Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2018 Red Hat. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include <linux/device-mapper.h>
   9#include <linux/module.h>
  10#include <linux/init.h>
  11#include <linux/vmalloc.h>
  12#include <linux/kthread.h>
  13#include <linux/dm-io.h>
  14#include <linux/dm-kcopyd.h>
  15#include <linux/dax.h>
  16#include <linux/pfn_t.h>
  17#include <linux/libnvdimm.h>
  18#include <linux/delay.h>
  19#include "dm-io-tracker.h"
  20
  21#define DM_MSG_PREFIX "writecache"
  22
  23#define HIGH_WATERMARK			50
  24#define LOW_WATERMARK			45
  25#define MAX_WRITEBACK_JOBS		min(0x10000000 / PAGE_SIZE, totalram_pages() / 16)
  26#define ENDIO_LATENCY			16
  27#define WRITEBACK_LATENCY		64
  28#define AUTOCOMMIT_BLOCKS_SSD		65536
  29#define AUTOCOMMIT_BLOCKS_PMEM		64
  30#define AUTOCOMMIT_MSEC			1000
  31#define MAX_AGE_DIV			16
  32#define MAX_AGE_UNSPECIFIED		-1UL
  33#define PAUSE_WRITEBACK			(HZ * 3)
  34
  35#define BITMAP_GRANULARITY	65536
  36#if BITMAP_GRANULARITY < PAGE_SIZE
  37#undef BITMAP_GRANULARITY
  38#define BITMAP_GRANULARITY	PAGE_SIZE
  39#endif
  40
  41#if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_FS_DAX)
  42#define DM_WRITECACHE_HAS_PMEM
  43#endif
  44
  45#ifdef DM_WRITECACHE_HAS_PMEM
  46#define pmem_assign(dest, src)					\
  47do {								\
  48	typeof(dest) uniq = (src);				\
  49	memcpy_flushcache(&(dest), &uniq, sizeof(dest));	\
  50} while (0)
  51#else
  52#define pmem_assign(dest, src)	((dest) = (src))
  53#endif
  54
  55#if IS_ENABLED(CONFIG_ARCH_HAS_COPY_MC) && defined(DM_WRITECACHE_HAS_PMEM)
  56#define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  57#endif
  58
  59#define MEMORY_SUPERBLOCK_MAGIC		0x23489321
  60#define MEMORY_SUPERBLOCK_VERSION	1
  61
  62struct wc_memory_entry {
  63	__le64 original_sector;
  64	__le64 seq_count;
  65};
  66
  67struct wc_memory_superblock {
  68	union {
  69		struct {
  70			__le32 magic;
  71			__le32 version;
  72			__le32 block_size;
  73			__le32 pad;
  74			__le64 n_blocks;
  75			__le64 seq_count;
  76		};
  77		__le64 padding[8];
  78	};
  79	struct wc_memory_entry entries[];
  80};
  81
  82struct wc_entry {
  83	struct rb_node rb_node;
  84	struct list_head lru;
  85	unsigned short wc_list_contiguous;
 
  86#if BITS_PER_LONG == 64
  87	bool write_in_progress : 1;
  88	unsigned long index : 47;
  89#else
  90	bool write_in_progress;
  91	unsigned long index;
 
