Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * CPPC (Collaborative Processor Performance Control) driver for
4 * interfacing with the CPUfreq layer and governors. See
5 * cppc_acpi.c for CPPC specific methods.
6 *
7 * (C) Copyright 2014, 2015 Linaro Ltd.
8 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
9 */
10
11#define pr_fmt(fmt) "CPPC Cpufreq:" fmt
12
13#include <linux/arch_topology.h>
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/delay.h>
17#include <linux/cpu.h>
18#include <linux/cpufreq.h>
19#include <linux/irq_work.h>
20#include <linux/kthread.h>
21#include <linux/time.h>
22#include <linux/vmalloc.h>
23#include <uapi/linux/sched/types.h>
24
25#include <linux/unaligned.h>
26
27#include <acpi/cppc_acpi.h>
28
29/*
30 * This list contains information parsed from per CPU ACPI _CPC and _PSD
31 * structures: e.g. the highest and lowest supported performance, capabilities,
32 * desired performance, level requested etc. Depending on the share_type, not
33 * all CPUs will have an entry in the list.
34 */
35static LIST_HEAD(cpu_data_list);
36
37static bool boost_supported;
38
39static struct cpufreq_driver cppc_cpufreq_driver;
40
41#ifdef CONFIG_ACPI_CPPC_CPUFREQ_FIE
42static enum {
43 FIE_UNSET = -1,
44 FIE_ENABLED,
45 FIE_DISABLED
46} fie_disabled = FIE_UNSET;
47
48module_param(fie_disabled, int, 0444);
49MODULE_PARM_DESC(fie_disabled, "Disable Frequency Invariance Engine (FIE)");
50
51/* Frequency invariance support */
52struct cppc_freq_invariance {
53 int cpu;
54 struct irq_work irq_work;
55 struct kthread_work work;
56 struct cppc_perf_fb_ctrs prev_perf_fb_ctrs;
57 struct cppc_cpudata *cpu_data;
58};
59
60static DEFINE_PER_CPU(struct cppc_freq_invariance, cppc_freq_inv);
61static struct kthread_worker *kworker_fie;
62
63static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data,
64 struct cppc_perf_fb_ctrs *fb_ctrs_t0,
65 struct cppc_perf_fb_ctrs *fb_ctrs_t1);
66
67/**
68 * cppc_scale_freq_workfn - CPPC arch_freq_scale updater for frequency invariance
69 * @work: The work item.
70 *
71 * The CPPC driver register itself with the topology core to provide its own
72 * implementation (cppc_scale_freq_tick()) of topology_scale_freq_tick() which
73 * gets called by the scheduler on every tick.
74 *
75 * Note that the arch specific counters have higher priority than CPPC counters,
76 * if available, though the CPPC driver doesn't need to have any special
77 * handling for that.
78 *
79 * On an invocation of cppc_scale_freq_tick(), we schedule an irq work (since we
80 * reach here from hard-irq context), which then schedules a normal work item
81 * and cppc_scale_freq_workfn() updates the per_cpu arch_freq_scale variable
82 * based on the counter updates since the last tick.
83 */
84static void cppc_scale_freq_workfn(struct kthread_work *work)
85{
86 struct cppc_freq_invariance *cppc_fi;
87 struct cppc_perf_fb_ctrs fb_ctrs = {0};
88 struct cppc_cpudata *cpu_data;
89 unsigned long local_freq_scale;
90 u64 perf;
91
92 cppc_fi = container_of(work, struct cppc_freq_invariance, work);
93 cpu_data = cppc_fi->cpu_data;
94
95 if (cppc_get_perf_ctrs(cppc_fi->cpu, &fb_ctrs)) {
96 pr_warn("%s: failed to read perf counters\n", __func__);
97 return;
98 }
99
100 perf = cppc_perf_from_fbctrs(cpu_data, &cppc_fi->prev_perf_fb_ctrs,
101 &fb_ctrs);
102 if (!perf)
103 return;
104
105 cppc_fi->prev_perf_fb_ctrs = fb_ctrs;
106
107 perf <<= SCHED_CAPACITY_SHIFT;
108 local_freq_scale = div64_u64(perf, cpu_data->perf_caps.highest_perf);
109
110 /* This can happen due to counter's overflow */
111 if (unlikely(local_freq_scale > 1024))
112 local_freq_scale = 1024;
113
114 per_cpu(arch_freq_scale, cppc_fi->cpu) = local_freq_scale;
115}
116
117static void cppc_irq_work(struct irq_work *irq_work)
118{
119 struct cppc_freq_invariance *cppc_fi;
120
121 cppc_fi = container_of(irq_work, struct cppc_freq_invariance, irq_work);
122 kthread_queue_work(kworker_fie, &cppc_fi->work);
123}
124
125static void cppc_scale_freq_tick(void)
126{
127 struct cppc_freq_invariance *cppc_fi = &per_cpu(cppc_freq_inv, smp_processor_id());
128
129 /*
130 * cppc_get_perf_ctrs() can potentially sleep, call that from the right
131 * context.
132 */
133 irq_work_queue(&cppc_fi->irq_work);
134}
135
136static struct scale_freq_data cppc_sftd = {
137 .source = SCALE_FREQ_SOURCE_CPPC,
138 .set_freq_scale = cppc_scale_freq_tick,
139};
140
141static void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy)
142{
143 struct cppc_freq_invariance *cppc_fi;
144 int cpu, ret;
145
146 if (fie_disabled)
147 return;
148
149 for_each_cpu(cpu, policy->cpus) {
150 cppc_fi = &per_cpu(cppc_freq_inv, cpu);
151 cppc_fi->cpu = cpu;
152 cppc_fi->cpu_data = policy->driver_data;
153 kthread_init_work(&cppc_fi->work, cppc_scale_freq_workfn);
154 init_irq_work(&cppc_fi->irq_work, cppc_irq_work);
155
156 ret = cppc_get_perf_ctrs(cpu, &cppc_fi->prev_perf_fb_ctrs);
157 if (ret) {
158 pr_warn("%s: failed to read perf counters for cpu:%d: %d\n",
159 __func__, cpu, ret);
160
161 /*
162 * Don't abort if the CPU was offline while the driver
163 * was getting registered.
164 */
165 if (cpu_online(cpu))
166 return;
167 }
168 }
169
170 /* Register for freq-invariance */
171 topology_set_scale_freq_source(&cppc_sftd, policy->cpus);
172}
173
174/*
175 * We free all the resources on policy's removal and not on CPU removal as the
176 * irq-work are per-cpu and the hotplug core takes care of flushing the pending
177 * irq-works (hint: smpcfd_dying_cpu()) on CPU hotplug. Even if the kthread-work
178 * fires on another CPU after the concerned CPU is removed, it won't harm.
179 *
180 * We just need to make sure to remove them all on policy->exit().
181 */
182static void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy)
183{
184 struct cppc_freq_invariance *cppc_fi;
185 int cpu;
186
187 if (fie_disabled)
188 return;
189
190 /* policy->cpus will be empty here, use related_cpus instead */
191 topology_clear_scale_freq_source(SCALE_FREQ_SOURCE_CPPC, policy->related_cpus);
192
193 for_each_cpu(cpu, policy->related_cpus) {
194 cppc_fi = &per_cpu(cppc_freq_inv, cpu);
195 irq_work_sync(&cppc_fi->irq_work);
196 kthread_cancel_work_sync(&cppc_fi->work);
197 }
198}
199
200static void __init cppc_freq_invariance_init(void)
201{
202 struct sched_attr attr = {
203 .size = sizeof(struct sched_attr),
204 .sched_policy = SCHED_DEADLINE,
205 .sched_nice = 0,
206 .sched_priority = 0,
207 /*
208 * Fake (unused) bandwidth; workaround to "fix"
209 * priority inheritance.
