Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Cryptographic API.
   4 *
   5 * Support for ATMEL AES HW acceleration.
   6 *
   7 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
   8 * Author: Nicolas Royer <nicolas@eukrea.com>
   9 *
  10 * Some ideas are from omap-aes.c driver.
  11 */
  12
  13
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/slab.h>
  17#include <linux/err.h>
  18#include <linux/clk.h>
  19#include <linux/io.h>
  20#include <linux/hw_random.h>
  21#include <linux/platform_device.h>
  22
  23#include <linux/device.h>
  24#include <linux/dmaengine.h>
  25#include <linux/init.h>
  26#include <linux/errno.h>
  27#include <linux/interrupt.h>
  28#include <linux/irq.h>
  29#include <linux/scatterlist.h>
  30#include <linux/dma-mapping.h>
  31#include <linux/mod_devicetable.h>
  32#include <linux/delay.h>
  33#include <linux/crypto.h>
  34#include <crypto/scatterwalk.h>
  35#include <crypto/algapi.h>
  36#include <crypto/aes.h>
  37#include <crypto/gcm.h>
  38#include <crypto/xts.h>
  39#include <crypto/internal/aead.h>
  40#include <crypto/internal/skcipher.h>
  41#include "atmel-aes-regs.h"
  42#include "atmel-authenc.h"
  43
  44#define ATMEL_AES_PRIORITY	300
  45
  46#define ATMEL_AES_BUFFER_ORDER	2
  47#define ATMEL_AES_BUFFER_SIZE	(PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
  48
 
 
 
 
 
  49#define SIZE_IN_WORDS(x)	((x) >> 2)
  50
  51/* AES flags */
  52/* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
  53#define AES_FLAGS_ENCRYPT	AES_MR_CYPHER_ENC
  54#define AES_FLAGS_GTAGEN	AES_MR_GTAGEN
  55#define AES_FLAGS_OPMODE_MASK	(AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
  56#define AES_FLAGS_ECB		AES_MR_OPMOD_ECB
  57#define AES_FLAGS_CBC		AES_MR_OPMOD_CBC
 
 
 
 
 
 
  58#define AES_FLAGS_CTR		AES_MR_OPMOD_CTR
  59#define AES_FLAGS_GCM		AES_MR_OPMOD_GCM
  60#define AES_FLAGS_XTS		AES_MR_OPMOD_XTS
  61
  62#define AES_FLAGS_MODE_MASK	(AES_FLAGS_OPMODE_MASK |	\
  63				 AES_FLAGS_ENCRYPT |		\
  64				 AES_FLAGS_GTAGEN)
  65
  66#define AES_FLAGS_BUSY		BIT(3)
  67#define AES_FLAGS_DUMP_REG	BIT(4)
  68#define AES_FLAGS_OWN_SHA	BIT(5)
  69
  70#define AES_FLAGS_PERSISTENT	AES_FLAGS_BUSY
  71
  72#define ATMEL_AES_QUEUE_LENGTH	50
  73
  74#define ATMEL_AES_DMA_THRESHOLD		256
  75
  76
  77struct atmel_aes_caps {
  78	bool			has_dualbuff;
 
  79	bool			has_gcm;
  80	bool			has_xts;
  81	bool			has_authenc;
  82	u32			max_burst_size;
  83};
  84
  85struct atmel_aes_dev;
  86
  87
  88typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
  89
  90
  91struct atmel_aes_base_ctx {
  92	struct atmel_aes_dev	*dd;
  93	atmel_aes_fn_t		start;
  94	int			keylen;
  95	u32			key[AES_KEYSIZE_256 / sizeof(u32)];
  96	u16			block_size;
  97	bool			is_aead;
  98};
  99
 100struct atmel_aes_ctx {
 101	struct atmel_aes_base_ctx	base;
 102};
 103
 104struct atmel_aes_ctr_ctx {
 105	struct atmel_aes_base_ctx	base;
 106
 107	__be32			iv[AES_BLOCK_SIZE / sizeof(u32)];
 108	size_t			offset;
 109	struct scatterlist	src[2];
 110	struct scatterlist	dst[2];
 111	u32			blocks;
 112};
 113
 114struct atmel_aes_gcm_ctx {
 115	struct atmel_aes_base_ctx	base;
 116
 117	struct scatterlist	src[2];
 118	struct scatterlist	dst[2];
 119
 120	__be32			j0[AES_BLOCK_SIZE / sizeof(u32)];
 121	u32			tag[AES_BLOCK_SIZE / sizeof(u32)];
 122	__be32			ghash[AES_BLOCK_SIZE / sizeof(u32)];
 123	size_t			textlen;
 124
 125	const __be32		*ghash_in;
 126	__be32			*ghash_out;
 127	atmel_aes_fn_t		ghash_resume;
 128};
 129
 130struct atmel_aes_xts_ctx {
 131	struct atmel_aes_base_ctx	base;
 132
 133	u32			key2[AES_KEYSIZE_256 / sizeof(u32)];
 134	struct crypto_skcipher *fallback_tfm;
 135};
 136
 137#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 138struct atmel_aes_authenc_ctx {
 139	struct atmel_aes_base_ctx	base;
 140	struct atmel_sha_authenc_ctx	*auth;
 141};
 142#endif
 143
 144struct atmel_aes_reqctx {
 145	unsigned long		mode;
 146	u8			lastc[AES_BLOCK_SIZE];
 147	struct skcipher_request fallback_req;
 148};
 149
 150#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 151struct atmel_aes_authenc_reqctx {
 152	struct atmel_aes_reqctx	base;
 153
 154	struct scatterlist	src[2];
 155	struct scatterlist	dst[2];
 156	size_t			textlen;
 157	u32			digest[SHA512_DIGEST_SIZE / sizeof(u32)];
 158
 159	/* auth_req MUST be place last. */
 160	struct ahash_request	auth_req;
 161};
 162#endif
 163
 164struct atmel_aes_dma {
 165	struct dma_chan		*chan;
 166	struct scatterlist	*sg;
 167	int			nents;
 168	unsigned int		remainder;
 169	unsigned int		sg_len;
 170};
 171
 172struct atmel_aes_dev {
 173	struct list_head	list;
 174	unsigned long		phys_base;
 175	void __iomem		*io_base;
 176
 177	struct crypto_async_request	*areq;
 178	struct atmel_aes_base_ctx	*ctx;
 179
 180	bool			is_async;
 181	atmel_aes_fn_t		resume;
 182	atmel_aes_fn_t		cpu_transfer_complete;
 183
 184	struct device		*dev;
 185	struct clk		*iclk;
 186	int			irq;
 187
 188	unsigned long		flags;
 189
 190	spinlock_t		lock;
 191	struct crypto_queue	queue;
 192
 193	struct tasklet_struct	done_task;
 194	struct tasklet_struct	queue_task;
 195
 196	size_t			total;
 197	size_t			datalen;
 198	u32			*data;
 199
 200	struct atmel_aes_dma	src;
 201	struct atmel_aes_dma	dst;
 202
 203	size_t			buflen;
 204	void			*buf;
 205	struct scatterlist	aligned_sg;
 206	struct scatterlist	*real_dst;
 207
 208	struct atmel_aes_caps	caps;
 209
 210	u32			hw_version;
 211};
 212
 213struct atmel_aes_drv {
 214	struct list_head	dev_list;
 215	spinlock_t		lock;
 216};
 217
 218static struct atmel_aes_drv atmel_aes = {
 219	.dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
 220	.lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
 221};
 222
 223#ifdef VERBOSE_DEBUG
 224static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
 225{
 226	switch (offset) {
 227	case AES_CR:
 228		return "CR";
 229
 230	case AES_MR:
 231		return "MR";
 232
 233	case AES_ISR:
 234		return "ISR";
 235
 236	case AES_IMR:
 237		return "IMR";
 238
 239	case AES_IER:
 240		return "IER";
 241
 242	case AES_IDR:
 243		return "IDR";
 244
 245	case AES_KEYWR(0):
 246	case AES_KEYWR(1):
 247	case AES_KEYWR(2):
 248	case AES_KEYWR(3):
 249	case AES_KEYWR(4):
 250	case AES_KEYWR(5):
 251	case AES_KEYWR(6):
 252	case AES_KEYWR(7):
 253		snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
 254		break;
 255
 256	case AES_IDATAR(0):
 257	case AES_IDATAR(1):
 258	case AES_IDATAR(2):
 259	case AES_IDATAR(3):
 260		snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
 261		break;
 262
 263	case AES_ODATAR(0):
 264	case AES_ODATAR(1):
 265	case AES_ODATAR(2):
 266	case AES_ODATAR(3):
 267		snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
 268		break;
 269
 270	case AES_IVR(0):
 271	case AES_IVR(1):
 272	case AES_IVR(2):
 273	case AES_IVR(3):
 274		snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
 275		break;
 276
 277	case AES_AADLENR:
 278		return "AADLENR";
 279
 280	case AES_CLENR:
 281		return "CLENR";
 282
 283	case AES_GHASHR(0):
 284	case AES_GHASHR(1):
 285	case AES_GHASHR(2):
 286	case AES_GHASHR(3):
 287		snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
 288		break;
 289
 290	case AES_TAGR(0):
 291	case AES_TAGR(1):
 292	case AES_TAGR(2):
 293	case AES_TAGR(3):
 294		snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
 295		break;
 296
 297	case AES_CTRR:
 298		return "CTRR";
 299
 300	case AES_GCMHR(0):
 301	case AES_GCMHR(1):
 302	case AES_GCMHR(2):
 303	case AES_GCMHR(3):
 304		snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
 305		break;
 306
 307	case AES_EMR:
 308		return "EMR";
 309
 310	case AES_TWR(0):
 311	case AES_TWR(1):
 312	case AES_TWR(2):
 313	case AES_TWR(3):
 314		snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
 315		break;
 316
 317	case AES_ALPHAR(0):
 318	case AES_ALPHAR(1):
 319	case AES_ALPHAR(2):
 320	case AES_ALPHAR(3):
 321		snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
 322		break;
 323
 324	default:
 325		snprintf(tmp, sz, "0x%02x", offset);
 326		break;
 327	}
 328
 329	return tmp;
 330}
 331#endif /* VERBOSE_DEBUG */
 332
 333/* Shared functions */
 334
 335static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
 336{
 337	u32 value = readl_relaxed(dd->io_base + offset);
 338
 339#ifdef VERBOSE_DEBUG
 340	if (dd->flags & AES_FLAGS_DUMP_REG) {
 341		char tmp[16];
 342
 343		dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
 344			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
 345	}
 346#endif /* VERBOSE_DEBUG */
 347
 348	return value;
 349}
 350
 351static inline void atmel_aes_write(struct atmel_aes_dev *dd,
 352					u32 offset, u32 value)
 353{
 354#ifdef VERBOSE_DEBUG
 355	if (dd->flags & AES_FLAGS_DUMP_REG) {
 356		char tmp[16];
 357
 358		dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
 359			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
 360	}
 361#endif /* VERBOSE_DEBUG */
 362
 363	writel_relaxed(value, dd->io_base + offset);
 364}
 365
 366static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
 367					u32 *value, int count)
 368{
 369	for (; count--; value++, offset += 4)
 370		*value = atmel_aes_read(dd, offset);
 371}
 372
 373static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
 374			      const u32 *value, int count)
 375{
 376	for (; count--; value++, offset += 4)
 377		atmel_aes_write(dd, offset, *value);
 378}
 379
 380static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
 381					void *value)
 382{
 383	atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
 384}
 385
 386static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
 387					 const void *value)
 388{
 389	atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
 390}
 391
 392static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
 393						atmel_aes_fn_t resume)
 394{
 395	u32 isr = atmel_aes_read(dd, AES_ISR);
 396
 397	if (unlikely(isr & AES_INT_DATARDY))
 398		return resume(dd);
 399
 400	dd->resume = resume;
 401	atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
 402	return -EINPROGRESS;
 403}
 404
 405static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
 406{
 407	len &= block_size - 1;
 408	return len ? block_size - len : 0;
 409}
 410
 411static struct atmel_aes_dev *atmel_aes_dev_alloc(struct atmel_aes_base_ctx *ctx)
 412{
 413	struct atmel_aes_dev *aes_dd;
 414
 415	spin_lock_bh(&atmel_aes.lock);
 416	/* One AES IP per SoC. */
 417	aes_dd = list_first_entry_or_null(&atmel_aes.dev_list,
 418					  struct atmel_aes_dev, list);
 419	spin_unlock_bh(&atmel_aes.lock);
 420	return aes_dd;
 421}
 422
 423static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
 424{
 425	int err;
 426
 427	err = clk_enable(dd->iclk);
 428	if (err)
 429		return err;
 430
 431	atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
 432	atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
 433
 434	return 0;
 435}
 436
 437static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
 438{
 439	return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
 440}
 441
 442static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
 443{
 444	int err;
 445
 446	err = atmel_aes_hw_init(dd);
 447	if (err)
 448		return err;
 449
 450	dd->hw_version = atmel_aes_get_version(dd);
 451
 452	dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
 453
 454	clk_disable(dd->iclk);
 455	return 0;
 456}
 457
 458static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
 459				      const struct atmel_aes_reqctx *rctx)
 460{
 461	/* Clear all but persistent flags and set request flags. */
 462	dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
 463}
 464
 465static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
 466{
 467	return (dd->flags & AES_FLAGS_ENCRYPT);
 468}
 469
 470#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 471static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
 472#endif
 473
 474static void atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev *dd)
 475{
 476	struct skcipher_request *req = skcipher_request_cast(dd->areq);
 477	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
 478	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
 479	unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
 480
 481	if (req->cryptlen < ivsize)
 482		return;
 483
 484	if (rctx->mode & AES_FLAGS_ENCRYPT)
 485		scatterwalk_map_and_copy(req->iv, req->dst,
 486					 req->cryptlen - ivsize, ivsize, 0);
 487	else
 488		memcpy(req->iv, rctx->lastc, ivsize);
 
 
 
 
 