  92#endif
 
  93	unsigned long age;
  94#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  95	uint64_t original_sector;
  96	uint64_t seq_count;
  97#endif
  98};
  99
 100#ifdef DM_WRITECACHE_HAS_PMEM
 101#define WC_MODE_PMEM(wc)			((wc)->pmem_mode)
 102#define WC_MODE_FUA(wc)				((wc)->writeback_fua)
 103#else
 104#define WC_MODE_PMEM(wc)			false
 105#define WC_MODE_FUA(wc)				false
 106#endif
 107#define WC_MODE_SORT_FREELIST(wc)		(!WC_MODE_PMEM(wc))
 108
 109struct dm_writecache {
 110	struct mutex lock;
 111	struct list_head lru;
 112	union {
 113		struct list_head freelist;
 114		struct {
 115			struct rb_root freetree;
 116			struct wc_entry *current_free;
 117		};
 118	};
 119	struct rb_root tree;
 120
 121	size_t freelist_size;
 122	size_t writeback_size;
 123	size_t freelist_high_watermark;
 124	size_t freelist_low_watermark;
 125	unsigned long max_age;
 126	unsigned long pause;
 127
 128	unsigned int uncommitted_blocks;
 129	unsigned int autocommit_blocks;
 130	unsigned int max_writeback_jobs;
 131
 132	int error;
 133
 134	unsigned long autocommit_jiffies;
 135	struct timer_list autocommit_timer;
 136	struct wait_queue_head freelist_wait;
 137
 138	struct timer_list max_age_timer;
 139
 140	atomic_t bio_in_progress[2];
 141	struct wait_queue_head bio_in_progress_wait[2];
 142
 143	struct dm_target *ti;
 144	struct dm_dev *dev;
 145	struct dm_dev *ssd_dev;
 146	sector_t start_sector;
 147	void *memory_map;
 148	uint64_t memory_map_size;
 149	size_t metadata_sectors;
 150	size_t n_blocks;
 151	uint64_t seq_count;
 152	sector_t data_device_sectors;
 153	void *block_start;
 154	struct wc_entry *entries;
 155	unsigned int block_size;
 156	unsigned char block_size_bits;
 157
 158	bool pmem_mode:1;
 159	bool writeback_fua:1;
 160
 161	bool overwrote_committed:1;
 162	bool memory_vmapped:1;
 163
 164	bool start_sector_set:1;
 165	bool high_wm_percent_set:1;
 166	bool low_wm_percent_set:1;
 167	bool max_writeback_jobs_set:1;
 168	bool autocommit_blocks_set:1;
 169	bool autocommit_time_set:1;
 170	bool max_age_set:1;
 171	bool writeback_fua_set:1;
 172	bool flush_on_suspend:1;
 173	bool cleaner:1;
 174	bool cleaner_set:1;
 175	bool metadata_only:1;
 176	bool pause_set:1;
 177
 178	unsigned int high_wm_percent_value;
 179	unsigned int low_wm_percent_value;
 180	unsigned int autocommit_time_value;
 181	unsigned int max_age_value;
 182	unsigned int pause_value;
 183
 184	unsigned int writeback_all;
 185	struct workqueue_struct *writeback_wq;
 186	struct work_struct writeback_work;
 187	struct work_struct flush_work;
 188
 189	struct dm_io_tracker iot;
 190
 191	struct dm_io_client *dm_io;
 192
 193	raw_spinlock_t endio_list_lock;
 194	struct list_head endio_list;
 195	struct task_struct *endio_thread;
 196
 197	struct task_struct *flush_thread;
 198	struct bio_list flush_list;
 199
 200	struct dm_kcopyd_client *dm_kcopyd;
 201	unsigned long *dirty_bitmap;
 202	unsigned int dirty_bitmap_size;
 203
 204	struct bio_set bio_set;
 205	mempool_t copy_pool;
 206
 207	struct {
 208		unsigned long long reads;
 209		unsigned long long read_hits;
 210		unsigned long long writes;
 211		unsigned long long write_hits_uncommitted;
 212		unsigned long long write_hits_committed;
 213		unsigned long long writes_around;
 214		unsigned long long writes_allocate;
 215		unsigned long long writes_blocked_on_freelist;
 216		unsigned long long flushes;
 217		unsigned long long discards;
 218	} stats;
 219};
 220
 221#define WB_LIST_INLINE		16
 222
 223struct writeback_struct {
 224	struct list_head endio_entry;
 225	struct dm_writecache *wc;
 226	struct wc_entry **wc_list;
 227	unsigned int wc_list_n;
 228	struct wc_entry *wc_list_inline[WB_LIST_INLINE];
 229	struct bio bio;
 230};
 231
 232struct copy_struct {
 233	struct list_head endio_entry;
 234	struct dm_writecache *wc;
 235	struct wc_entry *e;
 236	unsigned int n_entries;
 237	int error;
 238};
 239
 240DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle,
 241					    "A percentage of time allocated for data copying");
 242
 243static void wc_lock(struct dm_writecache *wc)
 244{
 245	mutex_lock(&wc->lock);
 246}
 247
 248static void wc_unlock(struct dm_writecache *wc)
 249{
 250	mutex_unlock(&wc->lock);
 251}
 252
 253#ifdef DM_WRITECACHE_HAS_PMEM
 254static int persistent_memory_claim(struct dm_writecache *wc)
 255{
 256	int r;
 257	loff_t s;
 258	long p, da;
 259	pfn_t pfn;
 260	int id;
 261	struct page **pages;
 262	sector_t offset;
 263
 264	wc->memory_vmapped = false;
 265
 266	s = wc->memory_map_size;
 267	p = s >> PAGE_SHIFT;
 268	if (!p) {
 269		r = -EINVAL;
 270		goto err1;
 271	}
 272	if (p != s >> PAGE_SHIFT) {
 273		r = -EOVERFLOW;
 274		goto err1;
 275	}
 276
 277	offset = get_start_sect(wc->ssd_dev->bdev);
 278	if (offset & (PAGE_SIZE / 512 - 1)) {
 279		r = -EINVAL;
 280		goto err1;
 281	}
 282	offset >>= PAGE_SHIFT - 9;
 283
 284	id = dax_read_lock();
 285
 286	da = dax_direct_access(wc->ssd_dev->dax_dev, offset, p, DAX_ACCESS,
 287			&wc->memory_map, &pfn);
 288	if (da < 0) {
 289		wc->memory_map = NULL;
 290		r = da;
 291		goto err2;
 292	}
 293	if (!pfn_t_has_page(pfn)) {
 294		wc->memory_map = NULL;
 295		r = -EOPNOTSUPP;
 296		goto err2;
 297	}
 298	if (da != p) {
 299		long i;
 300
 301		wc->memory_map = NULL;
 302		pages = vmalloc_array(p, sizeof(struct page *));
 303		if (!pages) {
 304			r = -ENOMEM;
 305			goto err2;
 306		}
 307		i = 0;
 308		do {
 309			long daa;
 310
 311			daa = dax_direct_access(wc->ssd_dev->dax_dev, offset + i,
 312					p - i, DAX_ACCESS, NULL, &pfn);
 313			if (daa <= 0) {
 314				r = daa ? daa : -EINVAL;
 315				goto err3;
 316			}
 317			if (!pfn_t_has_page(pfn)) {
 318				r = -EOPNOTSUPP;
 319				goto err3;
 320			}
 321			while (daa-- && i < p) {
 322				pages[i++] = pfn_t_to_page(pfn);
 323				pfn.val++;
 324				if (!(i & 15))
 325					cond_resched();
 326			}
 327		} while (i < p);
 328		wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL);
 329		if (!wc->memory_map) {
 330			r = -ENOMEM;
 331			goto err3;
 332		}
 333		vfree(pages);
 334		wc->memory_vmapped = true;
 335	}
 336
 337	dax_read_unlock(id);
 338
 339	wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT;
 340	wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT;
 341
 342	return 0;
 343err3:
 344	vfree(pages);
 345err2:
 346	dax_read_unlock(id);
 347err1:
 348	return r;
 349}
 350#else
 351static int persistent_memory_claim(struct dm_writecache *wc)
 352{
 353	return -EOPNOTSUPP;
 354}
 355#endif
 356
 357static void persistent_memory_release(struct dm_writecache *wc)
 358{
 359	if (wc->memory_vmapped)
 360		vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT));
 361}
 362
 363static struct page *persistent_memory_page(void *addr)
 364{
 365	if (is_vmalloc_addr(addr))
 366		return vmalloc_to_page(addr);
 367	else
 368		return virt_to_page(addr);
 369}
 370
 371static unsigned int persistent_memory_page_offset(void *addr)
 372{
 373	return (unsigned long)addr & (PAGE_SIZE - 1);
 374}
 375
 376static void persistent_memory_flush_cache(void *ptr, size_t size)
 377{
 378	if (is_vmalloc_addr(ptr))
 379		flush_kernel_vmap_range(ptr, size);
 380}
 381
 382static void persistent_memory_invalidate_cache(void *ptr, size_t size)
 383{
 384	if (is_vmalloc_addr(ptr))
 385		invalidate_kernel_vmap_range(ptr, size);
 386}
 387
 388static struct wc_memory_superblock *sb(struct dm_writecache *wc)
 389{
 390	return wc->memory_map;
 391}
 392
 393static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e)
 394{
 395	return &sb(wc)->entries[e->index];
 396}
 397
 398static void *memory_data(struct dm_writecache *wc, struct wc_entry *e)
 399{
 400	return (char *)wc->block_start + (e->index << wc->block_size_bits);
 401}
 402
 403static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e)
 404{
 405	return wc->start_sector + wc->metadata_sectors +
 406		((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT));
 407}
 408
 409static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e)
 410{
 411#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
 412	return e->original_sector;
 413#else
 414	return le64_to_cpu(memory_entry(wc, e)->original_sector);
 415#endif
 416}
 417
 418static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e)
 419{
 420#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
 421	return e->seq_count;
 422#else
 423	return le64_to_cpu(memory_entry(wc, e)->seq_count);
 424#endif
 425}
 426
 427static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e)
 428{
 429#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
 430	e->seq_count = -1;
 431#endif
 432	pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1));
 433}
 434
 435static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e,
 436					    uint64_t original_sector, uint64_t seq_count)
 437{
 438	struct wc_memory_entry me;
 439#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
 440	e->original_sector = original_sector;
 441	e->seq_count = seq_count;
 442#endif
 443	me.original_sector = cpu_to_le64(original_sector);
 444	me.seq_count = cpu_to_le64(seq_count);
 445	pmem_assign(*memory_entry(wc, e), me);
 446}
 447
 448#define writecache_error(wc, err, msg, arg...)				\
 449do {									\
 450	if (!cmpxchg(&(wc)->error, 0, err))				\
 451		DMERR(msg, ##arg);					\
 452	wake_up(&(wc)->freelist_wait);					\
 453} while (0)
 454
 455#define writecache_has_error(wc)	(unlikely(READ_ONCE((wc)->error)))
 456
 457static void writecache_flush_all_metadata(struct dm_writecache *wc)
 458{
 459	if (!WC_MODE_PMEM(wc))
 460		memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size);
 461}
 462
 463static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size)
 464{
 465	if (!WC_MODE_PMEM(wc))
 466		__set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY,
 467			  wc->dirty_bitmap);
 468}
 469
 470static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev);
 471
 472struct io_notify {
 473	struct dm_writecache *wc;
 474	struct completion c;
 475	atomic_t count;
 476};
 477
 478static void writecache_notify_io(unsigned long error, void *context)
 479{
 480	struct io_notify *endio = context;
 481
 482	if (unlikely(error != 0))
 483		writecache_error(endio->wc, -EIO, "error writing metadata");
 484	BUG_ON(atomic_read(&endio->count) <= 0);
 485	if (atomic_dec_and_test(&endio->count))
 486		complete(&endio->c);
 487}
 488
 489static void writecache_wait_for_ios(struct dm_writecache *wc, int direction)
 490{
 491	wait_event(wc->bio_in_progress_wait[direction],
 492		   !atomic_read(&wc->bio_in_progress[direction]));
 493}
 494
 495static void ssd_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
 496{
 497	struct dm_io_region region;
 498	struct dm_io_request req;
 499	struct io_notify endio = {
 500		wc,
 501		COMPLETION_INITIALIZER_ONSTACK(endio.c),
 502		ATOMIC_INIT(1),
 503	};
 504	unsigned int bitmap_bits = wc->dirty_bitmap_size * 8;
 505	unsigned int i = 0;
 506
 507	while (1) {
 508		unsigned int j;
 509
 510		i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i);
 511		if (unlikely(i == bitmap_bits))
 512			break;
 513		j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i);
 514
 515		region.bdev = wc->ssd_dev->bdev;
 516		region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
 517		region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
 518
 519		if (unlikely(region.sector >= wc->metadata_sectors))
 520			break;
 521		if (unlikely(region.sector + region.count > wc->metadata_sectors))
 522			region.count = wc->metadata_sectors - region.sector;
 523
 524		region.sector += wc->start_sector;
 525		atomic_inc(&endio.count);
 526		req.bi_opf = REQ_OP_WRITE | REQ_SYNC;
 527		req.mem.type = DM_IO_VMA;
 528		req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY;
 529		req.client = wc->dm_io;
 530		req.notify.fn = writecache_notify_io;
 531		req.notify.context = &endio;
 532
 533		/* writing via async dm-io (implied by notify.fn above) won't return an error */
 534		(void) dm_io(&req, 1, &region, NULL, IOPRIO_DEFAULT);
 535		i = j;
 536	}
 537
 538	writecache_notify_io(0, &endio);
 539	wait_for_completion_io(&endio.c);
 540
 541	if (wait_for_ios)
 542		writecache_wait_for_ios(wc, WRITE);
 543
 544	writecache_disk_flush(wc, wc->ssd_dev);
 545
 546	memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size);
 547}
 548
 549static void ssd_commit_superblock(struct dm_writecache *wc)
 550{
 551	int r;
 552	struct dm_io_region region;
 553	struct dm_io_request req;
 554
 555	region.bdev = wc->ssd_dev->bdev;
 556	region.sector = 0;
 557	region.count = max(4096U, wc->block_size) >> SECTOR_SHIFT;
 558
 559	if (unlikely(region.sector + region.count > wc->metadata_sectors))
 560		region.count = wc->metadata_sectors - region.sector;
 561
 562	region.sector += wc->start_sector;
 563
 564	req.bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_FUA;
 565	req.mem.type = DM_IO_VMA;
 566	req.mem.ptr.vma = (char *)wc->memory_map;
 567	req.client = wc->dm_io;
 568	req.notify.fn = NULL;
 569	req.notify.context = NULL;
 570
 571	r = dm_io(&req, 1, &region, NULL, IOPRIO_DEFAULT);
 572	if (unlikely(r))
 573		writecache_error(wc, r, "error writing superblock");
 574}
 575
 576static void writecache_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
 577{
 578	if (WC_MODE_PMEM(wc))
 579		pmem_wmb();
 580	else
 581		ssd_commit_flushed(wc, wait_for_ios);
 582}
 583
 584static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev)
 585{
 586	int r;
 587	struct dm_io_region region;
 588	struct dm_io_request req;
 589
 590	region.bdev = dev->bdev;
 591	region.sector = 0;
 592	region.count = 0;
 593	req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
 594	req.mem.type = DM_IO_KMEM;
 595	req.mem.ptr.addr = NULL;
 596	req.client = wc->dm_io;
 597	req.notify.fn = NULL;
 598
 599	r = dm_io(&req, 1, &region, NULL, IOPRIO_DEFAULT);
 600	if (unlikely(r))
 601		writecache_error(wc, r, "error flushing metadata: %d", r);
 602}
 603
 604#define WFE_RETURN_FOLLOWING	1
 605#define WFE_LOWEST_SEQ		2
 606
 607static struct wc_entry *writecache_find_entry(struct dm_writecache *wc,
 608					      uint64_t block, int flags)
 609{
 610	struct wc_entry *e;
 611	struct rb_node *node = wc->tree.rb_node;
 612
 613	if (unlikely(!node))
 614		return NULL;
 615
 616	while (1) {
 617		e = container_of(node, struct wc_entry, rb_node);
 618		if (read_original_sector(wc, e) == block)
 619			break;
 620
 621		node = (read_original_sector(wc, e) >= block ?
 622			e->rb_node.rb_left : e->rb_node.rb_right);
 623		if (unlikely(!node)) {
 624			if (!(flags & WFE_RETURN_FOLLOWING))
 625				return NULL;
 626			if (read_original_sector(wc, e) >= block)
 627				return e;
 628
 629			node = rb_next(&e->rb_node);
 630			if (unlikely(!node))
 631				return NULL;
 632
 633			e = container_of(node, struct wc_entry, rb_node);
 634			return e;
 635		}
 636	}
 637
 638	while (1) {
 639		struct wc_entry *e2;
 640
 641		if (flags & WFE_LOWEST_SEQ)
 642			node = rb_prev(&e->rb_node);
 643		else
 644			node = rb_next(&e->rb_node);
 645		if (unlikely(!node))
 646			return e;
 647		e2 = container_of(node, struct wc_entry, rb_node);
 648		if (read_original_sector(wc, e2) != block)
 649			return e;
 650		e = e2;
 651	}
 652}
 653
 654static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins)
 655{
 656	struct wc_entry *e;
 657	struct rb_node **node = &wc->tree.rb_node, *parent = NULL;
 658
 659	while (*node) {
 660		e = container_of(*node, struct wc_entry, rb_node);
 661		parent = &e->rb_node;
 662		if (read_original_sector(wc, e) > read_original_sector(wc, ins))
 663			node = &parent->rb_left;
 664		else
 665			node = &parent->rb_right;
 666	}
 667	rb_link_node(&ins->rb_node, parent, node);
 668	rb_insert_color(&ins->rb_node, &wc->tree);
 669	list_add(&ins->lru, &wc->lru);
 670	ins->age = jiffies;
 671}
 672
 673static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e)
 674{
 675	list_del(&e->lru);
 676	rb_erase(&e->rb_node, &wc->tree);
 677}
 678
 679static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e)
 680{
 681	if (WC_MODE_SORT_FREELIST(wc)) {
 682		struct rb_node **node = &wc->freetree.rb_node, *parent = NULL;
 683
 684		if (unlikely(!*node))
 685			wc->current_free = e;
 686		while (*node) {
 687			parent = *node;
 688			if (&e->rb_node < *node)
 689				node = &parent->rb_left;
 690			else
 691				node = &parent->rb_right;
 692		}
 693		rb_link_node(&e->rb_node, parent, node);
 694		rb_insert_color(&e->rb_node, &wc->freetree);
 695	} else {
 696		list_add_tail(&e->lru, &wc->freelist);
 697	}
 698	wc->freelist_size++;
 699}
 700
 701static inline void writecache_verify_watermark(struct dm_writecache *wc)
 702{
 703	if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark))
 704		queue_work(wc->writeback_wq, &wc->writeback_work);
 705}
 706
 707static void writecache_max_age_timer(struct timer_list *t)
 708{
 709	struct dm_writecache *wc = from_timer(wc, t, max_age_timer);
 710
 711	if (!dm_suspended(wc->ti) && !writecache_has_error(wc)) {
 712		queue_work(wc->writeback_wq, &wc->writeback_work);
 713		mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);
 714	}
 715}
 716
 717static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc, sector_t expected_sector)
 718{
 719	struct wc_entry *e;
 720
 721	if (WC_MODE_SORT_FREELIST(wc)) {
 722		struct rb_node *next;
 723
 724		if (unlikely(!wc->current_free))
 725			return NULL;
 726		e = wc->current_free;
 727		if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
 728			return NULL;
 729		next = rb_next(&e->rb_node);
 730		rb_erase(&e->rb_node, &wc->freetree);
 731		if (unlikely(!next))
 732			next = rb_first(&wc->freetree);
 733		wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL;
 734	} else {
 735		if (unlikely(list_empty(&wc->freelist)))
 736			return NULL;
 737		e = container_of(wc->freelist.next, struct wc_entry, lru);
 738		if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
 739			return NULL;
 740		list_del(&e->lru);
 741	}
 742	wc->freelist_size--;
 743
 744	writecache_verify_watermark(wc);
 745
 746	return e;
 747}
 748
 749static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e)
 750{
 751	writecache_unlink(wc, e);
 752	writecache_add_to_freelist(wc, e);
 753	clear_seq_count(wc, e);
 754	writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
 755	if (unlikely(waitqueue_active(&wc->freelist_wait)))
 756		wake_up(&wc->freelist_wait);
 757}
 758
 759static void writecache_wait_on_freelist(struct dm_writecache *wc)
 760{
 761	DEFINE_WAIT(wait);
 762
 763	prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE);
 764	wc_unlock(wc);
 765	io_schedule();
 766	finish_wait(&wc->freelist_wait, &wait);
 767	wc_lock(wc);
 768}
 769
 770static void writecache_poison_lists(struct dm_writecache *wc)
 771{
 772	/*
 773	 * Catch incorrect access to these values while the device is suspended.
 774	 */
 775	memset(&wc->tree, -1, sizeof(wc->tree));
 776	wc->lru.next = LIST_POISON1;
 777	wc->lru.prev = LIST_POISON2;
 778	wc->freelist.next = LIST_POISON1;
 779	wc->freelist.prev = LIST_POISON2;
 780}
 781
 782static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e)
 783{
 784	writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
 785	if (WC_MODE_PMEM(wc))
 786		writecache_flush_region(wc, memory_data(wc, e), wc->block_size);
 787}
 788
 789static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e)
 790{
 791	return read_seq_count(wc, e) < wc->seq_count;
 792}
 793
 794static void writecache_flush(struct dm_writecache *wc)
 795{
 796	struct wc_entry *e, *e2;
 797	bool need_flush_after_free;
 798
 799	wc->uncommitted_blocks = 0;
 800	del_timer(&wc->autocommit_timer);
 801
 802	if (list_empty(&wc->lru))
 803		return;
 804
 805	e = container_of(wc->lru.next, struct wc_entry, lru);
 806	if (writecache_entry_is_committed(wc, e)) {
 807		if (wc->overwrote_committed) {
 808			writecache_wait_for_ios(wc, WRITE);
 809			writecache_disk_flush(wc, wc->ssd_dev);
 810			wc->overwrote_committed = false;
 811		}
 812		return;
 813	}
 814	while (1) {
 815		writecache_flush_entry(wc, e);
 816		if (unlikely(e->lru.next == &wc->lru))
 817			break;
 818		e2 = container_of(e->lru.next, struct wc_entry, lru);
 819		if (writecache_entry_is_committed(wc, e2))
 820			break;
 821		e = e2;
 822		cond_resched();
 823	}
 824	writecache_commit_flushed(wc, true);
 825
 826	wc->seq_count++;
 827	pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count));
 828	if (WC_MODE_PMEM(wc))
 829		writecache_commit_flushed(wc, false);
 830	else
 831		ssd_commit_superblock(wc);
 832
 833	wc->overwrote_committed = false;
 834
 835	need_flush_after_free = false;
 836	while (1) {
 837		/* Free another committed entry with lower seq-count */
 838		struct rb_node *rb_node = rb_prev(&e->rb_node);
 839
 840		if (rb_node) {
 841			e2 = container_of(rb_node, struct wc_entry, rb_node);
 842			if (read_original_sector(wc, e2) == read_original_sector(wc, e) &&
 843			    likely(!e2->write_in_progress)) {
 844				writecache_free_entry(wc, e2);
 845				need_flush_after_free = true;
 846			}
 847		}
 848		if (unlikely(e->lru.prev == &wc->lru))
 849			break;
 850		e = container_of(e->lru.prev, struct wc_entry, lru);
 851		cond_resched();
 852	}
 853
 854	if (need_flush_after_free)
 855		writecache_commit_flushed(wc, false);
 856}
 857
 858static void writecache_flush_work(struct work_struct *work)
 859{
 860	struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work);
 861
 862	wc_lock(wc);
 863	writecache_flush(wc);
 864	wc_unlock(wc);
 865}
 866
 867static void writecache_autocommit_timer(struct timer_list *t)
 868{
 869	struct dm_writecache *wc = from_timer(wc, t, autocommit_timer);
 870
 871	if (!writecache_has_error(wc))
 872		queue_work(wc->writeback_wq, &wc->flush_work);
 873}
 874
 875static void writecache_schedule_autocommit(struct dm_writecache *wc)
 876{
 877	if (!timer_pending(&wc->autocommit_timer))
 878		mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies);
 879}
 880
 881static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end)
 882{
 883	struct wc_entry *e;
 884	bool discarded_something = false;
 885
 886	e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ);
 887	if (unlikely(!e))
 888		return;
 889
 890	while (read_original_sector(wc, e) < end) {
 891		struct rb_node *node = rb_next(&e->rb_node);
 892
 893		if (likely(!e->write_in_progress)) {
 894			if (!discarded_something) {
 895				if (!WC_MODE_PMEM(wc)) {
 896					writecache_wait_for_ios(wc, READ);
 897					writecache_wait_for_ios(wc, WRITE);
 898				}
 899				discarded_something = true;
 900			}
 901			if (!writecache_entry_is_committed(wc, e))
 902				wc->uncommitted_blocks--;
 903			writecache_free_entry(wc, e);
 904		}
 905
 906		if (unlikely(!node))
 907			break;
 908
 909		e = container_of(node, struct wc_entry, rb_node);
 910	}
 911
 912	if (discarded_something)
 913		writecache_commit_flushed(wc, false);
 914}
 915
 916static bool writecache_wait_for_writeback(struct dm_writecache *wc)
 917{
 918	if (wc->writeback_size) {
 919		writecache_wait_on_freelist(wc);
 920		return true;
 921	}
 922	return false;
 923}
 924
 925static void writecache_suspend(struct dm_target *ti)
 926{
 927	struct dm_writecache *wc = ti->private;
 928	bool flush_on_suspend;
 929
 930	del_timer_sync(&wc->autocommit_timer);
 931	del_timer_sync(&wc->max_age_timer);
 932
 933	wc_lock(wc);
 934	writecache_flush(wc);
 935	flush_on_suspend = wc->flush_on_suspend;
 936	if (flush_on_suspend) {
 937		wc->flush_on_suspend = false;
 938		wc->writeback_all++;
 939		queue_work(wc->writeback_wq, &wc->writeback_work);
 940	}
 941	wc_unlock(wc);
 942
 943	drain_workqueue(wc->writeback_wq);
 944
 945	wc_lock(wc);
 946	if (flush_on_suspend)
 947		wc->writeback_all--;
 948	while (writecache_wait_for_writeback(wc))
 949		;
 950
 951	if (WC_MODE_PMEM(wc))
 952		persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
 953
 954	writecache_poison_lists(wc);
 955
 956	wc_unlock(wc);
 957}
 958
 959static int writecache_alloc_entries(struct dm_writecache *wc)
 960{
 961	size_t b;
 962
 963	if (wc->entries)
 964		return 0;
 965	wc->entries = vmalloc_array(wc->n_blocks, sizeof(struct wc_entry));
 966	if (!wc->entries)
 967		return -ENOMEM;
 968	for (b = 0; b < wc->n_blocks; b++) {
 969		struct wc_entry *e = &wc->entries[b];
 970
 971		e->index = b;
 972		e->write_in_progress = false;
 973		cond_resched();
 974	}
 975
 976	return 0;
 977}
 978
 979static int writecache_read_metadata(struct dm_writecache *wc, sector_t n_sectors)
 980{
 981	struct dm_io_region region;
 982	struct dm_io_request req;
 983
 984	region.bdev = wc->ssd_dev->bdev;
 985	region.sector = wc->start_sector;
 986	region.count = n_sectors;
 987	req.bi_opf = REQ_OP_READ | REQ_SYNC;
 988	req.mem.type = DM_IO_VMA;
 989	req.mem.ptr.vma = (char *)wc->memory_map;
 990	req.client = wc->dm_io;
 991	req.notify.fn = NULL;
 992
 993	return dm_io(&req, 1, &region, NULL, IOPRIO_DEFAULT);
 994}
 995
 996static void writecache_resume(struct dm_target *ti)
 997{
 998	struct dm_writecache *wc = ti->private;
 999	size_t b;
1000	bool need_flush = false;
1001	__le64 sb_seq_count;
1002	int r;
1003
1004	wc_lock(wc);
1005
1006	wc->data_device_sectors = bdev_nr_sectors(wc->dev->bdev);
1007
1008	if (WC_MODE_PMEM(wc)) {
1009		persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size);
1010	} else {
1011		r = writecache_read_metadata(wc, wc->metadata_sectors);
1012		if (r) {
1013			size_t sb_entries_offset;
1014
1015			writecache_error(wc, r, "unable to read metadata: %d", r);
1016			sb_entries_offset = offsetof(struct wc_memory_superblock, entries);
1017			memset((char *)wc->memory_map + sb_entries_offset, -1,
1018			       (wc->metadata_sectors << SECTOR_SHIFT) - sb_entries_offset);
1019		}
1020	}
1021
1022	wc->tree = RB_ROOT;
1023	INIT_LIST_HEAD(&wc->lru);
1024	if (WC_MODE_SORT_FREELIST(wc)) {
1025		wc->freetree = RB_ROOT;
1026		wc->current_free = NULL;
1027	} else {
1028		INIT_LIST_HEAD(&wc->freelist);
1029	}
1030	wc->freelist_size = 0;
1031
1032	r = copy_mc_to_kernel(&sb_seq_count, &sb(wc)->seq_count,
1033			      sizeof(uint64_t));
1034	if (r) {
1035		writecache_error(wc, r, "hardware memory error when reading superblock: %d", r);
1036		sb_seq_count = cpu_to_le64(0);
1037	}
1038	wc->seq_count = le64_to_cpu(sb_seq_count);
1039
1040#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
1041	for (b = 0; b < wc->n_blocks; b++) {
1042		struct wc_entry *e = &wc->entries[b];
1043		struct wc_memory_entry wme;
1044
1045		if (writecache_has_error(wc)) {
1046			e->original_sector = -1;
1047			e->seq_count = -1;
1048			continue;
1049		}
1050		r = copy_mc_to_kernel(&wme, memory_entry(wc, e),
1051				      sizeof(struct wc_memory_entry));
1052		if (r) {
1053			writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d",
1054					 (unsigned long)b, r);
1055			e->original_sector = -1;
1056			e->seq_count = -1;
1057		} else {
1058			e->original_sector = le64_to_cpu(wme.original_sector);