210 */
211 .sched_runtime = NSEC_PER_MSEC,
212 .sched_deadline = 10 * NSEC_PER_MSEC,
213 .sched_period = 10 * NSEC_PER_MSEC,
214 };
215 int ret;
216
217 if (fie_disabled != FIE_ENABLED && fie_disabled != FIE_DISABLED) {
218 fie_disabled = FIE_ENABLED;
219 if (cppc_perf_ctrs_in_pcc()) {
220 pr_info("FIE not enabled on systems with registers in PCC\n");
221 fie_disabled = FIE_DISABLED;
222 }
223 }
224
225 if (fie_disabled)
226 return;
227
228 kworker_fie = kthread_create_worker(0, "cppc_fie");
229 if (IS_ERR(kworker_fie)) {
230 pr_warn("%s: failed to create kworker_fie: %ld\n", __func__,
231 PTR_ERR(kworker_fie));
232 fie_disabled = FIE_DISABLED;
233 return;
234 }
235
236 ret = sched_setattr_nocheck(kworker_fie->task, &attr);
237 if (ret) {
238 pr_warn("%s: failed to set SCHED_DEADLINE: %d\n", __func__,
239 ret);
240 kthread_destroy_worker(kworker_fie);
241 fie_disabled = FIE_DISABLED;
242 }
243}
244
245static void cppc_freq_invariance_exit(void)
246{
247 if (fie_disabled)
248 return;
249
250 kthread_destroy_worker(kworker_fie);
251}
252
253#else
254static inline void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy)
255{
256}
257
258static inline void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy)
259{
260}
261
262static inline void cppc_freq_invariance_init(void)
263{
264}
265
266static inline void cppc_freq_invariance_exit(void)
267{
268}
269#endif /* CONFIG_ACPI_CPPC_CPUFREQ_FIE */
270
271static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
272 unsigned int target_freq,
273 unsigned int relation)
274{
275 struct cppc_cpudata *cpu_data = policy->driver_data;
276 unsigned int cpu = policy->cpu;
277 struct cpufreq_freqs freqs;
278 int ret = 0;
279
280 cpu_data->perf_ctrls.desired_perf =
281 cppc_khz_to_perf(&cpu_data->perf_caps, target_freq);
282 freqs.old = policy->cur;
283 freqs.new = target_freq;
284
285 cpufreq_freq_transition_begin(policy, &freqs);
286 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
287 cpufreq_freq_transition_end(policy, &freqs, ret != 0);
288
289 if (ret)
290 pr_debug("Failed to set target on CPU:%d. ret:%d\n",
291 cpu, ret);
292
293 return ret;
294}
295
296static unsigned int cppc_cpufreq_fast_switch(struct cpufreq_policy *policy,
297 unsigned int target_freq)
298{
299 struct cppc_cpudata *cpu_data = policy->driver_data;
300 unsigned int cpu = policy->cpu;
301 u32 desired_perf;
302 int ret;
303
304 desired_perf = cppc_khz_to_perf(&cpu_data->perf_caps, target_freq);
305 cpu_data->perf_ctrls.desired_perf = desired_perf;
306 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
307
308 if (ret) {
309 pr_debug("Failed to set target on CPU:%d. ret:%d\n",
310 cpu, ret);
311 return 0;
312 }
313
314 return target_freq;
315}
316
317static int cppc_verify_policy(struct cpufreq_policy_data *policy)
318{
319 cpufreq_verify_within_cpu_limits(policy);
320 return 0;
321}
322
323/*
324 * The PCC subspace describes the rate at which platform can accept commands
325 * on the shared PCC channel (including READs which do not count towards freq
326 * transition requests), so ideally we need to use the PCC values as a fallback
327 * if we don't have a platform specific transition_delay_us
328 */
329#ifdef CONFIG_ARM64
330#include <asm/cputype.h>
331
332static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
333{
334 unsigned long implementor = read_cpuid_implementor();
335 unsigned long part_num = read_cpuid_part_number();
336
337 switch (implementor) {
338 case ARM_CPU_IMP_QCOM:
339 switch (part_num) {
340 case QCOM_CPU_PART_FALKOR_V1:
341 case QCOM_CPU_PART_FALKOR:
342 return 10000;
343 }
344 }
345 return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
346}
347#else
348static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
349{
350 return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
351}
352#endif
353
354#if defined(CONFIG_ARM64) && defined(CONFIG_ENERGY_MODEL)
355
356static DEFINE_PER_CPU(unsigned int, efficiency_class);
357static void cppc_cpufreq_register_em(struct cpufreq_policy *policy);
358
359/* Create an artificial performance state every CPPC_EM_CAP_STEP capacity unit. */
360#define CPPC_EM_CAP_STEP (20)
361/* Increase the cost value by CPPC_EM_COST_STEP every performance state. */
362#define CPPC_EM_COST_STEP (1)
363/* Add a cost gap correspnding to the energy of 4 CPUs. */
364#define CPPC_EM_COST_GAP (4 * SCHED_CAPACITY_SCALE * CPPC_EM_COST_STEP \
365 / CPPC_EM_CAP_STEP)
366
367static unsigned int get_perf_level_count(struct cpufreq_policy *policy)
368{
369 struct cppc_perf_caps *perf_caps;
370 unsigned int min_cap, max_cap;
371 struct cppc_cpudata *cpu_data;
372 int cpu = policy->cpu;
373
374 cpu_data = policy->driver_data;
375 perf_caps = &cpu_data->perf_caps;
376 max_cap = arch_scale_cpu_capacity(cpu);
377 min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf,
378 perf_caps->highest_perf);
379 if ((min_cap == 0) || (max_cap < min_cap))
380 return 0;
381 return 1 + max_cap / CPPC_EM_CAP_STEP - min_cap / CPPC_EM_CAP_STEP;
382}
383
384/*
385 * The cost is defined as:
386 * cost = power * max_frequency / frequency
387 */
388static inline unsigned long compute_cost(int cpu, int step)
389{
390 return CPPC_EM_COST_GAP * per_cpu(efficiency_class, cpu) +
391 step * CPPC_EM_COST_STEP;
392}
393
394static int cppc_get_cpu_power(struct device *cpu_dev,
395 unsigned long *power, unsigned long *KHz)
396{
397 unsigned long perf_step, perf_prev, perf, perf_check;
398 unsigned int min_step, max_step, step, step_check;
399 unsigned long prev_freq = *KHz;
400 unsigned int min_cap, max_cap;
401 struct cpufreq_policy *policy;
402
403 struct cppc_perf_caps *perf_caps;
404 struct cppc_cpudata *cpu_data;
405
406 policy = cpufreq_cpu_get_raw(cpu_dev->id);
407 if (!policy)
408 return -EINVAL;
409
410 cpu_data = policy->driver_data;
411 perf_caps = &cpu_data->perf_caps;
412 max_cap = arch_scale_cpu_capacity(cpu_dev->id);
413 min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf,
414 perf_caps->highest_perf);
415 perf_step = div_u64((u64)CPPC_EM_CAP_STEP * perf_caps->highest_perf,
416 max_cap);
417 min_step = min_cap / CPPC_EM_CAP_STEP;
418 max_step = max_cap / CPPC_EM_CAP_STEP;
419
420 perf_prev = cppc_khz_to_perf(perf_caps, *KHz);
421 step = perf_prev / perf_step;
422
423 if (step > max_step)
424 return -EINVAL;
425
426 if (min_step == max_step) {
427 step = max_step;
428 perf = perf_caps->highest_perf;
429 } else if (step < min_step) {
430 step = min_step;
431 perf = perf_caps->lowest_perf;
432 } else {
433 step++;
434 if (step == max_step)
435 perf = perf_caps->highest_perf;
436 else
437 perf = step * perf_step;
438 }
439
440 *KHz = cppc_perf_to_khz(perf_caps, perf);
441 perf_check = cppc_khz_to_perf(perf_caps, *KHz);
442 step_check = perf_check / perf_step;
443
444 /*
445 * To avoid bad integer approximation, check that new frequency value
446 * increased and that the new frequency will be converted to the
447 * desired step value.
