length for port %u, err %d\n",
3308				  port, err);
3309			return err;
3310		}
3311	}
3312
3313	return 0;
3314}
3315
3316/**
3317 * ice_ptp_init_phc_e82x - Perform E822 specific PHC initialization
3318 * @hw: pointer to HW struct
3319 *
3320 * Perform PHC initialization steps specific to E822 devices.
3321 */
3322static int ice_ptp_init_phc_e82x(struct ice_hw *hw)
3323{
3324	int err;
3325	u32 val;
3326
3327	/* Enable reading switch and PHY registers over the sideband queue */
3328#define PF_SB_REM_DEV_CTL_SWITCH_READ BIT(1)
3329#define PF_SB_REM_DEV_CTL_PHY0 BIT(2)
3330	val = rd32(hw, PF_SB_REM_DEV_CTL);
3331	val |= (PF_SB_REM_DEV_CTL_SWITCH_READ | PF_SB_REM_DEV_CTL_PHY0);
3332	wr32(hw, PF_SB_REM_DEV_CTL, val);
 
3333
3334	/* Initialize the Clock Generation Unit */
3335	err = ice_init_cgu_e82x(hw);
3336	if (err)
3337		return err;
3338
3339	/* Set window length for all the ports */
3340	return ice_ptp_set_vernier_wl(hw);
3341}
3342
3343/**
3344 * ice_ptp_prep_phy_time_e82x - Prepare PHY port with initial time
3345 * @hw: pointer to the HW struct
3346 * @time: Time to initialize the PHY port clocks to
3347 *
3348 * Program the PHY port registers with a new initial time value. The port
3349 * clock will be initialized once the driver issues an ICE_PTP_INIT_TIME sync
3350 * command. The time value is the upper 32 bits of the PHY timer, usually in
3351 * units of nominal nanoseconds.
3352 */
3353static int
3354ice_ptp_prep_phy_time_e82x(struct ice_hw *hw, u32 time)
3355{
3356	u64 phy_time;
3357	u8 port;
3358	int err;
3359
3360	/* The time represents the upper 32 bits of the PHY timer, so we need
3361	 * to shift to account for this when programming.
3362	 */
3363	phy_time = (u64)time << 32;
3364
3365	for (port = 0; port < hw->ptp.num_lports; port++) {
3366		/* Tx case */
3367		err = ice_write_64b_phy_reg_e82x(hw, port,
3368						 P_REG_TX_TIMER_INC_PRE_L,
3369						 phy_time);
3370		if (err)
3371			goto exit_err;
3372
3373		/* Rx case */
3374		err = ice_write_64b_phy_reg_e82x(hw, port,
3375						 P_REG_RX_TIMER_INC_PRE_L,
3376						 phy_time);
3377		if (err)
3378			goto exit_err;
3379	}
3380
3381	return 0;
3382
3383exit_err:
3384	ice_debug(hw, ICE_DBG_PTP, "Failed to write init time for port %u, err %d\n",
3385		  port, err);
3386
3387	return err;
3388}
3389
3390/**
3391 * ice_ptp_prep_port_adj_e82x - Prepare a single port for time adjust
3392 * @hw: pointer to HW struct
3393 * @port: Port number to be programmed
3394 * @time: time in cycles to adjust the port Tx and Rx clocks
3395 *
3396 * Program the port for an atomic adjustment by writing the Tx and Rx timer
3397 * registers. The atomic adjustment won't be completed until the driver issues
3398 * an ICE_PTP_ADJ_TIME command.
3399 *
3400 * Note that time is not in units of nanoseconds. It is in clock time
3401 * including the lower sub-nanosecond portion of the port timer.
3402 *
3403 * Negative adjustments are supported using 2s complement arithmetic.
3404 */
3405static int
3406ice_ptp_prep_port_adj_e82x(struct ice_hw *hw, u8 port, s64 time)
3407{
3408	u32 l_time, u_time;
3409	int err;
3410
3411	l_time = lower_32_bits(time);
3412	u_time = upper_32_bits(time);
3413
3414	/* Tx case */
3415	err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_TIMER_INC_PRE_L,
3416				     l_time);
3417	if (err)
3418		goto exit_err;
3419
3420	err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_TIMER_INC_PRE_U,
3421				     u_time);
3422	if (err)
3423		goto exit_err;
3424
3425	/* Rx case */
3426	err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_TIMER_INC_PRE_L,
3427				     l_time);
3428	if (err)
3429		goto exit_err;
3430
3431	err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_TIMER_INC_PRE_U,
3432				     u_time);
3433	if (err)
3434		goto exit_err;
3435
3436	return 0;
3437
3438exit_err:
3439	ice_debug(hw, ICE_DBG_PTP, "Failed to write time adjust for port %u, err %d\n",
3440		  port, err);
3441	return err;
3442}
3443
3444/**
3445 * ice_ptp_prep_phy_adj_e82x - Prep PHY ports for a time adjustment
3446 * @hw: pointer to HW struct
3447 * @adj: adjustment in nanoseconds
3448 *
3449 * Prepare the PHY ports for an atomic time adjustment by programming the PHY
3450 * Tx and Rx port registers. The actual adjustment is completed by issuing an
3451 * ICE_PTP_ADJ_TIME or ICE_PTP_ADJ_TIME_AT_TIME sync command.
3452 */
3453static int
3454ice_ptp_prep_phy_adj_e82x(struct ice_hw *hw, s32 adj)
3455{
3456	s64 cycles;
3457	u8 port;
3458
3459	/* The port clock supports adjustment of the sub-nanosecond portion of
3460	 * the clock. We shift the provided adjustment in nanoseconds to
3461	 * calculate the appropriate adjustment to program into the PHY ports.
3462	 */
3463	if (adj > 0)
3464		cycles = (s64)adj << 32;
3465	else
3466		cycles = -(((s64)-adj) << 32);
3467
3468	for (port = 0; port < hw->ptp.num_lports; port++) {
3469		int err;
3470
3471		err = ice_ptp_prep_port_adj_e82x(hw, port, cycles);
3472		if (err)
3473			return err;
3474	}
3475
3476	return 0;
3477}
3478
3479/**
3480 * ice_ptp_prep_phy_incval_e82x - Prepare PHY ports for time adjustment
3481 * @hw: pointer to HW struct
3482 * @incval: new increment value to prepare
3483 *
3484 * Prepare each of the PHY ports for a new increment value by programming the
3485 * port's TIMETUS registers. The new increment value will be updated after
3486 * issuing an ICE_PTP_INIT_INCVAL command.
3487 */
3488static int
3489ice_ptp_prep_phy_incval_e82x(struct ice_hw *hw, u64 incval)
3490{
3491	int err;
3492	u8 port;
3493
3494	for (port = 0; port < hw->ptp.num_lports; port++) {
3495		err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_TIMETUS_L,
3496						 incval);
3497		if (err)
3498			goto exit_err;
3499	}
3500
3501	return 0;
3502
3503exit_err:
3504	ice_debug(hw, ICE_DBG_PTP, "Failed to write incval for port %u, err %d\n",
3505		  port, err);
3506
3507	return err;
3508}
3509
3510/**
3511 * ice_ptp_read_port_capture - Read a port's local time capture
3512 * @hw: pointer to HW struct
3513 * @port: Port number to read
3514 * @tx_ts: on return, the Tx port time capture
3515 * @rx_ts: on return, the Rx port time capture
3516 *
3517 * Read the port's Tx and Rx local time capture values.
3518 *
3519 * Note this has no equivalent for the E810 devices.
3520 */
3521static int
3522ice_ptp_read_port_capture(struct ice_hw *hw, u8 port, u64 *tx_ts, u64 *rx_ts)
3523{
3524	int err;
3525
3526	/* Tx case */
3527	err = ice_read_64b_phy_reg_e82x(hw, port, P_REG_TX_CAPTURE_L, tx_ts);
3528	if (err) {
3529		ice_debug(hw, ICE_DBG_PTP, "Failed to read REG_TX_CAPTURE, err %d\n",
3530			  err);
3531		return err;
3532	}
3533
3534	ice_debug(hw, ICE_DBG_PTP, "tx_init = 0x%016llx\n",
3535		  (unsigned long long)*tx_ts);
3536
3537	/* Rx case */
3538	err = ice_read_64b_phy_reg_e82x(hw, port, P_REG_RX_CAPTURE_L, rx_ts);
3539	if (err) {
3540		ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_CAPTURE, err %d\n",
3541			  err);
3542		return err;
3543	}
3544
3545	ice_debug(hw, ICE_DBG_PTP, "rx_init = 0x%016llx\n",
3546		  (unsigned long long)*rx_ts);
3547
3548	return 0;
3549}
3550
3551/**
3552 * ice_ptp_write_port_cmd_e82x - Prepare a single PHY port for a timer command
3553 * @hw: pointer to HW struct
3554 * @port: Port to which cmd has to be sent
3555 * @cmd: Command to be sent to the port
3556 *
3557 * Prepare the requested port for an upcoming timer sync command.
3558 *
3559 * Note there is no equivalent of this operation on E810, as that device
3560 * always handles all external PHYs internally.
3561 *
3562 * Return:
3563 * * %0     - success
3564 * * %other - failed to write to PHY
3565 */
3566static int ice_ptp_write_port_cmd_e82x(struct ice_hw *hw, u8 port,
3567				       enum ice_ptp_tmr_cmd cmd)
3568{
3569	u32 val = ice_ptp_tmr_cmd_to_port_reg(hw, cmd);
 
3570	int err;
3571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3572	/* Tx case */
3573	err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_TMR_CMD, val);
 
 
 
 
 
 
 
 
 
 
 
 
3574	if (err) {
3575		ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_TMR_CMD, err %d\n",
3576			  err);
3577		return err;
3578	}
3579
3580	/* Rx case */
3581	err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_TMR_CMD,
3582				     val | TS_CMD_RX_TYPE);
 
 
 
 
 
 
 
 
 
 
 