1059			e->seq_count = le64_to_cpu(wme.seq_count);
1060		}
1061		cond_resched();
1062	}
1063#endif
1064	for (b = 0; b < wc->n_blocks; b++) {
1065		struct wc_entry *e = &wc->entries[b];
1066
1067		if (!writecache_entry_is_committed(wc, e)) {
1068			if (read_seq_count(wc, e) != -1) {
1069erase_this:
1070				clear_seq_count(wc, e);
1071				need_flush = true;
1072			}
1073			writecache_add_to_freelist(wc, e);
1074		} else {
1075			struct wc_entry *old;
1076
1077			old = writecache_find_entry(wc, read_original_sector(wc, e), 0);
1078			if (!old) {
1079				writecache_insert_entry(wc, e);
1080			} else {
1081				if (read_seq_count(wc, old) == read_seq_count(wc, e)) {
1082					writecache_error(wc, -EINVAL,
1083						 "two identical entries, position %llu, sector %llu, sequence %llu",
1084						 (unsigned long long)b, (unsigned long long)read_original_sector(wc, e),
1085						 (unsigned long long)read_seq_count(wc, e));
1086				}
1087				if (read_seq_count(wc, old) > read_seq_count(wc, e)) {
1088					goto erase_this;
1089				} else {
1090					writecache_free_entry(wc, old);
1091					writecache_insert_entry(wc, e);
1092					need_flush = true;
1093				}
1094			}
1095		}
1096		cond_resched();
1097	}
1098
1099	if (need_flush) {
1100		writecache_flush_all_metadata(wc);
1101		writecache_commit_flushed(wc, false);
1102	}
1103
1104	writecache_verify_watermark(wc);
1105
1106	if (wc->max_age != MAX_AGE_UNSPECIFIED)
1107		mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);
1108
1109	wc_unlock(wc);
1110}
1111
1112static int process_flush_mesg(unsigned int argc, char **argv, struct dm_writecache *wc)
1113{
1114	if (argc != 1)
1115		return -EINVAL;
1116
1117	wc_lock(wc);
1118	if (dm_suspended(wc->ti)) {
1119		wc_unlock(wc);
1120		return -EBUSY;
1121	}
1122	if (writecache_has_error(wc)) {
1123		wc_unlock(wc);
1124		return -EIO;
1125	}
1126
1127	writecache_flush(wc);
1128	wc->writeback_all++;
1129	queue_work(wc->writeback_wq, &wc->writeback_work);
1130	wc_unlock(wc);
1131
1132	flush_workqueue(wc->writeback_wq);
1133
1134	wc_lock(wc);
1135	wc->writeback_all--;
1136	if (writecache_has_error(wc)) {
1137		wc_unlock(wc);
1138		return -EIO;
1139	}
1140	wc_unlock(wc);
1141
1142	return 0;
1143}
1144
1145static int process_flush_on_suspend_mesg(unsigned int argc, char **argv, struct dm_writecache *wc)
1146{
1147	if (argc != 1)
1148		return -EINVAL;
1149
1150	wc_lock(wc);
1151	wc->flush_on_suspend = true;
1152	wc_unlock(wc);
1153
1154	return 0;
1155}
1156
1157static void activate_cleaner(struct dm_writecache *wc)
1158{
1159	wc->flush_on_suspend = true;
1160	wc->cleaner = true;
1161	wc->freelist_high_watermark = wc->n_blocks;
1162	wc->freelist_low_watermark = wc->n_blocks;
1163}
1164
1165static int process_cleaner_mesg(unsigned int argc, char **argv, struct dm_writecache *wc)
1166{
1167	if (argc != 1)
1168		return -EINVAL;
1169
1170	wc_lock(wc);
1171	activate_cleaner(wc);
1172	if (!dm_suspended(wc->ti))
1173		writecache_verify_watermark(wc);
1174	wc_unlock(wc);
1175
1176	return 0;
1177}
1178
1179static int process_clear_stats_mesg(unsigned int argc, char **argv, struct dm_writecache *wc)
1180{
1181	if (argc != 1)
1182		return -EINVAL;
1183
1184	wc_lock(wc);
1185	memset(&wc->stats, 0, sizeof(wc->stats));
1186	wc_unlock(wc);
1187
1188	return 0;
1189}
1190
1191static int writecache_message(struct dm_target *ti, unsigned int argc, char **argv,
1192			      char *result, unsigned int maxlen)
1193{
1194	int r = -EINVAL;
1195	struct dm_writecache *wc = ti->private;
1196
1197	if (!strcasecmp(argv[0], "flush"))
1198		r = process_flush_mesg(argc, argv, wc);
1199	else if (!strcasecmp(argv[0], "flush_on_suspend"))
1200		r = process_flush_on_suspend_mesg(argc, argv, wc);
1201	else if (!strcasecmp(argv[0], "cleaner"))
1202		r = process_cleaner_mesg(argc, argv, wc);
1203	else if (!strcasecmp(argv[0], "clear_stats"))
1204		r = process_clear_stats_mesg(argc, argv, wc);
1205	else
1206		DMERR("unrecognised message received: %s", argv[0]);
1207
1208	return r;
1209}
1210
1211static void memcpy_flushcache_optimized(void *dest, void *source, size_t size)
1212{
1213	/*
1214	 * clflushopt performs better with block size 1024, 2048, 4096
1215	 * non-temporal stores perform better with block size 512
1216	 *
1217	 * block size   512             1024            2048            4096
1218	 * movnti       496 MB/s        642 MB/s        725 MB/s        744 MB/s
1219	 * clflushopt   373 MB/s        688 MB/s        1.1 GB/s        1.2 GB/s
1220	 *
1221	 * We see that movnti performs better for 512-byte blocks, and
1222	 * clflushopt performs better for 1024-byte and larger blocks. So, we
1223	 * prefer clflushopt for sizes >= 768.
1224	 *
1225	 * NOTE: this happens to be the case now (with dm-writecache's single
1226	 * threaded model) but re-evaluate this once memcpy_flushcache() is
1227	 * enabled to use movdir64b which might invalidate this performance
1228	 * advantage seen with cache-allocating-writes plus flushing.
1229	 */
1230#ifdef CONFIG_X86
1231	if (static_cpu_has(X86_FEATURE_CLFLUSHOPT) &&
1232	    likely(boot_cpu_data.x86_clflush_size == 64) &&
1233	    likely(size >= 768)) {
1234		do {
1235			memcpy((void *)dest, (void *)source, 64);
1236			clflushopt((void *)dest);
1237			dest += 64;
1238			source += 64;
1239			size -= 64;
1240		} while (size >= 64);
1241		return;
1242	}
1243#endif
1244	memcpy_flushcache(dest, source, size);
1245}
1246
1247static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data)
1248{
1249	void *buf;
1250	unsigned int size;
1251	int rw = bio_data_dir(bio);
1252	unsigned int remaining_size = wc->block_size;
1253
1254	do {
1255		struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
1256
1257		buf = bvec_kmap_local(&bv);
1258		size = bv.bv_len;
1259		if (unlikely(size > remaining_size))
1260			size = remaining_size;
1261
1262		if (rw == READ) {
1263			int r;
1264
1265			r = copy_mc_to_kernel(buf, data, size);
1266			flush_dcache_page(bio_page(bio));
1267			if (unlikely(r)) {
1268				writecache_error(wc, r, "hardware memory error when reading data: %d", r);
1269				bio->bi_status = BLK_STS_IOERR;
1270			}
1271		} else {
1272			flush_dcache_page(bio_page(bio));
1273			memcpy_flushcache_optimized(data, buf, size);
1274		}
1275
1276		kunmap_local(buf);
1277
1278		data = (char *)data + size;
1279		remaining_size -= size;
1280		bio_advance(bio, size);
1281	} while (unlikely(remaining_size));
1282}
1283
1284static int writecache_flush_thread(void *data)
1285{
1286	struct dm_writecache *wc = data;
1287
1288	while (1) {
1289		struct bio *bio;
1290
1291		wc_lock(wc);
1292		bio = bio_list_pop(&wc->flush_list);
1293		if (!bio) {
1294			set_current_state(TASK_INTERRUPTIBLE);
1295			wc_unlock(wc);
1296
1297			if (unlikely(kthread_should_stop())) {
1298				set_current_state(TASK_RUNNING);
1299				break;
1300			}
1301
1302			schedule();
1303			continue;
1304		}
1305
1306		if (bio_op(bio) == REQ_OP_DISCARD) {
1307			writecache_discard(wc, bio->bi_iter.bi_sector,
1308					   bio_end_sector(bio));
1309			wc_unlock(wc);
1310			bio_set_dev(bio, wc->dev->bdev);
1311			submit_bio_noacct(bio);
1312		} else {
1313			writecache_flush(wc);
1314			wc_unlock(wc);
1315			if (writecache_has_error(wc))
1316				bio->bi_status = BLK_STS_IOERR;
1317			bio_endio(bio);
1318		}
1319	}
1320
1321	return 0;
1322}
1323
1324static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio)
1325{
1326	if (bio_list_empty(&wc->flush_list))
1327		wake_up_process(wc->flush_thread);
1328	bio_list_add(&wc->flush_list, bio);
1329}
1330
1331enum wc_map_op {
1332	WC_MAP_SUBMIT,
1333	WC_MAP_REMAP,
1334	WC_MAP_REMAP_ORIGIN,
1335	WC_MAP_RETURN,
1336	WC_MAP_ERROR,
1337};
1338
1339static void writecache_map_remap_origin(struct dm_writecache *wc, struct bio *bio,
1340					struct wc_entry *e)
1341{
1342	if (e) {
1343		sector_t next_boundary =
1344			read_original_sector(wc, e) - bio->bi_iter.bi_sector;
1345		if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT)
1346			dm_accept_partial_bio(bio, next_boundary);
1347	}
1348}
1349
1350static enum wc_map_op writecache_map_read(struct dm_writecache *wc, struct bio *bio)
1351{
1352	enum wc_map_op map_op;
1353	struct wc_entry *e;
1354
1355read_next_block:
1356	wc->stats.reads++;
1357	e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1358	if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) {
1359		wc->stats.read_hits++;
1360		if (WC_MODE_PMEM(wc)) {
1361			bio_copy_block(wc, bio, memory_data(wc, e));
1362			if (bio->bi_iter.bi_size)
1363				goto read_next_block;
1364			map_op = WC_MAP_SUBMIT;
1365		} else {
1366			dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
1367			bio_set_dev(bio, wc->ssd_dev->bdev);
1368			bio->bi_iter.bi_sector = cache_sector(wc, e);
1369			if (!writecache_entry_is_committed(wc, e))
1370				writecache_wait_for_ios(wc, WRITE);
1371			map_op = WC_MAP_REMAP;
1372		}
1373	} else {
1374		writecache_map_remap_origin(wc, bio, e);
1375		wc->stats.reads += (bio->bi_iter.bi_size - wc->block_size) >> wc->block_size_bits;
1376		map_op = WC_MAP_REMAP_ORIGIN;
1377	}
1378
1379	return map_op;
1380}
1381
1382static void writecache_bio_copy_ssd(struct dm_writecache *wc, struct bio *bio,
1383				    struct wc_entry *e, bool search_used)
1384{
1385	unsigned int bio_size = wc->block_size;
1386	sector_t start_cache_sec = cache_sector(wc, e);
1387	sector_t current_cache_sec = start_cache_sec + (bio_size >> SECTOR_SHIFT);
1388
1389	while (bio_size < bio->bi_iter.bi_size) {
1390		if (!search_used) {
1391			struct wc_entry *f = writecache_pop_from_freelist(wc, current_cache_sec);
1392
1393			if (!f)
1394				break;
1395			write_original_sector_seq_count(wc, f, bio->bi_iter.bi_sector +
1396							(bio_size >> SECTOR_SHIFT), wc->seq_count);
1397			writecache_insert_entry(wc, f);
1398			wc->uncommitted_blocks++;
1399		} else {
1400			struct wc_entry *f;
1401			struct rb_node *next = rb_next(&e->rb_node);
1402
1403			if (!next)
1404				break;
1405			f = container_of(next, struct wc_entry, rb_node);
1406			if (f != e + 1)
1407				break;
1408			if (read_original_sector(wc, f) !=
1409			    read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1410				break;
1411			if (unlikely(f->write_in_progress))
1412				break;
1413			if (writecache_entry_is_committed(wc, f))
1414				wc->overwrote_committed = true;
1415			e = f;
1416		}
1417		bio_size += wc->block_size;
1418		current_cache_sec += wc->block_size >> SECTOR_SHIFT;
1419	}
1420
1421	bio_set_dev(bio, wc->ssd_dev->bdev);
1422	bio->bi_iter.bi_sector = start_cache_sec;
1423	dm_accept_partial_bio(bio, bio_size >> SECTOR_SHIFT);
1424
1425	wc->stats.writes += bio->bi_iter.bi_size >> wc->block_size_bits;
1426	wc->stats.writes_allocate += (bio->bi_iter.bi_size - wc->block_size) >> wc->block_size_bits;
1427
1428	if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) {
1429		wc->uncommitted_blocks = 0;
1430		queue_work(wc->writeback_wq, &wc->flush_work);
1431	} else {
1432		writecache_schedule_autocommit(wc);
1433	}
1434}
1435
1436static enum wc_map_op writecache_map_write(struct dm_writecache *wc, struct bio *bio)
1437{
1438	struct wc_entry *e;
1439
1440	do {
1441		bool found_entry = false;
1442		bool search_used = false;
1443
1444		if (writecache_has_error(wc)) {
1445			wc->stats.writes += bio->bi_iter.bi_size >> wc->block_size_bits;
1446			return WC_MAP_ERROR;
1447		}
1448		e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0);
1449		if (e) {
1450			if (!writecache_entry_is_committed(wc, e)) {
1451				wc->stats.write_hits_uncommitted++;
1452				search_used = true;
1453				goto bio_copy;
1454			}
1455			wc->stats.write_hits_committed++;
1456			if (!WC_MODE_PMEM(wc) && !e->write_in_progress) {
1457				wc->overwrote_committed = true;
1458				search_used = true;
1459				goto bio_copy;
1460			}
1461			found_entry = true;
1462		} else {
1463			if (unlikely(wc->cleaner) ||
1464			    (wc->metadata_only && !(bio->bi_opf & REQ_META)))
1465				goto direct_write;
1466		}
1467		e = writecache_pop_from_freelist(wc, (sector_t)-1);
1468		if (unlikely(!e)) {
1469			if (!WC_MODE_PMEM(wc) && !found_entry) {
1470direct_write:
1471				e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1472				writecache_map_remap_origin(wc, bio, e);
1473				wc->stats.writes_around += bio->bi_iter.bi_size >> wc->block_size_bits;
1474				wc->stats.writes += bio->bi_iter.bi_size >> wc->block_size_bits;
1475				return WC_MAP_REMAP_ORIGIN;
1476			}
1477			wc->stats.writes_blocked_on_freelist++;
1478			writecache_wait_on_freelist(wc);
1479			continue;
1480		}
1481		write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count);
1482		writecache_insert_entry(wc, e);
1483		wc->uncommitted_blocks++;
1484		wc->stats.writes_allocate++;
1485bio_copy:
1486		if (WC_MODE_PMEM(wc)) {
1487			bio_copy_block(wc, bio, memory_data(wc, e));
1488			wc->stats.writes++;
1489		} else {
1490			writecache_bio_copy_ssd(wc, bio, e, search_used);
1491			return WC_MAP_REMAP;
1492		}
1493	} while (bio->bi_iter.bi_size);
1494
1495	if (unlikely(bio->bi_opf & REQ_FUA || wc->uncommitted_blocks >= wc->autocommit_blocks))
1496		writecache_flush(wc);
1497	else
1498		writecache_schedule_autocommit(wc);
1499
1500	return WC_MAP_SUBMIT;
1501}
1502
1503static enum wc_map_op writecache_map_flush(struct dm_writecache *wc, struct bio *bio)
1504{
1505	if (writecache_has_error(wc))
1506		return WC_MAP_ERROR;
1507
1508	if (WC_MODE_PMEM(wc)) {
1509		wc->stats.flushes++;
1510		writecache_flush(wc);
1511		if (writecache_has_error(wc))
1512			return WC_MAP_ERROR;
1513		else if (unlikely(wc->cleaner) || unlikely(wc->metadata_only))
1514			return WC_MAP_REMAP_ORIGIN;
1515		return WC_MAP_SUBMIT;
1516	}
1517	/* SSD: */
1518	if (dm_bio_get_target_bio_nr(bio))
1519		return WC_MAP_REMAP_ORIGIN;
1520	wc->stats.flushes++;
1521	writecache_offload_bio(wc, bio);
1522	return WC_MAP_RETURN;
1523}
1524
1525static enum wc_map_op writecache_map_discard(struct dm_writecache *wc, struct bio *bio)
1526{
1527	wc->stats.discards += bio->bi_iter.bi_size >> wc->block_size_bits;
1528
1529	if (writecache_has_error(wc))
1530		return WC_MAP_ERROR;
1531
1532	if (WC_MODE_PMEM(wc)) {
1533		writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio));
1534		return WC_MAP_REMAP_ORIGIN;
1535	}
1536	/* SSD: */
1537	writecache_offload_bio(wc, bio);
1538	return WC_MAP_RETURN;
1539}
1540
1541static int writecache_map(struct dm_target *ti, struct bio *bio)
1542{
1543	struct dm_writecache *wc = ti->private;
1544	enum wc_map_op map_op;
1545
1546	bio->bi_private = NULL;
1547
1548	wc_lock(wc);
1549
1550	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1551		map_op = writecache_map_flush(wc, bio);
1552		goto done;
1553	}
1554
1555	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1556
1557	if (unlikely((((unsigned int)bio->bi_iter.bi_sector | bio_sectors(bio)) &
1558				(wc->block_size / 512 - 1)) != 0)) {
1559		DMERR("I/O is not aligned, sector %llu, size %u, block size %u",
1560		      (unsigned long long)bio->bi_iter.bi_sector,
1561		      bio->bi_iter.bi_size, wc->block_size);
1562		map_op = WC_MAP_ERROR;
1563		goto done;
1564	}
1565
1566	if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
1567		map_op = writecache_map_discard(wc, bio);
1568		goto done;
1569	}
1570
1571	if (bio_data_dir(bio) == READ)
1572		map_op = writecache_map_read(wc, bio);
1573	else
1574		map_op = writecache_map_write(wc, bio);
1575done:
1576	switch (map_op) {
1577	case WC_MAP_REMAP_ORIGIN:
1578		if (likely(wc->pause != 0)) {
1579			if (bio_op(bio) == REQ_OP_WRITE) {
1580				dm_iot_io_begin(&wc->iot, 1);
1581				bio->bi_private = (void *)2;
1582			}
1583		}
1584		bio_set_dev(bio, wc->dev->bdev);
1585		wc_unlock(wc);
1586		return DM_MAPIO_REMAPPED;
1587
1588	case WC_MAP_REMAP:
1589		/* make sure that writecache_end_io decrements bio_in_progress: */
1590		bio->bi_private = (void *)1;
1591		atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]);
1592		wc_unlock(wc);
1593		return DM_MAPIO_REMAPPED;
1594
1595	case WC_MAP_SUBMIT:
1596		wc_unlock(wc);
1597		bio_endio(bio);
1598		return DM_MAPIO_SUBMITTED;
1599
1600	case WC_MAP_RETURN:
1601		wc_unlock(wc);
1602		return DM_MAPIO_SUBMITTED;
1603
1604	case WC_MAP_ERROR:
1605		wc_unlock(wc);
1606		bio_io_error(bio);
1607		return DM_MAPIO_SUBMITTED;
1608
1609	default:
1610		BUG();
1611		wc_unlock(wc);
1612		return DM_MAPIO_KILL;
1613	}
1614}
1615
1616static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
1617{
1618	struct dm_writecache *wc = ti->private;
1619
1620	if (bio->bi_private == (void *)1) {
1621		int dir = bio_data_dir(bio);
1622
1623		if (atomic_dec_and_test(&wc->bio_in_progress[dir]))
1624			if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir])))
1625				wake_up(&wc->bio_in_progress_wait[dir]);
1626	} else if (bio->bi_private == (void *)2) {
1627		dm_iot_io_end(&wc->iot, 1);
1628	}
1629	return 0;
1630}
1631
1632static int writecache_iterate_devices(struct dm_target *ti,
1633				      iterate_devices_callout_fn fn, void *data)
1634{
1635	struct dm_writecache *wc = ti->private;
1636
1637	return fn(ti, wc->dev, 0, ti->len, data);
1638}
1639
1640static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits)
1641{
1642	struct dm_writecache *wc = ti->private;
1643
1644	if (limits->logical_block_size < wc->block_size)
1645		limits->logical_block_size = wc->block_size;
1646
1647	if (limits->physical_block_size < wc->block_size)
1648		limits->physical_block_size = wc->block_size;
1649
1650	if (limits->io_min < wc->block_size)
1651		limits->io_min = wc->block_size;
1652}
1653
1654
1655static void writecache_writeback_endio(struct bio *bio)
1656{
1657	struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio);
1658	struct dm_writecache *wc = wb->wc;
1659	unsigned long flags;
1660
1661	raw_spin_lock_irqsave(&wc->endio_list_lock, flags);
1662	if (unlikely(list_empty(&wc->endio_list)))
1663		wake_up_process(wc->endio_thread);
1664	list_add_tail(&wb->endio_entry, &wc->endio_list);
1665	raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags);
1666}
1667
1668static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr)
1669{
1670	struct copy_struct *c = ptr;
1671	struct dm_writecache *wc = c->wc;
1672
1673	c->error = likely(!(read_err | write_err)) ? 0 : -EIO;
1674
1675	raw_spin_lock_irq(&wc->endio_list_lock);
1676	if (unlikely(list_empty(&wc->endio_list)))
1677		wake_up_process(wc->endio_thread);
1678	list_add_tail(&c->endio_entry, &wc->endio_list);
1679	raw_spin_unlock_irq(&wc->endio_list_lock);
1680}
1681
1682static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list)
1683{
1684	unsigned int i;
1685	struct writeback_struct *wb;
1686	struct wc_entry *e;
1687	unsigned long n_walked = 0;
1688
1689	do {
1690		wb = list_entry(list->next, struct writeback_struct, endio_entry);
1691		list_del(&wb->endio_entry);
1692
1693		if (unlikely(wb->bio.bi_status != BLK_STS_OK))
1694			writecache_error(wc, blk_status_to_errno(wb->bio.bi_status),
1695					"write error %d", wb->bio.bi_status);
1696		i = 0;
1697		do {
1698			e = wb->wc_list[i];
1699			BUG_ON(!e->write_in_progress);
1700			e->write_in_progress = false;
1701			INIT_LIST_HEAD(&e->lru);
1702			if (!writecache_has_error(wc))
1703				writecache_free_entry(wc, e);
1704			BUG_ON(!wc->writeback_size);
1705			wc->writeback_size--;
1706			n_walked++;
1707			if (unlikely(n_walked >= ENDIO_LATENCY)) {
1708				writecache_commit_flushed(wc, false);
1709				wc_unlock(wc);
1710				wc_lock(wc);
1711				n_walked = 0;
1712			}
1713		} while (++i < wb->wc_list_n);
1714
1715		if (wb->wc_list != wb->wc_list_inline)
1716			kfree(wb->wc_list);
1717		bio_put(&wb->bio);
1718	} while (!list_empty(list));
1719}
1720
1721static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list)
1722{
1723	struct copy_struct *c;
1724	struct wc_entry *e;
1725
1726	do {
1727		c = list_entry(list->next, struct copy_struct, endio_entry);
1728		list_del(&c->endio_entry);
1729
1730		if (unlikely(c->error))
1731			writecache_error(wc, c->error, "copy error");
1732
1733		e = c->e;
1734		do {
1735			BUG_ON(!e->write_in_progress);
1736			e->write_in_progress = false;
1737			INIT_LIST_HEAD(&e->lru);
1738			if (!writecache_has_error(wc))
1739				writecache_free_entry(wc, e);
1740
1741			BUG_ON(!wc->writeback_size);
1742			wc->writeback_size--;
1743			e++;
1744		} while (--c->n_entries);
1745		mempool_free(c, &wc->copy_pool);
1746	} while (!list_empty(list));
1747}
1748
1749static int writecache_endio_thread(void *data)
1750{
1751	struct dm_writecache *wc = data;
1752
1753	while (1) {
1754		struct list_head list;
1755
1756		raw_spin_lock_irq(&wc->endio_list_lock);
1757		if (!list_empty(&wc->endio_list))
1758			goto pop_from_list;
1759		set_current_state(TASK_INTERRUPTIBLE);
1760		raw_spin_unlock_irq(&wc->endio_list_lock);
1761
1762		if (unlikely(kthread_should_stop())) {
1763			set_current_state(TASK_RUNNING);
1764			break;
1765		}
1766
1767		schedule();
1768
1769		continue;
1770
1771pop_from_list:
1772		list = wc->endio_list;
1773		list.next->prev = list.prev->next = &list;
1774		INIT_LIST_HEAD(&wc->endio_list);
1775		raw_spin_unlock_irq(&wc->endio_list_lock);
1776
1777		if (!WC_MODE_FUA(wc))
1778			writecache_disk_flush(wc, wc->dev);
1779
1780		wc_lock(wc);
1781
1782		if (WC_MODE_PMEM(wc)) {
1783			__writecache_endio_pmem(wc, &list);
1784		} else {
1785			__writecache_endio_ssd(wc, &list);
1786			writecache_wait_for_ios(wc, READ);
1787		}
1788
1789		writecache_commit_flushed(wc, false);
1790
1791		wc_unlock(wc);
1792	}
1793
1794	return 0;
1795}
1796
1797static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e)
1798{
1799	struct dm_writecache *wc = wb->wc;
1800	unsigned int block_size = wc->block_size;
1801	void *address = memory_data(wc, e);
1802
1803	persistent_memory_flush_cache(address, block_size);
1804
1805	if (unlikely(bio_end_sector(&wb->bio) >= wc->data_device_sectors))
1806		return true;
1807
1808	return bio_add_page(&wb->bio, persistent_memory_page(address),
1809			    block_size, persistent_memory_page_offset(address)) != 0;
1810}
1811
1812struct writeback_list {
1813	struct list_head list;
1814	size_t size;
1815};
1816
1817static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl)
1818{
1819	if (unlikely(wc->max_writeback_jobs)) {
1820		if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) {
1821			wc_lock(wc);
1822			while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs)
1823				writecache_wait_on_freelist(wc);
1824			wc_unlock(wc);
1825		}
1826	}
1827	cond_resched();
1828}
1829
1830static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl)
1831{
1832	struct wc_entry *e, *f;
1833	struct bio *bio;
1834	struct writeback_struct *wb;
1835	unsigned int max_pages;
1836
1837	while (wbl->size) {
1838		wbl->size--;
1839		e = container_of(wbl->list.prev, struct wc_entry, lru);
1840		list_del(&e->lru);
1841
1842		max_pages = e->wc_list_contiguous;
1843
1844		bio = bio_alloc_bioset(wc->dev->bdev, max_pages, REQ_OP_WRITE,
1845				       GFP_NOIO, &wc->bio_set);
1846		wb = container_of(bio, struct writeback_struct, bio);
1847		wb->wc = wc;
1848		bio->bi_end_io = writecache_writeback_endio;
1849		bio->bi_iter.bi_sector = read_original_sector(wc, e);
1850
1851		if (unlikely(max_pages > WB_LIST_INLINE))
1852			wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *),
1853						    GFP_NOIO | __GFP_NORETRY |
1854						    __GFP_NOMEMALLOC | __GFP_NOWARN);
1855
1856		if (likely(max_pages <= WB_LIST_INLINE) || unlikely(!wb->wc_list)) {
1857			wb->wc_list = wb->wc_list_inline;
1858			max_pages = WB_LIST_INLINE;
1859		}
1860
1861		BUG_ON(!wc_add_block(wb, e));
1862
1863		wb->wc_list[0] = e;
1864		wb->wc_list_n = 1;
1865
1866		while (wbl->size && wb->wc_list_n < max_pages) {
1867			f = container_of(wbl->list.prev, struct wc_entry, lru);
1868			if (read_original_sector(wc, f) !=
1869			    read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1870				break;
1871			if (!wc_add_block(wb, f))
1872				break;
1873			wbl->size--;
1874			list_del(&f->lru);
1875			wb->wc_list[wb->wc_list_n++] = f;
1876			e = f;
1877		}
1878		if (WC_MODE_FUA(wc))
1879			bio->bi_opf |= REQ_FUA;
1880		if (writecache_has_error(wc)) {
1881			bio->bi_status = BLK_STS_IOERR;
1882			bio_endio(bio);
1883		} else if (unlikely(!bio_sectors(bio))) {
1884			bio->bi_status = BLK_STS_OK;
1885			bio_endio(bio);
1886		} else {
1887			submit_bio(bio);
1888		}
1889
1890		__writeback_throttle(wc, wbl);
1891	}
1892}
1893
1894static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl)
1895{
1896	struct wc_entry *e, *f;
1897	struct dm_io_region from, to;
1898	struct copy_struct *c;
1899
1900	while (wbl->size) {
1901		unsigned int n_sectors;
1902
1903		wbl->size--;
1904		e = container_of(wbl->list.prev, struct wc_entry, lru);
1905		list_del(&e->lru);
1906
1907		n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT);
1908
1909		from.bdev = wc->ssd_dev->bdev;
1910		from.sector = cache_sector(wc, e);
1911		from.count = n_sectors;
1912		to.bdev = wc->dev->bdev;
1913		to.sector = read_original_sector(wc, e);
1914		to.count = n_sectors;
1915
1916		c = mempool_alloc(&wc->copy_pool, GFP_NOIO);
1917		c->wc = wc;
1918		c->e = e;
1919		c->n_entries = e->wc_list_contiguous;
1920
1921		while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) {
1922			wbl->size--;
1923			f = container_of(wbl->list.prev, struct wc_entry, lru);
1924			BUG_ON(f != e + 1);
1925			list_del(&f->lru);
1926			e = f;
1927		}
1928
1929		if (unlikely(to.sector + to.count > wc->data_device_sectors)) {
1930			if (to.sector >= wc->data_device_sectors) {
1931				writecache_copy_endio(0, 0, c);
1932				continue;
1933			}
1934			from.count = to.count = wc->data_device_sectors - to.sector;
1935		}
1936
1937		dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c);
1938
1939		__writeback_throttle(wc, wbl);
1940	}
1941}
1942
1943static void writecache_writeback(struct work_struct *work)
1944{
1945	struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work);
1946	struct blk_plug plug;
1947	struct wc_entry *f, *g, *e = NULL;
1948	struct rb_node *node, *next_node;
1949	struct list_head skipped;
1950	struct writeback_list wbl;
1951	unsigned long n_walked;
1952
1953	if (!WC_MODE_PMEM(wc)) {
1954		/* Wait for any active kcopyd work on behalf of ssd writeback */
1955		dm_kcopyd_client_flush(wc->dm_kcopyd);
1956	}
1957
1958	if (likely(wc->pause != 0)) {
1959		while (1) {
1960			unsigned long idle;
1961
1962			if (unlikely(wc->cleaner) || unlikely(wc->writeback_all) ||
1963			    unlikely(dm_suspended(wc->ti)))
1964				break;
1965			idle = dm_iot_idle_time(&wc->iot);
1966			if (idle >= wc->pause)
1967				break;
1968			idle = wc->pause - idle;
1969			if (idle > HZ)
1970				idle = HZ;
1971			schedule_timeout_idle(idle);
1972		}
1973	}
1974
1975	wc_lock(wc);
1976restart:
1977	if (writecache_has_error(wc)) {
1978		wc_unlock(wc);
1979		return;
1980	}
1981
1982	if (unlikely(wc->writeback_all)) {
1983		if (writecache_wait_for_writeback(wc))
1984			goto restart;
1985	}
1986
1987	if (wc->overwrote_committed)
1988		writecache_wait_for_ios(wc, WRITE);
 
