Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Cryptographic API.
4 *
5 * Support for ATMEL AES HW acceleration.
6 *
7 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
8 * Author: Nicolas Royer <nicolas@eukrea.com>
9 *
10 * Some ideas are from omap-aes.c driver.
11 */
12
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/err.h>
18#include <linux/clk.h>
19#include <linux/io.h>
20#include <linux/hw_random.h>
21#include <linux/platform_device.h>
22
23#include <linux/device.h>
24#include <linux/dmaengine.h>
25#include <linux/init.h>
26#include <linux/errno.h>
27#include <linux/interrupt.h>
28#include <linux/irq.h>
29#include <linux/scatterlist.h>
30#include <linux/dma-mapping.h>
31#include <linux/mod_devicetable.h>
32#include <linux/delay.h>
33#include <linux/crypto.h>
34#include <crypto/scatterwalk.h>
35#include <crypto/algapi.h>
36#include <crypto/aes.h>
37#include <crypto/gcm.h>
38#include <crypto/xts.h>
39#include <crypto/internal/aead.h>
40#include <crypto/internal/skcipher.h>
41#include "atmel-aes-regs.h"
42#include "atmel-authenc.h"
43
44#define ATMEL_AES_PRIORITY 300
45
46#define ATMEL_AES_BUFFER_ORDER 2
47#define ATMEL_AES_BUFFER_SIZE (PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
48
49#define SIZE_IN_WORDS(x) ((x) >> 2)
50
51/* AES flags */
52/* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
53#define AES_FLAGS_ENCRYPT AES_MR_CYPHER_ENC
54#define AES_FLAGS_GTAGEN AES_MR_GTAGEN
55#define AES_FLAGS_OPMODE_MASK (AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
56#define AES_FLAGS_ECB AES_MR_OPMOD_ECB
57#define AES_FLAGS_CBC AES_MR_OPMOD_CBC
58#define AES_FLAGS_CTR AES_MR_OPMOD_CTR
59#define AES_FLAGS_GCM AES_MR_OPMOD_GCM
60#define AES_FLAGS_XTS AES_MR_OPMOD_XTS
61
62#define AES_FLAGS_MODE_MASK (AES_FLAGS_OPMODE_MASK | \
63 AES_FLAGS_ENCRYPT | \
64 AES_FLAGS_GTAGEN)
65
66#define AES_FLAGS_BUSY BIT(3)
67#define AES_FLAGS_DUMP_REG BIT(4)
68#define AES_FLAGS_OWN_SHA BIT(5)
69
70#define AES_FLAGS_PERSISTENT AES_FLAGS_BUSY
71
72#define ATMEL_AES_QUEUE_LENGTH 50
73
74#define ATMEL_AES_DMA_THRESHOLD 256
75
76
77struct atmel_aes_caps {
78 bool has_dualbuff;
79 bool has_gcm;
80 bool has_xts;
81 bool has_authenc;
82 u32 max_burst_size;
83};
84
85struct atmel_aes_dev;
86
87
88typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
89
90
91struct atmel_aes_base_ctx {
92 struct atmel_aes_dev *dd;
93 atmel_aes_fn_t start;
94 int keylen;
95 u32 key[AES_KEYSIZE_256 / sizeof(u32)];
96 u16 block_size;
97 bool is_aead;
98};
99
100struct atmel_aes_ctx {
101 struct atmel_aes_base_ctx base;
102};
103
104struct atmel_aes_ctr_ctx {
105 struct atmel_aes_base_ctx base;
106
107 __be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
108 size_t offset;
109 struct scatterlist src[2];
110 struct scatterlist dst[2];
111 u32 blocks;
112};
113
114struct atmel_aes_gcm_ctx {
115 struct atmel_aes_base_ctx base;
116
117 struct scatterlist src[2];
118 struct scatterlist dst[2];
119
120 __be32 j0[AES_BLOCK_SIZE / sizeof(u32)];
121 u32 tag[AES_BLOCK_SIZE / sizeof(u32)];
122 __be32 ghash[AES_BLOCK_SIZE / sizeof(u32)];
123 size_t textlen;
124
125 const __be32 *ghash_in;
126 __be32 *ghash_out;
127 atmel_aes_fn_t ghash_resume;
128};
129
130struct atmel_aes_xts_ctx {
131 struct atmel_aes_base_ctx base;
132
133 u32 key2[AES_KEYSIZE_256 / sizeof(u32)];
134 struct crypto_skcipher *fallback_tfm;
135};
136
137#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
138struct atmel_aes_authenc_ctx {
139 struct atmel_aes_base_ctx base;
140 struct atmel_sha_authenc_ctx *auth;
141};
142#endif
143
144struct atmel_aes_reqctx {
145 unsigned long mode;
146 u8 lastc[AES_BLOCK_SIZE];
147 struct skcipher_request fallback_req;
148};
149
150#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
151struct atmel_aes_authenc_reqctx {
152 struct atmel_aes_reqctx base;
153
154 struct scatterlist src[2];
155 struct scatterlist dst[2];
156 size_t textlen;
157 u32 digest[SHA512_DIGEST_SIZE / sizeof(u32)];
158
159 /* auth_req MUST be place last. */
160 struct ahash_request auth_req;
161};
162#endif
163
164struct atmel_aes_dma {
165 struct dma_chan *chan;
166 struct scatterlist *sg;
167 int nents;
168 unsigned int remainder;
169 unsigned int sg_len;
170};
171
172struct atmel_aes_dev {
173 struct list_head list;
174 unsigned long phys_base;
175 void __iomem *io_base;
176
177 struct crypto_async_request *areq;
178 struct atmel_aes_base_ctx *ctx;
179
180 bool is_async;
181 atmel_aes_fn_t resume;
182 atmel_aes_fn_t cpu_transfer_complete;
183
184 struct device *dev;
185 struct clk *iclk;
186 int irq;
187
188 unsigned long flags;
189
190 spinlock_t lock;
191 struct crypto_queue queue;
192
193 struct tasklet_struct done_task;
194 struct tasklet_struct queue_task;
195
196 size_t total;
197 size_t datalen;
198 u32 *data;
199
200 struct atmel_aes_dma src;
201 struct atmel_aes_dma dst;
202
203 size_t buflen;
204 void *buf;
205 struct scatterlist aligned_sg;
206 struct scatterlist *real_dst;
207
208 struct atmel_aes_caps caps;
209
210 u32 hw_version;
211};
212
213struct atmel_aes_drv {
214 struct list_head dev_list;
215 spinlock_t lock;
216};
217
218static struct atmel_aes_drv atmel_aes = {
219 .dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
220 .lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
221};
222
223#ifdef VERBOSE_DEBUG
224static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
225{
226 switch (offset) {
227 case AES_CR:
228 return "CR";
229
230 case AES_MR:
231 return "MR";
232
233 case AES_ISR:
234 return "ISR";
235
236 case AES_IMR:
237 return "IMR";
238
239 case AES_IER:
240 return "IER";
241
242 case AES_IDR:
243 return "IDR";
244
245 case AES_KEYWR(0):
246 case AES_KEYWR(1):
247 case AES_KEYWR(2):
248 case AES_KEYWR(3):
249 case AES_KEYWR(4):
250 case AES_KEYWR(5):
251 case AES_KEYWR(6):
252 case AES_KEYWR(7):
253 snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
254 break;
255
256 case AES_IDATAR(0):
257 case AES_IDATAR(1):
258 case AES_IDATAR(2):
259 case AES_IDATAR(3):
260 snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
261 break;
262
263 case AES_ODATAR(0):
264 case AES_ODATAR(1):
265 case AES_ODATAR(2):
266 case AES_ODATAR(3):
267 snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
268 break;
269
270 case AES_IVR(0):
271 case AES_IVR(1):
272 case AES_IVR(2):
273 case AES_IVR(3):
274 snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
275 break;
276
277 case AES_AADLENR:
278 return "AADLENR";
279
280 case AES_CLENR:
281 return "CLENR";
282
283 case AES_GHASHR(0):
284 case AES_GHASHR(1):
285 case AES_GHASHR(2):
286 case AES_GHASHR(3):
287 snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
288 break;
289
290 case AES_TAGR(0):
291 case AES_TAGR(1):
292 case AES_TAGR(2):
293 case AES_TAGR(3):
294 snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
295 break;
296
297 case AES_CTRR:
298 return "CTRR";
299
300 case AES_GCMHR(0):
301 case AES_GCMHR(1):
302 case AES_GCMHR(2):
303 case AES_GCMHR(3):
304 snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
305 break;
306
307 case AES_EMR:
308 return "EMR";
309
310 case AES_TWR(0):
311 case AES_TWR(1):
312 case AES_TWR(2):
313 case AES_TWR(3):
314 snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
315 break;
316
317 case AES_ALPHAR(0):
318 case AES_ALPHAR(1):
319 case AES_ALPHAR(2):
320 case AES_ALPHAR(3):
321 snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
322 break;
323
324 default:
325 snprintf(tmp, sz, "0x%02x", offset);
326 break;
327 }
328
329 return tmp;
330}
331#endif /* VERBOSE_DEBUG */
332
333/* Shared functions */
334
335static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
336{
337 u32 value = readl_relaxed(dd->io_base + offset);
338
339#ifdef VERBOSE_DEBUG
340 if (dd->flags & AES_FLAGS_DUMP_REG) {
341 char tmp[16];
342
343 dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
344 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
345 }
346#endif /* VERBOSE_DEBUG */
347
348 return value;
349}
350
351static inline void atmel_aes_write(struct atmel_aes_dev *dd,
352 u32 offset, u32 value)
353{
354#ifdef VERBOSE_DEBUG
355 if (dd->flags & AES_FLAGS_DUMP_REG) {
356 char tmp[16];
357
358 dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
359 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
360 }
361#endif /* VERBOSE_DEBUG */
362
363 writel_relaxed(value, dd->io_base + offset);
364}
365
366static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
367 u32 *value, int count)
368{
369 for (; count--; value++, offset += 4)
370 *value = atmel_aes_read(dd, offset);
371}
372
373static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
374 const u32 *value, int count)
375{
376 for (; count--; value++, offset += 4)
377 atmel_aes_write(dd, offset, *value);
378}
379
380static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
381 void *value)
382{
383 atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
384}
385
386static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
387 const void *value)
388{
389 atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
390}
391
392static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
393 atmel_aes_fn_t resume)
394{
395 u32 isr = atmel_aes_read(dd, AES_ISR);
396
397 if (unlikely(isr & AES_INT_DATARDY))
398 return resume(dd);
399
400 dd->resume = resume;
401 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
402 return -EINPROGRESS;
403}
404
405static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
406{
407 len &= block_size - 1;
408 return len ? block_size - len : 0;
409}
410
411static struct atmel_aes_dev *atmel_aes_dev_alloc(struct atmel_aes_base_ctx *ctx)
412{
413 struct atmel_aes_dev *aes_dd;
414
415 spin_lock_bh(&atmel_aes.lock);
416 /* One AES IP per SoC. */
417 aes_dd = list_first_entry_or_null(&atmel_aes.dev_list,
418 struct atmel_aes_dev, list);
419 spin_unlock_bh(&atmel_aes.lock);
420 return aes_dd;
421}
422
423static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
424{
425 int err;
426
427 err = clk_enable(dd->iclk);
428 if (err)
429 return err;
430
431 atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
432 atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
433
434 return 0;
435}
436
437static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
438{
439 return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
440}
441
442static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
443{
444 int err;
445
446 err = atmel_aes_hw_init(dd);
447 if (err)
448 return err;
449
450 dd->hw_version = atmel_aes_get_version(dd);
451
452 dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
453
454 clk_disable(dd->iclk);
455 return 0;
456}
457
458static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
459 const struct atmel_aes_reqctx *rctx)
460{
461 /* Clear all but persistent flags and set request flags. */
462 dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
463}
464
465static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
466{
467 return (dd->flags & AES_FLAGS_ENCRYPT);
468}
469
470#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
471static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
472#endif
473
474static void atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev *dd)
475{
476 struct skcipher_request *req = skcipher_request_cast(dd->areq);
477 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
478 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
479 unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
480
481 if (req->cryptlen < ivsize)
482 return;
483
484 if (rctx->mode & AES_FLAGS_ENCRYPT)
485 scatterwalk_map_and_copy(req->iv, req->dst,
486 req->cryptlen - ivsize, ivsize, 0);
487 else
488 memcpy(req->iv, rctx->lastc, ivsize);
489}
490
491static inline struct atmel_aes_ctr_ctx *
492atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
493{
494 return container_of(ctx, struct atmel_aes_ctr_ctx, base);
495}
496
497static void atmel_aes_ctr_update_req_iv(struct atmel_aes_dev *dd)
498{
499 struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
500 struct skcipher_request *req = skcipher_request_cast(dd->areq);
501 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
502 unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
503 int i;
504
505 /*
506 * The CTR transfer works in fragments of data of maximum 1 MByte
507 * because of the 16 bit CTR counter embedded in the IP. When reaching
508 * here, ctx->blocks contains the number of blocks of the last fragment
509 * processed, there is no need to explicit cast it to u16.
510 */
511 for (i = 0; i < ctx->blocks; i++)
512 crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
513
514 memcpy(req->iv, ctx->iv, ivsize);
515}
516
517static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
518{
519 struct skcipher_request *req = skcipher_request_cast(dd->areq);
520 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
521
522#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
523 if (dd->ctx->is_aead)
524 atmel_aes_authenc_complete(dd, err);
525#endif
526
527 clk_disable(dd->iclk);
528 dd->flags &= ~AES_FLAGS_BUSY;
529
530 if (!err && !dd->ctx->is_aead &&
531 (rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_ECB) {
532 if ((rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_CTR)
533 atmel_aes_set_iv_as_last_ciphertext_block(dd);
534 else
535 atmel_aes_ctr_update_req_iv(dd);
536 }
537
538 if (dd->is_async)
539 crypto_request_complete(dd->areq, err);
540
541 tasklet_schedule(&dd->queue_task);
542
543 return err;
544}
545
546static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
547 const __be32 *iv, const u32 *key, int keylen)
548{
549 u32 valmr = 0;
550
551 /* MR register must be set before IV registers */
552 if (keylen == AES_KEYSIZE_128)
553 valmr |= AES_MR_KEYSIZE_128;
554 else if (keylen == AES_KEYSIZE_192)
555 valmr |= AES_MR_KEYSIZE_192;
556 else
557 valmr |= AES_MR_KEYSIZE_256;
558
559 valmr |= dd->flags & AES_FLAGS_MODE_MASK;
560
561 if (use_dma) {
562 valmr |= AES_MR_SMOD_IDATAR0;
563 if (dd->caps.has_dualbuff)
564 valmr |= AES_MR_DUALBUFF;
565 } else {
566 valmr |= AES_MR_SMOD_AUTO;
567 }
568
569 atmel_aes_write(dd, AES_MR, valmr);
570
571 atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
572
573 if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
574 atmel_aes_write_block(dd, AES_IVR(0), iv);
575}
576
577static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
578 const __be32 *iv)
579
580{
581 atmel_aes_write_ctrl_key(dd, use_dma, iv,
582 dd->ctx->key, dd->ctx->keylen);
583}
584
585/* CPU transfer */
586
587static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
588{
589 int err = 0;
590 u32 isr;
591
592 for (;;) {
593 atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
594 dd->data += 4;
595 dd->datalen -= AES_BLOCK_SIZE;
596
597 if (dd->datalen < AES_BLOCK_SIZE)
598 break;
599
600 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
601
602 isr = atmel_aes_read(dd, AES_ISR);
603 if (!(isr & AES_INT_DATARDY)) {
604 dd->resume = atmel_aes_cpu_transfer;
605 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
606 return -EINPROGRESS;
607 }
608 }
609
610 if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
611 dd->buf, dd->total))
612 err = -EINVAL;
613
614 if (err)
615 return atmel_aes_complete(dd, err);
616
617 return dd->cpu_transfer_complete(dd);
618}
619
620static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
621 struct scatterlist *src,
622 struct scatterlist *dst,
623 size_t len,
624 atmel_aes_fn_t resume)
625{
626 size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
627
628 if (unlikely(len == 0))
629 return -EINVAL;
630
631 sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
632
633 dd->total = len;
634 dd->real_dst = dst;
635 dd->cpu_transfer_complete = resume;
636 dd->datalen = len + padlen;
637 dd->data = (u32 *)dd->buf;
638 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
639 return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
640}
641
642
643/* DMA transfer */
644
645static void atmel_aes_dma_callback(void *data);
646
647static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
648 struct scatterlist *sg,
649 size_t len,
650 struct atmel_aes_dma *dma)
651{
652 int nents;
653
654 if (!IS_ALIGNED(len, dd->ctx->block_size))
655 return false;
656
657 for (nents = 0; sg; sg = sg_next(sg), ++nents) {
658 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
659 return false;
660
661 if (len <= sg->length) {
662 if (!IS_ALIGNED(len, dd->ctx->block_size))
663 return false;
664
665 dma->nents = nents+1;
666 dma->remainder = sg->length - len;
667 sg->length = len;
668 return true;
669 }
670
671 if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
672 return false;
673
674 len -= sg->length;
675 }
676
677 return false;
678}
679
680static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
681{
682 struct scatterlist *sg = dma->sg;
683 int nents = dma->nents;
684
685 if (!dma->remainder)
686 return;
687
688 while (--nents > 0 && sg)
689 sg = sg_next(sg);
690
691 if (!sg)
692 return;
693
694 sg->length += dma->remainder;
695}
696
697static int atmel_aes_map(struct atmel_aes_dev *dd,
698 struct scatterlist *src,
699 struct scatterlist *dst,
700 size_t len)
701{
702 bool src_aligned, dst_aligned;
703 size_t padlen;
704
705 dd->total = len;
706 dd->src.sg = src;
707 dd->dst.sg = dst;
708 dd->real_dst = dst;
709
710 src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
711 if (src == dst)
712 dst_aligned = src_aligned;
713 else
714 dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
715 if (!src_aligned || !dst_aligned) {
716 padlen = atmel_aes_padlen(len, dd->ctx->block_size);
717
718 if (dd->buflen < len + padlen)
719 return -ENOMEM;
720
721 if (!src_aligned) {
722 sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
723 dd->src.sg = &dd->aligned_sg;
724 dd->src.nents = 1;
725 dd->src.remainder = 0;
726 }
727
728 if (!dst_aligned) {
729 dd->dst.sg = &dd->aligned_sg;
730 dd->dst.nents = 1;
731 dd->dst.remainder = 0;
732 }
733
734 sg_init_table(&dd->aligned_sg, 1);
735 sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
736 }
737
738 if (dd->src.sg == dd->dst.sg) {