 
 489}
 490
 491static inline struct atmel_aes_ctr_ctx *
 492atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
 493{
 494	return container_of(ctx, struct atmel_aes_ctr_ctx, base);
 495}
 496
 497static void atmel_aes_ctr_update_req_iv(struct atmel_aes_dev *dd)
 498{
 499	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
 500	struct skcipher_request *req = skcipher_request_cast(dd->areq);
 501	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
 502	unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
 503	int i;
 504
 505	/*
 506	 * The CTR transfer works in fragments of data of maximum 1 MByte
 507	 * because of the 16 bit CTR counter embedded in the IP. When reaching
 508	 * here, ctx->blocks contains the number of blocks of the last fragment
 509	 * processed, there is no need to explicit cast it to u16.
 510	 */
 511	for (i = 0; i < ctx->blocks; i++)
 512		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
 513
 514	memcpy(req->iv, ctx->iv, ivsize);
 515}
 516
 517static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
 518{
 519	struct skcipher_request *req = skcipher_request_cast(dd->areq);
 520	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
 521
 522#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 523	if (dd->ctx->is_aead)
 524		atmel_aes_authenc_complete(dd, err);
 525#endif
 526
 527	clk_disable(dd->iclk);
 528	dd->flags &= ~AES_FLAGS_BUSY;
 529
 530	if (!err && !dd->ctx->is_aead &&
 531	    (rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_ECB) {
 532		if ((rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_CTR)
 533			atmel_aes_set_iv_as_last_ciphertext_block(dd);
 534		else
 535			atmel_aes_ctr_update_req_iv(dd);
 536	}
 537
 538	if (dd->is_async)
 539		crypto_request_complete(dd->areq, err);
 540
 541	tasklet_schedule(&dd->queue_task);
 542
 543	return err;
 544}
 545
 546static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
 547				     const __be32 *iv, const u32 *key, int keylen)
 548{
 549	u32 valmr = 0;
 550
 551	/* MR register must be set before IV registers */
 552	if (keylen == AES_KEYSIZE_128)
 553		valmr |= AES_MR_KEYSIZE_128;
 554	else if (keylen == AES_KEYSIZE_192)
 555		valmr |= AES_MR_KEYSIZE_192;
 556	else
 557		valmr |= AES_MR_KEYSIZE_256;
 558
 559	valmr |= dd->flags & AES_FLAGS_MODE_MASK;
 560
 561	if (use_dma) {
 562		valmr |= AES_MR_SMOD_IDATAR0;
 563		if (dd->caps.has_dualbuff)
 564			valmr |= AES_MR_DUALBUFF;
 565	} else {
 566		valmr |= AES_MR_SMOD_AUTO;
 567	}
 568
 569	atmel_aes_write(dd, AES_MR, valmr);
 570
 571	atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
 572
 573	if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
 574		atmel_aes_write_block(dd, AES_IVR(0), iv);
 575}
 576
 577static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
 578					const __be32 *iv)
 579
 580{
 581	atmel_aes_write_ctrl_key(dd, use_dma, iv,
 582				 dd->ctx->key, dd->ctx->keylen);
 583}
 584
 585/* CPU transfer */
 586
 587static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
 588{
 589	int err = 0;
 590	u32 isr;
 591
 592	for (;;) {
 593		atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
 594		dd->data += 4;
 595		dd->datalen -= AES_BLOCK_SIZE;
 596
 597		if (dd->datalen < AES_BLOCK_SIZE)
 598			break;
 599
 600		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
 601
 602		isr = atmel_aes_read(dd, AES_ISR);
 603		if (!(isr & AES_INT_DATARDY)) {
 604			dd->resume = atmel_aes_cpu_transfer;
 605			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
 606			return -EINPROGRESS;
 607		}
 608	}
 609
 610	if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
 611				 dd->buf, dd->total))
 612		err = -EINVAL;
 613
 614	if (err)
 615		return atmel_aes_complete(dd, err);
 616
 617	return dd->cpu_transfer_complete(dd);
 618}
 619
 620static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
 621			       struct scatterlist *src,
 622			       struct scatterlist *dst,
 623			       size_t len,
 624			       atmel_aes_fn_t resume)
 625{
 626	size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
 627
 628	if (unlikely(len == 0))
 629		return -EINVAL;
 630
 631	sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
 632
 633	dd->total = len;
 634	dd->real_dst = dst;
 635	dd->cpu_transfer_complete = resume;
 636	dd->datalen = len + padlen;
 637	dd->data = (u32 *)dd->buf;
 638	atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
 639	return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
 640}
 641
 642
 643/* DMA transfer */
 644
 645static void atmel_aes_dma_callback(void *data);
 646
 647static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
 648				    struct scatterlist *sg,
 649				    size_t len,
 650				    struct atmel_aes_dma *dma)
 651{
 652	int nents;
 653
 654	if (!IS_ALIGNED(len, dd->ctx->block_size))
 655		return false;
 656
 657	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
 658		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
 659			return false;
 660
 661		if (len <= sg->length) {
 662			if (!IS_ALIGNED(len, dd->ctx->block_size))
 663				return false;
 664
 665			dma->nents = nents+1;
 666			dma->remainder = sg->length - len;
 667			sg->length = len;
 668			return true;
 669		}
 670
 671		if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
 672			return false;
 673
 674		len -= sg->length;
 675	}
 676
 677	return false;
 678}
 679
 680static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
 681{
 682	struct scatterlist *sg = dma->sg;
 683	int nents = dma->nents;
 684
 685	if (!dma->remainder)
 686		return;
 687
 688	while (--nents > 0 && sg)
 689		sg = sg_next(sg);
 690
 691	if (!sg)
 692		return;
 693
 694	sg->length += dma->remainder;
 695}
 696
 697static int atmel_aes_map(struct atmel_aes_dev *dd,
 698			 struct scatterlist *src,
 699			 struct scatterlist *dst,
 700			 size_t len)
 701{
 702	bool src_aligned, dst_aligned;
 703	size_t padlen;
 704
 705	dd->total = len;
 706	dd->src.sg = src;
 707	dd->dst.sg = dst;
 708	dd->real_dst = dst;
 709
 710	src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
 711	if (src == dst)
 712		dst_aligned = src_aligned;
 713	else
 714		dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
 715	if (!src_aligned || !dst_aligned) {
 716		padlen = atmel_aes_padlen(len, dd->ctx->block_size);
 717
 718		if (dd->buflen < len + padlen)
 719			return -ENOMEM;
 720
 721		if (!src_aligned) {
 722			sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
 723			dd->src.sg = &dd->aligned_sg;
 724			dd->src.nents = 1;
 725			dd->src.remainder = 0;
 726		}
 727
 728		if (!dst_aligned) {
 729			dd->dst.sg = &dd->aligned_sg;
 730			dd->dst.nents = 1;
 731			dd->dst.remainder = 0;
 732		}
 733
 734		sg_init_table(&dd->aligned_sg, 1);
 735		sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
 736	}
 737
 738	if (dd->src.sg == dd->dst.sg) {
 739		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
 740					    DMA_BIDIRECTIONAL);
 741		dd->dst.sg_len = dd->src.sg_len;
 742		if (!dd->src.sg_len)
 743			return -EFAULT;
 744	} else {
 745		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
 746					    DMA_TO_DEVICE);
 747		if (!dd->src.sg_len)
 748			return -EFAULT;
 749
 750		dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
 751					    DMA_FROM_DEVICE);
 752		if (!dd->dst.sg_len) {
 753			dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 754				     DMA_TO_DEVICE);
 755			return -EFAULT;
 756		}
 757	}
 758
 759	return 0;
 760}
 761
 762static void atmel_aes_unmap(struct atmel_aes_dev *dd)
 763{
 764	if (dd->src.sg == dd->dst.sg) {
 765		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 766			     DMA_BIDIRECTIONAL);
 767
 768		if (dd->src.sg != &dd->aligned_sg)
 769			atmel_aes_restore_sg(&dd->src);
 770	} else {
 771		dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
 772			     DMA_FROM_DEVICE);
 773
 774		if (dd->dst.sg != &dd->aligned_sg)
 775			atmel_aes_restore_sg(&dd->dst);
 776
 777		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 778			     DMA_TO_DEVICE);
 779
 780		if (dd->src.sg != &dd->aligned_sg)
 781			atmel_aes_restore_sg(&dd->src);
 782	}
 783
 784	if (dd->dst.sg == &dd->aligned_sg)
 785		sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
 786				    dd->buf, dd->total);
 787}
 788
 789static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
 790					enum dma_slave_buswidth addr_width,
 791					enum dma_transfer_direction dir,
 792					u32 maxburst)
 793{
 794	struct dma_async_tx_descriptor *desc;
 795	struct dma_slave_config config;
 796	dma_async_tx_callback callback;
 797	struct atmel_aes_dma *dma;
 798	int err;
 799
 800	memset(&config, 0, sizeof(config));
 801	config.src_addr_width = addr_width;
 802	config.dst_addr_width = addr_width;
 803	config.src_maxburst = maxburst;
 804	config.dst_maxburst = maxburst;
 805
 806	switch (dir) {
 807	case DMA_MEM_TO_DEV:
 808		dma = &dd->src;
 809		callback = NULL;
 810		config.dst_addr = dd->phys_base + AES_IDATAR(0);
 811		break;
 812
 813	case DMA_DEV_TO_MEM:
 814		dma = &dd->dst;
 815		callback = atmel_aes_dma_callback;
 816		config.src_addr = dd->phys_base + AES_ODATAR(0);
 817		break;
 818
 819	default:
 820		return -EINVAL;
 821	}
 822
 823	err = dmaengine_slave_config(dma->chan, &config);
 824	if (err)
 825		return err;
 826
 827	desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
 828				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 829	if (!desc)
 830		return -ENOMEM;
 831
 832	desc->callback = callback;
 833	desc->callback_param = dd;
 834	dmaengine_submit(desc);
 835	dma_async_issue_pending(dma->chan);
 836
 837	return 0;
 838}
 839
 840static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
 841			       struct scatterlist *src,
 842			       struct scatterlist *dst,
 843			       size_t len,
 844			       atmel_aes_fn_t resume)
 845{
 846	enum dma_slave_buswidth addr_width;
 847	u32 maxburst;
 848	int err;
 849
 850	switch (dd->ctx->block_size) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 851	case AES_BLOCK_SIZE:
 852		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 853		maxburst = dd->caps.max_burst_size;
 854		break;
 855
 856	default:
 857		err = -EINVAL;
 858		goto exit;
 859	}
 860
 861	err = atmel_aes_map(dd, src, dst, len);
 862	if (err)
 863		goto exit;
 864
 865	dd->resume = resume;
 866
 867	/* Set output DMA transfer first */
 868	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
 869					   maxburst);
 870	if (err)
 871		goto unmap;
 872
 873	/* Then set input DMA transfer */
 874	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
 875					   maxburst);
 876	if (err)
 877		goto output_transfer_stop;
 878
 879	return -EINPROGRESS;
 880
 881output_transfer_stop:
 882	dmaengine_terminate_sync(dd->dst.chan);
 883unmap:
 884	atmel_aes_unmap(dd);
 885exit:
 886	return atmel_aes_complete(dd, err);
 887}
 888
 889static void atmel_aes_dma_callback(void *data)
 890{
 891	struct atmel_aes_dev *dd = data;
 892
 893	atmel_aes_unmap(dd);
 894	dd->is_async = true;
 895	(void)dd->resume(dd);
 896}
 897
 898static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
 899				  struct crypto_async_request *new_areq)
 900{
 901	struct crypto_async_request *areq, *backlog;
 902	struct atmel_aes_base_ctx *ctx;
 903	unsigned long flags;
 904	bool start_async;
 905	int err, ret = 0;
 906
 907	spin_lock_irqsave(&dd->lock, flags);
 908	if (new_areq)
 909		ret = crypto_enqueue_request(&dd->queue, new_areq);
 910	if (dd->flags & AES_FLAGS_BUSY) {
 911		spin_unlock_irqrestore(&dd->lock, flags);
 912		return ret;
 913	}
 914	backlog = crypto_get_backlog(&dd->queue);
 915	areq = crypto_dequeue_request(&dd->queue);
 916	if (areq)
 917		dd->flags |= AES_FLAGS_BUSY;
 918	spin_unlock_irqrestore(&dd->lock, flags);
 919
 920	if (!areq)
 921		return ret;
 922
 923	if (backlog)
 924		crypto_request_complete(backlog, -EINPROGRESS);
 925
 926	ctx = crypto_tfm_ctx(areq->tfm);
 927
 928	dd->areq = areq;
 929	dd->ctx = ctx;
 930	start_async = (areq != new_areq);
 931	dd->is_async = start_async;
 932
 933	/* WARNING: ctx->start() MAY change dd->is_async. */
 934	err = ctx->start(dd);
 935	return (start_async) ? ret : err;
 936}
 937
 938
 939/* AES async block ciphers */
 940
 941static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
 942{
 943	return atmel_aes_complete(dd, 0);
 944}
 945
 946static int atmel_aes_start(struct atmel_aes_dev *dd)
 947{
 948	struct skcipher_request *req = skcipher_request_cast(dd->areq);
 949	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
 950	bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD ||
 951			dd->ctx->block_size != AES_BLOCK_SIZE);
 952	int err;
 953
 954	atmel_aes_set_mode(dd, rctx);
 955
 956	err = atmel_aes_hw_init(dd);
 957	if (err)
 958		return atmel_aes_complete(dd, err);
 959
 960	atmel_aes_write_ctrl(dd, use_dma, (void *)req->iv);
 961	if (use_dma)
 962		return atmel_aes_dma_start(dd, req->src, req->dst,
 963					   req->cryptlen,
 964					   atmel_aes_transfer_complete);
 965
 966	return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
 967				   atmel_aes_transfer_complete);
 968}
 969
 970static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
 971{
 972	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
 973	struct skcipher_request *req = skcipher_request_cast(dd->areq);
 974	struct scatterlist *src, *dst;
 975	size_t datalen;
 976	u32 ctr;
 977	u16 start, end;
 978	bool use_dma, fragmented = false;
 979
 980	/* Check for transfer completion. */
 981	ctx->offset += dd->total;
 982	if (ctx->offset >= req->cryptlen)
 983		return atmel_aes_transfer_complete(dd);
 984
 985	/* Compute data length. */
 986	datalen = req->cryptlen - ctx->offset;
 987	ctx->blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
 988	ctr = be32_to_cpu(ctx->iv[3]);
 989
 990	/* Check 16bit counter overflow. */
 991	start = ctr & 0xffff;
 992	end = start + ctx->blocks - 1;
 993
 994	if (ctx->blocks >> 16 || end < start) {
 995		ctr |= 0xffff;
 996		datalen = AES_BLOCK_SIZE * (0x10000 - start);
 997		fragmented = true;
 998	}
 999
1000	use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1001
1002	/* Jump to offset. */
1003	src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1004	dst = ((req->src == req->dst) ? src :
1005	       scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1006
1007	/* Configure hardware. */
1008	atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1009	if (unlikely(fragmented)) {
1010		/*
1011		 * Increment the counter manually to cope with the hardware
1012		 * counter overflow.
1013		 */
1014		ctx->iv[3] = cpu_to_be32(ctr);
1015		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1016	}
1017
1018	if (use_dma)
1019		return atmel_aes_dma_start(dd, src, dst, datalen,
1020					   atmel_aes_ctr_transfer);
1021
1022	return atmel_aes_cpu_start(dd, src, dst, datalen,
1023				   atmel_aes_ctr_transfer);
1024}
1025
1026static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1027{
1028	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1029	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1030	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1031	int err;
1032
1033	atmel_aes_set_mode(dd, rctx);
1034
1035	err = atmel_aes_hw_init(dd);
1036	if (err)
1037		return atmel_aes_complete(dd, err);
1038
1039	memcpy(ctx->iv, req->iv, AES_BLOCK_SIZE);
1040	ctx->offset = 0;
1041	dd->total = 0;
1042	return atmel_aes_ctr_transfer(dd);
1043}
1044
1045static int atmel_aes_xts_fallback(struct skcipher_request *req, bool enc)
1046{
1047	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1048	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(
1049			crypto_skcipher_reqtfm(req));
1050
1051	skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
1052	skcipher_request_set_callback(&rctx->fallback_req, req->base.flags,
1053				      req->base.complete, req->base.data);
1054	skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst,
1055				   req->cryptlen, req->iv);
1056
1057	return enc ? crypto_skcipher_encrypt(&rctx->fallback_req) :
1058		     crypto_skcipher_decrypt(&rctx->fallback_req);
1059}
1060
1061static int atmel_aes_crypt(struct skcipher_request *req, unsigned long mode)
1062{
1063	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
1064	struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(skcipher);
1065	struct atmel_aes_reqctx *rctx;
1066	u32 opmode = mode & AES_FLAGS_OPMODE_MASK;
1067
1068	if (opmode == AES_FLAGS_XTS) {
1069		if (req->cryptlen < XTS_BLOCK_SIZE)
1070			return -EINVAL;
1071
1072		if (!IS_ALIGNED(req->cryptlen, XTS_BLOCK_SIZE))
1073			return atmel_aes_xts_fallback(req,
1074						      mode & AES_FLAGS_ENCRYPT);
1075	}
1076
1077	/*
1078	 * ECB, CBC or CTR mode require the plaintext and ciphertext
1079	 * to have a positve integer length.
1080	 */
1081	if (!req->cryptlen && opmode != AES_FLAGS_XTS)
1082		return 0;
1083
1084	if ((opmode == AES_FLAGS_ECB || opmode == AES_FLAGS_CBC) &&
1085	    !IS_ALIGNED(req->cryptlen, crypto_skcipher_blocksize(skcipher)))
1086		return -EINVAL;
1087
1088	ctx->block_size = AES_BLOCK_SIZE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1089	ctx->is_aead = false;
1090
1091	rctx = skcipher_request_ctx(req);
1092	rctx->mode = mode;
1093
1094	if (opmode != AES_FLAGS_ECB &&
1095	    !(mode & AES_FLAGS_ENCRYPT)) {
1096		unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
1097
1098		if (req->cryptlen >= ivsize)
1099			scatterwalk_map_and_copy(rctx->lastc, req->src,
1100						 req->cryptlen - ivsize,
1101						 ivsize, 0);
1102	}
1103
1104	return atmel_aes_handle_queue(ctx->dd, &req->base);
1105}
1106
1107static int atmel_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
1108			   unsigned int keylen)
1109{
1110	struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(tfm);
1111
1112	if (keylen != AES_KEYSIZE_128 &&
1113	    keylen != AES_KEYSIZE_192 &&
1114	    keylen != AES_KEYSIZE_256)
1115		return -EINVAL;
1116
1117	memcpy(ctx->key, key, keylen);
1118	ctx->keylen = keylen;
1119
1120	return 0;
1121}
1122
1123static int atmel_aes_ecb_encrypt(struct skcipher_request *req)
1124{
1125	return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1126}
1127
1128static int atmel_aes_ecb_decrypt(struct skcipher_request *req)
1129{
1130	return atmel_aes_crypt(req, AES_FLAGS_ECB);
1131}
1132
1133static int atmel_aes_cbc_encrypt(struct skcipher_request *req)
1134{
1135	return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1136}
1137
1138static int atmel_aes_cbc_decrypt(struct skcipher_request *req)
1139{
1140	return atmel_aes_crypt(req, AES_FLAGS_CBC);
1141}
1142
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1143static int atmel_aes_ctr_encrypt(struct skcipher_request *req)
1144{
1145	return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1146}
1147
1148static int atmel_aes_ctr_decrypt(struct skcipher_request *req)
1149{
1150	return atmel_aes_crypt(req, AES_FLAGS_CTR);
1151}
1152
1153static int atmel_aes_init_tfm(struct crypto_skcipher *tfm)
1154{
1155	struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1156	struct atmel_aes_dev *dd;
1157
1158	dd = atmel_aes_dev_alloc(&ctx->base);
1159	if (!dd)
1160		return -ENODEV;
1161
1162	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1163	ctx->base.dd = dd;
1164	ctx->base.start = atmel_aes_start;
1165
1166	return 0;
1167}
1168
1169static int atmel_aes_ctr_init_tfm(struct crypto_skcipher *tfm)
1170{
1171	struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1172	struct atmel_aes_dev *dd;
1173
1174	dd = atmel_aes_dev_alloc(&ctx->base);
1175	if (!dd)
1176		return -ENODEV;
1177
1178	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1179	ctx->base.dd = dd;
1180	ctx->base.start = atmel_aes_ctr_start;
1181
1182	return 0;
1183}
1184
1185static struct skcipher_alg aes_algs[] = {
1186{
1187	.base.cra_name		= "ecb(aes)",
1188	.base.cra_driver_name	= "atmel-ecb-aes",
1189	.base.cra_blocksize	= AES_BLOCK_SIZE,
1190	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1191
1192	.init			= atmel_aes_init_tfm,
1193	.min_keysize		= AES_MIN_KEY_SIZE,
1194	.max_keysize		= AES_MAX_KEY_SIZE,
1195	.setkey			= atmel_aes_setkey,
1196	.encrypt		= atmel_aes_ecb_encrypt,
1197	.decrypt		= atmel_aes_ecb_decrypt,
1198},
1199{
1200	.base.cra_name		= "cbc(aes)",
1201	.base.cra_driver_name	= "atmel-cbc-aes",
1202	.base.cra_blocksize	= AES_BLOCK_SIZE,
1203	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1204
1205	.init			= atmel_aes_init_tfm,
1206	.min_keysize		= AES_MIN_KEY_SIZE,
1207	.max_keysize		= AES_MAX_KEY_SIZE,
1208	.setkey			= atmel_aes_setkey,
1209	.encrypt		= atmel_aes_cbc_encrypt,
1210	.decrypt		= atmel_aes_cbc_decrypt,
1211	.ivsize			= AES_BLOCK_SIZE,
1212},
1213{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1214	.base.cra_name		= "ctr(aes)",
1215	.base.cra_driver_name	= "atmel-ctr-aes",
1216	.base.cra_blocksize	= 1,
1217	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctr_ctx),
1218
1219	.init			= atmel_aes_ctr_init_tfm,
1220	.min_keysize		= AES_MIN_KEY_SIZE,
1221	.max_keysize		= AES_MAX_KEY_SIZE,
1222	.setkey			= atmel_aes_setkey,
1223	.encrypt		= atmel_aes_ctr_encrypt,
1224	.decrypt		= atmel_aes_ctr_decrypt,
1225	.ivsize			= AES_BLOCK_SIZE,
1226},
1227};
1228
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1229
1230/* gcm aead functions */
1231
1232static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1233			       const u32 *data, size_t datalen,
1234			       const __be32 *ghash_in, __be32 *ghash_out,
1235			       atmel_aes_fn_t resume);
1236static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1237static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1238
1239static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1240static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1241static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1242static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1243static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1244static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1245static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1246
1247static inline struct atmel_aes_gcm_ctx *
1248atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1249{
1250	return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1251}
1252
1253static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1254			       const u32 *data, size_t datalen,
1255			       const __be32 *ghash_in, __be32 *ghash_out,
1256			       atmel_aes_fn_t resume)
1257{
1258	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1259
1260	dd->data = (u32 *)data;
1261	dd->datalen = datalen;
1262	ctx->ghash_in = ghash_in;
1263	ctx->ghash_out = ghash_out;
1264	ctx->ghash_resume = resume;
1265
1266	atmel_aes_write_ctrl(dd, false, NULL);
1267	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1268}
1269
1270static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1271{
1272	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1273
1274	/* Set the data length. */
1275	atmel_aes_write(dd, AES_AADLENR, dd->total);
1276	atmel_aes_write(dd, AES_CLENR, 0);
1277
1278	/* If needed, overwrite the GCM Intermediate Hash Word Registers */
1279	if (ctx->ghash_in)
1280		atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1281
1282	return atmel_aes_gcm_ghash_finalize(dd);
1283}
1284
1285static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1286{
1287	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1288	u32 isr;
1289
1290	/* Write data into the Input Data Registers. */
1291	while (dd->datalen > 0) {
1292		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1293		dd->data += 4;
1294		dd->datalen -= AES_BLOCK_SIZE;
1295
1296		isr = atmel_aes_read(dd, AES_ISR);
1297		if (!(isr & AES_INT_DATARDY)) {
1298			dd->resume = atmel_aes_gcm_ghash_finalize;
1299			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1300			return -EINPROGRESS;
1301		}
1302	}
1303
1304	/* Read the computed hash from GHASHRx. */
1305	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1306
1307	return ctx->ghash_resume(dd);
1308}
1309
1310
1311static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1312{
1313	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1314	struct aead_request *req = aead_request_cast(dd->areq);
1315	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1316	struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1317	size_t ivsize = crypto_aead_ivsize(tfm);
1318	size_t datalen, padlen;
1319	const void *iv = req->iv;
1320	u8 *data = dd->buf;
1321	int err;
1322
1323	atmel_aes_set_mode(dd, rctx);
1324
1325	err = atmel_aes_hw_init(dd);
1326	if (err)
1327		return atmel_aes_complete(dd, err);
1328
1329	if (likely(ivsize == GCM_AES_IV_SIZE)) {
1330		memcpy(ctx->j0, iv, ivsize);
1331		ctx->j0[3] = cpu_to_be32(1);
1332		return atmel_aes_gcm_process(dd);
1333	}
1334
1335	padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1336	datalen = ivsize + padlen + AES_BLOCK_SIZE;
1337	if (datalen > dd->buflen)
1338		return atmel_aes_complete(dd, -EINVAL);
1339
1340	memcpy(data, iv, ivsize);
1341	memset(data + ivsize, 0, padlen + sizeof(u64));
1342	((__be64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1343
1344	return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1345				   NULL, ctx->j0, atmel_aes_gcm_process);
1346}
1347
1348static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1349{
1350	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1351	struct aead_request *req = aead_request_cast(dd->areq);
1352	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1353	bool enc = atmel_aes_is_encrypt(dd);
1354	u32 authsize;
1355
1356	/* Compute text length. */
1357	authsize = crypto_aead_authsize(tfm);
1358	ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1359
1360	/*
1361	 * According to tcrypt test suite, the GCM Automatic Tag Generation
1362	 * fails when both the message and its associated data are empty.
1363	 */
1364	if (likely(req->assoclen != 0 || ctx->textlen != 0))
1365		dd->flags |= AES_FLAGS_GTAGEN;
1366
1367	atmel_aes_write_ctrl(dd, false, NULL);
1368	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1369}
1370
1371static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1372{
1373	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1374	struct aead_request *req = aead_request_cast(dd->areq);
1375	__be32 j0_lsw, *j0 = ctx->j0;