448 */
449 while ((*KHz == prev_freq) || (step_check != step)) {
450 perf++;
451 *KHz = cppc_perf_to_khz(perf_caps, perf);
452 perf_check = cppc_khz_to_perf(perf_caps, *KHz);
453 step_check = perf_check / perf_step;
454 }
455
456 /*
457 * With an artificial EM, only the cost value is used. Still the power
458 * is populated such as 0 < power < EM_MAX_POWER. This allows to add
459 * more sense to the artificial performance states.
460 */
461 *power = compute_cost(cpu_dev->id, step);
462
463 return 0;
464}
465
466static int cppc_get_cpu_cost(struct device *cpu_dev, unsigned long KHz,
467 unsigned long *cost)
468{
469 unsigned long perf_step, perf_prev;
470 struct cppc_perf_caps *perf_caps;
471 struct cpufreq_policy *policy;
472 struct cppc_cpudata *cpu_data;
473 unsigned int max_cap;
474 int step;
475
476 policy = cpufreq_cpu_get_raw(cpu_dev->id);
477 if (!policy)
478 return -EINVAL;
479
480 cpu_data = policy->driver_data;
481 perf_caps = &cpu_data->perf_caps;
482 max_cap = arch_scale_cpu_capacity(cpu_dev->id);
483
484 perf_prev = cppc_khz_to_perf(perf_caps, KHz);
485 perf_step = CPPC_EM_CAP_STEP * perf_caps->highest_perf / max_cap;
486 step = perf_prev / perf_step;
487
488 *cost = compute_cost(cpu_dev->id, step);
489
490 return 0;
491}
492
493static int populate_efficiency_class(void)
494{
495 struct acpi_madt_generic_interrupt *gicc;
496 DECLARE_BITMAP(used_classes, 256) = {};
497 int class, cpu, index;
498
499 for_each_possible_cpu(cpu) {
500 gicc = acpi_cpu_get_madt_gicc(cpu);
501 class = gicc->efficiency_class;
502 bitmap_set(used_classes, class, 1);
503 }
504
505 if (bitmap_weight(used_classes, 256) <= 1) {
506 pr_debug("Efficiency classes are all equal (=%d). "
507 "No EM registered", class);
508 return -EINVAL;
509 }
510
511 /*
512 * Squeeze efficiency class values on [0:#efficiency_class-1].
513 * Values are per spec in [0:255].
514 */
515 index = 0;
516 for_each_set_bit(class, used_classes, 256) {
517 for_each_possible_cpu(cpu) {
518 gicc = acpi_cpu_get_madt_gicc(cpu);
519 if (gicc->efficiency_class == class)
520 per_cpu(efficiency_class, cpu) = index;
521 }
522 index++;
523 }
524 cppc_cpufreq_driver.register_em = cppc_cpufreq_register_em;
525
526 return 0;
527}
528
529static void cppc_cpufreq_register_em(struct cpufreq_policy *policy)
530{
531 struct cppc_cpudata *cpu_data;
532 struct em_data_callback em_cb =
533 EM_ADV_DATA_CB(cppc_get_cpu_power, cppc_get_cpu_cost);
534
535 cpu_data = policy->driver_data;
536 em_dev_register_perf_domain(get_cpu_device(policy->cpu),
537 get_perf_level_count(policy), &em_cb,
538 cpu_data->shared_cpu_map, 0);
539}
540
541#else
542static int populate_efficiency_class(void)
543{
544 return 0;
545}
546#endif
547
548static struct cppc_cpudata *cppc_cpufreq_get_cpu_data(unsigned int cpu)
549{
550 struct cppc_cpudata *cpu_data;
551 int ret;
552
553 cpu_data = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
554 if (!cpu_data)
555 goto out;
556
557 if (!zalloc_cpumask_var(&cpu_data->shared_cpu_map, GFP_KERNEL))
558 goto free_cpu;
559
560 ret = acpi_get_psd_map(cpu, cpu_data);
561 if (ret) {
562 pr_debug("Err parsing CPU%d PSD data: ret:%d\n", cpu, ret);
563 goto free_mask;
564 }
565
566 ret = cppc_get_perf_caps(cpu, &cpu_data->perf_caps);
567 if (ret) {
568 pr_debug("Err reading CPU%d perf caps: ret:%d\n", cpu, ret);
569 goto free_mask;
570 }
571
572 list_add(&cpu_data->node, &cpu_data_list);
573
574 return cpu_data;
575
576free_mask:
577 free_cpumask_var(cpu_data->shared_cpu_map);
578free_cpu:
579 kfree(cpu_data);
580out:
581 return NULL;
582}
583
584static void cppc_cpufreq_put_cpu_data(struct cpufreq_policy *policy)
585{
586 struct cppc_cpudata *cpu_data = policy->driver_data;
587
588 list_del(&cpu_data->node);
589 free_cpumask_var(cpu_data->shared_cpu_map);
590 kfree(cpu_data);
591 policy->driver_data = NULL;
592}
593
594static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
595{
596 unsigned int cpu = policy->cpu;
597 struct cppc_cpudata *cpu_data;
598 struct cppc_perf_caps *caps;
599 int ret;
600
601 cpu_data = cppc_cpufreq_get_cpu_data(cpu);
602 if (!cpu_data) {
603 pr_err("Error in acquiring _CPC/_PSD data for CPU%d.\n", cpu);
604 return -ENODEV;
605 }
606 caps = &cpu_data->perf_caps;
607 policy->driver_data = cpu_data;
608
609 /*
610 * Set min to lowest nonlinear perf to avoid any efficiency penalty (see
611 * Section 8.4.7.1.1.5 of ACPI 6.1 spec)
612 */
613 policy->min = cppc_perf_to_khz(caps, caps->lowest_nonlinear_perf);
614 policy->max = cppc_perf_to_khz(caps, caps->nominal_perf);
615
616 /*
617 * Set cpuinfo.min_freq to Lowest to make the full range of performance
618 * available if userspace wants to use any perf between lowest & lowest
619 * nonlinear perf
620 */
621 policy->cpuinfo.min_freq = cppc_perf_to_khz(caps, caps->lowest_perf);
622 policy->cpuinfo.max_freq = cppc_perf_to_khz(caps, caps->nominal_perf);
623
624 policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu);
625 policy->shared_type = cpu_data->shared_type;
626
627 switch (policy->shared_type) {
628 case CPUFREQ_SHARED_TYPE_HW:
629 case CPUFREQ_SHARED_TYPE_NONE:
630 /* Nothing to be done - we'll have a policy for each CPU */
631 break;
632 case CPUFREQ_SHARED_TYPE_ANY:
633 /*
634 * All CPUs in the domain will share a policy and all cpufreq
635 * operations will use a single cppc_cpudata structure stored
636 * in policy->driver_data.