739 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
740 DMA_BIDIRECTIONAL);
741 dd->dst.sg_len = dd->src.sg_len;
742 if (!dd->src.sg_len)
743 return -EFAULT;
744 } else {
745 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
746 DMA_TO_DEVICE);
747 if (!dd->src.sg_len)
748 return -EFAULT;
749
750 dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
751 DMA_FROM_DEVICE);
752 if (!dd->dst.sg_len) {
753 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
754 DMA_TO_DEVICE);
755 return -EFAULT;
756 }
757 }
758
759 return 0;
760}
761
762static void atmel_aes_unmap(struct atmel_aes_dev *dd)
763{
764 if (dd->src.sg == dd->dst.sg) {
765 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
766 DMA_BIDIRECTIONAL);
767
768 if (dd->src.sg != &dd->aligned_sg)
769 atmel_aes_restore_sg(&dd->src);
770 } else {
771 dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
772 DMA_FROM_DEVICE);
773
774 if (dd->dst.sg != &dd->aligned_sg)
775 atmel_aes_restore_sg(&dd->dst);
776
777 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
778 DMA_TO_DEVICE);
779
780 if (dd->src.sg != &dd->aligned_sg)
781 atmel_aes_restore_sg(&dd->src);
782 }
783
784 if (dd->dst.sg == &dd->aligned_sg)
785 sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
786 dd->buf, dd->total);
787}
788
789static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
790 enum dma_slave_buswidth addr_width,
791 enum dma_transfer_direction dir,
792 u32 maxburst)
793{
794 struct dma_async_tx_descriptor *desc;
795 struct dma_slave_config config;
796 dma_async_tx_callback callback;
797 struct atmel_aes_dma *dma;
798 int err;
799
800 memset(&config, 0, sizeof(config));
801 config.src_addr_width = addr_width;
802 config.dst_addr_width = addr_width;
803 config.src_maxburst = maxburst;
804 config.dst_maxburst = maxburst;
805
806 switch (dir) {
807 case DMA_MEM_TO_DEV:
808 dma = &dd->src;
809 callback = NULL;
810 config.dst_addr = dd->phys_base + AES_IDATAR(0);
811 break;
812
813 case DMA_DEV_TO_MEM:
814 dma = &dd->dst;
815 callback = atmel_aes_dma_callback;
816 config.src_addr = dd->phys_base + AES_ODATAR(0);
817 break;
818
819 default:
820 return -EINVAL;
821 }
822
823 err = dmaengine_slave_config(dma->chan, &config);
824 if (err)
825 return err;
826
827 desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
828 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
829 if (!desc)
830 return -ENOMEM;
831
832 desc->callback = callback;
833 desc->callback_param = dd;
834 dmaengine_submit(desc);
835 dma_async_issue_pending(dma->chan);
836
837 return 0;
838}
839
840static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
841 struct scatterlist *src,
842 struct scatterlist *dst,
843 size_t len,
844 atmel_aes_fn_t resume)
845{
846 enum dma_slave_buswidth addr_width;
847 u32 maxburst;
848 int err;
849
850 switch (dd->ctx->block_size) {
851 case AES_BLOCK_SIZE:
852 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
853 maxburst = dd->caps.max_burst_size;
854 break;
855
856 default:
857 err = -EINVAL;
858 goto exit;
859 }
860
861 err = atmel_aes_map(dd, src, dst, len);
862 if (err)
863 goto exit;
864
865 dd->resume = resume;
866
867 /* Set output DMA transfer first */
868 err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
869 maxburst);
870 if (err)
871 goto unmap;
872
873 /* Then set input DMA transfer */
874 err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
875 maxburst);
876 if (err)
877 goto output_transfer_stop;
878
879 return -EINPROGRESS;
880
881output_transfer_stop:
882 dmaengine_terminate_sync(dd->dst.chan);
883unmap:
884 atmel_aes_unmap(dd);
885exit:
886 return atmel_aes_complete(dd, err);
887}
888
889static void atmel_aes_dma_callback(void *data)
890{
891 struct atmel_aes_dev *dd = data;
892
893 atmel_aes_unmap(dd);
894 dd->is_async = true;
895 (void)dd->resume(dd);
896}
897
898static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
899 struct crypto_async_request *new_areq)
900{
901 struct crypto_async_request *areq, *backlog;
902 struct atmel_aes_base_ctx *ctx;
903 unsigned long flags;
904 bool start_async;
905 int err, ret = 0;
906
907 spin_lock_irqsave(&dd->lock, flags);
908 if (new_areq)
909 ret = crypto_enqueue_request(&dd->queue, new_areq);
910 if (dd->flags & AES_FLAGS_BUSY) {
911 spin_unlock_irqrestore(&dd->lock, flags);
912 return ret;
913 }
914 backlog = crypto_get_backlog(&dd->queue);
915 areq = crypto_dequeue_request(&dd->queue);
916 if (areq)
917 dd->flags |= AES_FLAGS_BUSY;
918 spin_unlock_irqrestore(&dd->lock, flags);
919
920 if (!areq)
921 return ret;
922
923 if (backlog)
924 crypto_request_complete(backlog, -EINPROGRESS);
925
926 ctx = crypto_tfm_ctx(areq->tfm);
927
928 dd->areq = areq;
929 dd->ctx = ctx;
930 start_async = (areq != new_areq);
931 dd->is_async = start_async;
932
933 /* WARNING: ctx->start() MAY change dd->is_async. */
934 err = ctx->start(dd);
935 return (start_async) ? ret : err;
936}
937
938
939/* AES async block ciphers */
940
941static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
942{
943 return atmel_aes_complete(dd, 0);
944}
945
946static int atmel_aes_start(struct atmel_aes_dev *dd)
947{
948 struct skcipher_request *req = skcipher_request_cast(dd->areq);
949 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
950 bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD ||
951 dd->ctx->block_size != AES_BLOCK_SIZE);
952 int err;
953
954 atmel_aes_set_mode(dd, rctx);
955
956 err = atmel_aes_hw_init(dd);
957 if (err)
958 return atmel_aes_complete(dd, err);
959
960 atmel_aes_write_ctrl(dd, use_dma, (void *)req->iv);
961 if (use_dma)
962 return atmel_aes_dma_start(dd, req->src, req->dst,
963 req->cryptlen,
964 atmel_aes_transfer_complete);
965
966 return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
967 atmel_aes_transfer_complete);
968}
969
970static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
971{
972 struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
973 struct skcipher_request *req = skcipher_request_cast(dd->areq);
974 struct scatterlist *src, *dst;
975 size_t datalen;
976 u32 ctr;
977 u16 start, end;
978 bool use_dma, fragmented = false;
979
980 /* Check for transfer completion. */
981 ctx->offset += dd->total;
982 if (ctx->offset >= req->cryptlen)
983 return atmel_aes_transfer_complete(dd);
984
985 /* Compute data length. */
986 datalen = req->cryptlen - ctx->offset;
987 ctx->blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
988 ctr = be32_to_cpu(ctx->iv[3]);
989
990 /* Check 16bit counter overflow. */
991 start = ctr & 0xffff;
992 end = start + ctx->blocks - 1;
993
994 if (ctx->blocks >> 16 || end < start) {
995 ctr |= 0xffff;
996 datalen = AES_BLOCK_SIZE * (0x10000 - start);
997 fragmented = true;
998 }
999
1000 use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1001
1002 /* Jump to offset. */
1003 src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1004 dst = ((req->src == req->dst) ? src :
1005 scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1006
1007 /* Configure hardware. */
1008 atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1009 if (unlikely(fragmented)) {
1010 /*
1011 * Increment the counter manually to cope with the hardware
1012 * counter overflow.
1013 */
1014 ctx->iv[3] = cpu_to_be32(ctr);
1015 crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1016 }
1017
1018 if (use_dma)
1019 return atmel_aes_dma_start(dd, src, dst, datalen,
1020 atmel_aes_ctr_transfer);
1021
1022 return atmel_aes_cpu_start(dd, src, dst, datalen,
1023 atmel_aes_ctr_transfer);
1024}
1025
1026static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1027{
1028 struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1029 struct skcipher_request *req = skcipher_request_cast(dd->areq);
1030 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1031 int err;
1032
1033 atmel_aes_set_mode(dd, rctx);
1034
1035 err = atmel_aes_hw_init(dd);
1036 if (err)
1037 return atmel_aes_complete(dd, err);
1038
1039 memcpy(ctx->iv, req->iv, AES_BLOCK_SIZE);
1040 ctx->offset = 0;
1041 dd->total = 0;
1042 return atmel_aes_ctr_transfer(dd);
1043}
1044
1045static int atmel_aes_xts_fallback(struct skcipher_request *req, bool enc)
1046{
1047 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1048 struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(
1049 crypto_skcipher_reqtfm(req));
1050
1051 skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
1052 skcipher_request_set_callback(&rctx->fallback_req, req->base.flags,
1053 req->base.complete, req->base.data);
1054 skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst,
1055 req->cryptlen, req->iv);
1056
1057 return enc ? crypto_skcipher_encrypt(&rctx->fallback_req) :
1058 crypto_skcipher_decrypt(&rctx->fallback_req);
1059}
1060
1061static int atmel_aes_crypt(struct skcipher_request *req, unsigned long mode)
1062{
1063 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
1064 struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(skcipher);
1065 struct atmel_aes_reqctx *rctx;
1066 u32 opmode = mode & AES_FLAGS_OPMODE_MASK;
1067
1068 if (opmode == AES_FLAGS_XTS) {
1069 if (req->cryptlen < XTS_BLOCK_SIZE)
1070 return -EINVAL;
1071
1072 if (!IS_ALIGNED(req->cryptlen, XTS_BLOCK_SIZE))
1073 return atmel_aes_xts_fallback(req,
1074 mode & AES_FLAGS_ENCRYPT);
1075 }
1076
1077 /*
1078 * ECB, CBC or CTR mode require the plaintext and ciphertext
1079 * to have a positve integer length.
1080 */
1081 if (!req->cryptlen && opmode != AES_FLAGS_XTS)
1082 return 0;
1083
1084 if ((opmode == AES_FLAGS_ECB || opmode == AES_FLAGS_CBC) &&
1085 !IS_ALIGNED(req->cryptlen, crypto_skcipher_blocksize(skcipher)))
1086 return -EINVAL;
1087
1088 ctx->block_size = AES_BLOCK_SIZE;
1089 ctx->is_aead = false;
1090
1091 rctx = skcipher_request_ctx(req);
1092 rctx->mode = mode;
1093
1094 if (opmode != AES_FLAGS_ECB &&
1095 !(mode & AES_FLAGS_ENCRYPT)) {
1096 unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
1097
1098 if (req->cryptlen >= ivsize)
1099 scatterwalk_map_and_copy(rctx->lastc, req->src,
1100 req->cryptlen - ivsize,
1101 ivsize, 0);
1102 }
1103
1104 return atmel_aes_handle_queue(ctx->dd, &req->base);
1105}
1106
1107static int atmel_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
1108 unsigned int keylen)
1109{
1110 struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(tfm);
1111
1112 if (keylen != AES_KEYSIZE_128 &&
1113 keylen != AES_KEYSIZE_192 &&
1114 keylen != AES_KEYSIZE_256)
1115 return -EINVAL;
1116
1117 memcpy(ctx->key, key, keylen);
1118 ctx->keylen = keylen;
1119
1120 return 0;
1121}
1122
1123static int atmel_aes_ecb_encrypt(struct skcipher_request *req)
1124{
1125 return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1126}
1127
1128static int atmel_aes_ecb_decrypt(struct skcipher_request *req)
1129{
1130 return atmel_aes_crypt(req, AES_FLAGS_ECB);
1131}
1132
1133static int atmel_aes_cbc_encrypt(struct skcipher_request *req)
1134{
1135 return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1136}
1137
1138static int atmel_aes_cbc_decrypt(struct skcipher_request *req)
1139{
1140 return atmel_aes_crypt(req, AES_FLAGS_CBC);
1141}
1142
1143static int atmel_aes_ctr_encrypt(struct skcipher_request *req)
1144{
1145 return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1146}
1147
1148static int atmel_aes_ctr_decrypt(struct skcipher_request *req)
1149{
1150 return atmel_aes_crypt(req, AES_FLAGS_CTR);
1151}
1152
1153static int atmel_aes_init_tfm(struct crypto_skcipher *tfm)
1154{
1155 struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1156 struct atmel_aes_dev *dd;
1157
1158 dd = atmel_aes_dev_alloc(&ctx->base);
1159 if (!dd)
1160 return -ENODEV;
1161
1162 crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1163 ctx->base.dd = dd;
1164 ctx->base.start = atmel_aes_start;
1165
1166 return 0;
1167}
1168
1169static int atmel_aes_ctr_init_tfm(struct crypto_skcipher *tfm)
1170{
1171 struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1172 struct atmel_aes_dev *dd;
1173
1174 dd = atmel_aes_dev_alloc(&ctx->base);
1175 if (!dd)
1176 return -ENODEV;
1177
1178 crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1179 ctx->base.dd = dd;
1180 ctx->base.start = atmel_aes_ctr_start;
1181
1182 return 0;
1183}
1184
1185static struct skcipher_alg aes_algs[] = {
1186{
1187 .base.cra_name = "ecb(aes)",
1188 .base.cra_driver_name = "atmel-ecb-aes",
1189 .base.cra_blocksize = AES_BLOCK_SIZE,
1190 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1191
1192 .init = atmel_aes_init_tfm,
1193 .min_keysize = AES_MIN_KEY_SIZE,
1194 .max_keysize = AES_MAX_KEY_SIZE,
1195 .setkey = atmel_aes_setkey,
1196 .encrypt = atmel_aes_ecb_encrypt,
1197 .decrypt = atmel_aes_ecb_decrypt,
1198},
1199{
1200 .base.cra_name = "cbc(aes)",
1201 .base.cra_driver_name = "atmel-cbc-aes",
1202 .base.cra_blocksize = AES_BLOCK_SIZE,
1203 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1204
1205 .init = atmel_aes_init_tfm,
1206 .min_keysize = AES_MIN_KEY_SIZE,
1207 .max_keysize = AES_MAX_KEY_SIZE,
1208 .setkey = atmel_aes_setkey,
1209 .encrypt = atmel_aes_cbc_encrypt,
1210 .decrypt = atmel_aes_cbc_decrypt,
1211 .ivsize = AES_BLOCK_SIZE,
1212},
1213{
1214 .base.cra_name = "ctr(aes)",
1215 .base.cra_driver_name = "atmel-ctr-aes",
1216 .base.cra_blocksize = 1,
1217 .base.cra_ctxsize = sizeof(struct atmel_aes_ctr_ctx),
1218
1219 .init = atmel_aes_ctr_init_tfm,
1220 .min_keysize = AES_MIN_KEY_SIZE,
1221 .max_keysize = AES_MAX_KEY_SIZE,
1222 .setkey = atmel_aes_setkey,
1223 .encrypt = atmel_aes_ctr_encrypt,
1224 .decrypt = atmel_aes_ctr_decrypt,
1225 .ivsize = AES_BLOCK_SIZE,
1226},
1227};
1228
1229
1230/* gcm aead functions */
1231
1232static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1233 const u32 *data, size_t datalen,
1234 const __be32 *ghash_in, __be32 *ghash_out,
1235 atmel_aes_fn_t resume);
1236static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1237static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1238
1239static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1240static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1241static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1242static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1243static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1244static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1245static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1246
1247static inline struct atmel_aes_gcm_ctx *
1248atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1249{
1250 return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1251}
1252
1253static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1254 const u32 *data, size_t datalen,
1255 const __be32 *ghash_in, __be32 *ghash_out,
1256 atmel_aes_fn_t resume)
1257{
1258 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1259
1260 dd->data = (u32 *)data;
1261 dd->datalen = datalen;
1262 ctx->ghash_in = ghash_in;
1263 ctx->ghash_out = ghash_out;
1264 ctx->ghash_resume = resume;
1265
1266 atmel_aes_write_ctrl(dd, false, NULL);
1267 return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1268}
1269
1270static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1271{
1272 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1273
1274 /* Set the data length. */
1275 atmel_aes_write(dd, AES_AADLENR, dd->total);
1276 atmel_aes_write(dd, AES_CLENR, 0);
1277
1278 /* If needed, overwrite the GCM Intermediate Hash Word Registers */
1279 if (ctx->ghash_in)
1280 atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1281
1282 return atmel_aes_gcm_ghash_finalize(dd);
1283}
1284
1285static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1286{
1287 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1288 u32 isr;
1289
1290 /* Write data into the Input Data Registers. */
1291 while (dd->datalen > 0) {
1292 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1293 dd->data += 4;
1294 dd->datalen -= AES_BLOCK_SIZE;
1295
1296 isr = atmel_aes_read(dd, AES_ISR);
1297 if (!(isr & AES_INT_DATARDY)) {
1298 dd->resume = atmel_aes_gcm_ghash_finalize;
1299 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1300 return -EINPROGRESS;
1301 }
1302 }
1303
1304 /* Read the computed hash from GHASHRx. */
1305 atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1306
1307 return ctx->ghash_resume(dd);
1308}
1309
1310
1311static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1312{
1313 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1314 struct aead_request *req = aead_request_cast(dd->areq);
1315 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1316 struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1317 size_t ivsize = crypto_aead_ivsize(tfm);
1318 size_t datalen, padlen;
1319 const void *iv = req->iv;
1320 u8 *data = dd->buf;
1321 int err;
1322
1323 atmel_aes_set_mode(dd, rctx);
1324
1325 err = atmel_aes_hw_init(dd);
1326 if (err)
1327 return atmel_aes_complete(dd, err);
1328
1329 if (likely(ivsize == GCM_AES_IV_SIZE)) {
1330 memcpy(ctx->j0, iv, ivsize);
1331 ctx->j0[3] = cpu_to_be32(1);
1332 return atmel_aes_gcm_process(dd);
1333 }
1334
1335 padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1336 datalen = ivsize + padlen + AES_BLOCK_SIZE;
1337 if (datalen > dd->buflen)
1338 return atmel_aes_complete(dd, -EINVAL);
1339
1340 memcpy(data, iv, ivsize);
1341 memset(data + ivsize, 0, padlen + sizeof(u64));
1342 ((__be64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1343
1344 return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1345 NULL, ctx->j0, atmel_aes_gcm_process);
1346}
1347
1348static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1349{
1350 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1351 struct aead_request *req = aead_request_cast(dd->areq);
1352 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1353 bool enc = atmel_aes_is_encrypt(dd);
1354 u32 authsize;
1355
1356 /* Compute text length. */
1357 authsize = crypto_aead_authsize(tfm);
1358 ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1359
1360 /*
1361 * According to tcrypt test suite, the GCM Automatic Tag Generation
1362 * fails when both the message and its associated data are empty.