1989
1990	n_walked = 0;
1991	INIT_LIST_HEAD(&skipped);
1992	INIT_LIST_HEAD(&wbl.list);
1993	wbl.size = 0;
1994	while (!list_empty(&wc->lru) &&
1995	       (wc->writeback_all ||
1996		wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark ||
1997		(jiffies - container_of(wc->lru.prev, struct wc_entry, lru)->age >=
1998		 wc->max_age - wc->max_age / MAX_AGE_DIV))) {
1999
2000		n_walked++;
2001		if (unlikely(n_walked > WRITEBACK_LATENCY) &&
2002		    likely(!wc->writeback_all)) {
2003			if (likely(!dm_suspended(wc->ti)))
2004				queue_work(wc->writeback_wq, &wc->writeback_work);
2005			break;
2006		}
2007
2008		if (unlikely(wc->writeback_all)) {
2009			if (unlikely(!e)) {
2010				writecache_flush(wc);
2011				e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node);
2012			} else
2013				e = g;
2014		} else
2015			e = container_of(wc->lru.prev, struct wc_entry, lru);
2016		BUG_ON(e->write_in_progress);
2017		if (unlikely(!writecache_entry_is_committed(wc, e)))
2018			writecache_flush(wc);
2019
2020		node = rb_prev(&e->rb_node);
2021		if (node) {
2022			f = container_of(node, struct wc_entry, rb_node);
2023			if (unlikely(read_original_sector(wc, f) ==
2024				     read_original_sector(wc, e))) {
2025				BUG_ON(!f->write_in_progress);
2026				list_move(&e->lru, &skipped);
2027				cond_resched();
2028				continue;
2029			}
2030		}
2031		wc->writeback_size++;
2032		list_move(&e->lru, &wbl.list);
2033		wbl.size++;
2034		e->write_in_progress = true;
2035		e->wc_list_contiguous = 1;
2036
2037		f = e;
2038
2039		while (1) {
2040			next_node = rb_next(&f->rb_node);
2041			if (unlikely(!next_node))
2042				break;
2043			g = container_of(next_node, struct wc_entry, rb_node);
2044			if (unlikely(read_original_sector(wc, g) ==
2045			    read_original_sector(wc, f))) {
2046				f = g;
2047				continue;
2048			}
2049			if (read_original_sector(wc, g) !=
2050			    read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT))
2051				break;
2052			if (unlikely(g->write_in_progress))
2053				break;
2054			if (unlikely(!writecache_entry_is_committed(wc, g)))
2055				break;
2056
2057			if (!WC_MODE_PMEM(wc)) {
2058				if (g != f + 1)
2059					break;
2060			}
2061
2062			n_walked++;
2063			//if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all))
2064			//	break;
2065
2066			wc->writeback_size++;
2067			list_move(&g->lru, &wbl.list);
2068			wbl.size++;
2069			g->write_in_progress = true;
2070			g->wc_list_contiguous = BIO_MAX_VECS;
2071			f = g;
2072			e->wc_list_contiguous++;
2073			if (unlikely(e->wc_list_contiguous == BIO_MAX_VECS)) {
2074				if (unlikely(wc->writeback_all)) {
2075					next_node = rb_next(&f->rb_node);
2076					if (likely(next_node))
2077						g = container_of(next_node, struct wc_entry, rb_node);
2078				}
2079				break;
2080			}
2081		}
2082		cond_resched();
2083	}
2084
2085	if (!list_empty(&skipped)) {
2086		list_splice_tail(&skipped, &wc->lru);
2087		/*
2088		 * If we didn't do any progress, we must wait until some
2089		 * writeback finishes to avoid burning CPU in a loop
2090		 */
2091		if (unlikely(!wbl.size))
2092			writecache_wait_for_writeback(wc);
2093	}
2094
2095	wc_unlock(wc);
2096
2097	blk_start_plug(&plug);
2098
2099	if (WC_MODE_PMEM(wc))
2100		__writecache_writeback_pmem(wc, &wbl);
2101	else
2102		__writecache_writeback_ssd(wc, &wbl);
2103
2104	blk_finish_plug(&plug);
2105
2106	if (unlikely(wc->writeback_all)) {
2107		wc_lock(wc);
2108		while (writecache_wait_for_writeback(wc))
2109			;
2110		wc_unlock(wc);
2111	}
2112}
2113
2114static int calculate_memory_size(uint64_t device_size, unsigned int block_size,
2115				 size_t *n_blocks_p, size_t *n_metadata_blocks_p)
2116{
2117	uint64_t n_blocks, offset;
2118	struct wc_entry e;
2119
2120	n_blocks = device_size;
2121	do_div(n_blocks, block_size + sizeof(struct wc_memory_entry));
2122
2123	while (1) {
2124		if (!n_blocks)
2125			return -ENOSPC;
2126		/* Verify the following entries[n_blocks] won't overflow */
2127		if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) /
2128				 sizeof(struct wc_memory_entry)))
2129			return -EFBIG;
2130		offset = offsetof(struct wc_memory_superblock, entries[n_blocks]);
2131		offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1);
2132		if (offset + n_blocks * block_size <= device_size)
2133			break;
2134		n_blocks--;
2135	}
2136
2137	/* check if the bit field overflows */
2138	e.index = n_blocks;
2139	if (e.index != n_blocks)
2140		return -EFBIG;
2141
2142	if (n_blocks_p)
2143		*n_blocks_p = n_blocks;
2144	if (n_metadata_blocks_p)
2145		*n_metadata_blocks_p = offset >> __ffs(block_size);
2146	return 0;
2147}
2148
2149static int init_memory(struct dm_writecache *wc)
2150{
2151	size_t b;
2152	int r;
2153
2154	r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL);
2155	if (r)
2156		return r;
2157
2158	r = writecache_alloc_entries(wc);
2159	if (r)
2160		return r;
2161
2162	for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++)
2163		pmem_assign(sb(wc)->padding[b], cpu_to_le64(0));
2164	pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION));
2165	pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size));
2166	pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks));
2167	pmem_assign(sb(wc)->seq_count, cpu_to_le64(0));
2168
2169	for (b = 0; b < wc->n_blocks; b++) {
2170		write_original_sector_seq_count(wc, &wc->entries[b], -1, -1);
2171		cond_resched();
2172	}
2173
2174	writecache_flush_all_metadata(wc);
2175	writecache_commit_flushed(wc, false);
2176	pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC));
2177	writecache_flush_region(wc, &sb(wc)->magic, sizeof(sb(wc)->magic));
2178	writecache_commit_flushed(wc, false);
2179
2180	return 0;
2181}
2182
2183static void writecache_dtr(struct dm_target *ti)
2184{
2185	struct dm_writecache *wc = ti->private;
2186
2187	if (!wc)
2188		return;
2189
2190	if (wc->endio_thread)
2191		kthread_stop(wc->endio_thread);
2192
2193	if (wc->flush_thread)
2194		kthread_stop(wc->flush_thread);
2195
2196	bioset_exit(&wc->bio_set);
2197
2198	mempool_exit(&wc->copy_pool);
2199
2200	if (wc->writeback_wq)
2201		destroy_workqueue(wc->writeback_wq);
2202
2203	if (wc->dev)
2204		dm_put_device(ti, wc->dev);
2205
2206	if (wc->ssd_dev)
2207		dm_put_device(ti, wc->ssd_dev);
2208
2209	vfree(wc->entries);
2210
2211	if (wc->memory_map) {
2212		if (WC_MODE_PMEM(wc))
2213			persistent_memory_release(wc);
2214		else
2215			vfree(wc->memory_map);
2216	}
2217
2218	if (wc->dm_kcopyd)
2219		dm_kcopyd_client_destroy(wc->dm_kcopyd);
2220
2221	if (wc->dm_io)
2222		dm_io_client_destroy(wc->dm_io);
2223
2224	vfree(wc->dirty_bitmap);
2225
2226	kfree(wc);
2227}
2228
2229static int writecache_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2230{
2231	struct dm_writecache *wc;
2232	struct dm_arg_set as;
2233	const char *string;
2234	unsigned int opt_params;
2235	size_t offset, data_size;
2236	int i, r;
2237	char dummy;
2238	int high_wm_percent = HIGH_WATERMARK;
2239	int low_wm_percent = LOW_WATERMARK;
2240	uint64_t x;
2241	struct wc_memory_superblock s;
2242
2243	static struct dm_arg _args[] = {
2244		{0, 18, "Invalid number of feature args"},
2245	};
2246
2247	as.argc = argc;
2248	as.argv = argv;
2249
2250	wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL);
2251	if (!wc) {
2252		ti->error = "Cannot allocate writecache structure";
2253		r = -ENOMEM;
2254		goto bad;
2255	}
2256	ti->private = wc;
2257	wc->ti = ti;
2258
2259	mutex_init(&wc->lock);
2260	wc->max_age = MAX_AGE_UNSPECIFIED;
2261	writecache_poison_lists(wc);
2262	init_waitqueue_head(&wc->freelist_wait);
2263	timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0);
2264	timer_setup(&wc->max_age_timer, writecache_max_age_timer, 0);
2265
2266	for (i = 0; i < 2; i++) {
2267		atomic_set(&wc->bio_in_progress[i], 0);
2268		init_waitqueue_head(&wc->bio_in_progress_wait[i]);
2269	}
2270
2271	wc->dm_io = dm_io_client_create();
2272	if (IS_ERR(wc->dm_io)) {
2273		r = PTR_ERR(wc->dm_io);
2274		ti->error = "Unable to allocate dm-io client";
2275		wc->dm_io = NULL;
2276		goto bad;
2277	}
2278
2279	wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1);
2280	if (!wc->writeback_wq) {
2281		r = -ENOMEM;
2282		ti->error = "Could not allocate writeback workqueue";
2283		goto bad;
2284	}
2285	INIT_WORK(&wc->writeback_work, writecache_writeback);
2286	INIT_WORK(&wc->flush_work, writecache_flush_work);
2287
2288	dm_iot_init(&wc->iot);
2289
2290	raw_spin_lock_init(&wc->endio_list_lock);
2291	INIT_LIST_HEAD(&wc->endio_list);
2292	wc->endio_thread = kthread_run(writecache_endio_thread, wc, "writecache_endio");
2293	if (IS_ERR(wc->endio_thread)) {
2294		r = PTR_ERR(wc->endio_thread);
2295		wc->endio_thread = NULL;
2296		ti->error = "Couldn't spawn endio thread";
2297		goto bad;
2298	}
2299
2300	/*
2301	 * Parse the mode (pmem or ssd)
2302	 */
2303	string = dm_shift_arg(&as);
2304	if (!string)
2305		goto bad_arguments;
2306
2307	if (!strcasecmp(string, "s")) {
2308		wc->pmem_mode = false;
2309	} else if (!strcasecmp(string, "p")) {
2310#ifdef DM_WRITECACHE_HAS_PMEM
2311		wc->pmem_mode = true;
2312		wc->writeback_fua = true;
2313#else
2314		/*
2315		 * If the architecture doesn't support persistent memory or
2316		 * the kernel doesn't support any DAX drivers, this driver can
2317		 * only be used in SSD-only mode.
2318		 */
2319		r = -EOPNOTSUPP;
2320		ti->error = "Persistent memory or DAX not supported on this system";
2321		goto bad;
2322#endif
2323	} else {
2324		goto bad_arguments;
2325	}
2326
2327	if (WC_MODE_PMEM(wc)) {
2328		r = bioset_init(&wc->bio_set, BIO_POOL_SIZE,
2329				offsetof(struct writeback_struct, bio),
2330				BIOSET_NEED_BVECS);
2331		if (r) {
2332			ti->error = "Could not allocate bio set";
2333			goto bad;
2334		}
2335	} else {
2336		wc->pause = PAUSE_WRITEBACK;
2337		r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct));
2338		if (r) {
2339			ti->error = "Could not allocate mempool";
2340			goto bad;
2341		}
2342	}
2343
2344	/*
2345	 * Parse the origin data device
2346	 */
2347	string = dm_shift_arg(&as);
2348	if (!string)
2349		goto bad_arguments;
2350	r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev);
2351	if (r) {
2352		ti->error = "Origin data device lookup failed";
2353		goto bad;
2354	}
2355
2356	/*
2357	 * Parse cache data device (be it pmem or ssd)
2358	 */
2359	string = dm_shift_arg(&as);
2360	if (!string)
2361		goto bad_arguments;
2362
2363	r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev);
2364	if (r) {
2365		ti->error = "Cache data device lookup failed";
2366		goto bad;
2367	}
2368	wc->memory_map_size = bdev_nr_bytes(wc->ssd_dev->bdev);
2369
2370	/*
2371	 * Parse the cache block size
2372	 */
2373	string = dm_shift_arg(&as);
2374	if (!string)
2375		goto bad_arguments;
2376	if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 ||
2377	    wc->block_size < 512 || wc->block_size > PAGE_SIZE ||
2378	    (wc->block_size & (wc->block_size - 1))) {
2379		r = -EINVAL;
2380		ti->error = "Invalid block size";
2381		goto bad;
2382	}
2383	if (wc->block_size < bdev_logical_block_size(wc->dev->bdev) ||
2384	    wc->block_size < bdev_logical_block_size(wc->ssd_dev->bdev)) {
2385		r = -EINVAL;
2386		ti->error = "Block size is smaller than device logical block size";
2387		goto bad;
2388	}
2389	wc->block_size_bits = __ffs(wc->block_size);
2390
2391	wc->max_writeback_jobs = MAX_WRITEBACK_JOBS;
2392	wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM;
2393	wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC);
2394
2395	/*
2396	 * Parse optional arguments
2397	 */
2398	r = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2399	if (r)
2400		goto bad;
2401
2402	while (opt_params) {
2403		string = dm_shift_arg(&as), opt_params--;
2404		if (!strcasecmp(string, "start_sector") && opt_params >= 1) {
2405			unsigned long long start_sector;
2406
2407			string = dm_shift_arg(&as), opt_params--;
2408			if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1)
2409				goto invalid_optional;
2410			wc->start_sector = start_sector;
2411			wc->start_sector_set = true;
2412			if (wc->start_sector != start_sector ||
2413			    wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT)
2414				goto invalid_optional;
2415		} else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) {
2416			string = dm_shift_arg(&as), opt_params--;
2417			if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1)
2418				goto invalid_optional;
2419			if (high_wm_percent < 0 || high_wm_percent > 100)
2420				goto invalid_optional;
2421			wc->high_wm_percent_value = high_wm_percent;
2422			wc->high_wm_percent_set = true;
2423		} else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) {
2424			string = dm_shift_arg(&as), opt_params--;
2425			if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1)
2426				goto invalid_optional;
2427			if (low_wm_percent < 0 || low_wm_percent > 100)
2428				goto invalid_optional;
2429			wc->low_wm_percent_value = low_wm_percent;
2430			wc->low_wm_percent_set = true;
2431		} else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) {
2432			string = dm_shift_arg(&as), opt_params--;
2433			if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1)
2434				goto invalid_optional;
2435			wc->max_writeback_jobs_set = true;
2436		} else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) {
2437			string = dm_shift_arg(&as), opt_params--;
2438			if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1)
2439				goto invalid_optional;
2440			wc->autocommit_blocks_set = true;
2441		} else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) {
2442			unsigned int autocommit_msecs;
2443
2444			string = dm_shift_arg(&as), opt_params--;
2445			if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1)
2446				goto invalid_optional;
2447			if (autocommit_msecs > 3600000)
2448				goto invalid_optional;
2449			wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs);
2450			wc->autocommit_time_value = autocommit_msecs;
2451			wc->autocommit_time_set = true;
2452		} else if (!strcasecmp(string, "max_age") && opt_params >= 1) {
2453			unsigned int max_age_msecs;
2454
2455			string = dm_shift_arg(&as), opt_params--;
2456			if (sscanf(string, "%u%c", &max_age_msecs, &dummy) != 1)
2457				goto invalid_optional;
2458			if (max_age_msecs > 86400000)
2459				goto invalid_optional;
2460			wc->max_age = msecs_to_jiffies(max_age_msecs);
2461			wc->max_age_set = true;
2462			wc->max_age_value = max_age_msecs;
2463		} else if (!strcasecmp(string, "cleaner")) {
2464			wc->cleaner_set = true;
2465			wc->cleaner = true;
2466		} else if (!strcasecmp(string, "fua")) {
2467			if (WC_MODE_PMEM(wc)) {
2468				wc->writeback_fua = true;
2469				wc->writeback_fua_set = true;
2470			} else
2471				goto invalid_optional;
2472		} else if (!strcasecmp(string, "nofua")) {
2473			if (WC_MODE_PMEM(wc)) {
2474				wc->writeback_fua = false;
2475				wc->writeback_fua_set = true;
2476			} else
2477				goto invalid_optional;
2478		} else if (!strcasecmp(string, "metadata_only")) {
2479			wc->metadata_only = true;
2480		} else if (!strcasecmp(string, "pause_writeback") && opt_params >= 1) {
2481			unsigned int pause_msecs;
2482
2483			if (WC_MODE_PMEM(wc))
2484				goto invalid_optional;
2485			string = dm_shift_arg(&as), opt_params--;
2486			if (sscanf(string, "%u%c", &pause_msecs, &dummy) != 1)
2487				goto invalid_optional;
2488			if (pause_msecs > 60000)
2489				goto invalid_optional;
2490			wc->pause = msecs_to_jiffies(pause_msecs);
2491			wc->pause_set = true;
2492			wc->pause_value = pause_msecs;
2493		} else {
2494invalid_optional:
2495			r = -EINVAL;
2496			ti->error = "Invalid optional argument";
2497			goto bad;
2498		}
2499	}
2500
2501	if (high_wm_percent < low_wm_percent) {
2502		r = -EINVAL;
2503		ti->error = "High watermark must be greater than or equal to low watermark";
2504		goto bad;
2505	}
2506
2507	if (WC_MODE_PMEM(wc)) {
2508		if (!dax_synchronous(wc->ssd_dev->dax_dev)) {
2509			r = -EOPNOTSUPP;
2510			ti->error = "Asynchronous persistent memory not supported as pmem cache";
2511			goto bad;
2512		}
2513
2514		r = persistent_memory_claim(wc);
2515		if (r) {
2516			ti->error = "Unable to map persistent memory for cache";
2517			goto bad;
2518		}
2519	} else {
2520		size_t n_blocks, n_metadata_blocks;
2521		uint64_t n_bitmap_bits;
2522
2523		wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT;
2524
2525		bio_list_init(&wc->flush_list);
2526		wc->flush_thread = kthread_run(writecache_flush_thread, wc, "dm_writecache_flush");
2527		if (IS_ERR(wc->flush_thread)) {
2528			r = PTR_ERR(wc->flush_thread);
2529			wc->flush_thread = NULL;
2530			ti->error = "Couldn't spawn flush thread";
2531			goto bad;
2532		}
2533
2534		r = calculate_memory_size(wc->memory_map_size, wc->block_size,
2535					  &n_blocks, &n_metadata_blocks);
2536		if (r) {
2537			ti->error = "Invalid device size";
2538			goto bad;
2539		}
2540
2541		n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) +
2542				 BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY;
2543		/* this is limitation of test_bit functions */
2544		if (n_bitmap_bits > 1U << 31) {
2545			r = -EFBIG;
2546			ti->error = "Invalid device size";
2547			goto bad;
2548		}
2549
2550		wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits);
2551		if (!wc->memory_map) {
2552			r = -ENOMEM;
2553			ti->error = "Unable to allocate memory for metadata";
2554			goto bad;
2555		}
2556
2557		wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2558		if (IS_ERR(wc->dm_kcopyd)) {
2559			r = PTR_ERR(wc->dm_kcopyd);
2560			ti->error = "Unable to allocate dm-kcopyd client";
2561			wc->dm_kcopyd = NULL;
2562			goto bad;
2563		}
2564
2565		wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT);
2566		wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) /
2567			BITS_PER_LONG * sizeof(unsigned long);
2568		wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size);
2569		if (!wc->dirty_bitmap) {
2570			r = -ENOMEM;
2571			ti->error = "Unable to allocate dirty bitmap";
2572			goto bad;
2573		}
2574
2575		r = writecache_read_metadata(wc, wc->block_size >> SECTOR_SHIFT);
2576		if (r) {
2577			ti->error = "Unable to read first block of metadata";
2578			goto bad;
2579		}
2580	}
2581
2582	r = copy_mc_to_kernel(&s, sb(wc), sizeof(struct wc_memory_superblock));
2583	if (r) {
2584		ti->error = "Hardware memory error when reading superblock";
2585		goto bad;
2586	}
2587	if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) {
2588		r = init_memory(wc);
2589		if (r) {
2590			ti->error = "Unable to initialize device";
2591			goto bad;
2592		}
2593		r = copy_mc_to_kernel(&s, sb(wc),
2594				      sizeof(struct wc_memory_superblock));
2595		if (r) {
2596			ti->error = "Hardware memory error when reading superblock";
2597			goto bad;
2598		}
2599	}
2600
2601	if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) {
2602		ti->error = "Invalid magic in the superblock";
2603		r = -EINVAL;
2604		goto bad;
2605	}
2606
2607	if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) {
2608		ti->error = "Invalid version in the superblock";
2609		r = -EINVAL;
2610		goto bad;
2611	}
2612
2613	if (le32_to_cpu(s.block_size) != wc->block_size) {
2614		ti->error = "Block size does not match superblock";
2615		r = -EINVAL;
2616		goto bad;
2617	}
2618
2619	wc->n_blocks = le64_to_cpu(s.n_blocks);
2620
2621	offset = wc->n_blocks * sizeof(struct wc_memory_entry);
2622	if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) {
2623overflow:
2624		ti->error = "Overflow in size calculation";
2625		r = -EINVAL;
2626		goto bad;
2627	}
2628	offset += sizeof(struct wc_memory_superblock);
2629	if (offset < sizeof(struct wc_memory_superblock))
2630		goto overflow;
2631	offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1);
2632	data_size = wc->n_blocks * (size_t)wc->block_size;
2633	if (!offset || (data_size / wc->block_size != wc->n_blocks) ||
2634	    (offset + data_size < offset))
2635		goto overflow;
2636	if (offset + data_size > wc->memory_map_size) {
2637		ti->error = "Memory area is too small";
2638		r = -EINVAL;
2639		goto bad;
2640	}
2641
2642	wc->metadata_sectors = offset >> SECTOR_SHIFT;
2643	wc->block_start = (char *)sb(wc) + offset;
2644
2645	x = (uint64_t)wc->n_blocks * (100 - high_wm_percent);
2646	x += 50;
2647	do_div(x, 100);
2648	wc->freelist_high_watermark = x;
2649	x = (uint64_t)wc->n_blocks * (100 - low_wm_percent);
2650	x += 50;
2651	do_div(x, 100);
2652	wc->freelist_low_watermark = x;
2653
2654	if (wc->cleaner)
2655		activate_cleaner(wc);
2656
2657	r = writecache_alloc_entries(wc);
2658	if (r) {
2659		ti->error = "Cannot allocate memory";
2660		goto bad;
2661	}
2662
2663	ti->num_flush_bios = WC_MODE_PMEM(wc) ? 1 : 2;
2664	ti->flush_supported = true;
2665	ti->num_discard_bios = 1;
2666
2667	if (WC_MODE_PMEM(wc))
2668		persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
2669
2670	return 0;
2671
2672bad_arguments:
2673	r = -EINVAL;
2674	ti->error = "Bad arguments";
2675bad:
2676	writecache_dtr(ti);
2677	return r;
2678}
2679
2680static void writecache_status(struct dm_target *ti, status_type_t type,
2681			      unsigned int status_flags, char *result, unsigned int maxlen)
2682{
2683	struct dm_writecache *wc = ti->private;
2684	unsigned int extra_args;
2685	unsigned int sz = 0;
2686
2687	switch (type) {
2688	case STATUSTYPE_INFO:
2689		DMEMIT("%ld %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu",
2690		       writecache_has_error(wc),
2691		       (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size,
2692		       (unsigned long long)wc->writeback_size,
2693		       wc->stats.reads,
2694		       wc->stats.read_hits,
2695		       wc->stats.writes,
2696		       wc->stats.write_hits_uncommitted,
2697		       wc->stats.write_hits_committed,
2698		       wc->stats.writes_around,
2699		       wc->stats.writes_allocate,
2700		       wc->stats.writes_blocked_on_freelist,
2701		       wc->stats.flushes,
2702		       wc->stats.discards);
2703		break;
2704	case STATUSTYPE_TABLE:
2705		DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's',
2706				wc->dev->name, wc->ssd_dev->name, wc->block_size);
2707		extra_args = 0;
2708		if (wc->start_sector_set)
2709			extra_args += 2;
2710		if (wc->high_wm_percent_set)
2711			extra_args += 2;
2712		if (wc->low_wm_percent_set)
2713			extra_args += 2;
2714		if (wc->max_writeback_jobs_set)
2715			extra_args += 2;
2716		if (wc->autocommit_blocks_set)
2717			extra_args += 2;
2718		if (wc->autocommit_time_set)
2719			extra_args += 2;
2720		if (wc->max_age_set)
2721			extra_args += 2;
2722		if (wc->cleaner_set)
2723			extra_args++;
2724		if (wc->writeback_fua_set)
2725			extra_args++;
2726		if (wc->metadata_only)
2727			extra_args++;
2728		if (wc->pause_set)
2729			extra_args += 2;
2730
2731		DMEMIT("%u", extra_args);
2732		if (wc->start_sector_set)
2733			DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector);
2734		if (wc->high_wm_percent_set)
2735			DMEMIT(" high_watermark %u", wc->high_wm_percent_value);
2736		if (wc->low_wm_percent_set)
2737			DMEMIT(" low_watermark %u", wc->low_wm_percent_value);
2738		if (wc->max_writeback_jobs_set)
2739			DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs);
2740		if (wc->autocommit_blocks_set)
2741			DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks);
2742		if (wc->autocommit_time_set)
2743			DMEMIT(" autocommit_time %u", wc->autocommit_time_value);
2744		if (wc->max_age_set)
2745			DMEMIT(" max_age %u", wc->max_age_value);
2746		if (wc->cleaner_set)
2747			DMEMIT(" cleaner");
2748		if (wc->writeback_fua_set)
2749			DMEMIT(" %sfua", wc->writeback_fua ? "" : "no");
2750		if (wc->metadata_only)
2751			DMEMIT(" metadata_only");
2752		if (wc->pause_set)
2753			DMEMIT(" pause_writeback %u", wc->pause_value);
2754		break;
2755	case STATUSTYPE_IMA:
2756		*result = '\0';
2757		break;
2758	}
2759}
2760
2761static struct target_type writecache_target = {
2762	.name			= "writecache",
2763	.version		= {1, 6, 0},
2764	.module			= THIS_MODULE,
2765	.ctr			= writecache_ctr,
2766	.dtr			= writecache_dtr,
2767	.status			= writecache_status,
2768	.postsuspend		= writecache_suspend,
2769	.resume			= writecache_resume,
2770	.message		= writecache_message,
2771	.map			= writecache_map,
2772	.end_io			= writecache_end_io,
2773	.iterate_devices	= writecache_iterate_devices,
2774	.io_hints		= writecache_io_hints,
2775};
2776module_dm(writecache);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2777
2778MODULE_DESCRIPTION(DM_NAME " writecache target");
2779MODULE_AUTHOR("Mikulas Patocka <dm-devel@lists.linux.dev>");
2780MODULE_LICENSE("GPL");
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2018 Red Hat. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include <linux/device-mapper.h>
   9#include <linux/module.h>
  10#include <linux/init.h>
  11#include <linux/vmalloc.h>
  12#include <linux/kthread.h>
  13#include <linux/dm-io.h>
  14#include <linux/dm-kcopyd.h>
  15#include <linux/dax.h>
  16#include <linux/pfn_t.h>
  17#include <linux/libnvdimm.h>
  18#include <linux/delay.h>
  19#include "dm-io-tracker.h"
  20
  21#define DM_MSG_PREFIX "writecache"
  22
  23#define HIGH_WATERMARK			50
  24#define LOW_WATERMARK			45
  25#define MAX_WRITEBACK_JOBS		min(0x10000000 / PAGE_SIZE, totalram_pages() / 16)
  26#define ENDIO_LATENCY			16
  27#define WRITEBACK_LATENCY		64
  28#define AUTOCOMMIT_BLOCKS_SSD		65536
  29#define AUTOCOMMIT_BLOCKS_PMEM		64
  30#define AUTOCOMMIT_MSEC			1000
  31#define MAX_AGE_DIV			16
  32#define MAX_AGE_UNSPECIFIED		-1UL
  33#define PAUSE_WRITEBACK			(HZ * 3)
  34
  35#define BITMAP_GRANULARITY	65536
  36#if BITMAP_GRANULARITY < PAGE_SIZE
  37#undef BITMAP_GRANULARITY
  38#define BITMAP_GRANULARITY	PAGE_SIZE
  39#endif
  40
  41#if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_FS_DAX)
  42#define DM_WRITECACHE_HAS_PMEM
  43#endif
  44
  45#ifdef DM_WRITECACHE_HAS_PMEM
  46#define pmem_assign(dest, src)					\
  47do {								\
  48	typeof(dest) uniq = (src);				\
  49	memcpy_flushcache(&(dest), &uniq, sizeof(dest));	\
  50} while (0)
  51#else
  52#define pmem_assign(dest, src)	((dest) = (src))
  53#endif
  54
  55#if IS_ENABLED(CONFIG_ARCH_HAS_COPY_MC) && defined(DM_WRITECACHE_HAS_PMEM)
  56#define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  57#endif
  58
  59#define MEMORY_SUPERBLOCK_MAGIC		0x23489321
  60#define MEMORY_SUPERBLOCK_VERSION	1
  61
  62struct wc_memory_entry {
  63	__le64 original_sector;
  64	__le64 seq_count;
  65};
  66
  67struct wc_memory_superblock {
  68	union {
  69		struct {
  70			__le32 magic;
  71			__le32 version;
  72			__le32 block_size;
  73			__le32 pad;
  74			__le64 n_blocks;
  75			__le64 seq_count;
  76		};
  77		__le64 padding[8];
  78	};
  79	struct wc_memory_entry entries[];
  80};
  81
  82struct wc_entry {
  83	struct rb_node rb_node;
  84	struct list_head lru;
  85	unsigned short wc_list_contiguous;
  86	bool write_in_progress
  87#if BITS_PER_LONG == 64
  88		:1
  89#endif
  90	;
  91	unsigned long index
  92#if BITS_PER_LONG == 64
  93		:47
  94#endif
  95	;
  96	unsigned long age;
  97#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  98	uint64_t original_sector;
  99	uint64_t seq_count;
 100#endif
 101};
 102
 103#ifdef DM_WRITECACHE_HAS_PMEM
 104#define WC_MODE_PMEM(wc)			((wc)->pmem_mode)
 105#define WC_MODE_FUA(wc)				((wc)->writeback_fua)
 106#else
 107#define WC_MODE_PMEM(wc)			false
 108#define WC_MODE_FUA(wc)				false
 109#endif
 110#define WC_MODE_SORT_FREELIST(wc)		(!WC_MODE_PMEM(wc))
 111
 112struct dm_writecache {
 113	struct mutex lock;
 114	struct list_head lru;
 115	union {
 116		struct list_head freelist;
 117		struct {
 118			struct rb_root freetree;
 119			struct wc_entry *current_free;
 120		};
 121	};
 122	struct rb_root tree;
 123
 124	size_t freelist_size;
 125	size_t writeback_size;
 126	size_t freelist_high_watermark;
 127	size_t freelist_low_watermark;
 128	unsigned long max_age;
 129	unsigned long pause;
 130
 131	unsigned uncommitted_blocks;
 132	unsigned autocommit_blocks;
 133	unsigned max_writeback_jobs;
 134
 135	int error;
 136
 137	unsigned long autocommit_jiffies;
 138	struct timer_list autocommit_timer;
 139	struct wait_queue_head freelist_wait;
 140
 141	struct timer_list max_age_timer;
 142
 143	atomic_t bio_in_progress[2];
 144	struct wait_queue_head bio_in_progress_wait[2];
 145
 146	struct dm_target *ti;
 147	struct dm_dev *dev;
 148	struct dm_dev *ssd_dev;
 149	sector_t start_sector;
 150	void *memory_map;
 151	uint64_t memory_map_size;
 152	size_t metadata_sectors;
 153	size_t n_blocks;
 154	uint64_t seq_count;
 155	sector_t data_device_sectors;
 156	void *block_start;
 157	struct wc_entry *entries;
 158	unsigned block_size;
 159	unsigned char block_size_bits;
 160
 161	bool pmem_mode:1;
 162	bool writeback_fua:1;
 163
 164	bool overwrote_committed:1;
 165	bool memory_vmapped:1;
 166
 167	bool start_sector_set:1;
 168	bool high_wm_percent_set:1;
 169	bool low_wm_percent_set:1;
 170	bool max_writeback_jobs_set:1;
 171	bool autocommit_blocks_set:1;
 172	bool autocommit_time_set:1;
 173	bool max_age_set:1;
 174	bool writeback_fua_set:1;
 175	bool flush_on_suspend:1;
 176	bool cleaner:1;
 177	bool cleaner_set:1;
 178	bool metadata_only:1;
 179	bool pause_set:1;
 180
 181	unsigned high_wm_percent_value;
 182	unsigned low_wm_percent_value;
 183	unsigned autocommit_time_value;
 184	unsigned max_age_value;
 185	unsigned pause_value;
 186
 187	unsigned writeback_all;
 188	struct workqueue_struct *writeback_wq;
 189	struct work_struct writeback_work;
 190	struct work_struct flush_work;
 191
 192	struct dm_io_tracker iot;
 193
 194	struct dm_io_client *dm_io;
 195
 196	raw_spinlock_t endio_list_lock;
 197	struct list_head endio_list;
 198	struct task_struct *endio_thread;
 199
 200	struct task_struct *flush_thread;
 201	struct bio_list flush_list;
 202
 203	struct dm_kcopyd_client *dm_kcopyd;
 204	unsigned long *dirty_bitmap;
 205	unsigned dirty_bitmap_size;
 206
 207	struct bio_set bio_set;
 208	mempool_t copy_pool;
 209
 210	struct {
 211		unsigned long long reads;
 212		unsigned long long read_hits;
 213		unsigned long long writes;
 214		unsigned long long write_hits_uncommitted;
 215		unsigned long long write_hits_committed;
 216		unsigned long long writes_around;
 217		unsigned long long writes_allocate;
 218		unsigned long long writes_blocked_on_freelist;
 219		unsigned long long flushes;
 220		unsigned long long discards;
 221	} stats;
 222};
 223
 224#define WB_LIST_INLINE		16
 225
 226struct writeback_struct {
 227	struct list_head endio_entry;
 228	struct dm_writecache *wc;
 229	struct wc_entry **wc_list;
 230	unsigned wc_list_n;
 231	struct wc_entry *wc_list_inline[WB_LIST_INLINE];
 232	struct bio bio;
 233};
 234
 235struct copy_struct {
 236	struct list_head endio_entry;
 237	struct dm_writecache *wc;
 238	struct wc_entry *e;
 239	unsigned n_entries;
 240	int error;
 241};
 242
 243DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle,
 244					    "A percentage of time allocated for data copying");
 245
 246static void wc_lock(struct dm_writecache *wc)
 247{
 248	mutex_lock(&wc->lock);
 249}
 250
 251static void wc_unlock(struct dm_writecache *wc)
 252{
 253	mutex_unlock(&wc->lock);
 254}
 255
 256#ifdef DM_WRITECACHE_HAS_PMEM
 257static int persistent_memory_claim(struct dm_writecache *wc)
 258{
 259	int r;
 260	loff_t s;
 261	long p, da;
 262	pfn_t pfn;
 263	int id;
 264	struct page **pages;
 265	sector_t offset;
 266
 267	wc->memory_vmapped = false;
 268
 269	s = wc->memory_map_size;
 270	p = s >> PAGE_SHIFT;
 271	if (!p) {
 272		r = -EINVAL;
 273		goto err1;
 274	}
 275	if (p != s >> PAGE_SHIFT) {
 276		r = -EOVERFLOW;
 277		goto err1;
 278	}
 279
 280	offset = get_start_sect(wc->ssd_dev->bdev);
 281	if (offset & (PAGE_SIZE / 512 - 1)) {
 282		r = -EINVAL;
 283		goto err1;
 284	}
 285	offset >>= PAGE_SHIFT - 9;
 286
 287	id = dax_read_lock();
 288
 289	da = dax_direct_access(wc->ssd_dev->dax_dev, offset, p, DAX_ACCESS,
 290			&wc->memory_map, &pfn);
 291	if (da < 0) {
 292		wc->memory_map = NULL;
 293		r = da;
 294		goto err2;
 295	}
 296	if (!pfn_t_has_page(pfn)) {
 297		wc->memory_map = NULL;
 298		r = -EOPNOTSUPP;
 299		goto err2;
 300	}
 301	if (da != p) {
 302		long i;
 