3583	if (err) {
3584		ice_debug(hw, ICE_DBG_PTP, "Failed to write back RX_TMR_CMD, err %d\n",
3585			  err);
3586		return err;
3587	}
3588
3589	return 0;
3590}
3591
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3592/* E822 Vernier calibration functions
3593 *
3594 * The following functions are used as part of the vernier calibration of
3595 * a port. This calibration increases the precision of the timestamps on the
3596 * port.
3597 */
3598
3599/**
3600 * ice_phy_get_speed_and_fec_e82x - Get link speed and FEC based on serdes mode
3601 * @hw: pointer to HW struct
3602 * @port: the port to read from
3603 * @link_out: if non-NULL, holds link speed on success
3604 * @fec_out: if non-NULL, holds FEC algorithm on success
3605 *
3606 * Read the serdes data for the PHY port and extract the link speed and FEC
3607 * algorithm.
3608 */
3609static int
3610ice_phy_get_speed_and_fec_e82x(struct ice_hw *hw, u8 port,
3611			       enum ice_ptp_link_spd *link_out,
3612			       enum ice_ptp_fec_mode *fec_out)
3613{
3614	enum ice_ptp_link_spd link;
3615	enum ice_ptp_fec_mode fec;
3616	u32 serdes;
3617	int err;
3618
3619	err = ice_read_phy_reg_e82x(hw, port, P_REG_LINK_SPEED, &serdes);
3620	if (err) {
3621		ice_debug(hw, ICE_DBG_PTP, "Failed to read serdes info\n");
3622		return err;
3623	}
3624
3625	/* Determine the FEC algorithm */
3626	fec = (enum ice_ptp_fec_mode)P_REG_LINK_SPEED_FEC_MODE(serdes);
3627
3628	serdes &= P_REG_LINK_SPEED_SERDES_M;
3629
3630	/* Determine the link speed */
3631	if (fec == ICE_PTP_FEC_MODE_RS_FEC) {
3632		switch (serdes) {
3633		case ICE_PTP_SERDES_25G:
3634			link = ICE_PTP_LNK_SPD_25G_RS;
3635			break;
3636		case ICE_PTP_SERDES_50G:
3637			link = ICE_PTP_LNK_SPD_50G_RS;
3638			break;
3639		case ICE_PTP_SERDES_100G:
3640			link = ICE_PTP_LNK_SPD_100G_RS;
3641			break;
3642		default:
3643			return -EIO;
3644		}
3645	} else {
3646		switch (serdes) {
3647		case ICE_PTP_SERDES_1G:
3648			link = ICE_PTP_LNK_SPD_1G;
3649			break;
3650		case ICE_PTP_SERDES_10G:
3651			link = ICE_PTP_LNK_SPD_10G;
3652			break;
3653		case ICE_PTP_SERDES_25G:
3654			link = ICE_PTP_LNK_SPD_25G;
3655			break;
3656		case ICE_PTP_SERDES_40G:
3657			link = ICE_PTP_LNK_SPD_40G;
3658			break;
3659		case ICE_PTP_SERDES_50G:
3660			link = ICE_PTP_LNK_SPD_50G;
3661			break;
3662		default:
3663			return -EIO;
3664		}
3665	}
3666
3667	if (link_out)
3668		*link_out = link;
3669	if (fec_out)
3670		*fec_out = fec;
3671
3672	return 0;
3673}
3674
3675/**
3676 * ice_phy_cfg_lane_e82x - Configure PHY quad for single/multi-lane timestamp
3677 * @hw: pointer to HW struct
3678 * @port: to configure the quad for
3679 */
3680static void ice_phy_cfg_lane_e82x(struct ice_hw *hw, u8 port)
3681{
3682	enum ice_ptp_link_spd link_spd;
3683	int err;
3684	u32 val;
3685	u8 quad;
3686
3687	err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, NULL);
3688	if (err) {
3689		ice_debug(hw, ICE_DBG_PTP, "Failed to get PHY link speed, err %d\n",
3690			  err);
3691		return;
3692	}
3693
3694	quad = ICE_GET_QUAD_NUM(port);
3695
3696	err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, &val);
3697	if (err) {
3698		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEM_GLB_CFG, err %d\n",
3699			  err);
3700		return;
3701	}
3702
3703	if (link_spd >= ICE_PTP_LNK_SPD_40G)
3704		val &= ~Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M;
3705	else
3706		val |= Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M;
3707
3708	err = ice_write_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, val);
3709	if (err) {
3710		ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_MEM_GBL_CFG, err %d\n",
3711			  err);
3712		return;
3713	}
3714}
3715
3716/**
3717 * ice_phy_cfg_uix_e82x - Configure Serdes UI to TU conversion for E822
3718 * @hw: pointer to the HW structure
3719 * @port: the port to configure
3720 *
3721 * Program the conversion ration of Serdes clock "unit intervals" (UIs) to PHC
3722 * hardware clock time units (TUs). That is, determine the number of TUs per
3723 * serdes unit interval, and program the UIX registers with this conversion.
3724 *
3725 * This conversion is used as part of the calibration process when determining
3726 * the additional error of a timestamp vs the real time of transmission or
3727 * receipt of the packet.
3728 *
3729 * Hardware uses the number of TUs per 66 UIs, written to the UIX registers
3730 * for the two main serdes clock rates, 10G/40G and 25G/100G serdes clocks.
3731 *
3732 * To calculate the conversion ratio, we use the following facts:
3733 *
3734 * a) the clock frequency in Hz (cycles per second)
3735 * b) the number of TUs per cycle (the increment value of the clock)
3736 * c) 1 second per 1 billion nanoseconds
3737 * d) the duration of 66 UIs in nanoseconds
3738 *
3739 * Given these facts, we can use the following table to work out what ratios
3740 * to multiply in order to get the number of TUs per 66 UIs:
3741 *
3742 * cycles |   1 second   | incval (TUs) | nanoseconds
3743 * -------+--------------+--------------+-------------
3744 * second | 1 billion ns |    cycle     |   66 UIs
3745 *
3746 * To perform the multiplication using integers without too much loss of
3747 * precision, we can take use the following equation:
3748 *
3749 * (freq * incval * 6600 LINE_UI ) / ( 100 * 1 billion)
3750 *
3751 * We scale up to using 6600 UI instead of 66 in order to avoid fractional
3752 * nanosecond UIs (66 UI at 10G/40G is 6.4 ns)
3753 *
3754 * The increment value has a maximum expected range of about 34 bits, while
3755 * the frequency value is about 29 bits. Multiplying these values shouldn't
3756 * overflow the 64 bits. However, we must then further multiply them again by
3757 * the Serdes unit interval duration. To avoid overflow here, we split the
3758 * overall divide by 1e11 into a divide by 256 (shift down by 8 bits) and
3759 * a divide by 390,625,000. This does lose some precision, but avoids
3760 * miscalculation due to arithmetic overflow.
3761 */
3762static int ice_phy_cfg_uix_e82x(struct ice_hw *hw, u8 port)
3763{
3764	u64 cur_freq, clk_incval, tu_per_sec, uix;
3765	int err;
3766
3767	cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
3768	clk_incval = ice_ptp_read_src_incval(hw);
3769
3770	/* Calculate TUs per second divided by 256 */
3771	tu_per_sec = (cur_freq * clk_incval) >> 8;
3772
3773#define LINE_UI_10G_40G 640 /* 6600 UIs is 640 nanoseconds at 10Gb/40Gb */
3774#define LINE_UI_25G_100G 256 /* 6600 UIs is 256 nanoseconds at 25Gb/100Gb */
3775
3776	/* Program the 10Gb/40Gb conversion ratio */
3777	uix = div_u64(tu_per_sec * LINE_UI_10G_40G, 390625000);
3778
3779	err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_UIX66_10G_40G_L,
3780					 uix);
3781	if (err) {
3782		ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_10G_40G, err %d\n",
3783			  err);
3784		return err;
3785	}
3786
3787	/* Program the 25Gb/100Gb conversion ratio */
3788	uix = div_u64(tu_per_sec * LINE_UI_25G_100G, 390625000);
3789
3790	err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_UIX66_25G_100G_L,
3791					 uix);
3792	if (err) {
3793		ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_25G_100G, err %d\n",
3794			  err);
3795		return err;
3796	}
3797
3798	return 0;
3799}
3800
3801/**
3802 * ice_phy_cfg_parpcs_e82x - Configure TUs per PAR/PCS clock cycle
3803 * @hw: pointer to the HW struct
3804 * @port: port to configure
3805 *
3806 * Configure the number of TUs for the PAR and PCS clocks used as part of the
3807 * timestamp calibration process. This depends on the link speed, as the PHY
3808 * uses different markers depending on the speed.
3809 *
3810 * 1Gb/10Gb/25Gb:
3811 * - Tx/Rx PAR/PCS markers
3812 *
3813 * 25Gb RS:
3814 * - Tx/Rx Reed Solomon gearbox PAR/PCS markers
3815 *
3816 * 40Gb/50Gb:
3817 * - Tx/Rx PAR/PCS markers
3818 * - Rx Deskew PAR/PCS markers
3819 *
3820 * 50G RS and 100GB RS:
3821 * - Tx/Rx Reed Solomon gearbox PAR/PCS markers
3822 * - Rx Deskew PAR/PCS markers
3823 * - Tx PAR/PCS markers
3824 *
3825 * To calculate the conversion, we use the PHC clock frequency (cycles per
3826 * second), the increment value (TUs per cycle), and the related PHY clock
3827 * frequency to calculate the TUs per unit of the PHY link clock. The
3828 * following table shows how the units convert:
3829 *
3830 * cycles |  TUs  | second
3831 * -------+-------+--------
3832 * second | cycle | cycles
3833 *
3834 * For each conversion register, look up the appropriate frequency from the
3835 * e822 PAR/PCS table and calculate the TUs per unit of that clock. Program
3836 * this to the appropriate register, preparing hardware to perform timestamp
3837 * calibration to calculate the total Tx or Rx offset to adjust the timestamp
3838 * in order to calibrate for the internal PHY delays.
3839 *
3840 * Note that the increment value ranges up to ~34 bits, and the clock
3841 * frequency is ~29 bits, so multiplying them together should fit within the
3842 * 64 bit arithmetic.
3843 */
3844static int ice_phy_cfg_parpcs_e82x(struct ice_hw *hw, u8 port)
3845{
3846	u64 cur_freq, clk_incval, tu_per_sec, phy_tus;
3847	enum ice_ptp_link_spd link_spd;
3848	enum ice_ptp_fec_mode fec_mode;
3849	int err;
3850
3851	err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, &fec_mode);
3852	if (err)
3853		return err;
3854
3855	cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
3856	clk_incval = ice_ptp_read_src_incval(hw);
3857
3858	/* Calculate TUs per cycle of the PHC clock */
3859	tu_per_sec = cur_freq * clk_incval;
3860
3861	/* For each PHY conversion register, look up the appropriate link
3862	 * speed frequency and determine the TUs per that clock's cycle time.
3863	 * Split this into a high and low value and then program the
3864	 * appropriate register. If that link speed does not use the
3865	 * associated register, write zeros to clear it instead.
3866	 */
3867
3868	/* P_REG_PAR_TX_TUS */
3869	if (e822_vernier[link_spd].tx_par_clk)
3870		phy_tus = div_u64(tu_per_sec,
3871				  e822_vernier[link_spd].tx_par_clk);
3872	else
3873		phy_tus = 0;
3874
3875	err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PAR_TX_TUS_L,
3876					 phy_tus);
3877	if (err)
3878		return err;
3879
3880	/* P_REG_PAR_RX_TUS */
3881	if (e822_vernier[link_spd].rx_par_clk)
3882		phy_tus = div_u64(tu_per_sec,
3883				  e822_vernier[link_spd].rx_par_clk);
3884	else
3885		phy_tus = 0;
3886
3887	err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PAR_RX_TUS_L,
3888					 phy_tus);
3889	if (err)
3890		return err;
3891
3892	/* P_REG_PCS_TX_TUS */
3893	if (e822_vernier[link_spd].tx_pcs_clk)
3894		phy_tus = div_u64(tu_per_sec,
3895				  e822_vernier[link_spd].tx_pcs_clk);
3896	else
3897		phy_tus = 0;
3898
3899	err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PCS_TX_TUS_L,
3900					 phy_tus);
3901	if (err)
3902		return err;
3903
3904	/* P_REG_PCS_RX_TUS */
3905	if (e822_vernier[link_spd].rx_pcs_clk)
3906		phy_tus = div_u64(tu_per_sec,
3907				  e822_vernier[link_spd].rx_pcs_clk);
3908	else
3909		phy_tus = 0;
3910
3911	err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PCS_RX_TUS_L,
3912					 phy_tus);
3913	if (err)
3914		return err;
3915
3916	/* P_REG_DESK_PAR_TX_TUS */
3917	if (e822_vernier[link_spd].tx_desk_rsgb_par)
3918		phy_tus = div_u64(tu_per_sec,
3919				  e822_vernier[link_spd].tx_desk_rsgb_par);
3920	else
3921		phy_tus = 0;
3922
3923	err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PAR_TX_TUS_L,
3924					 phy_tus);
3925	if (err)
3926		return err;
3927
3928	/* P_REG_DESK_PAR_RX_TUS */
3929	if (e822_vernier[link_spd].rx_desk_rsgb_par)
3930		phy_tus = div_u64(tu_per_sec,
3931				  e822_vernier[link_spd].rx_desk_rsgb_par);
3932	else
3933		phy_tus = 0;
3934
3935	err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PAR_RX_TUS_L,
3936					 phy_tus);
3937	if (err)
3938		return err;
3939
3940	/* P_REG_DESK_PCS_TX_TUS */
3941	if (e822_vernier[link_spd].tx_desk_rsgb_pcs)
3942		phy_tus = div_u64(tu_per_sec,
3943				  e822_vernier[link_spd].tx_desk_rsgb_pcs);
3944	else
3945		phy_tus = 0;
3946
3947	err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PCS_TX_TUS_L,
3948					 phy_tus);
3949	if (err)
3950		return err;
3951
3952	/* P_REG_DESK_PCS_RX_TUS */
3953	if (e822_vernier[link_spd].rx_desk_rsgb_pcs)
3954		phy_tus = div_u64(tu_per_sec,
3955				  e822_vernier[link_spd].rx_desk_rsgb_pcs);
3956	else
3957		phy_tus = 0;
3958
3959	return ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PCS_RX_TUS_L,
3960					  phy_tus);
3961}
3962
3963/**
3964 * ice_calc_fixed_tx_offset_e82x - Calculated Fixed Tx offset for a port
3965 * @hw: pointer to the HW struct
3966 * @link_spd: the Link speed to calculate for
3967 *
3968 * Calculate the fixed offset due to known static latency data.
3969 */
3970static u64
3971ice_calc_fixed_tx_offset_e82x(struct ice_hw *hw, enum ice_ptp_link_spd link_spd)
3972{
3973	u64 cur_freq, clk_incval, tu_per_sec, fixed_offset;
3974
3975	cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
3976	clk_incval = ice_ptp_read_src_incval(hw);
3977
3978	/* Calculate TUs per second */
3979	tu_per_sec = cur_freq * clk_incval;
3980
3981	/* Calculate number of TUs to add for the fixed Tx latency. Since the
3982	 * latency measurement is in 1/100th of a nanosecond, we need to
3983	 * multiply by tu_per_sec and then divide by 1e11. This calculation
3984	 * overflows 64 bit integer arithmetic, so break it up into two
3985	 * divisions by 1e4 first then by 1e7.
3986	 */
3987	fixed_offset = div_u64(tu_per_sec, 10000);
3988	fixed_offset *= e822_vernier[link_spd].tx_fixed_delay;
3989	fixed_offset = div_u64(fixed_offset, 10000000);
3990
3991	return fixed_offset;
3992}
3993
3994/**
3995 * ice_phy_cfg_tx_offset_e82x - Configure total Tx timestamp offset
3996 * @hw: pointer to the HW struct
3997 * @port: the PHY port to configure
3998 *
3999 * Program the P_REG_TOTAL_TX_OFFSET register with the total number of TUs to
4000 * adjust Tx timestamps by. This is calculated by combining some known static
4001 * latency along with the Vernier offset computations done by hardware.
4002 *
4003 * This function will not return successfully until the Tx offset calculations
4004 * have been completed, which requires waiting until at least one packet has
4005 * been transmitted by the device. It is safe to call this function
4006 * periodically until calibration succeeds, as it will only program the offset
4007 * once.
4008 *
4009 * To avoid overflow, when calculating the offset based on the known static
4010 * latency values, we use measurements in 1/100th of a nanosecond, and divide
4011 * the TUs per second up front. This avoids overflow while allowing
4012 * calculation of the adjustment using integer arithmetic.
4013 *
4014 * Returns zero on success, -EBUSY if the hardware vernier offset
4015 * calibration has not completed, or another error code on failure.
4016 */
4017int ice_phy_cfg_tx_offset_e82x(struct ice_hw *hw, u8 port)
4018{
4019	enum ice_ptp_link_spd link_spd;
4020	enum ice_ptp_fec_mode fec_mode;
4021	u64 total_offset, val;
4022	int err;
4023	u32 reg;
4024
4025	/* Nothing to do if we've already programmed the offset */
4026	err = ice_read_phy_reg_e82x(hw, port, P_REG_TX_OR, &reg);
4027	if (err) {
4028		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OR for port %u, err %d\n",
4029			  port, err);
4030		return err;
4031	}
4032
4033	if (reg)
4034		return 0;
4035
4036	err = ice_read_phy_reg_e82x(hw, port, P_REG_TX_OV_STATUS, &reg);
4037	if (err) {
4038		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OV_STATUS for port %u, err %d\n",
4039			  port, err);
4040		return err;
4041	}
4042
4043	if (!(reg & P_REG_TX_OV_STATUS_OV_M))
4044		return -EBUSY;
4045
4046	err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, &fec_mode);
4047	if (err)
4048		return err;
4049
4050	total_offset = ice_calc_fixed_tx_offset_e82x(hw, link_spd);
4051
4052	/* Read the first Vernier offset from the PHY register and add it to
4053	 * the total offset.
4054	 */
4055	if (link_spd == ICE_PTP_LNK_SPD_1G ||
4056	    link_spd == ICE_PTP_LNK_SPD_10G ||
4057	    link_spd == ICE_PTP_LNK_SPD_25G ||
4058	    link_spd == ICE_PTP_LNK_SPD_25G_RS ||
4059	    link_spd == ICE_PTP_LNK_SPD_40G ||
4060	    link_spd == ICE_PTP_LNK_SPD_50G) {
4061		err = ice_read_64b_phy_reg_e82x(hw, port,
4062						P_REG_PAR_PCS_TX_OFFSET_L,
4063						&val);
4064		if (err)
4065			return err;
4066
4067		total_offset += val;
4068	}
4069
4070	/* For Tx, we only need to use the second Vernier offset for
4071	 * multi-lane link speeds with RS-FEC. The lanes will always be
4072	 * aligned.
4073	 */
4074	if (link_spd == ICE_PTP_LNK_SPD_50G_RS ||
4075	    link_spd == ICE_PTP_LNK_SPD_100G_RS) {
4076		err = ice_read_64b_phy_reg_e82x(hw, port,
4077						P_REG_PAR_TX_TIME_L,
4078						&val);
4079		if (err)
4080			return err;
4081
4082		total_offset += val;
4083	}
4084
4085	/* Now that the total offset has been calculated, program it to the
4086	 * PHY and indicate that the Tx offset is ready. After this,
4087	 * timestamps will be enabled.
4088	 */
4089	err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_TOTAL_TX_OFFSET_L,
4090					 total_offset);
4091	if (err)
4092		return err;
4093
4094	err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_OR, 1);
4095	if (err)
4096		return err;
4097
4098	dev_info(ice_hw_to_dev(hw), "Port=%d Tx vernier offset calibration complete\n",
4099		 port);
4100
4101	return 0;
4102}
4103
4104/**
4105 * ice_phy_calc_pmd_adj_e82x - Calculate PMD adjustment for Rx
4106 * @hw: pointer to the HW struct
4107 * @port: the PHY port to adjust for
4108 * @link_spd: the current link speed of the PHY
4109 * @fec_mode: the current FEC mode of the PHY
4110 * @pmd_adj: on return, the amount to adjust the Rx total offset by
4111 *
4112 * Calculates the adjustment to Rx timestamps due to PMD alignment in the PHY.
4113 * This varies by link speed and FEC mode. The value calculated accounts for
4114 * various delays caused when receiving a packet.
4115 */
4116static int
4117ice_phy_calc_pmd_adj_e82x(struct ice_hw *hw, u8 port,
4118			  enum ice_ptp_link_spd link_spd,
4119			  enum ice_ptp_fec_mode fec_mode, u64 *pmd_adj)
4120{
4121	u64 cur_freq, clk_incval, tu_per_sec, mult, adj;
4122	u8 pmd_align;
4123	u32 val;
4124	int err;
4125
4126	err = ice_read_phy_reg_e82x(hw, port, P_REG_PMD_ALIGNMENT, &val);
4127	if (err) {
4128		ice_debug(hw, ICE_DBG_PTP, "Failed to read PMD alignment, err %d\n",
4129			  err);
4130		return err;
4131	}
4132
4133	pmd_align = (u8)val;
4134
4135	cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
4136	clk_incval = ice_ptp_read_src_incval(hw);
4137
4138	/* Calculate TUs per second */
4139	tu_per_sec = cur_freq * clk_incval;
4140
4141	/* The PMD alignment adjustment measurement depends on the link speed,
4142	 * and whether FEC is enabled. For each link speed, the alignment
4143	 * adjustment is calculated by dividing a value by the length of
4144	 * a Time Unit in nanoseconds.
4145	 *
4146	 * 1G: align == 4 ? 10 * 0.8 : (align + 6 % 10) * 0.8
4147	 * 10G: align == 65 ? 0 : (align * 0.1 * 32/33)
4148	 * 10G w/FEC: align * 0.1 * 32/33
4149	 * 25G: align == 65 ? 0 : (align * 0.4 * 32/33)
4150	 * 25G w/FEC: align * 0.4 * 32/33
4151	 * 40G: align == 65 ? 0 : (align * 0.1 * 32/33)
4152	 * 40G w/FEC: align * 0.1 * 32/33
4153	 * 50G: align == 65 ? 0 : (align * 0.4 * 32/33)
4154	 * 50G w/FEC: align * 0.8 * 32/33
4155	 *
4156	 * For RS-FEC, if align is < 17 then we must also add 1.6 * 32/33.
4157	 *
4158	 * To allow for calculating this value using integer arithmetic, we
4159	 * instead start with the number of TUs per second, (inverse of the
4160	 * length of a Time Unit in nanoseconds), multiply by a value based
4161	 * on the PMD alignment register, and then divide by the right value
4162	 * calculated based on the table above. To avoid integer overflow this
4163	 * division is broken up into a step of dividing by 125 first.
4164	 */
4165	if (link_spd == ICE_PTP_LNK_SPD_1G) {
4166		if (pmd_align == 4)
4167			mult = 10;
4168		else
4169			mult = (pmd_align + 6) % 10;
4170	} else if (link_spd == ICE_PTP_LNK_SPD_10G ||
4171		   link_spd == ICE_PTP_LNK_SPD_25G ||
4172		   link_spd == ICE_PTP_LNK_SPD_40G ||
4173		   link_spd == ICE_PTP_LNK_SPD_50G) {
4174		/* If Clause 74 FEC, always calculate PMD adjust */
4175		if (pmd_align != 65 || fec_mode == ICE_PTP_FEC_MODE_CLAUSE74)
4176			mult = pmd_align;
4177		else
4178			mult = 0;
4179	} else if (link_spd == ICE_PTP_LNK_SPD_25G_RS ||
4180		   link_spd == ICE_PTP_LNK_SPD_50G_RS ||
4181		   link_spd == ICE_PTP_LNK_SPD_100G_RS) {
4182		if (pmd_align < 17)
4183			mult = pmd_align + 40;
4184		else
4185			mult = pmd_align;
4186	} else {
4187		ice_debug(hw, ICE_DBG_PTP, "Unknown link speed %d, skipping PMD adjustment\n",
4188			  link_spd);
4189		mult = 0;
4190	}
4191
4192	/* In some cases, there's no need to adjust for the PMD alignment */
4193	if (!mult) {
4194		*pmd_adj = 0;
4195		return 0;
4196	}
4197
4198	/* Calculate the adjustment by multiplying TUs per second by the
4199	 * appropriate multiplier and divisor. To avoid overflow, we first
4200	 * divide by 125, and then handle remaining divisor based on the link
4201	 * speed pmd_adj_divisor value.
4202	 */
4203	adj = div_u64(tu_per_sec, 125);
4204	adj *= mult;
4205	adj = div_u64(adj, e822_vernier[link_spd].pmd_adj_divisor);
4206
4207	/* Finally, for 25G-RS and 50G-RS, a further adjustment for the Rx
4208	 * cycle count is necessary.
4209	 */
4210	if (link_spd == ICE_PTP_LNK_SPD_25G_RS) {
4211		u64 cycle_adj;
4212		u8 rx_cycle;
4213
4214		err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_40_TO_160_CNT,
4215					    &val);
4216		if (err) {
4217			ice_debug(hw, ICE_DBG_PTP, "Failed to read 25G-RS Rx cycle count, err %d\n",
4218				  err);
4219			return err;
4220		}
4221
4222		rx_cycle = val & P_REG_RX_40_TO_160_CNT_RXCYC_M;
4223		if (rx_cycle) {
4224			mult = (4 - rx_cycle) * 40;
4225
4226			cycle_adj = div_u64(tu_per_sec, 125);
4227			cycle_adj *= mult;
4228			cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor);
4229
4230			adj += cycle_adj;
4231		}
4232	} else if (link_spd == ICE_PTP_LNK_SPD_50G_RS) {
4233		u64 cycle_adj;
4234		u8 rx_cycle;
4235
4236		err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_80_TO_160_CNT,
4237					    &val);
4238		if (err) {
4239			ice_debug(hw, ICE_DBG_PTP, "Failed to read 50G-RS Rx cycle count, err %d\n",
4240				  err);
4241			return err;
4242		}
4243
4244		rx_cycle = val & P_REG_RX_80_TO_160_CNT_RXCYC_M;
4245		if (rx_cycle) {
4246			mult = rx_cycle * 40;
4247
4248			cycle_adj = div_u64(tu_per_sec, 125);
4249			cycle_adj *= mult;
4250			cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor);
4251
4252			adj += cycle_adj;
4253		}
4254	}
4255
4256	/* Return the calculated adjustment */
4257	*pmd_adj = adj;
4258
4259	return 0;
4260}
4261
4262/**
4263 * ice_calc_fixed_rx_offset_e82x - Calculated the fixed Rx offset for a port
4264 * @hw: pointer to HW struct
4265 * @link_spd: The Link speed to calculate for
4266 *
4267 * Determine the fixed Rx latency for a given link speed.
4268 */
4269static u64
4270ice_calc_fixed_rx_offset_e82x(struct ice_hw *hw, enum ice_ptp_link_spd link_spd)
4271{
4272	u64 cur_freq, clk_incval, tu_per_sec, fixed_offset;
4273
4274	cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
4275	clk_incval = ice_ptp_read_src_incval(hw);
4276
4277	/* Calculate TUs per second */
4278	tu_per_sec = cur_freq * clk_incval;
4279
4280	/* Calculate number of TUs to add for the fixed Rx latency. Since the
4281	 * latency measurement is in 1/100th of a nanosecond, we need to
4282	 * multiply by tu_per_sec and then divide by 1e11. This calculation
4283	 * overflows 64 bit integer arithmetic, so break it up into two
4284	 * divisions by 1e4 first then by 1e7.
4285	 */
4286	fixed_offset = div_u64(tu_per_sec, 10000);
4287	fixed_offset *= e822_vernier[link_spd].rx_fixed_delay;
4288	fixed_offset = div_u64(fixed_offset, 10000000);
4289
4290	return fixed_offset;
4291}
4292
4293/**
4294 * ice_phy_cfg_rx_offset_e82x - Configure total Rx timestamp offset
4295 * @hw: pointer to the HW struct
4296 * @port: the PHY port to configure
4297 *
4298 * Program the P_REG_TOTAL_RX_OFFSET register with the number of Time Units to
4299 * adjust Rx timestamps by. This combines calculations from the Vernier offset
4300 * measurements taken in hardware with some data about known fixed delay as
4301 * well as adjusting for multi-lane alignment delay.
4302 *
4303 * This function will not return successfully until the Rx offset calculations
4304 * have been completed, which requires waiting until at least one packet has
4305 * been received by the device. It is safe to call this function periodically
4306 * until calibration succeeds, as it will only program the offset once.
4307 *
4308 * This function must be called only after the offset registers are valid,
4309 * i.e. after the Vernier calibration wait has passed, to ensure that the PHY
4310 * has measured the offset.
4311 *
4312 * To avoid overflow, when calculating the offset based on the known static
4313 * latency values, we use measurements in 1/100th of a nanosecond, and divide
4314 * the TUs per second up front. This avoids overflow while allowing
4315 * calculation of the adjustment using integer arithmetic.
4316 *
4317 * Returns zero on success, -EBUSY if the hardware vernier offset
4318 * calibration has not completed, or another error code on failure.
4319 */
4320int ice_phy_cfg_rx_offset_e82x(struct ice_hw *hw, u8 port)
4321{
4322	enum ice_ptp_link_spd link_spd;
4323	enum ice_ptp_fec_mode fec_mode;
4324	u64 total_offset, pmd, val;
4325	int err;
4326	u32 reg;
4327
4328	/* Nothing to do if we've already programmed the offset */
4329	err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_OR, &reg);
4330	if (err) {
4331		ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OR for port %u, err %d\n",
4332			  port, err);
4333		return err;
4334	}
4335
4336	if (reg)
4337		return 0;
4338
4339	err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_OV_STATUS, &reg);
4340	if (err) {
4341		ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OV_STATUS for port %u, err %d\n",
4342			  port, err);
4343		return err;
4344	}
4345
4346	if (!(reg & P_REG_RX_OV_STATUS_OV_M))
4347		return -EBUSY;
4348
4349	err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, &fec_mode);
4350	if (err)
4351		return err;
4352
4353	total_offset = ice_calc_fixed_rx_offset_e82x(hw, link_spd);
4354
4355	/* Read the first Vernier offset from the PHY register and add it to
4356	 * the total offset.
4357	 */
4358	err = ice_read_64b_phy_reg_e82x(hw, port,
4359					P_REG_PAR_PCS_RX_OFFSET_L,
4360					&val);
4361	if (err)
4362		return err;
4363
4364	total_offset += val;
4365
4366	/* For Rx, all multi-lane link speeds include a second Vernier
4367	 * calibration, because the lanes might not be aligned.
4368	 */
4369	if (link_spd == ICE_PTP_LNK_SPD_40G ||
4370	    link_spd == ICE_PTP_LNK_SPD_50G ||
4371	    link_spd == ICE_PTP_LNK_SPD_50G_RS ||
4372	    link_spd == ICE_PTP_LNK_SPD_100G_RS) {
4373		err = ice_read_64b_phy_reg_e82x(hw, port,
4374						P_REG_PAR_RX_TIME_L,
4375						&val);
4376		if (err)
4377			return err;
4378
4379		total_offset += val;
4380	}
4381
4382	/* In addition, Rx must account for the PMD alignment */
4383	err = ice_phy_calc_pmd_adj_e82x(hw, port, link_spd, fec_mode, &pmd);
4384	if (err)
4385		return err;
4386
4387	/* For RS-FEC, this adjustment adds delay, but for other modes, it
4388	 * subtracts delay.
4389	 */
4390	if (fec_mode == ICE_PTP_FEC_MODE_RS_FEC)
4391		total_offset += pmd;
4392	else
4393		total_offset -= pmd;
4394
4395	/* Now that the total offset has been calculated, program it to the
4396	 * PHY and indicate that the Rx offset is ready. After this,
4397	 * timestamps will be enabled.
4398	 */
4399	err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_TOTAL_RX_OFFSET_L,
4400					 total_offset);
4401	if (err)
4402		return err;
4403
4404	err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_OR, 1);
4405	if (err)
4406		return err;
4407
4408	dev_info(ice_hw_to_dev(hw), "Port=%d Rx vernier offset calibration complete\n",
4409		 port);
4410
4411	return 0;
4412}
4413
4414/**
4415 * ice_ptp_clear_phy_offset_ready_e82x - Clear PHY TX_/RX_OFFSET_READY registers
4416 * @hw: pointer to the HW struct
4417 *
4418 * Clear PHY TX_/RX_OFFSET_READY registers, effectively marking all transmitted
4419 * and received timestamps as invalid.
4420 *
4421 * Return: 0 on success, other error codes when failed to write to PHY
4422 */
4423int ice_ptp_clear_phy_offset_ready_e82x(struct ice_hw *hw)
4424{
4425	u8 port;
4426
4427	for (port = 0; port < hw->ptp.num_lports; port++) {
4428		int err;
4429
4430		err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_OR, 0);
4431		if (err) {
4432			dev_warn(ice_hw_to_dev(hw),
4433				 "Failed to clear PHY TX_OFFSET_READY register\n");
4434			return err;
4435		}
4436
4437		err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_OR, 0);
4438		if (err) {
4439			dev_warn(ice_hw_to_dev(hw),
4440				 "Failed to clear PHY RX_OFFSET_READY register\n");
4441			return err;
4442		}
4443	}
4444
4445	return 0;
4446}
4447
4448/**
4449 * ice_read_phy_and_phc_time_e82x - Simultaneously capture PHC and PHY time
4450 * @hw: pointer to the HW struct
4451 * @port: the PHY port to read
4452 * @phy_time: on return, the 64bit PHY timer value
4453 * @phc_time: on return, the lower 64bits of PHC time
4454 *
4455 * Issue a ICE_PTP_READ_TIME timer command to simultaneously capture the PHY
4456 * and PHC timer values.
4457 */
4458static int
4459ice_read_phy_and_phc_time_e82x(struct ice_hw *hw, u8 port, u64 *phy_time,
4460			       u64 *phc_time)
4461{
4462	u64 tx_time, rx_time;
4463	u32 zo, lo;
4464	u8 tmr_idx;
4465	int err;
4466
4467	tmr_idx = ice_get_ptp_src_clock_index(hw);
4468
4469	/* Prepare the PHC timer for a ICE_PTP_READ_TIME capture command */
4470	ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME);
4471
4472	/* Prepare the PHY timer for a ICE_PTP_READ_TIME capture command */
4473	err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_READ_TIME);
4474	if (err)
4475		return err;
4476
4477	/* Issue the sync to start the ICE_PTP_READ_TIME capture */
4478	ice_ptp_exec_tmr_cmd(hw);
4479
4480	/* Read the captured PHC time from the shadow time registers */
4481	zo = rd32(hw, GLTSYN_SHTIME_0(tmr_idx));
4482	lo = rd32(hw, GLTSYN_SHTIME_L(tmr_idx));
4483	*phc_time = (u64)lo << 32 | zo;
4484
4485	/* Read the captured PHY time from the PHY shadow registers */
4486	err = ice_ptp_read_port_capture(hw, port, &tx_time, &rx_time);
4487	if (err)
4488		return err;
4489
4490	/* If the PHY Tx and Rx timers don't match, log a warning message.
4491	 * Note that this should not happen in normal circumstances since the
4492	 * driver always programs them together.
4493	 */
4494	if (tx_time != rx_time)
4495		dev_warn(ice_hw_to_dev(hw),
4496			 "PHY port %u Tx and Rx timers do not match, tx_time 0x%016llX, rx_time 0x%016llX\n",
4497			 port, (unsigned long long)tx_time,
4498			 (unsigned long long)rx_time);
4499
4500	*phy_time = tx_time;
4501
4502	return 0;
4503}
4504
4505/**
4506 * ice_sync_phy_timer_e82x - Synchronize the PHY timer with PHC timer
4507 * @hw: pointer to the HW struct
4508 * @port: the PHY port to synchronize
4509 *
4510 * Perform an adjustment to ensure that the PHY and PHC timers are in sync.
4511 * This is done by issuing a ICE_PTP_READ_TIME command which triggers a
4512 * simultaneous read of the PHY timer and PHC timer. Then we use the
4513 * difference to calculate an appropriate 2s complement addition to add
4514 * to the PHY timer in order to ensure it reads the same value as the
4515 * primary PHC timer.
4516 */
4517static int ice_sync_phy_timer_e82x(struct ice_hw *hw, u8 port)
4518{
4519	u64 phc_time, phy_time, difference;
4520	int err;
4521
4522	if (!ice_ptp_lock(hw)) {
4523		ice_debug(hw, ICE_DBG_PTP, "Failed to acquire PTP semaphore\n");
4524		return -EBUSY;
4525	}
4526
4527	err = ice_read_phy_and_phc_time_e82x(hw, port, &phy_time, &phc_time);
4528	if (err)
4529		goto err_unlock;
4530
4531	/* Calculate the amount required to add to the port time in order for
4532	 * it to match the PHC time.
4533	 *
4534	 * Note that the port adjustment is done using 2s complement
4535	 * arithmetic. This is convenient since it means that we can simply
4536	 * calculate the difference between the PHC time and the port time,
4537	 * and it will be interpreted correctly.
4538	 */
4539	difference = phc_time - phy_time;
4540
4541	err = ice_ptp_prep_port_adj_e82x(hw, port, (s64)difference);
4542	if (err)
4543		goto err_unlock;
4544
4545	err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_ADJ_TIME);
4546	if (err)
4547		goto err_unlock;
4548
4549	/* Do not perform any action on the main timer */
4550	ice_ptp_src_cmd(hw, ICE_PTP_NOP);
4551
4552	/* Issue the sync to activate the time adjustment */
4553	ice_ptp_exec_tmr_cmd(hw);
4554
4555	/* Re-capture the timer values to flush the command registers and
4556	 * verify that the time was properly adjusted.
4557	 */
4558	err = ice_read_phy_and_phc_time_e82x(hw, port, &phy_time, &phc_time);
4559	if (err)
4560		goto err_unlock;
4561
4562	dev_info(ice_hw_to_dev(hw),
4563		 "Port %u PHY time synced to PHC: 0x%016llX, 0x%016llX\n",
4564		 port, (unsigned long long)phy_time,
4565		 (unsigned long long)phc_time);
4566
4567	ice_ptp_unlock(hw);
4568
4569	return 0;
4570
4571err_unlock:
4572	ice_ptp_unlock(hw);
4573	return err;
4574}
4575
4576/**
4577 * ice_stop_phy_timer_e82x - Stop the PHY clock timer
4578 * @hw: pointer to the HW struct
4579 * @port: the PHY port to stop
4580 * @soft_reset: if true, hold the SOFT_RESET bit of P_REG_PS
4581 *
4582 * Stop the clock of a PHY port. This must be done as part of the flow to
4583 * re-calibrate Tx and Rx timestamping offsets whenever the clock time is
4584 * initialized or when link speed changes.
4585 */
4586int
4587ice_stop_phy_timer_e82x(struct ice_hw *hw, u8 port, bool soft_reset)
4588{
4589	int err;
4590	u32 val;
4591
4592	err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_OR, 0);
4593	if (err)
4594		return err;
4595
4596	err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_OR, 0);
4597	if (err)
4598		return err;
4599
4600	err = ice_read_phy_reg_e82x(hw, port, P_REG_PS, &val);
4601	if (err)
4602		return err;
4603
4604	val &= ~P_REG_PS_START_M;
4605	err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4606	if (err)
4607		return err;
4608
4609	val &= ~P_REG_PS_ENA_CLK_M;
4610	err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4611	if (err)
4612		return err;
4613
4614	if (soft_reset) {
4615		val |= P_REG_PS_SFT_RESET_M;
4616		err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4617		if (err)
4618			return err;
4619	}
4620
4621	ice_debug(hw, ICE_DBG_PTP, "Disabled clock on PHY port %u\n", port);
4622
4623	return 0;
4624}
4625
4626/**
4627 * ice_start_phy_timer_e82x - Start the PHY clock timer
4628 * @hw: pointer to the HW struct
4629 * @port: the PHY port to start
4630 *
4631 * Start the clock of a PHY port. This must be done as part of the flow to
4632 * re-calibrate Tx and Rx timestamping offsets whenever the clock time is
4633 * initialized or when link speed changes.
4634 *
4635 * Hardware will take Vernier measurements on Tx or Rx of packets.
4636 */
4637int ice_start_phy_timer_e82x(struct ice_hw *hw, u8 port)
4638{
4639	u32 lo, hi, val;
4640	u64 incval;
4641	u8 tmr_idx;
4642	int err;
4643
4644	tmr_idx = ice_get_ptp_src_clock_index(hw);
4645
4646	err = ice_stop_phy_timer_e82x(hw, port, false);
4647	if (err)
4648		return err;
4649
4650	ice_phy_cfg_lane_e82x(hw, port);
4651
4652	err = ice_phy_cfg_uix_e82x(hw, port);
4653	if (err)
4654		return err;
4655
4656	err = ice_phy_cfg_parpcs_e82x(hw, port);
4657	if (err)
4658		return err;
4659
4660	lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
4661	hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
4662	incval = (u64)hi << 32 | lo;
4663
4664	err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_TIMETUS_L, incval);
4665	if (err)
4666		return err;
4667
4668	err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_INIT_INCVAL);
4669	if (err)
4670		return err;
4671
4672	/* Do not perform any action on the main timer */
4673	ice_ptp_src_cmd(hw, ICE_PTP_NOP);
4674
4675	ice_ptp_exec_tmr_cmd(hw);
4676
4677	err = ice_read_phy_reg_e82x(hw, port, P_REG_PS, &val);
4678	if (err)
4679		return err;
4680
4681	val |= P_REG_PS_SFT_RESET_M;
4682	err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4683	if (err)
4684		return err;
4685
4686	val |= P_REG_PS_START_M;
4687	err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4688	if (err)
4689		return err;
4690
4691	val &= ~P_REG_PS_SFT_RESET_M;
4692	err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4693	if (err)
4694		return err;
4695
4696	err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_INIT_INCVAL);
4697	if (err)
4698		return err;
4699
4700	ice_ptp_exec_tmr_cmd(hw);
4701
4702	val |= P_REG_PS_ENA_CLK_M;
4703	err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4704	if (err)
4705		return err;
4706
4707	val |= P_REG_PS_LOAD_OFFSET_M;
4708	err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
4709	if (err)
4710		return err;
4711
4712	ice_ptp_exec_tmr_cmd(hw);
4713
4714	err = ice_sync_phy_timer_e82x(hw, port);
4715	if (err)
4716		return err;
4717
4718	ice_debug(hw, ICE_DBG_PTP, "Enabled clock on PHY port %u\n", port);
4719
4720	return 0;
4721}
4722
4723/**
4724 * ice_get_phy_tx_tstamp_ready_e82x - Read Tx memory status register
4725 * @hw: pointer to the HW struct
4726 * @quad: the timestamp quad to read from
4727 * @tstamp_ready: contents of the Tx memory status register
4728 *
4729 * Read the Q_REG_TX_MEMORY_STATUS register indicating which timestamps in
4730 * the PHY are ready. A set bit means the corresponding timestamp is valid and
4731 * ready to be captured from the PHY timestamp block.
4732 */
4733static int
4734ice_get_phy_tx_tstamp_ready_e82x(struct ice_hw *hw, u8 quad, u64 *tstamp_ready)
4735{
4736	u32 hi, lo;
4737	int err;
4738
4739	err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEMORY_STATUS_U, &hi);
4740	if (err) {
4741		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS_U for quad %u, err %d\n",
4742			  quad, err);
4743		return err;
4744	}
4745
4746	err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEMORY_STATUS_L, &lo);
4747	if (err) {
4748		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS_L for quad %u, err %d\n",
4749			  quad, err);
4750		return err;
4751	}
4752
4753	*tstamp_ready = (u64)hi << 32 | (u64)lo;
4754
4755	return 0;
4756}
4757
4758/**
4759 * ice_phy_cfg_intr_e82x - Configure TX timestamp interrupt
4760 * @hw: pointer to the HW struct
4761 * @quad: the timestamp quad
4762 * @ena: enable or disable interrupt
4763 * @threshold: interrupt threshold
4764 *
4765 * Configure TX timestamp interrupt for the specified quad
4766 *
4767 * Return: 0 on success, other error codes when failed to read/write quad
4768 */
4769
4770int ice_phy_cfg_intr_e82x(struct ice_hw *hw, u8 quad, bool ena, u8 threshold)
4771{
4772	int err;
4773	u32 val;
4774
4775	err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, &val);
4776	if (err)
4777		return err;
4778
4779	val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
4780	if (ena) {
4781		val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
4782		val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M;
4783		val |= FIELD_PREP(Q_REG_TX_MEM_GBL_CFG_INTR_THR_M, threshold);
4784	}
4785
4786	return ice_write_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, val);
4787}
4788
4789/**
4790 * ice_ptp_init_phy_e82x - initialize PHY parameters
4791 * @ptp: pointer to the PTP HW struct
4792 */
4793static void ice_ptp_init_phy_e82x(struct ice_ptp_hw *ptp)
4794{
4795	ptp->phy_model = ICE_PHY_E82X;
4796	ptp->num_lports = 8;
4797	ptp->ports_per_phy = 8;
4798}
4799
4800/* E810 functions
4801 *
4802 * The following functions operate on the E810 series devices which use
4803 * a separate external PHY.
4804 */
4805
4806/**
4807 * ice_read_phy_reg_e810 - Read register from external PHY on E810
4808 * @hw: pointer to the HW struct
4809 * @addr: the address to read from
4810 * @val: On return, the value read from the PHY
4811 *
4812 * Read a register from the external PHY on the E810 device.
4813 */
4814static int ice_read_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 *val)
4815{
4816	struct ice_sbq_msg_input msg = {0};
4817	int err;
4818
4819	msg.msg_addr_low = lower_16_bits(addr);
4820	msg.msg_addr_high = upper_16_bits(addr);
4821	msg.opcode = ice_sbq_msg_rd;
4822	msg.dest_dev = rmn_0;
4823
4824	err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
4825	if (err) {
4826		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
4827			  err);
4828		return err;
4829	}
4830
4831	*val = msg.data;
4832
4833	return 0;
4834}
4835
4836/**
4837 * ice_write_phy_reg_e810 - Write register on external PHY on E810
4838 * @hw: pointer to the HW struct
4839 * @addr: the address to writem to
4840 * @val: the value to write to the PHY
4841 *
4842 * Write a value to a register of the external PHY on the E810 device.
4843 */
4844static int ice_write_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 val)
4845{
4846	struct ice_sbq_msg_input msg = {0};
4847	int err;
4848
4849	msg.msg_addr_low = lower_16_bits(addr);
4850	msg.msg_addr_high = upper_16_bits(addr);
4851	msg.opcode = ice_sbq_msg_wr;
4852	msg.dest_dev = rmn_0;
4853	msg.data = val;
4854
4855	err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
4856	if (err) {
4857		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
4858			  err);
4859		return err;
4860	}
4861
4862	return 0;
4863}
4864
4865/**
4866 * ice_read_phy_tstamp_ll_e810 - Read a PHY timestamp registers through the FW
4867 * @hw: pointer to the HW struct
4868 * @idx: the timestamp index to read
4869 * @hi: 8 bit timestamp high value
4870 * @lo: 32 bit timestamp low value
4871 *
4872 * Read a 8bit timestamp high value and 32 bit timestamp low value out of the
4873 * timestamp block of the external PHY on the E810 device using the low latency
4874 * timestamp read.
4875 */
4876static int
4877ice_read_phy_tstamp_ll_e810(struct ice_hw *hw, u8 idx, u8 *hi, u32 *lo)
4878{
4879	u32 val;
4880	u8 i;
4881
4882	/* Write TS index to read to the PF register so the FW can read it */
4883	val = FIELD_PREP(TS_LL_READ_TS_IDX, idx) | TS_LL_READ_TS;
4884	wr32(hw, PF_SB_ATQBAL, val);
4885
4886	/* Read the register repeatedly until the FW provides us the TS */
4887	for (i = TS_LL_READ_RETRIES; i > 0; i--) {
4888		val = rd32(hw, PF_SB_ATQBAL);
4889
4890		/* When the bit is cleared, the TS is ready in the register */
4891		if (!(FIELD_GET(TS_LL_READ_TS, val))) {
4892			/* High 8 bit value of the TS is on the bits 16:23 */
4893			*hi = FIELD_GET(TS_LL_READ_TS_HIGH, val);
4894
4895			/* Read the low 32 bit value and set the TS valid bit */
4896			*lo = rd32(hw, PF_SB_ATQBAH) | TS_VALID;
4897			return 0;
4898		}
4899
4900		udelay(10);
4901	}
4902
4903	/* FW failed to provide the TS in time */
4904	ice_debug(hw, ICE_DBG_PTP, "Failed to read PTP timestamp using low latency read\n");
4905	return -EINVAL;
4906}
4907
4908/**
4909 * ice_read_phy_tstamp_sbq_e810 - Read a PHY timestamp registers through the sbq
4910 * @hw: pointer to the HW struct
4911 * @lport: the lport to read from
4912 * @idx: the timestamp index to read
4913 * @hi: 8 bit timestamp high value
4914 * @lo: 32 bit timestamp low value
4915 *
4916 * Read a 8bit timestamp high value and 32 bit timestamp low value out of the
4917 * timestamp block of the external PHY on the E810 device using sideband queue.
4918 */
4919static int
4920ice_read_phy_tstamp_sbq_e810(struct ice_hw *hw, u8 lport, u8 idx, u8 *hi,
4921			     u32 *lo)
4922{
4923	u32 hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx);
4924	u32 lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx);
4925	u32 lo_val, hi_val;
4926	int err;
4927
4928	err = ice_read_phy_reg_e810(hw, lo_addr, &lo_val);
4929	if (err) {
4930		ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
4931			  err);
4932		return err;
4933	}
4934
4935	err = ice_read_phy_reg_e810(hw, hi_addr, &hi_val);
4936	if (err) {
4937		ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
4938			  err);
4939		return err;
4940	}
4941
4942	*lo = lo_val;
4943	*hi = (u8)hi_val;
4944
4945	return 0;
4946}
4947
4948/**
4949 * ice_read_phy_tstamp_e810 - Read a PHY timestamp out of the external PHY
4950 * @hw: pointer to the HW struct
4951 * @lport: the lport to read from
4952 * @idx: the timestamp index to read
4953 * @tstamp: on return, the 40bit timestamp value
4954 *
4955 * Read a 40bit timestamp value out of the timestamp block of the external PHY
4956 * on the E810 device.
4957 */
4958static int
4959ice_read_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx, u64 *tstamp)
4960{
4961	u32 lo = 0;
4962	u8 hi = 0;
4963	int err;
4964
4965	if (hw->dev_caps.ts_dev_info.ts_ll_read)
4966		err = ice_read_phy_tstamp_ll_e810(hw, idx, &hi, &lo);
4967	else
4968		err = ice_read_phy_tstamp_sbq_e810(hw, lport, idx, &hi, &lo);
4969
4970	if (err)
4971		return err;
4972
4973	/* For E810 devices, the timestamp is reported with the lower 32 bits
4974	 * in the low register, and the upper 8 bits in the high register.
4975	 */
4976	*tstamp = ((u64)hi) << TS_HIGH_S | ((u64)lo & TS_LOW_M);
4977
4978	return 0;
4979}
4980
4981/**
4982 * ice_clear_phy_tstamp_e810 - Clear a timestamp from the external PHY
4983 * @hw: pointer to the HW struct
4984 * @lport: the lport to read from
4985 * @idx: the timestamp index to reset
4986 *
4987 * Read the timestamp and then forcibly overwrite its value to clear the valid
4988 * bit from the timestamp block of the external PHY on the E810 device.
4989 *
4990 * This function should only be called on an idx whose bit is set according to
4991 * ice_get_phy_tx_tstamp_ready().
4992 */
4993static int ice_clear_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx)
4994{
4995	u32 lo_addr, hi_addr;
4996	u64 unused_tstamp;
4997	int err;
4998
4999	err = ice_read_phy_tstamp_e810(hw, lport, idx, &unused_tstamp);
5000	if (err) {
5001		ice_debug(hw, ICE_DBG_PTP, "Failed to read the timestamp register for lport %u, idx %u, err %d\n",
5002			  lport, idx, err);
5003		return err;
5004	}
5005
5006	lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx);
5007	hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx);
5008
5009	err = ice_write_phy_reg_e810(hw, lo_addr, 0);
5010	if (err) {
5011		ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register for lport %u, idx %u, err %d\n",
5012			  lport, idx, err);
5013		return err;
5014	}
5015
5016	err = ice_write_phy_reg_e810(hw, hi_addr, 0);
5017	if (err) {
5018		ice_debug(hw, ICE_DBG_PTP, "Failed to clear high PTP timestamp register for lport %u, idx %u, err %d\n",
5019			  lport, idx, err);
5020		return err;
5021	}
5022
5023	return 0;
5024}
5025
5026/**
5027 * ice_ptp_init_phc_e810 - Perform E810 specific PHC initialization
5028 * @hw: pointer to HW struct
5029 *
5030 * Perform E810-specific PTP hardware clock initialization steps.
5031 *
5032 * Return: 0 on success, other error codes when failed to initialize TimeSync
5033 */
5034static int ice_ptp_init_phc_e810(struct ice_hw *hw)
5035{
5036	u8 tmr_idx;
5037	int err;
5038
5039	/* Ensure synchronization delay is zero */
5040	wr32(hw, GLTSYN_SYNC_DLAY, 0);
5041
5042	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5043	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_ENA(tmr_idx),
5044				     GLTSYN_ENA_TSYN_ENA_M);
5045	if (err)
5046		ice_debug(hw, ICE_DBG_PTP, "PTP failed in ena_phy_time_syn %d\n",
5047			  err);
5048
5049	return err;
5050}
5051
5052/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5053 * ice_ptp_prep_phy_time_e810 - Prepare PHY port with initial time
5054 * @hw: Board private structure
5055 * @time: Time to initialize the PHY port clock to
5056 *
5057 * Program the PHY port ETH_GLTSYN_SHTIME registers in preparation setting the
5058 * initial clock time. The time will not actually be programmed until the
5059 * driver issues an ICE_PTP_INIT_TIME command.
5060 *
5061 * The time value is the upper 32 bits of the PHY timer, usually in units of
5062 * nominal nanoseconds.
5063 */
5064static int ice_ptp_prep_phy_time_e810(struct ice_hw *hw, u32 time)
5065{
5066	u8 tmr_idx;
5067	int err;
5068
5069	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5070	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_0(tmr_idx), 0);
5071	if (err) {
5072		ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_0, err %d\n",
5073			  err);
5074		return err;
5075	}
5076
5077	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_L(tmr_idx), time);
5078	if (err) {
5079		ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_L, err %d\n",
5080			  err);
5081		return err;
5082	}
5083
5084	return 0;
5085}
5086
5087/**
5088 * ice_ptp_prep_phy_adj_e810 - Prep PHY port for a time adjustment
5089 * @hw: pointer to HW struct
5090 * @adj: adjustment value to program
5091 *
5092 * Prepare the PHY port for an atomic adjustment by programming the PHY
5093 * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual adjustment
5094 * is completed by issuing an ICE_PTP_ADJ_TIME sync command.
5095 *
5096 * The adjustment value only contains the portion used for the upper 32bits of
5097 * the PHY timer, usually in units of nominal nanoseconds. Negative
5098 * adjustments are supported using 2s complement arithmetic.
5099 */
5100static int ice_ptp_prep_phy_adj_e810(struct ice_hw *hw, s32 adj)
5101{
5102	u8 tmr_idx;
5103	int err;
5104
5105	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5106
5107	/* Adjustments are represented as signed 2's complement values in
5108	 * nanoseconds. Sub-nanosecond adjustment is not supported.
5109	 */
5110	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), 0);
5111	if (err) {
5112		ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_L, err %d\n",
5113			  err);
5114		return err;
5115	}
5116
5117	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), adj);
5118	if (err) {
5119		ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_H, err %d\n",
5120			  err);
5121		return err;
5122	}
5123
5124	return 0;
5125}
5126
5127/**
5128 * ice_ptp_prep_phy_incval_e810 - Prep PHY port increment value change
5129 * @hw: pointer to HW struct
5130 * @incval: The new 40bit increment value to prepare
5131 *
5132 * Prepare the PHY port for a new increment value by programming the PHY
5133 * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual change is
5134 * completed by issuing an ICE_PTP_INIT_INCVAL command.
5135 */
5136static int ice_ptp_prep_phy_incval_e810(struct ice_hw *hw, u64 incval)
5137{
5138	u32 high, low;
5139	u8 tmr_idx;
5140	int err;
5141
5142	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5143	low = lower_32_bits(incval);
5144	high = upper_32_bits(incval);
5145
5146	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), low);
5147	if (err) {
5148		ice_debug(hw, ICE_DBG_PTP, "Failed to write incval to PHY SHADJ_L, err %d\n",
5149			  err);
5150		return err;
5151	}
5152
5153	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), high);
5154	if (err) {
5155		ice_debug(hw, ICE_DBG_PTP, "Failed to write incval PHY SHADJ_H, err %d\n",
5156			  err);
5157		return err;
5158	}
5159
5160	return 0;
5161}
5162
5163/**
5164 * ice_ptp_port_cmd_e810 - Prepare all external PHYs for a timer command
5165 * @hw: pointer to HW struct
5166 * @cmd: Command to be sent to the port
5167 *
5168 * Prepare the external PHYs connected to this device for a timer sync
5169 * command.
5170 */
5171static int ice_ptp_port_cmd_e810(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
5172{
5173	u32 val = ice_ptp_tmr_cmd_to_port_reg(hw, cmd);
5174
5175	return ice_write_phy_reg_e810(hw, E810_ETH_GLTSYN_CMD, val);
5176}
5177
5178/**
5179 * ice_get_phy_tx_tstamp_ready_e810 - Read Tx memory status register
5180 * @hw: pointer to the HW struct
5181 * @port: the PHY port to read
5182 * @tstamp_ready: contents of the Tx memory status register
5183 *
5184 * E810 devices do not use a Tx memory status register. Instead simply
5185 * indicate that all timestamps are currently ready.
5186 */
5187static int
5188ice_get_phy_tx_tstamp_ready_e810(struct ice_hw *hw, u8 port, u64 *tstamp_ready)
5189{
5190	*tstamp_ready = 0xFFFFFFFFFFFFFFFF;
5191	return 0;
5192}
5193
5194/* E810 SMA functions
5195 *
5196 * The following functions operate specifically on E810 hardware and are used
5197 * to access the extended GPIOs available.
5198 */
5199
5200/**
5201 * ice_get_pca9575_handle
5202 * @hw: pointer to the hw struct
5203 * @pca9575_handle: GPIO controller's handle
5204 *
5205 * Find and return the GPIO controller's handle in the netlist.
5206 * When found - the value will be cached in the hw structure and following calls
5207 * will return cached value
5208 */
5209static int
5210ice_get_pca9575_handle(struct ice_hw *hw, u16 *pca9575_handle)
5211{
5212	struct ice_aqc_get_link_topo *cmd;
5213	struct ice_aq_desc desc;
5214	int status;
5215	u8 idx;
5216
5217	/* If handle was read previously return cached value */
5218	if (hw->io_expander_handle) {
5219		*pca9575_handle = hw->io_expander_handle;
5220		return 0;
5221	}
5222
5223	/* If handle was not detected read it from the netlist */
5224	cmd = &desc.params.get_link_topo;
5225	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
5226
5227	/* Set node type to GPIO controller */
5228	cmd->addr.topo_params.node_type_ctx =
5229		(ICE_AQC_LINK_TOPO_NODE_TYPE_M &
5230		 ICE_AQC_LINK_TOPO_NODE_TYPE_GPIO_CTRL);
5231
5232#define SW_PCA9575_SFP_TOPO_IDX		2
5233#define SW_PCA9575_QSFP_TOPO_IDX	1
5234
5235	/* Check if the SW IO expander controlling SMA exists in the netlist. */
5236	if (hw->device_id == ICE_DEV_ID_E810C_SFP)
5237		idx = SW_PCA9575_SFP_TOPO_IDX;
5238	else if (hw->device_id == ICE_DEV_ID_E810C_QSFP)
5239		idx = SW_PCA9575_QSFP_TOPO_IDX;
5240	else
5241		return -EOPNOTSUPP;
5242
5243	cmd->addr.topo_params.index = idx;
5244
5245	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5246	if (status)
5247		return -EOPNOTSUPP;
5248
5249	/* Verify if we found the right IO expander type */
5250	if (desc.params.get_link_topo.node_part_num !=
5251		ICE_AQC_GET_LINK_TOPO_NODE_NR_PCA9575)
5252		return -EOPNOTSUPP;
5253
5254	/* If present save the handle and return it */
5255	hw->io_expander_handle =
5256		le16_to_cpu(desc.params.get_link_topo.addr.handle);
5257	*pca9575_handle = hw->io_expander_handle;
5258
5259	return 0;
5260}
5261
5262/**
5263 * ice_read_sma_ctrl
5264 * @hw: pointer to the hw struct
5265 * @data: pointer to data to be read from the GPIO controller
5266 *
5267 * Read the SMA controller state. It is connected to pins 3-7 of Port 1 of the
5268 * PCA9575 expander, so only bits 3-7 in data are valid.
5269 */
5270int ice_read_sma_ctrl(struct ice_hw *hw, u8 *data)
5271{
5272	int status;
5273	u16 handle;
5274	u8 i;
5275
5276	status = ice_get_pca9575_handle(hw, &handle);
5277	if (status)
5278		return status;
5279
5280	*data = 0;
5281
5282	for (i = ICE_SMA_MIN_BIT; i <= ICE_SMA_MAX_BIT; i++) {
5283		bool pin;
5284
5285		status = ice_aq_get_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET,
5286					 &pin, NULL);
5287		if (status)
5288			break;
5289		*data |= (u8)(!pin) << i;
 