1376	size_t padlen;
1377
1378	/* Write incr32(J0) into IV. */
1379	j0_lsw = j0[3];
1380	be32_add_cpu(&j0[3], 1);
1381	atmel_aes_write_block(dd, AES_IVR(0), j0);
1382	j0[3] = j0_lsw;
1383
1384	/* Set aad and text lengths. */
1385	atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1386	atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1387
1388	/* Check whether AAD are present. */
1389	if (unlikely(req->assoclen == 0)) {
1390		dd->datalen = 0;
1391		return atmel_aes_gcm_data(dd);
1392	}
1393
1394	/* Copy assoc data and add padding. */
1395	padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1396	if (unlikely(req->assoclen + padlen > dd->buflen))
1397		return atmel_aes_complete(dd, -EINVAL);
1398	sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1399
1400	/* Write assoc data into the Input Data register. */
1401	dd->data = (u32 *)dd->buf;
1402	dd->datalen = req->assoclen + padlen;
1403	return atmel_aes_gcm_data(dd);
1404}
1405
1406static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1407{
1408	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1409	struct aead_request *req = aead_request_cast(dd->areq);
1410	bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1411	struct scatterlist *src, *dst;
1412	u32 isr, mr;
1413
1414	/* Write AAD first. */
1415	while (dd->datalen > 0) {
1416		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1417		dd->data += 4;
1418		dd->datalen -= AES_BLOCK_SIZE;
1419
1420		isr = atmel_aes_read(dd, AES_ISR);
1421		if (!(isr & AES_INT_DATARDY)) {
1422			dd->resume = atmel_aes_gcm_data;
1423			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1424			return -EINPROGRESS;
1425		}
1426	}
1427
1428	/* GMAC only. */
1429	if (unlikely(ctx->textlen == 0))
1430		return atmel_aes_gcm_tag_init(dd);
1431
1432	/* Prepare src and dst scatter lists to transfer cipher/plain texts */
1433	src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1434	dst = ((req->src == req->dst) ? src :
1435	       scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1436
1437	if (use_dma) {
1438		/* Update the Mode Register for DMA transfers. */
1439		mr = atmel_aes_read(dd, AES_MR);
1440		mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1441		mr |= AES_MR_SMOD_IDATAR0;
1442		if (dd->caps.has_dualbuff)
1443			mr |= AES_MR_DUALBUFF;
1444		atmel_aes_write(dd, AES_MR, mr);
1445
1446		return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1447					   atmel_aes_gcm_tag_init);
1448	}
1449
1450	return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1451				   atmel_aes_gcm_tag_init);
1452}
1453
1454static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1455{
1456	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1457	struct aead_request *req = aead_request_cast(dd->areq);
1458	__be64 *data = dd->buf;
1459
1460	if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1461		if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1462			dd->resume = atmel_aes_gcm_tag_init;
1463			atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1464			return -EINPROGRESS;
1465		}
1466
1467		return atmel_aes_gcm_finalize(dd);
1468	}
1469
1470	/* Read the GCM Intermediate Hash Word Registers. */
1471	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1472
1473	data[0] = cpu_to_be64(req->assoclen * 8);
1474	data[1] = cpu_to_be64(ctx->textlen * 8);
1475
1476	return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1477				   ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1478}
1479
1480static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1481{
1482	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1483	unsigned long flags;
1484
1485	/*
1486	 * Change mode to CTR to complete the tag generation.
1487	 * Use J0 as Initialization Vector.
1488	 */
1489	flags = dd->flags;
1490	dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1491	dd->flags |= AES_FLAGS_CTR;
1492	atmel_aes_write_ctrl(dd, false, ctx->j0);
1493	dd->flags = flags;
1494
1495	atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1496	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1497}
1498
1499static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1500{
1501	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1502	struct aead_request *req = aead_request_cast(dd->areq);
1503	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1504	bool enc = atmel_aes_is_encrypt(dd);
1505	u32 offset, authsize, itag[4], *otag = ctx->tag;
1506	int err;
1507
1508	/* Read the computed tag. */
1509	if (likely(dd->flags & AES_FLAGS_GTAGEN))
1510		atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1511	else
1512		atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1513
1514	offset = req->assoclen + ctx->textlen;
1515	authsize = crypto_aead_authsize(tfm);
1516	if (enc) {
1517		scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1518		err = 0;
1519	} else {
1520		scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1521		err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1522	}
1523
1524	return atmel_aes_complete(dd, err);
1525}
1526
1527static int atmel_aes_gcm_crypt(struct aead_request *req,
1528			       unsigned long mode)
1529{
1530	struct atmel_aes_base_ctx *ctx;
1531	struct atmel_aes_reqctx *rctx;
1532
1533	ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1534	ctx->block_size = AES_BLOCK_SIZE;
1535	ctx->is_aead = true;
1536
1537	rctx = aead_request_ctx(req);
1538	rctx->mode = AES_FLAGS_GCM | mode;
1539
1540	return atmel_aes_handle_queue(ctx->dd, &req->base);
1541}
1542
1543static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1544				unsigned int keylen)
1545{
1546	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1547
1548	if (keylen != AES_KEYSIZE_256 &&
1549	    keylen != AES_KEYSIZE_192 &&
1550	    keylen != AES_KEYSIZE_128)
1551		return -EINVAL;
1552
1553	memcpy(ctx->key, key, keylen);
1554	ctx->keylen = keylen;
1555
1556	return 0;
1557}
1558
1559static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1560				     unsigned int authsize)
1561{
1562	return crypto_gcm_check_authsize(authsize);
1563}
1564
1565static int atmel_aes_gcm_encrypt(struct aead_request *req)
1566{
1567	return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1568}
1569
1570static int atmel_aes_gcm_decrypt(struct aead_request *req)
1571{
1572	return atmel_aes_gcm_crypt(req, 0);
1573}
1574
1575static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1576{
1577	struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1578	struct atmel_aes_dev *dd;
1579
1580	dd = atmel_aes_dev_alloc(&ctx->base);
1581	if (!dd)
1582		return -ENODEV;
1583
1584	crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1585	ctx->base.dd = dd;
1586	ctx->base.start = atmel_aes_gcm_start;
1587
1588	return 0;
1589}
1590
1591static struct aead_alg aes_gcm_alg = {
1592	.setkey		= atmel_aes_gcm_setkey,
1593	.setauthsize	= atmel_aes_gcm_setauthsize,
1594	.encrypt	= atmel_aes_gcm_encrypt,
1595	.decrypt	= atmel_aes_gcm_decrypt,
1596	.init		= atmel_aes_gcm_init,
1597	.ivsize		= GCM_AES_IV_SIZE,
1598	.maxauthsize	= AES_BLOCK_SIZE,
1599
1600	.base = {
1601		.cra_name		= "gcm(aes)",
1602		.cra_driver_name	= "atmel-gcm-aes",
1603		.cra_blocksize		= 1,
1604		.cra_ctxsize		= sizeof(struct atmel_aes_gcm_ctx),
1605	},
1606};
1607
1608
1609/* xts functions */
1610
1611static inline struct atmel_aes_xts_ctx *
1612atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1613{
1614	return container_of(ctx, struct atmel_aes_xts_ctx, base);
1615}
1616
1617static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1618
1619static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1620{
1621	struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1622	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1623	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1624	unsigned long flags;
1625	int err;
1626
1627	atmel_aes_set_mode(dd, rctx);
1628
1629	err = atmel_aes_hw_init(dd);
1630	if (err)
1631		return atmel_aes_complete(dd, err);
1632
1633	/* Compute the tweak value from req->iv with ecb(aes). */
1634	flags = dd->flags;
1635	dd->flags &= ~AES_FLAGS_MODE_MASK;
1636	dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1637	atmel_aes_write_ctrl_key(dd, false, NULL,
1638				 ctx->key2, ctx->base.keylen);
1639	dd->flags = flags;
1640
1641	atmel_aes_write_block(dd, AES_IDATAR(0), req->iv);
1642	return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1643}
1644
1645static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1646{
1647	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1648	bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD);
1649	u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1650	static const __le32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1651	u8 *tweak_bytes = (u8 *)tweak;
1652	int i;
1653
1654	/* Read the computed ciphered tweak value. */
1655	atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1656	/*
1657	 * Hardware quirk:
1658	 * the order of the ciphered tweak bytes need to be reversed before
1659	 * writing them into the ODATARx registers.
1660	 */
1661	for (i = 0; i < AES_BLOCK_SIZE/2; ++i)
1662		swap(tweak_bytes[i], tweak_bytes[AES_BLOCK_SIZE - 1 - i]);
1663
1664	/* Process the data. */
1665	atmel_aes_write_ctrl(dd, use_dma, NULL);
1666	atmel_aes_write_block(dd, AES_TWR(0), tweak);
1667	atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1668	if (use_dma)
1669		return atmel_aes_dma_start(dd, req->src, req->dst,
1670					   req->cryptlen,
1671					   atmel_aes_transfer_complete);
1672
1673	return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1674				   atmel_aes_transfer_complete);
1675}
1676
1677static int atmel_aes_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
1678				unsigned int keylen)
1679{
1680	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1681	int err;
1682
1683	err = xts_verify_key(tfm, key, keylen);
1684	if (err)
1685		return err;
1686
1687	crypto_skcipher_clear_flags(ctx->fallback_tfm, CRYPTO_TFM_REQ_MASK);
1688	crypto_skcipher_set_flags(ctx->fallback_tfm, tfm->base.crt_flags &
1689				  CRYPTO_TFM_REQ_MASK);
1690	err = crypto_skcipher_setkey(ctx->fallback_tfm, key, keylen);
1691	if (err)
1692		return err;
1693
1694	memcpy(ctx->base.key, key, keylen/2);
1695	memcpy(ctx->key2, key + keylen/2, keylen/2);
1696	ctx->base.keylen = keylen/2;
1697
1698	return 0;
1699}
1700
1701static int atmel_aes_xts_encrypt(struct skcipher_request *req)
1702{
1703	return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1704}
1705
1706static int atmel_aes_xts_decrypt(struct skcipher_request *req)
1707{
1708	return atmel_aes_crypt(req, AES_FLAGS_XTS);
1709}
1710
1711static int atmel_aes_xts_init_tfm(struct crypto_skcipher *tfm)
1712{
1713	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1714	struct atmel_aes_dev *dd;
1715	const char *tfm_name = crypto_tfm_alg_name(&tfm->base);
1716
1717	dd = atmel_aes_dev_alloc(&ctx->base);
1718	if (!dd)
1719		return -ENODEV;
1720
1721	ctx->fallback_tfm = crypto_alloc_skcipher(tfm_name, 0,
1722						  CRYPTO_ALG_NEED_FALLBACK);
1723	if (IS_ERR(ctx->fallback_tfm))
1724		return PTR_ERR(ctx->fallback_tfm);
1725
1726	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx) +
1727				    crypto_skcipher_reqsize(ctx->fallback_tfm));
1728	ctx->base.dd = dd;
1729	ctx->base.start = atmel_aes_xts_start;
1730
1731	return 0;
1732}
1733
1734static void atmel_aes_xts_exit_tfm(struct crypto_skcipher *tfm)
1735{
1736	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1737
1738	crypto_free_skcipher(ctx->fallback_tfm);
1739}
1740
1741static struct skcipher_alg aes_xts_alg = {
1742	.base.cra_name		= "xts(aes)",
1743	.base.cra_driver_name	= "atmel-xts-aes",
1744	.base.cra_blocksize	= AES_BLOCK_SIZE,
1745	.base.cra_ctxsize	= sizeof(struct atmel_aes_xts_ctx),
1746	.base.cra_flags		= CRYPTO_ALG_NEED_FALLBACK,
1747
1748	.min_keysize		= 2 * AES_MIN_KEY_SIZE,
1749	.max_keysize		= 2 * AES_MAX_KEY_SIZE,
1750	.ivsize			= AES_BLOCK_SIZE,
1751	.setkey			= atmel_aes_xts_setkey,
1752	.encrypt		= atmel_aes_xts_encrypt,
1753	.decrypt		= atmel_aes_xts_decrypt,
1754	.init			= atmel_aes_xts_init_tfm,
1755	.exit			= atmel_aes_xts_exit_tfm,
1756};
1757
1758#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
1759/* authenc aead functions */
1760
1761static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1762static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1763				  bool is_async);
1764static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1765				      bool is_async);
1766static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1767static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1768				   bool is_async);
1769
1770static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1771{
1772	struct aead_request *req = aead_request_cast(dd->areq);
1773	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1774
1775	if (err && (dd->flags & AES_FLAGS_OWN_SHA))
1776		atmel_sha_authenc_abort(&rctx->auth_req);
1777	dd->flags &= ~AES_FLAGS_OWN_SHA;
1778}
1779
1780static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
1781{
1782	struct aead_request *req = aead_request_cast(dd->areq);
1783	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1784	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1785	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1786	int err;
1787
1788	atmel_aes_set_mode(dd, &rctx->base);
1789
1790	err = atmel_aes_hw_init(dd);
1791	if (err)
1792		return atmel_aes_complete(dd, err);
1793
1794	return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
1795					  atmel_aes_authenc_init, dd);
1796}
1797
1798static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1799				  bool is_async)
1800{
1801	struct aead_request *req = aead_request_cast(dd->areq);
1802	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1803
1804	if (is_async)
1805		dd->is_async = true;
1806	if (err)
1807		return atmel_aes_complete(dd, err);
1808
1809	/* If here, we've got the ownership of the SHA device. */
1810	dd->flags |= AES_FLAGS_OWN_SHA;
1811
1812	/* Configure the SHA device. */
1813	return atmel_sha_authenc_init(&rctx->auth_req,
1814				      req->src, req->assoclen,
1815				      rctx->textlen,
1816				      atmel_aes_authenc_transfer, dd);
1817}
1818
1819static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1820				      bool is_async)
1821{
1822	struct aead_request *req = aead_request_cast(dd->areq);
1823	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1824	bool enc = atmel_aes_is_encrypt(dd);
1825	struct scatterlist *src, *dst;
1826	__be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
1827	u32 emr;
1828
1829	if (is_async)
1830		dd->is_async = true;
1831	if (err)
1832		return atmel_aes_complete(dd, err);
1833
1834	/* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
1835	src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
1836	dst = src;
1837
1838	if (req->src != req->dst)
1839		dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
1840
1841	/* Configure the AES device. */
1842	memcpy(iv, req->iv, sizeof(iv));
1843
1844	/*
1845	 * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
1846	 * 'true' even if the data transfer is actually performed by the CPU (so
1847	 * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
1848	 * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
1849	 * must be set to *_MR_SMOD_IDATAR0.
1850	 */
1851	atmel_aes_write_ctrl(dd, true, iv);
1852	emr = AES_EMR_PLIPEN;
1853	if (!enc)
1854		emr |= AES_EMR_PLIPD;
1855	atmel_aes_write(dd, AES_EMR, emr);
1856
1857	/* Transfer data. */
1858	return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
1859				   atmel_aes_authenc_digest);
1860}
1861
1862static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
1863{
1864	struct aead_request *req = aead_request_cast(dd->areq);
1865	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1866
1867	/* atmel_sha_authenc_final() releases the SHA device. */
1868	dd->flags &= ~AES_FLAGS_OWN_SHA;
1869	return atmel_sha_authenc_final(&rctx->auth_req,
1870				       rctx->digest, sizeof(rctx->digest),
1871				       atmel_aes_authenc_final, dd);
1872}
1873
1874static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1875				   bool is_async)
1876{
1877	struct aead_request *req = aead_request_cast(dd->areq);
1878	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1879	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1880	bool enc = atmel_aes_is_encrypt(dd);
1881	u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
1882	u32 offs, authsize;
1883
1884	if (is_async)
1885		dd->is_async = true;
1886	if (err)
1887		goto complete;
1888
1889	offs = req->assoclen + rctx->textlen;
1890	authsize = crypto_aead_authsize(tfm);
1891	if (enc) {
1892		scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
1893	} else {
1894		scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
1895		if (crypto_memneq(idigest, odigest, authsize))
1896			err = -EBADMSG;
1897	}
1898
1899complete:
1900	return atmel_aes_complete(dd, err);
1901}
1902
1903static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
1904				    unsigned int keylen)
1905{
1906	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1907	struct crypto_authenc_keys keys;
1908	int err;
1909
1910	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
1911		goto badkey;
1912
1913	if (keys.enckeylen > sizeof(ctx->base.key))
1914		goto badkey;
1915
1916	/* Save auth key. */
1917	err = atmel_sha_authenc_setkey(ctx->auth,
1918				       keys.authkey, keys.authkeylen,
1919				       crypto_aead_get_flags(tfm));
1920	if (err) {
1921		memzero_explicit(&keys, sizeof(keys));
1922		return err;
1923	}
1924
1925	/* Save enc key. */
1926	ctx->base.keylen = keys.enckeylen;
1927	memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
1928
1929	memzero_explicit(&keys, sizeof(keys));
1930	return 0;
1931
1932badkey:
1933	memzero_explicit(&keys, sizeof(keys));
1934	return -EINVAL;
1935}
1936
1937static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
1938				      unsigned long auth_mode)
1939{
1940	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1941	unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
1942	struct atmel_aes_dev *dd;
1943
1944	dd = atmel_aes_dev_alloc(&ctx->base);
1945	if (!dd)
1946		return -ENODEV;
1947
1948	ctx->auth = atmel_sha_authenc_spawn(auth_mode);
1949	if (IS_ERR(ctx->auth))
1950		return PTR_ERR(ctx->auth);
1951
1952	crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
1953				      auth_reqsize));
1954	ctx->base.dd = dd;
1955	ctx->base.start = atmel_aes_authenc_start;
1956
1957	return 0;
1958}
1959
1960static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
1961{
1962	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
1963}
1964
1965static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
1966{
1967	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
1968}
1969
1970static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
1971{
1972	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
1973}
1974
1975static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
1976{
1977	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
1978}
1979
1980static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
1981{
1982	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
1983}
1984
1985static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
1986{
1987	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1988
1989	atmel_sha_authenc_free(ctx->auth);
1990}
1991
1992static int atmel_aes_authenc_crypt(struct aead_request *req,
1993				   unsigned long mode)
1994{
1995	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1996	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1997	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1998	u32 authsize = crypto_aead_authsize(tfm);
1999	bool enc = (mode & AES_FLAGS_ENCRYPT);
2000
2001	/* Compute text length. */
2002	if (!enc && req->cryptlen < authsize)
2003		return -EINVAL;
2004	rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2005
2006	/*
2007	 * Currently, empty messages are not supported yet:
2008	 * the SHA auto-padding can be used only on non-empty messages.
2009	 * Hence a special case needs to be implemented for empty message.
2010	 */
2011	if (!rctx->textlen && !req->assoclen)
2012		return -EINVAL;
2013
2014	rctx->base.mode = mode;
2015	ctx->block_size = AES_BLOCK_SIZE;
2016	ctx->is_aead = true;
2017
2018	return atmel_aes_handle_queue(ctx->dd, &req->base);
2019}
2020
2021static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2022{
2023	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2024}
2025
2026static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2027{
2028	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2029}
2030
2031static struct aead_alg aes_authenc_algs[] = {
2032{
2033	.setkey		= atmel_aes_authenc_setkey,
2034	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2035	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2036	.init		= atmel_aes_authenc_hmac_sha1_init_tfm,
2037	.exit		= atmel_aes_authenc_exit_tfm,
2038	.ivsize		= AES_BLOCK_SIZE,
2039	.maxauthsize	= SHA1_DIGEST_SIZE,
2040
2041	.base = {
2042		.cra_name		= "authenc(hmac(sha1),cbc(aes))",
2043		.cra_driver_name	= "atmel-authenc-hmac-sha1-cbc-aes",
2044		.cra_blocksize		= AES_BLOCK_SIZE,
2045		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2046	},
2047},
2048{
2049	.setkey		= atmel_aes_authenc_setkey,
2050	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2051	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2052	.init		= atmel_aes_authenc_hmac_sha224_init_tfm,
2053	.exit		= atmel_aes_authenc_exit_tfm,
2054	.ivsize		= AES_BLOCK_SIZE,
2055	.maxauthsize	= SHA224_DIGEST_SIZE,
2056
2057	.base = {
2058		.cra_name		= "authenc(hmac(sha224),cbc(aes))",
2059		.cra_driver_name	= "atmel-authenc-hmac-sha224-cbc-aes",
2060		.cra_blocksize		= AES_BLOCK_SIZE,
2061		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2062	},
2063},
2064{
2065	.setkey		= atmel_aes_authenc_setkey,
2066	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2067	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2068	.init		= atmel_aes_authenc_hmac_sha256_init_tfm,
2069	.exit		= atmel_aes_authenc_exit_tfm,
2070	.ivsize		= AES_BLOCK_SIZE,
2071	.maxauthsize	= SHA256_DIGEST_SIZE,
2072
2073	.base = {
2074		.cra_name		= "authenc(hmac(sha256),cbc(aes))",
2075		.cra_driver_name	= "atmel-authenc-hmac-sha256-cbc-aes",
2076		.cra_blocksize		= AES_BLOCK_SIZE,
2077		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2078	},
2079},
2080{
2081	.setkey		= atmel_aes_authenc_setkey,
2082	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2083	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2084	.init		= atmel_aes_authenc_hmac_sha384_init_tfm,
2085	.exit		= atmel_aes_authenc_exit_tfm,
2086	.ivsize		= AES_BLOCK_SIZE,
2087	.maxauthsize	= SHA384_DIGEST_SIZE,
2088
2089	.base = {
2090		.cra_name		= "authenc(hmac(sha384),cbc(aes))",
2091		.cra_driver_name	= "atmel-authenc-hmac-sha384-cbc-aes",
2092		.cra_blocksize		= AES_BLOCK_SIZE,
2093		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2094	},
2095},
2096{
2097	.setkey		= atmel_aes_authenc_setkey,
2098	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2099	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2100	.init		= atmel_aes_authenc_hmac_sha512_init_tfm,
2101	.exit		= atmel_aes_authenc_exit_tfm,
2102	.ivsize		= AES_BLOCK_SIZE,
2103	.maxauthsize	= SHA512_DIGEST_SIZE,
2104
2105	.base = {
2106		.cra_name		= "authenc(hmac(sha512),cbc(aes))",
2107		.cra_driver_name	= "atmel-authenc-hmac-sha512-cbc-aes",
2108		.cra_blocksize		= AES_BLOCK_SIZE,
2109		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2110	},
2111},
2112};
2113#endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2114
2115/* Probe functions */
2116
2117static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2118{
2119	dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2120	dd->buflen = ATMEL_AES_BUFFER_SIZE;
2121	dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2122
2123	if (!dd->buf) {
2124		dev_err(dd->dev, "unable to alloc pages.\n");
2125		return -ENOMEM;
2126	}
2127
2128	return 0;
2129}
2130
2131static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2132{
2133	free_page((unsigned long)dd->buf);
2134}
2135
2136static int atmel_aes_dma_init(struct atmel_aes_dev *dd)
2137{
2138	int ret;
2139
2140	/* Try to grab 2 DMA channels */
2141	dd->src.chan = dma_request_chan(dd->dev, "tx");
2142	if (IS_ERR(dd->src.chan)) {
2143		ret = PTR_ERR(dd->src.chan);
2144		goto err_dma_in;
2145	}
2146
2147	dd->dst.chan = dma_request_chan(dd->dev, "rx");
2148	if (IS_ERR(dd->dst.chan)) {
2149		ret = PTR_ERR(dd->dst.chan);
2150		goto err_dma_out;
2151	}
2152
2153	return 0;
2154
2155err_dma_out:
2156	dma_release_channel(dd->src.chan);
2157err_dma_in:
2158	dev_err(dd->dev, "no DMA channel available\n");
2159	return ret;
2160}
2161
2162static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2163{
2164	dma_release_channel(dd->dst.chan);
2165	dma_release_channel(dd->src.chan);
2166}
2167
2168static void atmel_aes_queue_task(unsigned long data)
2169{
2170	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2171
2172	atmel_aes_handle_queue(dd, NULL);
2173}
2174
2175static void atmel_aes_done_task(unsigned long data)
2176{
2177	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2178
2179	dd->is_async = true;
2180	(void)dd->resume(dd);
2181}
2182
2183static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2184{
2185	struct atmel_aes_dev *aes_dd = dev_id;
2186	u32 reg;
2187
2188	reg = atmel_aes_read(aes_dd, AES_ISR);
2189	if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2190		atmel_aes_write(aes_dd, AES_IDR, reg);
2191		if (AES_FLAGS_BUSY & aes_dd->flags)
2192			tasklet_schedule(&aes_dd->done_task);
2193		else
2194			dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2195		return IRQ_HANDLED;
2196	}
2197
2198	return IRQ_NONE;
2199}
2200
2201static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2202{
2203	int i;
2204
2205#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2206	if (dd->caps.has_authenc)
2207		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2208			crypto_unregister_aead(&aes_authenc_algs[i]);
2209#endif
2210
2211	if (dd->caps.has_xts)
2212		crypto_unregister_skcipher(&aes_xts_alg);
2213
2214	if (dd->caps.has_gcm)
2215		crypto_unregister_aead(&aes_gcm_alg);
2216
 