637 */
638 cpumask_copy(policy->cpus, cpu_data->shared_cpu_map);
639 break;
640 default:
641 pr_debug("Unsupported CPU co-ord type: %d\n",
642 policy->shared_type);
643 ret = -EFAULT;
644 goto out;
645 }
646
647 policy->fast_switch_possible = cppc_allow_fast_switch();
648 policy->dvfs_possible_from_any_cpu = true;
649
650 /*
651 * If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost
652 * is supported.
653 */
654 if (caps->highest_perf > caps->nominal_perf)
655 boost_supported = true;
656
657 /* Set policy->cur to max now. The governors will adjust later. */
658 policy->cur = cppc_perf_to_khz(caps, caps->highest_perf);
659 cpu_data->perf_ctrls.desired_perf = caps->highest_perf;
660
661 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
662 if (ret) {
663 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
664 caps->highest_perf, cpu, ret);
665 goto out;
666 }
667
668 cppc_cpufreq_cpu_fie_init(policy);
669 return 0;
670
671out:
672 cppc_cpufreq_put_cpu_data(policy);
673 return ret;
674}
675
676static void cppc_cpufreq_cpu_exit(struct cpufreq_policy *policy)
677{
678 struct cppc_cpudata *cpu_data = policy->driver_data;
679 struct cppc_perf_caps *caps = &cpu_data->perf_caps;
680 unsigned int cpu = policy->cpu;
681 int ret;
682
683 cppc_cpufreq_cpu_fie_exit(policy);
684
685 cpu_data->perf_ctrls.desired_perf = caps->lowest_perf;
686
687 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
688 if (ret)
689 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
690 caps->lowest_perf, cpu, ret);
691
692 cppc_cpufreq_put_cpu_data(policy);
693}
694
695static inline u64 get_delta(u64 t1, u64 t0)
696{
697 if (t1 > t0 || t0 > ~(u32)0)
698 return t1 - t0;
699
700 return (u32)t1 - (u32)t0;
701}
702
703static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data,
704 struct cppc_perf_fb_ctrs *fb_ctrs_t0,
705 struct cppc_perf_fb_ctrs *fb_ctrs_t1)
706{
707 u64 delta_reference, delta_delivered;
708 u64 reference_perf;
709
710 reference_perf = fb_ctrs_t0->reference_perf;
711
712 delta_reference = get_delta(fb_ctrs_t1->reference,
713 fb_ctrs_t0->reference);
714 delta_delivered = get_delta(fb_ctrs_t1->delivered,
715 fb_ctrs_t0->delivered);
716
717 /*
718 * Avoid divide-by zero and unchanged feedback counters.
719 * Leave it for callers to handle.
720 */
721 if (!delta_reference || !delta_delivered)
722 return 0;
723
724 return (reference_perf * delta_delivered) / delta_reference;
725}
726
727static int cppc_get_perf_ctrs_sample(int cpu,
728 struct cppc_perf_fb_ctrs *fb_ctrs_t0,
729 struct cppc_perf_fb_ctrs *fb_ctrs_t1)
730{
731 int ret;
732
733 ret = cppc_get_perf_ctrs(cpu, fb_ctrs_t0);
734 if (ret)
735 return ret;
736
737 udelay(2); /* 2usec delay between sampling */
738
739 return cppc_get_perf_ctrs(cpu, fb_ctrs_t1);
740}
741
742static unsigned int cppc_cpufreq_get_rate(unsigned int cpu)
743{
744 struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
745 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
746 struct cppc_cpudata *cpu_data;
747 u64 delivered_perf;
748 int ret;
749
750 if (!policy)
751 return -ENODEV;
752
753 cpu_data = policy->driver_data;
754
755 cpufreq_cpu_put(policy);
756
757 ret = cppc_get_perf_ctrs_sample(cpu, &fb_ctrs_t0, &fb_ctrs_t1);
758 if (ret) {
759 if (ret == -EFAULT)
760 /* Any of the associated CPPC regs is 0. */
761 goto out_invalid_counters;
762 else
763 return 0;
764 }
765
766 delivered_perf = cppc_perf_from_fbctrs(cpu_data, &fb_ctrs_t0,
767 &fb_ctrs_t1);
768 if (!delivered_perf)
769 goto out_invalid_counters;
770
771 return cppc_perf_to_khz(&cpu_data->perf_caps, delivered_perf);
772
773out_invalid_counters:
774 /*
775 * Feedback counters could be unchanged or 0 when a cpu enters a
776 * low-power idle state, e.g. clock-gated or power-gated.
777 * Use desired perf for reflecting frequency. Get the latest register
778 * value first as some platforms may update the actual delivered perf
779 * there; if failed, resort to the cached desired perf.
780 */
781 if (cppc_get_desired_perf(cpu, &delivered_perf))
782 delivered_perf = cpu_data->perf_ctrls.desired_perf;
783
784 return cppc_perf_to_khz(&cpu_data->perf_caps, delivered_perf);
785}
786
787static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state)
788{
789 struct cppc_cpudata *cpu_data = policy->driver_data;
790 struct cppc_perf_caps *caps = &cpu_data->perf_caps;
791 int ret;
792
793 if (!boost_supported) {
794 pr_err("BOOST not supported by CPU or firmware\n");
795 return -EINVAL;
796 }
797
798 if (state)
799 policy->max = cppc_perf_to_khz(caps, caps->highest_perf);
800 else
801 policy->max = cppc_perf_to_khz(caps, caps->nominal_perf);
802 policy->cpuinfo.max_freq = policy->max;
803
804 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
805 if (ret < 0)
806 return ret;
807
808 return 0;
809}
810
811static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
812{
813 struct cppc_cpudata *cpu_data = policy->driver_data;
814
815 return cpufreq_show_cpus(cpu_data->shared_cpu_map, buf);
816}
817cpufreq_freq_attr_ro(freqdomain_cpus);
818
819static struct freq_attr *cppc_cpufreq_attr[] = {
820 &freqdomain_cpus,
821 NULL,
822};
823
824static struct cpufreq_driver cppc_cpufreq_driver = {
825 .flags = CPUFREQ_CONST_LOOPS,
826 .verify = cppc_verify_policy,
827 .target = cppc_cpufreq_set_target,
828 .get = cppc_cpufreq_get_rate,
829 .fast_switch = cppc_cpufreq_fast_switch,
830 .init = cppc_cpufreq_cpu_init,
831 .exit = cppc_cpufreq_cpu_exit,
832 .set_boost = cppc_cpufreq_set_boost,
833 .attr = cppc_cpufreq_attr,
834 .name = "cppc_cpufreq",
835};
836
837static int __init cppc_cpufreq_init(void)
838{
839 int ret;
840
841 if (!acpi_cpc_valid())
842 return -ENODEV;
843
844 cppc_freq_invariance_init();
845 populate_efficiency_class();
846
847 ret = cpufreq_register_driver(&cppc_cpufreq_driver);
848 if (ret)
849 cppc_freq_invariance_exit();
850
851 return ret;
852}
853
854static inline void free_cpu_data(void)
855{
856 struct cppc_cpudata *iter, *tmp;
857
858 list_for_each_entry_safe(iter, tmp, &cpu_data_list, node) {
859 free_cpumask_var(iter->shared_cpu_map);
860 list_del(&iter->node);
861 kfree(iter);
862 }
863
864}
865
866static void __exit cppc_cpufreq_exit(void)
867{
868 cpufreq_unregister_driver(&cppc_cpufreq_driver);
869 cppc_freq_invariance_exit();
870
871 free_cpu_data();
872}
873
874module_exit(cppc_cpufreq_exit);
875MODULE_AUTHOR("Ashwin Chaugule");
876MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
877MODULE_LICENSE("GPL");
878
879late_initcall(cppc_cpufreq_init);
880
881static const struct acpi_device_id cppc_acpi_ids[] __used = {
882 {ACPI_PROCESSOR_DEVICE_HID, },
883 {}
884};
885
886MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * CPPC (Collaborative Processor Performance Control) driver for
4 * interfacing with the CPUfreq layer and governors. See
5 * cppc_acpi.c for CPPC specific methods.