 
 
 
 
 
 
 
 
 
 
5290	}
5291
5292	return status;
5293}
5294
5295/**
5296 * ice_write_sma_ctrl
5297 * @hw: pointer to the hw struct
5298 * @data: data to be written to the GPIO controller
5299 *
5300 * Write the data to the SMA controller. It is connected to pins 3-7 of Port 1
5301 * of the PCA9575 expander, so only bits 3-7 in data are valid.
5302 */
5303int ice_write_sma_ctrl(struct ice_hw *hw, u8 data)
5304{
5305	int status;
5306	u16 handle;
5307	u8 i;
5308
5309	status = ice_get_pca9575_handle(hw, &handle);
5310	if (status)
5311		return status;
5312
5313	for (i = ICE_SMA_MIN_BIT; i <= ICE_SMA_MAX_BIT; i++) {
5314		bool pin;
5315
5316		pin = !(data & (1 << i));
5317		status = ice_aq_set_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET,
5318					 pin, NULL);
5319		if (status)
5320			break;
5321	}
5322
5323	return status;
5324}
 
5325
5326/**
5327 * ice_read_pca9575_reg
5328 * @hw: pointer to the hw struct
5329 * @offset: GPIO controller register offset
5330 * @data: pointer to data to be read from the GPIO controller
5331 *
5332 * Read the register from the GPIO controller
5333 */
5334int ice_read_pca9575_reg(struct ice_hw *hw, u8 offset, u8 *data)
5335{
5336	struct ice_aqc_link_topo_addr link_topo;
5337	__le16 addr;
5338	u16 handle;
5339	int err;
5340
5341	memset(&link_topo, 0, sizeof(link_topo));
5342
5343	err = ice_get_pca9575_handle(hw, &handle);
5344	if (err)
5345		return err;
5346
5347	link_topo.handle = cpu_to_le16(handle);
5348	link_topo.topo_params.node_type_ctx =
5349		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M,
5350			   ICE_AQC_LINK_TOPO_NODE_CTX_PROVIDED);
5351
5352	addr = cpu_to_le16((u16)offset);
5353
5354	return ice_aq_read_i2c(hw, link_topo, 0, addr, 1, data, NULL);
5355}
5356
5357/**
5358 * ice_ptp_read_sdp_ac - read SDP available connections section from NVM
5359 * @hw: pointer to the HW struct
5360 * @entries: returns the SDP available connections section from NVM
5361 * @num_entries: returns the number of valid entries
5362 *
5363 * Return: 0 on success, negative error code if NVM read failed or section does
5364 * not exist or is corrupted
5365 */
5366int ice_ptp_read_sdp_ac(struct ice_hw *hw, __le16 *entries, uint *num_entries)
5367{
5368	__le16 data;
5369	u32 offset;
5370	int err;
5371
5372	err = ice_acquire_nvm(hw, ICE_RES_READ);
5373	if (err)
5374		goto exit;
5375
5376	/* Read the offset of SDP_AC */
5377	offset = ICE_AQC_NVM_SDP_AC_PTR_OFFSET;
5378	err = ice_aq_read_nvm(hw, 0, offset, sizeof(data), &data, false, true,
5379			      NULL);
5380	if (err)
5381		goto exit;
5382
5383	/* Check if section exist */
5384	offset = FIELD_GET(ICE_AQC_NVM_SDP_AC_PTR_M, le16_to_cpu(data));
5385	if (offset == ICE_AQC_NVM_SDP_AC_PTR_INVAL) {
5386		err = -EINVAL;
5387		goto exit;
5388	}
5389
5390	if (offset & ICE_AQC_NVM_SDP_AC_PTR_TYPE_M) {
5391		offset &= ICE_AQC_NVM_SDP_AC_PTR_M;
5392		offset *= ICE_AQC_NVM_SECTOR_UNIT;
5393	} else {
5394		offset *= sizeof(data);
5395	}
5396
5397	/* Skip reading section length and read the number of valid entries */
5398	offset += sizeof(data);
5399	err = ice_aq_read_nvm(hw, 0, offset, sizeof(data), &data, false, true,
5400			      NULL);
5401	if (err)
5402		goto exit;
5403	*num_entries = le16_to_cpu(data);
5404
5405	/* Read SDP configuration section */
5406	offset += sizeof(data);
5407	err = ice_aq_read_nvm(hw, 0, offset, *num_entries * sizeof(data),
5408			      entries, false, true, NULL);
5409
5410exit:
5411	if (err)
5412		dev_dbg(ice_hw_to_dev(hw), "Failed to configure SDP connection section\n");
5413	ice_release_nvm(hw);
5414	return err;
5415}
5416
5417/**
5418 * ice_ptp_init_phy_e810 - initialize PHY parameters
5419 * @ptp: pointer to the PTP HW struct
5420 */
5421static void ice_ptp_init_phy_e810(struct ice_ptp_hw *ptp)
5422{
5423	ptp->phy_model = ICE_PHY_E810;
5424	ptp->num_lports = 8;
5425	ptp->ports_per_phy = 4;
5426}
5427
5428/* Device agnostic functions
5429 *
5430 * The following functions implement shared behavior common to both E822 and
5431 * E810 devices, possibly calling a device specific implementation where
5432 * necessary.
5433 */
5434
5435/**
5436 * ice_ptp_lock - Acquire PTP global semaphore register lock
5437 * @hw: pointer to the HW struct
5438 *
5439 * Acquire the global PTP hardware semaphore lock. Returns true if the lock
5440 * was acquired, false otherwise.
5441 *
5442 * The PFTSYN_SEM register sets the busy bit on read, returning the previous
5443 * value. If software sees the busy bit cleared, this means that this function
5444 * acquired the lock (and the busy bit is now set). If software sees the busy
5445 * bit set, it means that another function acquired the lock.
5446 *
5447 * Software must clear the busy bit with a write to release the lock for other
5448 * functions when done.
5449 */
5450bool ice_ptp_lock(struct ice_hw *hw)
5451{
5452	u32 hw_lock;
5453	int i;
5454
5455#define MAX_TRIES 15
5456
5457	for (i = 0; i < MAX_TRIES; i++) {
5458		hw_lock = rd32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
5459		hw_lock = hw_lock & PFTSYN_SEM_BUSY_M;
5460		if (hw_lock) {
5461			/* Somebody is holding the lock */
5462			usleep_range(5000, 6000);
5463			continue;
5464		}
5465
5466		break;
5467	}
5468
5469	return !hw_lock;
5470}
5471
5472/**
5473 * ice_ptp_unlock - Release PTP global semaphore register lock
5474 * @hw: pointer to the HW struct
5475 *
5476 * Release the global PTP hardware semaphore lock. This is done by writing to
5477 * the PFTSYN_SEM register.
5478 */
5479void ice_ptp_unlock(struct ice_hw *hw)
5480{
5481	wr32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), 0);
5482}
5483
5484/**
5485 * ice_ptp_init_hw - Initialize hw based on device type
5486 * @hw: pointer to the HW structure
5487 *
5488 * Determine the PHY model for the device, and initialize hw
5489 * for use by other functions.
5490 */
5491void ice_ptp_init_hw(struct ice_hw *hw)
5492{
5493	struct ice_ptp_hw *ptp = &hw->ptp;
5494
5495	if (ice_is_e822(hw) || ice_is_e823(hw))
5496		ice_ptp_init_phy_e82x(ptp);
5497	else if (ice_is_e810(hw))
5498		ice_ptp_init_phy_e810(ptp);
5499	else if (ice_is_e825c(hw))
5500		ice_ptp_init_phy_e825(hw);
5501	else
5502		ptp->phy_model = ICE_PHY_UNSUP;
5503}
5504
5505/**
5506 * ice_ptp_write_port_cmd - Prepare a single PHY port for a timer command
5507 * @hw: pointer to HW struct
5508 * @port: Port to which cmd has to be sent
5509 * @cmd: Command to be sent to the port
5510 *
5511 * Prepare one port for the upcoming timer sync command. Do not use this for
5512 * programming only a single port, instead use ice_ptp_one_port_cmd() to
5513 * ensure non-modified ports get properly initialized to ICE_PTP_NOP.
5514 *
5515 * Return:
5516 * * %0     - success
5517 *  %-EBUSY - PHY type not supported
5518 * * %other - failed to write port command
5519 */
5520static int ice_ptp_write_port_cmd(struct ice_hw *hw, u8 port,
5521				  enum ice_ptp_tmr_cmd cmd)
5522{
5523	switch (ice_get_phy_model(hw)) {
5524	case ICE_PHY_ETH56G:
5525		return ice_ptp_write_port_cmd_eth56g(hw, port, cmd);
5526	case ICE_PHY_E82X:
5527		return ice_ptp_write_port_cmd_e82x(hw, port, cmd);
5528	default:
5529		return -EOPNOTSUPP;
5530	}
5531}
5532
5533/**
5534 * ice_ptp_one_port_cmd - Program one PHY port for a timer command
5535 * @hw: pointer to HW struct
5536 * @configured_port: the port that should execute the command
5537 * @configured_cmd: the command to be executed on the configured port
5538 *
5539 * Prepare one port for executing a timer command, while preparing all other
5540 * ports to ICE_PTP_NOP. This allows executing a command on a single port
5541 * while ensuring all other ports do not execute stale commands.
5542 *
5543 * Return:
5544 * * %0     - success
5545 * * %other - failed to write port command
5546 */
5547int ice_ptp_one_port_cmd(struct ice_hw *hw, u8 configured_port,
5548			 enum ice_ptp_tmr_cmd configured_cmd)
5549{
5550	u32 port;
5551
5552	for (port = 0; port < hw->ptp.num_lports; port++) {
5553		int err;
5554
5555		/* Program the configured port with the configured command,
5556		 * program all other ports with ICE_PTP_NOP.
5557		 */
5558		if (port == configured_port)
5559			err = ice_ptp_write_port_cmd(hw, port, configured_cmd);
5560		else
5561			err = ice_ptp_write_port_cmd(hw, port, ICE_PTP_NOP);
5562
5563		if (err)
5564			return err;
5565	}
5566
5567	return 0;
5568}
5569
5570/**
5571 * ice_ptp_port_cmd - Prepare PHY ports for a timer sync command
5572 * @hw: pointer to HW struct
5573 * @cmd: the timer command to setup
5574 *
5575 * Prepare all PHY ports on this device for the requested timer command. For
5576 * some families this can be done in one shot, but for other families each
5577 * port must be configured individually.
5578 *
5579 * Return:
5580 * * %0     - success
5581 * * %other - failed to write port command
5582 */
5583static int ice_ptp_port_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
5584{
5585	u32 port;
5586
5587	/* PHY models which can program all ports simultaneously */
5588	switch (ice_get_phy_model(hw)) {
5589	case ICE_PHY_E810:
5590		return ice_ptp_port_cmd_e810(hw, cmd);
5591	default:
5592		break;
5593	}
5594
5595	/* PHY models which require programming each port separately */
5596	for (port = 0; port < hw->ptp.num_lports; port++) {
5597		int err;
5598
5599		err = ice_ptp_write_port_cmd(hw, port, cmd);
5600		if (err)
5601			return err;
5602	}
5603
5604	return 0;
5605}
5606
5607/**
5608 * ice_ptp_tmr_cmd - Prepare and trigger a timer sync command
5609 * @hw: pointer to HW struct
5610 * @cmd: the command to issue
5611 *
5612 * Prepare the source timer and PHY timers and then trigger the requested
5613 * command. This causes the shadow registers previously written in preparation
5614 * for the command to be synchronously applied to both the source and PHY
5615 * timers.
5616 */
5617static int ice_ptp_tmr_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
5618{
5619	int err;
5620
5621	/* First, prepare the source timer */
5622	ice_ptp_src_cmd(hw, cmd);
5623
5624	/* Next, prepare the ports */
5625	err = ice_ptp_port_cmd(hw, cmd);
 
 
 