 303		wc->memory_map = NULL;
 304		pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL);
 305		if (!pages) {
 306			r = -ENOMEM;
 307			goto err2;
 308		}
 309		i = 0;
 310		do {
 311			long daa;
 
 312			daa = dax_direct_access(wc->ssd_dev->dax_dev, offset + i,
 313					p - i, DAX_ACCESS, NULL, &pfn);
 314			if (daa <= 0) {
 315				r = daa ? daa : -EINVAL;
 316				goto err3;
 317			}
 318			if (!pfn_t_has_page(pfn)) {
 319				r = -EOPNOTSUPP;
 320				goto err3;
 321			}
 322			while (daa-- && i < p) {
 323				pages[i++] = pfn_t_to_page(pfn);
 324				pfn.val++;
 325				if (!(i & 15))
 326					cond_resched();
 327			}
 328		} while (i < p);
 329		wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL);
 330		if (!wc->memory_map) {
 331			r = -ENOMEM;
 332			goto err3;
 333		}
 334		kvfree(pages);
 335		wc->memory_vmapped = true;
 336	}
 337
 338	dax_read_unlock(id);
 339
 340	wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT;
 341	wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT;
 342
 343	return 0;
 344err3:
 345	kvfree(pages);
 346err2:
 347	dax_read_unlock(id);
 348err1:
 349	return r;
 350}
 351#else
 352static int persistent_memory_claim(struct dm_writecache *wc)
 353{
 354	return -EOPNOTSUPP;
 355}
 356#endif
 357
 358static void persistent_memory_release(struct dm_writecache *wc)
 359{
 360	if (wc->memory_vmapped)
 361		vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT));
 362}
 363
 364static struct page *persistent_memory_page(void *addr)
 365{
 366	if (is_vmalloc_addr(addr))
 367		return vmalloc_to_page(addr);
 368	else
 369		return virt_to_page(addr);
 370}
 371
 372static unsigned persistent_memory_page_offset(void *addr)
 373{
 374	return (unsigned long)addr & (PAGE_SIZE - 1);
 375}
 376
 377static void persistent_memory_flush_cache(void *ptr, size_t size)
 378{
 379	if (is_vmalloc_addr(ptr))
 380		flush_kernel_vmap_range(ptr, size);
 381}
 382
 383static void persistent_memory_invalidate_cache(void *ptr, size_t size)
 384{
 385	if (is_vmalloc_addr(ptr))
 386		invalidate_kernel_vmap_range(ptr, size);
 387}
 388
 389static struct wc_memory_superblock *sb(struct dm_writecache *wc)
 390{
 391	return wc->memory_map;
 392}
 393
 394static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e)
 395{
 396	return &sb(wc)->entries[e->index];
 397}
 398
 399static void *memory_data(struct dm_writecache *wc, struct wc_entry *e)
 400{
 401	return (char *)wc->block_start + (e->index << wc->block_size_bits);
 402}
 403
 404static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e)
 405{
 406	return wc->start_sector + wc->metadata_sectors +
 407		((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT));
 408}
 409
 410static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e)
 411{
 412#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
 413	return e->original_sector;
 414#else
 415	return le64_to_cpu(memory_entry(wc, e)->original_sector);
 416#endif
 417}
 418
 419static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e)
 420{
 421#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
 422	return e->seq_count;
 423#else
 424	return le64_to_cpu(memory_entry(wc, e)->seq_count);
 425#endif
 426}
 427
 428static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e)
 429{
 430#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
 431	e->seq_count = -1;
 432#endif
 433	pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1));
 434}
 435
 436static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e,
 437					    uint64_t original_sector, uint64_t seq_count)
 438{
 439	struct wc_memory_entry me;
 440#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
 441	e->original_sector = original_sector;
 442	e->seq_count = seq_count;
 443#endif
 444	me.original_sector = cpu_to_le64(original_sector);
 445	me.seq_count = cpu_to_le64(seq_count);
 446	pmem_assign(*memory_entry(wc, e), me);
 447}
 448
 449#define writecache_error(wc, err, msg, arg...)				\
 450do {									\
 451	if (!cmpxchg(&(wc)->error, 0, err))				\
 452		DMERR(msg, ##arg);					\
 453	wake_up(&(wc)->freelist_wait);					\
 454} while (0)
 455
 456#define writecache_has_error(wc)	(unlikely(READ_ONCE((wc)->error)))
 457
 458static void writecache_flush_all_metadata(struct dm_writecache *wc)
 459{
 460	if (!WC_MODE_PMEM(wc))
 461		memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size);
 462}
 463
 464static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size)
 465{
 466	if (!WC_MODE_PMEM(wc))
 467		__set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY,
 468			  wc->dirty_bitmap);
 469}
 470
 471static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev);
 472
 473struct io_notify {
 474	struct dm_writecache *wc;
 475	struct completion c;
 476	atomic_t count;
 477};
 478
 479static void writecache_notify_io(unsigned long error, void *context)
 480{
 481	struct io_notify *endio = context;
 482
 483	if (unlikely(error != 0))
 484		writecache_error(endio->wc, -EIO, "error writing metadata");
 485	BUG_ON(atomic_read(&endio->count) <= 0);
 486	if (atomic_dec_and_test(&endio->count))
 487		complete(&endio->c);
 488}
 489
 490static void writecache_wait_for_ios(struct dm_writecache *wc, int direction)
 491{
 492	wait_event(wc->bio_in_progress_wait[direction],
 493		   !atomic_read(&wc->bio_in_progress[direction]));
 494}
 495
 496static void ssd_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
 497{
 498	struct dm_io_region region;
 499	struct dm_io_request req;
 500	struct io_notify endio = {
 501		wc,
 502		COMPLETION_INITIALIZER_ONSTACK(endio.c),
 503		ATOMIC_INIT(1),
 504	};
 505	unsigned bitmap_bits = wc->dirty_bitmap_size * 8;
 506	unsigned i = 0;
 507
 508	while (1) {
 509		unsigned j;
 
 510		i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i);
 511		if (unlikely(i == bitmap_bits))
 512			break;
 513		j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i);
 514
 515		region.bdev = wc->ssd_dev->bdev;
 516		region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
 517		region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
 518
 519		if (unlikely(region.sector >= wc->metadata_sectors))
 520			break;
 521		if (unlikely(region.sector + region.count > wc->metadata_sectors))
 522			region.count = wc->metadata_sectors - region.sector;
 523
 524		region.sector += wc->start_sector;
 525		atomic_inc(&endio.count);
 526		req.bi_opf = REQ_OP_WRITE | REQ_SYNC;
 527		req.mem.type = DM_IO_VMA;
 528		req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY;
 529		req.client = wc->dm_io;
 530		req.notify.fn = writecache_notify_io;
 531		req.notify.context = &endio;
 532
 533		/* writing via async dm-io (implied by notify.fn above) won't return an error */
 534	        (void) dm_io(&req, 1, &region, NULL);
 535		i = j;
 536	}
 537
 538	writecache_notify_io(0, &endio);
 539	wait_for_completion_io(&endio.c);
 540
 541	if (wait_for_ios)
 542		writecache_wait_for_ios(wc, WRITE);
 543
 544	writecache_disk_flush(wc, wc->ssd_dev);
 545
 546	memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size);
 547}
 548
 549static void ssd_commit_superblock(struct dm_writecache *wc)
 550{
 551	int r;
 552	struct dm_io_region region;
 553	struct dm_io_request req;
 554
 555	region.bdev = wc->ssd_dev->bdev;
 556	region.sector = 0;
 557	region.count = max(4096U, wc->block_size) >> SECTOR_SHIFT;
 558
 559	if (unlikely(region.sector + region.count > wc->metadata_sectors))
 560		region.count = wc->metadata_sectors - region.sector;
 561
 562	region.sector += wc->start_sector;
 563
 564	req.bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_FUA;
 565	req.mem.type = DM_IO_VMA;
 566	req.mem.ptr.vma = (char *)wc->memory_map;
 567	req.client = wc->dm_io;
 568	req.notify.fn = NULL;
 569	req.notify.context = NULL;
 570
 571	r = dm_io(&req, 1, &region, NULL);
 572	if (unlikely(r))
 573		writecache_error(wc, r, "error writing superblock");
 574}
 575
 576static void writecache_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
 577{
 578	if (WC_MODE_PMEM(wc))
 579		pmem_wmb();
 580	else
 581		ssd_commit_flushed(wc, wait_for_ios);
 582}
 583
 584static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev)
 585{
 586	int r;
 587	struct dm_io_region region;
 588	struct dm_io_request req;
 589
 590	region.bdev = dev->bdev;
 591	region.sector = 0;
 592	region.count = 0;
 593	req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
 594	req.mem.type = DM_IO_KMEM;
 595	req.mem.ptr.addr = NULL;
 596	req.client = wc->dm_io;
 597	req.notify.fn = NULL;
 598
 599	r = dm_io(&req, 1, &region, NULL);
 600	if (unlikely(r))
 601		writecache_error(wc, r, "error flushing metadata: %d", r);
 602}
 603
 604#define WFE_RETURN_FOLLOWING	1
 605#define WFE_LOWEST_SEQ		2
 606
 607static struct wc_entry *writecache_find_entry(struct dm_writecache *wc,
 608					      uint64_t block, int flags)
 609{
 610	struct wc_entry *e;
 611	struct rb_node *node = wc->tree.rb_node;
 612
 613	if (unlikely(!node))
 614		return NULL;
 615
 616	while (1) {
 617		e = container_of(node, struct wc_entry, rb_node);
 618		if (read_original_sector(wc, e) == block)
 619			break;
 620
 621		node = (read_original_sector(wc, e) >= block ?
 622			e->rb_node.rb_left : e->rb_node.rb_right);
 623		if (unlikely(!node)) {
 624			if (!(flags & WFE_RETURN_FOLLOWING))
 625				return NULL;
 626			if (read_original_sector(wc, e) >= block) {
 627				return e;
 628			} else {
 629				node = rb_next(&e->rb_node);
 630				if (unlikely(!node))
 631					return NULL;
 632				e = container_of(node, struct wc_entry, rb_node);
 633				return e;
 634			}
 635		}
 636	}
 637
 638	while (1) {
 639		struct wc_entry *e2;
 
 640		if (flags & WFE_LOWEST_SEQ)
 641			node = rb_prev(&e->rb_node);
 642		else
 643			node = rb_next(&e->rb_node);
 644		if (unlikely(!node))
 645			return e;
 646		e2 = container_of(node, struct wc_entry, rb_node);
 647		if (read_original_sector(wc, e2) != block)
 648			return e;
 649		e = e2;
 650	}
 651}
 652
 653static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins)
 654{
 655	struct wc_entry *e;
 656	struct rb_node **node = &wc->tree.rb_node, *parent = NULL;
 657
 658	while (*node) {
 659		e = container_of(*node, struct wc_entry, rb_node);
 660		parent = &e->rb_node;
 661		if (read_original_sector(wc, e) > read_original_sector(wc, ins))
 662			node = &parent->rb_left;
 663		else
 664			node = &parent->rb_right;
 665	}
 666	rb_link_node(&ins->rb_node, parent, node);
 667	rb_insert_color(&ins->rb_node, &wc->tree);
 668	list_add(&ins->lru, &wc->lru);
 669	ins->age = jiffies;
 670}
 671
 672static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e)
 673{
 674	list_del(&e->lru);
 675	rb_erase(&e->rb_node, &wc->tree);
 676}
 677
 678static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e)
 679{
 680	if (WC_MODE_SORT_FREELIST(wc)) {
 681		struct rb_node **node = &wc->freetree.rb_node, *parent = NULL;
 
 682		if (unlikely(!*node))
 683			wc->current_free = e;
 684		while (*node) {
 685			parent = *node;
 686			if (&e->rb_node < *node)
 687				node = &parent->rb_left;
 688			else
 689				node = &parent->rb_right;
 690		}
 691		rb_link_node(&e->rb_node, parent, node);
 692		rb_insert_color(&e->rb_node, &wc->freetree);
 693	} else {
 694		list_add_tail(&e->lru, &wc->freelist);
 695	}
 696	wc->freelist_size++;
 697}
 698
 699static inline void writecache_verify_watermark(struct dm_writecache *wc)
 700{
 701	if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark))
 702		queue_work(wc->writeback_wq, &wc->writeback_work);
 703}
 704
 705static void writecache_max_age_timer(struct timer_list *t)
 706{
 707	struct dm_writecache *wc = from_timer(wc, t, max_age_timer);
 708
 709	if (!dm_suspended(wc->ti) && !writecache_has_error(wc)) {
 710		queue_work(wc->writeback_wq, &wc->writeback_work);
 711		mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);
 712	}
 713}
 714
 715static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc, sector_t expected_sector)
 716{
 717	struct wc_entry *e;
 718
 719	if (WC_MODE_SORT_FREELIST(wc)) {
 720		struct rb_node *next;
 