6 *
7 * (C) Copyright 2014, 2015 Linaro Ltd.
8 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
9 */
10
11#define pr_fmt(fmt) "CPPC Cpufreq:" fmt
12
13#include <linux/arch_topology.h>
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/delay.h>
17#include <linux/cpu.h>
18#include <linux/cpufreq.h>
19#include <linux/dmi.h>
20#include <linux/irq_work.h>
21#include <linux/kthread.h>
22#include <linux/time.h>
23#include <linux/vmalloc.h>
24#include <uapi/linux/sched/types.h>
25
26#include <asm/unaligned.h>
27
28#include <acpi/cppc_acpi.h>
29
30/* Minimum struct length needed for the DMI processor entry we want */
31#define DMI_ENTRY_PROCESSOR_MIN_LENGTH 48
32
33/* Offset in the DMI processor structure for the max frequency */
34#define DMI_PROCESSOR_MAX_SPEED 0x14
35
36/*
37 * This list contains information parsed from per CPU ACPI _CPC and _PSD
38 * structures: e.g. the highest and lowest supported performance, capabilities,
39 * desired performance, level requested etc. Depending on the share_type, not
40 * all CPUs will have an entry in the list.
41 */
42static LIST_HEAD(cpu_data_list);
43
44static bool boost_supported;
45
46struct cppc_workaround_oem_info {
47 char oem_id[ACPI_OEM_ID_SIZE + 1];
48 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
49 u32 oem_revision;
50};
51
52static struct cppc_workaround_oem_info wa_info[] = {
53 {
54 .oem_id = "HISI ",
55 .oem_table_id = "HIP07 ",
56 .oem_revision = 0,
57 }, {
58 .oem_id = "HISI ",
59 .oem_table_id = "HIP08 ",
60 .oem_revision = 0,
61 }
62};
63
64static struct cpufreq_driver cppc_cpufreq_driver;
65
66static enum {
67 FIE_UNSET = -1,
68 FIE_ENABLED,
69 FIE_DISABLED
70} fie_disabled = FIE_UNSET;
71
72#ifdef CONFIG_ACPI_CPPC_CPUFREQ_FIE
73module_param(fie_disabled, int, 0444);
74MODULE_PARM_DESC(fie_disabled, "Disable Frequency Invariance Engine (FIE)");
75
76/* Frequency invariance support */
77struct cppc_freq_invariance {
78 int cpu;
79 struct irq_work irq_work;
80 struct kthread_work work;
81 struct cppc_perf_fb_ctrs prev_perf_fb_ctrs;
82 struct cppc_cpudata *cpu_data;
83};
84
85static DEFINE_PER_CPU(struct cppc_freq_invariance, cppc_freq_inv);
86static struct kthread_worker *kworker_fie;
87
88static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu);
89static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data,
90 struct cppc_perf_fb_ctrs *fb_ctrs_t0,
91 struct cppc_perf_fb_ctrs *fb_ctrs_t1);
92
93/**
94 * cppc_scale_freq_workfn - CPPC arch_freq_scale updater for frequency invariance
95 * @work: The work item.
96 *
97 * The CPPC driver register itself with the topology core to provide its own
98 * implementation (cppc_scale_freq_tick()) of topology_scale_freq_tick() which
99 * gets called by the scheduler on every tick.
100 *
101 * Note that the arch specific counters have higher priority than CPPC counters,
102 * if available, though the CPPC driver doesn't need to have any special
103 * handling for that.
104 *
105 * On an invocation of cppc_scale_freq_tick(), we schedule an irq work (since we
106 * reach here from hard-irq context), which then schedules a normal work item
107 * and cppc_scale_freq_workfn() updates the per_cpu arch_freq_scale variable
108 * based on the counter updates since the last tick.
109 */
110static void cppc_scale_freq_workfn(struct kthread_work *work)
111{
112 struct cppc_freq_invariance *cppc_fi;
113 struct cppc_perf_fb_ctrs fb_ctrs = {0};
114 struct cppc_cpudata *cpu_data;
115 unsigned long local_freq_scale;
116 u64 perf;
117
118 cppc_fi = container_of(work, struct cppc_freq_invariance, work);
119 cpu_data = cppc_fi->cpu_data;
120
121 if (cppc_get_perf_ctrs(cppc_fi->cpu, &fb_ctrs)) {
122 pr_warn("%s: failed to read perf counters\n", __func__);
123 return;
124 }
125
126 perf = cppc_perf_from_fbctrs(cpu_data, &cppc_fi->prev_perf_fb_ctrs,
127 &fb_ctrs);
128 cppc_fi->prev_perf_fb_ctrs = fb_ctrs;
129
130 perf <<= SCHED_CAPACITY_SHIFT;
131 local_freq_scale = div64_u64(perf, cpu_data->perf_caps.highest_perf);
132
133 /* This can happen due to counter's overflow */
134 if (unlikely(local_freq_scale > 1024))
135 local_freq_scale = 1024;
136
137 per_cpu(arch_freq_scale, cppc_fi->cpu) = local_freq_scale;
138}
139
140static void cppc_irq_work(struct irq_work *irq_work)
141{
142 struct cppc_freq_invariance *cppc_fi;
143
144 cppc_fi = container_of(irq_work, struct cppc_freq_invariance, irq_work);
145 kthread_queue_work(kworker_fie, &cppc_fi->work);
146}
147
148static void cppc_scale_freq_tick(void)
149{
150 struct cppc_freq_invariance *cppc_fi = &per_cpu(cppc_freq_inv, smp_processor_id());
151
152 /*
153 * cppc_get_perf_ctrs() can potentially sleep, call that from the right
154 * context.
155 */
156 irq_work_queue(&cppc_fi->irq_work);
157}
158
159static struct scale_freq_data cppc_sftd = {
160 .source = SCALE_FREQ_SOURCE_CPPC,
161 .set_freq_scale = cppc_scale_freq_tick,
162};
163
164static void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy)
165{
166 struct cppc_freq_invariance *cppc_fi;
167 int cpu, ret;
168
169 if (fie_disabled)
170 return;
171
172 for_each_cpu(cpu, policy->cpus) {
173 cppc_fi = &per_cpu(cppc_freq_inv, cpu);
174 cppc_fi->cpu = cpu;
175 cppc_fi->cpu_data = policy->driver_data;
176 kthread_init_work(&cppc_fi->work, cppc_scale_freq_workfn);
177 init_irq_work(&cppc_fi->irq_work, cppc_irq_work);
178
179 ret = cppc_get_perf_ctrs(cpu, &cppc_fi->prev_perf_fb_ctrs);
180 if (ret) {
181 pr_warn("%s: failed to read perf counters for cpu:%d: %d\n",
182 __func__, cpu, ret);
183
184 /*
185 * Don't abort if the CPU was offline while the driver
186 * was getting registered.
187 */
188 if (cpu_online(cpu))
189 return;
190 }
191 }
192
193 /* Register for freq-invariance */
194 topology_set_scale_freq_source(&cppc_sftd, policy->cpus);
195}
196
197/*
198 * We free all the resources on policy's removal and not on CPU removal as the
199 * irq-work are per-cpu and the hotplug core takes care of flushing the pending
200 * irq-works (hint: smpcfd_dying_cpu()) on CPU hotplug. Even if the kthread-work
201 * fires on another CPU after the concerned CPU is removed, it won't harm.