5626	if (err) {
5627		ice_debug(hw, ICE_DBG_PTP, "Failed to prepare PHY ports for timer command %u, err %d\n",
5628			  cmd, err);
5629		return err;
5630	}
5631
5632	/* Write the sync command register to drive both source and PHY timer
5633	 * commands synchronously
5634	 */
5635	ice_ptp_exec_tmr_cmd(hw);
5636
5637	return 0;
5638}
5639
5640/**
5641 * ice_ptp_init_time - Initialize device time to provided value
5642 * @hw: pointer to HW struct
5643 * @time: 64bits of time (GLTSYN_TIME_L and GLTSYN_TIME_H)
5644 *
5645 * Initialize the device to the specified time provided. This requires a three
5646 * step process:
5647 *
5648 * 1) write the new init time to the source timer shadow registers
5649 * 2) write the new init time to the PHY timer shadow registers
5650 * 3) issue an init_time timer command to synchronously switch both the source
5651 *    and port timers to the new init time value at the next clock cycle.
5652 */
5653int ice_ptp_init_time(struct ice_hw *hw, u64 time)
5654{
5655	u8 tmr_idx;
5656	int err;
5657
5658	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5659
5660	/* Source timers */
5661	wr32(hw, GLTSYN_SHTIME_L(tmr_idx), lower_32_bits(time));
5662	wr32(hw, GLTSYN_SHTIME_H(tmr_idx), upper_32_bits(time));
5663	wr32(hw, GLTSYN_SHTIME_0(tmr_idx), 0);
5664
5665	/* PHY timers */
5666	/* Fill Rx and Tx ports and send msg to PHY */
5667	switch (ice_get_phy_model(hw)) {
5668	case ICE_PHY_ETH56G:
5669		err = ice_ptp_prep_phy_time_eth56g(hw,
5670						   (u32)(time & 0xFFFFFFFF));
5671		break;
5672	case ICE_PHY_E810:
5673		err = ice_ptp_prep_phy_time_e810(hw, time & 0xFFFFFFFF);
5674		break;
5675	case ICE_PHY_E82X:
5676		err = ice_ptp_prep_phy_time_e82x(hw, time & 0xFFFFFFFF);
5677		break;
5678	default:
5679		err = -EOPNOTSUPP;
5680	}
5681
5682	if (err)
5683		return err;
5684
5685	return ice_ptp_tmr_cmd(hw, ICE_PTP_INIT_TIME);
5686}
5687
5688/**
5689 * ice_ptp_write_incval - Program PHC with new increment value
5690 * @hw: pointer to HW struct
5691 * @incval: Source timer increment value per clock cycle
5692 *
5693 * Program the PHC with a new increment value. This requires a three-step
5694 * process:
5695 *
5696 * 1) Write the increment value to the source timer shadow registers
5697 * 2) Write the increment value to the PHY timer shadow registers
5698 * 3) Issue an ICE_PTP_INIT_INCVAL timer command to synchronously switch both
5699 *    the source and port timers to the new increment value at the next clock
5700 *    cycle.
5701 */
5702int ice_ptp_write_incval(struct ice_hw *hw, u64 incval)
5703{
5704	u8 tmr_idx;
5705	int err;
5706
5707	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5708
5709	/* Shadow Adjust */
5710	wr32(hw, GLTSYN_SHADJ_L(tmr_idx), lower_32_bits(incval));
5711	wr32(hw, GLTSYN_SHADJ_H(tmr_idx), upper_32_bits(incval));
5712
5713	switch (ice_get_phy_model(hw)) {
5714	case ICE_PHY_ETH56G:
5715		err = ice_ptp_prep_phy_incval_eth56g(hw, incval);
5716		break;
5717	case ICE_PHY_E810:
5718		err = ice_ptp_prep_phy_incval_e810(hw, incval);
5719		break;
5720	case ICE_PHY_E82X:
5721		err = ice_ptp_prep_phy_incval_e82x(hw, incval);
5722		break;
5723	default:
5724		err = -EOPNOTSUPP;
5725	}
5726
5727	if (err)
5728		return err;
5729
5730	return ice_ptp_tmr_cmd(hw, ICE_PTP_INIT_INCVAL);
5731}
5732
5733/**
5734 * ice_ptp_write_incval_locked - Program new incval while holding semaphore
5735 * @hw: pointer to HW struct
5736 * @incval: Source timer increment value per clock cycle
5737 *
5738 * Program a new PHC incval while holding the PTP semaphore.
5739 */
5740int ice_ptp_write_incval_locked(struct ice_hw *hw, u64 incval)
5741{
5742	int err;
5743
5744	if (!ice_ptp_lock(hw))
5745		return -EBUSY;
5746
5747	err = ice_ptp_write_incval(hw, incval);
5748
5749	ice_ptp_unlock(hw);
5750
5751	return err;
5752}
5753
5754/**
5755 * ice_ptp_adj_clock - Adjust PHC clock time atomically
5756 * @hw: pointer to HW struct
5757 * @adj: Adjustment in nanoseconds
5758 *
5759 * Perform an atomic adjustment of the PHC time by the specified number of
5760 * nanoseconds. This requires a three-step process:
5761 *
5762 * 1) Write the adjustment to the source timer shadow registers
5763 * 2) Write the adjustment to the PHY timer shadow registers
5764 * 3) Issue an ICE_PTP_ADJ_TIME timer command to synchronously apply the
5765 *    adjustment to both the source and port timers at the next clock cycle.
5766 */
5767int ice_ptp_adj_clock(struct ice_hw *hw, s32 adj)
5768{
5769	u8 tmr_idx;
5770	int err;
5771
5772	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5773
5774	/* Write the desired clock adjustment into the GLTSYN_SHADJ register.
5775	 * For an ICE_PTP_ADJ_TIME command, this set of registers represents
5776	 * the value to add to the clock time. It supports subtraction by
5777	 * interpreting the value as a 2's complement integer.
5778	 */
5779	wr32(hw, GLTSYN_SHADJ_L(tmr_idx), 0);
5780	wr32(hw, GLTSYN_SHADJ_H(tmr_idx), adj);
5781
5782	switch (ice_get_phy_model(hw)) {
5783	case ICE_PHY_ETH56G:
5784		err = ice_ptp_prep_phy_adj_eth56g(hw, adj);
5785		break;
5786	case ICE_PHY_E810:
5787		err = ice_ptp_prep_phy_adj_e810(hw, adj);
5788		break;
5789	case ICE_PHY_E82X:
5790		err = ice_ptp_prep_phy_adj_e82x(hw, adj);
5791		break;
5792	default:
5793		err = -EOPNOTSUPP;
5794	}
5795
5796	if (err)
5797		return err;
5798
5799	return ice_ptp_tmr_cmd(hw, ICE_PTP_ADJ_TIME);
5800}
5801
5802/**
5803 * ice_read_phy_tstamp - Read a PHY timestamp from the timestamo block
5804 * @hw: pointer to the HW struct
5805 * @block: the block to read from
5806 * @idx: the timestamp index to read
5807 * @tstamp: on return, the 40bit timestamp value
5808 *
5809 * Read a 40bit timestamp value out of the timestamp block. For E822 devices,
5810 * the block is the quad to read from. For E810 devices, the block is the
5811 * logical port to read from.
5812 */
5813int ice_read_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx, u64 *tstamp)
5814{
5815	switch (ice_get_phy_model(hw)) {
5816	case ICE_PHY_ETH56G:
5817		return ice_read_ptp_tstamp_eth56g(hw, block, idx, tstamp);
5818	case ICE_PHY_E810:
5819		return ice_read_phy_tstamp_e810(hw, block, idx, tstamp);
5820	case ICE_PHY_E82X:
5821		return ice_read_phy_tstamp_e82x(hw, block, idx, tstamp);
5822	default:
5823		return -EOPNOTSUPP;
5824	}
5825}
5826
5827/**
5828 * ice_clear_phy_tstamp - Clear a timestamp from the timestamp block
5829 * @hw: pointer to the HW struct
5830 * @block: the block to read from
5831 * @idx: the timestamp index to reset
5832 *
5833 * Clear a timestamp from the timestamp block, discarding its value without
5834 * returning it. This resets the memory status bit for the timestamp index
5835 * allowing it to be reused for another timestamp in the future.
5836 *
5837 * For E822 devices, the block number is the PHY quad to clear from. For E810
5838 * devices, the block number is the logical port to clear from.
5839 *
5840 * This function must only be called on a timestamp index whose valid bit is
5841 * set according to ice_get_phy_tx_tstamp_ready().
5842 */
5843int ice_clear_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx)
5844{
5845	switch (ice_get_phy_model(hw)) {
5846	case ICE_PHY_ETH56G:
5847		return ice_clear_ptp_tstamp_eth56g(hw, block, idx);
5848	case ICE_PHY_E810:
5849		return ice_clear_phy_tstamp_e810(hw, block, idx);
5850	case ICE_PHY_E82X:
5851		return ice_clear_phy_tstamp_e82x(hw, block, idx);
5852	default:
5853		return -EOPNOTSUPP;
5854	}
5855}
5856
5857/**
5858 * ice_get_pf_c827_idx - find and return the C827 index for the current pf
5859 * @hw: pointer to the hw struct
5860 * @idx: index of the found C827 PHY
5861 * Return:
5862 * * 0 - success
5863 * * negative - failure
5864 */
5865static int ice_get_pf_c827_idx(struct ice_hw *hw, u8 *idx)
5866{
5867	struct ice_aqc_get_link_topo cmd;
5868	u8 node_part_number;
5869	u16 node_handle;
5870	int status;
5871	u8 ctx;
5872
5873	if (hw->mac_type != ICE_MAC_E810)
5874		return -ENODEV;
5875
5876	if (hw->device_id != ICE_DEV_ID_E810C_QSFP) {
5877		*idx = C827_0;
5878		return 0;
5879	}
5880
5881	memset(&cmd, 0, sizeof(cmd));
5882
5883	ctx = ICE_AQC_LINK_TOPO_NODE_TYPE_PHY << ICE_AQC_LINK_TOPO_NODE_TYPE_S;
5884	ctx |= ICE_AQC_LINK_TOPO_NODE_CTX_PORT << ICE_AQC_LINK_TOPO_NODE_CTX_S;
5885	cmd.addr.topo_params.node_type_ctx = ctx;
5886
5887	status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number,
5888					 &node_handle);
5889	if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827)
5890		return -ENOENT;
5891
5892	if (node_handle == E810C_QSFP_C827_0_HANDLE)
5893		*idx = C827_0;
5894	else if (node_handle == E810C_QSFP_C827_1_HANDLE)
5895		*idx = C827_1;
5896	else
5897		return -EIO;
5898
5899	return 0;
5900}
5901
5902/**
5903 * ice_ptp_reset_ts_memory - Reset timestamp memory for all blocks
5904 * @hw: pointer to the HW struct
5905 */
5906void ice_ptp_reset_ts_memory(struct ice_hw *hw)
5907{
5908	switch (ice_get_phy_model(hw)) {
5909	case ICE_PHY_ETH56G:
5910		ice_ptp_reset_ts_memory_eth56g(hw);
5911		break;
5912	case ICE_PHY_E82X:
5913		ice_ptp_reset_ts_memory_e82x(hw);
5914		break;
5915	case ICE_PHY_E810:
5916	default:
5917		return;
5918	}
5919}
5920
5921/**
5922 * ice_ptp_init_phc - Initialize PTP hardware clock
5923 * @hw: pointer to the HW struct
 
 
5924 *
5925 * Perform the steps required to initialize the PTP hardware clock.
 
5926 */
5927int ice_ptp_init_phc(struct ice_hw *hw)
 
5928{
5929	u8 src_idx = hw->func_caps.ts_func_info.tmr_index_owned;
5930
5931	/* Enable source clocks */
5932	wr32(hw, GLTSYN_ENA(src_idx), GLTSYN_ENA_TSYN_ENA_M);
5933
5934	/* Clear event err indications for auxiliary pins */
5935	(void)rd32(hw, GLTSYN_STAT(src_idx));
5936
5937	switch (ice_get_phy_model(hw)) {
5938	case ICE_PHY_ETH56G:
5939		return ice_ptp_init_phc_eth56g(hw);
5940	case ICE_PHY_E810:
5941		return ice_ptp_init_phc_e810(hw);
5942	case ICE_PHY_E82X:
5943		return ice_ptp_init_phc_e82x(hw);
5944	default:
5945		return -EOPNOTSUPP;
5946	}
5947}
5948
5949/**
5950 * ice_get_phy_tx_tstamp_ready - Read PHY Tx memory status indication
5951 * @hw: pointer to the HW struct
5952 * @block: the timestamp block to check
5953 * @tstamp_ready: storage for the PHY Tx memory status information
5954 *
5955 * Check the PHY for Tx timestamp memory status. This reports a 64 bit value
5956 * which indicates which timestamps in the block may be captured. A set bit
5957 * means the timestamp can be read. An unset bit means the timestamp is not
5958 * ready and software should avoid reading the register.
5959 */
5960int ice_get_phy_tx_tstamp_ready(struct ice_hw *hw, u8 block, u64 *tstamp_ready)
5961{
5962	switch (ice_get_phy_model(hw)) {
5963	case ICE_PHY_ETH56G:
5964		return ice_get_phy_tx_tstamp_ready_eth56g(hw, block,
5965							  tstamp_ready);
5966	case ICE_PHY_E810:
5967		return ice_get_phy_tx_tstamp_ready_e810(hw, block,
5968							tstamp_ready);
5969	case ICE_PHY_E82X:
5970		return ice_get_phy_tx_tstamp_ready_e82x(hw, block,
5971							tstamp_ready);
5972		break;
5973	default:
5974		return -EOPNOTSUPP;
5975	}
5976}
5977
5978/**
5979 * ice_cgu_get_pin_desc_e823 - get pin description array
5980 * @hw: pointer to the hw struct
5981 * @input: if request is done against input or output pin
5982 * @size: number of inputs/outputs
5983 *
5984 * Return: pointer to pin description array associated to given hw.
 
 
5985 */
5986static const struct ice_cgu_pin_desc *
5987ice_cgu_get_pin_desc_e823(struct ice_hw *hw, bool input, int *size)
5988{
5989	static const struct ice_cgu_pin_desc *t;
5990
5991	if (hw->cgu_part_number ==
5992	    ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032) {
5993		if (input) {
5994			t = ice_e823_zl_cgu_inputs;
5995			*size = ARRAY_SIZE(ice_e823_zl_cgu_inputs);
5996		} else {
5997			t = ice_e823_zl_cgu_outputs;
5998			*size = ARRAY_SIZE(ice_e823_zl_cgu_outputs);
5999		}
6000	} else if (hw->cgu_part_number ==
6001		   ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384) {
6002		if (input) {
6003			t = ice_e823_si_cgu_inputs;
6004			*size = ARRAY_SIZE(ice_e823_si_cgu_inputs);
6005		} else {
6006			t = ice_e823_si_cgu_outputs;
6007			*size = ARRAY_SIZE(ice_e823_si_cgu_outputs);
6008		}
6009	} else {
6010		t = NULL;
6011		*size = 0;
6012	}
6013
6014	return t;
6015}
 
6016
6017/**
6018 * ice_cgu_get_pin_desc - get pin description array
6019 * @hw: pointer to the hw struct
6020 * @input: if request is done against input or output pins
6021 * @size: size of array returned by function
6022 *
6023 * Return: pointer to pin description array associated to given hw.
6024 */
6025static const struct ice_cgu_pin_desc *
6026ice_cgu_get_pin_desc(struct ice_hw *hw, bool input, int *size)
6027{
6028	const struct ice_cgu_pin_desc *t = NULL;
6029
6030	switch (hw->device_id) {
6031	case ICE_DEV_ID_E810C_SFP:
6032		if (input) {
6033			t = ice_e810t_sfp_cgu_inputs;
6034			*size = ARRAY_SIZE(ice_e810t_sfp_cgu_inputs);
6035		} else {
6036			t = ice_e810t_sfp_cgu_outputs;
6037			*size = ARRAY_SIZE(ice_e810t_sfp_cgu_outputs);
6038		}
6039		break;
6040	case ICE_DEV_ID_E810C_QSFP:
6041		if (input) {
6042			t = ice_e810t_qsfp_cgu_inputs;
6043			*size = ARRAY_SIZE(ice_e810t_qsfp_cgu_inputs);
6044		} else {
6045			t = ice_e810t_qsfp_cgu_outputs;
6046			*size = ARRAY_SIZE(ice_e810t_qsfp_cgu_outputs);
6047		}
6048		break;
6049	case ICE_DEV_ID_E823L_10G_BASE_T:
6050	case ICE_DEV_ID_E823L_1GBE:
6051	case ICE_DEV_ID_E823L_BACKPLANE:
6052	case ICE_DEV_ID_E823L_QSFP:
6053	case ICE_DEV_ID_E823L_SFP:
6054	case ICE_DEV_ID_E823C_10G_BASE_T:
6055	case ICE_DEV_ID_E823C_BACKPLANE:
6056	case ICE_DEV_ID_E823C_QSFP:
6057	case ICE_DEV_ID_E823C_SFP:
6058	case ICE_DEV_ID_E823C_SGMII:
6059		t = ice_cgu_get_pin_desc_e823(hw, input, size);
6060		break;
6061	default:
6062		break;
6063	}
6064
6065	return t;
6066}
6067
6068/**
6069 * ice_cgu_get_num_pins - get pin description array size
6070 * @hw: pointer to the hw struct
6071 * @input: if request is done against input or output pins
6072 *
6073 * Return: size of pin description array for given hw.
6074 */
6075int ice_cgu_get_num_pins(struct ice_hw *hw, bool input)
6076{
6077	const struct ice_cgu_pin_desc *t;
6078	int size;
6079
6080	t = ice_cgu_get_pin_desc(hw, input, &size);
6081	if (t)
6082		return size;
 
 
 
 
 
 
 
 
 
 
 
 
6083
6084	return 0;
6085}
6086
6087/**
6088 * ice_cgu_get_pin_type - get pin's type
6089 * @hw: pointer to the hw struct
6090 * @pin: pin index
6091 * @input: if request is done against input or output pin
6092 *
6093 * Return: type of a pin.
 
6094 */
6095enum dpll_pin_type ice_cgu_get_pin_type(struct ice_hw *hw, u8 pin, bool input)
6096{
6097	const struct ice_cgu_pin_desc *t;
6098	int t_size;
 
6099
6100	t = ice_cgu_get_pin_desc(hw, input, &t_size);
 
 
6101
6102	if (!t)
6103		return 0;
6104
6105	if (pin >= t_size)
6106		return 0;
6107
6108	return t[pin].type;
 
 
 
 
 
 
 
6109}
6110
6111/**
6112 * ice_cgu_get_pin_freq_supp - get pin's supported frequency
6113 * @hw: pointer to the hw struct
6114 * @pin: pin index
6115 * @input: if request is done against input or output pin
6116 * @num: output number of supported frequencies
6117 *
6118 * Get frequency supported number and array of supported frequencies.
6119 *
6120 * Return: array of supported frequencies for given pin.
 
6121 */
6122struct dpll_pin_frequency *
6123ice_cgu_get_pin_freq_supp(struct ice_hw *hw, u8 pin, bool input, u8 *num)
6124{
6125	const struct ice_cgu_pin_desc *t;
6126	int t_size;
 
6127
6128	*num = 0;
6129	t = ice_cgu_get_pin_desc(hw, input, &t_size);
6130	if (!t)
6131		return NULL;
6132	if (pin >= t_size)
6133		return NULL;
6134	*num = t[pin].freq_supp_num;
 
 
 
 
 
 
6135
6136	return t[pin].freq_supp;
6137}
6138
6139/**
6140 * ice_cgu_get_pin_name - get pin's name
6141 * @hw: pointer to the hw struct
6142 * @pin: pin index
6143 * @input: if request is done against input or output pin
6144 *
6145 * Return:
6146 * * null terminated char array with name
6147 * * NULL in case of failure
6148 */
6149const char *ice_cgu_get_pin_name(struct ice_hw *hw, u8 pin, bool input)
6150{
6151	const struct ice_cgu_pin_desc *t;
6152	int t_size;
 
 
6153
6154	t = ice_cgu_get_pin_desc(hw, input, &t_size);
6155
6156	if (!t)
6157		return NULL;
 
6158
6159	if (pin >= t_size)
6160		return NULL;
 
 
 
 
6161
6162	return t[pin].name;
6163}
6164
6165/**
6166 * ice_get_cgu_state - get the state of the DPLL
6167 * @hw: pointer to the hw struct
6168 * @dpll_idx: Index of internal DPLL unit
6169 * @last_dpll_state: last known state of DPLL
6170 * @pin: pointer to a buffer for returning currently active pin
6171 * @ref_state: reference clock state
6172 * @eec_mode: eec mode of the DPLL
6173 * @phase_offset: pointer to a buffer for returning phase offset
6174 * @dpll_state: state of the DPLL (output)
6175 *
6176 * This function will read the state of the DPLL(dpll_idx). Non-null
6177 * 'pin', 'ref_state', 'eec_mode' and 'phase_offset' parameters are used to
6178 * retrieve currently active pin, state, mode and phase_offset respectively.
6179 *
6180 * Return: state of the DPLL
6181 */
6182int ice_get_cgu_state(struct ice_hw *hw, u8 dpll_idx,
6183		      enum dpll_lock_status last_dpll_state, u8 *pin,
6184		      u8 *ref_state, u8 *eec_mode, s64 *phase_offset,
6185		      enum dpll_lock_status *dpll_state)
6186{
6187	u8 hw_ref_state, hw_dpll_state, hw_eec_mode, hw_config;
6188	s64 hw_phase_offset;
6189	int status;
6190
6191	status = ice_aq_get_cgu_dpll_status(hw, dpll_idx, &hw_ref_state,
6192					    &hw_dpll_state, &hw_config,
6193					    &hw_phase_offset, &hw_eec_mode);
6194	if (status)
6195		return status;
6196
6197	if (pin)
6198		/* current ref pin in dpll_state_refsel_status_X register */
6199		*pin = hw_config & ICE_AQC_GET_CGU_DPLL_CONFIG_CLK_REF_SEL;
6200	if (phase_offset)
6201		*phase_offset = hw_phase_offset;
6202	if (ref_state)
6203		*ref_state = hw_ref_state;
6204	if (eec_mode)
6205		*eec_mode = hw_eec_mode;
6206	if (!dpll_state)
6207		return 0;
6208
6209	/* According to ZL DPLL documentation, once state reach LOCKED_HO_ACQ
6210	 * it would never return to FREERUN. This aligns to ITU-T G.781
6211	 * Recommendation. We cannot report HOLDOVER as HO memory is cleared
6212	 * while switching to another reference.
6213	 * Only for situations where previous state was either: "LOCKED without
6214	 * HO_ACQ" or "HOLDOVER" we actually back to FREERUN.
6215	 */
6216	if (hw_dpll_state & ICE_AQC_GET_CGU_DPLL_STATUS_STATE_LOCK) {
6217		if (hw_dpll_state & ICE_AQC_GET_CGU_DPLL_STATUS_STATE_HO_READY)
6218			*dpll_state = DPLL_LOCK_STATUS_LOCKED_HO_ACQ;
6219		else
6220			*dpll_state = DPLL_LOCK_STATUS_LOCKED;
6221	} else if (last_dpll_state == DPLL_LOCK_STATUS_LOCKED_HO_ACQ ||
6222		   last_dpll_state == DPLL_LOCK_STATUS_HOLDOVER) {
6223		*dpll_state = DPLL_LOCK_STATUS_HOLDOVER;
6224	} else {
6225		*dpll_state = DPLL_LOCK_STATUS_UNLOCKED;
6226	}
6227
6228	return 0;
 
 
 
 
 
 
 
 
 
6229}
6230
6231/**
6232 * ice_get_cgu_rclk_pin_info - get info on available recovered clock pins
6233 * @hw: pointer to the hw struct
6234 * @base_idx: returns index of first recovered clock pin on device
6235 * @pin_num: returns number of recovered clock pins available on device
6236 *
6237 * Based on hw provide caller info about recovery clock pins available on the
6238 * board.
6239 *
6240 * Return:
6241 * * 0 - success, information is valid
6242 * * negative - failure, information is not valid
6243 */
6244int ice_get_cgu_rclk_pin_info(struct ice_hw *hw, u8 *base_idx, u8 *pin_num)
6245{
6246	u8 phy_idx;
6247	int ret;
6248
6249	switch (hw->device_id) {
6250	case ICE_DEV_ID_E810C_SFP:
6251	case ICE_DEV_ID_E810C_QSFP:
6252
6253		ret = ice_get_pf_c827_idx(hw, &phy_idx);
6254		if (ret)
6255			return ret;
6256		*base_idx = E810T_CGU_INPUT_C827(phy_idx, ICE_RCLKA_PIN);
6257		*pin_num = ICE_E810_RCLK_PINS_NUM;
6258		ret = 0;
6259		break;
6260	case ICE_DEV_ID_E823L_10G_BASE_T:
6261	case ICE_DEV_ID_E823L_1GBE:
6262	case ICE_DEV_ID_E823L_BACKPLANE:
6263	case ICE_DEV_ID_E823L_QSFP:
6264	case ICE_DEV_ID_E823L_SFP:
6265	case ICE_DEV_ID_E823C_10G_BASE_T:
6266	case ICE_DEV_ID_E823C_BACKPLANE:
6267	case ICE_DEV_ID_E823C_QSFP:
6268	case ICE_DEV_ID_E823C_SFP:
6269	case ICE_DEV_ID_E823C_SGMII:
6270		*pin_num = ICE_E82X_RCLK_PINS_NUM;
6271		ret = 0;
6272		if (hw->cgu_part_number ==
6273		    ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032)
6274			*base_idx = ZL_REF1P;
6275		else if (hw->cgu_part_number ==
6276			 ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384)
6277			*base_idx = SI_REF1P;
6278		else
6279			ret = -ENODEV;
6280
6281		break;
6282	default:
6283		ret = -ENODEV;
6284		break;
6285	}
6286
6287	return ret;
 
 
 
6288}
6289
6290/**
6291 * ice_cgu_get_output_pin_state_caps - get output pin state capabilities
6292 * @hw: pointer to the hw struct
6293 * @pin_id: id of a pin
6294 * @caps: capabilities to modify
6295 *
6296 * Return:
6297 * * 0 - success, state capabilities were modified
6298 * * negative - failure, capabilities were not modified
6299 */
6300int ice_cgu_get_output_pin_state_caps(struct ice_hw *hw, u8 pin_id,
6301				      unsigned long *caps)
6302{
6303	bool can_change = true;
6304
6305	switch (hw->device_id) {
6306	case ICE_DEV_ID_E810C_SFP:
6307		if (pin_id == ZL_OUT2 || pin_id == ZL_OUT3)
6308			can_change = false;
6309		break;
6310	case ICE_DEV_ID_E810C_QSFP:
6311		if (pin_id == ZL_OUT2 || pin_id == ZL_OUT3 || pin_id == ZL_OUT4)
6312			can_change = false;
6313		break;
6314	case ICE_DEV_ID_E823L_10G_BASE_T:
6315	case ICE_DEV_ID_E823L_1GBE:
6316	case ICE_DEV_ID_E823L_BACKPLANE:
6317	case ICE_DEV_ID_E823L_QSFP:
6318	case ICE_DEV_ID_E823L_SFP:
6319	case ICE_DEV_ID_E823C_10G_BASE_T:
6320	case ICE_DEV_ID_E823C_BACKPLANE:
6321	case ICE_DEV_ID_E823C_QSFP:
6322	case ICE_DEV_ID_E823C_SFP:
6323	case ICE_DEV_ID_E823C_SGMII:
6324		if (hw->cgu_part_number ==
6325		    ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032 &&
6326		    pin_id == ZL_OUT2)
6327			can_change = false;
6328		else if (hw->cgu_part_number ==
6329			 ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384 &&
6330			 pin_id == SI_OUT1)
6331			can_change = false;
6332		break;
6333	default:
6334		return -EINVAL;
6335	}
6336	if (can_change)
6337		*caps |= DPLL_PIN_CAPABILITIES_STATE_CAN_CHANGE;
6338	else
6339		*caps &= ~DPLL_PIN_CAPABILITIES_STATE_CAN_CHANGE;
6340
6341	return 0;
6342}
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (C) 2021, Intel Corporation. */
   3
   4#include <linux/delay.h>
 
   5#include "ice_common.h"
   6#include "ice_ptp_hw.h"
   7#include "ice_ptp_consts.h"
   8#include "ice_cgu_regs.h"
   9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  10/* Low level functions for interacting with and managing the device clock used
  11 * for the Precision Time Protocol.
  12 *
  13 * The ice hardware represents the current time using three registers:
  14 *
  15 *    GLTSYN_TIME_H     GLTSYN_TIME_L     GLTSYN_TIME_R
  16 *  +---------------+ +---------------+ +---------------+
  17 *  |    32 bits    | |    32 bits    | |    32 bits    |
  18 *  +---------------+ +---------------+ +---------------+
  19 *
  20 * The registers are incremented every clock tick using a 40bit increment
  21 * value defined over two registers:
  22 *
  23 *                     GLTSYN_INCVAL_H   GLTSYN_INCVAL_L
  24 *                    +---------------+ +---------------+
  25 *                    |    8 bit s    | |    32 bits    |
  26 *                    +---------------+ +---------------+
  27 *
  28 * The increment value is added to the GLSTYN_TIME_R and GLSTYN_TIME_L
  29 * registers every clock source tick. Depending on the specific device
  30 * configuration, the clock source frequency could be one of a number of
  31 * values.
  32 *
  33 * For E810 devices, the increment frequency is 812.5 MHz
  34 *
  35 * For E822 devices the clock can be derived from different sources, and the
  36 * increment has an effective frequency of one of the following:
  37 * - 823.4375 MHz
  38 * - 783.36 MHz
  39 * - 796.875 MHz
  40 * - 816 MHz
  41 * - 830.078125 MHz
  42 * - 783.36 MHz
  43 *
  44 * The hardware captures timestamps in the PHY for incoming packets, and for
  45 * outgoing packets on request. To support this, the PHY maintains a timer
  46 * that matches the lower 64 bits of the global source timer.
  47 *
  48 * In order to ensure that the PHY timers and the source timer are equivalent,
  49 * shadow registers are used to prepare the desired initial values. A special
  50 * sync command is issued to trigger copying from the shadow registers into
  51 * the appropriate source and PHY registers simultaneously.
  52 *
  53 * The driver supports devices which have different PHYs with subtly different
  54 * mechanisms to program and control the timers. We divide the devices into
  55 * families named after the first major device, E810 and similar devices, and
  56 * E822 and similar devices.
  57 *
  58 * - E822 based devices have additional support for fine grained Vernier
  59 *   calibration which requires significant setup
  60 * - The layout of timestamp data in the PHY register blocks is different
  61 * - The way timer synchronization commands are issued is different.
  62 *
  63 * To support this, very low level functions have an e810 or e822 suffix
  64 * indicating what type of device they work on. Higher level abstractions for
  65 * tasks that can be done on both devices do not have the suffix and will
  66 * correctly look up the appropriate low level function when running.
  67 *
  68 * Functions which only make sense on a single device family may not have
  69 * a suitable generic implementation
  70 */
  71
  72/**
  73 * ice_get_ptp_src_clock_index - determine source clock index
  74 * @hw: pointer to HW struct
  75 *
  76 * Determine the source clock index currently in use, based on device
  77 * capabilities reported during initialization.
  78 */
  79u8 ice_get_ptp_src_clock_index(struct ice_hw *hw)
  80{
  81	return hw->func_caps.ts_func_info.tmr_index_assoc;
  82}
  83
  84/**
  85 * ice_ptp_read_src_incval - Read source timer increment value
  86 * @hw: pointer to HW struct
  87 *
  88 * Read the increment value of the source timer and return it.
  89 */
  90static u64 ice_ptp_read_src_incval(struct ice_hw *hw)
  91{
  92	u32 lo, hi;
  93	u8 tmr_idx;
  94
  95	tmr_idx = ice_get_ptp_src_clock_index(hw);
  96
  97	lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
  98	hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
  99
 100	return ((u64)(hi & INCVAL_HIGH_M) << 32) | lo;
 101}
 102
 103/**
 104 * ice_ptp_src_cmd - Prepare source timer for a timer command
 105 * @hw: pointer to HW structure
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 106 * @cmd: Timer command
 107 *
 108 * Prepare the source timer for an upcoming timer sync command.
 