 721		if (unlikely(!wc->current_free))
 722			return NULL;
 723		e = wc->current_free;
 724		if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
 725			return NULL;
 726		next = rb_next(&e->rb_node);
 727		rb_erase(&e->rb_node, &wc->freetree);
 728		if (unlikely(!next))
 729			next = rb_first(&wc->freetree);
 730		wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL;
 731	} else {
 732		if (unlikely(list_empty(&wc->freelist)))
 733			return NULL;
 734		e = container_of(wc->freelist.next, struct wc_entry, lru);
 735		if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
 736			return NULL;
 737		list_del(&e->lru);
 738	}
 739	wc->freelist_size--;
 740
 741	writecache_verify_watermark(wc);
 742
 743	return e;
 744}
 745
 746static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e)
 747{
 748	writecache_unlink(wc, e);
 749	writecache_add_to_freelist(wc, e);
 750	clear_seq_count(wc, e);
 751	writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
 752	if (unlikely(waitqueue_active(&wc->freelist_wait)))
 753		wake_up(&wc->freelist_wait);
 754}
 755
 756static void writecache_wait_on_freelist(struct dm_writecache *wc)
 757{
 758	DEFINE_WAIT(wait);
 759
 760	prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE);
 761	wc_unlock(wc);
 762	io_schedule();
 763	finish_wait(&wc->freelist_wait, &wait);
 764	wc_lock(wc);
 765}
 766
 767static void writecache_poison_lists(struct dm_writecache *wc)
 768{
 769	/*
 770	 * Catch incorrect access to these values while the device is suspended.
 771	 */
 772	memset(&wc->tree, -1, sizeof wc->tree);
 773	wc->lru.next = LIST_POISON1;
 774	wc->lru.prev = LIST_POISON2;
 775	wc->freelist.next = LIST_POISON1;
 776	wc->freelist.prev = LIST_POISON2;
 777}
 778
 779static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e)
 780{
 781	writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
 782	if (WC_MODE_PMEM(wc))
 783		writecache_flush_region(wc, memory_data(wc, e), wc->block_size);
 784}
 785
 786static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e)
 787{
 788	return read_seq_count(wc, e) < wc->seq_count;
 789}
 790
 791static void writecache_flush(struct dm_writecache *wc)
 792{
 793	struct wc_entry *e, *e2;
 794	bool need_flush_after_free;
 795
 796	wc->uncommitted_blocks = 0;
 797	del_timer(&wc->autocommit_timer);
 798
 799	if (list_empty(&wc->lru))
 800		return;
 801
 802	e = container_of(wc->lru.next, struct wc_entry, lru);
 803	if (writecache_entry_is_committed(wc, e)) {
 804		if (wc->overwrote_committed) {
 805			writecache_wait_for_ios(wc, WRITE);
 806			writecache_disk_flush(wc, wc->ssd_dev);
 807			wc->overwrote_committed = false;
 808		}
 809		return;
 810	}
 811	while (1) {
 812		writecache_flush_entry(wc, e);
 813		if (unlikely(e->lru.next == &wc->lru))
 814			break;
 815		e2 = container_of(e->lru.next, struct wc_entry, lru);
 816		if (writecache_entry_is_committed(wc, e2))
 817			break;
 818		e = e2;
 819		cond_resched();
 820	}
 821	writecache_commit_flushed(wc, true);
 822
 823	wc->seq_count++;
 824	pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count));
 825	if (WC_MODE_PMEM(wc))
 826		writecache_commit_flushed(wc, false);
 827	else
 828		ssd_commit_superblock(wc);
 829
 830	wc->overwrote_committed = false;
 831
 832	need_flush_after_free = false;
 833	while (1) {
 834		/* Free another committed entry with lower seq-count */
 835		struct rb_node *rb_node = rb_prev(&e->rb_node);
 836
 837		if (rb_node) {
 838			e2 = container_of(rb_node, struct wc_entry, rb_node);
 839			if (read_original_sector(wc, e2) == read_original_sector(wc, e) &&
 840			    likely(!e2->write_in_progress)) {
 841				writecache_free_entry(wc, e2);
 842				need_flush_after_free = true;
 843			}
 844		}
 845		if (unlikely(e->lru.prev == &wc->lru))
 846			break;
 847		e = container_of(e->lru.prev, struct wc_entry, lru);
 848		cond_resched();
 849	}
 850
 851	if (need_flush_after_free)
 852		writecache_commit_flushed(wc, false);
 853}
 854
 855static void writecache_flush_work(struct work_struct *work)
 856{
 857	struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work);
 858
 859	wc_lock(wc);
 860	writecache_flush(wc);
 861	wc_unlock(wc);
 862}
 863
 864static void writecache_autocommit_timer(struct timer_list *t)
 865{
 866	struct dm_writecache *wc = from_timer(wc, t, autocommit_timer);
 
 867	if (!writecache_has_error(wc))
 868		queue_work(wc->writeback_wq, &wc->flush_work);
 869}
 870
 871static void writecache_schedule_autocommit(struct dm_writecache *wc)
 872{
 873	if (!timer_pending(&wc->autocommit_timer))
 874		mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies);
 875}
 876
 877static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end)
 878{
 879	struct wc_entry *e;
 880	bool discarded_something = false;
 881
 882	e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ);
 883	if (unlikely(!e))
 884		return;
 885
 886	while (read_original_sector(wc, e) < end) {
 887		struct rb_node *node = rb_next(&e->rb_node);
 888
 889		if (likely(!e->write_in_progress)) {
 890			if (!discarded_something) {
 891				if (!WC_MODE_PMEM(wc)) {
 892					writecache_wait_for_ios(wc, READ);
 893					writecache_wait_for_ios(wc, WRITE);
 894				}
 895				discarded_something = true;
 896			}
 897			if (!writecache_entry_is_committed(wc, e))
 898				wc->uncommitted_blocks--;
 899			writecache_free_entry(wc, e);
 900		}
 901
 902		if (unlikely(!node))
 903			break;
 904
 905		e = container_of(node, struct wc_entry, rb_node);
 906	}
 907
 908	if (discarded_something)
 909		writecache_commit_flushed(wc, false);
 910}
 911
 912static bool writecache_wait_for_writeback(struct dm_writecache *wc)
 913{
 914	if (wc->writeback_size) {
 915		writecache_wait_on_freelist(wc);
 916		return true;
 917	}
 918	return false;
 919}
 920
 921static void writecache_suspend(struct dm_target *ti)
 922{
 923	struct dm_writecache *wc = ti->private;
 924	bool flush_on_suspend;
 925
 926	del_timer_sync(&wc->autocommit_timer);
 927	del_timer_sync(&wc->max_age_timer);
 928
 929	wc_lock(wc);
 930	writecache_flush(wc);
 931	flush_on_suspend = wc->flush_on_suspend;
 932	if (flush_on_suspend) {
 933		wc->flush_on_suspend = false;
 934		wc->writeback_all++;
 935		queue_work(wc->writeback_wq, &wc->writeback_work);
 936	}
 937	wc_unlock(wc);
 938
 939	drain_workqueue(wc->writeback_wq);
 940
 941	wc_lock(wc);
 942	if (flush_on_suspend)
 943		wc->writeback_all--;
 944	while (writecache_wait_for_writeback(wc));
 
 945
 946	if (WC_MODE_PMEM(wc))
 947		persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
 948
 949	writecache_poison_lists(wc);
 950
 951	wc_unlock(wc);
 952}
 953
 954static int writecache_alloc_entries(struct dm_writecache *wc)
 955{
 956	size_t b;
 957
 958	if (wc->entries)
 959		return 0;
 960	wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks));
 961	if (!wc->entries)
 962		return -ENOMEM;
 963	for (b = 0; b < wc->n_blocks; b++) {
 964		struct wc_entry *e = &wc->entries[b];
 
 965		e->index = b;
 966		e->write_in_progress = false;
 967		cond_resched();
 968	}
 969
 970	return 0;
 971}
 972
 973static int writecache_read_metadata(struct dm_writecache *wc, sector_t n_sectors)
 974{
 975	struct dm_io_region region;
 976	struct dm_io_request req;
 977
 978	region.bdev = wc->ssd_dev->bdev;
 979	region.sector = wc->start_sector;
 980	region.count = n_sectors;
 981	req.bi_opf = REQ_OP_READ | REQ_SYNC;
 982	req.mem.type = DM_IO_VMA;
 983	req.mem.ptr.vma = (char *)wc->memory_map;
 984	req.client = wc->dm_io;
 985	req.notify.fn = NULL;
 986
 987	return dm_io(&req, 1, &region, NULL);
 988}
 989
 990static void writecache_resume(struct dm_target *ti)
 991{
 992	struct dm_writecache *wc = ti->private;
 993	size_t b;
 994	bool need_flush = false;
 995	__le64 sb_seq_count;
 996	int r;
 997
 998	wc_lock(wc);
 999
1000	wc->data_device_sectors = bdev_nr_sectors(wc->dev->bdev);
1001
1002	if (WC_MODE_PMEM(wc)) {
1003		persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size);
1004	} else {
1005		r = writecache_read_metadata(wc, wc->metadata_sectors);
1006		if (r) {
1007			size_t sb_entries_offset;
 
1008			writecache_error(wc, r, "unable to read metadata: %d", r);
1009			sb_entries_offset = offsetof(struct wc_memory_superblock, entries);
1010			memset((char *)wc->memory_map + sb_entries_offset, -1,
1011			       (wc->metadata_sectors << SECTOR_SHIFT) - sb_entries_offset);
1012		}
1013	}
1014
1015	wc->tree = RB_ROOT;
1016	INIT_LIST_HEAD(&wc->lru);
1017	if (WC_MODE_SORT_FREELIST(wc)) {
1018		wc->freetree = RB_ROOT;
1019		wc->current_free = NULL;
1020	} else {
1021		INIT_LIST_HEAD(&wc->freelist);
1022	}
1023	wc->freelist_size = 0;
1024
1025	r = copy_mc_to_kernel(&sb_seq_count, &sb(wc)->seq_count,
1026			      sizeof(uint64_t));
1027	if (r) {
1028		writecache_error(wc, r, "hardware memory error when reading superblock: %d", r);
1029		sb_seq_count = cpu_to_le64(0);
1030	}
1031	wc->seq_count = le64_to_cpu(sb_seq_count);
1032
1033#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
1034	for (b = 0; b < wc->n_blocks; b++) {
1035		struct wc_entry *e = &wc->entries[b];
1036		struct wc_memory_entry wme;
 
1037		if (writecache_has_error(wc)) {
1038			e->original_sector = -1;
1039			e->seq_count = -1;
1040			continue;
1041		}
1042		r = copy_mc_to_kernel(&wme, memory_entry(wc, e),
1043				      sizeof(struct wc_memory_entry));
1044		if (r) {
1045			writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d",
1046					 (unsigned long)b, r);
1047			e->original_sector = -1;
1048			e->seq_count = -1;
1049		} else {
1050			e->original_sector = le64_to_cpu(wme.original_sector);
1051			e->seq_count = le64_to_cpu(wme.seq_count);
1052		}
1053		cond_resched();
1054	}
1055#endif
1056	for (b = 0; b < wc->n_blocks; b++) {
1057		struct wc_entry *e = &wc->entries[b];
 
1058		if (!writecache_entry_is_committed(wc, e)) {
1059			if (read_seq_count(wc, e) != -1) {
1060erase_this:
1061				clear_seq_count(wc, e);
1062				need_flush = true;
1063			}
1064			writecache_add_to_freelist(wc, e);
1065		} else {
1066			struct wc_entry *old;
1067
1068			old = writecache_find_entry(wc, read_original_sector(wc, e), 0);
1069			if (!old) {
1070				writecache_insert_entry(wc, e);
1071			} else {
1072				if (read_seq_count(wc, old) == read_seq_count(wc, e)) {
1073					writecache_error(wc, -EINVAL,
1074						 "two identical entries, position %llu, sector %llu, sequence %llu",
1075						 (unsigned long long)b, (unsigned long long)read_original_sector(wc, e),
1076						 (unsigned long long)read_seq_count(wc, e));
1077				}
1078				if (read_seq_count(wc, old) > read_seq_count(wc, e)) {
1079					goto erase_this;
1080				} else {
1081					writecache_free_entry(wc, old);
1082					writecache_insert_entry(wc, e);
1083					need_flush = true;
1084				}
1085			}
1086		}
1087		cond_resched();
1088	}
1089
1090	if (need_flush) {
1091		writecache_flush_all_metadata(wc);
1092		writecache_commit_flushed(wc, false);
1093	}
1094
1095	writecache_verify_watermark(wc);
1096
1097	if (wc->max_age != MAX_AGE_UNSPECIFIED)
1098		mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);
1099
1100	wc_unlock(wc);
1101}
1102
1103static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1104{
1105	if (argc != 1)
1106		return -EINVAL;
1107
1108	wc_lock(wc);
1109	if (dm_suspended(wc->ti)) {
1110		wc_unlock(wc);
1111		return -EBUSY;
1112	}
1113	if (writecache_has_error(wc)) {
1114		wc_unlock(wc);
1115		return -EIO;
1116	}
1117
1118	writecache_flush(wc);
1119	wc->writeback_all++;
1120	queue_work(wc->writeback_wq, &wc->writeback_work);
1121	wc_unlock(wc);
1122
1123	flush_workqueue(wc->writeback_wq);
1124
1125	wc_lock(wc);
1126	wc->writeback_all--;
1127	if (writecache_has_error(wc)) {
1128		wc_unlock(wc);
1129		return -EIO;
1130	}
1131	wc_unlock(wc);
1132
1133	return 0;
1134}
1135
1136static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1137{
1138	if (argc != 1)
1139		return -EINVAL;
1140
1141	wc_lock(wc);
1142	wc->flush_on_suspend = true;
1143	wc_unlock(wc);
1144
1145	return 0;
1146}
1147
1148static void activate_cleaner(struct dm_writecache *wc)
1149{
1150	wc->flush_on_suspend = true;
1151	wc->cleaner = true;
1152	wc->freelist_high_watermark = wc->n_blocks;
1153	wc->freelist_low_watermark = wc->n_blocks;
1154}
1155
1156static int process_cleaner_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1157{
1158	if (argc != 1)
1159		return -EINVAL;
1160
1161	wc_lock(wc);
1162	activate_cleaner(wc);
1163	if (!dm_suspended(wc->ti))
1164		writecache_verify_watermark(wc);
1165	wc_unlock(wc);
1166
1167	return 0;
1168}
1169
1170static int process_clear_stats_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1171{
1172	if (argc != 1)
1173		return -EINVAL;
1174
1175	wc_lock(wc);
1176	memset(&wc->stats, 0, sizeof wc->stats);
1177	wc_unlock(wc);
1178
1179	return 0;
1180}
1181
1182static int writecache_message(struct dm_target *ti, unsigned argc, char **argv,
1183			      char *result, unsigned maxlen)
1184{
1185	int r = -EINVAL;
1186	struct dm_writecache *wc = ti->private;
1187
1188	if (!strcasecmp(argv[0], "flush"))
1189		r = process_flush_mesg(argc, argv, wc);
1190	else if (!strcasecmp(argv[0], "flush_on_suspend"))
1191		r = process_flush_on_suspend_mesg(argc, argv, wc);
1192	else if (!strcasecmp(argv[0], "cleaner"))
1193		r = process_cleaner_mesg(argc, argv, wc);
1194	else if (!strcasecmp(argv[0], "clear_stats"))
1195		r = process_clear_stats_mesg(argc, argv, wc);
1196	else
1197		DMERR("unrecognised message received: %s", argv[0]);
1198
1199	return r;
1200}
1201
1202static void memcpy_flushcache_optimized(void *dest, void *source, size_t size)
1203{
1204	/*
1205	 * clflushopt performs better with block size 1024, 2048, 4096
1206	 * non-temporal stores perform better with block size 512
1207	 *
1208	 * block size   512             1024            2048            4096
1209	 * movnti       496 MB/s        642 MB/s        725 MB/s        744 MB/s
1210	 * clflushopt   373 MB/s        688 MB/s        1.1 GB/s        1.2 GB/s
1211	 *
1212	 * We see that movnti performs better for 512-byte blocks, and
1213	 * clflushopt performs better for 1024-byte and larger blocks. So, we
1214	 * prefer clflushopt for sizes >= 768.
1215	 *
1216	 * NOTE: this happens to be the case now (with dm-writecache's single
1217	 * threaded model) but re-evaluate this once memcpy_flushcache() is
1218	 * enabled to use movdir64b which might invalidate this performance
1219	 * advantage seen with cache-allocating-writes plus flushing.
1220	 */
1221#ifdef CONFIG_X86
1222	if (static_cpu_has(X86_FEATURE_CLFLUSHOPT) &&
1223	    likely(boot_cpu_data.x86_clflush_size == 64) &&
1224	    likely(size >= 768)) {
1225		do {
1226			memcpy((void *)dest, (void *)source, 64);
1227			clflushopt((void *)dest);
1228			dest += 64;
1229			source += 64;
1230			size -= 64;
1231		} while (size >= 64);
1232		return;
1233	}
1234#endif
1235	memcpy_flushcache(dest, source, size);
1236}
1237
1238static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data)
1239{
1240	void *buf;
1241	unsigned size;
1242	int rw = bio_data_dir(bio);
1243	unsigned remaining_size = wc->block_size;
1244
1245	do {
1246		struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
 
1247		buf = bvec_kmap_local(&bv);
1248		size = bv.bv_len;
1249		if (unlikely(size > remaining_size))
1250			size = remaining_size;
1251
1252		if (rw == READ) {
1253			int r;
 
1254			r = copy_mc_to_kernel(buf, data, size);
1255			flush_dcache_page(bio_page(bio));
1256			if (unlikely(r)) {
1257				writecache_error(wc, r, "hardware memory error when reading data: %d", r);
1258				bio->bi_status = BLK_STS_IOERR;
1259			}
1260		} else {
1261			flush_dcache_page(bio_page(bio));
1262			memcpy_flushcache_optimized(data, buf, size);
1263		}
1264
1265		kunmap_local(buf);
1266
1267		data = (char *)data + size;
1268		remaining_size -= size;
1269		bio_advance(bio, size);
1270	} while (unlikely(remaining_size));
1271}
1272
1273static int writecache_flush_thread(void *data)
1274{
1275	struct dm_writecache *wc = data;
1276
1277	while (1) {
1278		struct bio *bio;
1279
1280		wc_lock(wc);
1281		bio = bio_list_pop(&wc->flush_list);
1282		if (!bio) {
1283			set_current_state(TASK_INTERRUPTIBLE);
1284			wc_unlock(wc);
1285
1286			if (unlikely(kthread_should_stop())) {
1287				set_current_state(TASK_RUNNING);
1288				break;
1289			}
1290
1291			schedule();
1292			continue;
1293		}
1294
1295		if (bio_op(bio) == REQ_OP_DISCARD) {
1296			writecache_discard(wc, bio->bi_iter.bi_sector,
1297					   bio_end_sector(bio));
1298			wc_unlock(wc);
1299			bio_set_dev(bio, wc->dev->bdev);
1300			submit_bio_noacct(bio);
1301		} else {
1302			writecache_flush(wc);
1303			wc_unlock(wc);
1304			if (writecache_has_error(wc))
1305				bio->bi_status = BLK_STS_IOERR;
1306			bio_endio(bio);
1307		}
1308	}
1309
1310	return 0;
1311}
1312
1313static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio)
1314{
1315	if (bio_list_empty(&wc->flush_list))
1316		wake_up_process(wc->flush_thread);
1317	bio_list_add(&wc->flush_list, bio);
1318}
1319
1320enum wc_map_op {
1321	WC_MAP_SUBMIT,
1322	WC_MAP_REMAP,
1323	WC_MAP_REMAP_ORIGIN,
1324	WC_MAP_RETURN,
1325	WC_MAP_ERROR,
1326};
1327
1328static void writecache_map_remap_origin(struct dm_writecache *wc, struct bio *bio,
1329					struct wc_entry *e)
1330{
1331	if (e) {
1332		sector_t next_boundary =
1333			read_original_sector(wc, e) - bio->bi_iter.bi_sector;
1334		if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT)
1335			dm_accept_partial_bio(bio, next_boundary);
1336	}
1337}
1338
1339static enum wc_map_op writecache_map_read(struct dm_writecache *wc, struct bio *bio)
1340{
1341	enum wc_map_op map_op;
1342	struct wc_entry *e;
1343
1344read_next_block:
1345	wc->stats.reads++;
1346	e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1347	if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) {
1348		wc->stats.read_hits++;
1349		if (WC_MODE_PMEM(wc)) {
1350			bio_copy_block(wc, bio, memory_data(wc, e));
1351			if (bio->bi_iter.bi_size)
1352				goto read_next_block;
1353			map_op = WC_MAP_SUBMIT;
1354		} else {
1355			dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
1356			bio_set_dev(bio, wc->ssd_dev->bdev);
1357			bio->bi_iter.bi_sector = cache_sector(wc, e);
1358			if (!writecache_entry_is_committed(wc, e))
1359				writecache_wait_for_ios(wc, WRITE);
1360			map_op = WC_MAP_REMAP;
1361		}
1362	} else {
1363		writecache_map_remap_origin(wc, bio, e);
1364		wc->stats.reads += (bio->bi_iter.bi_size - wc->block_size) >> wc->block_size_bits;
1365		map_op = WC_MAP_REMAP_ORIGIN;
1366	}
1367
1368	return map_op;
1369}
1370
1371static void writecache_bio_copy_ssd(struct dm_writecache *wc, struct bio *bio,
1372				    struct wc_entry *e, bool search_used)
1373{
1374	unsigned bio_size = wc->block_size;
1375	sector_t start_cache_sec = cache_sector(wc, e);
1376	sector_t current_cache_sec = start_cache_sec + (bio_size >> SECTOR_SHIFT);
1377
1378	while (bio_size < bio->bi_iter.bi_size) {
1379		if (!search_used) {
1380			struct wc_entry *f = writecache_pop_from_freelist(wc, current_cache_sec);
 
1381			if (!f)
1382				break;
1383			write_original_sector_seq_count(wc, f, bio->bi_iter.bi_sector +
1384							(bio_size >> SECTOR_SHIFT), wc->seq_count);
1385			writecache_insert_entry(wc, f);
1386			wc->uncommitted_blocks++;
1387		} else {
1388			struct wc_entry *f;
1389			struct rb_node *next = rb_next(&e->rb_node);
 
1390			if (!next)
1391				break;
1392			f = container_of(next, struct wc_entry, rb_node);
1393			if (f != e + 1)
1394				break;
1395			if (read_original_sector(wc, f) !=
1396			    read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1397				break;
1398			if (unlikely(f->write_in_progress))
1399				break;
1400			if (writecache_entry_is_committed(wc, f))
1401				wc->overwrote_committed = true;
1402			e = f;
1403		}
1404		bio_size += wc->block_size;
1405		current_cache_sec += wc->block_size >> SECTOR_SHIFT;
1406	}
1407
1408	bio_set_dev(bio, wc->ssd_dev->bdev);
1409	bio->bi_iter.bi_sector = start_cache_sec;
1410	dm_accept_partial_bio(bio, bio_size >> SECTOR_SHIFT);
1411
1412	wc->stats.writes += bio->bi_iter.bi_size >> wc->block_size_bits;
1413	wc->stats.writes_allocate += (bio->bi_iter.bi_size - wc->block_size) >> wc->block_size_bits;
1414
1415	if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) {
1416		wc->uncommitted_blocks = 0;
1417		queue_work(wc->writeback_wq, &wc->flush_work);
1418	} else {
1419		writecache_schedule_autocommit(wc);
1420	}
1421}
1422
1423static enum wc_map_op writecache_map_write(struct dm_writecache *wc, struct bio *bio)
1424{
1425	struct wc_entry *e;
1426
1427	do {
1428		bool found_entry = false;
1429		bool search_used = false;
 