 
 
2217	for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2218		crypto_unregister_skcipher(&aes_algs[i]);
2219}
2220
2221static void atmel_aes_crypto_alg_init(struct crypto_alg *alg)
2222{
2223	alg->cra_flags |= CRYPTO_ALG_ASYNC;
2224	alg->cra_alignmask = 0xf;
2225	alg->cra_priority = ATMEL_AES_PRIORITY;
2226	alg->cra_module = THIS_MODULE;
2227}
2228
2229static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2230{
2231	int err, i, j;
2232
2233	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2234		atmel_aes_crypto_alg_init(&aes_algs[i].base);
2235
2236		err = crypto_register_skcipher(&aes_algs[i]);
2237		if (err)
2238			goto err_aes_algs;
2239	}
2240
 
 
 
 
 
 
 
 
2241	if (dd->caps.has_gcm) {
2242		atmel_aes_crypto_alg_init(&aes_gcm_alg.base);
2243
2244		err = crypto_register_aead(&aes_gcm_alg);
2245		if (err)
2246			goto err_aes_gcm_alg;
2247	}
2248
2249	if (dd->caps.has_xts) {
2250		atmel_aes_crypto_alg_init(&aes_xts_alg.base);
2251
2252		err = crypto_register_skcipher(&aes_xts_alg);
2253		if (err)
2254			goto err_aes_xts_alg;
2255	}
2256
2257#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2258	if (dd->caps.has_authenc) {
2259		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
2260			atmel_aes_crypto_alg_init(&aes_authenc_algs[i].base);
2261
2262			err = crypto_register_aead(&aes_authenc_algs[i]);
2263			if (err)
2264				goto err_aes_authenc_alg;
2265		}
2266	}
2267#endif
2268
2269	return 0;
2270
2271#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2272	/* i = ARRAY_SIZE(aes_authenc_algs); */
2273err_aes_authenc_alg:
2274	for (j = 0; j < i; j++)
2275		crypto_unregister_aead(&aes_authenc_algs[j]);
2276	crypto_unregister_skcipher(&aes_xts_alg);
2277#endif
2278err_aes_xts_alg:
2279	crypto_unregister_aead(&aes_gcm_alg);
2280err_aes_gcm_alg:
 
 
2281	i = ARRAY_SIZE(aes_algs);
2282err_aes_algs:
2283	for (j = 0; j < i; j++)
2284		crypto_unregister_skcipher(&aes_algs[j]);
2285
2286	return err;
2287}
2288
2289static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2290{
2291	dd->caps.has_dualbuff = 0;
 
2292	dd->caps.has_gcm = 0;
2293	dd->caps.has_xts = 0;
2294	dd->caps.has_authenc = 0;
2295	dd->caps.max_burst_size = 1;
2296
2297	/* keep only major version number */
2298	switch (dd->hw_version & 0xff0) {
2299	case 0x700:
2300	case 0x600:
2301	case 0x500:
2302		dd->caps.has_dualbuff = 1;
 
2303		dd->caps.has_gcm = 1;
2304		dd->caps.has_xts = 1;
2305		dd->caps.has_authenc = 1;
2306		dd->caps.max_burst_size = 4;
2307		break;
2308	case 0x200:
2309		dd->caps.has_dualbuff = 1;
 
2310		dd->caps.has_gcm = 1;
2311		dd->caps.max_burst_size = 4;
2312		break;
2313	case 0x130:
2314		dd->caps.has_dualbuff = 1;
 
2315		dd->caps.max_burst_size = 4;
2316		break;
2317	case 0x120:
2318		break;
2319	default:
2320		dev_warn(dd->dev,
2321				"Unmanaged aes version, set minimum capabilities\n");
2322		break;
2323	}
2324}
2325
 
2326static const struct of_device_id atmel_aes_dt_ids[] = {
2327	{ .compatible = "atmel,at91sam9g46-aes" },
2328	{ /* sentinel */ }
2329};
2330MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
 
2331
2332static int atmel_aes_probe(struct platform_device *pdev)
2333{
2334	struct atmel_aes_dev *aes_dd;
2335	struct device *dev = &pdev->dev;
2336	struct resource *aes_res;
2337	int err;
2338
2339	aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2340	if (!aes_dd)
2341		return -ENOMEM;
2342
2343	aes_dd->dev = dev;
2344
2345	platform_set_drvdata(pdev, aes_dd);
2346
2347	INIT_LIST_HEAD(&aes_dd->list);
2348	spin_lock_init(&aes_dd->lock);
2349
2350	tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2351					(unsigned long)aes_dd);
2352	tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2353					(unsigned long)aes_dd);
2354
2355	crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2356
2357	aes_dd->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &aes_res);
2358	if (IS_ERR(aes_dd->io_base)) {
2359		err = PTR_ERR(aes_dd->io_base);
 
 
2360		goto err_tasklet_kill;
2361	}
2362	aes_dd->phys_base = aes_res->start;
2363
2364	/* Get the IRQ */
2365	aes_dd->irq = platform_get_irq(pdev,  0);
2366	if (aes_dd->irq < 0) {
2367		err = aes_dd->irq;
2368		goto err_tasklet_kill;
2369	}
2370
2371	err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2372			       IRQF_SHARED, "atmel-aes", aes_dd);
2373	if (err) {
2374		dev_err(dev, "unable to request aes irq.\n");
2375		goto err_tasklet_kill;
2376	}
2377
2378	/* Initializing the clock */
2379	aes_dd->iclk = devm_clk_get_prepared(&pdev->dev, "aes_clk");
2380	if (IS_ERR(aes_dd->iclk)) {
2381		dev_err(dev, "clock initialization failed.\n");
2382		err = PTR_ERR(aes_dd->iclk);
2383		goto err_tasklet_kill;
2384	}
2385
2386	err = atmel_aes_hw_version_init(aes_dd);
 
 
 
 
 
 
 
2387	if (err)
2388		goto err_tasklet_kill;
2389
 
 
 
 
2390	atmel_aes_get_cap(aes_dd);
2391
2392#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2393	if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2394		err = -EPROBE_DEFER;
2395		goto err_tasklet_kill;
2396	}
2397#endif
2398
2399	err = atmel_aes_buff_init(aes_dd);
2400	if (err)
2401		goto err_tasklet_kill;
2402
2403	err = atmel_aes_dma_init(aes_dd);
2404	if (err)
2405		goto err_buff_cleanup;
2406
2407	spin_lock(&atmel_aes.lock);
2408	list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2409	spin_unlock(&atmel_aes.lock);
2410
2411	err = atmel_aes_register_algs(aes_dd);
2412	if (err)
2413		goto err_algs;
2414
2415	dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2416			dma_chan_name(aes_dd->src.chan),
2417			dma_chan_name(aes_dd->dst.chan));
2418
2419	return 0;
2420
2421err_algs:
2422	spin_lock(&atmel_aes.lock);
2423	list_del(&aes_dd->list);
2424	spin_unlock(&atmel_aes.lock);
2425	atmel_aes_dma_cleanup(aes_dd);
2426err_buff_cleanup:
2427	atmel_aes_buff_cleanup(aes_dd);
 
 
2428err_tasklet_kill:
2429	tasklet_kill(&aes_dd->done_task);
2430	tasklet_kill(&aes_dd->queue_task);
2431
2432	return err;
2433}
2434
2435static void atmel_aes_remove(struct platform_device *pdev)
2436{
2437	struct atmel_aes_dev *aes_dd;
2438
2439	aes_dd = platform_get_drvdata(pdev);
2440
2441	spin_lock(&atmel_aes.lock);
2442	list_del(&aes_dd->list);
2443	spin_unlock(&atmel_aes.lock);
2444
2445	atmel_aes_unregister_algs(aes_dd);
2446
2447	tasklet_kill(&aes_dd->done_task);
2448	tasklet_kill(&aes_dd->queue_task);
2449
2450	atmel_aes_dma_cleanup(aes_dd);
2451	atmel_aes_buff_cleanup(aes_dd);
 
 
 