 109 */
 110static void ice_ptp_src_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
 
 111{
 112	u32 cmd_val;
 113	u8 tmr_idx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 114
 115	tmr_idx = ice_get_ptp_src_clock_index(hw);
 116	cmd_val = tmr_idx << SEL_CPK_SRC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 117
 118	switch (cmd) {
 119	case INIT_TIME:
 120		cmd_val |= GLTSYN_CMD_INIT_TIME;
 
 
 
 121		break;
 122	case INIT_INCVAL:
 123		cmd_val |= GLTSYN_CMD_INIT_INCVAL;
 124		break;
 125	case ADJ_TIME:
 126		cmd_val |= GLTSYN_CMD_ADJ_TIME;
 127		break;
 128	case ADJ_TIME_AT_TIME:
 129		cmd_val |= GLTSYN_CMD_ADJ_INIT_TIME;
 130		break;
 131	case READ_TIME:
 132		cmd_val |= GLTSYN_CMD_READ_TIME;
 133		break;
 
 
 
 
 134	}
 135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 136	wr32(hw, GLTSYN_CMD, cmd_val);
 137}
 138
 139/**
 140 * ice_ptp_exec_tmr_cmd - Execute all prepared timer commands
 141 * @hw: pointer to HW struct
 142 *
 143 * Write the SYNC_EXEC_CMD bit to the GLTSYN_CMD_SYNC register, and flush the
 144 * write immediately. This triggers the hardware to begin executing all of the
 145 * source and PHY timer commands synchronously.
 146 */
 147static void ice_ptp_exec_tmr_cmd(struct ice_hw *hw)
 148{
 
 
 
 149	wr32(hw, GLTSYN_CMD_SYNC, SYNC_EXEC_CMD);
 150	ice_flush(hw);
 151}
 152
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 153/* E822 family functions
 154 *
 155 * The following functions operate on the E822 family of devices.
 156 */
 157
 158/**
 159 * ice_fill_phy_msg_e822 - Fill message data for a PHY register access
 
 160 * @msg: the PHY message buffer to fill in
 161 * @port: the port to access
 162 * @offset: the register offset
 163 */
 164static void
 165ice_fill_phy_msg_e822(struct ice_sbq_msg_input *msg, u8 port, u16 offset)
 166{
 167	int phy_port, phy, quadtype;
 168
 169	phy_port = port % ICE_PORTS_PER_PHY;
 170	phy = port / ICE_PORTS_PER_PHY;
 171	quadtype = (port / ICE_PORTS_PER_QUAD) % ICE_NUM_QUAD_TYPE;
 
 172
 173	if (quadtype == 0) {
 174		msg->msg_addr_low = P_Q0_L(P_0_BASE + offset, phy_port);
 175		msg->msg_addr_high = P_Q0_H(P_0_BASE + offset, phy_port);
 176	} else {
 177		msg->msg_addr_low = P_Q1_L(P_4_BASE + offset, phy_port);
 178		msg->msg_addr_high = P_Q1_H(P_4_BASE + offset, phy_port);
 179	}
 180
 181	if (phy == 0)
 182		msg->dest_dev = rmn_0;
 183	else if (phy == 1)
 184		msg->dest_dev = rmn_1;
 185	else
 186		msg->dest_dev = rmn_2;
 187}
 188
 189/**
 190 * ice_is_64b_phy_reg_e822 - Check if this is a 64bit PHY register
 191 * @low_addr: the low address to check
 192 * @high_addr: on return, contains the high address of the 64bit register
 193 *
 194 * Checks if the provided low address is one of the known 64bit PHY values
 195 * represented as two 32bit registers. If it is, return the appropriate high
 196 * register offset to use.
 197 */
 198static bool ice_is_64b_phy_reg_e822(u16 low_addr, u16 *high_addr)
 199{
 200	switch (low_addr) {
 201	case P_REG_PAR_PCS_TX_OFFSET_L:
 202		*high_addr = P_REG_PAR_PCS_TX_OFFSET_U;
 203		return true;
 204	case P_REG_PAR_PCS_RX_OFFSET_L:
 205		*high_addr = P_REG_PAR_PCS_RX_OFFSET_U;
 206		return true;
 207	case P_REG_PAR_TX_TIME_L:
 208		*high_addr = P_REG_PAR_TX_TIME_U;
 209		return true;
 210	case P_REG_PAR_RX_TIME_L:
 211		*high_addr = P_REG_PAR_RX_TIME_U;
 212		return true;
 213	case P_REG_TOTAL_TX_OFFSET_L:
 214		*high_addr = P_REG_TOTAL_TX_OFFSET_U;
 215		return true;
 216	case P_REG_TOTAL_RX_OFFSET_L:
 217		*high_addr = P_REG_TOTAL_RX_OFFSET_U;
 218		return true;
 219	case P_REG_UIX66_10G_40G_L:
 220		*high_addr = P_REG_UIX66_10G_40G_U;
 221		return true;
 222	case P_REG_UIX66_25G_100G_L:
 223		*high_addr = P_REG_UIX66_25G_100G_U;
 224		return true;
 225	case P_REG_TX_CAPTURE_L:
 226		*high_addr = P_REG_TX_CAPTURE_U;
 227		return true;
 228	case P_REG_RX_CAPTURE_L:
 229		*high_addr = P_REG_RX_CAPTURE_U;
 230		return true;
 231	case P_REG_TX_TIMER_INC_PRE_L:
 232		*high_addr = P_REG_TX_TIMER_INC_PRE_U;
 233		return true;
 234	case P_REG_RX_TIMER_INC_PRE_L:
 235		*high_addr = P_REG_RX_TIMER_INC_PRE_U;
 236		return true;
 237	default:
 238		return false;
 239	}
 240}
 241
 242/**
 243 * ice_is_40b_phy_reg_e822 - Check if this is a 40bit PHY register
 244 * @low_addr: the low address to check
 245 * @high_addr: on return, contains the high address of the 40bit value
 246 *
 247 * Checks if the provided low address is one of the known 40bit PHY values
 248 * split into two registers with the lower 8 bits in the low register and the
 249 * upper 32 bits in the high register. If it is, return the appropriate high
 250 * register offset to use.
 251 */
 252static bool ice_is_40b_phy_reg_e822(u16 low_addr, u16 *high_addr)
 253{
 254	switch (low_addr) {
 255	case P_REG_TIMETUS_L:
 256		*high_addr = P_REG_TIMETUS_U;
 257		return true;
 258	case P_REG_PAR_RX_TUS_L:
 259		*high_addr = P_REG_PAR_RX_TUS_U;
 260		return true;
 261	case P_REG_PAR_TX_TUS_L:
 262		*high_addr = P_REG_PAR_TX_TUS_U;
 263		return true;
 264	case P_REG_PCS_RX_TUS_L:
 265		*high_addr = P_REG_PCS_RX_TUS_U;
 266		return true;
 267	case P_REG_PCS_TX_TUS_L:
 268		*high_addr = P_REG_PCS_TX_TUS_U;
 269		return true;
 270	case P_REG_DESK_PAR_RX_TUS_L:
 271		*high_addr = P_REG_DESK_PAR_RX_TUS_U;
 272		return true;
 273	case P_REG_DESK_PAR_TX_TUS_L:
 274		*high_addr = P_REG_DESK_PAR_TX_TUS_U;
 275		return true;
 276	case P_REG_DESK_PCS_RX_TUS_L:
 277		*high_addr = P_REG_DESK_PCS_RX_TUS_U;
 278		return true;
 279	case P_REG_DESK_PCS_TX_TUS_L:
 280		*high_addr = P_REG_DESK_PCS_TX_TUS_U;
 281		return true;
 282	default:
 283		return false;
 284	}
 285}
 286
 287/**
 288 * ice_read_phy_reg_e822 - Read a PHY register
 289 * @hw: pointer to the HW struct
 290 * @port: PHY port to read from
 291 * @offset: PHY register offset to read
 292 * @val: on return, the contents read from the PHY
 293 *
 294 * Read a PHY register for the given port over the device sideband queue.
 295 */
 296int
 297ice_read_phy_reg_e822(struct ice_hw *hw, u8 port, u16 offset, u32 *val)
 298{
 299	struct ice_sbq_msg_input msg = {0};
 300	int err;
 301
 302	ice_fill_phy_msg_e822(&msg, port, offset);
 303	msg.opcode = ice_sbq_msg_rd;
 304
 305	err = ice_sbq_rw_reg(hw, &msg);
 306	if (err) {
 307		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
 308			  err);
 309		return err;
 310	}
 311
 312	*val = msg.data;
 313
 314	return 0;
 315}
 316
 317/**
 318 * ice_read_64b_phy_reg_e822 - Read a 64bit value from PHY registers
 319 * @hw: pointer to the HW struct
 320 * @port: PHY port to read from
 321 * @low_addr: offset of the lower register to read from
 322 * @val: on return, the contents of the 64bit value from the PHY registers
 323 *
 324 * Reads the two registers associated with a 64bit value and returns it in the
 325 * val pointer. The offset always specifies the lower register offset to use.
 326 * The high offset is looked up. This function only operates on registers
 327 * known to be two parts of a 64bit value.
 328 */
 329static int
 330ice_read_64b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 *val)
 331{
 332	u32 low, high;
 333	u16 high_addr;
 334	int err;
 335
 336	/* Only operate on registers known to be split into two 32bit
 337	 * registers.
 338	 */
 339	if (!ice_is_64b_phy_reg_e822(low_addr, &high_addr)) {
 340		ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n",
 341			  low_addr);
 342		return -EINVAL;
 343	}
 344
 345	err = ice_read_phy_reg_e822(hw, port, low_addr, &low);
 346	if (err) {
 347		ice_debug(hw, ICE_DBG_PTP, "Failed to read from low register 0x%08x\n, err %d",
 348			  low_addr, err);
 349		return err;
 350	}
 351
 352	err = ice_read_phy_reg_e822(hw, port, high_addr, &high);
 353	if (err) {
 354		ice_debug(hw, ICE_DBG_PTP, "Failed to read from high register 0x%08x\n, err %d",
 355			  high_addr, err);
 356		return err;
 357	}
 358
 359	*val = (u64)high << 32 | low;
 360
 361	return 0;
 362}
 363
 364/**
 365 * ice_write_phy_reg_e822 - Write a PHY register
 366 * @hw: pointer to the HW struct
 367 * @port: PHY port to write to
 368 * @offset: PHY register offset to write
 369 * @val: The value to write to the register
 370 *
 371 * Write a PHY register for the given port over the device sideband queue.
 372 */
 373int
 374ice_write_phy_reg_e822(struct ice_hw *hw, u8 port, u16 offset, u32 val)
 375{
 376	struct ice_sbq_msg_input msg = {0};
 377	int err;
 378
 379	ice_fill_phy_msg_e822(&msg, port, offset);
 380	msg.opcode = ice_sbq_msg_wr;
 381	msg.data = val;
 382
 383	err = ice_sbq_rw_reg(hw, &msg);
 384	if (err) {
 385		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
 386			  err);
 387		return err;
 388	}
 389
 390	return 0;
 391}
 392
 393/**
 394 * ice_write_40b_phy_reg_e822 - Write a 40b value to the PHY
 395 * @hw: pointer to the HW struct
 396 * @port: port to write to
 397 * @low_addr: offset of the low register
 398 * @val: 40b value to write
 399 *
 400 * Write the provided 40b value to the two associated registers by splitting
 401 * it up into two chunks, the lower 8 bits and the upper 32 bits.
 402 */
 403static int
 404ice_write_40b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 val)
 405{
 406	u32 low, high;
 407	u16 high_addr;
 408	int err;
 409
 410	/* Only operate on registers known to be split into a lower 8 bit
 411	 * register and an upper 32 bit register.
 412	 */
 413	if (!ice_is_40b_phy_reg_e822(low_addr, &high_addr)) {
 414		ice_debug(hw, ICE_DBG_PTP, "Invalid 40b register addr 0x%08x\n",
 415			  low_addr);
 416		return -EINVAL;
 417	}
 418
 419	low = (u32)(val & P_REG_40B_LOW_M);
 420	high = (u32)(val >> P_REG_40B_HIGH_S);
 421
 422	err = ice_write_phy_reg_e822(hw, port, low_addr, low);
 423	if (err) {
 424		ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
 425			  low_addr, err);
 426		return err;
 427	}
 428
 429	err = ice_write_phy_reg_e822(hw, port, high_addr, high);
 430	if (err) {
 431		ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
 432			  high_addr, err);
 433		return err;
 434	}
 435
 436	return 0;
 437}
 438
 439/**
 440 * ice_write_64b_phy_reg_e822 - Write a 64bit value to PHY registers
 441 * @hw: pointer to the HW struct
 442 * @port: PHY port to read from
 443 * @low_addr: offset of the lower register to read from
 444 * @val: the contents of the 64bit value to write to PHY
 445 *
 446 * Write the 64bit value to the two associated 32bit PHY registers. The offset
 447 * is always specified as the lower register, and the high address is looked
 448 * up. This function only operates on registers known to be two parts of
 449 * a 64bit value.
 450 */
 451static int
 452ice_write_64b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 val)
 453{
 454	u32 low, high;
 455	u16 high_addr;
 456	int err;
 457
 458	/* Only operate on registers known to be split into two 32bit
 459	 * registers.
 460	 */
 461	if (!ice_is_64b_phy_reg_e822(low_addr, &high_addr)) {
 462		ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n",
 463			  low_addr);
 464		return -EINVAL;
 465	}
 466
 467	low = lower_32_bits(val);
 468	high = upper_32_bits(val);
 469
 470	err = ice_write_phy_reg_e822(hw, port, low_addr, low);
 471	if (err) {
 472		ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
 473			  low_addr, err);
 474		return err;
 475	}
 476
 477	err = ice_write_phy_reg_e822(hw, port, high_addr, high);
 478	if (err) {
 479		ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
 480			  high_addr, err);
 481		return err;
 482	}
 483
 484	return 0;
 485}
 486
 487/**
 488 * ice_fill_quad_msg_e822 - Fill message data for quad register access
 
 489 * @msg: the PHY message buffer to fill in
 490 * @quad: the quad to access
 491 * @offset: the register offset
 492 *
 493 * Fill a message buffer for accessing a register in a quad shared between
 494 * multiple PHYs.
 495 */
 496static void
 497ice_fill_quad_msg_e822(struct ice_sbq_msg_input *msg, u8 quad, u16 offset)
 
 
 
 
 
 498{
 499	u32 addr;
 500
 
 
 
 501	msg->dest_dev = rmn_0;
 502
 503	if ((quad % ICE_NUM_QUAD_TYPE) == 0)
 504		addr = Q_0_BASE + offset;
 505	else
 506		addr = Q_1_BASE + offset;
 507
 508	msg->msg_addr_low = lower_16_bits(addr);
 509	msg->msg_addr_high = upper_16_bits(addr);
 
 
 510}
 511
 512/**
 513 * ice_read_quad_reg_e822 - Read a PHY quad register
 514 * @hw: pointer to the HW struct
 515 * @quad: quad to read from
 516 * @offset: quad register offset to read
 517 * @val: on return, the contents read from the quad
 518 *
 519 * Read a quad register over the device sideband queue. Quad registers are
 520 * shared between multiple PHYs.
 521 */
 522int
 523ice_read_quad_reg_e822(struct ice_hw *hw, u8 quad, u16 offset, u32 *val)
 524{
 525	struct ice_sbq_msg_input msg = {0};
 526	int err;
 527
 528	if (quad >= ICE_MAX_QUAD)
 529		return -EINVAL;
 
 530
 531	ice_fill_quad_msg_e822(&msg, quad, offset);
 532	msg.opcode = ice_sbq_msg_rd;
 533
 534	err = ice_sbq_rw_reg(hw, &msg);
 535	if (err) {
 536		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
 537			  err);
 538		return err;
 539	}
 540
 541	*val = msg.data;
 542
 543	return 0;
 544}
 545
 546/**
 547 * ice_write_quad_reg_e822 - Write a PHY quad register
 548 * @hw: pointer to the HW struct
 549 * @quad: quad to write to
 550 * @offset: quad register offset to write
 551 * @val: The value to write to the register
 552 *
 553 * Write a quad register over the device sideband queue. Quad registers are
 554 * shared between multiple PHYs.
 555 */
 556int
 557ice_write_quad_reg_e822(struct ice_hw *hw, u8 quad, u16 offset, u32 val)
 558{
 559	struct ice_sbq_msg_input msg = {0};
 560	int err;
 561
 562	if (quad >= ICE_MAX_QUAD)
 563		return -EINVAL;
 
 564
 565	ice_fill_quad_msg_e822(&msg, quad, offset);
 566	msg.opcode = ice_sbq_msg_wr;
 567	msg.data = val;
 568
 569	err = ice_sbq_rw_reg(hw, &msg);
 570	if (err) {
 571		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
 572			  err);
 573		return err;
 574	}
 575
 576	return 0;
 577}
 578
 579/**
 580 * ice_read_phy_tstamp_e822 - Read a PHY timestamp out of the quad block
 581 * @hw: pointer to the HW struct
 582 * @quad: the quad to read from
 583 * @idx: the timestamp index to read
 584 * @tstamp: on return, the 40bit timestamp value
 585 *
 586 * Read a 40bit timestamp value out of the two associated registers in the
 587 * quad memory block that is shared between the internal PHYs of the E822
 588 * family of devices.
 589 */
 590static int
 591ice_read_phy_tstamp_e822(struct ice_hw *hw, u8 quad, u8 idx, u64 *tstamp)
 592{
 593	u16 lo_addr, hi_addr;
 594	u32 lo, hi;
 595	int err;
 596
 597	lo_addr = (u16)TS_L(Q_REG_TX_MEMORY_BANK_START, idx);
 598	hi_addr = (u16)TS_H(Q_REG_TX_MEMORY_BANK_START, idx);
 599
 600	err = ice_read_quad_reg_e822(hw, quad, lo_addr, &lo);
 601	if (err) {
 602		ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
 603			  err);
 604		return err;
 605	}
 606
 607	err = ice_read_quad_reg_e822(hw, quad, hi_addr, &hi);
 608	if (err) {
 609		ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
 610			  err);
 611		return err;
 612	}
 613
 614	/* For E822 based internal PHYs, the timestamp is reported with the
 615	 * lower 8 bits in the low register, and the upper 32 bits in the high
 616	 * register.
 617	 */
 618	*tstamp = ((u64)hi) << TS_PHY_HIGH_S | ((u64)lo & TS_PHY_LOW_M);
 619
 620	return 0;
 621}
 622
 623/**
 624 * ice_clear_phy_tstamp_e822 - Clear a timestamp from the quad block
 625 * @hw: pointer to the HW struct
 626 * @quad: the quad to read from
 627 * @idx: the timestamp index to reset
 628 *
 629 * Clear a timestamp, resetting its valid bit, from the PHY quad block that is
 630 * shared between the internal PHYs on the E822 devices.
 
 
 
 
 
 
 
 
 
 
 
 
 
 631 */
 632static int
 633ice_clear_phy_tstamp_e822(struct ice_hw *hw, u8 quad, u8 idx)
 634{
 635	u16 lo_addr, hi_addr;
 636	int err;
 637
 638	lo_addr = (u16)TS_L(Q_REG_TX_MEMORY_BANK_START, idx);
 639	hi_addr = (u16)TS_H(Q_REG_TX_MEMORY_BANK_START, idx);
 640
 641	err = ice_write_quad_reg_e822(hw, quad, lo_addr, 0);
 642	if (err) {
 643		ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register, err %d\n",
 644			  err);
 645		return err;
 646	}
 647
 648	err = ice_write_quad_reg_e822(hw, quad, hi_addr, 0);
 649	if (err) {
 650		ice_debug(hw, ICE_DBG_PTP, "Failed to clear high PTP timestamp register, err %d\n",
 651			  err);
 652		return err;
 653	}
 654
 655	return 0;
 656}
 657
 658/**
 659 * ice_ptp_reset_ts_memory_quad_e822 - Clear all timestamps from the quad block
 660 * @hw: pointer to the HW struct
 661 * @quad: the quad to read from
 662 *
 663 * Clear all timestamps from the PHY quad block that is shared between the
 664 * internal PHYs on the E822 devices.
 665 */
 666void ice_ptp_reset_ts_memory_quad_e822(struct ice_hw *hw, u8 quad)
 667{
 668	ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, Q_REG_TS_CTRL_M);
 669	ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, ~(u32)Q_REG_TS_CTRL_M);
 670}
 671
 672/**
 673 * ice_ptp_reset_ts_memory_e822 - Clear all timestamps from all quad blocks
 674 * @hw: pointer to the HW struct
 675 */
 676static void ice_ptp_reset_ts_memory_e822(struct ice_hw *hw)
 677{
 678	unsigned int quad;
 679
 680	for (quad = 0; quad < ICE_MAX_QUAD; quad++)
 681		ice_ptp_reset_ts_memory_quad_e822(hw, quad);
 682}
 683
 684/**
 685 * ice_read_cgu_reg_e822 - Read a CGU register
 686 * @hw: pointer to the HW struct
 687 * @addr: Register address to read
 688 * @val: storage for register value read
 689 *
 690 * Read the contents of a register of the Clock Generation Unit. Only
 691 * applicable to E822 devices.
 692 */
 693static int
 694ice_read_cgu_reg_e822(struct ice_hw *hw, u32 addr, u32 *val)
 695{
 696	struct ice_sbq_msg_input cgu_msg;
 697	int err;
 698
 699	cgu_msg.opcode = ice_sbq_msg_rd;
 700	cgu_msg.dest_dev = cgu;
 701	cgu_msg.msg_addr_low = addr;
 702	cgu_msg.msg_addr_high = 0x0;
 703
 704	err = ice_sbq_rw_reg(hw, &cgu_msg);
 705	if (err) {
 706		ice_debug(hw, ICE_DBG_PTP, "Failed to read CGU register 0x%04x, err %d\n",
 707			  addr, err);
 708		return err;
 709	}
 710
 711	*val = cgu_msg.data;
 712
 713	return err;
 714}
 715
 716/**
 717 * ice_write_cgu_reg_e822 - Write a CGU register
 718 * @hw: pointer to the HW struct
 719 * @addr: Register address to write
 720 * @val: value to write into the register
 721 *
 722 * Write the specified value to a register of the Clock Generation Unit. Only
 723 * applicable to E822 devices.
 724 */
 725static int
 726ice_write_cgu_reg_e822(struct ice_hw *hw, u32 addr, u32 val)
 727{
 728	struct ice_sbq_msg_input cgu_msg;
 729	int err;
 730
 731	cgu_msg.opcode = ice_sbq_msg_wr;
 732	cgu_msg.dest_dev = cgu;
 733	cgu_msg.msg_addr_low = addr;
 734	cgu_msg.msg_addr_high = 0x0;
 735	cgu_msg.data = val;
 736
 737	err = ice_sbq_rw_reg(hw, &cgu_msg);
 738	if (err) {
 739		ice_debug(hw, ICE_DBG_PTP, "Failed to write CGU register 0x%04x, err %d\n",
 740			  addr, err);
 741		return err;
 742	}
 743
 744	return err;
 745}
 746
 747/**
 748 * ice_clk_freq_str - Convert time_ref_freq to string
 749 * @clk_freq: Clock frequency
 750 *
 751 * Convert the specified TIME_REF clock frequency to a string.
 752 */
 753static const char *ice_clk_freq_str(u8 clk_freq)
 754{
 755	switch ((enum ice_time_ref_freq)clk_freq) {
 756	case ICE_TIME_REF_FREQ_25_000:
 757		return "25 MHz";
 758	case ICE_TIME_REF_FREQ_122_880:
 759		return "122.88 MHz";
 760	case ICE_TIME_REF_FREQ_125_000:
 761		return "125 MHz";
 762	case ICE_TIME_REF_FREQ_153_600:
 763		return "153.6 MHz";
 764	case ICE_TIME_REF_FREQ_156_250:
 765		return "156.25 MHz";
 766	case ICE_TIME_REF_FREQ_245_760:
 767		return "245.76 MHz";
 768	default:
 769		return "Unknown";
 770	}
 771}
 772
 773/**
 774 * ice_clk_src_str - Convert time_ref_src to string
 775 * @clk_src: Clock source
 776 *
 777 * Convert the specified clock source to its string name.
 778 */
 779static const char *ice_clk_src_str(u8 clk_src)
 780{
 781	switch ((enum ice_clk_src)clk_src) {
 782	case ICE_CLK_SRC_TCX0:
 783		return "TCX0";
 784	case ICE_CLK_SRC_TIME_REF:
 785		return "TIME_REF";
 786	default:
 787		return "Unknown";
 788	}
 789}
 790
 791/**
 792 * ice_cfg_cgu_pll_e822 - Configure the Clock Generation Unit
 793 * @hw: pointer to the HW struct
 794 * @clk_freq: Clock frequency to program
 795 * @clk_src: Clock source to select (TIME_REF, or TCX0)
 796 *
 797 * Configure the Clock Generation Unit with the desired clock frequency and
 798 * time reference, enabling the PLL which drives the PTP hardware clock.
 799 */
 800static int
 801ice_cfg_cgu_pll_e822(struct ice_hw *hw, enum ice_time_ref_freq clk_freq,
 802		     enum ice_clk_src clk_src)
 803{
 804	union tspll_ro_bwm_lf bwm_lf;
 805	union nac_cgu_dword19 dw19;
 806	union nac_cgu_dword22 dw22;
 807	union nac_cgu_dword24 dw24;
 808	union nac_cgu_dword9 dw9;
 809	int err;
 810
 811	if (clk_freq >= NUM_ICE_TIME_REF_FREQ) {
 812		dev_warn(ice_hw_to_dev(hw), "Invalid TIME_REF frequency %u\n",
 813			 clk_freq);
 814		return -EINVAL;
 815	}
 816
 817	if (clk_src >= NUM_ICE_CLK_SRC) {
 818		dev_warn(ice_hw_to_dev(hw), "Invalid clock source %u\n",
 819			 clk_src);
 820		return -EINVAL;
 821	}
 822
 823	if (clk_src == ICE_CLK_SRC_TCX0 &&
 824	    clk_freq != ICE_TIME_REF_FREQ_25_000) {
 825		dev_warn(ice_hw_to_dev(hw),
 826			 "TCX0 only supports 25 MHz frequency\n");
 827		return -EINVAL;
 828	}
 829
 830	err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD9, &dw9.val);
 831	if (err)
 832		return err;
 833
 834	err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD24, &dw24.val);
 835	if (err)
 836		return err;
 837
 838	err = ice_read_cgu_reg_e822(hw, TSPLL_RO_BWM_LF, &bwm_lf.val);
 839	if (err)
 840		return err;
 841
 842	/* Log the current clock configuration */
 843	ice_debug(hw, ICE_DBG_PTP, "Current CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
 844		  dw24.field.ts_pll_enable ? "enabled" : "disabled",
 845		  ice_clk_src_str(dw24.field.time_ref_sel),
 846		  ice_clk_freq_str(dw9.field.time_ref_freq_sel),
 847		  bwm_lf.field.plllock_true_lock_cri ? "locked" : "unlocked");
 848
 849	/* Disable the PLL before changing the clock source or frequency */
 850	if (dw24.field.ts_pll_enable) {
 851		dw24.field.ts_pll_enable = 0;
 852
 853		err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, dw24.val);
 854		if (err)
 855			return err;
 856	}
 857
 858	/* Set the frequency */
 859	dw9.field.time_ref_freq_sel = clk_freq;
 860	err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD9, dw9.val);
 861	if (err)
 862		return err;
 863
 864	/* Configure the TS PLL feedback divisor */
 865	err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD19, &dw19.val);
 866	if (err)
 867		return err;
 868
 869	dw19.field.tspll_fbdiv_intgr = e822_cgu_params[clk_freq].feedback_div;
 870	dw19.field.tspll_ndivratio = 1;
 871
 872	err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD19, dw19.val);
 873	if (err)
 874		return err;
 875
 876	/* Configure the TS PLL post divisor */
 877	err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD22, &dw22.val);
 878	if (err)
 879		return err;
 880
 881	dw22.field.time1588clk_div = e822_cgu_params[clk_freq].post_pll_div;
 882	dw22.field.time1588clk_sel_div2 = 0;
 883
 884	err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD22, dw22.val);
 885	if (err)
 886		return err;
 887
 888	/* Configure the TS PLL pre divisor and clock source */
 889	err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD24, &dw24.val);
 890	if (err)
 891		return err;
 892
 893	dw24.field.ref1588_ck_div = e822_cgu_params[clk_freq].refclk_pre_div;
 894	dw24.field.tspll_fbdiv_frac = e822_cgu_params[clk_freq].frac_n_div;
 895	dw24.field.time_ref_sel = clk_src;
 896
 897	err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, dw24.val);
 898	if (err)
 899		return err;
 900
 901	/* Finally, enable the PLL */
 902	dw24.field.ts_pll_enable = 1;
 903
 904	err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, dw24.val);
 905	if (err)
 906		return err;
 907
 908	/* Wait to verify if the PLL locks */
 909	usleep_range(1000, 5000);
 910
 911	err = ice_read_cgu_reg_e822(hw, TSPLL_RO_BWM_LF, &bwm_lf.val);
 912	if (err)
 913		return err;
 914
 915	if (!bwm_lf.field.plllock_true_lock_cri) {
 916		dev_warn(ice_hw_to_dev(hw), "CGU PLL failed to lock\n");
 917		return -EBUSY;
 918	}
 919
 920	/* Log the current clock configuration */
 921	ice_debug(hw, ICE_DBG_PTP, "New CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
 922		  dw24.field.ts_pll_enable ? "enabled" : "disabled",
 923		  ice_clk_src_str(dw24.field.time_ref_sel),
 924		  ice_clk_freq_str(dw9.field.time_ref_freq_sel),
 925		  bwm_lf.field.plllock_true_lock_cri ? "locked" : "unlocked");
 926
 927	return 0;
 928}
 929
 930/**
 931 * ice_init_cgu_e822 - Initialize CGU with settings from firmware
 932 * @hw: pointer to the HW structure
 933 *
 934 * Initialize the Clock Generation Unit of the E822 device.
 935 */
 936static int ice_init_cgu_e822(struct ice_hw *hw)
 937{
 938	struct ice_ts_func_info *ts_info = &hw->func_caps.ts_func_info;
 939	union tspll_cntr_bist_settings cntr_bist;
 940	int err;
 941
 942	err = ice_read_cgu_reg_e822(hw, TSPLL_CNTR_BIST_SETTINGS,
 943				    &cntr_bist.val);
 944	if (err)
 945		return err;
 946
 947	/* Disable sticky lock detection so lock err reported is accurate */
 948	cntr_bist.field.i_plllock_sel_0 = 0;
 949	cntr_bist.field.i_plllock_sel_1 = 0;
 950
 951	err = ice_write_cgu_reg_e822(hw, TSPLL_CNTR_BIST_SETTINGS,
 952				     cntr_bist.val);
 953	if (err)
 954		return err;
 955
 956	/* Configure the CGU PLL using the parameters from the function
 957	 * capabilities.
 958	 */
 959	err = ice_cfg_cgu_pll_e822(hw, ts_info->time_ref,
 960				   (enum ice_clk_src)ts_info->clk_src);
 961	if (err)
 962		return err;
 963
 964	return 0;
 965}
 966
 967/**
 968 * ice_ptp_set_vernier_wl - Set the window length for vernier calibration
 969 * @hw: pointer to the HW struct
 970 *
 971 * Set the window length used for the vernier port calibration process.
 972 */
 973static int ice_ptp_set_vernier_wl(struct ice_hw *hw)
 974{
 975	u8 port;
 976
 977	for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
 978		int err;
 979
 980		err = ice_write_phy_reg_e822(hw, port, P_REG_WL,
 981					     PTP_VERNIER_WL);
 982		if (err) {
 983			ice_debug(hw, ICE_DBG_PTP, "Failed to set vernier window length for port %u, err %d\n",
 984				  port, err);
 985			return err;
 986		}
 987	}
 988
 989	return 0;
 990}
 991
 992/**
 993 * ice_ptp_init_phc_e822 - Perform E822 specific PHC initialization
 994 * @hw: pointer to HW struct
 995 *
 996 * Perform PHC initialization steps specific to E822 devices.
 997 */
 998static int ice_ptp_init_phc_e822(struct ice_hw *hw)
 999{
1000	int err;
1001	u32 regval;
1002
1003	/* Enable reading switch and PHY registers over the sideband queue */
1004#define PF_SB_REM_DEV_CTL_SWITCH_READ BIT(1)
1005#define PF_SB_REM_DEV_CTL_PHY0 BIT(2)
1006	regval = rd32(hw, PF_SB_REM_DEV_CTL);
1007	regval |= (PF_SB_REM_DEV_CTL_SWITCH_READ |
1008		   PF_SB_REM_DEV_CTL_PHY0);
1009	wr32(hw, PF_SB_REM_DEV_CTL, regval);
1010
1011	/* Initialize the Clock Generation Unit */
1012	err = ice_init_cgu_e822(hw);
1013	if (err)
1014		return err;
1015
1016	/* Set window length for all the ports */
1017	return ice_ptp_set_vernier_wl(hw);
1018}
1019
1020/**
1021 * ice_ptp_prep_phy_time_e822 - Prepare PHY port with initial time
1022 * @hw: pointer to the HW struct
1023 * @time: Time to initialize the PHY port clocks to
1024 *
1025 * Program the PHY port registers with a new initial time value. The port
1026 * clock will be initialized once the driver issues an INIT_TIME sync
1027 * command. The time value is the upper 32 bits of the PHY timer, usually in
1028 * units of nominal nanoseconds.
1029 */
1030static int
1031ice_ptp_prep_phy_time_e822(struct ice_hw *hw, u32 time)
1032{
1033	u64 phy_time;
1034	u8 port;
1035	int err;
1036
1037	/* The time represents the upper 32 bits of the PHY timer, so we need
1038	 * to shift to account for this when programming.
1039	 */
1040	phy_time = (u64)time << 32;
1041
1042	for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
1043		/* Tx case */
1044		err = ice_write_64b_phy_reg_e822(hw, port,
1045						 P_REG_TX_TIMER_INC_PRE_L,
1046						 phy_time);
1047		if (err)
1048			goto exit_err;
1049
1050		/* Rx case */
1051		err = ice_write_64b_phy_reg_e822(hw, port,
1052						 P_REG_RX_TIMER_INC_PRE_L,
1053						 phy_time);
1054		if (err)
1055			goto exit_err;
1056	}
1057
1058	return 0;
1059
1060exit_err:
1061	ice_debug(hw, ICE_DBG_PTP, "Failed to write init time for port %u, err %d\n",
1062		  port, err);
1063
1064	return err;
1065}
1066
1067/**
1068 * ice_ptp_prep_port_adj_e822 - Prepare a single port for time adjust
1069 * @hw: pointer to HW struct
1070 * @port: Port number to be programmed
1071 * @time: time in cycles to adjust the port Tx and Rx clocks
1072 *
1073 * Program the port for an atomic adjustment by writing the Tx and Rx timer
1074 * registers. The atomic adjustment won't be completed until the driver issues
1075 * an ADJ_TIME command.
1076 *
1077 * Note that time is not in units of nanoseconds. It is in clock time
1078 * including the lower sub-nanosecond portion of the port timer.
1079 *
1080 * Negative adjustments are supported using 2s complement arithmetic.
1081 */
1082int
1083ice_ptp_prep_port_adj_e822(struct ice_hw *hw, u8 port, s64 time)
1084{
1085	u32 l_time, u_time;
1086	int err;
1087
1088	l_time = lower_32_bits(time);
1089	u_time = upper_32_bits(time);
1090
1091	/* Tx case */
1092	err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TIMER_INC_PRE_L,
1093				     l_time);
1094	if (err)
1095		goto exit_err;
1096
1097	err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TIMER_INC_PRE_U,
1098				     u_time);
1099	if (err)
1100		goto exit_err;
1101
1102	/* Rx case */
1103	err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TIMER_INC_PRE_L,
1104				     l_time);
1105	if (err)
1106		goto exit_err;
1107
1108	err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TIMER_INC_PRE_U,
1109				     u_time);
1110	if (err)
1111		goto exit_err;
1112
1113	return 0;
1114
1115exit_err:
1116	ice_debug(hw, ICE_DBG_PTP, "Failed to write time adjust for port %u, err %d\n",
1117		  port, err);
1118	return err;
1119}
1120
1121/**
1122 * ice_ptp_prep_phy_adj_e822 - Prep PHY ports for a time adjustment
1123 * @hw: pointer to HW struct
1124 * @adj: adjustment in nanoseconds
1125 *
1126 * Prepare the PHY ports for an atomic time adjustment by programming the PHY
1127 * Tx and Rx port registers. The actual adjustment is completed by issuing an
1128 * ADJ_TIME or ADJ_TIME_AT_TIME sync command.
1129 */
1130static int
1131ice_ptp_prep_phy_adj_e822(struct ice_hw *hw, s32 adj)
1132{
1133	s64 cycles;
1134	u8 port;
1135
1136	/* The port clock supports adjustment of the sub-nanosecond portion of
1137	 * the clock. We shift the provided adjustment in nanoseconds to
1138	 * calculate the appropriate adjustment to program into the PHY ports.
1139	 */
1140	if (adj > 0)
1141		cycles = (s64)adj << 32;
1142	else
1143		cycles = -(((s64)-adj) << 32);
1144
1145	for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
1146		int err;
1147
1148		err = ice_ptp_prep_port_adj_e822(hw, port, cycles);
1149		if (err)
1150			return err;
1151	}
1152
1153	return 0;
1154}
1155
1156/**
1157 * ice_ptp_prep_phy_incval_e822 - Prepare PHY ports for time adjustment
1158 * @hw: pointer to HW struct
1159 * @incval: new increment value to prepare
1160 *
1161 * Prepare each of the PHY ports for a new increment value by programming the
1162 * port's TIMETUS registers. The new increment value will be updated after
1163 * issuing an INIT_INCVAL command.
1164 */
1165static int
1166ice_ptp_prep_phy_incval_e822(struct ice_hw *hw, u64 incval)
1167{
1168	int err;
1169	u8 port;
1170
1171	for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
1172		err = ice_write_40b_phy_reg_e822(hw, port, P_REG_TIMETUS_L,
1173						 incval);
1174		if (err)
1175			goto exit_err;
1176	}
1177
1178	return 0;
1179
1180exit_err:
1181	ice_debug(hw, ICE_DBG_PTP, "Failed to write incval for port %u, err %d\n",
1182		  port, err);
1183
1184	return err;
1185}
1186
1187/**
1188 * ice_ptp_read_port_capture - Read a port's local time capture
1189 * @hw: pointer to HW struct
1190 * @port: Port number to read
1191 * @tx_ts: on return, the Tx port time capture
1192 * @rx_ts: on return, the Rx port time capture
1193 *
1194 * Read the port's Tx and Rx local time capture values.
1195 *
1196 * Note this has no equivalent for the E810 devices.
1197 */
1198static int
1199ice_ptp_read_port_capture(struct ice_hw *hw, u8 port, u64 *tx_ts, u64 *rx_ts)
1200{
1201	int err;
1202
1203	/* Tx case */
1204	err = ice_read_64b_phy_reg_e822(hw, port, P_REG_TX_CAPTURE_L, tx_ts);
1205	if (err) {
1206		ice_debug(hw, ICE_DBG_PTP, "Failed to read REG_TX_CAPTURE, err %d\n",
1207			  err);
1208		return err;
1209	}
1210
1211	ice_debug(hw, ICE_DBG_PTP, "tx_init = 0x%016llx\n",
1212		  (unsigned long long)*tx_ts);
1213
1214	/* Rx case */
1215	err = ice_read_64b_phy_reg_e822(hw, port, P_REG_RX_CAPTURE_L, rx_ts);
1216	if (err) {
1217		ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_CAPTURE, err %d\n",
1218			  err);
1219		return err;
1220	}
1221
1222	ice_debug(hw, ICE_DBG_PTP, "rx_init = 0x%016llx\n",
1223		  (unsigned long long)*rx_ts);
1224
1225	return 0;
1226}
1227
1228/**
1229 * ice_ptp_one_port_cmd - Prepare a single PHY port for a timer command
1230 * @hw: pointer to HW struct
1231 * @port: Port to which cmd has to be sent
1232 * @cmd: Command to be sent to the port
1233 *
1234 * Prepare the requested port for an upcoming timer sync command.
1235 *
1236 * Note there is no equivalent of this operation on E810, as that device
1237 * always handles all external PHYs internally.
 