1430		if (writecache_has_error(wc)) {
1431			wc->stats.writes += bio->bi_iter.bi_size >> wc->block_size_bits;
1432			return WC_MAP_ERROR;
1433		}
1434		e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0);
1435		if (e) {
1436			if (!writecache_entry_is_committed(wc, e)) {
1437				wc->stats.write_hits_uncommitted++;
1438				search_used = true;
1439				goto bio_copy;
1440			}
1441			wc->stats.write_hits_committed++;
1442			if (!WC_MODE_PMEM(wc) && !e->write_in_progress) {
1443				wc->overwrote_committed = true;
1444				search_used = true;
1445				goto bio_copy;
1446			}
1447			found_entry = true;
1448		} else {
1449			if (unlikely(wc->cleaner) ||
1450			    (wc->metadata_only && !(bio->bi_opf & REQ_META)))
1451				goto direct_write;
1452		}
1453		e = writecache_pop_from_freelist(wc, (sector_t)-1);
1454		if (unlikely(!e)) {
1455			if (!WC_MODE_PMEM(wc) && !found_entry) {
1456direct_write:
1457				e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1458				writecache_map_remap_origin(wc, bio, e);
1459				wc->stats.writes_around += bio->bi_iter.bi_size >> wc->block_size_bits;
1460				wc->stats.writes += bio->bi_iter.bi_size >> wc->block_size_bits;
1461				return WC_MAP_REMAP_ORIGIN;
1462			}
1463			wc->stats.writes_blocked_on_freelist++;
1464			writecache_wait_on_freelist(wc);
1465			continue;
1466		}
1467		write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count);
1468		writecache_insert_entry(wc, e);
1469		wc->uncommitted_blocks++;
1470		wc->stats.writes_allocate++;
1471bio_copy:
1472		if (WC_MODE_PMEM(wc)) {
1473			bio_copy_block(wc, bio, memory_data(wc, e));
1474			wc->stats.writes++;
1475		} else {
1476			writecache_bio_copy_ssd(wc, bio, e, search_used);
1477			return WC_MAP_REMAP;
1478		}
1479	} while (bio->bi_iter.bi_size);
1480
1481	if (unlikely(bio->bi_opf & REQ_FUA || wc->uncommitted_blocks >= wc->autocommit_blocks))
1482		writecache_flush(wc);
1483	else
1484		writecache_schedule_autocommit(wc);
1485
1486	return WC_MAP_SUBMIT;
1487}
1488
1489static enum wc_map_op writecache_map_flush(struct dm_writecache *wc, struct bio *bio)
1490{
1491	if (writecache_has_error(wc))
1492		return WC_MAP_ERROR;
1493
1494	if (WC_MODE_PMEM(wc)) {
1495		wc->stats.flushes++;
1496		writecache_flush(wc);
1497		if (writecache_has_error(wc))
1498			return WC_MAP_ERROR;
1499		else if (unlikely(wc->cleaner) || unlikely(wc->metadata_only))
1500			return WC_MAP_REMAP_ORIGIN;
1501		return WC_MAP_SUBMIT;
1502	}
1503	/* SSD: */
1504	if (dm_bio_get_target_bio_nr(bio))
1505		return WC_MAP_REMAP_ORIGIN;
1506	wc->stats.flushes++;
1507	writecache_offload_bio(wc, bio);
1508	return WC_MAP_RETURN;
1509}
1510
1511static enum wc_map_op writecache_map_discard(struct dm_writecache *wc, struct bio *bio)
1512{
1513	wc->stats.discards += bio->bi_iter.bi_size >> wc->block_size_bits;
1514
1515	if (writecache_has_error(wc))
1516		return WC_MAP_ERROR;
1517
1518	if (WC_MODE_PMEM(wc)) {
1519		writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio));
1520		return WC_MAP_REMAP_ORIGIN;
1521	}
1522	/* SSD: */
1523	writecache_offload_bio(wc, bio);
1524	return WC_MAP_RETURN;
1525}
1526
1527static int writecache_map(struct dm_target *ti, struct bio *bio)
1528{
1529	struct dm_writecache *wc = ti->private;
1530	enum wc_map_op map_op;
1531
1532	bio->bi_private = NULL;
1533
1534	wc_lock(wc);
1535
1536	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1537		map_op = writecache_map_flush(wc, bio);
1538		goto done;
1539	}
1540
1541	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1542
1543	if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
1544				(wc->block_size / 512 - 1)) != 0)) {
1545		DMERR("I/O is not aligned, sector %llu, size %u, block size %u",
1546		      (unsigned long long)bio->bi_iter.bi_sector,
1547		      bio->bi_iter.bi_size, wc->block_size);
1548		map_op = WC_MAP_ERROR;
1549		goto done;
1550	}
1551
1552	if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
1553		map_op = writecache_map_discard(wc, bio);
1554		goto done;
1555	}
1556
1557	if (bio_data_dir(bio) == READ)
1558		map_op = writecache_map_read(wc, bio);
1559	else
1560		map_op = writecache_map_write(wc, bio);
1561done:
1562	switch (map_op) {
1563	case WC_MAP_REMAP_ORIGIN:
1564		if (likely(wc->pause != 0)) {
1565			if (bio_op(bio) == REQ_OP_WRITE) {
1566				dm_iot_io_begin(&wc->iot, 1);
1567				bio->bi_private = (void *)2;
1568			}
1569		}
1570		bio_set_dev(bio, wc->dev->bdev);
1571		wc_unlock(wc);
1572		return DM_MAPIO_REMAPPED;
1573
1574	case WC_MAP_REMAP:
1575		/* make sure that writecache_end_io decrements bio_in_progress: */
1576		bio->bi_private = (void *)1;
1577		atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]);
1578		wc_unlock(wc);
1579		return DM_MAPIO_REMAPPED;
1580
1581	case WC_MAP_SUBMIT:
1582		wc_unlock(wc);
1583		bio_endio(bio);
1584		return DM_MAPIO_SUBMITTED;
1585
1586	case WC_MAP_RETURN:
1587		wc_unlock(wc);
1588		return DM_MAPIO_SUBMITTED;
1589
1590	case WC_MAP_ERROR:
1591		wc_unlock(wc);
1592		bio_io_error(bio);
1593		return DM_MAPIO_SUBMITTED;
1594
1595	default:
1596		BUG();
1597		wc_unlock(wc);
1598		return DM_MAPIO_KILL;
1599	}
1600}
1601
1602static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
1603{
1604	struct dm_writecache *wc = ti->private;
1605
1606	if (bio->bi_private == (void *)1) {
1607		int dir = bio_data_dir(bio);
 
1608		if (atomic_dec_and_test(&wc->bio_in_progress[dir]))
1609			if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir])))
1610				wake_up(&wc->bio_in_progress_wait[dir]);
1611	} else if (bio->bi_private == (void *)2) {
1612		dm_iot_io_end(&wc->iot, 1);
1613	}
1614	return 0;
1615}
1616
1617static int writecache_iterate_devices(struct dm_target *ti,
1618				      iterate_devices_callout_fn fn, void *data)
1619{
1620	struct dm_writecache *wc = ti->private;
1621
1622	return fn(ti, wc->dev, 0, ti->len, data);
1623}
1624
1625static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits)
1626{
1627	struct dm_writecache *wc = ti->private;
1628
1629	if (limits->logical_block_size < wc->block_size)
1630		limits->logical_block_size = wc->block_size;
1631
1632	if (limits->physical_block_size < wc->block_size)
1633		limits->physical_block_size = wc->block_size;
1634
1635	if (limits->io_min < wc->block_size)
1636		limits->io_min = wc->block_size;
1637}
1638
1639
1640static void writecache_writeback_endio(struct bio *bio)
1641{
1642	struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio);
1643	struct dm_writecache *wc = wb->wc;
1644	unsigned long flags;
1645
1646	raw_spin_lock_irqsave(&wc->endio_list_lock, flags);
1647	if (unlikely(list_empty(&wc->endio_list)))
1648		wake_up_process(wc->endio_thread);
1649	list_add_tail(&wb->endio_entry, &wc->endio_list);
1650	raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags);
1651}
1652
1653static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr)
1654{
1655	struct copy_struct *c = ptr;
1656	struct dm_writecache *wc = c->wc;
1657
1658	c->error = likely(!(read_err | write_err)) ? 0 : -EIO;
1659
1660	raw_spin_lock_irq(&wc->endio_list_lock);
1661	if (unlikely(list_empty(&wc->endio_list)))
1662		wake_up_process(wc->endio_thread);
1663	list_add_tail(&c->endio_entry, &wc->endio_list);
1664	raw_spin_unlock_irq(&wc->endio_list_lock);
1665}
1666
1667static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list)
1668{
1669	unsigned i;
1670	struct writeback_struct *wb;
1671	struct wc_entry *e;
1672	unsigned long n_walked = 0;
1673
1674	do {
1675		wb = list_entry(list->next, struct writeback_struct, endio_entry);
1676		list_del(&wb->endio_entry);
1677
1678		if (unlikely(wb->bio.bi_status != BLK_STS_OK))
1679			writecache_error(wc, blk_status_to_errno(wb->bio.bi_status),
1680					"write error %d", wb->bio.bi_status);
1681		i = 0;
1682		do {
1683			e = wb->wc_list[i];
1684			BUG_ON(!e->write_in_progress);
1685			e->write_in_progress = false;
1686			INIT_LIST_HEAD(&e->lru);
1687			if (!writecache_has_error(wc))
1688				writecache_free_entry(wc, e);
1689			BUG_ON(!wc->writeback_size);
1690			wc->writeback_size--;
1691			n_walked++;
1692			if (unlikely(n_walked >= ENDIO_LATENCY)) {
1693				writecache_commit_flushed(wc, false);
1694				wc_unlock(wc);
1695				wc_lock(wc);
1696				n_walked = 0;
1697			}
1698		} while (++i < wb->wc_list_n);
1699
1700		if (wb->wc_list != wb->wc_list_inline)
1701			kfree(wb->wc_list);
1702		bio_put(&wb->bio);
1703	} while (!list_empty(list));
1704}
1705
1706static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list)
1707{
1708	struct copy_struct *c;
1709	struct wc_entry *e;
1710
1711	do {
1712		c = list_entry(list->next, struct copy_struct, endio_entry);
1713		list_del(&c->endio_entry);
1714
1715		if (unlikely(c->error))
1716			writecache_error(wc, c->error, "copy error");
1717
1718		e = c->e;
1719		do {
1720			BUG_ON(!e->write_in_progress);
1721			e->write_in_progress = false;
1722			INIT_LIST_HEAD(&e->lru);
1723			if (!writecache_has_error(wc))
1724				writecache_free_entry(wc, e);
1725
1726			BUG_ON(!wc->writeback_size);
1727			wc->writeback_size--;
1728			e++;
1729		} while (--c->n_entries);
1730		mempool_free(c, &wc->copy_pool);
1731	} while (!list_empty(list));
1732}
1733
1734static int writecache_endio_thread(void *data)
1735{
1736	struct dm_writecache *wc = data;
1737
1738	while (1) {
1739		struct list_head list;
1740
1741		raw_spin_lock_irq(&wc->endio_list_lock);
1742		if (!list_empty(&wc->endio_list))
1743			goto pop_from_list;
1744		set_current_state(TASK_INTERRUPTIBLE);
1745		raw_spin_unlock_irq(&wc->endio_list_lock);
1746
1747		if (unlikely(kthread_should_stop())) {
1748			set_current_state(TASK_RUNNING);
1749			break;
1750		}
1751
1752		schedule();
1753
1754		continue;
1755
1756pop_from_list:
1757		list = wc->endio_list;
1758		list.next->prev = list.prev->next = &list;
1759		INIT_LIST_HEAD(&wc->endio_list);
1760		raw_spin_unlock_irq(&wc->endio_list_lock);
1761
1762		if (!WC_MODE_FUA(wc))
1763			writecache_disk_flush(wc, wc->dev);
1764
1765		wc_lock(wc);
1766
1767		if (WC_MODE_PMEM(wc)) {
1768			__writecache_endio_pmem(wc, &list);
1769		} else {
1770			__writecache_endio_ssd(wc, &list);
1771			writecache_wait_for_ios(wc, READ);
1772		}
1773
1774		writecache_commit_flushed(wc, false);
1775
1776		wc_unlock(wc);
1777	}
1778
1779	return 0;
1780}
1781
1782static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e)
1783{
1784	struct dm_writecache *wc = wb->wc;
1785	unsigned block_size = wc->block_size;
1786	void *address = memory_data(wc, e);
1787
1788	persistent_memory_flush_cache(address, block_size);
1789
1790	if (unlikely(bio_end_sector(&wb->bio) >= wc->data_device_sectors))
1791		return true;
1792
1793	return bio_add_page(&wb->bio, persistent_memory_page(address),
1794			    block_size, persistent_memory_page_offset(address)) != 0;
1795}
1796
1797struct writeback_list {
1798	struct list_head list;
1799	size_t size;
1800};
1801
1802static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl)
1803{
1804	if (unlikely(wc->max_writeback_jobs)) {
1805		if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) {
1806			wc_lock(wc);
1807			while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs)
1808				writecache_wait_on_freelist(wc);
1809			wc_unlock(wc);
1810		}
1811	}
1812	cond_resched();
1813}
1814
1815static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl)
1816{
1817	struct wc_entry *e, *f;
1818	struct bio *bio;
1819	struct writeback_struct *wb;
1820	unsigned max_pages;
1821
1822	while (wbl->size) {
1823		wbl->size--;
1824		e = container_of(wbl->list.prev, struct wc_entry, lru);
1825		list_del(&e->lru);
1826
1827		max_pages = e->wc_list_contiguous;
1828
1829		bio = bio_alloc_bioset(wc->dev->bdev, max_pages, REQ_OP_WRITE,
1830				       GFP_NOIO, &wc->bio_set);
1831		wb = container_of(bio, struct writeback_struct, bio);
1832		wb->wc = wc;
1833		bio->bi_end_io = writecache_writeback_endio;
1834		bio->bi_iter.bi_sector = read_original_sector(wc, e);
1835		if (max_pages <= WB_LIST_INLINE ||
1836		    unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *),
1837							   GFP_NOIO | __GFP_NORETRY |
1838							   __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
 
 
 
1839			wb->wc_list = wb->wc_list_inline;
1840			max_pages = WB_LIST_INLINE;
1841		}
1842
1843		BUG_ON(!wc_add_block(wb, e));
1844
1845		wb->wc_list[0] = e;
1846		wb->wc_list_n = 1;
1847
1848		while (wbl->size && wb->wc_list_n < max_pages) {
1849			f = container_of(wbl->list.prev, struct wc_entry, lru);
1850			if (read_original_sector(wc, f) !=
1851			    read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1852				break;
1853			if (!wc_add_block(wb, f))
1854				break;
1855			wbl->size--;
1856			list_del(&f->lru);
1857			wb->wc_list[wb->wc_list_n++] = f;
1858			e = f;
1859		}
1860		if (WC_MODE_FUA(wc))
1861			bio->bi_opf |= REQ_FUA;
1862		if (writecache_has_error(wc)) {
1863			bio->bi_status = BLK_STS_IOERR;
1864			bio_endio(bio);
1865		} else if (unlikely(!bio_sectors(bio))) {
1866			bio->bi_status = BLK_STS_OK;
1867			bio_endio(bio);
1868		} else {
1869			submit_bio(bio);
1870		}
1871
1872		__writeback_throttle(wc, wbl);
1873	}
1874}
1875
1876static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl)
1877{
1878	struct wc_entry *e, *f;
1879	struct dm_io_region from, to;
1880	struct copy_struct *c;
1881
1882	while (wbl->size) {
1883		unsigned n_sectors;
1884
1885		wbl->size--;
1886		e = container_of(wbl->list.prev, struct wc_entry, lru);
1887		list_del(&e->lru);
1888
1889		n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT);
1890
1891		from.bdev = wc->ssd_dev->bdev;
1892		from.sector = cache_sector(wc, e);
1893		from.count = n_sectors;
1894		to.bdev = wc->dev->bdev;
1895		to.sector = read_original_sector(wc, e);
1896		to.count = n_sectors;
1897
1898		c = mempool_alloc(&wc->copy_pool, GFP_NOIO);
1899		c->wc = wc;
1900		c->e = e;
1901		c->n_entries = e->wc_list_contiguous;
1902
1903		while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) {
1904			wbl->size--;
1905			f = container_of(wbl->list.prev, struct wc_entry, lru);
1906			BUG_ON(f != e + 1);
1907			list_del(&f->lru);
1908			e = f;
1909		}
1910
1911		if (unlikely(to.sector + to.count > wc->data_device_sectors)) {
1912			if (to.sector >= wc->data_device_sectors) {
1913				writecache_copy_endio(0, 0, c);
1914				continue;
1915			}
1916			from.count = to.count = wc->data_device_sectors - to.sector;
1917		}
1918
1919		dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c);
1920
1921		__writeback_throttle(wc, wbl);
1922	}
1923}
1924
1925static void writecache_writeback(struct work_struct *work)
1926{
1927	struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work);
1928	struct blk_plug plug;
1929	struct wc_entry *f, *g, *e = NULL;
1930	struct rb_node *node, *next_node;
1931	struct list_head skipped;
1932	struct writeback_list wbl;
1933	unsigned long n_walked;
1934
1935	if (!WC_MODE_PMEM(wc)) {
1936		/* Wait for any active kcopyd work on behalf of ssd writeback */
1937		dm_kcopyd_client_flush(wc->dm_kcopyd);
1938	}
1939
1940	if (likely(wc->pause != 0)) {
1941		while (1) {
1942			unsigned long idle;
 
1943			if (unlikely(wc->cleaner) || unlikely(wc->writeback_all) ||
1944			    unlikely(dm_suspended(wc->ti)))
1945				break;
1946			idle = dm_iot_idle_time(&wc->iot);
1947			if (idle >= wc->pause)
1948				break;
1949			idle = wc->pause - idle;
1950			if (idle > HZ)
1951				idle = HZ;
1952			schedule_timeout_idle(idle);
1953		}
1954	}
1955
1956	wc_lock(wc);
1957restart:
1958	if (writecache_has_error(wc)) {
1959		wc_unlock(wc);
1960		return;
1961	}
1962
1963	if (unlikely(wc->writeback_all)) {
1964		if (writecache_wait_for_writeback(wc))
1965			goto restart;
1966	}
1967
1968	if (wc->overwrote_committed) {
1969		writecache_wait_for_ios(wc, WRITE);
1970	}
1971
1972	n_walked = 0;
1973	INIT_LIST_HEAD(&skipped);
1974	INIT_LIST_HEAD(&wbl.list);
1975	wbl.size = 0;
1976	while (!list_empty(&wc->lru) &&
1977	       (wc->writeback_all ||
1978		wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark ||
1979		(jiffies - container_of(wc->lru.prev, struct wc_entry, lru)->age >=
1980		 wc->max_age - wc->max_age / MAX_AGE_DIV))) {
1981
1982		n_walked++;
1983		if (unlikely(n_walked > WRITEBACK_LATENCY) &&
1984		    likely(!wc->writeback_all)) {
1985			if (likely(!dm_suspended(wc->ti)))
1986				queue_work(wc->writeback_wq, &wc->writeback_work);
1987			break;
1988		}
1989
1990		if (unlikely(wc->writeback_all)) {
1991			if (unlikely(!e)) {
1992				writecache_flush(wc);
1993				e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node);
1994			} else
1995				e = g;
1996		} else
1997			e = container_of(wc->lru.prev, struct wc_entry, lru);
1998		BUG_ON(e->write_in_progress);
1999		if (unlikely(!writecache_entry_is_committed(wc, e))) {
2000			writecache_flush(wc);
2001		}
2002		node = rb_prev(&e->rb_node);
2003		if (node) {
2004			f = container_of(node, struct wc_entry, rb_node);
2005			if (unlikely(read_original_sector(wc, f) ==
2006				     read_original_sector(wc, e))) {
2007				BUG_ON(!f->write_in_progress);
2008				list_move(&e->lru, &skipped);
2009				cond_resched();
2010				continue;
2011			}
2012		}
2013		wc->writeback_size++;
2014		list_move(&e->lru, &wbl.list);
2015		wbl.size++;
2016		e->write_in_progress = true;
2017		e->wc_list_contiguous = 1;
2018
2019		f = e;
2020
2021		while (1) {
2022			next_node = rb_next(&f->rb_node);
2023			if (unlikely(!next_node))
2024				break;
2025			g = container_of(next_node, struct wc_entry, rb_node);
2026			if (unlikely(read_original_sector(wc, g) ==
2027			    read_original_sector(wc, f))) {
2028				f = g;
2029				continue;
2030			}
2031			if (read_original_sector(wc, g) !=
2032			    read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT))
2033				break;
2034			if (unlikely(g->write_in_progress))
2035				break;
2036			if (unlikely(!writecache_entry_is_committed(wc, g)))
2037				break;
2038
2039			if (!WC_MODE_PMEM(wc)) {
2040				if (g != f + 1)
2041					break;
2042			}
2043
2044			n_walked++;
2045			//if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all))
2046			//	break;
2047
2048			wc->writeback_size++;
2049			list_move(&g->lru, &wbl.list);
2050			wbl.size++;
2051			g->write_in_progress = true;
2052			g->wc_list_contiguous = BIO_MAX_VECS;
2053			f = g;
2054			e->wc_list_contiguous++;
2055			if (unlikely(e->wc_list_contiguous == BIO_MAX_VECS)) {
2056				if (unlikely(wc->writeback_all)) {
2057					next_node = rb_next(&f->rb_node);
2058					if (likely(next_node))
2059						g = container_of(next_node, struct wc_entry, rb_node);
2060				}
2061				break;
2062			}
2063		}
2064		cond_resched();
2065	}
2066
2067	if (!list_empty(&skipped)) {
2068		list_splice_tail(&skipped, &wc->lru);
2069		/*
2070		 * If we didn't do any progress, we must wait until some
2071		 * writeback finishes to avoid burning CPU in a loop
2072		 */
2073		if (unlikely(!wbl.size))
2074			writecache_wait_for_writeback(wc);
2075	}
2076
2077	wc_unlock(wc);
2078
2079	blk_start_plug(&plug);
2080
2081	if (WC_MODE_PMEM(wc))
2082		__writecache_writeback_pmem(wc, &wbl);
2083	else
2084		__writecache_writeback_ssd(wc, &wbl);
2085
2086	blk_finish_plug(&plug);
2087
2088	if (unlikely(wc->writeback_all)) {
2089		wc_lock(wc);
2090		while (writecache_wait_for_writeback(wc));
 