202 *
203 * We just need to make sure to remove them all on policy->exit().
204 */
205static void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy)
206{
207 struct cppc_freq_invariance *cppc_fi;
208 int cpu;
209
210 if (fie_disabled)
211 return;
212
213 /* policy->cpus will be empty here, use related_cpus instead */
214 topology_clear_scale_freq_source(SCALE_FREQ_SOURCE_CPPC, policy->related_cpus);
215
216 for_each_cpu(cpu, policy->related_cpus) {
217 cppc_fi = &per_cpu(cppc_freq_inv, cpu);
218 irq_work_sync(&cppc_fi->irq_work);
219 kthread_cancel_work_sync(&cppc_fi->work);
220 }
221}
222
223static void __init cppc_freq_invariance_init(void)
224{
225 struct sched_attr attr = {
226 .size = sizeof(struct sched_attr),
227 .sched_policy = SCHED_DEADLINE,
228 .sched_nice = 0,
229 .sched_priority = 0,
230 /*
231 * Fake (unused) bandwidth; workaround to "fix"
232 * priority inheritance.
233 */
234 .sched_runtime = 1000000,
235 .sched_deadline = 10000000,
236 .sched_period = 10000000,
237 };
238 int ret;
239
240 if (fie_disabled != FIE_ENABLED && fie_disabled != FIE_DISABLED) {
241 fie_disabled = FIE_ENABLED;
242 if (cppc_perf_ctrs_in_pcc()) {
243 pr_info("FIE not enabled on systems with registers in PCC\n");
244 fie_disabled = FIE_DISABLED;
245 }
246 }
247
248 if (fie_disabled)
249 return;
250
251 kworker_fie = kthread_create_worker(0, "cppc_fie");
252 if (IS_ERR(kworker_fie))
253 return;
254
255 ret = sched_setattr_nocheck(kworker_fie->task, &attr);
256 if (ret) {
257 pr_warn("%s: failed to set SCHED_DEADLINE: %d\n", __func__,
258 ret);
259 kthread_destroy_worker(kworker_fie);
260 return;
261 }
262}
263
264static void cppc_freq_invariance_exit(void)
265{
266 if (fie_disabled)
267 return;
268
269 kthread_destroy_worker(kworker_fie);
270 kworker_fie = NULL;
271}
272
273#else
274static inline void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy)
275{
276}
277
278static inline void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy)
279{
280}
281
282static inline void cppc_freq_invariance_init(void)
283{
284}
285
286static inline void cppc_freq_invariance_exit(void)
287{
288}
289#endif /* CONFIG_ACPI_CPPC_CPUFREQ_FIE */
290
291/* Callback function used to retrieve the max frequency from DMI */
292static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
293{
294 const u8 *dmi_data = (const u8 *)dm;
295 u16 *mhz = (u16 *)private;
296
297 if (dm->type == DMI_ENTRY_PROCESSOR &&
298 dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
299 u16 val = (u16)get_unaligned((const u16 *)
300 (dmi_data + DMI_PROCESSOR_MAX_SPEED));
301 *mhz = val > *mhz ? val : *mhz;
302 }
303}
304
305/* Look up the max frequency in DMI */
306static u64 cppc_get_dmi_max_khz(void)
307{
308 u16 mhz = 0;
309
310 dmi_walk(cppc_find_dmi_mhz, &mhz);
311
312 /*
313 * Real stupid fallback value, just in case there is no
314 * actual value set.
315 */
316 mhz = mhz ? mhz : 1;
317
318 return (1000 * mhz);
319}
320
321/*
322 * If CPPC lowest_freq and nominal_freq registers are exposed then we can
323 * use them to convert perf to freq and vice versa. The conversion is
324 * extrapolated as an affine function passing by the 2 points:
325 * - (Low perf, Low freq)
326 * - (Nominal perf, Nominal perf)
327 */
328static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu_data,
329 unsigned int perf)
330{
331 struct cppc_perf_caps *caps = &cpu_data->perf_caps;
332 s64 retval, offset = 0;
333 static u64 max_khz;
334 u64 mul, div;
335
336 if (caps->lowest_freq && caps->nominal_freq) {
337 mul = caps->nominal_freq - caps->lowest_freq;
338 div = caps->nominal_perf - caps->lowest_perf;
339 offset = caps->nominal_freq - div64_u64(caps->nominal_perf * mul, div);
340 } else {
341 if (!max_khz)
342 max_khz = cppc_get_dmi_max_khz();
343 mul = max_khz;
344 div = caps->highest_perf;
345 }
346
347 retval = offset + div64_u64(perf * mul, div);
348 if (retval >= 0)
349 return retval;
350 return 0;
351}
352
353static unsigned int cppc_cpufreq_khz_to_perf(struct cppc_cpudata *cpu_data,
354 unsigned int freq)
355{
356 struct cppc_perf_caps *caps = &cpu_data->perf_caps;
357 s64 retval, offset = 0;
358 static u64 max_khz;
359 u64 mul, div;
360
361 if (caps->lowest_freq && caps->nominal_freq) {
362 mul = caps->nominal_perf - caps->lowest_perf;
363 div = caps->nominal_freq - caps->lowest_freq;
364 offset = caps->nominal_perf - div64_u64(caps->nominal_freq * mul, div);
365 } else {
366 if (!max_khz)
367 max_khz = cppc_get_dmi_max_khz();
368 mul = caps->highest_perf;
369 div = max_khz;
370 }
371
372 retval = offset + div64_u64(freq * mul, div);
373 if (retval >= 0)
374 return retval;
375 return 0;
376}
377
378static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
379 unsigned int target_freq,
380 unsigned int relation)
381
382{
383 struct cppc_cpudata *cpu_data = policy->driver_data;
384 unsigned int cpu = policy->cpu;
385 struct cpufreq_freqs freqs;
386 u32 desired_perf;
387 int ret = 0;
388
389 desired_perf = cppc_cpufreq_khz_to_perf(cpu_data, target_freq);
390 /* Return if it is exactly the same perf */
391 if (desired_perf == cpu_data->perf_ctrls.desired_perf)
392 return ret;
393
394 cpu_data->perf_ctrls.desired_perf = desired_perf;
395 freqs.old = policy->cur;
396 freqs.new = target_freq;
397
398 cpufreq_freq_transition_begin(policy, &freqs);
399 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
400 cpufreq_freq_transition_end(policy, &freqs, ret != 0);
401
402 if (ret)
403 pr_debug("Failed to set target on CPU:%d. ret:%d\n",
404 cpu, ret);
405
406 return ret;
407}
408
409static unsigned int cppc_cpufreq_fast_switch(struct cpufreq_policy *policy,
410 unsigned int target_freq)
411{
412 struct cppc_cpudata *cpu_data = policy->driver_data;
413 unsigned int cpu = policy->cpu;
414 u32 desired_perf;
415 int ret;
416
417 desired_perf = cppc_cpufreq_khz_to_perf(cpu_data, target_freq);
418 cpu_data->perf_ctrls.desired_perf = desired_perf;
419 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
420
421 if (ret) {
422 pr_debug("Failed to set target on CPU:%d. ret:%d\n",
423 cpu, ret);
424 return 0;
425 }