 
 
 
1238 */
1239static int
1240ice_ptp_one_port_cmd(struct ice_hw *hw, u8 port, enum ice_ptp_tmr_cmd cmd)
1241{
1242	u32 cmd_val, val;
1243	u8 tmr_idx;
1244	int err;
1245
1246	tmr_idx = ice_get_ptp_src_clock_index(hw);
1247	cmd_val = tmr_idx << SEL_PHY_SRC;
1248	switch (cmd) {
1249	case INIT_TIME:
1250		cmd_val |= PHY_CMD_INIT_TIME;
1251		break;
1252	case INIT_INCVAL:
1253		cmd_val |= PHY_CMD_INIT_INCVAL;
1254		break;
1255	case ADJ_TIME:
1256		cmd_val |= PHY_CMD_ADJ_TIME;
1257		break;
1258	case READ_TIME:
1259		cmd_val |= PHY_CMD_READ_TIME;
1260		break;
1261	case ADJ_TIME_AT_TIME:
1262		cmd_val |= PHY_CMD_ADJ_TIME_AT_TIME;
1263		break;
1264	}
1265
1266	/* Tx case */
1267	/* Read, modify, write */
1268	err = ice_read_phy_reg_e822(hw, port, P_REG_TX_TMR_CMD, &val);
1269	if (err) {
1270		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_TMR_CMD, err %d\n",
1271			  err);
1272		return err;
1273	}
1274
1275	/* Modify necessary bits only and perform write */
1276	val &= ~TS_CMD_MASK;
1277	val |= cmd_val;
1278
1279	err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TMR_CMD, val);
1280	if (err) {
1281		ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_TMR_CMD, err %d\n",
1282			  err);
1283		return err;
1284	}
1285
1286	/* Rx case */
1287	/* Read, modify, write */
1288	err = ice_read_phy_reg_e822(hw, port, P_REG_RX_TMR_CMD, &val);
1289	if (err) {
1290		ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_TMR_CMD, err %d\n",
1291			  err);
1292		return err;
1293	}
1294
1295	/* Modify necessary bits only and perform write */
1296	val &= ~TS_CMD_MASK;
1297	val |= cmd_val;
1298
1299	err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TMR_CMD, val);
1300	if (err) {
1301		ice_debug(hw, ICE_DBG_PTP, "Failed to write back RX_TMR_CMD, err %d\n",
1302			  err);
1303		return err;
1304	}
1305
1306	return 0;
1307}
1308
1309/**
1310 * ice_ptp_port_cmd_e822 - Prepare all ports for a timer command
1311 * @hw: pointer to the HW struct
1312 * @cmd: timer command to prepare
1313 *
1314 * Prepare all ports connected to this device for an upcoming timer sync
1315 * command.
1316 */
1317static int
1318ice_ptp_port_cmd_e822(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
1319{
1320	u8 port;
1321
1322	for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
1323		int err;
1324
1325		err = ice_ptp_one_port_cmd(hw, port, cmd);
1326		if (err)
1327			return err;
1328	}
1329
1330	return 0;
1331}
1332
1333/* E822 Vernier calibration functions
1334 *
1335 * The following functions are used as part of the vernier calibration of
1336 * a port. This calibration increases the precision of the timestamps on the
1337 * port.
1338 */
1339
1340/**
1341 * ice_phy_get_speed_and_fec_e822 - Get link speed and FEC based on serdes mode
1342 * @hw: pointer to HW struct
1343 * @port: the port to read from
1344 * @link_out: if non-NULL, holds link speed on success
1345 * @fec_out: if non-NULL, holds FEC algorithm on success
1346 *
1347 * Read the serdes data for the PHY port and extract the link speed and FEC
1348 * algorithm.
1349 */
1350static int
1351ice_phy_get_speed_and_fec_e822(struct ice_hw *hw, u8 port,
1352			       enum ice_ptp_link_spd *link_out,
1353			       enum ice_ptp_fec_mode *fec_out)
1354{
1355	enum ice_ptp_link_spd link;
1356	enum ice_ptp_fec_mode fec;
1357	u32 serdes;
1358	int err;
1359
1360	err = ice_read_phy_reg_e822(hw, port, P_REG_LINK_SPEED, &serdes);
1361	if (err) {
1362		ice_debug(hw, ICE_DBG_PTP, "Failed to read serdes info\n");
1363		return err;
1364	}
1365
1366	/* Determine the FEC algorithm */
1367	fec = (enum ice_ptp_fec_mode)P_REG_LINK_SPEED_FEC_MODE(serdes);
1368
1369	serdes &= P_REG_LINK_SPEED_SERDES_M;
1370
1371	/* Determine the link speed */
1372	if (fec == ICE_PTP_FEC_MODE_RS_FEC) {
1373		switch (serdes) {
1374		case ICE_PTP_SERDES_25G:
1375			link = ICE_PTP_LNK_SPD_25G_RS;
1376			break;
1377		case ICE_PTP_SERDES_50G:
1378			link = ICE_PTP_LNK_SPD_50G_RS;
1379			break;
1380		case ICE_PTP_SERDES_100G:
1381			link = ICE_PTP_LNK_SPD_100G_RS;
1382			break;
1383		default:
1384			return -EIO;
1385		}
1386	} else {
1387		switch (serdes) {
1388		case ICE_PTP_SERDES_1G:
1389			link = ICE_PTP_LNK_SPD_1G;
1390			break;
1391		case ICE_PTP_SERDES_10G:
1392			link = ICE_PTP_LNK_SPD_10G;
1393			break;
1394		case ICE_PTP_SERDES_25G:
1395			link = ICE_PTP_LNK_SPD_25G;
1396			break;
1397		case ICE_PTP_SERDES_40G:
1398			link = ICE_PTP_LNK_SPD_40G;
1399			break;
1400		case ICE_PTP_SERDES_50G:
1401			link = ICE_PTP_LNK_SPD_50G;
1402			break;
1403		default:
1404			return -EIO;
1405		}
1406	}
1407
1408	if (link_out)
1409		*link_out = link;
1410	if (fec_out)
1411		*fec_out = fec;
1412
1413	return 0;
1414}
1415
1416/**
1417 * ice_phy_cfg_lane_e822 - Configure PHY quad for single/multi-lane timestamp
1418 * @hw: pointer to HW struct
1419 * @port: to configure the quad for
1420 */
1421static void ice_phy_cfg_lane_e822(struct ice_hw *hw, u8 port)
1422{
1423	enum ice_ptp_link_spd link_spd;
1424	int err;
1425	u32 val;
1426	u8 quad;
1427
1428	err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, NULL);
1429	if (err) {
1430		ice_debug(hw, ICE_DBG_PTP, "Failed to get PHY link speed, err %d\n",
1431			  err);
1432		return;
1433	}
1434
1435	quad = port / ICE_PORTS_PER_QUAD;
1436
1437	err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, &val);
1438	if (err) {
1439		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEM_GLB_CFG, err %d\n",
1440			  err);
1441		return;
1442	}
1443
1444	if (link_spd >= ICE_PTP_LNK_SPD_40G)
1445		val &= ~Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M;
1446	else
1447		val |= Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M;
1448
1449	err = ice_write_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, val);
1450	if (err) {
1451		ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_MEM_GBL_CFG, err %d\n",
1452			  err);
1453		return;
1454	}
1455}
1456
1457/**
1458 * ice_phy_cfg_uix_e822 - Configure Serdes UI to TU conversion for E822
1459 * @hw: pointer to the HW structure
1460 * @port: the port to configure
1461 *
1462 * Program the conversion ration of Serdes clock "unit intervals" (UIs) to PHC
1463 * hardware clock time units (TUs). That is, determine the number of TUs per
1464 * serdes unit interval, and program the UIX registers with this conversion.
1465 *
1466 * This conversion is used as part of the calibration process when determining
1467 * the additional error of a timestamp vs the real time of transmission or
1468 * receipt of the packet.
1469 *
1470 * Hardware uses the number of TUs per 66 UIs, written to the UIX registers
1471 * for the two main serdes clock rates, 10G/40G and 25G/100G serdes clocks.
1472 *
1473 * To calculate the conversion ratio, we use the following facts:
1474 *
1475 * a) the clock frequency in Hz (cycles per second)
1476 * b) the number of TUs per cycle (the increment value of the clock)
1477 * c) 1 second per 1 billion nanoseconds
1478 * d) the duration of 66 UIs in nanoseconds
1479 *
1480 * Given these facts, we can use the following table to work out what ratios
1481 * to multiply in order to get the number of TUs per 66 UIs:
1482 *
1483 * cycles |   1 second   | incval (TUs) | nanoseconds
1484 * -------+--------------+--------------+-------------
1485 * second | 1 billion ns |    cycle     |   66 UIs
1486 *
1487 * To perform the multiplication using integers without too much loss of
1488 * precision, we can take use the following equation:
1489 *
1490 * (freq * incval * 6600 LINE_UI ) / ( 100 * 1 billion)
1491 *
1492 * We scale up to using 6600 UI instead of 66 in order to avoid fractional
1493 * nanosecond UIs (66 UI at 10G/40G is 6.4 ns)
1494 *
1495 * The increment value has a maximum expected range of about 34 bits, while
1496 * the frequency value is about 29 bits. Multiplying these values shouldn't
1497 * overflow the 64 bits. However, we must then further multiply them again by
1498 * the Serdes unit interval duration. To avoid overflow here, we split the
1499 * overall divide by 1e11 into a divide by 256 (shift down by 8 bits) and
1500 * a divide by 390,625,000. This does lose some precision, but avoids
1501 * miscalculation due to arithmetic overflow.
1502 */
1503static int ice_phy_cfg_uix_e822(struct ice_hw *hw, u8 port)
1504{
1505	u64 cur_freq, clk_incval, tu_per_sec, uix;
1506	int err;
1507
1508	cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
1509	clk_incval = ice_ptp_read_src_incval(hw);
1510
1511	/* Calculate TUs per second divided by 256 */
1512	tu_per_sec = (cur_freq * clk_incval) >> 8;
1513
1514#define LINE_UI_10G_40G 640 /* 6600 UIs is 640 nanoseconds at 10Gb/40Gb */
1515#define LINE_UI_25G_100G 256 /* 6600 UIs is 256 nanoseconds at 25Gb/100Gb */
1516
1517	/* Program the 10Gb/40Gb conversion ratio */
1518	uix = div_u64(tu_per_sec * LINE_UI_10G_40G, 390625000);
1519
1520	err = ice_write_64b_phy_reg_e822(hw, port, P_REG_UIX66_10G_40G_L,
1521					 uix);
1522	if (err) {
1523		ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_10G_40G, err %d\n",
1524			  err);
1525		return err;
1526	}
1527
1528	/* Program the 25Gb/100Gb conversion ratio */
1529	uix = div_u64(tu_per_sec * LINE_UI_25G_100G, 390625000);
1530
1531	err = ice_write_64b_phy_reg_e822(hw, port, P_REG_UIX66_25G_100G_L,
1532					 uix);
1533	if (err) {
1534		ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_25G_100G, err %d\n",
1535			  err);
1536		return err;
1537	}
1538
1539	return 0;
1540}
1541
1542/**
1543 * ice_phy_cfg_parpcs_e822 - Configure TUs per PAR/PCS clock cycle
1544 * @hw: pointer to the HW struct
1545 * @port: port to configure
1546 *
1547 * Configure the number of TUs for the PAR and PCS clocks used as part of the
1548 * timestamp calibration process. This depends on the link speed, as the PHY
1549 * uses different markers depending on the speed.
1550 *
1551 * 1Gb/10Gb/25Gb:
1552 * - Tx/Rx PAR/PCS markers
1553 *
1554 * 25Gb RS:
1555 * - Tx/Rx Reed Solomon gearbox PAR/PCS markers
1556 *
1557 * 40Gb/50Gb:
1558 * - Tx/Rx PAR/PCS markers
1559 * - Rx Deskew PAR/PCS markers
1560 *
1561 * 50G RS and 100GB RS:
1562 * - Tx/Rx Reed Solomon gearbox PAR/PCS markers
1563 * - Rx Deskew PAR/PCS markers
1564 * - Tx PAR/PCS markers
1565 *
1566 * To calculate the conversion, we use the PHC clock frequency (cycles per
1567 * second), the increment value (TUs per cycle), and the related PHY clock
1568 * frequency to calculate the TUs per unit of the PHY link clock. The
1569 * following table shows how the units convert:
1570 *
1571 * cycles |  TUs  | second
1572 * -------+-------+--------
1573 * second | cycle | cycles
1574 *
1575 * For each conversion register, look up the appropriate frequency from the
1576 * e822 PAR/PCS table and calculate the TUs per unit of that clock. Program
1577 * this to the appropriate register, preparing hardware to perform timestamp
1578 * calibration to calculate the total Tx or Rx offset to adjust the timestamp
1579 * in order to calibrate for the internal PHY delays.
1580 *
1581 * Note that the increment value ranges up to ~34 bits, and the clock
1582 * frequency is ~29 bits, so multiplying them together should fit within the
1583 * 64 bit arithmetic.
1584 */
1585static int ice_phy_cfg_parpcs_e822(struct ice_hw *hw, u8 port)
1586{
1587	u64 cur_freq, clk_incval, tu_per_sec, phy_tus;
1588	enum ice_ptp_link_spd link_spd;
1589	enum ice_ptp_fec_mode fec_mode;
1590	int err;
1591
1592	err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode);
1593	if (err)
1594		return err;
1595
1596	cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
1597	clk_incval = ice_ptp_read_src_incval(hw);
1598
1599	/* Calculate TUs per cycle of the PHC clock */
1600	tu_per_sec = cur_freq * clk_incval;
1601
1602	/* For each PHY conversion register, look up the appropriate link
1603	 * speed frequency and determine the TUs per that clock's cycle time.
1604	 * Split this into a high and low value and then program the
1605	 * appropriate register. If that link speed does not use the
1606	 * associated register, write zeros to clear it instead.
1607	 */
1608
1609	/* P_REG_PAR_TX_TUS */
1610	if (e822_vernier[link_spd].tx_par_clk)
1611		phy_tus = div_u64(tu_per_sec,
1612				  e822_vernier[link_spd].tx_par_clk);
1613	else
1614		phy_tus = 0;
1615
1616	err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PAR_TX_TUS_L,
1617					 phy_tus);
1618	if (err)
1619		return err;
1620
1621	/* P_REG_PAR_RX_TUS */
1622	if (e822_vernier[link_spd].rx_par_clk)
1623		phy_tus = div_u64(tu_per_sec,
1624				  e822_vernier[link_spd].rx_par_clk);
1625	else
1626		phy_tus = 0;
1627
1628	err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PAR_RX_TUS_L,
1629					 phy_tus);
1630	if (err)
1631		return err;
1632
1633	/* P_REG_PCS_TX_TUS */
1634	if (e822_vernier[link_spd].tx_pcs_clk)
1635		phy_tus = div_u64(tu_per_sec,
1636				  e822_vernier[link_spd].tx_pcs_clk);
1637	else
1638		phy_tus = 0;
1639
1640	err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PCS_TX_TUS_L,
1641					 phy_tus);
1642	if (err)
1643		return err;
1644
1645	/* P_REG_PCS_RX_TUS */
1646	if (e822_vernier[link_spd].rx_pcs_clk)
1647		phy_tus = div_u64(tu_per_sec,
1648				  e822_vernier[link_spd].rx_pcs_clk);
1649	else
1650		phy_tus = 0;
1651
1652	err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PCS_RX_TUS_L,
1653					 phy_tus);
1654	if (err)
1655		return err;
1656
1657	/* P_REG_DESK_PAR_TX_TUS */
1658	if (e822_vernier[link_spd].tx_desk_rsgb_par)
1659		phy_tus = div_u64(tu_per_sec,
1660				  e822_vernier[link_spd].tx_desk_rsgb_par);
1661	else
1662		phy_tus = 0;
1663
1664	err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PAR_TX_TUS_L,
1665					 phy_tus);
1666	if (err)
1667		return err;
1668
1669	/* P_REG_DESK_PAR_RX_TUS */
1670	if (e822_vernier[link_spd].rx_desk_rsgb_par)
1671		phy_tus = div_u64(tu_per_sec,
1672				  e822_vernier[link_spd].rx_desk_rsgb_par);
1673	else
1674		phy_tus = 0;
1675
1676	err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PAR_RX_TUS_L,
1677					 phy_tus);
1678	if (err)
1679		return err;
1680
1681	/* P_REG_DESK_PCS_TX_TUS */
1682	if (e822_vernier[link_spd].tx_desk_rsgb_pcs)
1683		phy_tus = div_u64(tu_per_sec,
1684				  e822_vernier[link_spd].tx_desk_rsgb_pcs);
1685	else
1686		phy_tus = 0;
1687
1688	err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PCS_TX_TUS_L,
1689					 phy_tus);
1690	if (err)
1691		return err;
1692
1693	/* P_REG_DESK_PCS_RX_TUS */
1694	if (e822_vernier[link_spd].rx_desk_rsgb_pcs)
1695		phy_tus = div_u64(tu_per_sec,
1696				  e822_vernier[link_spd].rx_desk_rsgb_pcs);
1697	else
1698		phy_tus = 0;
1699
1700	return ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PCS_RX_TUS_L,
1701					  phy_tus);
1702}
1703
1704/**
1705 * ice_calc_fixed_tx_offset_e822 - Calculated Fixed Tx offset for a port
1706 * @hw: pointer to the HW struct
1707 * @link_spd: the Link speed to calculate for
1708 *
1709 * Calculate the fixed offset due to known static latency data.
1710 */
1711static u64
1712ice_calc_fixed_tx_offset_e822(struct ice_hw *hw, enum ice_ptp_link_spd link_spd)
1713{
1714	u64 cur_freq, clk_incval, tu_per_sec, fixed_offset;
1715
1716	cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
1717	clk_incval = ice_ptp_read_src_incval(hw);
1718
1719	/* Calculate TUs per second */
1720	tu_per_sec = cur_freq * clk_incval;
1721
1722	/* Calculate number of TUs to add for the fixed Tx latency. Since the
1723	 * latency measurement is in 1/100th of a nanosecond, we need to
1724	 * multiply by tu_per_sec and then divide by 1e11. This calculation
1725	 * overflows 64 bit integer arithmetic, so break it up into two
1726	 * divisions by 1e4 first then by 1e7.
1727	 */
1728	fixed_offset = div_u64(tu_per_sec, 10000);
1729	fixed_offset *= e822_vernier[link_spd].tx_fixed_delay;
1730	fixed_offset = div_u64(fixed_offset, 10000000);
1731
1732	return fixed_offset;
1733}
1734
1735/**
1736 * ice_phy_cfg_tx_offset_e822 - Configure total Tx timestamp offset
1737 * @hw: pointer to the HW struct
1738 * @port: the PHY port to configure
1739 *
1740 * Program the P_REG_TOTAL_TX_OFFSET register with the total number of TUs to
1741 * adjust Tx timestamps by. This is calculated by combining some known static
1742 * latency along with the Vernier offset computations done by hardware.
1743 *
1744 * This function will not return successfully until the Tx offset calculations
1745 * have been completed, which requires waiting until at least one packet has
1746 * been transmitted by the device. It is safe to call this function
1747 * periodically until calibration succeeds, as it will only program the offset
1748 * once.
1749 *
1750 * To avoid overflow, when calculating the offset based on the known static
1751 * latency values, we use measurements in 1/100th of a nanosecond, and divide
1752 * the TUs per second up front. This avoids overflow while allowing
1753 * calculation of the adjustment using integer arithmetic.
1754 *
1755 * Returns zero on success, -EBUSY if the hardware vernier offset
1756 * calibration has not completed, or another error code on failure.
1757 */
1758int ice_phy_cfg_tx_offset_e822(struct ice_hw *hw, u8 port)
1759{
1760	enum ice_ptp_link_spd link_spd;
1761	enum ice_ptp_fec_mode fec_mode;
1762	u64 total_offset, val;
1763	int err;
1764	u32 reg;
1765
1766	/* Nothing to do if we've already programmed the offset */
1767	err = ice_read_phy_reg_e822(hw, port, P_REG_TX_OR, &reg);
1768	if (err) {
1769		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OR for port %u, err %d\n",
1770			  port, err);
1771		return err;
1772	}
1773
1774	if (reg)
1775		return 0;
1776
1777	err = ice_read_phy_reg_e822(hw, port, P_REG_TX_OV_STATUS, &reg);
1778	if (err) {
1779		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OV_STATUS for port %u, err %d\n",
1780			  port, err);
1781		return err;
1782	}
1783
1784	if (!(reg & P_REG_TX_OV_STATUS_OV_M))
1785		return -EBUSY;
1786
1787	err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode);
1788	if (err)
1789		return err;
1790
1791	total_offset = ice_calc_fixed_tx_offset_e822(hw, link_spd);
1792
1793	/* Read the first Vernier offset from the PHY register and add it to
1794	 * the total offset.
1795	 */
1796	if (link_spd == ICE_PTP_LNK_SPD_1G ||
1797	    link_spd == ICE_PTP_LNK_SPD_10G ||
1798	    link_spd == ICE_PTP_LNK_SPD_25G ||
1799	    link_spd == ICE_PTP_LNK_SPD_25G_RS ||
1800	    link_spd == ICE_PTP_LNK_SPD_40G ||
1801	    link_spd == ICE_PTP_LNK_SPD_50G) {
1802		err = ice_read_64b_phy_reg_e822(hw, port,
1803						P_REG_PAR_PCS_TX_OFFSET_L,
1804						&val);
1805		if (err)
1806			return err;
1807
1808		total_offset += val;
1809	}
1810
1811	/* For Tx, we only need to use the second Vernier offset for
1812	 * multi-lane link speeds with RS-FEC. The lanes will always be
1813	 * aligned.
1814	 */
1815	if (link_spd == ICE_PTP_LNK_SPD_50G_RS ||
1816	    link_spd == ICE_PTP_LNK_SPD_100G_RS) {
1817		err = ice_read_64b_phy_reg_e822(hw, port,
1818						P_REG_PAR_TX_TIME_L,
1819						&val);
1820		if (err)
1821			return err;
1822
1823		total_offset += val;
1824	}
1825
1826	/* Now that the total offset has been calculated, program it to the
1827	 * PHY and indicate that the Tx offset is ready. After this,
1828	 * timestamps will be enabled.
1829	 */
1830	err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TOTAL_TX_OFFSET_L,
1831					 total_offset);
1832	if (err)
1833		return err;
1834
1835	err = ice_write_phy_reg_e822(hw, port, P_REG_TX_OR, 1);
1836	if (err)
1837		return err;
1838
1839	dev_info(ice_hw_to_dev(hw), "Port=%d Tx vernier offset calibration complete\n",
1840		 port);
1841
1842	return 0;
1843}
1844
1845/**
1846 * ice_phy_calc_pmd_adj_e822 - Calculate PMD adjustment for Rx
1847 * @hw: pointer to the HW struct
1848 * @port: the PHY port to adjust for
1849 * @link_spd: the current link speed of the PHY
1850 * @fec_mode: the current FEC mode of the PHY
1851 * @pmd_adj: on return, the amount to adjust the Rx total offset by
1852 *
1853 * Calculates the adjustment to Rx timestamps due to PMD alignment in the PHY.
1854 * This varies by link speed and FEC mode. The value calculated accounts for
1855 * various delays caused when receiving a packet.
1856 */
1857static int
1858ice_phy_calc_pmd_adj_e822(struct ice_hw *hw, u8 port,
1859			  enum ice_ptp_link_spd link_spd,
1860			  enum ice_ptp_fec_mode fec_mode, u64 *pmd_adj)
1861{
1862	u64 cur_freq, clk_incval, tu_per_sec, mult, adj;
1863	u8 pmd_align;
1864	u32 val;
1865	int err;
1866
1867	err = ice_read_phy_reg_e822(hw, port, P_REG_PMD_ALIGNMENT, &val);
1868	if (err) {
1869		ice_debug(hw, ICE_DBG_PTP, "Failed to read PMD alignment, err %d\n",
1870			  err);
1871		return err;
1872	}
1873
1874	pmd_align = (u8)val;
1875
1876	cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
1877	clk_incval = ice_ptp_read_src_incval(hw);
1878
1879	/* Calculate TUs per second */
1880	tu_per_sec = cur_freq * clk_incval;
1881
1882	/* The PMD alignment adjustment measurement depends on the link speed,
1883	 * and whether FEC is enabled. For each link speed, the alignment
1884	 * adjustment is calculated by dividing a value by the length of
1885	 * a Time Unit in nanoseconds.
1886	 *
1887	 * 1G: align == 4 ? 10 * 0.8 : (align + 6 % 10) * 0.8
1888	 * 10G: align == 65 ? 0 : (align * 0.1 * 32/33)
1889	 * 10G w/FEC: align * 0.1 * 32/33
1890	 * 25G: align == 65 ? 0 : (align * 0.4 * 32/33)
1891	 * 25G w/FEC: align * 0.4 * 32/33
1892	 * 40G: align == 65 ? 0 : (align * 0.1 * 32/33)
1893	 * 40G w/FEC: align * 0.1 * 32/33
1894	 * 50G: align == 65 ? 0 : (align * 0.4 * 32/33)
1895	 * 50G w/FEC: align * 0.8 * 32/33
1896	 *
1897	 * For RS-FEC, if align is < 17 then we must also add 1.6 * 32/33.
1898	 *
1899	 * To allow for calculating this value using integer arithmetic, we
1900	 * instead start with the number of TUs per second, (inverse of the
1901	 * length of a Time Unit in nanoseconds), multiply by a value based
1902	 * on the PMD alignment register, and then divide by the right value
1903	 * calculated based on the table above. To avoid integer overflow this
1904	 * division is broken up into a step of dividing by 125 first.
1905	 */
1906	if (link_spd == ICE_PTP_LNK_SPD_1G) {
1907		if (pmd_align == 4)
1908			mult = 10;
1909		else
1910			mult = (pmd_align + 6) % 10;
1911	} else if (link_spd == ICE_PTP_LNK_SPD_10G ||
1912		   link_spd == ICE_PTP_LNK_SPD_25G ||
1913		   link_spd == ICE_PTP_LNK_SPD_40G ||
1914		   link_spd == ICE_PTP_LNK_SPD_50G) {
1915		/* If Clause 74 FEC, always calculate PMD adjust */
1916		if (pmd_align != 65 || fec_mode == ICE_PTP_FEC_MODE_CLAUSE74)
1917			mult = pmd_align;
1918		else
1919			mult = 0;
1920	} else if (link_spd == ICE_PTP_LNK_SPD_25G_RS ||
1921		   link_spd == ICE_PTP_LNK_SPD_50G_RS ||
1922		   link_spd == ICE_PTP_LNK_SPD_100G_RS) {
1923		if (pmd_align < 17)
1924			mult = pmd_align + 40;
1925		else
1926			mult = pmd_align;
1927	} else {
1928		ice_debug(hw, ICE_DBG_PTP, "Unknown link speed %d, skipping PMD adjustment\n",
1929			  link_spd);
1930		mult = 0;
1931	}
1932
1933	/* In some cases, there's no need to adjust for the PMD alignment */
1934	if (!mult) {
1935		*pmd_adj = 0;
1936		return 0;
1937	}
1938
1939	/* Calculate the adjustment by multiplying TUs per second by the
1940	 * appropriate multiplier and divisor. To avoid overflow, we first
1941	 * divide by 125, and then handle remaining divisor based on the link
1942	 * speed pmd_adj_divisor value.
1943	 */
1944	adj = div_u64(tu_per_sec, 125);
1945	adj *= mult;
1946	adj = div_u64(adj, e822_vernier[link_spd].pmd_adj_divisor);
1947
1948	/* Finally, for 25G-RS and 50G-RS, a further adjustment for the Rx
1949	 * cycle count is necessary.
1950	 */
1951	if (link_spd == ICE_PTP_LNK_SPD_25G_RS) {
1952		u64 cycle_adj;
1953		u8 rx_cycle;
1954
1955		err = ice_read_phy_reg_e822(hw, port, P_REG_RX_40_TO_160_CNT,
1956					    &val);
1957		if (err) {
1958			ice_debug(hw, ICE_DBG_PTP, "Failed to read 25G-RS Rx cycle count, err %d\n",
1959				  err);
1960			return err;
1961		}
1962
1963		rx_cycle = val & P_REG_RX_40_TO_160_CNT_RXCYC_M;
1964		if (rx_cycle) {
1965			mult = (4 - rx_cycle) * 40;
1966
1967			cycle_adj = div_u64(tu_per_sec, 125);
1968			cycle_adj *= mult;
1969			cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor);
1970
1971			adj += cycle_adj;
1972		}
1973	} else if (link_spd == ICE_PTP_LNK_SPD_50G_RS) {
1974		u64 cycle_adj;
1975		u8 rx_cycle;
1976
1977		err = ice_read_phy_reg_e822(hw, port, P_REG_RX_80_TO_160_CNT,
1978					    &val);
1979		if (err) {
1980			ice_debug(hw, ICE_DBG_PTP, "Failed to read 50G-RS Rx cycle count, err %d\n",
1981				  err);
1982			return err;
1983		}
1984
1985		rx_cycle = val & P_REG_RX_80_TO_160_CNT_RXCYC_M;
1986		if (rx_cycle) {
1987			mult = rx_cycle * 40;
1988
1989			cycle_adj = div_u64(tu_per_sec, 125);
1990			cycle_adj *= mult;
1991			cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor);
1992
1993			adj += cycle_adj;
1994		}
1995	}
1996
1997	/* Return the calculated adjustment */
1998	*pmd_adj = adj;
1999
2000	return 0;
2001}
2002
2003/**
2004 * ice_calc_fixed_rx_offset_e822 - Calculated the fixed Rx offset for a port
2005 * @hw: pointer to HW struct
2006 * @link_spd: The Link speed to calculate for
2007 *
2008 * Determine the fixed Rx latency for a given link speed.
2009 */
2010static u64
2011ice_calc_fixed_rx_offset_e822(struct ice_hw *hw, enum ice_ptp_link_spd link_spd)
2012{
2013	u64 cur_freq, clk_incval, tu_per_sec, fixed_offset;
2014
2015	cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
2016	clk_incval = ice_ptp_read_src_incval(hw);
2017
2018	/* Calculate TUs per second */
2019	tu_per_sec = cur_freq * clk_incval;
2020
2021	/* Calculate number of TUs to add for the fixed Rx latency. Since the
2022	 * latency measurement is in 1/100th of a nanosecond, we need to
2023	 * multiply by tu_per_sec and then divide by 1e11. This calculation
2024	 * overflows 64 bit integer arithmetic, so break it up into two
2025	 * divisions by 1e4 first then by 1e7.
2026	 */
2027	fixed_offset = div_u64(tu_per_sec, 10000);
2028	fixed_offset *= e822_vernier[link_spd].rx_fixed_delay;
2029	fixed_offset = div_u64(fixed_offset, 10000000);
2030
2031	return fixed_offset;
2032}
2033
2034/**
2035 * ice_phy_cfg_rx_offset_e822 - Configure total Rx timestamp offset
2036 * @hw: pointer to the HW struct
2037 * @port: the PHY port to configure
2038 *
2039 * Program the P_REG_TOTAL_RX_OFFSET register with the number of Time Units to
2040 * adjust Rx timestamps by. This combines calculations from the Vernier offset
2041 * measurements taken in hardware with some data about known fixed delay as
2042 * well as adjusting for multi-lane alignment delay.
2043 *
2044 * This function will not return successfully until the Rx offset calculations
2045 * have been completed, which requires waiting until at least one packet has
2046 * been received by the device. It is safe to call this function periodically
2047 * until calibration succeeds, as it will only program the offset once.
2048 *
2049 * This function must be called only after the offset registers are valid,
2050 * i.e. after the Vernier calibration wait has passed, to ensure that the PHY
2051 * has measured the offset.
2052 *
2053 * To avoid overflow, when calculating the offset based on the known static
2054 * latency values, we use measurements in 1/100th of a nanosecond, and divide
2055 * the TUs per second up front. This avoids overflow while allowing
2056 * calculation of the adjustment using integer arithmetic.
2057 *
2058 * Returns zero on success, -EBUSY if the hardware vernier offset
2059 * calibration has not completed, or another error code on failure.
2060 */
2061int ice_phy_cfg_rx_offset_e822(struct ice_hw *hw, u8 port)
2062{
2063	enum ice_ptp_link_spd link_spd;
2064	enum ice_ptp_fec_mode fec_mode;
2065	u64 total_offset, pmd, val;
2066	int err;
2067	u32 reg;
2068
2069	/* Nothing to do if we've already programmed the offset */
2070	err = ice_read_phy_reg_e822(hw, port, P_REG_RX_OR, &reg);
2071	if (err) {
2072		ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OR for port %u, err %d\n",
2073			  port, err);
2074		return err;
2075	}
2076
2077	if (reg)
2078		return 0;
2079
2080	err = ice_read_phy_reg_e822(hw, port, P_REG_RX_OV_STATUS, &reg);
2081	if (err) {
2082		ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OV_STATUS for port %u, err %d\n",
2083			  port, err);
2084		return err;
2085	}
2086
2087	if (!(reg & P_REG_RX_OV_STATUS_OV_M))
2088		return -EBUSY;
2089
2090	err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode);
2091	if (err)
2092		return err;
2093
2094	total_offset = ice_calc_fixed_rx_offset_e822(hw, link_spd);
2095
2096	/* Read the first Vernier offset from the PHY register and add it to
2097	 * the total offset.
2098	 */
2099	err = ice_read_64b_phy_reg_e822(hw, port,
2100					P_REG_PAR_PCS_RX_OFFSET_L,
2101					&val);
2102	if (err)
2103		return err;
2104
2105	total_offset += val;
2106
2107	/* For Rx, all multi-lane link speeds include a second Vernier
2108	 * calibration, because the lanes might not be aligned.
2109	 */
2110	if (link_spd == ICE_PTP_LNK_SPD_40G ||
2111	    link_spd == ICE_PTP_LNK_SPD_50G ||
2112	    link_spd == ICE_PTP_LNK_SPD_50G_RS ||
2113	    link_spd == ICE_PTP_LNK_SPD_100G_RS) {
2114		err = ice_read_64b_phy_reg_e822(hw, port,
2115						P_REG_PAR_RX_TIME_L,
2116						&val);
2117		if (err)
2118			return err;
2119
2120		total_offset += val;
2121	}
2122
2123	/* In addition, Rx must account for the PMD alignment */
2124	err = ice_phy_calc_pmd_adj_e822(hw, port, link_spd, fec_mode, &pmd);
2125	if (err)
2126		return err;
2127
2128	/* For RS-FEC, this adjustment adds delay, but for other modes, it
2129	 * subtracts delay.
2130	 */
2131	if (fec_mode == ICE_PTP_FEC_MODE_RS_FEC)
2132		total_offset += pmd;
2133	else
2134		total_offset -= pmd;
2135
2136	/* Now that the total offset has been calculated, program it to the
2137	 * PHY and indicate that the Rx offset is ready. After this,
2138	 * timestamps will be enabled.
2139	 */
2140	err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TOTAL_RX_OFFSET_L,
2141					 total_offset);
2142	if (err)
2143		return err;
2144
2145	err = ice_write_phy_reg_e822(hw, port, P_REG_RX_OR, 1);
2146	if (err)
2147		return err;
2148
2149	dev_info(ice_hw_to_dev(hw), "Port=%d Rx vernier offset calibration complete\n",
2150		 port);
2151
2152	return 0;
2153}
2154
2155/**
2156 * ice_read_phy_and_phc_time_e822 - Simultaneously capture PHC and PHY time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2157 * @hw: pointer to the HW struct
2158 * @port: the PHY port to read
2159 * @phy_time: on return, the 64bit PHY timer value
2160 * @phc_time: on return, the lower 64bits of PHC time
2161 *
2162 * Issue a READ_TIME timer command to simultaneously capture the PHY and PHC
2163 * timer values.
2164 */
2165static int
2166ice_read_phy_and_phc_time_e822(struct ice_hw *hw, u8 port, u64 *phy_time,
2167			       u64 *phc_time)
2168{
2169	u64 tx_time, rx_time;
2170	u32 zo, lo;
2171	u8 tmr_idx;
2172	int err;
2173
2174	tmr_idx = ice_get_ptp_src_clock_index(hw);
2175
2176	/* Prepare the PHC timer for a READ_TIME capture command */
2177	ice_ptp_src_cmd(hw, READ_TIME);
2178
2179	/* Prepare the PHY timer for a READ_TIME capture command */
2180	err = ice_ptp_one_port_cmd(hw, port, READ_TIME);
2181	if (err)
2182		return err;
2183
2184	/* Issue the sync to start the READ_TIME capture */
2185	ice_ptp_exec_tmr_cmd(hw);
2186
2187	/* Read the captured PHC time from the shadow time registers */
2188	zo = rd32(hw, GLTSYN_SHTIME_0(tmr_idx));
2189	lo = rd32(hw, GLTSYN_SHTIME_L(tmr_idx));
2190	*phc_time = (u64)lo << 32 | zo;
2191
2192	/* Read the captured PHY time from the PHY shadow registers */
2193	err = ice_ptp_read_port_capture(hw, port, &tx_time, &rx_time);
2194	if (err)
2195		return err;
2196
2197	/* If the PHY Tx and Rx timers don't match, log a warning message.
2198	 * Note that this should not happen in normal circumstances since the
2199	 * driver always programs them together.
2200	 */
2201	if (tx_time != rx_time)
2202		dev_warn(ice_hw_to_dev(hw),
2203			 "PHY port %u Tx and Rx timers do not match, tx_time 0x%016llX, rx_time 0x%016llX\n",
2204			 port, (unsigned long long)tx_time,
2205			 (unsigned long long)rx_time);
2206
2207	*phy_time = tx_time;
2208
2209	return 0;
2210}
2211
2212/**
2213 * ice_sync_phy_timer_e822 - Synchronize the PHY timer with PHC timer
2214 * @hw: pointer to the HW struct
2215 * @port: the PHY port to synchronize
2216 *
2217 * Perform an adjustment to ensure that the PHY and PHC timers are in sync.
2218 * This is done by issuing a READ_TIME command which triggers a simultaneous
2219 * read of the PHY timer and PHC timer. Then we use the difference to
2220 * calculate an appropriate 2s complement addition to add to the PHY timer in
2221 * order to ensure it reads the same value as the primary PHC timer.
 