1363 */
1364 if (likely(req->assoclen != 0 || ctx->textlen != 0))
1365 dd->flags |= AES_FLAGS_GTAGEN;
1366
1367 atmel_aes_write_ctrl(dd, false, NULL);
1368 return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1369}
1370
1371static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1372{
1373 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1374 struct aead_request *req = aead_request_cast(dd->areq);
1375 __be32 j0_lsw, *j0 = ctx->j0;
1376 size_t padlen;
1377
1378 /* Write incr32(J0) into IV. */
1379 j0_lsw = j0[3];
1380 be32_add_cpu(&j0[3], 1);
1381 atmel_aes_write_block(dd, AES_IVR(0), j0);
1382 j0[3] = j0_lsw;
1383
1384 /* Set aad and text lengths. */
1385 atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1386 atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1387
1388 /* Check whether AAD are present. */
1389 if (unlikely(req->assoclen == 0)) {
1390 dd->datalen = 0;
1391 return atmel_aes_gcm_data(dd);
1392 }
1393
1394 /* Copy assoc data and add padding. */
1395 padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1396 if (unlikely(req->assoclen + padlen > dd->buflen))
1397 return atmel_aes_complete(dd, -EINVAL);
1398 sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1399
1400 /* Write assoc data into the Input Data register. */
1401 dd->data = (u32 *)dd->buf;
1402 dd->datalen = req->assoclen + padlen;
1403 return atmel_aes_gcm_data(dd);
1404}
1405
1406static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1407{
1408 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1409 struct aead_request *req = aead_request_cast(dd->areq);
1410 bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1411 struct scatterlist *src, *dst;
1412 u32 isr, mr;
1413
1414 /* Write AAD first. */
1415 while (dd->datalen > 0) {
1416 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1417 dd->data += 4;
1418 dd->datalen -= AES_BLOCK_SIZE;
1419
1420 isr = atmel_aes_read(dd, AES_ISR);
1421 if (!(isr & AES_INT_DATARDY)) {
1422 dd->resume = atmel_aes_gcm_data;
1423 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1424 return -EINPROGRESS;
1425 }
1426 }
1427
1428 /* GMAC only. */
1429 if (unlikely(ctx->textlen == 0))
1430 return atmel_aes_gcm_tag_init(dd);
1431
1432 /* Prepare src and dst scatter lists to transfer cipher/plain texts */
1433 src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1434 dst = ((req->src == req->dst) ? src :
1435 scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1436
1437 if (use_dma) {
1438 /* Update the Mode Register for DMA transfers. */
1439 mr = atmel_aes_read(dd, AES_MR);
1440 mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1441 mr |= AES_MR_SMOD_IDATAR0;
1442 if (dd->caps.has_dualbuff)
1443 mr |= AES_MR_DUALBUFF;
1444 atmel_aes_write(dd, AES_MR, mr);
1445
1446 return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1447 atmel_aes_gcm_tag_init);
1448 }
1449
1450 return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1451 atmel_aes_gcm_tag_init);
1452}
1453
1454static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1455{
1456 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1457 struct aead_request *req = aead_request_cast(dd->areq);
1458 __be64 *data = dd->buf;
1459
1460 if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1461 if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1462 dd->resume = atmel_aes_gcm_tag_init;
1463 atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1464 return -EINPROGRESS;
1465 }
1466
1467 return atmel_aes_gcm_finalize(dd);
1468 }
1469
1470 /* Read the GCM Intermediate Hash Word Registers. */
1471 atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1472
1473 data[0] = cpu_to_be64(req->assoclen * 8);
1474 data[1] = cpu_to_be64(ctx->textlen * 8);
1475
1476 return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1477 ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1478}
1479
1480static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1481{
1482 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1483 unsigned long flags;
1484
1485 /*
1486 * Change mode to CTR to complete the tag generation.
1487 * Use J0 as Initialization Vector.
1488 */
1489 flags = dd->flags;
1490 dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1491 dd->flags |= AES_FLAGS_CTR;
1492 atmel_aes_write_ctrl(dd, false, ctx->j0);
1493 dd->flags = flags;
1494
1495 atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1496 return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1497}
1498
1499static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1500{
1501 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1502 struct aead_request *req = aead_request_cast(dd->areq);
1503 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1504 bool enc = atmel_aes_is_encrypt(dd);
1505 u32 offset, authsize, itag[4], *otag = ctx->tag;
1506 int err;
1507
1508 /* Read the computed tag. */
1509 if (likely(dd->flags & AES_FLAGS_GTAGEN))
1510 atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1511 else
1512 atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1513
1514 offset = req->assoclen + ctx->textlen;
1515 authsize = crypto_aead_authsize(tfm);
1516 if (enc) {
1517 scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1518 err = 0;
1519 } else {
1520 scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1521 err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1522 }
1523
1524 return atmel_aes_complete(dd, err);
1525}
1526
1527static int atmel_aes_gcm_crypt(struct aead_request *req,
1528 unsigned long mode)
1529{
1530 struct atmel_aes_base_ctx *ctx;
1531 struct atmel_aes_reqctx *rctx;
1532
1533 ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1534 ctx->block_size = AES_BLOCK_SIZE;
1535 ctx->is_aead = true;
1536
1537 rctx = aead_request_ctx(req);
1538 rctx->mode = AES_FLAGS_GCM | mode;
1539
1540 return atmel_aes_handle_queue(ctx->dd, &req->base);
1541}
1542
1543static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1544 unsigned int keylen)
1545{
1546 struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1547
1548 if (keylen != AES_KEYSIZE_256 &&
1549 keylen != AES_KEYSIZE_192 &&
1550 keylen != AES_KEYSIZE_128)
1551 return -EINVAL;
1552
1553 memcpy(ctx->key, key, keylen);
1554 ctx->keylen = keylen;
1555
1556 return 0;
1557}
1558
1559static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1560 unsigned int authsize)
1561{
1562 return crypto_gcm_check_authsize(authsize);
1563}
1564
1565static int atmel_aes_gcm_encrypt(struct aead_request *req)
1566{
1567 return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1568}
1569
1570static int atmel_aes_gcm_decrypt(struct aead_request *req)
1571{
1572 return atmel_aes_gcm_crypt(req, 0);
1573}
1574
1575static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1576{
1577 struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1578 struct atmel_aes_dev *dd;
1579
1580 dd = atmel_aes_dev_alloc(&ctx->base);
1581 if (!dd)
1582 return -ENODEV;
1583
1584 crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1585 ctx->base.dd = dd;
1586 ctx->base.start = atmel_aes_gcm_start;
1587
1588 return 0;
1589}
1590
1591static struct aead_alg aes_gcm_alg = {
1592 .setkey = atmel_aes_gcm_setkey,
1593 .setauthsize = atmel_aes_gcm_setauthsize,
1594 .encrypt = atmel_aes_gcm_encrypt,
1595 .decrypt = atmel_aes_gcm_decrypt,
1596 .init = atmel_aes_gcm_init,
1597 .ivsize = GCM_AES_IV_SIZE,
1598 .maxauthsize = AES_BLOCK_SIZE,
1599
1600 .base = {
1601 .cra_name = "gcm(aes)",
1602 .cra_driver_name = "atmel-gcm-aes",
1603 .cra_blocksize = 1,
1604 .cra_ctxsize = sizeof(struct atmel_aes_gcm_ctx),
1605 },
1606};
1607
1608
1609/* xts functions */
1610
1611static inline struct atmel_aes_xts_ctx *
1612atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1613{
1614 return container_of(ctx, struct atmel_aes_xts_ctx, base);
1615}
1616
1617static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1618
1619static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1620{
1621 struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1622 struct skcipher_request *req = skcipher_request_cast(dd->areq);
1623 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1624 unsigned long flags;
1625 int err;
1626
1627 atmel_aes_set_mode(dd, rctx);
1628
1629 err = atmel_aes_hw_init(dd);
1630 if (err)
1631 return atmel_aes_complete(dd, err);
1632
1633 /* Compute the tweak value from req->iv with ecb(aes). */
1634 flags = dd->flags;
1635 dd->flags &= ~AES_FLAGS_MODE_MASK;
1636 dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1637 atmel_aes_write_ctrl_key(dd, false, NULL,
1638 ctx->key2, ctx->base.keylen);
1639 dd->flags = flags;
1640
1641 atmel_aes_write_block(dd, AES_IDATAR(0), req->iv);
1642 return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1643}
1644
1645static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1646{
1647 struct skcipher_request *req = skcipher_request_cast(dd->areq);
1648 bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD);
1649 u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1650 static const __le32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1651 u8 *tweak_bytes = (u8 *)tweak;
1652 int i;
1653
1654 /* Read the computed ciphered tweak value. */
1655 atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1656 /*
1657 * Hardware quirk:
1658 * the order of the ciphered tweak bytes need to be reversed before
1659 * writing them into the ODATARx registers.
1660 */
1661 for (i = 0; i < AES_BLOCK_SIZE/2; ++i)
1662 swap(tweak_bytes[i], tweak_bytes[AES_BLOCK_SIZE - 1 - i]);
1663
1664 /* Process the data. */
1665 atmel_aes_write_ctrl(dd, use_dma, NULL);
1666 atmel_aes_write_block(dd, AES_TWR(0), tweak);
1667 atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1668 if (use_dma)
1669 return atmel_aes_dma_start(dd, req->src, req->dst,
1670 req->cryptlen,
1671 atmel_aes_transfer_complete);
1672
1673 return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1674 atmel_aes_transfer_complete);
1675}
1676
1677static int atmel_aes_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
1678 unsigned int keylen)
1679{
1680 struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1681 int err;
1682
1683 err = xts_verify_key(tfm, key, keylen);
1684 if (err)
1685 return err;
1686
1687 crypto_skcipher_clear_flags(ctx->fallback_tfm, CRYPTO_TFM_REQ_MASK);
1688 crypto_skcipher_set_flags(ctx->fallback_tfm, tfm->base.crt_flags &
1689 CRYPTO_TFM_REQ_MASK);
1690 err = crypto_skcipher_setkey(ctx->fallback_tfm, key, keylen);
1691 if (err)
1692 return err;
1693
1694 memcpy(ctx->base.key, key, keylen/2);
1695 memcpy(ctx->key2, key + keylen/2, keylen/2);
1696 ctx->base.keylen = keylen/2;
1697
1698 return 0;
1699}
1700
1701static int atmel_aes_xts_encrypt(struct skcipher_request *req)
1702{
1703 return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1704}
1705
1706static int atmel_aes_xts_decrypt(struct skcipher_request *req)
1707{
1708 return atmel_aes_crypt(req, AES_FLAGS_XTS);
1709}
1710
1711static int atmel_aes_xts_init_tfm(struct crypto_skcipher *tfm)
1712{
1713 struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1714 struct atmel_aes_dev *dd;
1715 const char *tfm_name = crypto_tfm_alg_name(&tfm->base);
1716
1717 dd = atmel_aes_dev_alloc(&ctx->base);
1718 if (!dd)
1719 return -ENODEV;
1720
1721 ctx->fallback_tfm = crypto_alloc_skcipher(tfm_name, 0,
1722 CRYPTO_ALG_NEED_FALLBACK);
1723 if (IS_ERR(ctx->fallback_tfm))
1724 return PTR_ERR(ctx->fallback_tfm);
1725
1726 crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx) +
1727 crypto_skcipher_reqsize(ctx->fallback_tfm));
1728 ctx->base.dd = dd;
1729 ctx->base.start = atmel_aes_xts_start;
1730
1731 return 0;
1732}
1733
1734static void atmel_aes_xts_exit_tfm(struct crypto_skcipher *tfm)
1735{
1736 struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1737
1738 crypto_free_skcipher(ctx->fallback_tfm);
1739}
1740
1741static struct skcipher_alg aes_xts_alg = {
1742 .base.cra_name = "xts(aes)",
1743 .base.cra_driver_name = "atmel-xts-aes",
1744 .base.cra_blocksize = AES_BLOCK_SIZE,
1745 .base.cra_ctxsize = sizeof(struct atmel_aes_xts_ctx),
1746 .base.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
1747
1748 .min_keysize = 2 * AES_MIN_KEY_SIZE,
1749 .max_keysize = 2 * AES_MAX_KEY_SIZE,
1750 .ivsize = AES_BLOCK_SIZE,
1751 .setkey = atmel_aes_xts_setkey,
1752 .encrypt = atmel_aes_xts_encrypt,
1753 .decrypt = atmel_aes_xts_decrypt,
1754 .init = atmel_aes_xts_init_tfm,
1755 .exit = atmel_aes_xts_exit_tfm,
1756};
1757
1758#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
1759/* authenc aead functions */
1760
1761static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1762static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1763 bool is_async);
1764static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1765 bool is_async);
1766static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1767static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1768 bool is_async);
1769
1770static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1771{
1772 struct aead_request *req = aead_request_cast(dd->areq);
1773 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1774
1775 if (err && (dd->flags & AES_FLAGS_OWN_SHA))
1776 atmel_sha_authenc_abort(&rctx->auth_req);
1777 dd->flags &= ~AES_FLAGS_OWN_SHA;
1778}
1779
1780static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
1781{
1782 struct aead_request *req = aead_request_cast(dd->areq);
1783 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1784 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1785 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1786 int err;
1787
1788 atmel_aes_set_mode(dd, &rctx->base);
1789
1790 err = atmel_aes_hw_init(dd);
1791 if (err)
1792 return atmel_aes_complete(dd, err);
1793
1794 return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
1795 atmel_aes_authenc_init, dd);
1796}
1797
1798static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1799 bool is_async)
1800{
1801 struct aead_request *req = aead_request_cast(dd->areq);
1802 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1803
1804 if (is_async)
1805 dd->is_async = true;
1806 if (err)
1807 return atmel_aes_complete(dd, err);
1808
1809 /* If here, we've got the ownership of the SHA device. */
1810 dd->flags |= AES_FLAGS_OWN_SHA;
1811
1812 /* Configure the SHA device. */
1813 return atmel_sha_authenc_init(&rctx->auth_req,
1814 req->src, req->assoclen,
1815 rctx->textlen,
1816 atmel_aes_authenc_transfer, dd);
1817}
1818
1819static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1820 bool is_async)
1821{
1822 struct aead_request *req = aead_request_cast(dd->areq);
1823 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1824 bool enc = atmel_aes_is_encrypt(dd);
1825 struct scatterlist *src, *dst;
1826 __be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
1827 u32 emr;
1828
1829 if (is_async)
1830 dd->is_async = true;
1831 if (err)
1832 return atmel_aes_complete(dd, err);
1833
1834 /* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
1835 src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
1836 dst = src;
1837
1838 if (req->src != req->dst)
1839 dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
1840
1841 /* Configure the AES device. */
1842 memcpy(iv, req->iv, sizeof(iv));
1843
1844 /*
1845 * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
1846 * 'true' even if the data transfer is actually performed by the CPU (so
1847 * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
1848 * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
1849 * must be set to *_MR_SMOD_IDATAR0.
1850 */
1851 atmel_aes_write_ctrl(dd, true, iv);
1852 emr = AES_EMR_PLIPEN;
1853 if (!enc)
1854 emr |= AES_EMR_PLIPD;
1855 atmel_aes_write(dd, AES_EMR, emr);
1856
1857 /* Transfer data. */
1858 return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
1859 atmel_aes_authenc_digest);
1860}
1861
1862static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
1863{
1864 struct aead_request *req = aead_request_cast(dd->areq);
1865 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1866
1867 /* atmel_sha_authenc_final() releases the SHA device. */
1868 dd->flags &= ~AES_FLAGS_OWN_SHA;
1869 return atmel_sha_authenc_final(&rctx->auth_req,
1870 rctx->digest, sizeof(rctx->digest),
1871 atmel_aes_authenc_final, dd);
1872}
1873
1874static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1875 bool is_async)
1876{
1877 struct aead_request *req = aead_request_cast(dd->areq);
1878 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1879 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1880 bool enc = atmel_aes_is_encrypt(dd);
1881 u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
1882 u32 offs, authsize;
1883
1884 if (is_async)
1885 dd->is_async = true;
1886 if (err)
1887 goto complete;
1888
1889 offs = req->assoclen + rctx->textlen;
1890 authsize = crypto_aead_authsize(tfm);
1891 if (enc) {
1892 scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
1893 } else {
1894 scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
1895 if (crypto_memneq(idigest, odigest, authsize))
1896 err = -EBADMSG;
1897 }
1898
1899complete:
1900 return atmel_aes_complete(dd, err);
1901}
1902
1903static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
1904 unsigned int keylen)
1905{
1906 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1907 struct crypto_authenc_keys keys;
1908 int err;
1909
1910 if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
1911 goto badkey;
1912
1913 if (keys.enckeylen > sizeof(ctx->base.key))
1914 goto badkey;
1915
1916 /* Save auth key. */
1917 err = atmel_sha_authenc_setkey(ctx->auth,
1918 keys.authkey, keys.authkeylen,
1919 crypto_aead_get_flags(tfm));
1920 if (err) {
1921 memzero_explicit(&keys, sizeof(keys));
1922 return err;
1923 }
1924
1925 /* Save enc key. */
1926 ctx->base.keylen = keys.enckeylen;
1927 memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
1928
1929 memzero_explicit(&keys, sizeof(keys));
1930 return 0;
1931
1932badkey:
1933 memzero_explicit(&keys, sizeof(keys));
1934 return -EINVAL;
1935}
1936
1937static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
1938 unsigned long auth_mode)
1939{
1940 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1941 unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
1942 struct atmel_aes_dev *dd;
1943
1944 dd = atmel_aes_dev_alloc(&ctx->base);
1945 if (!dd)
1946 return -ENODEV;
1947
1948 ctx->auth = atmel_sha_authenc_spawn(auth_mode);
1949 if (IS_ERR(ctx->auth))
1950 return PTR_ERR(ctx->auth);
1951
1952 crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
1953 auth_reqsize));
1954 ctx->base.dd = dd;
1955 ctx->base.start = atmel_aes_authenc_start;
1956
1957 return 0;
1958}
1959
1960static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
1961{
1962 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
1963}
1964
1965static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
1966{
1967 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
1968}
1969
1970static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
1971{
1972 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
1973}
1974
1975static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
1976{
1977 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
1978}
1979
1980static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
1981{
1982 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
1983}
1984
1985static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
1986{
1987 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1988
1989 atmel_sha_authenc_free(ctx->auth);
1990}
1991
1992static int atmel_aes_authenc_crypt(struct aead_request *req,
1993 unsigned long mode)
1994{
1995 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1996 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1997 struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1998 u32 authsize = crypto_aead_authsize(tfm);
1999 bool enc = (mode & AES_FLAGS_ENCRYPT);
2000
2001 /* Compute text length. */
2002 if (!enc && req->cryptlen < authsize)
2003 return -EINVAL;
2004 rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2005
2006 /*
2007 * Currently, empty messages are not supported yet:
2008 * the SHA auto-padding can be used only on non-empty messages.
2009 * Hence a special case needs to be implemented for empty message.