426
427 return target_freq;
428}
429
430static int cppc_verify_policy(struct cpufreq_policy_data *policy)
431{
432 cpufreq_verify_within_cpu_limits(policy);
433 return 0;
434}
435
436/*
437 * The PCC subspace describes the rate at which platform can accept commands
438 * on the shared PCC channel (including READs which do not count towards freq
439 * transition requests), so ideally we need to use the PCC values as a fallback
440 * if we don't have a platform specific transition_delay_us
441 */
442#ifdef CONFIG_ARM64
443#include <asm/cputype.h>
444
445static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
446{
447 unsigned long implementor = read_cpuid_implementor();
448 unsigned long part_num = read_cpuid_part_number();
449
450 switch (implementor) {
451 case ARM_CPU_IMP_QCOM:
452 switch (part_num) {
453 case QCOM_CPU_PART_FALKOR_V1:
454 case QCOM_CPU_PART_FALKOR:
455 return 10000;
456 }
457 }
458 return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
459}
460#else
461static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
462{
463 return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
464}
465#endif
466
467#if defined(CONFIG_ARM64) && defined(CONFIG_ENERGY_MODEL)
468
469static DEFINE_PER_CPU(unsigned int, efficiency_class);
470static void cppc_cpufreq_register_em(struct cpufreq_policy *policy);
471
472/* Create an artificial performance state every CPPC_EM_CAP_STEP capacity unit. */
473#define CPPC_EM_CAP_STEP (20)
474/* Increase the cost value by CPPC_EM_COST_STEP every performance state. */
475#define CPPC_EM_COST_STEP (1)
476/* Add a cost gap correspnding to the energy of 4 CPUs. */
477#define CPPC_EM_COST_GAP (4 * SCHED_CAPACITY_SCALE * CPPC_EM_COST_STEP \
478 / CPPC_EM_CAP_STEP)
479
480static unsigned int get_perf_level_count(struct cpufreq_policy *policy)
481{
482 struct cppc_perf_caps *perf_caps;
483 unsigned int min_cap, max_cap;
484 struct cppc_cpudata *cpu_data;
485 int cpu = policy->cpu;
486
487 cpu_data = policy->driver_data;
488 perf_caps = &cpu_data->perf_caps;
489 max_cap = arch_scale_cpu_capacity(cpu);
490 min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf,
491 perf_caps->highest_perf);
492 if ((min_cap == 0) || (max_cap < min_cap))
493 return 0;
494 return 1 + max_cap / CPPC_EM_CAP_STEP - min_cap / CPPC_EM_CAP_STEP;
495}
496
497/*
498 * The cost is defined as:
499 * cost = power * max_frequency / frequency
500 */
501static inline unsigned long compute_cost(int cpu, int step)
502{
503 return CPPC_EM_COST_GAP * per_cpu(efficiency_class, cpu) +
504 step * CPPC_EM_COST_STEP;
505}
506
507static int cppc_get_cpu_power(struct device *cpu_dev,
508 unsigned long *power, unsigned long *KHz)
509{
510 unsigned long perf_step, perf_prev, perf, perf_check;
511 unsigned int min_step, max_step, step, step_check;
512 unsigned long prev_freq = *KHz;
513 unsigned int min_cap, max_cap;
514 struct cpufreq_policy *policy;
515
516 struct cppc_perf_caps *perf_caps;
517 struct cppc_cpudata *cpu_data;
518
519 policy = cpufreq_cpu_get_raw(cpu_dev->id);
520 cpu_data = policy->driver_data;
521 perf_caps = &cpu_data->perf_caps;
522 max_cap = arch_scale_cpu_capacity(cpu_dev->id);
523 min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf,
524 perf_caps->highest_perf);
525 perf_step = div_u64((u64)CPPC_EM_CAP_STEP * perf_caps->highest_perf,
526 max_cap);
527 min_step = min_cap / CPPC_EM_CAP_STEP;
528 max_step = max_cap / CPPC_EM_CAP_STEP;
529
530 perf_prev = cppc_cpufreq_khz_to_perf(cpu_data, *KHz);
531 step = perf_prev / perf_step;
532
533 if (step > max_step)
534 return -EINVAL;
535
536 if (min_step == max_step) {
537 step = max_step;
538 perf = perf_caps->highest_perf;
539 } else if (step < min_step) {
540 step = min_step;
541 perf = perf_caps->lowest_perf;
542 } else {
543 step++;
544 if (step == max_step)
545 perf = perf_caps->highest_perf;
546 else
547 perf = step * perf_step;
548 }
549
550 *KHz = cppc_cpufreq_perf_to_khz(cpu_data, perf);
551 perf_check = cppc_cpufreq_khz_to_perf(cpu_data, *KHz);
552 step_check = perf_check / perf_step;
553
554 /*
555 * To avoid bad integer approximation, check that new frequency value
556 * increased and that the new frequency will be converted to the
557 * desired step value.
558 */
559 while ((*KHz == prev_freq) || (step_check != step)) {
560 perf++;
561 *KHz = cppc_cpufreq_perf_to_khz(cpu_data, perf);
562 perf_check = cppc_cpufreq_khz_to_perf(cpu_data, *KHz);
563 step_check = perf_check / perf_step;
564 }
565
566 /*
567 * With an artificial EM, only the cost value is used. Still the power
568 * is populated such as 0 < power < EM_MAX_POWER. This allows to add
569 * more sense to the artificial performance states.
570 */
571 *power = compute_cost(cpu_dev->id, step);
572
573 return 0;
574}
575
576static int cppc_get_cpu_cost(struct device *cpu_dev, unsigned long KHz,
577 unsigned long *cost)
578{
579 unsigned long perf_step, perf_prev;
580 struct cppc_perf_caps *perf_caps;
581 struct cpufreq_policy *policy;
582 struct cppc_cpudata *cpu_data;
583 unsigned int max_cap;
584 int step;
585
586 policy = cpufreq_cpu_get_raw(cpu_dev->id);
587 cpu_data = policy->driver_data;
588 perf_caps = &cpu_data->perf_caps;
589 max_cap = arch_scale_cpu_capacity(cpu_dev->id);
590
591 perf_prev = cppc_cpufreq_khz_to_perf(cpu_data, KHz);
592 perf_step = CPPC_EM_CAP_STEP * perf_caps->highest_perf / max_cap;
593 step = perf_prev / perf_step;
594
595 *cost = compute_cost(cpu_dev->id, step);
596
597 return 0;
598}
599
600static int populate_efficiency_class(void)
601{
602 struct acpi_madt_generic_interrupt *gicc;
603 DECLARE_BITMAP(used_classes, 256) = {};
604 int class, cpu, index;
605
606 for_each_possible_cpu(cpu) {
607 gicc = acpi_cpu_get_madt_gicc(cpu);
608 class = gicc->efficiency_class;
609 bitmap_set(used_classes, class, 1);
610 }
611
612 if (bitmap_weight(used_classes, 256) <= 1) {
613 pr_debug("Efficiency classes are all equal (=%d). "
614 "No EM registered", class);
615 return -EINVAL;
616 }
617
618 /*
619 * Squeeze efficiency class values on [0:#efficiency_class-1].
620 * Values are per spec in [0:255].