2091		wc_unlock(wc);
2092	}
2093}
2094
2095static int calculate_memory_size(uint64_t device_size, unsigned block_size,
2096				 size_t *n_blocks_p, size_t *n_metadata_blocks_p)
2097{
2098	uint64_t n_blocks, offset;
2099	struct wc_entry e;
2100
2101	n_blocks = device_size;
2102	do_div(n_blocks, block_size + sizeof(struct wc_memory_entry));
2103
2104	while (1) {
2105		if (!n_blocks)
2106			return -ENOSPC;
2107		/* Verify the following entries[n_blocks] won't overflow */
2108		if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) /
2109				 sizeof(struct wc_memory_entry)))
2110			return -EFBIG;
2111		offset = offsetof(struct wc_memory_superblock, entries[n_blocks]);
2112		offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1);
2113		if (offset + n_blocks * block_size <= device_size)
2114			break;
2115		n_blocks--;
2116	}
2117
2118	/* check if the bit field overflows */
2119	e.index = n_blocks;
2120	if (e.index != n_blocks)
2121		return -EFBIG;
2122
2123	if (n_blocks_p)
2124		*n_blocks_p = n_blocks;
2125	if (n_metadata_blocks_p)
2126		*n_metadata_blocks_p = offset >> __ffs(block_size);
2127	return 0;
2128}
2129
2130static int init_memory(struct dm_writecache *wc)
2131{
2132	size_t b;
2133	int r;
2134
2135	r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL);
2136	if (r)
2137		return r;
2138
2139	r = writecache_alloc_entries(wc);
2140	if (r)
2141		return r;
2142
2143	for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++)
2144		pmem_assign(sb(wc)->padding[b], cpu_to_le64(0));
2145	pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION));
2146	pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size));
2147	pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks));
2148	pmem_assign(sb(wc)->seq_count, cpu_to_le64(0));
2149
2150	for (b = 0; b < wc->n_blocks; b++) {
2151		write_original_sector_seq_count(wc, &wc->entries[b], -1, -1);
2152		cond_resched();
2153	}
2154
2155	writecache_flush_all_metadata(wc);
2156	writecache_commit_flushed(wc, false);
2157	pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC));
2158	writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic);
2159	writecache_commit_flushed(wc, false);
2160
2161	return 0;
2162}
2163
2164static void writecache_dtr(struct dm_target *ti)
2165{
2166	struct dm_writecache *wc = ti->private;
2167
2168	if (!wc)
2169		return;
2170
2171	if (wc->endio_thread)
2172		kthread_stop(wc->endio_thread);
2173
2174	if (wc->flush_thread)
2175		kthread_stop(wc->flush_thread);
2176
2177	bioset_exit(&wc->bio_set);
2178
2179	mempool_exit(&wc->copy_pool);
2180
2181	if (wc->writeback_wq)
2182		destroy_workqueue(wc->writeback_wq);
2183
2184	if (wc->dev)
2185		dm_put_device(ti, wc->dev);
2186
2187	if (wc->ssd_dev)
2188		dm_put_device(ti, wc->ssd_dev);
2189
2190	vfree(wc->entries);
2191
2192	if (wc->memory_map) {
2193		if (WC_MODE_PMEM(wc))
2194			persistent_memory_release(wc);
2195		else
2196			vfree(wc->memory_map);
2197	}
2198
2199	if (wc->dm_kcopyd)
2200		dm_kcopyd_client_destroy(wc->dm_kcopyd);
2201
2202	if (wc->dm_io)
2203		dm_io_client_destroy(wc->dm_io);
2204
2205	vfree(wc->dirty_bitmap);
2206
2207	kfree(wc);
2208}
2209
2210static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2211{
2212	struct dm_writecache *wc;
2213	struct dm_arg_set as;
2214	const char *string;
2215	unsigned opt_params;
2216	size_t offset, data_size;
2217	int i, r;
2218	char dummy;
2219	int high_wm_percent = HIGH_WATERMARK;
2220	int low_wm_percent = LOW_WATERMARK;
2221	uint64_t x;
2222	struct wc_memory_superblock s;
2223
2224	static struct dm_arg _args[] = {
2225		{0, 18, "Invalid number of feature args"},
2226	};
2227
2228	as.argc = argc;
2229	as.argv = argv;
2230
2231	wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL);
2232	if (!wc) {
2233		ti->error = "Cannot allocate writecache structure";
2234		r = -ENOMEM;
2235		goto bad;
2236	}
2237	ti->private = wc;
2238	wc->ti = ti;
2239
2240	mutex_init(&wc->lock);
2241	wc->max_age = MAX_AGE_UNSPECIFIED;
2242	writecache_poison_lists(wc);
2243	init_waitqueue_head(&wc->freelist_wait);
2244	timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0);
2245	timer_setup(&wc->max_age_timer, writecache_max_age_timer, 0);
2246
2247	for (i = 0; i < 2; i++) {
2248		atomic_set(&wc->bio_in_progress[i], 0);
2249		init_waitqueue_head(&wc->bio_in_progress_wait[i]);
2250	}
2251
2252	wc->dm_io = dm_io_client_create();
2253	if (IS_ERR(wc->dm_io)) {
2254		r = PTR_ERR(wc->dm_io);
2255		ti->error = "Unable to allocate dm-io client";
2256		wc->dm_io = NULL;
2257		goto bad;
2258	}
2259
2260	wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1);
2261	if (!wc->writeback_wq) {
2262		r = -ENOMEM;
2263		ti->error = "Could not allocate writeback workqueue";
2264		goto bad;
2265	}
2266	INIT_WORK(&wc->writeback_work, writecache_writeback);
2267	INIT_WORK(&wc->flush_work, writecache_flush_work);
2268
2269	dm_iot_init(&wc->iot);
2270
2271	raw_spin_lock_init(&wc->endio_list_lock);
2272	INIT_LIST_HEAD(&wc->endio_list);
2273	wc->endio_thread = kthread_run(writecache_endio_thread, wc, "writecache_endio");
2274	if (IS_ERR(wc->endio_thread)) {
2275		r = PTR_ERR(wc->endio_thread);
2276		wc->endio_thread = NULL;
2277		ti->error = "Couldn't spawn endio thread";
2278		goto bad;
2279	}
2280
2281	/*
2282	 * Parse the mode (pmem or ssd)
2283	 */
2284	string = dm_shift_arg(&as);
2285	if (!string)
2286		goto bad_arguments;
2287
2288	if (!strcasecmp(string, "s")) {
2289		wc->pmem_mode = false;
2290	} else if (!strcasecmp(string, "p")) {
2291#ifdef DM_WRITECACHE_HAS_PMEM
2292		wc->pmem_mode = true;
2293		wc->writeback_fua = true;
2294#else
2295		/*
2296		 * If the architecture doesn't support persistent memory or
2297		 * the kernel doesn't support any DAX drivers, this driver can
2298		 * only be used in SSD-only mode.
2299		 */
2300		r = -EOPNOTSUPP;
2301		ti->error = "Persistent memory or DAX not supported on this system";
2302		goto bad;
2303#endif
2304	} else {
2305		goto bad_arguments;
2306	}
2307
2308	if (WC_MODE_PMEM(wc)) {
2309		r = bioset_init(&wc->bio_set, BIO_POOL_SIZE,
2310				offsetof(struct writeback_struct, bio),
2311				BIOSET_NEED_BVECS);
2312		if (r) {
2313			ti->error = "Could not allocate bio set";
2314			goto bad;
2315		}
2316	} else {
2317		wc->pause = PAUSE_WRITEBACK;
2318		r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct));
2319		if (r) {
2320			ti->error = "Could not allocate mempool";
2321			goto bad;
2322		}
2323	}
2324
2325	/*
2326	 * Parse the origin data device
2327	 */
2328	string = dm_shift_arg(&as);
2329	if (!string)
2330		goto bad_arguments;
2331	r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev);
2332	if (r) {
2333		ti->error = "Origin data device lookup failed";
2334		goto bad;
2335	}
2336
2337	/*
2338	 * Parse cache data device (be it pmem or ssd)
2339	 */
2340	string = dm_shift_arg(&as);
2341	if (!string)
2342		goto bad_arguments;
2343
2344	r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev);
2345	if (r) {
2346		ti->error = "Cache data device lookup failed";
2347		goto bad;
2348	}
2349	wc->memory_map_size = bdev_nr_bytes(wc->ssd_dev->bdev);
2350
2351	/*
2352	 * Parse the cache block size
2353	 */
2354	string = dm_shift_arg(&as);
2355	if (!string)
2356		goto bad_arguments;
2357	if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 ||
2358	    wc->block_size < 512 || wc->block_size > PAGE_SIZE ||
2359	    (wc->block_size & (wc->block_size - 1))) {
2360		r = -EINVAL;
2361		ti->error = "Invalid block size";
2362		goto bad;
2363	}
2364	if (wc->block_size < bdev_logical_block_size(wc->dev->bdev) ||
2365	    wc->block_size < bdev_logical_block_size(wc->ssd_dev->bdev)) {
2366		r = -EINVAL;
2367		ti->error = "Block size is smaller than device logical block size";
2368		goto bad;
2369	}
2370	wc->block_size_bits = __ffs(wc->block_size);
2371
2372	wc->max_writeback_jobs = MAX_WRITEBACK_JOBS;
2373	wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM;
2374	wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC);
2375
2376	/*
2377	 * Parse optional arguments
2378	 */
2379	r = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2380	if (r)
2381		goto bad;
2382
2383	while (opt_params) {
2384		string = dm_shift_arg(&as), opt_params--;
2385		if (!strcasecmp(string, "start_sector") && opt_params >= 1) {
2386			unsigned long long start_sector;
 
2387			string = dm_shift_arg(&as), opt_params--;
2388			if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1)
2389				goto invalid_optional;
2390			wc->start_sector = start_sector;
2391			wc->start_sector_set = true;
2392			if (wc->start_sector != start_sector ||
2393			    wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT)
2394				goto invalid_optional;
2395		} else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) {
2396			string = dm_shift_arg(&as), opt_params--;
2397			if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1)
2398				goto invalid_optional;
2399			if (high_wm_percent < 0 || high_wm_percent > 100)
2400				goto invalid_optional;
2401			wc->high_wm_percent_value = high_wm_percent;
2402			wc->high_wm_percent_set = true;
2403		} else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) {
2404			string = dm_shift_arg(&as), opt_params--;
2405			if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1)
2406				goto invalid_optional;
2407			if (low_wm_percent < 0 || low_wm_percent > 100)
2408				goto invalid_optional;
2409			wc->low_wm_percent_value = low_wm_percent;
2410			wc->low_wm_percent_set = true;
2411		} else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) {
2412			string = dm_shift_arg(&as), opt_params--;
2413			if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1)
2414				goto invalid_optional;
2415			wc->max_writeback_jobs_set = true;
2416		} else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) {
2417			string = dm_shift_arg(&as), opt_params--;
2418			if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1)
2419				goto invalid_optional;
2420			wc->autocommit_blocks_set = true;
2421		} else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) {
2422			unsigned autocommit_msecs;
 
2423			string = dm_shift_arg(&as), opt_params--;
2424			if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1)
2425				goto invalid_optional;
2426			if (autocommit_msecs > 3600000)
2427				goto invalid_optional;
2428			wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs);
2429			wc->autocommit_time_value = autocommit_msecs;
2430			wc->autocommit_time_set = true;
2431		} else if (!strcasecmp(string, "max_age") && opt_params >= 1) {
2432			unsigned max_age_msecs;
 
2433			string = dm_shift_arg(&as), opt_params--;
2434			if (sscanf(string, "%u%c", &max_age_msecs, &dummy) != 1)
2435				goto invalid_optional;
2436			if (max_age_msecs > 86400000)
2437				goto invalid_optional;
2438			wc->max_age = msecs_to_jiffies(max_age_msecs);
2439			wc->max_age_set = true;
2440			wc->max_age_value = max_age_msecs;
2441		} else if (!strcasecmp(string, "cleaner")) {
2442			wc->cleaner_set = true;
2443			wc->cleaner = true;
2444		} else if (!strcasecmp(string, "fua")) {
2445			if (WC_MODE_PMEM(wc)) {
2446				wc->writeback_fua = true;
2447				wc->writeback_fua_set = true;
2448			} else goto invalid_optional;
 
2449		} else if (!strcasecmp(string, "nofua")) {
2450			if (WC_MODE_PMEM(wc)) {
2451				wc->writeback_fua = false;
2452				wc->writeback_fua_set = true;
2453			} else goto invalid_optional;
 
2454		} else if (!strcasecmp(string, "metadata_only")) {
2455			wc->metadata_only = true;
2456		} else if (!strcasecmp(string, "pause_writeback") && opt_params >= 1) {
2457			unsigned pause_msecs;
 
2458			if (WC_MODE_PMEM(wc))
2459				goto invalid_optional;
2460			string = dm_shift_arg(&as), opt_params--;
2461			if (sscanf(string, "%u%c", &pause_msecs, &dummy) != 1)
2462				goto invalid_optional;
2463			if (pause_msecs > 60000)
2464				goto invalid_optional;
2465			wc->pause = msecs_to_jiffies(pause_msecs);
2466			wc->pause_set = true;
2467			wc->pause_value = pause_msecs;
2468		} else {
2469invalid_optional:
2470			r = -EINVAL;
2471			ti->error = "Invalid optional argument";
2472			goto bad;
2473		}
2474	}
2475
2476	if (high_wm_percent < low_wm_percent) {
2477		r = -EINVAL;
2478		ti->error = "High watermark must be greater than or equal to low watermark";
2479		goto bad;
2480	}
2481
2482	if (WC_MODE_PMEM(wc)) {
2483		if (!dax_synchronous(wc->ssd_dev->dax_dev)) {
2484			r = -EOPNOTSUPP;
2485			ti->error = "Asynchronous persistent memory not supported as pmem cache";
2486			goto bad;
2487		}
2488
2489		r = persistent_memory_claim(wc);
2490		if (r) {
2491			ti->error = "Unable to map persistent memory for cache";
2492			goto bad;
2493		}
2494	} else {
2495		size_t n_blocks, n_metadata_blocks;
2496		uint64_t n_bitmap_bits;
2497
2498		wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT;
2499
2500		bio_list_init(&wc->flush_list);
2501		wc->flush_thread = kthread_run(writecache_flush_thread, wc, "dm_writecache_flush");
2502		if (IS_ERR(wc->flush_thread)) {
2503			r = PTR_ERR(wc->flush_thread);
2504			wc->flush_thread = NULL;
2505			ti->error = "Couldn't spawn flush thread";
2506			goto bad;
2507		}
2508
2509		r = calculate_memory_size(wc->memory_map_size, wc->block_size,
2510					  &n_blocks, &n_metadata_blocks);
2511		if (r) {
2512			ti->error = "Invalid device size";
2513			goto bad;
2514		}
2515
2516		n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) +
2517				 BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY;
2518		/* this is limitation of test_bit functions */
2519		if (n_bitmap_bits > 1U << 31) {
2520			r = -EFBIG;
2521			ti->error = "Invalid device size";
2522			goto bad;
2523		}
2524
2525		wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits);
2526		if (!wc->memory_map) {
2527			r = -ENOMEM;
2528			ti->error = "Unable to allocate memory for metadata";
2529			goto bad;
2530		}
2531
2532		wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2533		if (IS_ERR(wc->dm_kcopyd)) {
2534			r = PTR_ERR(wc->dm_kcopyd);
2535			ti->error = "Unable to allocate dm-kcopyd client";
2536			wc->dm_kcopyd = NULL;
2537			goto bad;
2538		}
2539
2540		wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT);
2541		wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) /
2542			BITS_PER_LONG * sizeof(unsigned long);
2543		wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size);
2544		if (!wc->dirty_bitmap) {
2545			r = -ENOMEM;
2546			ti->error = "Unable to allocate dirty bitmap";
2547			goto bad;
2548		}
2549
2550		r = writecache_read_metadata(wc, wc->block_size >> SECTOR_SHIFT);
2551		if (r) {
2552			ti->error = "Unable to read first block of metadata";
2553			goto bad;
2554		}
2555	}
2556
2557	r = copy_mc_to_kernel(&s, sb(wc), sizeof(struct wc_memory_superblock));
2558	if (r) {
2559		ti->error = "Hardware memory error when reading superblock";
2560		goto bad;
2561	}
2562	if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) {
2563		r = init_memory(wc);
2564		if (r) {
2565			ti->error = "Unable to initialize device";
2566			goto bad;
2567		}
2568		r = copy_mc_to_kernel(&s, sb(wc),
2569				      sizeof(struct wc_memory_superblock));
2570		if (r) {
2571			ti->error = "Hardware memory error when reading superblock";
2572			goto bad;
2573		}
2574	}
2575
2576	if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) {
2577		ti->error = "Invalid magic in the superblock";
2578		r = -EINVAL;
2579		goto bad;
2580	}
2581
2582	if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) {
2583		ti->error = "Invalid version in the superblock";
2584		r = -EINVAL;
2585		goto bad;
2586	}
2587
2588	if (le32_to_cpu(s.block_size) != wc->block_size) {
2589		ti->error = "Block size does not match superblock";
2590		r = -EINVAL;
2591		goto bad;
2592	}
2593
2594	wc->n_blocks = le64_to_cpu(s.n_blocks);
2595
2596	offset = wc->n_blocks * sizeof(struct wc_memory_entry);
2597	if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) {
2598overflow:
2599		ti->error = "Overflow in size calculation";
2600		r = -EINVAL;
2601		goto bad;
2602	}
2603	offset += sizeof(struct wc_memory_superblock);
2604	if (offset < sizeof(struct wc_memory_superblock))
2605		goto overflow;
2606	offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1);
2607	data_size = wc->n_blocks * (size_t)wc->block_size;
2608	if (!offset || (data_size / wc->block_size != wc->n_blocks) ||
2609	    (offset + data_size < offset))
2610		goto overflow;
2611	if (offset + data_size > wc->memory_map_size) {
2612		ti->error = "Memory area is too small";
2613		r = -EINVAL;
2614		goto bad;
2615	}
2616
2617	wc->metadata_sectors = offset >> SECTOR_SHIFT;
2618	wc->block_start = (char *)sb(wc) + offset;
2619
2620	x = (uint64_t)wc->n_blocks * (100 - high_wm_percent);
2621	x += 50;
2622	do_div(x, 100);
2623	wc->freelist_high_watermark = x;
2624	x = (uint64_t)wc->n_blocks * (100 - low_wm_percent);
2625	x += 50;
2626	do_div(x, 100);
2627	wc->freelist_low_watermark = x;
2628
2629	if (wc->cleaner)
2630		activate_cleaner(wc);
2631
2632	r = writecache_alloc_entries(wc);
2633	if (r) {
2634		ti->error = "Cannot allocate memory";
2635		goto bad;
2636	}
2637
2638	ti->num_flush_bios = WC_MODE_PMEM(wc) ? 1 : 2;
2639	ti->flush_supported = true;
2640	ti->num_discard_bios = 1;
2641
2642	if (WC_MODE_PMEM(wc))
2643		persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
2644
2645	return 0;
2646
2647bad_arguments:
2648	r = -EINVAL;
2649	ti->error = "Bad arguments";
2650bad:
2651	writecache_dtr(ti);
2652	return r;
2653}
2654
2655static void writecache_status(struct dm_target *ti, status_type_t type,
2656			      unsigned status_flags, char *result, unsigned maxlen)
2657{
2658	struct dm_writecache *wc = ti->private;
2659	unsigned extra_args;
2660	unsigned sz = 0;
2661
2662	switch (type) {
2663	case STATUSTYPE_INFO:
2664		DMEMIT("%ld %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu",
2665		       writecache_has_error(wc),
2666		       (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size,
2667		       (unsigned long long)wc->writeback_size,
2668		       wc->stats.reads,
2669		       wc->stats.read_hits,
2670		       wc->stats.writes,
2671		       wc->stats.write_hits_uncommitted,
2672		       wc->stats.write_hits_committed,
2673		       wc->stats.writes_around,
2674		       wc->stats.writes_allocate,
2675		       wc->stats.writes_blocked_on_freelist,
2676		       wc->stats.flushes,
2677		       wc->stats.discards);
2678		break;
2679	case STATUSTYPE_TABLE:
2680		DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's',
2681				wc->dev->name, wc->ssd_dev->name, wc->block_size);
2682		extra_args = 0;
2683		if (wc->start_sector_set)
2684			extra_args += 2;
2685		if (wc->high_wm_percent_set)
2686			extra_args += 2;
2687		if (wc->low_wm_percent_set)
2688			extra_args += 2;
2689		if (wc->max_writeback_jobs_set)
2690			extra_args += 2;
2691		if (wc->autocommit_blocks_set)
2692			extra_args += 2;
2693		if (wc->autocommit_time_set)
2694			extra_args += 2;
2695		if (wc->max_age_set)
2696			extra_args += 2;
2697		if (wc->cleaner_set)
2698			extra_args++;
2699		if (wc->writeback_fua_set)
2700			extra_args++;
2701		if (wc->metadata_only)
2702			extra_args++;
2703		if (wc->pause_set)
2704			extra_args += 2;
2705
2706		DMEMIT("%u", extra_args);
2707		if (wc->start_sector_set)
2708			DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector);
2709		if (wc->high_wm_percent_set)
2710			DMEMIT(" high_watermark %u", wc->high_wm_percent_value);
2711		if (wc->low_wm_percent_set)
2712			DMEMIT(" low_watermark %u", wc->low_wm_percent_value);
2713		if (wc->max_writeback_jobs_set)
2714			DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs);
2715		if (wc->autocommit_blocks_set)
2716			DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks);
2717		if (wc->autocommit_time_set)
2718			DMEMIT(" autocommit_time %u", wc->autocommit_time_value);
2719		if (wc->max_age_set)
2720			DMEMIT(" max_age %u", wc->max_age_value);
2721		if (wc->cleaner_set)
2722			DMEMIT(" cleaner");
2723		if (wc->writeback_fua_set)
2724			DMEMIT(" %sfua", wc->writeback_fua ? "" : "no");
2725		if (wc->metadata_only)
2726			DMEMIT(" metadata_only");
2727		if (wc->pause_set)
2728			DMEMIT(" pause_writeback %u", wc->pause_value);
2729		break;
2730	case STATUSTYPE_IMA:
2731		*result = '\0';
2732		break;
2733	}
2734}
2735
2736static struct target_type writecache_target = {
2737	.name			= "writecache",
2738	.version		= {1, 6, 0},
2739	.module			= THIS_MODULE,
2740	.ctr			= writecache_ctr,
2741	.dtr			= writecache_dtr,
2742	.status			= writecache_status,
2743	.postsuspend		= writecache_suspend,
2744	.resume			= writecache_resume,
2745	.message		= writecache_message,
2746	.map			= writecache_map,
2747	.end_io			= writecache_end_io,
2748	.iterate_devices	= writecache_iterate_devices,
2749	.io_hints		= writecache_io_hints,
2750};
2751
2752static int __init dm_writecache_init(void)
2753{
2754	int r;
2755
2756	r = dm_register_target(&writecache_target);
2757	if (r < 0) {
2758		DMERR("register failed %d", r);
2759		return r;
2760	}
2761
2762	return 0;
2763}
2764
2765static void __exit dm_writecache_exit(void)
2766{
2767	dm_unregister_target(&writecache_target);
2768}
2769
2770module_init(dm_writecache_init);
2771module_exit(dm_writecache_exit);
2772
2773MODULE_DESCRIPTION(DM_NAME " writecache target");
2774MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2775MODULE_LICENSE("GPL");