2010 */
2011 if (!rctx->textlen && !req->assoclen)
2012 return -EINVAL;
2013
2014 rctx->base.mode = mode;
2015 ctx->block_size = AES_BLOCK_SIZE;
2016 ctx->is_aead = true;
2017
2018 return atmel_aes_handle_queue(ctx->dd, &req->base);
2019}
2020
2021static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2022{
2023 return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2024}
2025
2026static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2027{
2028 return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2029}
2030
2031static struct aead_alg aes_authenc_algs[] = {
2032{
2033 .setkey = atmel_aes_authenc_setkey,
2034 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2035 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2036 .init = atmel_aes_authenc_hmac_sha1_init_tfm,
2037 .exit = atmel_aes_authenc_exit_tfm,
2038 .ivsize = AES_BLOCK_SIZE,
2039 .maxauthsize = SHA1_DIGEST_SIZE,
2040
2041 .base = {
2042 .cra_name = "authenc(hmac(sha1),cbc(aes))",
2043 .cra_driver_name = "atmel-authenc-hmac-sha1-cbc-aes",
2044 .cra_blocksize = AES_BLOCK_SIZE,
2045 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2046 },
2047},
2048{
2049 .setkey = atmel_aes_authenc_setkey,
2050 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2051 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2052 .init = atmel_aes_authenc_hmac_sha224_init_tfm,
2053 .exit = atmel_aes_authenc_exit_tfm,
2054 .ivsize = AES_BLOCK_SIZE,
2055 .maxauthsize = SHA224_DIGEST_SIZE,
2056
2057 .base = {
2058 .cra_name = "authenc(hmac(sha224),cbc(aes))",
2059 .cra_driver_name = "atmel-authenc-hmac-sha224-cbc-aes",
2060 .cra_blocksize = AES_BLOCK_SIZE,
2061 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2062 },
2063},
2064{
2065 .setkey = atmel_aes_authenc_setkey,
2066 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2067 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2068 .init = atmel_aes_authenc_hmac_sha256_init_tfm,
2069 .exit = atmel_aes_authenc_exit_tfm,
2070 .ivsize = AES_BLOCK_SIZE,
2071 .maxauthsize = SHA256_DIGEST_SIZE,
2072
2073 .base = {
2074 .cra_name = "authenc(hmac(sha256),cbc(aes))",
2075 .cra_driver_name = "atmel-authenc-hmac-sha256-cbc-aes",
2076 .cra_blocksize = AES_BLOCK_SIZE,
2077 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2078 },
2079},
2080{
2081 .setkey = atmel_aes_authenc_setkey,
2082 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2083 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2084 .init = atmel_aes_authenc_hmac_sha384_init_tfm,
2085 .exit = atmel_aes_authenc_exit_tfm,
2086 .ivsize = AES_BLOCK_SIZE,
2087 .maxauthsize = SHA384_DIGEST_SIZE,
2088
2089 .base = {
2090 .cra_name = "authenc(hmac(sha384),cbc(aes))",
2091 .cra_driver_name = "atmel-authenc-hmac-sha384-cbc-aes",
2092 .cra_blocksize = AES_BLOCK_SIZE,
2093 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2094 },
2095},
2096{
2097 .setkey = atmel_aes_authenc_setkey,
2098 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2099 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2100 .init = atmel_aes_authenc_hmac_sha512_init_tfm,
2101 .exit = atmel_aes_authenc_exit_tfm,
2102 .ivsize = AES_BLOCK_SIZE,
2103 .maxauthsize = SHA512_DIGEST_SIZE,
2104
2105 .base = {
2106 .cra_name = "authenc(hmac(sha512),cbc(aes))",
2107 .cra_driver_name = "atmel-authenc-hmac-sha512-cbc-aes",
2108 .cra_blocksize = AES_BLOCK_SIZE,
2109 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2110 },
2111},
2112};
2113#endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2114
2115/* Probe functions */
2116
2117static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2118{
2119 dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2120 dd->buflen = ATMEL_AES_BUFFER_SIZE;
2121 dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2122
2123 if (!dd->buf) {
2124 dev_err(dd->dev, "unable to alloc pages.\n");
2125 return -ENOMEM;
2126 }
2127
2128 return 0;
2129}
2130
2131static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2132{
2133 free_page((unsigned long)dd->buf);
2134}
2135
2136static int atmel_aes_dma_init(struct atmel_aes_dev *dd)
2137{
2138 int ret;
2139
2140 /* Try to grab 2 DMA channels */
2141 dd->src.chan = dma_request_chan(dd->dev, "tx");
2142 if (IS_ERR(dd->src.chan)) {
2143 ret = PTR_ERR(dd->src.chan);
2144 goto err_dma_in;
2145 }
2146
2147 dd->dst.chan = dma_request_chan(dd->dev, "rx");
2148 if (IS_ERR(dd->dst.chan)) {
2149 ret = PTR_ERR(dd->dst.chan);
2150 goto err_dma_out;
2151 }
2152
2153 return 0;
2154
2155err_dma_out:
2156 dma_release_channel(dd->src.chan);
2157err_dma_in:
2158 dev_err(dd->dev, "no DMA channel available\n");
2159 return ret;
2160}
2161
2162static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2163{
2164 dma_release_channel(dd->dst.chan);
2165 dma_release_channel(dd->src.chan);
2166}
2167
2168static void atmel_aes_queue_task(unsigned long data)
2169{
2170 struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2171
2172 atmel_aes_handle_queue(dd, NULL);
2173}
2174
2175static void atmel_aes_done_task(unsigned long data)
2176{
2177 struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2178
2179 dd->is_async = true;
2180 (void)dd->resume(dd);
2181}
2182
2183static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2184{
2185 struct atmel_aes_dev *aes_dd = dev_id;
2186 u32 reg;
2187
2188 reg = atmel_aes_read(aes_dd, AES_ISR);
2189 if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2190 atmel_aes_write(aes_dd, AES_IDR, reg);
2191 if (AES_FLAGS_BUSY & aes_dd->flags)
2192 tasklet_schedule(&aes_dd->done_task);
2193 else
2194 dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2195 return IRQ_HANDLED;
2196 }
2197
2198 return IRQ_NONE;
2199}
2200
2201static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2202{
2203 int i;
2204
2205#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2206 if (dd->caps.has_authenc)
2207 for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2208 crypto_unregister_aead(&aes_authenc_algs[i]);
2209#endif
2210
2211 if (dd->caps.has_xts)
2212 crypto_unregister_skcipher(&aes_xts_alg);
2213
2214 if (dd->caps.has_gcm)
2215 crypto_unregister_aead(&aes_gcm_alg);
2216
2217 for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2218 crypto_unregister_skcipher(&aes_algs[i]);
2219}
2220
2221static void atmel_aes_crypto_alg_init(struct crypto_alg *alg)
2222{
2223 alg->cra_flags |= CRYPTO_ALG_ASYNC;
2224 alg->cra_alignmask = 0xf;
2225 alg->cra_priority = ATMEL_AES_PRIORITY;
2226 alg->cra_module = THIS_MODULE;
2227}
2228
2229static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2230{
2231 int err, i, j;
2232
2233 for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2234 atmel_aes_crypto_alg_init(&aes_algs[i].base);
2235
2236 err = crypto_register_skcipher(&aes_algs[i]);
2237 if (err)
2238 goto err_aes_algs;
2239 }
2240
2241 if (dd->caps.has_gcm) {
2242 atmel_aes_crypto_alg_init(&aes_gcm_alg.base);
2243
2244 err = crypto_register_aead(&aes_gcm_alg);
2245 if (err)
2246 goto err_aes_gcm_alg;
2247 }
2248
2249 if (dd->caps.has_xts) {
2250 atmel_aes_crypto_alg_init(&aes_xts_alg.base);
2251
2252 err = crypto_register_skcipher(&aes_xts_alg);
2253 if (err)
2254 goto err_aes_xts_alg;
2255 }
2256
2257#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2258 if (dd->caps.has_authenc) {
2259 for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
2260 atmel_aes_crypto_alg_init(&aes_authenc_algs[i].base);
2261
2262 err = crypto_register_aead(&aes_authenc_algs[i]);
2263 if (err)
2264 goto err_aes_authenc_alg;
2265 }
2266 }
2267#endif
2268
2269 return 0;
2270
2271#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2272 /* i = ARRAY_SIZE(aes_authenc_algs); */
2273err_aes_authenc_alg:
2274 for (j = 0; j < i; j++)
2275 crypto_unregister_aead(&aes_authenc_algs[j]);
2276 crypto_unregister_skcipher(&aes_xts_alg);
2277#endif
2278err_aes_xts_alg:
2279 crypto_unregister_aead(&aes_gcm_alg);
2280err_aes_gcm_alg:
2281 i = ARRAY_SIZE(aes_algs);
2282err_aes_algs:
2283 for (j = 0; j < i; j++)
2284 crypto_unregister_skcipher(&aes_algs[j]);
2285
2286 return err;
2287}
2288
2289static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2290{
2291 dd->caps.has_dualbuff = 0;
2292 dd->caps.has_gcm = 0;
2293 dd->caps.has_xts = 0;
2294 dd->caps.has_authenc = 0;
2295 dd->caps.max_burst_size = 1;
2296
2297 /* keep only major version number */
2298 switch (dd->hw_version & 0xff0) {
2299 case 0x700:
2300 case 0x600:
2301 case 0x500:
2302 dd->caps.has_dualbuff = 1;
2303 dd->caps.has_gcm = 1;
2304 dd->caps.has_xts = 1;
2305 dd->caps.has_authenc = 1;
2306 dd->caps.max_burst_size = 4;
2307 break;
2308 case 0x200:
2309 dd->caps.has_dualbuff = 1;
2310 dd->caps.has_gcm = 1;
2311 dd->caps.max_burst_size = 4;
2312 break;
2313 case 0x130:
2314 dd->caps.has_dualbuff = 1;
2315 dd->caps.max_burst_size = 4;
2316 break;
2317 case 0x120:
2318 break;
2319 default:
2320 dev_warn(dd->dev,
2321 "Unmanaged aes version, set minimum capabilities\n");
2322 break;
2323 }
2324}
2325
2326static const struct of_device_id atmel_aes_dt_ids[] = {
2327 { .compatible = "atmel,at91sam9g46-aes" },
2328 { /* sentinel */ }
2329};
2330MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
2331
2332static int atmel_aes_probe(struct platform_device *pdev)
2333{
2334 struct atmel_aes_dev *aes_dd;
2335 struct device *dev = &pdev->dev;
2336 struct resource *aes_res;
2337 int err;
2338
2339 aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2340 if (!aes_dd)
2341 return -ENOMEM;
2342
2343 aes_dd->dev = dev;
2344
2345 platform_set_drvdata(pdev, aes_dd);
2346
2347 INIT_LIST_HEAD(&aes_dd->list);
2348 spin_lock_init(&aes_dd->lock);
2349
2350 tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2351 (unsigned long)aes_dd);
2352 tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2353 (unsigned long)aes_dd);
2354
2355 crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2356
2357 aes_dd->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &aes_res);
2358 if (IS_ERR(aes_dd->io_base)) {
2359 err = PTR_ERR(aes_dd->io_base);
2360 goto err_tasklet_kill;
2361 }
2362 aes_dd->phys_base = aes_res->start;
2363
2364 /* Get the IRQ */
2365 aes_dd->irq = platform_get_irq(pdev, 0);
2366 if (aes_dd->irq < 0) {
2367 err = aes_dd->irq;
2368 goto err_tasklet_kill;
2369 }
2370
2371 err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2372 IRQF_SHARED, "atmel-aes", aes_dd);
2373 if (err) {
2374 dev_err(dev, "unable to request aes irq.\n");
2375 goto err_tasklet_kill;
2376 }
2377
2378 /* Initializing the clock */
2379 aes_dd->iclk = devm_clk_get_prepared(&pdev->dev, "aes_clk");
2380 if (IS_ERR(aes_dd->iclk)) {
2381 dev_err(dev, "clock initialization failed.\n");
2382 err = PTR_ERR(aes_dd->iclk);
2383 goto err_tasklet_kill;
2384 }
2385
2386 err = atmel_aes_hw_version_init(aes_dd);
2387 if (err)
2388 goto err_tasklet_kill;
2389
2390 atmel_aes_get_cap(aes_dd);
2391
2392#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2393 if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2394 err = -EPROBE_DEFER;
2395 goto err_tasklet_kill;
2396 }
2397#endif
2398
2399 err = atmel_aes_buff_init(aes_dd);
2400 if (err)
2401 goto err_tasklet_kill;
2402
2403 err = atmel_aes_dma_init(aes_dd);
2404 if (err)
2405 goto err_buff_cleanup;
2406
2407 spin_lock(&atmel_aes.lock);
2408 list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2409 spin_unlock(&atmel_aes.lock);
2410
2411 err = atmel_aes_register_algs(aes_dd);
2412 if (err)
2413 goto err_algs;
2414
2415 dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2416 dma_chan_name(aes_dd->src.chan),
2417 dma_chan_name(aes_dd->dst.chan));
2418
2419 return 0;
2420
2421err_algs:
2422 spin_lock(&atmel_aes.lock);
2423 list_del(&aes_dd->list);
2424 spin_unlock(&atmel_aes.lock);
2425 atmel_aes_dma_cleanup(aes_dd);
2426err_buff_cleanup:
2427 atmel_aes_buff_cleanup(aes_dd);
2428err_tasklet_kill:
2429 tasklet_kill(&aes_dd->done_task);
2430 tasklet_kill(&aes_dd->queue_task);
2431
2432 return err;
2433}
2434
2435static void atmel_aes_remove(struct platform_device *pdev)
2436{
2437 struct atmel_aes_dev *aes_dd;
2438
2439 aes_dd = platform_get_drvdata(pdev);
2440
2441 spin_lock(&atmel_aes.lock);
2442 list_del(&aes_dd->list);
2443 spin_unlock(&atmel_aes.lock);
2444
2445 atmel_aes_unregister_algs(aes_dd);
2446
2447 tasklet_kill(&aes_dd->done_task);
2448 tasklet_kill(&aes_dd->queue_task);
2449
2450 atmel_aes_dma_cleanup(aes_dd);
2451 atmel_aes_buff_cleanup(aes_dd);
2452}
2453
2454static struct platform_driver atmel_aes_driver = {
2455 .probe = atmel_aes_probe,
2456 .remove = atmel_aes_remove,
2457 .driver = {
2458 .name = "atmel_aes",
2459 .of_match_table = atmel_aes_dt_ids,
2460 },
2461};
2462
2463module_platform_driver(atmel_aes_driver);
2464
2465MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2466MODULE_LICENSE("GPL v2");
2467MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Cryptographic API.
4 *
5 * Support for ATMEL AES HW acceleration.
6 *
7 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
8 * Author: Nicolas Royer <nicolas@eukrea.com>
9 *
10 * Some ideas are from omap-aes.c driver.