 
2452}
2453
2454static struct platform_driver atmel_aes_driver = {
2455	.probe		= atmel_aes_probe,
2456	.remove		= atmel_aes_remove,
2457	.driver		= {
2458		.name	= "atmel_aes",
2459		.of_match_table = atmel_aes_dt_ids,
2460	},
2461};
2462
2463module_platform_driver(atmel_aes_driver);
2464
2465MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2466MODULE_LICENSE("GPL v2");
2467MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Cryptographic API.
   4 *
   5 * Support for ATMEL AES HW acceleration.
   6 *
   7 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
   8 * Author: Nicolas Royer <nicolas@eukrea.com>
   9 *
  10 * Some ideas are from omap-aes.c driver.
  11 */
  12
  13
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/slab.h>
  17#include <linux/err.h>
  18#include <linux/clk.h>
  19#include <linux/io.h>
  20#include <linux/hw_random.h>
  21#include <linux/platform_device.h>
  22
  23#include <linux/device.h>
  24#include <linux/dmaengine.h>
  25#include <linux/init.h>
  26#include <linux/errno.h>
  27#include <linux/interrupt.h>
  28#include <linux/irq.h>
  29#include <linux/scatterlist.h>
  30#include <linux/dma-mapping.h>
  31#include <linux/of_device.h>
  32#include <linux/delay.h>
  33#include <linux/crypto.h>
  34#include <crypto/scatterwalk.h>
  35#include <crypto/algapi.h>
  36#include <crypto/aes.h>
  37#include <crypto/gcm.h>
  38#include <crypto/xts.h>
  39#include <crypto/internal/aead.h>
  40#include <crypto/internal/skcipher.h>
  41#include "atmel-aes-regs.h"
  42#include "atmel-authenc.h"
  43
  44#define ATMEL_AES_PRIORITY	300
  45
  46#define ATMEL_AES_BUFFER_ORDER	2
  47#define ATMEL_AES_BUFFER_SIZE	(PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
  48
  49#define CFB8_BLOCK_SIZE		1
  50#define CFB16_BLOCK_SIZE	2
  51#define CFB32_BLOCK_SIZE	4
  52#define CFB64_BLOCK_SIZE	8
  53
  54#define SIZE_IN_WORDS(x)	((x) >> 2)
  55
  56/* AES flags */
  57/* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
  58#define AES_FLAGS_ENCRYPT	AES_MR_CYPHER_ENC
  59#define AES_FLAGS_GTAGEN	AES_MR_GTAGEN
  60#define AES_FLAGS_OPMODE_MASK	(AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
  61#define AES_FLAGS_ECB		AES_MR_OPMOD_ECB
  62#define AES_FLAGS_CBC		AES_MR_OPMOD_CBC
  63#define AES_FLAGS_OFB		AES_MR_OPMOD_OFB
  64#define AES_FLAGS_CFB128	(AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
  65#define AES_FLAGS_CFB64		(AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
  66#define AES_FLAGS_CFB32		(AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
  67#define AES_FLAGS_CFB16		(AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
  68#define AES_FLAGS_CFB8		(AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
  69#define AES_FLAGS_CTR		AES_MR_OPMOD_CTR
  70#define AES_FLAGS_GCM		AES_MR_OPMOD_GCM
  71#define AES_FLAGS_XTS		AES_MR_OPMOD_XTS
  72
  73#define AES_FLAGS_MODE_MASK	(AES_FLAGS_OPMODE_MASK |	\
  74				 AES_FLAGS_ENCRYPT |		\
  75				 AES_FLAGS_GTAGEN)
  76
  77#define AES_FLAGS_BUSY		BIT(3)
  78#define AES_FLAGS_DUMP_REG	BIT(4)
  79#define AES_FLAGS_OWN_SHA	BIT(5)
  80
  81#define AES_FLAGS_PERSISTENT	AES_FLAGS_BUSY
  82
  83#define ATMEL_AES_QUEUE_LENGTH	50
  84
  85#define ATMEL_AES_DMA_THRESHOLD		256
  86
  87
  88struct atmel_aes_caps {
  89	bool			has_dualbuff;
  90	bool			has_cfb64;
  91	bool			has_gcm;
  92	bool			has_xts;
  93	bool			has_authenc;
  94	u32			max_burst_size;
  95};
  96
  97struct atmel_aes_dev;
  98
  99
 100typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
 101
 102
 103struct atmel_aes_base_ctx {
 104	struct atmel_aes_dev	*dd;
 105	atmel_aes_fn_t		start;
 106	int			keylen;
 107	u32			key[AES_KEYSIZE_256 / sizeof(u32)];
 108	u16			block_size;
 109	bool			is_aead;
 110};
 111
 112struct atmel_aes_ctx {
 113	struct atmel_aes_base_ctx	base;
 114};
 115
 116struct atmel_aes_ctr_ctx {
 117	struct atmel_aes_base_ctx	base;
 118
 119	__be32			iv[AES_BLOCK_SIZE / sizeof(u32)];
 120	size_t			offset;
 121	struct scatterlist	src[2];
 122	struct scatterlist	dst[2];
 123	u32			blocks;
 124};
 125
 126struct atmel_aes_gcm_ctx {
 127	struct atmel_aes_base_ctx	base;
 128
 129	struct scatterlist	src[2];
 130	struct scatterlist	dst[2];
 131
 132	__be32			j0[AES_BLOCK_SIZE / sizeof(u32)];
 133	u32			tag[AES_BLOCK_SIZE / sizeof(u32)];
 134	__be32			ghash[AES_BLOCK_SIZE / sizeof(u32)];
 135	size_t			textlen;
 136
 137	const __be32		*ghash_in;
 138	__be32			*ghash_out;
 139	atmel_aes_fn_t		ghash_resume;
 140};
 141
 142struct atmel_aes_xts_ctx {
 143	struct atmel_aes_base_ctx	base;
 144
 145	u32			key2[AES_KEYSIZE_256 / sizeof(u32)];
 146	struct crypto_skcipher *fallback_tfm;
 147};
 148
 149#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 150struct atmel_aes_authenc_ctx {
 151	struct atmel_aes_base_ctx	base;
 152	struct atmel_sha_authenc_ctx	*auth;
 153};
 154#endif
 155
 156struct atmel_aes_reqctx {
 157	unsigned long		mode;
 158	u8			lastc[AES_BLOCK_SIZE];
 159	struct skcipher_request fallback_req;
 160};
 161
 162#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 163struct atmel_aes_authenc_reqctx {
 164	struct atmel_aes_reqctx	base;
 165
 166	struct scatterlist	src[2];
 167	struct scatterlist	dst[2];
 168	size_t			textlen;
 169	u32			digest[SHA512_DIGEST_SIZE / sizeof(u32)];
 170
 171	/* auth_req MUST be place last. */
 172	struct ahash_request	auth_req;
 173};
 174#endif
 175
 176struct atmel_aes_dma {
 177	struct dma_chan		*chan;
 178	struct scatterlist	*sg;
 179	int			nents;
 180	unsigned int		remainder;
 181	unsigned int		sg_len;
 182};
 183
 184struct atmel_aes_dev {
 185	struct list_head	list;
 186	unsigned long		phys_base;
 187	void __iomem		*io_base;
 188
 189	struct crypto_async_request	*areq;
 190	struct atmel_aes_base_ctx	*ctx;
 191
 192	bool			is_async;
 193	atmel_aes_fn_t		resume;
 194	atmel_aes_fn_t		cpu_transfer_complete;
 195
 196	struct device		*dev;
 197	struct clk		*iclk;
 198	int			irq;
 199
 200	unsigned long		flags;
 201
 202	spinlock_t		lock;
 203	struct crypto_queue	queue;
 204
 205	struct tasklet_struct	done_task;
 206	struct tasklet_struct	queue_task;
 207
 208	size_t			total;
 209	size_t			datalen;
 210	u32			*data;
 211
 212	struct atmel_aes_dma	src;
 213	struct atmel_aes_dma	dst;
 214
 215	size_t			buflen;
 216	void			*buf;
 217	struct scatterlist	aligned_sg;
 218	struct scatterlist	*real_dst;
 219
 220	struct atmel_aes_caps	caps;
 221
 222	u32			hw_version;
 223};
 224
 225struct atmel_aes_drv {
 226	struct list_head	dev_list;
 227	spinlock_t		lock;
 228};
 229
 230static struct atmel_aes_drv atmel_aes = {
 231	.dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
 232	.lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
 233};
 234
 235#ifdef VERBOSE_DEBUG
 236static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
 237{
 238	switch (offset) {
 239	case AES_CR:
 240		return "CR";
 241
 242	case AES_MR:
 243		return "MR";
 244
 245	case AES_ISR:
 246		return "ISR";
 247
 248	case AES_IMR:
 249		return "IMR";
 250
 251	case AES_IER:
 252		return "IER";
 253
 254	case AES_IDR:
 255		return "IDR";
 256
 257	case AES_KEYWR(0):
 258	case AES_KEYWR(1):
 259	case AES_KEYWR(2):
 260	case AES_KEYWR(3):
 261	case AES_KEYWR(4):
 262	case AES_KEYWR(5):
 263	case AES_KEYWR(6):
 264	case AES_KEYWR(7):
 265		snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
 266		break;
 267
 268	case AES_IDATAR(0):
 269	case AES_IDATAR(1):
 270	case AES_IDATAR(2):
 271	case AES_IDATAR(3):
 272		snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
 273		break;
 274
 275	case AES_ODATAR(0):
 276	case AES_ODATAR(1):
 277	case AES_ODATAR(2):
 278	case AES_ODATAR(3):
 279		snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
 280		break;
 281
 282	case AES_IVR(0):
 283	case AES_IVR(1):
 284	case AES_IVR(2):
 285	case AES_IVR(3):
 286		snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
 287		break;
 288
 289	case AES_AADLENR:
 290		return "AADLENR";
 291
 292	case AES_CLENR:
 293		return "CLENR";
 294
 295	case AES_GHASHR(0):
 296	case AES_GHASHR(1):
 297	case AES_GHASHR(2):
 298	case AES_GHASHR(3):
 299		snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
 300		break;
 301
 302	case AES_TAGR(0):
 303	case AES_TAGR(1):
 304	case AES_TAGR(2):
 305	case AES_TAGR(3):
 306		snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
 307		break;
 308
 309	case AES_CTRR:
 310		return "CTRR";
 311
 312	case AES_GCMHR(0):
 313	case AES_GCMHR(1):
 314	case AES_GCMHR(2):
 315	case AES_GCMHR(3):
 316		snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
 317		break;
 318
 319	case AES_EMR:
 320		return "EMR";
 321
 322	case AES_TWR(0):
 323	case AES_TWR(1):
 324	case AES_TWR(2):
 325	case AES_TWR(3):
 326		snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
 327		break;
 328
 329	case AES_ALPHAR(0):
 330	case AES_ALPHAR(1):
 331	case AES_ALPHAR(2):
 332	case AES_ALPHAR(3):
 333		snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
 334		break;
 335
 336	default:
 337		snprintf(tmp, sz, "0x%02x", offset);
 338		break;
 339	}
 340
 341	return tmp;
 342}
 343#endif /* VERBOSE_DEBUG */
 344
 345/* Shared functions */
 346
 347static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
 348{
 349	u32 value = readl_relaxed(dd->io_base + offset);
 350
 351#ifdef VERBOSE_DEBUG
 352	if (dd->flags & AES_FLAGS_DUMP_REG) {
 353		char tmp[16];
 354
 355		dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
 356			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
 357	}
 358#endif /* VERBOSE_DEBUG */
 359
 360	return value;
 361}
 362
 363static inline void atmel_aes_write(struct atmel_aes_dev *dd,
 364					u32 offset, u32 value)
 365{
 366#ifdef VERBOSE_DEBUG
 367	if (dd->flags & AES_FLAGS_DUMP_REG) {
 368		char tmp[16];
 369
 370		dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
 371			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
 372	}
 373#endif /* VERBOSE_DEBUG */
 374
 375	writel_relaxed(value, dd->io_base + offset);
 376}
 377
 378static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
 379					u32 *value, int count)
 380{
 381	for (; count--; value++, offset += 4)
 382		*value = atmel_aes_read(dd, offset);
 383}
 384
 385static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
 386			      const u32 *value, int count)
 387{
 388	for (; count--; value++, offset += 4)
 389		atmel_aes_write(dd, offset, *value);
 390}
 391
 392static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
 393					void *value)
 394{
 395	atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
 396}
 397
 398static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
 399					 const void *value)
 400{
 401	atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
 402}
 403
 404static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
 405						atmel_aes_fn_t resume)
 406{
 407	u32 isr = atmel_aes_read(dd, AES_ISR);
 408
 409	if (unlikely(isr & AES_INT_DATARDY))
 410		return resume(dd);
 411
 412	dd->resume = resume;
 413	atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
 414	return -EINPROGRESS;
 415}
 416
 417static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
 418{
 419	len &= block_size - 1;
 420	return len ? block_size - len : 0;
 421}
 422
 423static struct atmel_aes_dev *atmel_aes_dev_alloc(struct atmel_aes_base_ctx *ctx)
 424{
 425	struct atmel_aes_dev *aes_dd;
 426
 427	spin_lock_bh(&atmel_aes.lock);
 428	/* One AES IP per SoC. */
 429	aes_dd = list_first_entry_or_null(&atmel_aes.dev_list,
 430					  struct atmel_aes_dev, list);
 431	spin_unlock_bh(&atmel_aes.lock);
 432	return aes_dd;
 433}
 434
 435static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
 436{
 437	int err;
 438
 439	err = clk_enable(dd->iclk);
 440	if (err)
 441		return err;
 442
 443	atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
 444	atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
 445
 446	return 0;
 447}
 448
 449static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
 450{
 451	return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
 452}
 453
 454static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
 455{
 456	int err;
 457
 458	err = atmel_aes_hw_init(dd);
 459	if (err)
 460		return err;
 461
 462	dd->hw_version = atmel_aes_get_version(dd);
 463
 464	dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
 465
 466	clk_disable(dd->iclk);
 467	return 0;
 468}
 469
 470static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
 471				      const struct atmel_aes_reqctx *rctx)
 472{
 473	/* Clear all but persistent flags and set request flags. */
 474	dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
 475}
 476
 477static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
 478{
 479	return (dd->flags & AES_FLAGS_ENCRYPT);
 480}
 481
 482#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 483static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
 484#endif
 485
 486static void atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev *dd)
 487{
 488	struct skcipher_request *req = skcipher_request_cast(dd->areq);
 489	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
 490	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
 491	unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
 492
 493	if (req->cryptlen < ivsize)
 494		return;
 495
 496	if (rctx->mode & AES_FLAGS_ENCRYPT) {
 497		scatterwalk_map_and_copy(req->iv, req->dst,
 498					 req->cryptlen - ivsize, ivsize, 0);
 499	} else {
 500		if (req->src == req->dst)
 501			memcpy(req->iv, rctx->lastc, ivsize);
 502		else
 503			scatterwalk_map_and_copy(req->iv, req->src,
 504						 req->cryptlen - ivsize,
 505						 ivsize, 0);
 506	}
 507}
 508
 509static inline struct atmel_aes_ctr_ctx *
 510atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
 511{
 512	return container_of(ctx, struct atmel_aes_ctr_ctx, base);
 513}
 514
 515static void atmel_aes_ctr_update_req_iv(struct atmel_aes_dev *dd)
 516{
 517	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
 518	struct skcipher_request *req = skcipher_request_cast(dd->areq);
 519	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
 520	unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
 521	int i;
 522
 523	/*
 524	 * The CTR transfer works in fragments of data of maximum 1 MByte
 525	 * because of the 16 bit CTR counter embedded in the IP. When reaching
 526	 * here, ctx->blocks contains the number of blocks of the last fragment
 527	 * processed, there is no need to explicit cast it to u16.
 528	 */
 529	for (i = 0; i < ctx->blocks; i++)
 530		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
 531
 532	memcpy(req->iv, ctx->iv, ivsize);
 533}
 534
 535static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
 536{
 537	struct skcipher_request *req = skcipher_request_cast(dd->areq);
 538	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
 539
 540#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 541	if (dd->ctx->is_aead)
 542		atmel_aes_authenc_complete(dd, err);
 543#endif
 544
 545	clk_disable(dd->iclk);
 546	dd->flags &= ~AES_FLAGS_BUSY;
 547
 548	if (!err && !dd->ctx->is_aead &&
 549	    (rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_ECB) {
 550		if ((rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_CTR)
 551			atmel_aes_set_iv_as_last_ciphertext_block(dd);
 552		else
 553			atmel_aes_ctr_update_req_iv(dd);
 554	}
 555
 556	if (dd->is_async)
 557		dd->areq->complete(dd->areq, err);
 558
 559	tasklet_schedule(&dd->queue_task);
 560
 561	return err;
 562}
 563
 564static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
 565				     const __be32 *iv, const u32 *key, int keylen)
 566{
 567	u32 valmr = 0;
 568
 569	/* MR register must be set before IV registers */
 570	if (keylen == AES_KEYSIZE_128)
 571		valmr |= AES_MR_KEYSIZE_128;
 572	else if (keylen == AES_KEYSIZE_192)
 573		valmr |= AES_MR_KEYSIZE_192;
 574	else
 575		valmr |= AES_MR_KEYSIZE_256;
 576
 577	valmr |= dd->flags & AES_FLAGS_MODE_MASK;
 578
 579	if (use_dma) {
 580		valmr |= AES_MR_SMOD_IDATAR0;
 581		if (dd->caps.has_dualbuff)
 582			valmr |= AES_MR_DUALBUFF;
 583	} else {
 584		valmr |= AES_MR_SMOD_AUTO;
 585	}
 586
 587	atmel_aes_write(dd, AES_MR, valmr);
 588
 589	atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
 590
 591	if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
 592		atmel_aes_write_block(dd, AES_IVR(0), iv);
 593}
 594
 595static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
 596					const __be32 *iv)
 597
 598{
 599	atmel_aes_write_ctrl_key(dd, use_dma, iv,
 600				 dd->ctx->key, dd->ctx->keylen);
 601}
 602
 603/* CPU transfer */
 604
 605static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
 606{
 607	int err = 0;
 608	u32 isr;
 609
 610	for (;;) {
 611		atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
 612		dd->data += 4;
 613		dd->datalen -= AES_BLOCK_SIZE;
 614
 615		if (dd->datalen < AES_BLOCK_SIZE)
 616			break;
 617
 618		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
 619
 620		isr = atmel_aes_read(dd, AES_ISR);
 621		if (!(isr & AES_INT_DATARDY)) {
 622			dd->resume = atmel_aes_cpu_transfer;
 623			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
 624			return -EINPROGRESS;
 625		}
 626	}
 627
 628	if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
 629				 dd->buf, dd->total))
 630		err = -EINVAL;
 631
 632	if (err)
 633		return atmel_aes_complete(dd, err);
 634
 635	return dd->cpu_transfer_complete(dd);
 636}
 637
 638static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
 639			       struct scatterlist *src,
 640			       struct scatterlist *dst,
 641			       size_t len,
 642			       atmel_aes_fn_t resume)
 643{
 644	size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
 645
 646	if (unlikely(len == 0))
 647		return -EINVAL;
 648
 649	sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
 650
 651	dd->total = len;
 652	dd->real_dst = dst;
 653	dd->cpu_transfer_complete = resume;
 654	dd->datalen = len + padlen;
 655	dd->data = (u32 *)dd->buf;
 656	atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
 657	return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
 658}
 659
 660
 661/* DMA transfer */
 662
 663static void atmel_aes_dma_callback(void *data);
 664
 665static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
 666				    struct scatterlist *sg,
 667				    size_t len,
 668				    struct atmel_aes_dma *dma)
 669{
 670	int nents;
 671
 672	if (!IS_ALIGNED(len, dd->ctx->block_size))
 673		return false;
 674
 675	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
 676		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
 677			return false;
 678
 679		if (len <= sg->length) {
 680			if (!IS_ALIGNED(len, dd->ctx->block_size))
 681				return false;
 682
 683			dma->nents = nents+1;
 684			dma->remainder = sg->length - len;
 685			sg->length = len;
 686			return true;
 687		}
 688
 689		if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
 690			return false;
 691
 692		len -= sg->length;
 693	}
 694
 695	return false;
 696}
 697
 698static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
 699{
 700	struct scatterlist *sg = dma->sg;
 701	int nents = dma->nents;
 702
 703	if (!dma->remainder)
 704		return;
 705
 706	while (--nents > 0 && sg)
 707		sg = sg_next(sg);
 708
 709	if (!sg)
 710		return;
 711
 712	sg->length += dma->remainder;
 713}
 714
 715static int atmel_aes_map(struct atmel_aes_dev *dd,
 716			 struct scatterlist *src,
 717			 struct scatterlist *dst,
 718			 size_t len)
 719{
 720	bool src_aligned, dst_aligned;
 721	size_t padlen;
 722
 723	dd->total = len;
 724	dd->src.sg = src;
 725	dd->dst.sg = dst;
 726	dd->real_dst = dst;
 727
 728	src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
 729	if (src == dst)
 730		dst_aligned = src_aligned;
 731	else
 732		dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
 733	if (!src_aligned || !dst_aligned) {
 734		padlen = atmel_aes_padlen(len, dd->ctx->block_size);
 735
 736		if (dd->buflen < len + padlen)
 737			return -ENOMEM;
 738
 739		if (!src_aligned) {
 740			sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
 741			dd->src.sg = &dd->aligned_sg;
 742			dd->src.nents = 1;
 743			dd->src.remainder = 0;
 744		}
 745
 746		if (!dst_aligned) {
 747			dd->dst.sg = &dd->aligned_sg;
 748			dd->dst.nents = 1;
 749			dd->dst.remainder = 0;
 750		}
 751
 752		sg_init_table(&dd->aligned_sg, 1);
 753		sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
 754	}
 755
 756	if (dd->src.sg == dd->dst.sg) {
 757		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
 758					    DMA_BIDIRECTIONAL);
 759		dd->dst.sg_len = dd->src.sg_len;
 760		if (!dd->src.sg_len)
 761			return -EFAULT;
 762	} else {
 763		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
 764					    DMA_TO_DEVICE);
 765		if (!dd->src.sg_len)
 766			return -EFAULT;
 767
 768		dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
 769					    DMA_FROM_DEVICE);
 770		if (!dd->dst.sg_len) {
 771			dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 772				     DMA_TO_DEVICE);
 773			return -EFAULT;
 774		}
 775	}
 776
 777	return 0;
 778}
 779
 780static void atmel_aes_unmap(struct atmel_aes_dev *dd)
 781{
 782	if (dd->src.sg == dd->dst.sg) {
 783		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 784			     DMA_BIDIRECTIONAL);
 785
 786		if (dd->src.sg != &dd->aligned_sg)
 787			atmel_aes_restore_sg(&dd->src);
 788	} else {
 789		dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
 790			     DMA_FROM_DEVICE);
 791
 792		if (dd->dst.sg != &dd->aligned_sg)
 793			atmel_aes_restore_sg(&dd->dst);
 794
 795		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 796			     DMA_TO_DEVICE);
 797
 798		if (dd->src.sg != &dd->aligned_sg)
 799			atmel_aes_restore_sg(&dd->src);
 800	}
 801
 802	if (dd->dst.sg == &dd->aligned_sg)
 803		sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
 804				    dd->buf, dd->total);
 805}
 806
 807static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
 808					enum dma_slave_buswidth addr_width,
 809					enum dma_transfer_direction dir,
 810					u32 maxburst)
 811{
 812	struct dma_async_tx_descriptor *desc;
 813	struct dma_slave_config config;
 814	dma_async_tx_callback callback;
 815	struct atmel_aes_dma *dma;
 816	int err;
 817
 818	memset(&config, 0, sizeof(config));
 819	config.src_addr_width = addr_width;
 820	config.dst_addr_width = addr_width;
 821	config.src_maxburst = maxburst;
 822	config.dst_maxburst = maxburst;
 823
 824	switch (dir) {
 825	case DMA_MEM_TO_DEV:
 826		dma = &dd->src;
 827		callback = NULL;
 828		config.dst_addr = dd->phys_base + AES_IDATAR(0);
 829		break;
 830
 831	case DMA_DEV_TO_MEM:
 832		dma = &dd->dst;
 833		callback = atmel_aes_dma_callback;
 834		config.src_addr = dd->phys_base + AES_ODATAR(0);
 835		break;
 836
 837	default:
 838		return -EINVAL;
 839	}
 840
 841	err = dmaengine_slave_config(dma->chan, &config);
 842	if (err)
 843		return err;
 844
 845	desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
 846				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 847	if (!desc)
 848		return -ENOMEM;
 849
 850	desc->callback = callback;
 851	desc->callback_param = dd;
 852	dmaengine_submit(desc);
 853	dma_async_issue_pending(dma->chan);
 854
 855	return 0;
 856}
 857
 858static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
 859			       struct scatterlist *src,
 860			       struct scatterlist *dst,
 861			       size_t len,
 862			       atmel_aes_fn_t resume)
 863{
 864	enum dma_slave_buswidth addr_width;
 865	u32 maxburst;
 866	int err;
 867
 868	switch (dd->ctx->block_size) {
 869	case CFB8_BLOCK_SIZE:
 870		addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 871		maxburst = 1;
 872		break;
 873
 874	case CFB16_BLOCK_SIZE:
 875		addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 876		maxburst = 1;
 877		break;
 878
 879	case CFB32_BLOCK_SIZE:
 880	case CFB64_BLOCK_SIZE:
 881		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 882		maxburst = 1;
 883		break;
 884
 885	case AES_BLOCK_SIZE:
 886		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 887		maxburst = dd->caps.max_burst_size;
 888		break;
 889
 890	default:
 891		err = -EINVAL;
 892		goto exit;
 893	}
 894
 895	err = atmel_aes_map(dd, src, dst, len);
 896	if (err)
 897		goto exit;
 898
 899	dd->resume = resume;
 900
 901	/* Set output DMA transfer first */
 902	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
 903					   maxburst);
 904	if (err)
 905		goto unmap;
 906
 907	/* Then set input DMA transfer */
 908	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
 909					   maxburst);
 910	if (err)
 911		goto output_transfer_stop;
 912
 913	return -EINPROGRESS;
 914
 915output_transfer_stop:
 916	dmaengine_terminate_sync(dd->dst.chan);
 917unmap:
 918	atmel_aes_unmap(dd);
 919exit:
 920	return atmel_aes_complete(dd, err);
 921}
 922
 923static void atmel_aes_dma_callback(void *data)
 924{
 925	struct atmel_aes_dev *dd = data;
 926
 927	atmel_aes_unmap(dd);
 928	dd->is_async = true;
 929	(void)dd->resume(dd);
 930}
 931
 932static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
 933				  struct crypto_async_request *new_areq)
 934{
 935	struct crypto_async_request *areq, *backlog;
 936	struct atmel_aes_base_ctx *ctx;
 937	unsigned long flags;
 938	bool start_async;
 939	int err, ret = 0;
 940
 941	spin_lock_irqsave(&dd->lock, flags);
 942	if (new_areq)
 943		ret = crypto_enqueue_request(&dd->queue, new_areq);
 944	if (dd->flags & AES_FLAGS_BUSY) {
 945		spin_unlock_irqrestore(&dd->lock, flags);
 946		return ret;
 947	}
 948	backlog = crypto_get_backlog(&dd->queue);
 949	areq = crypto_dequeue_request(&dd->queue);
 950	if (areq)
 951		dd->flags |= AES_FLAGS_BUSY;
 952	spin_unlock_irqrestore(&dd->lock, flags);
 953
 954	if (!areq)
 955		return ret;
 956
 957	if (backlog)
 958		backlog->complete(backlog, -EINPROGRESS);
 959
 960	ctx = crypto_tfm_ctx(areq->tfm);
 961
 962	dd->areq = areq;
 963	dd->ctx = ctx;
 964	start_async = (areq != new_areq);
 965	dd->is_async = start_async;
 966
 967	/* WARNING: ctx->start() MAY change dd->is_async. */
 968	err = ctx->start(dd);
 969	return (start_async) ? ret : err;
 970}
 971
 972
 973/* AES async block ciphers */
 974
 975static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
 976{
 977	return atmel_aes_complete(dd, 0);
 978}
 979
 980static int atmel_aes_start(struct atmel_aes_dev *dd)
 981{
 982	struct skcipher_request *req = skcipher_request_cast(dd->areq);
 983	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
 984	bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD ||
 985			dd->ctx->block_size != AES_BLOCK_SIZE);
 986	int err;
 987
 988	atmel_aes_set_mode(dd, rctx);
 989
 990	err = atmel_aes_hw_init(dd);
 991	if (err)
 992		return atmel_aes_complete(dd, err);
 993
 994	atmel_aes_write_ctrl(dd, use_dma, (void *)req->iv);
 995	if (use_dma)
 996		return atmel_aes_dma_start(dd, req->src, req->dst,
 997					   req->cryptlen,
 998					   atmel_aes_transfer_complete);
 999
1000	return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1001				   atmel_aes_transfer_complete);
1002}
1003
1004static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
1005{
1006	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1007	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1008	struct scatterlist *src, *dst;
1009	size_t datalen;
1010	u32 ctr;
1011	u16 start, end;
1012	bool use_dma, fragmented = false;
1013
1014	/* Check for transfer completion. */
1015	ctx->offset += dd->total;
1016	if (ctx->offset >= req->cryptlen)
1017		return atmel_aes_transfer_complete(dd);
1018
1019	/* Compute data length. */
1020	datalen = req->cryptlen - ctx->offset;
1021	ctx->blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
1022	ctr = be32_to_cpu(ctx->iv[3]);
1023
1024	/* Check 16bit counter overflow. */
1025	start = ctr & 0xffff;
1026	end = start + ctx->blocks - 1;
1027
1028	if (ctx->blocks >> 16 || end < start) {
1029		ctr |= 0xffff;
1030		datalen = AES_BLOCK_SIZE * (0x10000 - start);
1031		fragmented = true;
1032	}
1033
1034	use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1035
1036	/* Jump to offset. */
1037	src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1038	dst = ((req->src == req->dst) ? src :
1039	       scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1040
1041	/* Configure hardware. */
1042	atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1043	if (unlikely(fragmented)) {
1044		/*
1045		 * Increment the counter manually to cope with the hardware
1046		 * counter overflow.
1047		 */
1048		ctx->iv[3] = cpu_to_be32(ctr);
1049		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1050	}
1051
1052	if (use_dma)
1053		return atmel_aes_dma_start(dd, src, dst, datalen,
1054					   atmel_aes_ctr_transfer);
1055
1056	return atmel_aes_cpu_start(dd, src, dst, datalen,
1057				   atmel_aes_ctr_transfer);
1058}
1059
1060static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1061{
1062	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1063	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1064	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1065	int err;
1066
1067	atmel_aes_set_mode(dd, rctx);
1068
1069	err = atmel_aes_hw_init(dd);
1070	if (err)
1071		return atmel_aes_complete(dd, err);
1072
1073	memcpy(ctx->iv, req->iv, AES_BLOCK_SIZE);
1074	ctx->offset = 0;
1075	dd->total = 0;
1076	return atmel_aes_ctr_transfer(dd);
1077}
1078
1079static int atmel_aes_xts_fallback(struct skcipher_request *req, bool enc)
1080{
1081	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1082	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(
1083			crypto_skcipher_reqtfm(req));
1084
1085	skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
1086	skcipher_request_set_callback(&rctx->fallback_req, req->base.flags,
1087				      req->base.complete, req->base.data);
1088	skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst,
1089				   req->cryptlen, req->iv);
1090
1091	return enc ? crypto_skcipher_encrypt(&rctx->fallback_req) :
1092		     crypto_skcipher_decrypt(&rctx->fallback_req);
1093}
1094
1095static int atmel_aes_crypt(struct skcipher_request *req, unsigned long mode)
1096{
1097	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
1098	struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(skcipher);
1099	struct atmel_aes_reqctx *rctx;
1100	u32 opmode = mode & AES_FLAGS_OPMODE_MASK;
1101
1102	if (opmode == AES_FLAGS_XTS) {
1103		if (req->cryptlen < XTS_BLOCK_SIZE)
1104			return -EINVAL;
1105
1106		if (!IS_ALIGNED(req->cryptlen, XTS_BLOCK_SIZE))
1107			return atmel_aes_xts_fallback(req,
1108						      mode & AES_FLAGS_ENCRYPT);
1109	}
1110
1111	/*
1112	 * ECB, CBC, CFB, OFB or CTR mode require the plaintext and ciphertext
1113	 * to have a positve integer length.
1114	 */
1115	if (!req->cryptlen && opmode != AES_FLAGS_XTS)
1116		return 0;
1117
1118	if ((opmode == AES_FLAGS_ECB || opmode == AES_FLAGS_CBC) &&
1119	    !IS_ALIGNED(req->cryptlen, crypto_skcipher_blocksize(skcipher)))
1120		return -EINVAL;
1121
1122	switch (mode & AES_FLAGS_OPMODE_MASK) {
1123	case AES_FLAGS_CFB8:
1124		ctx->block_size = CFB8_BLOCK_SIZE;
1125		break;
1126
1127	case AES_FLAGS_CFB16:
1128		ctx->block_size = CFB16_BLOCK_SIZE;
1129		break;
1130
1131	case AES_FLAGS_CFB32:
1132		ctx->block_size = CFB32_BLOCK_SIZE;
1133		break;
1134
1135	case AES_FLAGS_CFB64:
1136		ctx->block_size = CFB64_BLOCK_SIZE;
1137		break;
1138
1139	default:
1140		ctx->block_size = AES_BLOCK_SIZE;
1141		break;
1142	}
1143	ctx->is_aead = false;
1144
1145	rctx = skcipher_request_ctx(req);
1146	rctx->mode = mode;
1147
1148	if (opmode != AES_FLAGS_ECB &&
1149	    !(mode & AES_FLAGS_ENCRYPT) && req->src == req->dst) {
1150		unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
1151
1152		if (req->cryptlen >= ivsize)
1153			scatterwalk_map_and_copy(rctx->lastc, req->src,
1154						 req->cryptlen - ivsize,
1155						 ivsize, 0);
1156	}
1157
1158	return atmel_aes_handle_queue(ctx->dd, &req->base);
1159}
1160
1161static int atmel_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
1162			   unsigned int keylen)
1163{
1164	struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(tfm);
1165
1166	if (keylen != AES_KEYSIZE_128 &&
1167	    keylen != AES_KEYSIZE_192 &&
1168	    keylen != AES_KEYSIZE_256)
1169		return -EINVAL;
1170
1171	memcpy(ctx->key, key, keylen);
1172	ctx->keylen = keylen;
1173
1174	return 0;
1175}
1176
1177static int atmel_aes_ecb_encrypt(struct skcipher_request *req)
1178{
1179	return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1180}
1181
1182static int atmel_aes_ecb_decrypt(struct skcipher_request *req)
1183{
1184	return atmel_aes_crypt(req, AES_FLAGS_ECB);
1185}
1186
1187static int atmel_aes_cbc_encrypt(struct skcipher_request *req)
1188{
1189	return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1190}
1191
1192static int atmel_aes_cbc_decrypt(struct skcipher_request *req)
1193{
1194	return atmel_aes_crypt(req, AES_FLAGS_CBC);
1195}
1196
1197static int atmel_aes_ofb_encrypt(struct skcipher_request *req)
1198{
1199	return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
1200}
1201
1202static int atmel_aes_ofb_decrypt(struct skcipher_request *req)
1203{
1204	return atmel_aes_crypt(req, AES_FLAGS_OFB);
1205}
1206
1207static int atmel_aes_cfb_encrypt(struct skcipher_request *req)
1208{
1209	return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
1210}
1211
1212static int atmel_aes_cfb_decrypt(struct skcipher_request *req)
1213{
1214	return atmel_aes_crypt(req, AES_FLAGS_CFB128);
1215}
1216
1217static int atmel_aes_cfb64_encrypt(struct skcipher_request *req)
1218{
1219	return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
1220}
1221
1222static int atmel_aes_cfb64_decrypt(struct skcipher_request *req)
1223{
1224	return atmel_aes_crypt(req, AES_FLAGS_CFB64);
1225}
1226
1227static int atmel_aes_cfb32_encrypt(struct skcipher_request *req)
1228{
1229	return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
1230}
1231
1232static int atmel_aes_cfb32_decrypt(struct skcipher_request *req)
1233{
1234	return atmel_aes_crypt(req, AES_FLAGS_CFB32);
1235}
1236
1237static int atmel_aes_cfb16_encrypt(struct skcipher_request *req)
1238{
1239	return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
1240}
1241
1242static int atmel_aes_cfb16_decrypt(struct skcipher_request *req)
1243{
1244	return atmel_aes_crypt(req, AES_FLAGS_CFB16);
1245}
1246
1247static int atmel_aes_cfb8_encrypt(struct skcipher_request *req)
1248{
1249	return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
1250}
1251
1252static int atmel_aes_cfb8_decrypt(struct skcipher_request *req)
1253{
1254	return atmel_aes_crypt(req, AES_FLAGS_CFB8);
1255}
1256
1257static int atmel_aes_ctr_encrypt(struct skcipher_request *req)
1258{
1259	return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1260}
1261
1262static int atmel_aes_ctr_decrypt(struct skcipher_request *req)
1263{
1264	return atmel_aes_crypt(req, AES_FLAGS_CTR);
1265}
1266
1267static int atmel_aes_init_tfm(struct crypto_skcipher *tfm)
1268{
1269	struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1270	struct atmel_aes_dev *dd;
1271
1272	dd = atmel_aes_dev_alloc(&ctx->base);
1273	if (!dd)
1274		return -ENODEV;
1275
1276	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1277	ctx->base.dd = dd;
1278	ctx->base.start = atmel_aes_start;
1279
1280	return 0;
1281}
1282
1283static int atmel_aes_ctr_init_tfm(struct crypto_skcipher *tfm)
1284{
1285	struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1286	struct atmel_aes_dev *dd;
1287
1288	dd = atmel_aes_dev_alloc(&ctx->base);
1289	if (!dd)
1290		return -ENODEV;
1291
1292	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1293	ctx->base.dd = dd;
1294	ctx->base.start = atmel_aes_ctr_start;
1295
1296	return 0;
1297}
1298
1299static struct skcipher_alg aes_algs[] = {
1300{
1301	.base.cra_name		= "ecb(aes)",
1302	.base.cra_driver_name	= "atmel-ecb-aes",
1303	.base.cra_blocksize	= AES_BLOCK_SIZE,
1304	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1305
1306	.init			= atmel_aes_init_tfm,
1307	.min_keysize		= AES_MIN_KEY_SIZE,
1308	.max_keysize		= AES_MAX_KEY_SIZE,
1309	.setkey			= atmel_aes_setkey,
1310	.encrypt		= atmel_aes_ecb_encrypt,
1311	.decrypt		= atmel_aes_ecb_decrypt,
1312},
1313{
1314	.base.cra_name		= "cbc(aes)",
1315	.base.cra_driver_name	= "atmel-cbc-aes",
1316	.base.cra_blocksize	= AES_BLOCK_SIZE,
1317	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1318
1319	.init			= atmel_aes_init_tfm,
1320	.min_keysize		= AES_MIN_KEY_SIZE,
1321	.max_keysize		= AES_MAX_KEY_SIZE,
1322	.setkey			= atmel_aes_setkey,
1323	.encrypt		= atmel_aes_cbc_encrypt,
1324	.decrypt		= atmel_aes_cbc_decrypt,
1325	.ivsize			= AES_BLOCK_SIZE,
1326},
1327{
1328	.base.cra_name		= "ofb(aes)",
1329	.base.cra_driver_name	= "atmel-ofb-aes",
1330	.base.cra_blocksize	= 1,
1331	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1332
1333	.init			= atmel_aes_init_tfm,
1334	.min_keysize		= AES_MIN_KEY_SIZE,
1335	.max_keysize		= AES_MAX_KEY_SIZE,
1336	.setkey			= atmel_aes_setkey,
1337	.encrypt		= atmel_aes_ofb_encrypt,
1338	.decrypt		= atmel_aes_ofb_decrypt,
1339	.ivsize			= AES_BLOCK_SIZE,
1340},
1341{
1342	.base.cra_name		= "cfb(aes)",
1343	.base.cra_driver_name	= "atmel-cfb-aes",
1344	.base.cra_blocksize	= AES_BLOCK_SIZE,
1345	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1346
1347	.init			= atmel_aes_init_tfm,
1348	.min_keysize		= AES_MIN_KEY_SIZE,
1349	.max_keysize		= AES_MAX_KEY_SIZE,
1350	.setkey			= atmel_aes_setkey,
1351	.encrypt		= atmel_aes_cfb_encrypt,
1352	.decrypt		= atmel_aes_cfb_decrypt,
1353	.ivsize			= AES_BLOCK_SIZE,
1354},
1355{
1356	.base.cra_name		= "cfb32(aes)",
1357	.base.cra_driver_name	= "atmel-cfb32-aes",
1358	.base.cra_blocksize	= CFB32_BLOCK_SIZE,
1359	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1360
1361	.init			= atmel_aes_init_tfm,
1362	.min_keysize		= AES_MIN_KEY_SIZE,
1363	.max_keysize		= AES_MAX_KEY_SIZE,
1364	.setkey			= atmel_aes_setkey,
1365	.encrypt		= atmel_aes_cfb32_encrypt,
1366	.decrypt		= atmel_aes_cfb32_decrypt,
1367	.ivsize			= AES_BLOCK_SIZE,
1368},
1369{
1370	.base.cra_name		= "cfb16(aes)",
1371	.base.cra_driver_name	= "atmel-cfb16-aes",
1372	.base.cra_blocksize	= CFB16_BLOCK_SIZE,
1373	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1374
1375	.init			= atmel_aes_init_tfm,
1376	.min_keysize		= AES_MIN_KEY_SIZE,
1377	.max_keysize		= AES_MAX_KEY_SIZE,
1378	.setkey			= atmel_aes_setkey,
1379	.encrypt		= atmel_aes_cfb16_encrypt,
1380	.decrypt		= atmel_aes_cfb16_decrypt,
1381	.ivsize			= AES_BLOCK_SIZE,
1382},
1383{
1384	.base.cra_name		= "cfb8(aes)",
1385	.base.cra_driver_name	= "atmel-cfb8-aes",
1386	.base.cra_blocksize	= CFB8_BLOCK_SIZE,
1387	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1388
1389	.init			= atmel_aes_init_tfm,
1390	.min_keysize		= AES_MIN_KEY_SIZE,
1391	.max_keysize		= AES_MAX_KEY_SIZE,
1392	.setkey			= atmel_aes_setkey,
1393	.encrypt		= atmel_aes_cfb8_encrypt,
1394	.decrypt		= atmel_aes_cfb8_decrypt,
1395	.ivsize			= AES_BLOCK_SIZE,
1396},
1397{
1398	.base.cra_name		= "ctr(aes)",
1399	.base.cra_driver_name	= "atmel-ctr-aes",
1400	.base.cra_blocksize	= 1,
1401	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctr_ctx),
1402
1403	.init			= atmel_aes_ctr_init_tfm,
1404	.min_keysize		= AES_MIN_KEY_SIZE,
1405	.max_keysize		= AES_MAX_KEY_SIZE,
1406	.setkey			= atmel_aes_setkey,
1407	.encrypt		= atmel_aes_ctr_encrypt,
1408	.decrypt		= atmel_aes_ctr_decrypt,
1409	.ivsize			= AES_BLOCK_SIZE,
1410},
1411};
1412
1413static struct skcipher_alg aes_cfb64_alg = {
1414	.base.cra_name		= "cfb64(aes)",
1415	.base.cra_driver_name	= "atmel-cfb64-aes",
1416	.base.cra_blocksize	= CFB64_BLOCK_SIZE,
1417	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1418
1419	.init			= atmel_aes_init_tfm,
1420	.min_keysize		= AES_MIN_KEY_SIZE,
1421	.max_keysize		= AES_MAX_KEY_SIZE,
1422	.setkey			= atmel_aes_setkey,
1423	.encrypt		= atmel_aes_cfb64_encrypt,
1424	.decrypt		= atmel_aes_cfb64_decrypt,
1425	.ivsize			= AES_BLOCK_SIZE,
1426};
1427
1428
1429/* gcm aead functions */
1430
1431static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1432			       const u32 *data, size_t datalen,
1433			       const __be32 *ghash_in, __be32 *ghash_out,
1434			       atmel_aes_fn_t resume);
1435static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1436static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1437
1438static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1439static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1440static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1441static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1442static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1443static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1444static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1445
1446static inline struct atmel_aes_gcm_ctx *
1447atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1448{
1449	return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1450}
1451
1452static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1453			       const u32 *data, size_t datalen,
1454			       const __be32 *ghash_in, __be32 *ghash_out,
1455			       atmel_aes_fn_t resume)
1456{
1457	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1458
1459	dd->data = (u32 *)data;
1460	dd->datalen = datalen;
1461	ctx->ghash_in = ghash_in;
1462	ctx->ghash_out = ghash_out;
1463	ctx->ghash_resume = resume;
1464
1465	atmel_aes_write_ctrl(dd, false, NULL);
1466	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1467}
1468
1469static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1470{
1471	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1472
1473	/* Set the data length. */
1474	atmel_aes_write(dd, AES_AADLENR, dd->total);
1475	atmel_aes_write(dd, AES_CLENR, 0);
1476
1477	/* If needed, overwrite the GCM Intermediate Hash Word Registers */
1478	if (ctx->ghash_in)
1479		atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1480
1481	return atmel_aes_gcm_ghash_finalize(dd);
1482}
1483
1484static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1485{
1486	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1487	u32 isr;
1488
1489	/* Write data into the Input Data Registers. */
1490	while (dd->datalen > 0) {
1491		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1492		dd->data += 4;
1493		dd->datalen -= AES_BLOCK_SIZE;
1494
1495		isr = atmel_aes_read(dd, AES_ISR);
1496		if (!(isr & AES_INT_DATARDY)) {
1497			dd->resume = atmel_aes_gcm_ghash_finalize;
1498			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1499			return -EINPROGRESS;
1500		}
1501	}
1502
1503	/* Read the computed hash from GHASHRx. */
1504	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1505
1506	return ctx->ghash_resume(dd);
1507}
1508
1509
1510static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1511{
1512	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1513	struct aead_request *req = aead_request_cast(dd->areq);
1514	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1515	struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1516	size_t ivsize = crypto_aead_ivsize(tfm);
1517	size_t datalen, padlen;
1518	const void *iv = req->iv;
1519	u8 *data = dd->buf;
1520	int err;
1521
1522	atmel_aes_set_mode(dd, rctx);
1523
1524	err = atmel_aes_hw_init(dd);
1525	if (err)
1526		return atmel_aes_complete(dd, err);
1527
1528	if (likely(ivsize == GCM_AES_IV_SIZE)) {
1529		memcpy(ctx->j0, iv, ivsize);
1530		ctx->j0[3] = cpu_to_be32(1);
1531		return atmel_aes_gcm_process(dd);
1532	}
1533
1534	padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1535	datalen = ivsize + padlen + AES_BLOCK_SIZE;
1536	if (datalen > dd->buflen)
1537		return atmel_aes_complete(dd, -EINVAL);
1538
1539	memcpy(data, iv, ivsize);
1540	memset(data + ivsize, 0, padlen + sizeof(u64));
1541	((__be64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1542
1543	return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1544				   NULL, ctx->j0, atmel_aes_gcm_process);
1545}
1546
1547static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1548{
1549	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1550	struct aead_request *req = aead_request_cast(dd->areq);
1551	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1552	bool enc = atmel_aes_is_encrypt(dd);
1553	u32 authsize;
1554
1555	/* Compute text length. */
1556	authsize = crypto_aead_authsize(tfm);
1557	ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1558
1559	/*
1560	 * According to tcrypt test suite, the GCM Automatic Tag Generation
1561	 * fails when both the message and its associated data are empty.
1562	 */
1563	if (likely(req->assoclen != 0 || ctx->textlen != 0))
1564		dd->flags |= AES_FLAGS_GTAGEN;
1565
1566	atmel_aes_write_ctrl(dd, false, NULL);
1567	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1568}
1569
1570static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1571{
1572	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1573	struct aead_request *req = aead_request_cast(dd->areq);
1574	__be32 j0_lsw, *j0 = ctx->j0;
1575	size_t padlen;
1576
1577	/* Write incr32(J0) into IV. */
1578	j0_lsw = j0[3];
1579	be32_add_cpu(&j0[3], 1);
1580	atmel_aes_write_block(dd, AES_IVR(0), j0);
1581	j0[3] = j0_lsw;
1582
1583	/* Set aad and text lengths. */
1584	atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1585	atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1586
1587	/* Check whether AAD are present. */
1588	if (unlikely(req->assoclen == 0)) {
1589		dd->datalen = 0;
1590		return atmel_aes_gcm_data(dd);
1591	}
1592
1593	/* Copy assoc data and add padding. */
1594	padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1595	if (unlikely(req->assoclen + padlen > dd->buflen))
1596		return atmel_aes_complete(dd, -EINVAL);
1597	sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1598
1599	/* Write assoc data into the Input Data register. */
1600	dd->data = (u32 *)dd->buf;
1601	dd->datalen = req->assoclen + padlen;
1602	return atmel_aes_gcm_data(dd);
1603}
1604
1605static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1606{
1607	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1608	struct aead_request *req = aead_request_cast(dd->areq);
1609	bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1610	struct scatterlist *src, *dst;
1611	u32 isr, mr;
1612
1613	/* Write AAD first. */
1614	while (dd->datalen > 0) {
1615		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1616		dd->data += 4;
1617		dd->datalen -= AES_BLOCK_SIZE;
1618
1619		isr = atmel_aes_read(dd, AES_ISR);
1620		if (!(isr & AES_INT_DATARDY)) {
1621			dd->resume = atmel_aes_gcm_data;
1622			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1623			return -EINPROGRESS;
1624		}
1625	}
1626
1627	/* GMAC only. */
1628	if (unlikely(ctx->textlen == 0))
1629		return atmel_aes_gcm_tag_init(dd);
1630
1631	/* Prepare src and dst scatter lists to transfer cipher/plain texts */
1632	src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1633	dst = ((req->src == req->dst) ? src :
1634	       scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1635
1636	if (use_dma) {
1637		/* Update the Mode Register for DMA transfers. */
1638		mr = atmel_aes_read(dd, AES_MR);
1639		mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1640		mr |= AES_MR_SMOD_IDATAR0;
1641		if (dd->caps.has_dualbuff)
1642			mr |= AES_MR_DUALBUFF;
1643		atmel_aes_write(dd, AES_MR, mr);
1644
1645		return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1646					   atmel_aes_gcm_tag_init);
1647	}
1648
1649	return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1650				   atmel_aes_gcm_tag_init);
1651}
1652
1653static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1654{
1655	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1656	struct aead_request *req = aead_request_cast(dd->areq);
1657	__be64 *data = dd->buf;
1658
1659	if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1660		if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1661			dd->resume = atmel_aes_gcm_tag_init;
1662			atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1663			return -EINPROGRESS;
1664		}
1665
1666		return atmel_aes_gcm_finalize(dd);
1667	}
1668
1669	/* Read the GCM Intermediate Hash Word Registers. */
1670	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1671
1672	data[0] = cpu_to_be64(req->assoclen * 8);
1673	data[1] = cpu_to_be64(ctx->textlen * 8);
1674
1675	return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1676				   ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1677}
1678
1679static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1680{
1681	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1682	unsigned long flags;
1683
1684	/*
1685	 * Change mode to CTR to complete the tag generation.
1686	 * Use J0 as Initialization Vector.
1687	 */
1688	flags = dd->flags;
1689	dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1690	dd->flags |= AES_FLAGS_CTR;
1691	atmel_aes_write_ctrl(dd, false, ctx->j0);
1692	dd->flags = flags;
1693
1694	atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1695	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1696}
1697
1698static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1699{
1700	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1701	struct aead_request *req = aead_request_cast(dd->areq);