2222 */
2223static int ice_sync_phy_timer_e822(struct ice_hw *hw, u8 port)
2224{
2225	u64 phc_time, phy_time, difference;
2226	int err;
2227
2228	if (!ice_ptp_lock(hw)) {
2229		ice_debug(hw, ICE_DBG_PTP, "Failed to acquire PTP semaphore\n");
2230		return -EBUSY;
2231	}
2232
2233	err = ice_read_phy_and_phc_time_e822(hw, port, &phy_time, &phc_time);
2234	if (err)
2235		goto err_unlock;
2236
2237	/* Calculate the amount required to add to the port time in order for
2238	 * it to match the PHC time.
2239	 *
2240	 * Note that the port adjustment is done using 2s complement
2241	 * arithmetic. This is convenient since it means that we can simply
2242	 * calculate the difference between the PHC time and the port time,
2243	 * and it will be interpreted correctly.
2244	 */
2245	difference = phc_time - phy_time;
2246
2247	err = ice_ptp_prep_port_adj_e822(hw, port, (s64)difference);
2248	if (err)
2249		goto err_unlock;
2250
2251	err = ice_ptp_one_port_cmd(hw, port, ADJ_TIME);
2252	if (err)
2253		goto err_unlock;
2254
 
 
 
2255	/* Issue the sync to activate the time adjustment */
2256	ice_ptp_exec_tmr_cmd(hw);
2257
2258	/* Re-capture the timer values to flush the command registers and
2259	 * verify that the time was properly adjusted.
2260	 */
2261	err = ice_read_phy_and_phc_time_e822(hw, port, &phy_time, &phc_time);
2262	if (err)
2263		goto err_unlock;
2264
2265	dev_info(ice_hw_to_dev(hw),
2266		 "Port %u PHY time synced to PHC: 0x%016llX, 0x%016llX\n",
2267		 port, (unsigned long long)phy_time,
2268		 (unsigned long long)phc_time);
2269
2270	ice_ptp_unlock(hw);
2271
2272	return 0;
2273
2274err_unlock:
2275	ice_ptp_unlock(hw);
2276	return err;
2277}
2278
2279/**
2280 * ice_stop_phy_timer_e822 - Stop the PHY clock timer
2281 * @hw: pointer to the HW struct
2282 * @port: the PHY port to stop
2283 * @soft_reset: if true, hold the SOFT_RESET bit of P_REG_PS
2284 *
2285 * Stop the clock of a PHY port. This must be done as part of the flow to
2286 * re-calibrate Tx and Rx timestamping offsets whenever the clock time is
2287 * initialized or when link speed changes.
2288 */
2289int
2290ice_stop_phy_timer_e822(struct ice_hw *hw, u8 port, bool soft_reset)
2291{
2292	int err;
2293	u32 val;
2294
2295	err = ice_write_phy_reg_e822(hw, port, P_REG_TX_OR, 0);
2296	if (err)
2297		return err;
2298
2299	err = ice_write_phy_reg_e822(hw, port, P_REG_RX_OR, 0);
2300	if (err)
2301		return err;
2302
2303	err = ice_read_phy_reg_e822(hw, port, P_REG_PS, &val);
2304	if (err)
2305		return err;
2306
2307	val &= ~P_REG_PS_START_M;
2308	err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2309	if (err)
2310		return err;
2311
2312	val &= ~P_REG_PS_ENA_CLK_M;
2313	err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2314	if (err)
2315		return err;
2316
2317	if (soft_reset) {
2318		val |= P_REG_PS_SFT_RESET_M;
2319		err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2320		if (err)
2321			return err;
2322	}
2323
2324	ice_debug(hw, ICE_DBG_PTP, "Disabled clock on PHY port %u\n", port);
2325
2326	return 0;
2327}
2328
2329/**
2330 * ice_start_phy_timer_e822 - Start the PHY clock timer
2331 * @hw: pointer to the HW struct
2332 * @port: the PHY port to start
2333 *
2334 * Start the clock of a PHY port. This must be done as part of the flow to
2335 * re-calibrate Tx and Rx timestamping offsets whenever the clock time is
2336 * initialized or when link speed changes.
2337 *
2338 * Hardware will take Vernier measurements on Tx or Rx of packets.
2339 */
2340int ice_start_phy_timer_e822(struct ice_hw *hw, u8 port)
2341{
2342	u32 lo, hi, val;
2343	u64 incval;
2344	u8 tmr_idx;
2345	int err;
2346
2347	tmr_idx = ice_get_ptp_src_clock_index(hw);
2348
2349	err = ice_stop_phy_timer_e822(hw, port, false);
2350	if (err)
2351		return err;
2352
2353	ice_phy_cfg_lane_e822(hw, port);
2354
2355	err = ice_phy_cfg_uix_e822(hw, port);
2356	if (err)
2357		return err;
2358
2359	err = ice_phy_cfg_parpcs_e822(hw, port);
2360	if (err)
2361		return err;
2362
2363	lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
2364	hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
2365	incval = (u64)hi << 32 | lo;
2366
2367	err = ice_write_40b_phy_reg_e822(hw, port, P_REG_TIMETUS_L, incval);
2368	if (err)
2369		return err;
2370
2371	err = ice_ptp_one_port_cmd(hw, port, INIT_INCVAL);
2372	if (err)
2373		return err;
2374
 
 
 
2375	ice_ptp_exec_tmr_cmd(hw);
2376
2377	err = ice_read_phy_reg_e822(hw, port, P_REG_PS, &val);
2378	if (err)
2379		return err;
2380
2381	val |= P_REG_PS_SFT_RESET_M;
2382	err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2383	if (err)
2384		return err;
2385
2386	val |= P_REG_PS_START_M;
2387	err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2388	if (err)
2389		return err;
2390
2391	val &= ~P_REG_PS_SFT_RESET_M;
2392	err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2393	if (err)
2394		return err;
2395
2396	err = ice_ptp_one_port_cmd(hw, port, INIT_INCVAL);
2397	if (err)
2398		return err;
2399
2400	ice_ptp_exec_tmr_cmd(hw);
2401
2402	val |= P_REG_PS_ENA_CLK_M;
2403	err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2404	if (err)
2405		return err;
2406
2407	val |= P_REG_PS_LOAD_OFFSET_M;
2408	err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2409	if (err)
2410		return err;
2411
2412	ice_ptp_exec_tmr_cmd(hw);
2413
2414	err = ice_sync_phy_timer_e822(hw, port);
2415	if (err)
2416		return err;
2417
2418	ice_debug(hw, ICE_DBG_PTP, "Enabled clock on PHY port %u\n", port);
2419
2420	return 0;
2421}
2422
2423/**
2424 * ice_get_phy_tx_tstamp_ready_e822 - Read Tx memory status register
2425 * @hw: pointer to the HW struct
2426 * @quad: the timestamp quad to read from
2427 * @tstamp_ready: contents of the Tx memory status register
2428 *
2429 * Read the Q_REG_TX_MEMORY_STATUS register indicating which timestamps in
2430 * the PHY are ready. A set bit means the corresponding timestamp is valid and
2431 * ready to be captured from the PHY timestamp block.
2432 */
2433static int
2434ice_get_phy_tx_tstamp_ready_e822(struct ice_hw *hw, u8 quad, u64 *tstamp_ready)
2435{
2436	u32 hi, lo;
2437	int err;
2438
2439	err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEMORY_STATUS_U, &hi);
2440	if (err) {
2441		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS_U for quad %u, err %d\n",
2442			  quad, err);
2443		return err;
2444	}
2445
2446	err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEMORY_STATUS_L, &lo);
2447	if (err) {
2448		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS_L for quad %u, err %d\n",
2449			  quad, err);
2450		return err;
2451	}
2452
2453	*tstamp_ready = (u64)hi << 32 | (u64)lo;
2454
2455	return 0;
2456}
2457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2458/* E810 functions
2459 *
2460 * The following functions operate on the E810 series devices which use
2461 * a separate external PHY.
2462 */
2463
2464/**
2465 * ice_read_phy_reg_e810 - Read register from external PHY on E810
2466 * @hw: pointer to the HW struct
2467 * @addr: the address to read from
2468 * @val: On return, the value read from the PHY
2469 *
2470 * Read a register from the external PHY on the E810 device.
2471 */
2472static int ice_read_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 *val)
2473{
2474	struct ice_sbq_msg_input msg = {0};
2475	int err;
2476
2477	msg.msg_addr_low = lower_16_bits(addr);
2478	msg.msg_addr_high = upper_16_bits(addr);
2479	msg.opcode = ice_sbq_msg_rd;
2480	msg.dest_dev = rmn_0;
2481
2482	err = ice_sbq_rw_reg(hw, &msg);
2483	if (err) {
2484		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
2485			  err);
2486		return err;
2487	}
2488
2489	*val = msg.data;
2490
2491	return 0;
2492}
2493
2494/**
2495 * ice_write_phy_reg_e810 - Write register on external PHY on E810
2496 * @hw: pointer to the HW struct
2497 * @addr: the address to writem to
2498 * @val: the value to write to the PHY
2499 *
2500 * Write a value to a register of the external PHY on the E810 device.
2501 */
2502static int ice_write_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 val)
2503{
2504	struct ice_sbq_msg_input msg = {0};
2505	int err;
2506
2507	msg.msg_addr_low = lower_16_bits(addr);
2508	msg.msg_addr_high = upper_16_bits(addr);
2509	msg.opcode = ice_sbq_msg_wr;
2510	msg.dest_dev = rmn_0;
2511	msg.data = val;
2512
2513	err = ice_sbq_rw_reg(hw, &msg);
2514	if (err) {
2515		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
2516			  err);
2517		return err;
2518	}
2519
2520	return 0;
2521}
2522
2523/**
2524 * ice_read_phy_tstamp_ll_e810 - Read a PHY timestamp registers through the FW
2525 * @hw: pointer to the HW struct
2526 * @idx: the timestamp index to read
2527 * @hi: 8 bit timestamp high value
2528 * @lo: 32 bit timestamp low value
2529 *
2530 * Read a 8bit timestamp high value and 32 bit timestamp low value out of the
2531 * timestamp block of the external PHY on the E810 device using the low latency
2532 * timestamp read.
2533 */
2534static int
2535ice_read_phy_tstamp_ll_e810(struct ice_hw *hw, u8 idx, u8 *hi, u32 *lo)
2536{
2537	u32 val;
2538	u8 i;
2539
2540	/* Write TS index to read to the PF register so the FW can read it */
2541	val = FIELD_PREP(TS_LL_READ_TS_IDX, idx) | TS_LL_READ_TS;
2542	wr32(hw, PF_SB_ATQBAL, val);
2543
2544	/* Read the register repeatedly until the FW provides us the TS */
2545	for (i = TS_LL_READ_RETRIES; i > 0; i--) {
2546		val = rd32(hw, PF_SB_ATQBAL);
2547
2548		/* When the bit is cleared, the TS is ready in the register */
2549		if (!(FIELD_GET(TS_LL_READ_TS, val))) {
2550			/* High 8 bit value of the TS is on the bits 16:23 */
2551			*hi = FIELD_GET(TS_LL_READ_TS_HIGH, val);
2552
2553			/* Read the low 32 bit value and set the TS valid bit */
2554			*lo = rd32(hw, PF_SB_ATQBAH) | TS_VALID;
2555			return 0;
2556		}
2557
2558		udelay(10);
2559	}
2560
2561	/* FW failed to provide the TS in time */
2562	ice_debug(hw, ICE_DBG_PTP, "Failed to read PTP timestamp using low latency read\n");
2563	return -EINVAL;
2564}
2565
2566/**
2567 * ice_read_phy_tstamp_sbq_e810 - Read a PHY timestamp registers through the sbq
2568 * @hw: pointer to the HW struct
2569 * @lport: the lport to read from
2570 * @idx: the timestamp index to read
2571 * @hi: 8 bit timestamp high value
2572 * @lo: 32 bit timestamp low value
2573 *
2574 * Read a 8bit timestamp high value and 32 bit timestamp low value out of the
2575 * timestamp block of the external PHY on the E810 device using sideband queue.
2576 */
2577static int
2578ice_read_phy_tstamp_sbq_e810(struct ice_hw *hw, u8 lport, u8 idx, u8 *hi,
2579			     u32 *lo)
2580{
2581	u32 hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx);
2582	u32 lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx);
2583	u32 lo_val, hi_val;
2584	int err;
2585
2586	err = ice_read_phy_reg_e810(hw, lo_addr, &lo_val);
2587	if (err) {
2588		ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
2589			  err);
2590		return err;
2591	}
2592
2593	err = ice_read_phy_reg_e810(hw, hi_addr, &hi_val);
2594	if (err) {
2595		ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
2596			  err);
2597		return err;
2598	}
2599
2600	*lo = lo_val;
2601	*hi = (u8)hi_val;
2602
2603	return 0;
2604}
2605
2606/**
2607 * ice_read_phy_tstamp_e810 - Read a PHY timestamp out of the external PHY
2608 * @hw: pointer to the HW struct
2609 * @lport: the lport to read from
2610 * @idx: the timestamp index to read
2611 * @tstamp: on return, the 40bit timestamp value
2612 *
2613 * Read a 40bit timestamp value out of the timestamp block of the external PHY
2614 * on the E810 device.
2615 */
2616static int
2617ice_read_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx, u64 *tstamp)
2618{
2619	u32 lo = 0;
2620	u8 hi = 0;
2621	int err;
2622
2623	if (hw->dev_caps.ts_dev_info.ts_ll_read)
2624		err = ice_read_phy_tstamp_ll_e810(hw, idx, &hi, &lo);
2625	else
2626		err = ice_read_phy_tstamp_sbq_e810(hw, lport, idx, &hi, &lo);
2627
2628	if (err)
2629		return err;
2630
2631	/* For E810 devices, the timestamp is reported with the lower 32 bits
2632	 * in the low register, and the upper 8 bits in the high register.
2633	 */
2634	*tstamp = ((u64)hi) << TS_HIGH_S | ((u64)lo & TS_LOW_M);
2635
2636	return 0;
2637}
2638
2639/**
2640 * ice_clear_phy_tstamp_e810 - Clear a timestamp from the external PHY
2641 * @hw: pointer to the HW struct
2642 * @lport: the lport to read from
2643 * @idx: the timestamp index to reset
2644 *
2645 * Clear a timestamp, resetting its valid bit, from the timestamp block of the
2646 * external PHY on the E810 device.
 