11 */
12
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/err.h>
18#include <linux/clk.h>
19#include <linux/io.h>
20#include <linux/hw_random.h>
21#include <linux/platform_device.h>
22
23#include <linux/device.h>
24#include <linux/dmaengine.h>
25#include <linux/init.h>
26#include <linux/errno.h>
27#include <linux/interrupt.h>
28#include <linux/irq.h>
29#include <linux/scatterlist.h>
30#include <linux/dma-mapping.h>
31#include <linux/of_device.h>
32#include <linux/delay.h>
33#include <linux/crypto.h>
34#include <crypto/scatterwalk.h>
35#include <crypto/algapi.h>
36#include <crypto/aes.h>
37#include <crypto/gcm.h>
38#include <crypto/xts.h>
39#include <crypto/internal/aead.h>
40#include <crypto/internal/skcipher.h>
41#include "atmel-aes-regs.h"
42#include "atmel-authenc.h"
43
44#define ATMEL_AES_PRIORITY 300
45
46#define ATMEL_AES_BUFFER_ORDER 2
47#define ATMEL_AES_BUFFER_SIZE (PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
48
49#define CFB8_BLOCK_SIZE 1
50#define CFB16_BLOCK_SIZE 2
51#define CFB32_BLOCK_SIZE 4
52#define CFB64_BLOCK_SIZE 8
53
54#define SIZE_IN_WORDS(x) ((x) >> 2)
55
56/* AES flags */
57/* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
58#define AES_FLAGS_ENCRYPT AES_MR_CYPHER_ENC
59#define AES_FLAGS_GTAGEN AES_MR_GTAGEN
60#define AES_FLAGS_OPMODE_MASK (AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
61#define AES_FLAGS_ECB AES_MR_OPMOD_ECB
62#define AES_FLAGS_CBC AES_MR_OPMOD_CBC
63#define AES_FLAGS_OFB AES_MR_OPMOD_OFB
64#define AES_FLAGS_CFB128 (AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
65#define AES_FLAGS_CFB64 (AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
66#define AES_FLAGS_CFB32 (AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
67#define AES_FLAGS_CFB16 (AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
68#define AES_FLAGS_CFB8 (AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
69#define AES_FLAGS_CTR AES_MR_OPMOD_CTR
70#define AES_FLAGS_GCM AES_MR_OPMOD_GCM
71#define AES_FLAGS_XTS AES_MR_OPMOD_XTS
72
73#define AES_FLAGS_MODE_MASK (AES_FLAGS_OPMODE_MASK | \
74 AES_FLAGS_ENCRYPT | \
75 AES_FLAGS_GTAGEN)
76
77#define AES_FLAGS_BUSY BIT(3)
78#define AES_FLAGS_DUMP_REG BIT(4)
79#define AES_FLAGS_OWN_SHA BIT(5)
80
81#define AES_FLAGS_PERSISTENT AES_FLAGS_BUSY
82
83#define ATMEL_AES_QUEUE_LENGTH 50
84
85#define ATMEL_AES_DMA_THRESHOLD 256
86
87
88struct atmel_aes_caps {
89 bool has_dualbuff;
90 bool has_cfb64;
91 bool has_gcm;
92 bool has_xts;
93 bool has_authenc;
94 u32 max_burst_size;
95};
96
97struct atmel_aes_dev;
98
99
100typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
101
102
103struct atmel_aes_base_ctx {
104 struct atmel_aes_dev *dd;
105 atmel_aes_fn_t start;
106 int keylen;
107 u32 key[AES_KEYSIZE_256 / sizeof(u32)];
108 u16 block_size;
109 bool is_aead;
110};
111
112struct atmel_aes_ctx {
113 struct atmel_aes_base_ctx base;
114};
115
116struct atmel_aes_ctr_ctx {
117 struct atmel_aes_base_ctx base;
118
119 __be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
120 size_t offset;
121 struct scatterlist src[2];
122 struct scatterlist dst[2];
123 u32 blocks;
124};
125
126struct atmel_aes_gcm_ctx {
127 struct atmel_aes_base_ctx base;
128
129 struct scatterlist src[2];
130 struct scatterlist dst[2];
131
132 __be32 j0[AES_BLOCK_SIZE / sizeof(u32)];
133 u32 tag[AES_BLOCK_SIZE / sizeof(u32)];
134 __be32 ghash[AES_BLOCK_SIZE / sizeof(u32)];
135 size_t textlen;
136
137 const __be32 *ghash_in;
138 __be32 *ghash_out;
139 atmel_aes_fn_t ghash_resume;
140};
141
142struct atmel_aes_xts_ctx {
143 struct atmel_aes_base_ctx base;
144
145 u32 key2[AES_KEYSIZE_256 / sizeof(u32)];
146 struct crypto_skcipher *fallback_tfm;
147};
148
149#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
150struct atmel_aes_authenc_ctx {
151 struct atmel_aes_base_ctx base;
152 struct atmel_sha_authenc_ctx *auth;
153};
154#endif
155
156struct atmel_aes_reqctx {
157 unsigned long mode;
158 u8 lastc[AES_BLOCK_SIZE];
159 struct skcipher_request fallback_req;
160};
161
162#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
163struct atmel_aes_authenc_reqctx {
164 struct atmel_aes_reqctx base;
165
166 struct scatterlist src[2];
167 struct scatterlist dst[2];
168 size_t textlen;
169 u32 digest[SHA512_DIGEST_SIZE / sizeof(u32)];
170
171 /* auth_req MUST be place last. */
172 struct ahash_request auth_req;
173};
174#endif
175
176struct atmel_aes_dma {
177 struct dma_chan *chan;
178 struct scatterlist *sg;
179 int nents;
180 unsigned int remainder;
181 unsigned int sg_len;
182};
183
184struct atmel_aes_dev {
185 struct list_head list;
186 unsigned long phys_base;
187 void __iomem *io_base;
188
189 struct crypto_async_request *areq;
190 struct atmel_aes_base_ctx *ctx;
191
192 bool is_async;
193 atmel_aes_fn_t resume;
194 atmel_aes_fn_t cpu_transfer_complete;
195
196 struct device *dev;
197 struct clk *iclk;
198 int irq;
199
200 unsigned long flags;
201
202 spinlock_t lock;
203 struct crypto_queue queue;
204
205 struct tasklet_struct done_task;
206 struct tasklet_struct queue_task;
207
208 size_t total;
209 size_t datalen;
210 u32 *data;
211
212 struct atmel_aes_dma src;
213 struct atmel_aes_dma dst;
214
215 size_t buflen;
216 void *buf;
217 struct scatterlist aligned_sg;
218 struct scatterlist *real_dst;
219
220 struct atmel_aes_caps caps;
221
222 u32 hw_version;
223};
224
225struct atmel_aes_drv {
226 struct list_head dev_list;
227 spinlock_t lock;
228};
229
230static struct atmel_aes_drv atmel_aes = {
231 .dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
232 .lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
233};
234
235#ifdef VERBOSE_DEBUG
236static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
237{
238 switch (offset) {
239 case AES_CR:
240 return "CR";
241
242 case AES_MR:
243 return "MR";
244
245 case AES_ISR:
246 return "ISR";
247
248 case AES_IMR:
249 return "IMR";
250
251 case AES_IER:
252 return "IER";
253
254 case AES_IDR:
255 return "IDR";
256
257 case AES_KEYWR(0):
258 case AES_KEYWR(1):
259 case AES_KEYWR(2):
260 case AES_KEYWR(3):
261 case AES_KEYWR(4):
262 case AES_KEYWR(5):
263 case AES_KEYWR(6):
264 case AES_KEYWR(7):
265 snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
266 break;
267
268 case AES_IDATAR(0):
269 case AES_IDATAR(1):
270 case AES_IDATAR(2):
271 case AES_IDATAR(3):
272 snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
273 break;
274
275 case AES_ODATAR(0):
276 case AES_ODATAR(1):
277 case AES_ODATAR(2):
278 case AES_ODATAR(3):
279 snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
280 break;
281
282 case AES_IVR(0):
283 case AES_IVR(1):
284 case AES_IVR(2):
285 case AES_IVR(3):
286 snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
287 break;
288
289 case AES_AADLENR:
290 return "AADLENR";
291
292 case AES_CLENR:
293 return "CLENR";
294
295 case AES_GHASHR(0):
296 case AES_GHASHR(1):
297 case AES_GHASHR(2):
298 case AES_GHASHR(3):
299 snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
300 break;
301
302 case AES_TAGR(0):
303 case AES_TAGR(1):
304 case AES_TAGR(2):
305 case AES_TAGR(3):
306 snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
307 break;
308
309 case AES_CTRR:
310 return "CTRR";
311
312 case AES_GCMHR(0):
313 case AES_GCMHR(1):
314 case AES_GCMHR(2):
315 case AES_GCMHR(3):
316 snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
317 break;
318
319 case AES_EMR:
320 return "EMR";
321
322 case AES_TWR(0):
323 case AES_TWR(1):
324 case AES_TWR(2):
325 case AES_TWR(3):
326 snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
327 break;
328
329 case AES_ALPHAR(0):
330 case AES_ALPHAR(1):
331 case AES_ALPHAR(2):
332 case AES_ALPHAR(3):
333 snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
334 break;
335
336 default:
337 snprintf(tmp, sz, "0x%02x", offset);
338 break;
339 }
340
341 return tmp;
342}
343#endif /* VERBOSE_DEBUG */
344
345/* Shared functions */
346
347static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
348{
349 u32 value = readl_relaxed(dd->io_base + offset);
350
351#ifdef VERBOSE_DEBUG
352 if (dd->flags & AES_FLAGS_DUMP_REG) {
353 char tmp[16];
354
355 dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
356 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
357 }
358#endif /* VERBOSE_DEBUG */
359
360 return value;
361}
362
363static inline void atmel_aes_write(struct atmel_aes_dev *dd,
364 u32 offset, u32 value)
365{
366#ifdef VERBOSE_DEBUG
367 if (dd->flags & AES_FLAGS_DUMP_REG) {
368 char tmp[16];
369
370 dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
371 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
372 }
373#endif /* VERBOSE_DEBUG */
374
375 writel_relaxed(value, dd->io_base + offset);
376}
377
378static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
379 u32 *value, int count)
380{
381 for (; count--; value++, offset += 4)
382 *value = atmel_aes_read(dd, offset);
383}
384
385static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
386 const u32 *value, int count)
387{
388 for (; count--; value++, offset += 4)
389 atmel_aes_write(dd, offset, *value);
390}
391
392static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
393 void *value)
394{
395 atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
396}
397
398static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
399 const void *value)
400{
401 atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
402}
403
404static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
405 atmel_aes_fn_t resume)
406{
407 u32 isr = atmel_aes_read(dd, AES_ISR);
408
409 if (unlikely(isr & AES_INT_DATARDY))
410 return resume(dd);
411
412 dd->resume = resume;
413 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
414 return -EINPROGRESS;
415}
416
417static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
418{
419 len &= block_size - 1;
420 return len ? block_size - len : 0;
421}
422
423static struct atmel_aes_dev *atmel_aes_dev_alloc(struct atmel_aes_base_ctx *ctx)
424{
425 struct atmel_aes_dev *aes_dd;
426
427 spin_lock_bh(&atmel_aes.lock);
428 /* One AES IP per SoC. */
429 aes_dd = list_first_entry_or_null(&atmel_aes.dev_list,
430 struct atmel_aes_dev, list);
431 spin_unlock_bh(&atmel_aes.lock);
432 return aes_dd;
433}
434
435static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
436{
437 int err;
438
439 err = clk_enable(dd->iclk);
440 if (err)
441 return err;
442
443 atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
444 atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
445
446 return 0;
447}
448
449static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
450{
451 return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
452}
453
454static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
455{
456 int err;
457
458 err = atmel_aes_hw_init(dd);
459 if (err)
460 return err;
461
462 dd->hw_version = atmel_aes_get_version(dd);
463
464 dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
465
466 clk_disable(dd->iclk);
467 return 0;
468}
469
470static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
471 const struct atmel_aes_reqctx *rctx)
472{
473 /* Clear all but persistent flags and set request flags. */
474 dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
475}
476
477static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
478{
479 return (dd->flags & AES_FLAGS_ENCRYPT);
480}
481
482#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
483static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
484#endif
485
486static void atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev *dd)
487{
488 struct skcipher_request *req = skcipher_request_cast(dd->areq);
489 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
490 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
491 unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
492
493 if (req->cryptlen < ivsize)
494 return;
495
496 if (rctx->mode & AES_FLAGS_ENCRYPT) {
497 scatterwalk_map_and_copy(req->iv, req->dst,
498 req->cryptlen - ivsize, ivsize, 0);
499 } else {
500 if (req->src == req->dst)
501 memcpy(req->iv, rctx->lastc, ivsize);
502 else
503 scatterwalk_map_and_copy(req->iv, req->src,
504 req->cryptlen - ivsize,
505 ivsize, 0);
506 }
507}
508
509static inline struct atmel_aes_ctr_ctx *
510atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
511{
512 return container_of(ctx, struct atmel_aes_ctr_ctx, base);
513}
514
515static void atmel_aes_ctr_update_req_iv(struct atmel_aes_dev *dd)
516{
517 struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
518 struct skcipher_request *req = skcipher_request_cast(dd->areq);
519 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
520 unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
521 int i;
522
523 /*
524 * The CTR transfer works in fragments of data of maximum 1 MByte
525 * because of the 16 bit CTR counter embedded in the IP. When reaching
526 * here, ctx->blocks contains the number of blocks of the last fragment
527 * processed, there is no need to explicit cast it to u16.
528 */
529 for (i = 0; i < ctx->blocks; i++)
530 crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
531
532 memcpy(req->iv, ctx->iv, ivsize);
533}
534
535static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
536{
537 struct skcipher_request *req = skcipher_request_cast(dd->areq);
538 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
539
540#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
541 if (dd->ctx->is_aead)
542 atmel_aes_authenc_complete(dd, err);
543#endif
544
545 clk_disable(dd->iclk);
546 dd->flags &= ~AES_FLAGS_BUSY;
547
548 if (!err && !dd->ctx->is_aead &&
549 (rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_ECB) {
550 if ((rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_CTR)
551 atmel_aes_set_iv_as_last_ciphertext_block(dd);
552 else
553 atmel_aes_ctr_update_req_iv(dd);
554 }
555
556 if (dd->is_async)
557 dd->areq->complete(dd->areq, err);
558
559 tasklet_schedule(&dd->queue_task);
560
561 return err;
562}
563
564static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
565 const __be32 *iv, const u32 *key, int keylen)
566{
567 u32 valmr = 0;
568
569 /* MR register must be set before IV registers */
570 if (keylen == AES_KEYSIZE_128)
571 valmr |= AES_MR_KEYSIZE_128;
572 else if (keylen == AES_KEYSIZE_192)
573 valmr |= AES_MR_KEYSIZE_192;
574 else
575 valmr |= AES_MR_KEYSIZE_256;
576
577 valmr |= dd->flags & AES_FLAGS_MODE_MASK;
578
579 if (use_dma) {
580 valmr |= AES_MR_SMOD_IDATAR0;
581 if (dd->caps.has_dualbuff)
582 valmr |= AES_MR_DUALBUFF;
583 } else {
584 valmr |= AES_MR_SMOD_AUTO;
585 }
586
587 atmel_aes_write(dd, AES_MR, valmr);
588
589 atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
590
591 if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
592 atmel_aes_write_block(dd, AES_IVR(0), iv);
593}
594
595static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
596 const __be32 *iv)
597
598{
599 atmel_aes_write_ctrl_key(dd, use_dma, iv,
600 dd->ctx->key, dd->ctx->keylen);
601}
602
603/* CPU transfer */
604
605static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
606{
607 int err = 0;
608 u32 isr;
609
610 for (;;) {
611 atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
612 dd->data += 4;
613 dd->datalen -= AES_BLOCK_SIZE;
614
615 if (dd->datalen < AES_BLOCK_SIZE)
616 break;
617
618 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
619
620 isr = atmel_aes_read(dd, AES_ISR);
621 if (!(isr & AES_INT_DATARDY)) {
622 dd->resume = atmel_aes_cpu_transfer;
623 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
624 return -EINPROGRESS;
625 }
626 }
627
628 if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
629 dd->buf, dd->total))
630 err = -EINVAL;
631
632 if (err)
633 return atmel_aes_complete(dd, err);
634
635 return dd->cpu_transfer_complete(dd);
636}
637
638static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
639 struct scatterlist *src,
640 struct scatterlist *dst,
641 size_t len,
642 atmel_aes_fn_t resume)
643{
644 size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
645
646 if (unlikely(len == 0))
647 return -EINVAL;
648
649 sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
650
651 dd->total = len;
652 dd->real_dst = dst;
653 dd->cpu_transfer_complete = resume;
654 dd->datalen = len + padlen;
655 dd->data = (u32 *)dd->buf;
656 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
657 return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
658}
659
660
661/* DMA transfer */
662
663static void atmel_aes_dma_callback(void *data);
664
665static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
666 struct scatterlist *sg,
667 size_t len,
668 struct atmel_aes_dma *dma)
669{
670 int nents;
671
672 if (!IS_ALIGNED(len, dd->ctx->block_size))
673 return false;
674
675 for (nents = 0; sg; sg = sg_next(sg), ++nents) {
676 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
677 return false;
678
679 if (len <= sg->length) {
680 if (!IS_ALIGNED(len, dd->ctx->block_size))
681 return false;
682
683 dma->nents = nents+1;
684 dma->remainder = sg->length - len;
685 sg->length = len;
686 return true;
687 }
688
689 if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
690 return false;
691
692 len -= sg->length;
693 }
694
695 return false;
696}
697
698static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
699{
700 struct scatterlist *sg = dma->sg;
701 int nents = dma->nents;
702
703 if (!dma->remainder)
704 return;
705
706 while (--nents > 0 && sg)
707 sg = sg_next(sg);
708
709 if (!sg)
710 return;
711
712 sg->length += dma->remainder;
713}
714
715static int atmel_aes_map(struct atmel_aes_dev *dd,
716 struct scatterlist *src,
717 struct scatterlist *dst,
718 size_t len)
719{
720 bool src_aligned, dst_aligned;
721 size_t padlen;
722
723 dd->total = len;
724 dd->src.sg = src;
725 dd->dst.sg = dst;
726 dd->real_dst = dst;
727
728 src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
729 if (src == dst)
730 dst_aligned = src_aligned;
731 else
732 dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
733 if (!src_aligned || !dst_aligned) {
734 padlen = atmel_aes_padlen(len, dd->ctx->block_size);
735
736 if (dd->buflen < len + padlen)
737 return -ENOMEM;
738
739 if (!src_aligned) {
740 sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
741 dd->src.sg = &dd->aligned_sg;
742 dd->src.nents = 1;
743 dd->src.remainder = 0;
744 }
745
746 if (!dst_aligned) {
747 dd->dst.sg = &dd->aligned_sg;
748 dd->dst.nents = 1;
749 dd->dst.remainder = 0;
750 }
751
752 sg_init_table(&dd->aligned_sg, 1);
753 sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
754 }
755
756 if (dd->src.sg == dd->dst.sg) {
757 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
758 DMA_BIDIRECTIONAL);
759 dd->dst.sg_len = dd->src.sg_len;
760 if (!dd->src.sg_len)
761 return -EFAULT;
762 } else {
763 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
764 DMA_TO_DEVICE);
765 if (!dd->src.sg_len)
766 return -EFAULT;
767
768 dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
769 DMA_FROM_DEVICE);
770 if (!dd->dst.sg_len) {
771 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
772 DMA_TO_DEVICE);
773 return -EFAULT;
774 }
775 }
776
777 return 0;
778}
779
780static void atmel_aes_unmap(struct atmel_aes_dev *dd)
781{
782 if (dd->src.sg == dd->dst.sg) {
783 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
784 DMA_BIDIRECTIONAL);
785
786 if (dd->src.sg != &dd->aligned_sg)
787 atmel_aes_restore_sg(&dd->src);
788 } else {
789 dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
790 DMA_FROM_DEVICE);
791
792 if (dd->dst.sg != &dd->aligned_sg)
793 atmel_aes_restore_sg(&dd->dst);
794
795 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
796 DMA_TO_DEVICE);
797
798 if (dd->src.sg != &dd->aligned_sg)
799 atmel_aes_restore_sg(&dd->src);
800 }
801
802 if (dd->dst.sg == &dd->aligned_sg)
803 sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
804 dd->buf, dd->total);
805}
806
807static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
808 enum dma_slave_buswidth addr_width,
809 enum dma_transfer_direction dir,
810 u32 maxburst)
811{
812 struct dma_async_tx_descriptor *desc;
813 struct dma_slave_config config;
814 dma_async_tx_callback callback;
815 struct atmel_aes_dma *dma;
816 int err;
817
818 memset(&config, 0, sizeof(config));
819 config.src_addr_width = addr_width;
820 config.dst_addr_width = addr_width;
821 config.src_maxburst = maxburst;
822 config.dst_maxburst = maxburst;
823
824 switch (dir) {
825 case DMA_MEM_TO_DEV:
826 dma = &dd->src;
827 callback = NULL;
828 config.dst_addr = dd->phys_base + AES_IDATAR(0);
829 break;
830
831 case DMA_DEV_TO_MEM:
832 dma = &dd->dst;
833 callback = atmel_aes_dma_callback;
834 config.src_addr = dd->phys_base + AES_ODATAR(0);
835 break;
836
837 default:
838 return -EINVAL;
839 }
840
841 err = dmaengine_slave_config(dma->chan, &config);
842 if (err)
843 return err;
844
845 desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
846 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
847 if (!desc)
848 return -ENOMEM;
849
850 desc->callback = callback;
851 desc->callback_param = dd;
852 dmaengine_submit(desc);
853 dma_async_issue_pending(dma->chan);
854
855 return 0;
856}
857
858static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
859 struct scatterlist *src,
860 struct scatterlist *dst,
861 size_t len,
862 atmel_aes_fn_t resume)
863{
864 enum dma_slave_buswidth addr_width;
865 u32 maxburst;
866 int err;
867
868 switch (dd->ctx->block_size) {
869 case CFB8_BLOCK_SIZE:
870 addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
871 maxburst = 1;
872 break;
873
874 case CFB16_BLOCK_SIZE:
875 addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
876 maxburst = 1;
877 break;
878
879 case CFB32_BLOCK_SIZE:
880 case CFB64_BLOCK_SIZE:
881 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
882 maxburst = 1;
883 break;
884
885 case AES_BLOCK_SIZE:
886 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
887 maxburst = dd->caps.max_burst_size;
888 break;
889
890 default:
891 err = -EINVAL;
892 goto exit;
893 }
894
895 err = atmel_aes_map(dd, src, dst, len);
896 if (err)
897 goto exit;
898
899 dd->resume = resume;
900
901 /* Set output DMA transfer first */
902 err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
903 maxburst);
904 if (err)
905 goto unmap;
906
907 /* Then set input DMA transfer */
908 err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
909 maxburst);
910 if (err)
911 goto output_transfer_stop;
912
913 return -EINPROGRESS;
914
915output_transfer_stop:
916 dmaengine_terminate_sync(dd->dst.chan);
917unmap:
918 atmel_aes_unmap(dd);
919exit:
920 return atmel_aes_complete(dd, err);
921}
922
923static void atmel_aes_dma_callback(void *data)
924{
925 struct atmel_aes_dev *dd = data;
926
927 atmel_aes_unmap(dd);
928 dd->is_async = true;
929 (void)dd->resume(dd);
930}
931
932static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
933 struct crypto_async_request *new_areq)
934{
935 struct crypto_async_request *areq, *backlog;
936 struct atmel_aes_base_ctx *ctx;
937 unsigned long flags;
938 bool start_async;
939 int err, ret = 0;
940
941 spin_lock_irqsave(&dd->lock, flags);
942 if (new_areq)
943 ret = crypto_enqueue_request(&dd->queue, new_areq);
944 if (dd->flags & AES_FLAGS_BUSY) {
945 spin_unlock_irqrestore(&dd->lock, flags);
946 return ret;
947 }
948 backlog = crypto_get_backlog(&dd->queue);
949 areq = crypto_dequeue_request(&dd->queue);
950 if (areq)
951 dd->flags |= AES_FLAGS_BUSY;
952 spin_unlock_irqrestore(&dd->lock, flags);
953
954 if (!areq)
955 return ret;
956
957 if (backlog)
958 backlog->complete(backlog, -EINPROGRESS);
959
960 ctx = crypto_tfm_ctx(areq->tfm);
961
962 dd->areq = areq;
963 dd->ctx = ctx;
964 start_async = (areq != new_areq);
965 dd->is_async = start_async;
966
967 /* WARNING: ctx->start() MAY change dd->is_async. */
968 err = ctx->start(dd);
969 return (start_async) ? ret : err;
970}
971
972
973/* AES async block ciphers */
974
975static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
976{
977 return atmel_aes_complete(dd, 0);
978}
979
980static int atmel_aes_start(struct atmel_aes_dev *dd)
981{
982 struct skcipher_request *req = skcipher_request_cast(dd->areq);
983 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
984 bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD ||
985 dd->ctx->block_size != AES_BLOCK_SIZE);
986 int err;
987
988 atmel_aes_set_mode(dd, rctx);
989
990 err = atmel_aes_hw_init(dd);
991 if (err)
992 return atmel_aes_complete(dd, err);
993
994 atmel_aes_write_ctrl(dd, use_dma, (void *)req->iv);
995 if (use_dma)
996 return atmel_aes_dma_start(dd, req->src, req->dst,
997 req->cryptlen,
998 atmel_aes_transfer_complete);
999
1000 return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1001 atmel_aes_transfer_complete);
1002}
1003
1004static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
1005{
1006 struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1007 struct skcipher_request *req = skcipher_request_cast(dd->areq);
1008 struct scatterlist *src, *dst;
1009 size_t datalen;
1010 u32 ctr;
1011 u16 start, end;
1012 bool use_dma, fragmented = false;
1013
1014 /* Check for transfer completion. */
1015 ctx->offset += dd->total;
1016 if (ctx->offset >= req->cryptlen)
1017 return atmel_aes_transfer_complete(dd);
1018
1019 /* Compute data length. */
1020 datalen = req->cryptlen - ctx->offset;
1021 ctx->blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
1022 ctr = be32_to_cpu(ctx->iv[3]);
1023
1024 /* Check 16bit counter overflow. */
1025 start = ctr & 0xffff;
1026 end = start + ctx->blocks - 1;
1027
1028 if (ctx->blocks >> 16 || end < start) {
1029 ctr |= 0xffff;
1030 datalen = AES_BLOCK_SIZE * (0x10000 - start);
1031 fragmented = true;
1032 }
1033
1034 use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1035
1036 /* Jump to offset. */
1037 src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1038 dst = ((req->src == req->dst) ? src :
1039 scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1040
1041 /* Configure hardware. */
1042 atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1043 if (unlikely(fragmented)) {
1044 /*
1045 * Increment the counter manually to cope with the hardware
1046 * counter overflow.