1702	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1703	bool enc = atmel_aes_is_encrypt(dd);
1704	u32 offset, authsize, itag[4], *otag = ctx->tag;
1705	int err;
1706
1707	/* Read the computed tag. */
1708	if (likely(dd->flags & AES_FLAGS_GTAGEN))
1709		atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1710	else
1711		atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1712
1713	offset = req->assoclen + ctx->textlen;
1714	authsize = crypto_aead_authsize(tfm);
1715	if (enc) {
1716		scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1717		err = 0;
1718	} else {
1719		scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1720		err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1721	}
1722
1723	return atmel_aes_complete(dd, err);
1724}
1725
1726static int atmel_aes_gcm_crypt(struct aead_request *req,
1727			       unsigned long mode)
1728{
1729	struct atmel_aes_base_ctx *ctx;
1730	struct atmel_aes_reqctx *rctx;
1731
1732	ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1733	ctx->block_size = AES_BLOCK_SIZE;
1734	ctx->is_aead = true;
1735
1736	rctx = aead_request_ctx(req);
1737	rctx->mode = AES_FLAGS_GCM | mode;
1738
1739	return atmel_aes_handle_queue(ctx->dd, &req->base);
1740}
1741
1742static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1743				unsigned int keylen)
1744{
1745	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1746
1747	if (keylen != AES_KEYSIZE_256 &&
1748	    keylen != AES_KEYSIZE_192 &&
1749	    keylen != AES_KEYSIZE_128)
1750		return -EINVAL;
1751
1752	memcpy(ctx->key, key, keylen);
1753	ctx->keylen = keylen;
1754
1755	return 0;
1756}
1757
1758static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1759				     unsigned int authsize)
1760{
1761	return crypto_gcm_check_authsize(authsize);
1762}
1763
1764static int atmel_aes_gcm_encrypt(struct aead_request *req)
1765{
1766	return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1767}
1768
1769static int atmel_aes_gcm_decrypt(struct aead_request *req)
1770{
1771	return atmel_aes_gcm_crypt(req, 0);
1772}
1773
1774static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1775{
1776	struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1777	struct atmel_aes_dev *dd;
1778
1779	dd = atmel_aes_dev_alloc(&ctx->base);
1780	if (!dd)
1781		return -ENODEV;
1782
1783	crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1784	ctx->base.dd = dd;
1785	ctx->base.start = atmel_aes_gcm_start;
1786
1787	return 0;
1788}
1789
1790static struct aead_alg aes_gcm_alg = {
1791	.setkey		= atmel_aes_gcm_setkey,
1792	.setauthsize	= atmel_aes_gcm_setauthsize,
1793	.encrypt	= atmel_aes_gcm_encrypt,
1794	.decrypt	= atmel_aes_gcm_decrypt,
1795	.init		= atmel_aes_gcm_init,
1796	.ivsize		= GCM_AES_IV_SIZE,
1797	.maxauthsize	= AES_BLOCK_SIZE,
1798
1799	.base = {
1800		.cra_name		= "gcm(aes)",
1801		.cra_driver_name	= "atmel-gcm-aes",
1802		.cra_blocksize		= 1,
1803		.cra_ctxsize		= sizeof(struct atmel_aes_gcm_ctx),
1804	},
1805};
1806
1807
1808/* xts functions */
1809
1810static inline struct atmel_aes_xts_ctx *
1811atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1812{
1813	return container_of(ctx, struct atmel_aes_xts_ctx, base);
1814}
1815
1816static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1817
1818static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1819{
1820	struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1821	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1822	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1823	unsigned long flags;
1824	int err;
1825
1826	atmel_aes_set_mode(dd, rctx);
1827
1828	err = atmel_aes_hw_init(dd);
1829	if (err)
1830		return atmel_aes_complete(dd, err);
1831
1832	/* Compute the tweak value from req->iv with ecb(aes). */
1833	flags = dd->flags;
1834	dd->flags &= ~AES_FLAGS_MODE_MASK;
1835	dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1836	atmel_aes_write_ctrl_key(dd, false, NULL,
1837				 ctx->key2, ctx->base.keylen);
1838	dd->flags = flags;
1839
1840	atmel_aes_write_block(dd, AES_IDATAR(0), req->iv);
1841	return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1842}
1843
1844static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1845{
1846	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1847	bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD);
1848	u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1849	static const __le32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1850	u8 *tweak_bytes = (u8 *)tweak;
1851	int i;
1852
1853	/* Read the computed ciphered tweak value. */
1854	atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1855	/*
1856	 * Hardware quirk:
1857	 * the order of the ciphered tweak bytes need to be reversed before
1858	 * writing them into the ODATARx registers.
1859	 */
1860	for (i = 0; i < AES_BLOCK_SIZE/2; ++i)
1861		swap(tweak_bytes[i], tweak_bytes[AES_BLOCK_SIZE - 1 - i]);
1862
1863	/* Process the data. */
1864	atmel_aes_write_ctrl(dd, use_dma, NULL);
1865	atmel_aes_write_block(dd, AES_TWR(0), tweak);
1866	atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1867	if (use_dma)
1868		return atmel_aes_dma_start(dd, req->src, req->dst,
1869					   req->cryptlen,
1870					   atmel_aes_transfer_complete);
1871
1872	return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1873				   atmel_aes_transfer_complete);
1874}
1875
1876static int atmel_aes_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
1877				unsigned int keylen)
1878{
1879	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1880	int err;
1881
1882	err = xts_check_key(crypto_skcipher_tfm(tfm), key, keylen);
1883	if (err)
1884		return err;
1885
1886	crypto_skcipher_clear_flags(ctx->fallback_tfm, CRYPTO_TFM_REQ_MASK);
1887	crypto_skcipher_set_flags(ctx->fallback_tfm, tfm->base.crt_flags &
1888				  CRYPTO_TFM_REQ_MASK);
1889	err = crypto_skcipher_setkey(ctx->fallback_tfm, key, keylen);
1890	if (err)
1891		return err;
1892
1893	memcpy(ctx->base.key, key, keylen/2);
1894	memcpy(ctx->key2, key + keylen/2, keylen/2);
1895	ctx->base.keylen = keylen/2;
1896
1897	return 0;
1898}
1899
1900static int atmel_aes_xts_encrypt(struct skcipher_request *req)
1901{
1902	return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1903}
1904
1905static int atmel_aes_xts_decrypt(struct skcipher_request *req)
1906{
1907	return atmel_aes_crypt(req, AES_FLAGS_XTS);
1908}
1909
1910static int atmel_aes_xts_init_tfm(struct crypto_skcipher *tfm)
1911{
1912	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1913	struct atmel_aes_dev *dd;
1914	const char *tfm_name = crypto_tfm_alg_name(&tfm->base);
1915
1916	dd = atmel_aes_dev_alloc(&ctx->base);
1917	if (!dd)
1918		return -ENODEV;
1919
1920	ctx->fallback_tfm = crypto_alloc_skcipher(tfm_name, 0,
1921						  CRYPTO_ALG_NEED_FALLBACK);
1922	if (IS_ERR(ctx->fallback_tfm))
1923		return PTR_ERR(ctx->fallback_tfm);
1924
1925	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx) +
1926				    crypto_skcipher_reqsize(ctx->fallback_tfm));
1927	ctx->base.dd = dd;
1928	ctx->base.start = atmel_aes_xts_start;
1929
1930	return 0;
1931}
1932
1933static void atmel_aes_xts_exit_tfm(struct crypto_skcipher *tfm)
1934{
1935	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1936
1937	crypto_free_skcipher(ctx->fallback_tfm);
1938}
1939
1940static struct skcipher_alg aes_xts_alg = {
1941	.base.cra_name		= "xts(aes)",
1942	.base.cra_driver_name	= "atmel-xts-aes",
1943	.base.cra_blocksize	= AES_BLOCK_SIZE,
1944	.base.cra_ctxsize	= sizeof(struct atmel_aes_xts_ctx),
1945	.base.cra_flags		= CRYPTO_ALG_NEED_FALLBACK,
1946
1947	.min_keysize		= 2 * AES_MIN_KEY_SIZE,
1948	.max_keysize		= 2 * AES_MAX_KEY_SIZE,
1949	.ivsize			= AES_BLOCK_SIZE,
1950	.setkey			= atmel_aes_xts_setkey,
1951	.encrypt		= atmel_aes_xts_encrypt,
1952	.decrypt		= atmel_aes_xts_decrypt,
1953	.init			= atmel_aes_xts_init_tfm,
1954	.exit			= atmel_aes_xts_exit_tfm,
1955};
1956
1957#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
1958/* authenc aead functions */
1959
1960static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1961static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1962				  bool is_async);
1963static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1964				      bool is_async);
1965static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1966static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1967				   bool is_async);
1968
1969static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1970{
1971	struct aead_request *req = aead_request_cast(dd->areq);
1972	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1973
1974	if (err && (dd->flags & AES_FLAGS_OWN_SHA))
1975		atmel_sha_authenc_abort(&rctx->auth_req);
1976	dd->flags &= ~AES_FLAGS_OWN_SHA;
1977}
1978
1979static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
1980{
1981	struct aead_request *req = aead_request_cast(dd->areq);
1982	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1983	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1984	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1985	int err;
1986
1987	atmel_aes_set_mode(dd, &rctx->base);
1988
1989	err = atmel_aes_hw_init(dd);
1990	if (err)
1991		return atmel_aes_complete(dd, err);
1992
1993	return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
1994					  atmel_aes_authenc_init, dd);
1995}
1996
1997static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1998				  bool is_async)
1999{
2000	struct aead_request *req = aead_request_cast(dd->areq);
2001	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2002
2003	if (is_async)
2004		dd->is_async = true;
2005	if (err)
2006		return atmel_aes_complete(dd, err);
2007
2008	/* If here, we've got the ownership of the SHA device. */
2009	dd->flags |= AES_FLAGS_OWN_SHA;
2010
2011	/* Configure the SHA device. */
2012	return atmel_sha_authenc_init(&rctx->auth_req,
2013				      req->src, req->assoclen,
2014				      rctx->textlen,
2015				      atmel_aes_authenc_transfer, dd);
2016}
2017
2018static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
2019				      bool is_async)
2020{
2021	struct aead_request *req = aead_request_cast(dd->areq);
2022	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2023	bool enc = atmel_aes_is_encrypt(dd);
2024	struct scatterlist *src, *dst;
2025	__be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
2026	u32 emr;
2027
2028	if (is_async)
2029		dd->is_async = true;
2030	if (err)
2031		return atmel_aes_complete(dd, err);
2032
2033	/* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
2034	src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
2035	dst = src;
2036
2037	if (req->src != req->dst)
2038		dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
2039
2040	/* Configure the AES device. */
2041	memcpy(iv, req->iv, sizeof(iv));
2042
2043	/*
2044	 * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
2045	 * 'true' even if the data transfer is actually performed by the CPU (so
2046	 * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
2047	 * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
2048	 * must be set to *_MR_SMOD_IDATAR0.
2049	 */
2050	atmel_aes_write_ctrl(dd, true, iv);
2051	emr = AES_EMR_PLIPEN;
2052	if (!enc)
2053		emr |= AES_EMR_PLIPD;
2054	atmel_aes_write(dd, AES_EMR, emr);
2055
2056	/* Transfer data. */
2057	return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
2058				   atmel_aes_authenc_digest);
2059}
2060
2061static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
2062{
2063	struct aead_request *req = aead_request_cast(dd->areq);
2064	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2065
2066	/* atmel_sha_authenc_final() releases the SHA device. */
2067	dd->flags &= ~AES_FLAGS_OWN_SHA;
2068	return atmel_sha_authenc_final(&rctx->auth_req,
2069				       rctx->digest, sizeof(rctx->digest),
2070				       atmel_aes_authenc_final, dd);
2071}
2072
2073static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
2074				   bool is_async)
2075{
2076	struct aead_request *req = aead_request_cast(dd->areq);
2077	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2078	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2079	bool enc = atmel_aes_is_encrypt(dd);
2080	u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
2081	u32 offs, authsize;
2082
2083	if (is_async)
2084		dd->is_async = true;
2085	if (err)
2086		goto complete;
2087
2088	offs = req->assoclen + rctx->textlen;
2089	authsize = crypto_aead_authsize(tfm);
2090	if (enc) {
2091		scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
2092	} else {
2093		scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
2094		if (crypto_memneq(idigest, odigest, authsize))
2095			err = -EBADMSG;
2096	}
2097
2098complete:
2099	return atmel_aes_complete(dd, err);
2100}
2101
2102static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
2103				    unsigned int keylen)
2104{
2105	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2106	struct crypto_authenc_keys keys;
2107	int err;
2108
2109	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
2110		goto badkey;
2111
2112	if (keys.enckeylen > sizeof(ctx->base.key))
2113		goto badkey;
2114
2115	/* Save auth key. */
2116	err = atmel_sha_authenc_setkey(ctx->auth,
2117				       keys.authkey, keys.authkeylen,
2118				       crypto_aead_get_flags(tfm));
2119	if (err) {
2120		memzero_explicit(&keys, sizeof(keys));
2121		return err;
2122	}
2123
2124	/* Save enc key. */
2125	ctx->base.keylen = keys.enckeylen;
2126	memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
2127
2128	memzero_explicit(&keys, sizeof(keys));
2129	return 0;
2130
2131badkey:
2132	memzero_explicit(&keys, sizeof(keys));
2133	return -EINVAL;
2134}
2135
2136static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
2137				      unsigned long auth_mode)
2138{
2139	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2140	unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
2141	struct atmel_aes_dev *dd;
2142
2143	dd = atmel_aes_dev_alloc(&ctx->base);
2144	if (!dd)
2145		return -ENODEV;
2146
2147	ctx->auth = atmel_sha_authenc_spawn(auth_mode);
2148	if (IS_ERR(ctx->auth))
2149		return PTR_ERR(ctx->auth);
2150
2151	crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
2152				      auth_reqsize));
2153	ctx->base.dd = dd;
2154	ctx->base.start = atmel_aes_authenc_start;
2155
2156	return 0;
2157}
2158
2159static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
2160{
2161	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
2162}
2163
2164static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
2165{
2166	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
2167}
2168
2169static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
2170{
2171	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
2172}
2173
2174static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
2175{
2176	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
2177}
2178
2179static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
2180{
2181	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
2182}
2183
2184static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
2185{
2186	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2187
2188	atmel_sha_authenc_free(ctx->auth);
2189}
2190
2191static int atmel_aes_authenc_crypt(struct aead_request *req,
2192				   unsigned long mode)
2193{
2194	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2195	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2196	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
2197	u32 authsize = crypto_aead_authsize(tfm);
2198	bool enc = (mode & AES_FLAGS_ENCRYPT);
2199
2200	/* Compute text length. */
2201	if (!enc && req->cryptlen < authsize)
2202		return -EINVAL;
2203	rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2204
2205	/*
2206	 * Currently, empty messages are not supported yet:
2207	 * the SHA auto-padding can be used only on non-empty messages.
2208	 * Hence a special case needs to be implemented for empty message.
2209	 */
2210	if (!rctx->textlen && !req->assoclen)
2211		return -EINVAL;
2212
2213	rctx->base.mode = mode;
2214	ctx->block_size = AES_BLOCK_SIZE;
2215	ctx->is_aead = true;
2216
2217	return atmel_aes_handle_queue(ctx->dd, &req->base);
2218}
2219
2220static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2221{
2222	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2223}
2224
2225static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2226{
2227	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2228}
2229
2230static struct aead_alg aes_authenc_algs[] = {
2231{
2232	.setkey		= atmel_aes_authenc_setkey,
2233	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2234	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2235	.init		= atmel_aes_authenc_hmac_sha1_init_tfm,
2236	.exit		= atmel_aes_authenc_exit_tfm,
2237	.ivsize		= AES_BLOCK_SIZE,
2238	.maxauthsize	= SHA1_DIGEST_SIZE,
2239
2240	.base = {
2241		.cra_name		= "authenc(hmac(sha1),cbc(aes))",
2242		.cra_driver_name	= "atmel-authenc-hmac-sha1-cbc-aes",
2243		.cra_blocksize		= AES_BLOCK_SIZE,
2244		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2245	},
2246},
2247{
2248	.setkey		= atmel_aes_authenc_setkey,
2249	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2250	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2251	.init		= atmel_aes_authenc_hmac_sha224_init_tfm,
2252	.exit		= atmel_aes_authenc_exit_tfm,
2253	.ivsize		= AES_BLOCK_SIZE,
2254	.maxauthsize	= SHA224_DIGEST_SIZE,
2255
2256	.base = {
2257		.cra_name		= "authenc(hmac(sha224),cbc(aes))",
2258		.cra_driver_name	= "atmel-authenc-hmac-sha224-cbc-aes",
2259		.cra_blocksize		= AES_BLOCK_SIZE,
2260		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2261	},
2262},
2263{
2264	.setkey		= atmel_aes_authenc_setkey,
2265	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2266	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2267	.init		= atmel_aes_authenc_hmac_sha256_init_tfm,
2268	.exit		= atmel_aes_authenc_exit_tfm,
2269	.ivsize		= AES_BLOCK_SIZE,
2270	.maxauthsize	= SHA256_DIGEST_SIZE,
2271
2272	.base = {
2273		.cra_name		= "authenc(hmac(sha256),cbc(aes))",
2274		.cra_driver_name	= "atmel-authenc-hmac-sha256-cbc-aes",
2275		.cra_blocksize		= AES_BLOCK_SIZE,
2276		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2277	},
2278},
2279{
2280	.setkey		= atmel_aes_authenc_setkey,
2281	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2282	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2283	.init		= atmel_aes_authenc_hmac_sha384_init_tfm,
2284	.exit		= atmel_aes_authenc_exit_tfm,
2285	.ivsize		= AES_BLOCK_SIZE,
2286	.maxauthsize	= SHA384_DIGEST_SIZE,
2287
2288	.base = {
2289		.cra_name		= "authenc(hmac(sha384),cbc(aes))",
2290		.cra_driver_name	= "atmel-authenc-hmac-sha384-cbc-aes",
2291		.cra_blocksize		= AES_BLOCK_SIZE,
2292		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2293	},
2294},
2295{
2296	.setkey		= atmel_aes_authenc_setkey,
2297	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2298	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2299	.init		= atmel_aes_authenc_hmac_sha512_init_tfm,
2300	.exit		= atmel_aes_authenc_exit_tfm,
2301	.ivsize		= AES_BLOCK_SIZE,
2302	.maxauthsize	= SHA512_DIGEST_SIZE,
2303
2304	.base = {
2305		.cra_name		= "authenc(hmac(sha512),cbc(aes))",
2306		.cra_driver_name	= "atmel-authenc-hmac-sha512-cbc-aes",
2307		.cra_blocksize		= AES_BLOCK_SIZE,
2308		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2309	},
2310},
2311};
2312#endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2313
2314/* Probe functions */
2315
2316static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2317{
2318	dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2319	dd->buflen = ATMEL_AES_BUFFER_SIZE;
2320	dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2321
2322	if (!dd->buf) {
2323		dev_err(dd->dev, "unable to alloc pages.\n");
2324		return -ENOMEM;
2325	}
2326
2327	return 0;
2328}
2329
2330static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2331{
2332	free_page((unsigned long)dd->buf);
2333}
2334
2335static int atmel_aes_dma_init(struct atmel_aes_dev *dd)
2336{
2337	int ret;
2338
2339	/* Try to grab 2 DMA channels */
2340	dd->src.chan = dma_request_chan(dd->dev, "tx");
2341	if (IS_ERR(dd->src.chan)) {
2342		ret = PTR_ERR(dd->src.chan);
2343		goto err_dma_in;
2344	}
2345
2346	dd->dst.chan = dma_request_chan(dd->dev, "rx");
2347	if (IS_ERR(dd->dst.chan)) {
2348		ret = PTR_ERR(dd->dst.chan);
2349		goto err_dma_out;
2350	}
2351
2352	return 0;
2353
2354err_dma_out:
2355	dma_release_channel(dd->src.chan);
2356err_dma_in:
2357	dev_err(dd->dev, "no DMA channel available\n");
2358	return ret;
2359}
2360
2361static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2362{
2363	dma_release_channel(dd->dst.chan);
2364	dma_release_channel(dd->src.chan);
2365}
2366
2367static void atmel_aes_queue_task(unsigned long data)
2368{
2369	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2370
2371	atmel_aes_handle_queue(dd, NULL);
2372}
2373
2374static void atmel_aes_done_task(unsigned long data)
2375{
2376	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2377
2378	dd->is_async = true;
2379	(void)dd->resume(dd);
2380}
2381
2382static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2383{
2384	struct atmel_aes_dev *aes_dd = dev_id;
2385	u32 reg;
2386
2387	reg = atmel_aes_read(aes_dd, AES_ISR);
2388	if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2389		atmel_aes_write(aes_dd, AES_IDR, reg);
2390		if (AES_FLAGS_BUSY & aes_dd->flags)
2391			tasklet_schedule(&aes_dd->done_task);
2392		else
2393			dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2394		return IRQ_HANDLED;
2395	}
2396
2397	return IRQ_NONE;
2398}
2399
2400static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2401{
2402	int i;
2403
2404#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2405	if (dd->caps.has_authenc)
2406		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2407			crypto_unregister_aead(&aes_authenc_algs[i]);
2408#endif
2409
2410	if (dd->caps.has_xts)
2411		crypto_unregister_skcipher(&aes_xts_alg);
2412
2413	if (dd->caps.has_gcm)
2414		crypto_unregister_aead(&aes_gcm_alg);
2415
2416	if (dd->caps.has_cfb64)
2417		crypto_unregister_skcipher(&aes_cfb64_alg);
2418
2419	for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2420		crypto_unregister_skcipher(&aes_algs[i]);
2421}
2422
2423static void atmel_aes_crypto_alg_init(struct crypto_alg *alg)
2424{
2425	alg->cra_flags |= CRYPTO_ALG_ASYNC;
2426	alg->cra_alignmask = 0xf;
2427	alg->cra_priority = ATMEL_AES_PRIORITY;
2428	alg->cra_module = THIS_MODULE;
2429}
2430
2431static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2432{
2433	int err, i, j;
2434
2435	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2436		atmel_aes_crypto_alg_init(&aes_algs[i].base);
2437
2438		err = crypto_register_skcipher(&aes_algs[i]);
2439		if (err)
2440			goto err_aes_algs;
2441	}
2442
2443	if (dd->caps.has_cfb64) {
2444		atmel_aes_crypto_alg_init(&aes_cfb64_alg.base);
2445
2446		err = crypto_register_skcipher(&aes_cfb64_alg);
2447		if (err)
2448			goto err_aes_cfb64_alg;
2449	}
2450
2451	if (dd->caps.has_gcm) {
2452		atmel_aes_crypto_alg_init(&aes_gcm_alg.base);
2453
2454		err = crypto_register_aead(&aes_gcm_alg);
2455		if (err)
2456			goto err_aes_gcm_alg;
2457	}
2458
2459	if (dd->caps.has_xts) {
2460		atmel_aes_crypto_alg_init(&aes_xts_alg.base);
2461
2462		err = crypto_register_skcipher(&aes_xts_alg);
2463		if (err)
2464			goto err_aes_xts_alg;
2465	}
2466
2467#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2468	if (dd->caps.has_authenc) {
2469		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
2470			atmel_aes_crypto_alg_init(&aes_authenc_algs[i].base);
2471
2472			err = crypto_register_aead(&aes_authenc_algs[i]);
2473			if (err)
2474				goto err_aes_authenc_alg;
2475		}
2476	}
2477#endif
2478
2479	return 0;
2480
2481#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2482	/* i = ARRAY_SIZE(aes_authenc_algs); */
2483err_aes_authenc_alg:
2484	for (j = 0; j < i; j++)
2485		crypto_unregister_aead(&aes_authenc_algs[j]);
2486	crypto_unregister_skcipher(&aes_xts_alg);
2487#endif
2488err_aes_xts_alg:
2489	crypto_unregister_aead(&aes_gcm_alg);
2490err_aes_gcm_alg:
2491	crypto_unregister_skcipher(&aes_cfb64_alg);
2492err_aes_cfb64_alg:
2493	i = ARRAY_SIZE(aes_algs);
2494err_aes_algs:
2495	for (j = 0; j < i; j++)
2496		crypto_unregister_skcipher(&aes_algs[j]);
2497
2498	return err;
2499}
2500
2501static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2502{
2503	dd->caps.has_dualbuff = 0;
2504	dd->caps.has_cfb64 = 0;
2505	dd->caps.has_gcm = 0;
2506	dd->caps.has_xts = 0;
2507	dd->caps.has_authenc = 0;
2508	dd->caps.max_burst_size = 1;
2509
2510	/* keep only major version number */
2511	switch (dd->hw_version & 0xff0) {
2512	case 0x700:
 