 
 
2647 */
2648static int ice_clear_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx)
2649{
2650	u32 lo_addr, hi_addr;
 
2651	int err;
2652
 
 
 
 
 
 
 
2653	lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx);
2654	hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx);
2655
2656	err = ice_write_phy_reg_e810(hw, lo_addr, 0);
2657	if (err) {
2658		ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register, err %d\n",
2659			  err);
2660		return err;
2661	}
2662
2663	err = ice_write_phy_reg_e810(hw, hi_addr, 0);
2664	if (err) {
2665		ice_debug(hw, ICE_DBG_PTP, "Failed to clear high PTP timestamp register, err %d\n",
2666			  err);
2667		return err;
2668	}
2669
2670	return 0;
2671}
2672
2673/**
2674 * ice_ptp_init_phy_e810 - Enable PTP function on the external PHY
2675 * @hw: pointer to HW struct
2676 *
2677 * Enable the timesync PTP functionality for the external PHY connected to
2678 * this function.
 
2679 */
2680int ice_ptp_init_phy_e810(struct ice_hw *hw)
2681{
2682	u8 tmr_idx;
2683	int err;
2684
 
 
 
2685	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
2686	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_ENA(tmr_idx),
2687				     GLTSYN_ENA_TSYN_ENA_M);
2688	if (err)
2689		ice_debug(hw, ICE_DBG_PTP, "PTP failed in ena_phy_time_syn %d\n",
2690			  err);
2691
2692	return err;
2693}
2694
2695/**
2696 * ice_ptp_init_phc_e810 - Perform E810 specific PHC initialization
2697 * @hw: pointer to HW struct
2698 *
2699 * Perform E810-specific PTP hardware clock initialization steps.
2700 */
2701static int ice_ptp_init_phc_e810(struct ice_hw *hw)
2702{
2703	/* Ensure synchronization delay is zero */
2704	wr32(hw, GLTSYN_SYNC_DLAY, 0);
2705
2706	/* Initialize the PHY */
2707	return ice_ptp_init_phy_e810(hw);
2708}
2709
2710/**
2711 * ice_ptp_prep_phy_time_e810 - Prepare PHY port with initial time
2712 * @hw: Board private structure
2713 * @time: Time to initialize the PHY port clock to
2714 *
2715 * Program the PHY port ETH_GLTSYN_SHTIME registers in preparation setting the
2716 * initial clock time. The time will not actually be programmed until the
2717 * driver issues an INIT_TIME command.
2718 *
2719 * The time value is the upper 32 bits of the PHY timer, usually in units of
2720 * nominal nanoseconds.
2721 */
2722static int ice_ptp_prep_phy_time_e810(struct ice_hw *hw, u32 time)
2723{
2724	u8 tmr_idx;
2725	int err;
2726
2727	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
2728	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_0(tmr_idx), 0);
2729	if (err) {
2730		ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_0, err %d\n",
2731			  err);
2732		return err;
2733	}
2734
2735	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_L(tmr_idx), time);
2736	if (err) {
2737		ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_L, err %d\n",
2738			  err);
2739		return err;
2740	}
2741
2742	return 0;
2743}
2744
2745/**
2746 * ice_ptp_prep_phy_adj_e810 - Prep PHY port for a time adjustment
2747 * @hw: pointer to HW struct
2748 * @adj: adjustment value to program
2749 *
2750 * Prepare the PHY port for an atomic adjustment by programming the PHY
2751 * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual adjustment
2752 * is completed by issuing an ADJ_TIME sync command.
2753 *
2754 * The adjustment value only contains the portion used for the upper 32bits of
2755 * the PHY timer, usually in units of nominal nanoseconds. Negative
2756 * adjustments are supported using 2s complement arithmetic.
2757 */
2758static int ice_ptp_prep_phy_adj_e810(struct ice_hw *hw, s32 adj)
2759{
2760	u8 tmr_idx;
2761	int err;
2762
2763	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
2764
2765	/* Adjustments are represented as signed 2's complement values in
2766	 * nanoseconds. Sub-nanosecond adjustment is not supported.
2767	 */
2768	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), 0);
2769	if (err) {
2770		ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_L, err %d\n",
2771			  err);
2772		return err;
2773	}
2774
2775	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), adj);
2776	if (err) {
2777		ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_H, err %d\n",
2778			  err);
2779		return err;
2780	}
2781
2782	return 0;
2783}
2784
2785/**
2786 * ice_ptp_prep_phy_incval_e810 - Prep PHY port increment value change
2787 * @hw: pointer to HW struct
2788 * @incval: The new 40bit increment value to prepare
2789 *
2790 * Prepare the PHY port for a new increment value by programming the PHY
2791 * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual change is
2792 * completed by issuing an INIT_INCVAL command.
2793 */
2794static int ice_ptp_prep_phy_incval_e810(struct ice_hw *hw, u64 incval)
2795{
2796	u32 high, low;
2797	u8 tmr_idx;
2798	int err;
2799
2800	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
2801	low = lower_32_bits(incval);
2802	high = upper_32_bits(incval);
2803
2804	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), low);
2805	if (err) {
2806		ice_debug(hw, ICE_DBG_PTP, "Failed to write incval to PHY SHADJ_L, err %d\n",
2807			  err);
2808		return err;
2809	}
2810
2811	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), high);
2812	if (err) {
2813		ice_debug(hw, ICE_DBG_PTP, "Failed to write incval PHY SHADJ_H, err %d\n",
2814			  err);
2815		return err;
2816	}
2817
2818	return 0;
2819}
2820
2821/**
2822 * ice_ptp_port_cmd_e810 - Prepare all external PHYs for a timer command
2823 * @hw: pointer to HW struct
2824 * @cmd: Command to be sent to the port
2825 *
2826 * Prepare the external PHYs connected to this device for a timer sync
2827 * command.
2828 */
2829static int ice_ptp_port_cmd_e810(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
2830{
2831	u32 cmd_val, val;
2832	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2833
2834	switch (cmd) {
2835	case INIT_TIME:
2836		cmd_val = GLTSYN_CMD_INIT_TIME;
2837		break;
2838	case INIT_INCVAL:
2839		cmd_val = GLTSYN_CMD_INIT_INCVAL;
2840		break;
2841	case ADJ_TIME:
2842		cmd_val = GLTSYN_CMD_ADJ_TIME;
2843		break;
2844	case READ_TIME:
2845		cmd_val = GLTSYN_CMD_READ_TIME;
2846		break;
2847	case ADJ_TIME_AT_TIME:
2848		cmd_val = GLTSYN_CMD_ADJ_INIT_TIME;
2849		break;
2850	}
2851
2852	/* Read, modify, write */
2853	err = ice_read_phy_reg_e810(hw, ETH_GLTSYN_CMD, &val);
2854	if (err) {
2855		ice_debug(hw, ICE_DBG_PTP, "Failed to read GLTSYN_CMD, err %d\n", err);
2856		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2857	}
2858
2859	/* Modify necessary bits only and perform write */
2860	val &= ~TS_CMD_MASK_E810;
2861	val |= cmd_val;
2862
2863	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_CMD, val);
2864	if (err) {
2865		ice_debug(hw, ICE_DBG_PTP, "Failed to write back GLTSYN_CMD, err %d\n", err);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2866		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2867	}
2868
2869	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2870}
2871
2872/* Device agnostic functions
2873 *
2874 * The following functions implement shared behavior common to both E822 and
2875 * E810 devices, possibly calling a device specific implementation where
2876 * necessary.
2877 */
2878
2879/**
2880 * ice_ptp_lock - Acquire PTP global semaphore register lock
2881 * @hw: pointer to the HW struct
2882 *
2883 * Acquire the global PTP hardware semaphore lock. Returns true if the lock
2884 * was acquired, false otherwise.
2885 *
2886 * The PFTSYN_SEM register sets the busy bit on read, returning the previous
2887 * value. If software sees the busy bit cleared, this means that this function
2888 * acquired the lock (and the busy bit is now set). If software sees the busy
2889 * bit set, it means that another function acquired the lock.
2890 *
2891 * Software must clear the busy bit with a write to release the lock for other
2892 * functions when done.
2893 */
2894bool ice_ptp_lock(struct ice_hw *hw)
2895{
2896	u32 hw_lock;
2897	int i;
2898
2899#define MAX_TRIES 15
2900
2901	for (i = 0; i < MAX_TRIES; i++) {
2902		hw_lock = rd32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
2903		hw_lock = hw_lock & PFTSYN_SEM_BUSY_M;
2904		if (hw_lock) {
2905			/* Somebody is holding the lock */
2906			usleep_range(5000, 6000);
2907			continue;
2908		}
2909
2910		break;
2911	}
2912
2913	return !hw_lock;
2914}
2915
2916/**
2917 * ice_ptp_unlock - Release PTP global semaphore register lock
2918 * @hw: pointer to the HW struct
2919 *
2920 * Release the global PTP hardware semaphore lock. This is done by writing to
2921 * the PFTSYN_SEM register.
2922 */
2923void ice_ptp_unlock(struct ice_hw *hw)
2924{
2925	wr32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), 0);
2926}
2927
2928/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2929 * ice_ptp_tmr_cmd - Prepare and trigger a timer sync command
2930 * @hw: pointer to HW struct
2931 * @cmd: the command to issue
2932 *
2933 * Prepare the source timer and PHY timers and then trigger the requested
2934 * command. This causes the shadow registers previously written in preparation
2935 * for the command to be synchronously applied to both the source and PHY
2936 * timers.
2937 */
2938static int ice_ptp_tmr_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
2939{
2940	int err;
2941
2942	/* First, prepare the source timer */
2943	ice_ptp_src_cmd(hw, cmd);
2944
2945	/* Next, prepare the ports */
2946	if (ice_is_e810(hw))
2947		err = ice_ptp_port_cmd_e810(hw, cmd);
2948	else
2949		err = ice_ptp_port_cmd_e822(hw, cmd);
2950	if (err) {
2951		ice_debug(hw, ICE_DBG_PTP, "Failed to prepare PHY ports for timer command %u, err %d\n",
2952			  cmd, err);
2953		return err;
2954	}
2955
2956	/* Write the sync command register to drive both source and PHY timer
2957	 * commands synchronously
2958	 */
2959	ice_ptp_exec_tmr_cmd(hw);
2960
2961	return 0;
2962}
2963
2964/**
2965 * ice_ptp_init_time - Initialize device time to provided value
2966 * @hw: pointer to HW struct
2967 * @time: 64bits of time (GLTSYN_TIME_L and GLTSYN_TIME_H)
2968 *
2969 * Initialize the device to the specified time provided. This requires a three
2970 * step process:
2971 *
2972 * 1) write the new init time to the source timer shadow registers
2973 * 2) write the new init time to the PHY timer shadow registers
2974 * 3) issue an init_time timer command to synchronously switch both the source
2975 *    and port timers to the new init time value at the next clock cycle.
2976 */
2977int ice_ptp_init_time(struct ice_hw *hw, u64 time)
2978{
2979	u8 tmr_idx;
2980	int err;
2981
2982	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
2983
2984	/* Source timers */
2985	wr32(hw, GLTSYN_SHTIME_L(tmr_idx), lower_32_bits(time));
2986	wr32(hw, GLTSYN_SHTIME_H(tmr_idx), upper_32_bits(time));
2987	wr32(hw, GLTSYN_SHTIME_0(tmr_idx), 0);
2988
2989	/* PHY timers */
2990	/* Fill Rx and Tx ports and send msg to PHY */
2991	if (ice_is_e810(hw))
 
 
 
 
 
2992		err = ice_ptp_prep_phy_time_e810(hw, time & 0xFFFFFFFF);
2993	else
2994		err = ice_ptp_prep_phy_time_e822(hw, time & 0xFFFFFFFF);
 
 
 
 
 
 
2995	if (err)
2996		return err;
2997
2998	return ice_ptp_tmr_cmd(hw, INIT_TIME);
2999}
3000
3001/**
3002 * ice_ptp_write_incval - Program PHC with new increment value
3003 * @hw: pointer to HW struct
3004 * @incval: Source timer increment value per clock cycle
3005 *
3006 * Program the PHC with a new increment value. This requires a three-step
3007 * process:
3008 *
3009 * 1) Write the increment value to the source timer shadow registers
3010 * 2) Write the increment value to the PHY timer shadow registers
3011 * 3) Issue an INIT_INCVAL timer command to synchronously switch both the
3012 *    source and port timers to the new increment value at the next clock
3013 *    cycle.
3014 */
3015int ice_ptp_write_incval(struct ice_hw *hw, u64 incval)
3016{
3017	u8 tmr_idx;
3018	int err;
3019
3020	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3021
3022	/* Shadow Adjust */
3023	wr32(hw, GLTSYN_SHADJ_L(tmr_idx), lower_32_bits(incval));
3024	wr32(hw, GLTSYN_SHADJ_H(tmr_idx), upper_32_bits(incval));
3025
3026	if (ice_is_e810(hw))
 
 
 
 
3027		err = ice_ptp_prep_phy_incval_e810(hw, incval);
3028	else
3029		err = ice_ptp_prep_phy_incval_e822(hw, incval);
 
 
 
 
 
 
3030	if (err)
3031		return err;
3032
3033	return ice_ptp_tmr_cmd(hw, INIT_INCVAL);
3034}
3035
3036/**
3037 * ice_ptp_write_incval_locked - Program new incval while holding semaphore
3038 * @hw: pointer to HW struct
3039 * @incval: Source timer increment value per clock cycle
3040 *
3041 * Program a new PHC incval while holding the PTP semaphore.
3042 */
3043int ice_ptp_write_incval_locked(struct ice_hw *hw, u64 incval)
3044{
3045	int err;
3046
3047	if (!ice_ptp_lock(hw))
3048		return -EBUSY;
3049
3050	err = ice_ptp_write_incval(hw, incval);
3051
3052	ice_ptp_unlock(hw);
3053
3054	return err;
3055}
3056
3057/**
3058 * ice_ptp_adj_clock - Adjust PHC clock time atomically
3059 * @hw: pointer to HW struct
3060 * @adj: Adjustment in nanoseconds
3061 *
3062 * Perform an atomic adjustment of the PHC time by the specified number of
3063 * nanoseconds. This requires a three-step process:
3064 *
3065 * 1) Write the adjustment to the source timer shadow registers
3066 * 2) Write the adjustment to the PHY timer shadow registers
3067 * 3) Issue an ADJ_TIME timer command to synchronously apply the adjustment to
3068 *    both the source and port timers at the next clock cycle.
3069 */
3070int ice_ptp_adj_clock(struct ice_hw *hw, s32 adj)
3071{
3072	u8 tmr_idx;
3073	int err;
3074
3075	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3076
3077	/* Write the desired clock adjustment into the GLTSYN_SHADJ register.
3078	 * For an ADJ_TIME command, this set of registers represents the value
3079	 * to add to the clock time. It supports subtraction by interpreting
3080	 * the value as a 2's complement integer.
3081	 */
3082	wr32(hw, GLTSYN_SHADJ_L(tmr_idx), 0);
3083	wr32(hw, GLTSYN_SHADJ_H(tmr_idx), adj);
3084
3085	if (ice_is_e810(hw))
 
 
 
 
3086		err = ice_ptp_prep_phy_adj_e810(hw, adj);
3087	else
3088		err = ice_ptp_prep_phy_adj_e822(hw, adj);
 
 
 
 
 
 
3089	if (err)
3090		return err;
3091
3092	return ice_ptp_tmr_cmd(hw, ADJ_TIME);
3093}
3094
3095/**
3096 * ice_read_phy_tstamp - Read a PHY timestamp from the timestamo block
3097 * @hw: pointer to the HW struct
3098 * @block: the block to read from
3099 * @idx: the timestamp index to read
3100 * @tstamp: on return, the 40bit timestamp value
3101 *
3102 * Read a 40bit timestamp value out of the timestamp block. For E822 devices,
3103 * the block is the quad to read from. For E810 devices, the block is the
3104 * logical port to read from.
3105 */
3106int ice_read_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx, u64 *tstamp)
3107{
3108	if (ice_is_e810(hw))
 
 
 
3109		return ice_read_phy_tstamp_e810(hw, block, idx, tstamp);
3110	else
3111		return ice_read_phy_tstamp_e822(hw, block, idx, tstamp);
 
 
 
3112}
3113
3114/**
3115 * ice_clear_phy_tstamp - Clear a timestamp from the timestamp block
3116 * @hw: pointer to the HW struct
3117 * @block: the block to read from
3118 * @idx: the timestamp index to reset
3119 *
3120 * Clear a timestamp, resetting its valid bit, from the timestamp block. For
3121 * E822 devices, the block is the quad to clear from. For E810 devices, the
3122 * block is the logical port to clear from.
 
 
 
 
 
 
3123 */
3124int ice_clear_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx)
3125{
3126	if (ice_is_e810(hw))
 
 
 
3127		return ice_clear_phy_tstamp_e810(hw, block, idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3128	else
3129		return ice_clear_phy_tstamp_e822(hw, block, idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3130}
3131
3132/**
3133 * ice_get_phy_tx_tstamp_ready_e810 - Read Tx memory status register
3134 * @hw: pointer to the HW struct
3135 * @port: the PHY port to read
3136 * @tstamp_ready: contents of the Tx memory status register
3137 *
3138 * E810 devices do not use a Tx memory status register. Instead simply
3139 * indicate that all timestamps are currently ready.
3140 */
3141static int
3142ice_get_phy_tx_tstamp_ready_e810(struct ice_hw *hw, u8 port, u64 *tstamp_ready)
3143{
3144	*tstamp_ready = 0xFFFFFFFFFFFFFFFF;
3145	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3146}
3147
3148/* E810T SMA functions
 
 
 
 
3149 *
3150 * The following functions operate specifically on E810T hardware and are used
3151 * to access the extended GPIOs available.
 
 
3152 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3153
3154/**
3155 * ice_get_pca9575_handle
3156 * @hw: pointer to the hw struct
3157 * @pca9575_handle: GPIO controller's handle
 
3158 *
3159 * Find and return the GPIO controller's handle in the netlist.
3160 * When found - the value will be cached in the hw structure and following calls
3161 * will return cached value
3162 */
3163static int
3164ice_get_pca9575_handle(struct ice_hw *hw, u16 *pca9575_handle)
3165{
3166	struct ice_aqc_get_link_topo *cmd;
3167	struct ice_aq_desc desc;
3168	int status;
3169	u8 idx;
3170
3171	/* If handle was read previously return cached value */
3172	if (hw->io_expander_handle) {
3173		*pca9575_handle = hw->io_expander_handle;
3174		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3175	}
3176
3177	/* If handle was not detected read it from the netlist */
3178	cmd = &desc.params.get_link_topo;
3179	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
3180
3181	/* Set node type to GPIO controller */
3182	cmd->addr.topo_params.node_type_ctx =
3183		(ICE_AQC_LINK_TOPO_NODE_TYPE_M &
3184		 ICE_AQC_LINK_TOPO_NODE_TYPE_GPIO_CTRL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3185
3186#define SW_PCA9575_SFP_TOPO_IDX		2
3187#define SW_PCA9575_QSFP_TOPO_IDX	1
3188
3189	/* Check if the SW IO expander controlling SMA exists in the netlist. */
3190	if (hw->device_id == ICE_DEV_ID_E810C_SFP)
3191		idx = SW_PCA9575_SFP_TOPO_IDX;
3192	else if (hw->device_id == ICE_DEV_ID_E810C_QSFP)
3193		idx = SW_PCA9575_QSFP_TOPO_IDX;
3194	else
3195		return -EOPNOTSUPP;
 
 
 
 
3196
3197	cmd->addr.topo_params.index = idx;
3198
3199	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3200	if (status)
3201		return -EOPNOTSUPP;
3202
3203	/* Verify if we found the right IO expander type */
3204	if (desc.params.get_link_topo.node_part_num !=
3205		ICE_AQC_GET_LINK_TOPO_NODE_NR_PCA9575)
3206		return -EOPNOTSUPP;
3207
3208	/* If present save the handle and return it */
3209	hw->io_expander_handle =
3210		le16_to_cpu(desc.params.get_link_topo.addr.handle);
3211	*pca9575_handle = hw->io_expander_handle;
3212
3213	return 0;
3214}
3215
3216/**
3217 * ice_read_sma_ctrl_e810t
3218 * @hw: pointer to the hw struct
3219 * @data: pointer to data to be read from the GPIO controller
 
3220 *
3221 * Read the SMA controller state. It is connected to pins 3-7 of Port 1 of the
3222 * PCA9575 expander, so only bits 3-7 in data are valid.
3223 */
3224int ice_read_sma_ctrl_e810t(struct ice_hw *hw, u8 *data)
3225{
3226	int status;
3227	u16 handle;
3228	u8 i;
3229
3230	status = ice_get_pca9575_handle(hw, &handle);
3231	if (status)
3232		return status;
3233
3234	*data = 0;
 
3235
3236	for (i = ICE_SMA_MIN_BIT_E810T; i <= ICE_SMA_MAX_BIT_E810T; i++) {
3237		bool pin;
3238
3239		status = ice_aq_get_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET,
3240					 &pin, NULL);
3241		if (status)
3242			break;
3243		*data |= (u8)(!pin) << i;
3244	}
3245
3246	return status;
3247}
3248
3249/**
3250 * ice_write_sma_ctrl_e810t
3251 * @hw: pointer to the hw struct
3252 * @data: data to be written to the GPIO controller
 
 
 
 
3253 *
3254 * Write the data to the SMA controller. It is connected to pins 3-7 of Port 1
3255 * of the PCA9575 expander, so only bits 3-7 in data are valid.
3256 */
3257int ice_write_sma_ctrl_e810t(struct ice_hw *hw, u8 data)
 
3258{
3259	int status;
3260	u16 handle;
3261	u8 i;
3262
3263	status = ice_get_pca9575_handle(hw, &handle);
3264	if (status)
3265		return status;
3266
3267	for (i = ICE_SMA_MIN_BIT_E810T; i <= ICE_SMA_MAX_BIT_E810T; i++) {
3268		bool pin;
3269
3270		pin = !(data & (1 << i));
3271		status = ice_aq_set_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET,
3272					 pin, NULL);
3273		if (status)
3274			break;
3275	}
3276
3277	return status;
3278}
3279
3280/**
3281 * ice_read_pca9575_reg_e810t
3282 * @hw: pointer to the hw struct
3283 * @offset: GPIO controller register offset
3284 * @data: pointer to data to be read from the GPIO controller
3285 *
3286 * Read the register from the GPIO controller
 
 
3287 */
3288int ice_read_pca9575_reg_e810t(struct ice_hw *hw, u8 offset, u8 *data)
3289{
3290	struct ice_aqc_link_topo_addr link_topo;
3291	__le16 addr;
3292	u16 handle;
3293	int err;
3294
3295	memset(&link_topo, 0, sizeof(link_topo));
3296
3297	err = ice_get_pca9575_handle(hw, &handle);
3298	if (err)
3299		return err;
3300
3301	link_topo.handle = cpu_to_le16(handle);
3302	link_topo.topo_params.node_type_ctx =
3303		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M,
3304			   ICE_AQC_LINK_TOPO_NODE_CTX_PROVIDED);
3305
3306	addr = cpu_to_le16((u16)offset);
3307
3308	return ice_aq_read_i2c(hw, link_topo, 0, addr, 1, data, NULL);
3309}
3310
3311/**
3312 * ice_is_pca9575_present
3313 * @hw: pointer to the hw struct
3314 *
3315 * Check if the SW IO expander is present in the netlist
3316 */
3317bool ice_is_pca9575_present(struct ice_hw *hw)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3318{
3319	u16 handle = 0;
 
3320	int status;
3321
3322	if (!ice_is_e810t(hw))
3323		return false;
 
 
 
3324
3325	status = ice_get_pca9575_handle(hw, &handle);
 
 
 
 
 
 
 
 
 
 
3326
3327	return !status && handle;
3328}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3329
3330/**
3331 * ice_ptp_reset_ts_memory - Reset timestamp memory for all blocks
3332 * @hw: pointer to the HW struct
3333 */
3334void ice_ptp_reset_ts_memory(struct ice_hw *hw)
3335{
3336	if (ice_is_e810(hw))
3337		return;
3338
3339	ice_ptp_reset_ts_memory_e822(hw);
3340}
3341
3342/**
3343 * ice_ptp_init_phc - Initialize PTP hardware clock
3344 * @hw: pointer to the HW struct
 
 
 
 
 
3345 *
3346 * Perform the steps required to initialize the PTP hardware clock.
3347 */
3348int ice_ptp_init_phc(struct ice_hw *hw)
3349{
3350	u8 src_idx = hw->func_caps.ts_func_info.tmr_index_owned;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3351
3352	/* Enable source clocks */
3353	wr32(hw, GLTSYN_ENA(src_idx), GLTSYN_ENA_TSYN_ENA_M);
3354
3355	/* Clear event err indications for auxiliary pins */
3356	(void)rd32(hw, GLTSYN_STAT(src_idx));
3357
3358	if (ice_is_e810(hw))
3359		return ice_ptp_init_phc_e810(hw);
3360	else
3361		return ice_ptp_init_phc_e822(hw);
3362}
3363
3364/**
3365 * ice_get_phy_tx_tstamp_ready - Read PHY Tx memory status indication
3366 * @hw: pointer to the HW struct
3367 * @block: the timestamp block to check
3368 * @tstamp_ready: storage for the PHY Tx memory status information
3369 *
3370 * Check the PHY for Tx timestamp memory status. This reports a 64 bit value
3371 * which indicates which timestamps in the block may be captured. A set bit
3372 * means the timestamp can be read. An unset bit means the timestamp is not
3373 * ready and software should avoid reading the register.
3374 */
3375int ice_get_phy_tx_tstamp_ready(struct ice_hw *hw, u8 block, u64 *tstamp_ready)
3376{
3377	if (ice_is_e810(hw))
3378		return ice_get_phy_tx_tstamp_ready_e810(hw, block,
3379							tstamp_ready);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3380	else
3381		return ice_get_phy_tx_tstamp_ready_e822(hw, block,
3382							tstamp_ready);
 
3383}