1047 */
1048 ctx->iv[3] = cpu_to_be32(ctr);
1049 crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1050 }
1051
1052 if (use_dma)
1053 return atmel_aes_dma_start(dd, src, dst, datalen,
1054 atmel_aes_ctr_transfer);
1055
1056 return atmel_aes_cpu_start(dd, src, dst, datalen,
1057 atmel_aes_ctr_transfer);
1058}
1059
1060static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1061{
1062 struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1063 struct skcipher_request *req = skcipher_request_cast(dd->areq);
1064 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1065 int err;
1066
1067 atmel_aes_set_mode(dd, rctx);
1068
1069 err = atmel_aes_hw_init(dd);
1070 if (err)
1071 return atmel_aes_complete(dd, err);
1072
1073 memcpy(ctx->iv, req->iv, AES_BLOCK_SIZE);
1074 ctx->offset = 0;
1075 dd->total = 0;
1076 return atmel_aes_ctr_transfer(dd);
1077}
1078
1079static int atmel_aes_xts_fallback(struct skcipher_request *req, bool enc)
1080{
1081 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1082 struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(
1083 crypto_skcipher_reqtfm(req));
1084
1085 skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
1086 skcipher_request_set_callback(&rctx->fallback_req, req->base.flags,
1087 req->base.complete, req->base.data);
1088 skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst,
1089 req->cryptlen, req->iv);
1090
1091 return enc ? crypto_skcipher_encrypt(&rctx->fallback_req) :
1092 crypto_skcipher_decrypt(&rctx->fallback_req);
1093}
1094
1095static int atmel_aes_crypt(struct skcipher_request *req, unsigned long mode)
1096{
1097 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
1098 struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(skcipher);
1099 struct atmel_aes_reqctx *rctx;
1100 u32 opmode = mode & AES_FLAGS_OPMODE_MASK;
1101
1102 if (opmode == AES_FLAGS_XTS) {
1103 if (req->cryptlen < XTS_BLOCK_SIZE)
1104 return -EINVAL;
1105
1106 if (!IS_ALIGNED(req->cryptlen, XTS_BLOCK_SIZE))
1107 return atmel_aes_xts_fallback(req,
1108 mode & AES_FLAGS_ENCRYPT);
1109 }
1110
1111 /*
1112 * ECB, CBC, CFB, OFB or CTR mode require the plaintext and ciphertext
1113 * to have a positve integer length.
1114 */
1115 if (!req->cryptlen && opmode != AES_FLAGS_XTS)
1116 return 0;
1117
1118 if ((opmode == AES_FLAGS_ECB || opmode == AES_FLAGS_CBC) &&
1119 !IS_ALIGNED(req->cryptlen, crypto_skcipher_blocksize(skcipher)))
1120 return -EINVAL;
1121
1122 switch (mode & AES_FLAGS_OPMODE_MASK) {
1123 case AES_FLAGS_CFB8:
1124 ctx->block_size = CFB8_BLOCK_SIZE;
1125 break;
1126
1127 case AES_FLAGS_CFB16:
1128 ctx->block_size = CFB16_BLOCK_SIZE;
1129 break;
1130
1131 case AES_FLAGS_CFB32:
1132 ctx->block_size = CFB32_BLOCK_SIZE;
1133 break;
1134
1135 case AES_FLAGS_CFB64:
1136 ctx->block_size = CFB64_BLOCK_SIZE;
1137 break;
1138
1139 default:
1140 ctx->block_size = AES_BLOCK_SIZE;
1141 break;
1142 }
1143 ctx->is_aead = false;
1144
1145 rctx = skcipher_request_ctx(req);
1146 rctx->mode = mode;
1147
1148 if (opmode != AES_FLAGS_ECB &&
1149 !(mode & AES_FLAGS_ENCRYPT) && req->src == req->dst) {
1150 unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
1151
1152 if (req->cryptlen >= ivsize)
1153 scatterwalk_map_and_copy(rctx->lastc, req->src,
1154 req->cryptlen - ivsize,
1155 ivsize, 0);
1156 }
1157
1158 return atmel_aes_handle_queue(ctx->dd, &req->base);
1159}
1160
1161static int atmel_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
1162 unsigned int keylen)
1163{
1164 struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(tfm);
1165
1166 if (keylen != AES_KEYSIZE_128 &&
1167 keylen != AES_KEYSIZE_192 &&
1168 keylen != AES_KEYSIZE_256)
1169 return -EINVAL;
1170
1171 memcpy(ctx->key, key, keylen);
1172 ctx->keylen = keylen;
1173
1174 return 0;
1175}
1176
1177static int atmel_aes_ecb_encrypt(struct skcipher_request *req)
1178{
1179 return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1180}
1181
1182static int atmel_aes_ecb_decrypt(struct skcipher_request *req)
1183{
1184 return atmel_aes_crypt(req, AES_FLAGS_ECB);
1185}
1186
1187static int atmel_aes_cbc_encrypt(struct skcipher_request *req)
1188{
1189 return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1190}
1191
1192static int atmel_aes_cbc_decrypt(struct skcipher_request *req)
1193{
1194 return atmel_aes_crypt(req, AES_FLAGS_CBC);
1195}
1196
1197static int atmel_aes_ofb_encrypt(struct skcipher_request *req)
1198{
1199 return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
1200}
1201
1202static int atmel_aes_ofb_decrypt(struct skcipher_request *req)
1203{
1204 return atmel_aes_crypt(req, AES_FLAGS_OFB);
1205}
1206
1207static int atmel_aes_cfb_encrypt(struct skcipher_request *req)
1208{
1209 return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
1210}
1211
1212static int atmel_aes_cfb_decrypt(struct skcipher_request *req)
1213{
1214 return atmel_aes_crypt(req, AES_FLAGS_CFB128);
1215}
1216
1217static int atmel_aes_cfb64_encrypt(struct skcipher_request *req)
1218{
1219 return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
1220}
1221
1222static int atmel_aes_cfb64_decrypt(struct skcipher_request *req)
1223{
1224 return atmel_aes_crypt(req, AES_FLAGS_CFB64);
1225}
1226
1227static int atmel_aes_cfb32_encrypt(struct skcipher_request *req)
1228{
1229 return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
1230}
1231
1232static int atmel_aes_cfb32_decrypt(struct skcipher_request *req)
1233{
1234 return atmel_aes_crypt(req, AES_FLAGS_CFB32);
1235}
1236
1237static int atmel_aes_cfb16_encrypt(struct skcipher_request *req)
1238{
1239 return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
1240}
1241
1242static int atmel_aes_cfb16_decrypt(struct skcipher_request *req)
1243{
1244 return atmel_aes_crypt(req, AES_FLAGS_CFB16);
1245}
1246
1247static int atmel_aes_cfb8_encrypt(struct skcipher_request *req)
1248{
1249 return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
1250}
1251
1252static int atmel_aes_cfb8_decrypt(struct skcipher_request *req)
1253{
1254 return atmel_aes_crypt(req, AES_FLAGS_CFB8);
1255}
1256
1257static int atmel_aes_ctr_encrypt(struct skcipher_request *req)
1258{
1259 return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1260}
1261
1262static int atmel_aes_ctr_decrypt(struct skcipher_request *req)
1263{
1264 return atmel_aes_crypt(req, AES_FLAGS_CTR);
1265}
1266
1267static int atmel_aes_init_tfm(struct crypto_skcipher *tfm)
1268{
1269 struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1270 struct atmel_aes_dev *dd;
1271
1272 dd = atmel_aes_dev_alloc(&ctx->base);
1273 if (!dd)
1274 return -ENODEV;
1275
1276 crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1277 ctx->base.dd = dd;
1278 ctx->base.start = atmel_aes_start;
1279
1280 return 0;
1281}
1282
1283static int atmel_aes_ctr_init_tfm(struct crypto_skcipher *tfm)
1284{
1285 struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1286 struct atmel_aes_dev *dd;
1287
1288 dd = atmel_aes_dev_alloc(&ctx->base);
1289 if (!dd)
1290 return -ENODEV;
1291
1292 crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1293 ctx->base.dd = dd;
1294 ctx->base.start = atmel_aes_ctr_start;
1295
1296 return 0;
1297}
1298
1299static struct skcipher_alg aes_algs[] = {
1300{
1301 .base.cra_name = "ecb(aes)",
1302 .base.cra_driver_name = "atmel-ecb-aes",
1303 .base.cra_blocksize = AES_BLOCK_SIZE,
1304 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1305
1306 .init = atmel_aes_init_tfm,
1307 .min_keysize = AES_MIN_KEY_SIZE,
1308 .max_keysize = AES_MAX_KEY_SIZE,
1309 .setkey = atmel_aes_setkey,
1310 .encrypt = atmel_aes_ecb_encrypt,
1311 .decrypt = atmel_aes_ecb_decrypt,
1312},
1313{
1314 .base.cra_name = "cbc(aes)",
1315 .base.cra_driver_name = "atmel-cbc-aes",
1316 .base.cra_blocksize = AES_BLOCK_SIZE,
1317 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1318
1319 .init = atmel_aes_init_tfm,
1320 .min_keysize = AES_MIN_KEY_SIZE,
1321 .max_keysize = AES_MAX_KEY_SIZE,
1322 .setkey = atmel_aes_setkey,
1323 .encrypt = atmel_aes_cbc_encrypt,
1324 .decrypt = atmel_aes_cbc_decrypt,
1325 .ivsize = AES_BLOCK_SIZE,
1326},
1327{
1328 .base.cra_name = "ofb(aes)",
1329 .base.cra_driver_name = "atmel-ofb-aes",
1330 .base.cra_blocksize = 1,
1331 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1332
1333 .init = atmel_aes_init_tfm,
1334 .min_keysize = AES_MIN_KEY_SIZE,
1335 .max_keysize = AES_MAX_KEY_SIZE,
1336 .setkey = atmel_aes_setkey,
1337 .encrypt = atmel_aes_ofb_encrypt,
1338 .decrypt = atmel_aes_ofb_decrypt,
1339 .ivsize = AES_BLOCK_SIZE,
1340},
1341{
1342 .base.cra_name = "cfb(aes)",
1343 .base.cra_driver_name = "atmel-cfb-aes",
1344 .base.cra_blocksize = AES_BLOCK_SIZE,
1345 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1346
1347 .init = atmel_aes_init_tfm,
1348 .min_keysize = AES_MIN_KEY_SIZE,
1349 .max_keysize = AES_MAX_KEY_SIZE,
1350 .setkey = atmel_aes_setkey,
1351 .encrypt = atmel_aes_cfb_encrypt,
1352 .decrypt = atmel_aes_cfb_decrypt,
1353 .ivsize = AES_BLOCK_SIZE,
1354},
1355{
1356 .base.cra_name = "cfb32(aes)",
1357 .base.cra_driver_name = "atmel-cfb32-aes",
1358 .base.cra_blocksize = CFB32_BLOCK_SIZE,
1359 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1360
1361 .init = atmel_aes_init_tfm,
1362 .min_keysize = AES_MIN_KEY_SIZE,
1363 .max_keysize = AES_MAX_KEY_SIZE,
1364 .setkey = atmel_aes_setkey,
1365 .encrypt = atmel_aes_cfb32_encrypt,
1366 .decrypt = atmel_aes_cfb32_decrypt,
1367 .ivsize = AES_BLOCK_SIZE,
1368},
1369{
1370 .base.cra_name = "cfb16(aes)",
1371 .base.cra_driver_name = "atmel-cfb16-aes",
1372 .base.cra_blocksize = CFB16_BLOCK_SIZE,
1373 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1374
1375 .init = atmel_aes_init_tfm,
1376 .min_keysize = AES_MIN_KEY_SIZE,
1377 .max_keysize = AES_MAX_KEY_SIZE,
1378 .setkey = atmel_aes_setkey,
1379 .encrypt = atmel_aes_cfb16_encrypt,
1380 .decrypt = atmel_aes_cfb16_decrypt,
1381 .ivsize = AES_BLOCK_SIZE,
1382},
1383{
1384 .base.cra_name = "cfb8(aes)",
1385 .base.cra_driver_name = "atmel-cfb8-aes",
1386 .base.cra_blocksize = CFB8_BLOCK_SIZE,
1387 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1388
1389 .init = atmel_aes_init_tfm,
1390 .min_keysize = AES_MIN_KEY_SIZE,
1391 .max_keysize = AES_MAX_KEY_SIZE,
1392 .setkey = atmel_aes_setkey,
1393 .encrypt = atmel_aes_cfb8_encrypt,
1394 .decrypt = atmel_aes_cfb8_decrypt,
1395 .ivsize = AES_BLOCK_SIZE,
1396},
1397{
1398 .base.cra_name = "ctr(aes)",
1399 .base.cra_driver_name = "atmel-ctr-aes",
1400 .base.cra_blocksize = 1,
1401 .base.cra_ctxsize = sizeof(struct atmel_aes_ctr_ctx),
1402
1403 .init = atmel_aes_ctr_init_tfm,
1404 .min_keysize = AES_MIN_KEY_SIZE,
1405 .max_keysize = AES_MAX_KEY_SIZE,
1406 .setkey = atmel_aes_setkey,
1407 .encrypt = atmel_aes_ctr_encrypt,
1408 .decrypt = atmel_aes_ctr_decrypt,
1409 .ivsize = AES_BLOCK_SIZE,
1410},
1411};
1412
1413static struct skcipher_alg aes_cfb64_alg = {
1414 .base.cra_name = "cfb64(aes)",
1415 .base.cra_driver_name = "atmel-cfb64-aes",
1416 .base.cra_blocksize = CFB64_BLOCK_SIZE,
1417 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
1418
1419 .init = atmel_aes_init_tfm,
1420 .min_keysize = AES_MIN_KEY_SIZE,
1421 .max_keysize = AES_MAX_KEY_SIZE,
1422 .setkey = atmel_aes_setkey,
1423 .encrypt = atmel_aes_cfb64_encrypt,
1424 .decrypt = atmel_aes_cfb64_decrypt,
1425 .ivsize = AES_BLOCK_SIZE,
1426};
1427
1428
1429/* gcm aead functions */
1430
1431static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1432 const u32 *data, size_t datalen,
1433 const __be32 *ghash_in, __be32 *ghash_out,
1434 atmel_aes_fn_t resume);
1435static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1436static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1437
1438static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1439static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1440static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1441static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1442static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1443static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1444static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1445
1446static inline struct atmel_aes_gcm_ctx *
1447atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1448{
1449 return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1450}
1451
1452static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1453 const u32 *data, size_t datalen,
1454 const __be32 *ghash_in, __be32 *ghash_out,
1455 atmel_aes_fn_t resume)
1456{
1457 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1458
1459 dd->data = (u32 *)data;
1460 dd->datalen = datalen;
1461 ctx->ghash_in = ghash_in;
1462 ctx->ghash_out = ghash_out;
1463 ctx->ghash_resume = resume;
1464
1465 atmel_aes_write_ctrl(dd, false, NULL);
1466 return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1467}
1468
1469static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1470{
1471 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1472
1473 /* Set the data length. */
1474 atmel_aes_write(dd, AES_AADLENR, dd->total);
1475 atmel_aes_write(dd, AES_CLENR, 0);
1476
1477 /* If needed, overwrite the GCM Intermediate Hash Word Registers */
1478 if (ctx->ghash_in)
1479 atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1480
1481 return atmel_aes_gcm_ghash_finalize(dd);
1482}
1483
1484static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1485{
1486 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1487 u32 isr;
1488
1489 /* Write data into the Input Data Registers. */
1490 while (dd->datalen > 0) {
1491 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1492 dd->data += 4;
1493 dd->datalen -= AES_BLOCK_SIZE;
1494
1495 isr = atmel_aes_read(dd, AES_ISR);
1496 if (!(isr & AES_INT_DATARDY)) {
1497 dd->resume = atmel_aes_gcm_ghash_finalize;
1498 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1499 return -EINPROGRESS;
1500 }
1501 }
1502
1503 /* Read the computed hash from GHASHRx. */
1504 atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1505
1506 return ctx->ghash_resume(dd);
1507}
1508
1509
1510static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1511{
1512 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1513 struct aead_request *req = aead_request_cast(dd->areq);
1514 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1515 struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1516 size_t ivsize = crypto_aead_ivsize(tfm);
1517 size_t datalen, padlen;
1518 const void *iv = req->iv;
1519 u8 *data = dd->buf;
1520 int err;
1521
1522 atmel_aes_set_mode(dd, rctx);
1523
1524 err = atmel_aes_hw_init(dd);
1525 if (err)
1526 return atmel_aes_complete(dd, err);
1527
1528 if (likely(ivsize == GCM_AES_IV_SIZE)) {
1529 memcpy(ctx->j0, iv, ivsize);
1530 ctx->j0[3] = cpu_to_be32(1);
1531 return atmel_aes_gcm_process(dd);
1532 }
1533
1534 padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1535 datalen = ivsize + padlen + AES_BLOCK_SIZE;
1536 if (datalen > dd->buflen)
1537 return atmel_aes_complete(dd, -EINVAL);
1538
1539 memcpy(data, iv, ivsize);
1540 memset(data + ivsize, 0, padlen + sizeof(u64));
1541 ((__be64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1542
1543 return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1544 NULL, ctx->j0, atmel_aes_gcm_process);
1545}
1546
1547static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1548{
1549 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1550 struct aead_request *req = aead_request_cast(dd->areq);
1551 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1552 bool enc = atmel_aes_is_encrypt(dd);
1553 u32 authsize;
1554
1555 /* Compute text length. */
1556 authsize = crypto_aead_authsize(tfm);
1557 ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1558
1559 /*
1560 * According to tcrypt test suite, the GCM Automatic Tag Generation
1561 * fails when both the message and its associated data are empty.