2513	case 0x500:
2514		dd->caps.has_dualbuff = 1;
2515		dd->caps.has_cfb64 = 1;
2516		dd->caps.has_gcm = 1;
2517		dd->caps.has_xts = 1;
2518		dd->caps.has_authenc = 1;
2519		dd->caps.max_burst_size = 4;
2520		break;
2521	case 0x200:
2522		dd->caps.has_dualbuff = 1;
2523		dd->caps.has_cfb64 = 1;
2524		dd->caps.has_gcm = 1;
2525		dd->caps.max_burst_size = 4;
2526		break;
2527	case 0x130:
2528		dd->caps.has_dualbuff = 1;
2529		dd->caps.has_cfb64 = 1;
2530		dd->caps.max_burst_size = 4;
2531		break;
2532	case 0x120:
2533		break;
2534	default:
2535		dev_warn(dd->dev,
2536				"Unmanaged aes version, set minimum capabilities\n");
2537		break;
2538	}
2539}
2540
2541#if defined(CONFIG_OF)
2542static const struct of_device_id atmel_aes_dt_ids[] = {
2543	{ .compatible = "atmel,at91sam9g46-aes" },
2544	{ /* sentinel */ }
2545};
2546MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
2547#endif
2548
2549static int atmel_aes_probe(struct platform_device *pdev)
2550{
2551	struct atmel_aes_dev *aes_dd;
2552	struct device *dev = &pdev->dev;
2553	struct resource *aes_res;
2554	int err;
2555
2556	aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2557	if (!aes_dd)
2558		return -ENOMEM;
2559
2560	aes_dd->dev = dev;
2561
2562	platform_set_drvdata(pdev, aes_dd);
2563
2564	INIT_LIST_HEAD(&aes_dd->list);
2565	spin_lock_init(&aes_dd->lock);
2566
2567	tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2568					(unsigned long)aes_dd);
2569	tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2570					(unsigned long)aes_dd);
2571
2572	crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2573
2574	/* Get the base address */
2575	aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2576	if (!aes_res) {
2577		dev_err(dev, "no MEM resource info\n");
2578		err = -ENODEV;
2579		goto err_tasklet_kill;
2580	}
2581	aes_dd->phys_base = aes_res->start;
2582
2583	/* Get the IRQ */
2584	aes_dd->irq = platform_get_irq(pdev,  0);
2585	if (aes_dd->irq < 0) {
2586		err = aes_dd->irq;
2587		goto err_tasklet_kill;
2588	}
2589
2590	err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2591			       IRQF_SHARED, "atmel-aes", aes_dd);
2592	if (err) {
2593		dev_err(dev, "unable to request aes irq.\n");
2594		goto err_tasklet_kill;
2595	}
2596
2597	/* Initializing the clock */
2598	aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2599	if (IS_ERR(aes_dd->iclk)) {
2600		dev_err(dev, "clock initialization failed.\n");
2601		err = PTR_ERR(aes_dd->iclk);
2602		goto err_tasklet_kill;
2603	}
2604
2605	aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
2606	if (IS_ERR(aes_dd->io_base)) {
2607		dev_err(dev, "can't ioremap\n");
2608		err = PTR_ERR(aes_dd->io_base);
2609		goto err_tasklet_kill;
2610	}
2611
2612	err = clk_prepare(aes_dd->iclk);
2613	if (err)
2614		goto err_tasklet_kill;
2615
2616	err = atmel_aes_hw_version_init(aes_dd);
2617	if (err)
2618		goto err_iclk_unprepare;
2619
2620	atmel_aes_get_cap(aes_dd);
2621
2622#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2623	if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2624		err = -EPROBE_DEFER;
2625		goto err_iclk_unprepare;
2626	}
2627#endif
2628
2629	err = atmel_aes_buff_init(aes_dd);
2630	if (err)
2631		goto err_iclk_unprepare;
2632
2633	err = atmel_aes_dma_init(aes_dd);
2634	if (err)
2635		goto err_buff_cleanup;
2636
2637	spin_lock(&atmel_aes.lock);
2638	list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2639	spin_unlock(&atmel_aes.lock);
2640
2641	err = atmel_aes_register_algs(aes_dd);
2642	if (err)
2643		goto err_algs;
2644
2645	dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2646			dma_chan_name(aes_dd->src.chan),
2647			dma_chan_name(aes_dd->dst.chan));
2648
2649	return 0;
2650
2651err_algs:
2652	spin_lock(&atmel_aes.lock);
2653	list_del(&aes_dd->list);
2654	spin_unlock(&atmel_aes.lock);
2655	atmel_aes_dma_cleanup(aes_dd);
2656err_buff_cleanup:
2657	atmel_aes_buff_cleanup(aes_dd);
2658err_iclk_unprepare:
2659	clk_unprepare(aes_dd->iclk);
2660err_tasklet_kill:
2661	tasklet_kill(&aes_dd->done_task);
2662	tasklet_kill(&aes_dd->queue_task);
2663
2664	return err;
2665}
2666
2667static int atmel_aes_remove(struct platform_device *pdev)
2668{
2669	struct atmel_aes_dev *aes_dd;
2670
2671	aes_dd = platform_get_drvdata(pdev);
2672
2673	spin_lock(&atmel_aes.lock);
2674	list_del(&aes_dd->list);
2675	spin_unlock(&atmel_aes.lock);
2676
2677	atmel_aes_unregister_algs(aes_dd);
2678
2679	tasklet_kill(&aes_dd->done_task);
2680	tasklet_kill(&aes_dd->queue_task);
2681
2682	atmel_aes_dma_cleanup(aes_dd);
2683	atmel_aes_buff_cleanup(aes_dd);
2684
2685	clk_unprepare(aes_dd->iclk);
2686
2687	return 0;
2688}
2689
2690static struct platform_driver atmel_aes_driver = {
2691	.probe		= atmel_aes_probe,
2692	.remove		= atmel_aes_remove,
2693	.driver		= {
2694		.name	= "atmel_aes",
2695		.of_match_table = of_match_ptr(atmel_aes_dt_ids),
2696	},
2697};
2698
2699module_platform_driver(atmel_aes_driver);
2700
2701MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2702MODULE_LICENSE("GPL v2");
2703MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");