1562 */
1563 if (likely(req->assoclen != 0 || ctx->textlen != 0))
1564 dd->flags |= AES_FLAGS_GTAGEN;
1565
1566 atmel_aes_write_ctrl(dd, false, NULL);
1567 return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1568}
1569
1570static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1571{
1572 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1573 struct aead_request *req = aead_request_cast(dd->areq);
1574 __be32 j0_lsw, *j0 = ctx->j0;
1575 size_t padlen;
1576
1577 /* Write incr32(J0) into IV. */
1578 j0_lsw = j0[3];
1579 be32_add_cpu(&j0[3], 1);
1580 atmel_aes_write_block(dd, AES_IVR(0), j0);
1581 j0[3] = j0_lsw;
1582
1583 /* Set aad and text lengths. */
1584 atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1585 atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1586
1587 /* Check whether AAD are present. */
1588 if (unlikely(req->assoclen == 0)) {
1589 dd->datalen = 0;
1590 return atmel_aes_gcm_data(dd);
1591 }
1592
1593 /* Copy assoc data and add padding. */
1594 padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1595 if (unlikely(req->assoclen + padlen > dd->buflen))
1596 return atmel_aes_complete(dd, -EINVAL);
1597 sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1598
1599 /* Write assoc data into the Input Data register. */
1600 dd->data = (u32 *)dd->buf;
1601 dd->datalen = req->assoclen + padlen;
1602 return atmel_aes_gcm_data(dd);
1603}
1604
1605static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1606{
1607 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1608 struct aead_request *req = aead_request_cast(dd->areq);
1609 bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1610 struct scatterlist *src, *dst;
1611 u32 isr, mr;
1612
1613 /* Write AAD first. */
1614 while (dd->datalen > 0) {
1615 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1616 dd->data += 4;
1617 dd->datalen -= AES_BLOCK_SIZE;
1618
1619 isr = atmel_aes_read(dd, AES_ISR);
1620 if (!(isr & AES_INT_DATARDY)) {
1621 dd->resume = atmel_aes_gcm_data;
1622 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1623 return -EINPROGRESS;
1624 }
1625 }
1626
1627 /* GMAC only. */
1628 if (unlikely(ctx->textlen == 0))
1629 return atmel_aes_gcm_tag_init(dd);
1630
1631 /* Prepare src and dst scatter lists to transfer cipher/plain texts */
1632 src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1633 dst = ((req->src == req->dst) ? src :
1634 scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1635
1636 if (use_dma) {
1637 /* Update the Mode Register for DMA transfers. */
1638 mr = atmel_aes_read(dd, AES_MR);
1639 mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1640 mr |= AES_MR_SMOD_IDATAR0;
1641 if (dd->caps.has_dualbuff)
1642 mr |= AES_MR_DUALBUFF;
1643 atmel_aes_write(dd, AES_MR, mr);
1644
1645 return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1646 atmel_aes_gcm_tag_init);
1647 }
1648
1649 return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1650 atmel_aes_gcm_tag_init);
1651}
1652
1653static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1654{
1655 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1656 struct aead_request *req = aead_request_cast(dd->areq);
1657 __be64 *data = dd->buf;
1658
1659 if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1660 if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1661 dd->resume = atmel_aes_gcm_tag_init;
1662 atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1663 return -EINPROGRESS;
1664 }
1665
1666 return atmel_aes_gcm_finalize(dd);
1667 }
1668
1669 /* Read the GCM Intermediate Hash Word Registers. */
1670 atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1671
1672 data[0] = cpu_to_be64(req->assoclen * 8);
1673 data[1] = cpu_to_be64(ctx->textlen * 8);
1674
1675 return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1676 ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1677}
1678
1679static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1680{
1681 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1682 unsigned long flags;
1683
1684 /*
1685 * Change mode to CTR to complete the tag generation.
1686 * Use J0 as Initialization Vector.
1687 */
1688 flags = dd->flags;
1689 dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1690 dd->flags |= AES_FLAGS_CTR;
1691 atmel_aes_write_ctrl(dd, false, ctx->j0);
1692 dd->flags = flags;
1693
1694 atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1695 return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1696}
1697
1698static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1699{
1700 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1701 struct aead_request *req = aead_request_cast(dd->areq);
1702 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1703 bool enc = atmel_aes_is_encrypt(dd);
1704 u32 offset, authsize, itag[4], *otag = ctx->tag;
1705 int err;
1706
1707 /* Read the computed tag. */
1708 if (likely(dd->flags & AES_FLAGS_GTAGEN))
1709 atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1710 else
1711 atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1712
1713 offset = req->assoclen + ctx->textlen;
1714 authsize = crypto_aead_authsize(tfm);
1715 if (enc) {
1716 scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1717 err = 0;
1718 } else {
1719 scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1720 err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1721 }
1722
1723 return atmel_aes_complete(dd, err);
1724}
1725
1726static int atmel_aes_gcm_crypt(struct aead_request *req,
1727 unsigned long mode)
1728{
1729 struct atmel_aes_base_ctx *ctx;
1730 struct atmel_aes_reqctx *rctx;
1731
1732 ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1733 ctx->block_size = AES_BLOCK_SIZE;
1734 ctx->is_aead = true;
1735
1736 rctx = aead_request_ctx(req);
1737 rctx->mode = AES_FLAGS_GCM | mode;
1738
1739 return atmel_aes_handle_queue(ctx->dd, &req->base);
1740}
1741
1742static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1743 unsigned int keylen)
1744{
1745 struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1746
1747 if (keylen != AES_KEYSIZE_256 &&
1748 keylen != AES_KEYSIZE_192 &&
1749 keylen != AES_KEYSIZE_128)
1750 return -EINVAL;
1751
1752 memcpy(ctx->key, key, keylen);
1753 ctx->keylen = keylen;
1754
1755 return 0;
1756}
1757
1758static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1759 unsigned int authsize)
1760{
1761 return crypto_gcm_check_authsize(authsize);
1762}
1763
1764static int atmel_aes_gcm_encrypt(struct aead_request *req)
1765{
1766 return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1767}
1768
1769static int atmel_aes_gcm_decrypt(struct aead_request *req)
1770{
1771 return atmel_aes_gcm_crypt(req, 0);
1772}
1773
1774static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1775{
1776 struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1777 struct atmel_aes_dev *dd;
1778
1779 dd = atmel_aes_dev_alloc(&ctx->base);
1780 if (!dd)
1781 return -ENODEV;
1782
1783 crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1784 ctx->base.dd = dd;
1785 ctx->base.start = atmel_aes_gcm_start;
1786
1787 return 0;
1788}
1789
1790static struct aead_alg aes_gcm_alg = {
1791 .setkey = atmel_aes_gcm_setkey,
1792 .setauthsize = atmel_aes_gcm_setauthsize,
1793 .encrypt = atmel_aes_gcm_encrypt,
1794 .decrypt = atmel_aes_gcm_decrypt,
1795 .init = atmel_aes_gcm_init,
1796 .ivsize = GCM_AES_IV_SIZE,
1797 .maxauthsize = AES_BLOCK_SIZE,
1798
1799 .base = {
1800 .cra_name = "gcm(aes)",
1801 .cra_driver_name = "atmel-gcm-aes",
1802 .cra_blocksize = 1,
1803 .cra_ctxsize = sizeof(struct atmel_aes_gcm_ctx),
1804 },
1805};
1806
1807
1808/* xts functions */
1809
1810static inline struct atmel_aes_xts_ctx *
1811atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1812{
1813 return container_of(ctx, struct atmel_aes_xts_ctx, base);
1814}
1815
1816static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1817
1818static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1819{
1820 struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1821 struct skcipher_request *req = skcipher_request_cast(dd->areq);
1822 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1823 unsigned long flags;
1824 int err;
1825
1826 atmel_aes_set_mode(dd, rctx);
1827
1828 err = atmel_aes_hw_init(dd);
1829 if (err)
1830 return atmel_aes_complete(dd, err);
1831
1832 /* Compute the tweak value from req->iv with ecb(aes). */
1833 flags = dd->flags;
1834 dd->flags &= ~AES_FLAGS_MODE_MASK;
1835 dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1836 atmel_aes_write_ctrl_key(dd, false, NULL,
1837 ctx->key2, ctx->base.keylen);
1838 dd->flags = flags;
1839
1840 atmel_aes_write_block(dd, AES_IDATAR(0), req->iv);
1841 return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1842}
1843
1844static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1845{
1846 struct skcipher_request *req = skcipher_request_cast(dd->areq);
1847 bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD);
1848 u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1849 static const __le32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1850 u8 *tweak_bytes = (u8 *)tweak;
1851 int i;
1852
1853 /* Read the computed ciphered tweak value. */
1854 atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1855 /*
1856 * Hardware quirk:
1857 * the order of the ciphered tweak bytes need to be reversed before
1858 * writing them into the ODATARx registers.
1859 */
1860 for (i = 0; i < AES_BLOCK_SIZE/2; ++i)
1861 swap(tweak_bytes[i], tweak_bytes[AES_BLOCK_SIZE - 1 - i]);
1862
1863 /* Process the data. */
1864 atmel_aes_write_ctrl(dd, use_dma, NULL);
1865 atmel_aes_write_block(dd, AES_TWR(0), tweak);
1866 atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1867 if (use_dma)
1868 return atmel_aes_dma_start(dd, req->src, req->dst,
1869 req->cryptlen,
1870 atmel_aes_transfer_complete);
1871
1872 return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1873 atmel_aes_transfer_complete);
1874}
1875
1876static int atmel_aes_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
1877 unsigned int keylen)
1878{
1879 struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1880 int err;
1881
1882 err = xts_check_key(crypto_skcipher_tfm(tfm), key, keylen);
1883 if (err)
1884 return err;
1885
1886 crypto_skcipher_clear_flags(ctx->fallback_tfm, CRYPTO_TFM_REQ_MASK);
1887 crypto_skcipher_set_flags(ctx->fallback_tfm, tfm->base.crt_flags &
1888 CRYPTO_TFM_REQ_MASK);
1889 err = crypto_skcipher_setkey(ctx->fallback_tfm, key, keylen);
1890 if (err)
1891 return err;
1892
1893 memcpy(ctx->base.key, key, keylen/2);
1894 memcpy(ctx->key2, key + keylen/2, keylen/2);
1895 ctx->base.keylen = keylen/2;
1896
1897 return 0;
1898}
1899
1900static int atmel_aes_xts_encrypt(struct skcipher_request *req)
1901{
1902 return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1903}
1904
1905static int atmel_aes_xts_decrypt(struct skcipher_request *req)
1906{
1907 return atmel_aes_crypt(req, AES_FLAGS_XTS);
1908}
1909
1910static int atmel_aes_xts_init_tfm(struct crypto_skcipher *tfm)
1911{
1912 struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1913 struct atmel_aes_dev *dd;
1914 const char *tfm_name = crypto_tfm_alg_name(&tfm->base);
1915
1916 dd = atmel_aes_dev_alloc(&ctx->base);
1917 if (!dd)
1918 return -ENODEV;
1919
1920 ctx->fallback_tfm = crypto_alloc_skcipher(tfm_name, 0,
1921 CRYPTO_ALG_NEED_FALLBACK);
1922 if (IS_ERR(ctx->fallback_tfm))
1923 return PTR_ERR(ctx->fallback_tfm);
1924
1925 crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx) +
1926 crypto_skcipher_reqsize(ctx->fallback_tfm));
1927 ctx->base.dd = dd;
1928 ctx->base.start = atmel_aes_xts_start;
1929
1930 return 0;
1931}
1932
1933static void atmel_aes_xts_exit_tfm(struct crypto_skcipher *tfm)
1934{
1935 struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1936
1937 crypto_free_skcipher(ctx->fallback_tfm);
1938}
1939
1940static struct skcipher_alg aes_xts_alg = {
1941 .base.cra_name = "xts(aes)",
1942 .base.cra_driver_name = "atmel-xts-aes",
1943 .base.cra_blocksize = AES_BLOCK_SIZE,
1944 .base.cra_ctxsize = sizeof(struct atmel_aes_xts_ctx),
1945 .base.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
1946
1947 .min_keysize = 2 * AES_MIN_KEY_SIZE,
1948 .max_keysize = 2 * AES_MAX_KEY_SIZE,
1949 .ivsize = AES_BLOCK_SIZE,
1950 .setkey = atmel_aes_xts_setkey,
1951 .encrypt = atmel_aes_xts_encrypt,
1952 .decrypt = atmel_aes_xts_decrypt,
1953 .init = atmel_aes_xts_init_tfm,
1954 .exit = atmel_aes_xts_exit_tfm,
1955};
1956
1957#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
1958/* authenc aead functions */
1959
1960static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1961static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1962 bool is_async);
1963static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1964 bool is_async);
1965static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1966static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1967 bool is_async);
1968
1969static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1970{
1971 struct aead_request *req = aead_request_cast(dd->areq);
1972 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1973
1974 if (err && (dd->flags & AES_FLAGS_OWN_SHA))
1975 atmel_sha_authenc_abort(&rctx->auth_req);
1976 dd->flags &= ~AES_FLAGS_OWN_SHA;
1977}
1978
1979static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
1980{
1981 struct aead_request *req = aead_request_cast(dd->areq);
1982 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1983 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1984 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1985 int err;
1986
1987 atmel_aes_set_mode(dd, &rctx->base);
1988
1989 err = atmel_aes_hw_init(dd);
1990 if (err)
1991 return atmel_aes_complete(dd, err);
1992
1993 return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
1994 atmel_aes_authenc_init, dd);
1995}
1996
1997static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1998 bool is_async)
1999{
2000 struct aead_request *req = aead_request_cast(dd->areq);
2001 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2002
2003 if (is_async)
2004 dd->is_async = true;
2005 if (err)
2006 return atmel_aes_complete(dd, err);
2007
2008 /* If here, we've got the ownership of the SHA device. */
2009 dd->flags |= AES_FLAGS_OWN_SHA;
2010
2011 /* Configure the SHA device. */
2012 return atmel_sha_authenc_init(&rctx->auth_req,
2013 req->src, req->assoclen,
2014 rctx->textlen,
2015 atmel_aes_authenc_transfer, dd);
2016}
2017
2018static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
2019 bool is_async)
2020{
2021 struct aead_request *req = aead_request_cast(dd->areq);
2022 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2023 bool enc = atmel_aes_is_encrypt(dd);
2024 struct scatterlist *src, *dst;
2025 __be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
2026 u32 emr;
2027
2028 if (is_async)
2029 dd->is_async = true;
2030 if (err)
2031 return atmel_aes_complete(dd, err);
2032
2033 /* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
2034 src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
2035 dst = src;
2036
2037 if (req->src != req->dst)
2038 dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
2039
2040 /* Configure the AES device. */
2041 memcpy(iv, req->iv, sizeof(iv));
2042
2043 /*
2044 * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
2045 * 'true' even if the data transfer is actually performed by the CPU (so
2046 * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
2047 * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
2048 * must be set to *_MR_SMOD_IDATAR0.
2049 */
2050 atmel_aes_write_ctrl(dd, true, iv);
2051 emr = AES_EMR_PLIPEN;
2052 if (!enc)
2053 emr |= AES_EMR_PLIPD;
2054 atmel_aes_write(dd, AES_EMR, emr);
2055
2056 /* Transfer data. */
2057 return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
2058 atmel_aes_authenc_digest);
2059}
2060
2061static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
2062{
2063 struct aead_request *req = aead_request_cast(dd->areq);
2064 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2065
2066 /* atmel_sha_authenc_final() releases the SHA device. */
2067 dd->flags &= ~AES_FLAGS_OWN_SHA;
2068 return atmel_sha_authenc_final(&rctx->auth_req,
2069 rctx->digest, sizeof(rctx->digest),
2070 atmel_aes_authenc_final, dd);
2071}
2072
2073static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
2074 bool is_async)
2075{
2076 struct aead_request *req = aead_request_cast(dd->areq);
2077 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2078 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2079 bool enc = atmel_aes_is_encrypt(dd);
2080 u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
2081 u32 offs, authsize;
2082
2083 if (is_async)
2084 dd->is_async = true;
2085 if (err)
2086 goto complete;
2087
2088 offs = req->assoclen + rctx->textlen;
2089 authsize = crypto_aead_authsize(tfm);
2090 if (enc) {
2091 scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
2092 } else {
2093 scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
2094 if (crypto_memneq(idigest, odigest, authsize))
2095 err = -EBADMSG;
2096 }
2097
2098complete:
2099 return atmel_aes_complete(dd, err);
2100}
2101
2102static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
2103 unsigned int keylen)
2104{
2105 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2106 struct crypto_authenc_keys keys;
2107 int err;
2108
2109 if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
2110 goto badkey;
2111
2112 if (keys.enckeylen > sizeof(ctx->base.key))
2113 goto badkey;
2114
2115 /* Save auth key. */
2116 err = atmel_sha_authenc_setkey(ctx->auth,
2117 keys.authkey, keys.authkeylen,
2118 crypto_aead_get_flags(tfm));
2119 if (err) {
2120 memzero_explicit(&keys, sizeof(keys));
2121 return err;
2122 }
2123
2124 /* Save enc key. */
2125 ctx->base.keylen = keys.enckeylen;
2126 memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
2127
2128 memzero_explicit(&keys, sizeof(keys));
2129 return 0;
2130
2131badkey:
2132 memzero_explicit(&keys, sizeof(keys));
2133 return -EINVAL;
2134}
2135
2136static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
2137 unsigned long auth_mode)
2138{
2139 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2140 unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
2141 struct atmel_aes_dev *dd;
2142
2143 dd = atmel_aes_dev_alloc(&ctx->base);
2144 if (!dd)
2145 return -ENODEV;
2146
2147 ctx->auth = atmel_sha_authenc_spawn(auth_mode);
2148 if (IS_ERR(ctx->auth))
2149 return PTR_ERR(ctx->auth);
2150
2151 crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
2152 auth_reqsize));
2153 ctx->base.dd = dd;
2154 ctx->base.start = atmel_aes_authenc_start;
2155
2156 return 0;
2157}
2158
2159static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
2160{
2161 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
2162}
2163
2164static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
2165{
2166 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
2167}
2168
2169static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
2170{
2171 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
2172}
2173
2174static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
2175{
2176 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
2177}
2178
2179static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
2180{
2181 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
2182}
2183
2184static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
2185{
2186 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2187
2188 atmel_sha_authenc_free(ctx->auth);
2189}
2190
2191static int atmel_aes_authenc_crypt(struct aead_request *req,
2192 unsigned long mode)
2193{
2194 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2195 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2196 struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
2197 u32 authsize = crypto_aead_authsize(tfm);
2198 bool enc = (mode & AES_FLAGS_ENCRYPT);
2199
2200 /* Compute text length. */
2201 if (!enc && req->cryptlen < authsize)
2202 return -EINVAL;
2203 rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2204
2205 /*
2206 * Currently, empty messages are not supported yet:
2207 * the SHA auto-padding can be used only on non-empty messages.
2208 * Hence a special case needs to be implemented for empty message.
2209 */
2210 if (!rctx->textlen && !req->assoclen)
2211 return -EINVAL;
2212
2213 rctx->base.mode = mode;
2214 ctx->block_size = AES_BLOCK_SIZE;
2215 ctx->is_aead = true;
2216
2217 return atmel_aes_handle_queue(ctx->dd, &req->base);
2218}
2219
2220static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2221{
2222 return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2223}
2224
2225static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2226{
2227 return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2228}
2229
2230static struct aead_alg aes_authenc_algs[] = {
2231{
2232 .setkey = atmel_aes_authenc_setkey,
2233 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2234 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2235 .init = atmel_aes_authenc_hmac_sha1_init_tfm,
2236 .exit = atmel_aes_authenc_exit_tfm,
2237 .ivsize = AES_BLOCK_SIZE,
2238 .maxauthsize = SHA1_DIGEST_SIZE,
2239
2240 .base = {
2241 .cra_name = "authenc(hmac(sha1),cbc(aes))",
2242 .cra_driver_name = "atmel-authenc-hmac-sha1-cbc-aes",
2243 .cra_blocksize = AES_BLOCK_SIZE,
2244 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2245 },
2246},
2247{
2248 .setkey = atmel_aes_authenc_setkey,
2249 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2250 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2251 .init = atmel_aes_authenc_hmac_sha224_init_tfm,
2252 .exit = atmel_aes_authenc_exit_tfm,
2253 .ivsize = AES_BLOCK_SIZE,
2254 .maxauthsize = SHA224_DIGEST_SIZE,
2255
2256 .base = {
2257 .cra_name = "authenc(hmac(sha224),cbc(aes))",
2258 .cra_driver_name = "atmel-authenc-hmac-sha224-cbc-aes",
2259 .cra_blocksize = AES_BLOCK_SIZE,
2260 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2261 },
2262},
2263{
2264 .setkey = atmel_aes_authenc_setkey,
2265 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2266 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2267 .init = atmel_aes_authenc_hmac_sha256_init_tfm,
2268 .exit = atmel_aes_authenc_exit_tfm,
2269 .ivsize = AES_BLOCK_SIZE,
2270 .maxauthsize = SHA256_DIGEST_SIZE,
2271
2272 .base = {
2273 .cra_name = "authenc(hmac(sha256),cbc(aes))",
2274 .cra_driver_name = "atmel-authenc-hmac-sha256-cbc-aes",
2275 .cra_blocksize = AES_BLOCK_SIZE,
2276 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2277 },
2278},
2279{
2280 .setkey = atmel_aes_authenc_setkey,
2281 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2282 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2283 .init = atmel_aes_authenc_hmac_sha384_init_tfm,
2284 .exit = atmel_aes_authenc_exit_tfm,
2285 .ivsize = AES_BLOCK_SIZE,
2286 .maxauthsize = SHA384_DIGEST_SIZE,
2287
2288 .base = {
2289 .cra_name = "authenc(hmac(sha384),cbc(aes))",
2290 .cra_driver_name = "atmel-authenc-hmac-sha384-cbc-aes",
2291 .cra_blocksize = AES_BLOCK_SIZE,
2292 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2293 },
2294},
2295{
2296 .setkey = atmel_aes_authenc_setkey,
2297 .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
2298 .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
2299 .init = atmel_aes_authenc_hmac_sha512_init_tfm,
2300 .exit = atmel_aes_authenc_exit_tfm,
2301 .ivsize = AES_BLOCK_SIZE,
2302 .maxauthsize = SHA512_DIGEST_SIZE,
2303
2304 .base = {
2305 .cra_name = "authenc(hmac(sha512),cbc(aes))",
2306 .cra_driver_name = "atmel-authenc-hmac-sha512-cbc-aes",
2307 .cra_blocksize = AES_BLOCK_SIZE,
2308 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
2309 },
2310},
2311};
2312#endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2313
2314/* Probe functions */
2315
2316static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2317{
2318 dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2319 dd->buflen = ATMEL_AES_BUFFER_SIZE;
2320 dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2321
2322 if (!dd->buf) {
2323 dev_err(dd->dev, "unable to alloc pages.\n");
2324 return -ENOMEM;
2325 }
2326
2327 return 0;
2328}
2329
2330static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2331{
2332 free_page((unsigned long)dd->buf);
2333}
2334
2335static int atmel_aes_dma_init(struct atmel_aes_dev *dd)
2336{
2337 int ret;
2338
2339 /* Try to grab 2 DMA channels */
2340 dd->src.chan = dma_request_chan(dd->dev, "tx");
2341 if (IS_ERR(dd->src.chan)) {
2342 ret = PTR_ERR(dd->src.chan);
2343 goto err_dma_in;
2344 }
2345
2346 dd->dst.chan = dma_request_chan(dd->dev, "rx");
2347 if (IS_ERR(dd->dst.chan)) {
2348 ret = PTR_ERR(dd->dst.chan);
2349 goto err_dma_out;
2350 }
2351
2352 return 0;
2353
2354err_dma_out:
2355 dma_release_channel(dd->src.chan);
2356err_dma_in:
2357 dev_err(dd->dev, "no DMA channel available\n");
2358 return ret;
2359}
2360
2361static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2362{
2363 dma_release_channel(dd->dst.chan);
2364 dma_release_channel(dd->src.chan);
2365}
2366
2367static void atmel_aes_queue_task(unsigned long data)
2368{
2369 struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2370
2371 atmel_aes_handle_queue(dd, NULL);
2372}
2373
2374static void atmel_aes_done_task(unsigned long data)
2375{
2376 struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2377
2378 dd->is_async = true;
2379 (void)dd->resume(dd);
2380}
2381
2382static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2383{
2384 struct atmel_aes_dev *aes_dd = dev_id;
2385 u32 reg;
2386
2387 reg = atmel_aes_read(aes_dd, AES_ISR);
2388 if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2389 atmel_aes_write(aes_dd, AES_IDR, reg);
2390 if (AES_FLAGS_BUSY & aes_dd->flags)
2391 tasklet_schedule(&aes_dd->done_task);
2392 else
2393 dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2394 return IRQ_HANDLED;
2395 }
2396
2397 return IRQ_NONE;
2398}
2399
2400static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2401{
2402 int i;
2403
2404#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2405 if (dd->caps.has_authenc)
2406 for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2407 crypto_unregister_aead(&aes_authenc_algs[i]);
2408#endif
2409
2410 if (dd->caps.has_xts)
2411 crypto_unregister_skcipher(&aes_xts_alg);
2412
2413 if (dd->caps.has_gcm)
2414 crypto_unregister_aead(&aes_gcm_alg);
2415
2416 if (dd->caps.has_cfb64)
2417 crypto_unregister_skcipher(&aes_cfb64_alg);
2418
2419 for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2420 crypto_unregister_skcipher(&aes_algs[i]);
2421}
2422
2423static void atmel_aes_crypto_alg_init(struct crypto_alg *alg)
2424{
2425 alg->cra_flags |= CRYPTO_ALG_ASYNC;
2426 alg->cra_alignmask = 0xf;
2427 alg->cra_priority = ATMEL_AES_PRIORITY;
2428 alg->cra_module = THIS_MODULE;
2429}
2430
2431static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2432{
2433 int err, i, j;
2434
2435 for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2436 atmel_aes_crypto_alg_init(&aes_algs[i].base);
2437
2438 err = crypto_register_skcipher(&aes_algs[i]);
2439 if (err)
2440 goto err_aes_algs;
2441 }
2442
2443 if (dd->caps.has_cfb64) {
2444 atmel_aes_crypto_alg_init(&aes_cfb64_alg.base);
2445
2446 err = crypto_register_skcipher(&aes_cfb64_alg);
2447 if (err)
2448 goto err_aes_cfb64_alg;
2449 }
2450
2451 if (dd->caps.has_gcm) {
2452 atmel_aes_crypto_alg_init(&aes_gcm_alg.base);
2453
2454 err = crypto_register_aead(&aes_gcm_alg);
2455 if (err)
2456 goto err_aes_gcm_alg;
2457 }
2458
2459 if (dd->caps.has_xts) {
2460 atmel_aes_crypto_alg_init(&aes_xts_alg.base);
2461
2462 err = crypto_register_skcipher(&aes_xts_alg);
2463 if (err)
2464 goto err_aes_xts_alg;
2465 }
2466
2467#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2468 if (dd->caps.has_authenc) {
2469 for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
2470 atmel_aes_crypto_alg_init(&aes_authenc_algs[i].base);
2471
2472 err = crypto_register_aead(&aes_authenc_algs[i]);
2473 if (err)
2474 goto err_aes_authenc_alg;
2475 }
2476 }
2477#endif
2478
2479 return 0;
2480
2481#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2482 /* i = ARRAY_SIZE(aes_authenc_algs); */
2483err_aes_authenc_alg:
2484 for (j = 0; j < i; j++)
2485 crypto_unregister_aead(&aes_authenc_algs[j]);
2486 crypto_unregister_skcipher(&aes_xts_alg);
2487#endif
2488err_aes_xts_alg:
2489 crypto_unregister_aead(&aes_gcm_alg);
2490err_aes_gcm_alg:
2491 crypto_unregister_skcipher(&aes_cfb64_alg);
2492err_aes_cfb64_alg:
2493 i = ARRAY_SIZE(aes_algs);
2494err_aes_algs:
2495 for (j = 0; j < i; j++)
2496 crypto_unregister_skcipher(&aes_algs[j]);
2497
2498 return err;
2499}
2500
2501static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2502{
2503 dd->caps.has_dualbuff = 0;
2504 dd->caps.has_cfb64 = 0;
2505 dd->caps.has_gcm = 0;
2506 dd->caps.has_xts = 0;
2507 dd->caps.has_authenc = 0;
2508 dd->caps.max_burst_size = 1;
2509
2510 /* keep only major version number */
2511 switch (dd->hw_version & 0xff0) {
2512 case 0x700:
2513 case 0x500:
2514 dd->caps.has_dualbuff = 1;
2515 dd->caps.has_cfb64 = 1;
2516 dd->caps.has_gcm = 1;
2517 dd->caps.has_xts = 1;
2518 dd->caps.has_authenc = 1;
2519 dd->caps.max_burst_size = 4;
2520 break;
2521 case 0x200:
2522 dd->caps.has_dualbuff = 1;
2523 dd->caps.has_cfb64 = 1;
2524 dd->caps.has_gcm = 1;
2525 dd->caps.max_burst_size = 4;
2526 break;
2527 case 0x130:
2528 dd->caps.has_dualbuff = 1;
2529 dd->caps.has_cfb64 = 1;
2530 dd->caps.max_burst_size = 4;
2531 break;
2532 case 0x120:
2533 break;
2534 default:
2535 dev_warn(dd->dev,
2536 "Unmanaged aes version, set minimum capabilities\n");
2537 break;
2538 }
2539}
2540
2541#if defined(CONFIG_OF)
2542static const struct of_device_id atmel_aes_dt_ids[] = {
2543 { .compatible = "atmel,at91sam9g46-aes" },
2544 { /* sentinel */ }
2545};
2546MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
2547#endif
2548
2549static int atmel_aes_probe(struct platform_device *pdev)
2550{
2551 struct atmel_aes_dev *aes_dd;
2552 struct device *dev = &pdev->dev;
2553 struct resource *aes_res;
2554 int err;
2555
2556 aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2557 if (!aes_dd)
2558 return -ENOMEM;
2559
2560 aes_dd->dev = dev;
2561
2562 platform_set_drvdata(pdev, aes_dd);
2563
2564 INIT_LIST_HEAD(&aes_dd->list);
2565 spin_lock_init(&aes_dd->lock);
2566
2567 tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2568 (unsigned long)aes_dd);
2569 tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2570 (unsigned long)aes_dd);
2571
2572 crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2573
2574 /* Get the base address */
2575 aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2576 if (!aes_res) {
2577 dev_err(dev, "no MEM resource info\n");
2578 err = -ENODEV;
2579 goto err_tasklet_kill;
2580 }
2581 aes_dd->phys_base = aes_res->start;
2582
2583 /* Get the IRQ */
2584 aes_dd->irq = platform_get_irq(pdev, 0);
2585 if (aes_dd->irq < 0) {
2586 err = aes_dd->irq;
2587 goto err_tasklet_kill;
2588 }
2589
2590 err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2591 IRQF_SHARED, "atmel-aes", aes_dd);
2592 if (err) {
2593 dev_err(dev, "unable to request aes irq.\n");
2594 goto err_tasklet_kill;
2595 }
2596
2597 /* Initializing the clock */
2598 aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2599 if (IS_ERR(aes_dd->iclk)) {
2600 dev_err(dev, "clock initialization failed.\n");
2601 err = PTR_ERR(aes_dd->iclk);
2602 goto err_tasklet_kill;
2603 }
2604
2605 aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
2606 if (IS_ERR(aes_dd->io_base)) {
2607 dev_err(dev, "can't ioremap\n");
2608 err = PTR_ERR(aes_dd->io_base);
2609 goto err_tasklet_kill;
2610 }
2611
2612 err = clk_prepare(aes_dd->iclk);
2613 if (err)
2614 goto err_tasklet_kill;
2615
2616 err = atmel_aes_hw_version_init(aes_dd);
2617 if (err)
2618 goto err_iclk_unprepare;
2619
2620 atmel_aes_get_cap(aes_dd);
2621
2622#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2623 if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2624 err = -EPROBE_DEFER;
2625 goto err_iclk_unprepare;
2626 }
2627#endif
2628
2629 err = atmel_aes_buff_init(aes_dd);
2630 if (err)
2631 goto err_iclk_unprepare;
2632
2633 err = atmel_aes_dma_init(aes_dd);
2634 if (err)
2635 goto err_buff_cleanup;
2636
2637 spin_lock(&atmel_aes.lock);
2638 list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2639 spin_unlock(&atmel_aes.lock);
2640
2641 err = atmel_aes_register_algs(aes_dd);
2642 if (err)
2643 goto err_algs;
2644
2645 dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2646 dma_chan_name(aes_dd->src.chan),
2647 dma_chan_name(aes_dd->dst.chan));
2648
2649 return 0;
2650
2651err_algs:
2652 spin_lock(&atmel_aes.lock);
2653 list_del(&aes_dd->list);
2654 spin_unlock(&atmel_aes.lock);
2655 atmel_aes_dma_cleanup(aes_dd);
2656err_buff_cleanup:
2657 atmel_aes_buff_cleanup(aes_dd);
2658err_iclk_unprepare:
2659 clk_unprepare(aes_dd->iclk);
2660err_tasklet_kill:
2661 tasklet_kill(&aes_dd->done_task);
2662 tasklet_kill(&aes_dd->queue_task);
2663
2664 return err;
2665}
2666
2667static int atmel_aes_remove(struct platform_device *pdev)
2668{
2669 struct atmel_aes_dev *aes_dd;
2670
2671 aes_dd = platform_get_drvdata(pdev);
2672
2673 spin_lock(&atmel_aes.lock);
2674 list_del(&aes_dd->list);
2675 spin_unlock(&atmel_aes.lock);
2676
2677 atmel_aes_unregister_algs(aes_dd);
2678
2679 tasklet_kill(&aes_dd->done_task);
2680 tasklet_kill(&aes_dd->queue_task);
2681
2682 atmel_aes_dma_cleanup(aes_dd);
2683 atmel_aes_buff_cleanup(aes_dd);
2684
2685 clk_unprepare(aes_dd->iclk);
2686
2687 return 0;
2688}
2689
2690static struct platform_driver atmel_aes_driver = {
2691 .probe = atmel_aes_probe,
2692 .remove = atmel_aes_remove,
2693 .driver = {
2694 .name = "atmel_aes",
2695 .of_match_table = of_match_ptr(atmel_aes_dt_ids),
2696 },
2697};
2698
2699module_platform_driver(atmel_aes_driver);
2700
2701MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2702MODULE_LICENSE("GPL v2");
2703MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");