621 */
622 index = 0;
623 for_each_set_bit(class, used_classes, 256) {
624 for_each_possible_cpu(cpu) {
625 gicc = acpi_cpu_get_madt_gicc(cpu);
626 if (gicc->efficiency_class == class)
627 per_cpu(efficiency_class, cpu) = index;
628 }
629 index++;
630 }
631 cppc_cpufreq_driver.register_em = cppc_cpufreq_register_em;
632
633 return 0;
634}
635
636static void cppc_cpufreq_register_em(struct cpufreq_policy *policy)
637{
638 struct cppc_cpudata *cpu_data;
639 struct em_data_callback em_cb =
640 EM_ADV_DATA_CB(cppc_get_cpu_power, cppc_get_cpu_cost);
641
642 cpu_data = policy->driver_data;
643 em_dev_register_perf_domain(get_cpu_device(policy->cpu),
644 get_perf_level_count(policy), &em_cb,
645 cpu_data->shared_cpu_map, 0);
646}
647
648#else
649static int populate_efficiency_class(void)
650{
651 return 0;
652}
653#endif
654
655static struct cppc_cpudata *cppc_cpufreq_get_cpu_data(unsigned int cpu)
656{
657 struct cppc_cpudata *cpu_data;
658 int ret;
659
660 cpu_data = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
661 if (!cpu_data)
662 goto out;
663
664 if (!zalloc_cpumask_var(&cpu_data->shared_cpu_map, GFP_KERNEL))
665 goto free_cpu;
666
667 ret = acpi_get_psd_map(cpu, cpu_data);
668 if (ret) {
669 pr_debug("Err parsing CPU%d PSD data: ret:%d\n", cpu, ret);
670 goto free_mask;
671 }
672
673 ret = cppc_get_perf_caps(cpu, &cpu_data->perf_caps);
674 if (ret) {
675 pr_debug("Err reading CPU%d perf caps: ret:%d\n", cpu, ret);
676 goto free_mask;
677 }
678
679 /* Convert the lowest and nominal freq from MHz to KHz */
680 cpu_data->perf_caps.lowest_freq *= 1000;
681 cpu_data->perf_caps.nominal_freq *= 1000;
682
683 list_add(&cpu_data->node, &cpu_data_list);
684
685 return cpu_data;
686
687free_mask:
688 free_cpumask_var(cpu_data->shared_cpu_map);
689free_cpu:
690 kfree(cpu_data);
691out:
692 return NULL;
693}
694
695static void cppc_cpufreq_put_cpu_data(struct cpufreq_policy *policy)
696{
697 struct cppc_cpudata *cpu_data = policy->driver_data;
698
699 list_del(&cpu_data->node);
700 free_cpumask_var(cpu_data->shared_cpu_map);
701 kfree(cpu_data);
702 policy->driver_data = NULL;
703}
704
705static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
706{
707 unsigned int cpu = policy->cpu;
708 struct cppc_cpudata *cpu_data;
709 struct cppc_perf_caps *caps;
710 int ret;
711
712 cpu_data = cppc_cpufreq_get_cpu_data(cpu);
713 if (!cpu_data) {
714 pr_err("Error in acquiring _CPC/_PSD data for CPU%d.\n", cpu);
715 return -ENODEV;
716 }
717 caps = &cpu_data->perf_caps;
718 policy->driver_data = cpu_data;
719
720 /*
721 * Set min to lowest nonlinear perf to avoid any efficiency penalty (see
722 * Section 8.4.7.1.1.5 of ACPI 6.1 spec)
723 */
724 policy->min = cppc_cpufreq_perf_to_khz(cpu_data,
725 caps->lowest_nonlinear_perf);
726 policy->max = cppc_cpufreq_perf_to_khz(cpu_data,
727 caps->nominal_perf);
728
729 /*
730 * Set cpuinfo.min_freq to Lowest to make the full range of performance
731 * available if userspace wants to use any perf between lowest & lowest
732 * nonlinear perf
733 */
734 policy->cpuinfo.min_freq = cppc_cpufreq_perf_to_khz(cpu_data,
735 caps->lowest_perf);
736 policy->cpuinfo.max_freq = cppc_cpufreq_perf_to_khz(cpu_data,
737 caps->nominal_perf);
738
739 policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu);
740 policy->shared_type = cpu_data->shared_type;
741
742 switch (policy->shared_type) {
743 case CPUFREQ_SHARED_TYPE_HW:
744 case CPUFREQ_SHARED_TYPE_NONE:
745 /* Nothing to be done - we'll have a policy for each CPU */
746 break;
747 case CPUFREQ_SHARED_TYPE_ANY:
748 /*
749 * All CPUs in the domain will share a policy and all cpufreq
750 * operations will use a single cppc_cpudata structure stored
751 * in policy->driver_data.
752 */
753 cpumask_copy(policy->cpus, cpu_data->shared_cpu_map);
754 break;
755 default:
756 pr_debug("Unsupported CPU co-ord type: %d\n",
757 policy->shared_type);
758 ret = -EFAULT;
759 goto out;
760 }
761
762 policy->fast_switch_possible = cppc_allow_fast_switch();
763 policy->dvfs_possible_from_any_cpu = true;
764
765 /*
766 * If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost
767 * is supported.
768 */
769 if (caps->highest_perf > caps->nominal_perf)
770 boost_supported = true;
771
772 /* Set policy->cur to max now. The governors will adjust later. */
773 policy->cur = cppc_cpufreq_perf_to_khz(cpu_data, caps->highest_perf);
774 cpu_data->perf_ctrls.desired_perf = caps->highest_perf;
775
776 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
777 if (ret) {
778 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
779 caps->highest_perf, cpu, ret);
780 goto out;
781 }
782
783 cppc_cpufreq_cpu_fie_init(policy);
784 return 0;
785
786out:
787 cppc_cpufreq_put_cpu_data(policy);
788 return ret;
789}
790
791static int cppc_cpufreq_cpu_exit(struct cpufreq_policy *policy)
792{
793 struct cppc_cpudata *cpu_data = policy->driver_data;
794 struct cppc_perf_caps *caps = &cpu_data->perf_caps;
795 unsigned int cpu = policy->cpu;
796 int ret;
797
798 cppc_cpufreq_cpu_fie_exit(policy);
799
800 cpu_data->perf_ctrls.desired_perf = caps->lowest_perf;
801
802 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
803 if (ret)
804 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
805 caps->lowest_perf, cpu, ret);
806
807 cppc_cpufreq_put_cpu_data(policy);
808 return 0;
809}
810
811static inline u64 get_delta(u64 t1, u64 t0)
812{
813 if (t1 > t0 || t0 > ~(u32)0)
814 return t1 - t0;
815
816 return (u32)t1 - (u32)t0;
817}
818
819static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data,
820 struct cppc_perf_fb_ctrs *fb_ctrs_t0,
821 struct cppc_perf_fb_ctrs *fb_ctrs_t1)
822{
823 u64 delta_reference, delta_delivered;
824 u64 reference_perf;
825
826 reference_perf = fb_ctrs_t0->reference_perf;
827
828 delta_reference = get_delta(fb_ctrs_t1->reference,
829 fb_ctrs_t0->reference);
830 delta_delivered = get_delta(fb_ctrs_t1->delivered,
831 fb_ctrs_t0->delivered);
832
833 /* Check to avoid divide-by zero and invalid delivered_perf */
834 if (!delta_reference || !delta_delivered)
835 return cpu_data->perf_ctrls.desired_perf;
836
837 return (reference_perf * delta_delivered) / delta_reference;
838}
839
840static unsigned int cppc_cpufreq_get_rate(unsigned int cpu)
841{
842 struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
843 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
844 struct cppc_cpudata *cpu_data = policy->driver_data;
845 u64 delivered_perf;
846 int ret;
847
848 cpufreq_cpu_put(policy);
849
850 ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t0);
851 if (ret)
852 return ret;
853
854 udelay(2); /* 2usec delay between sampling */
855
856 ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t1);
857 if (ret)
858 return ret;
859
860 delivered_perf = cppc_perf_from_fbctrs(cpu_data, &fb_ctrs_t0,
861 &fb_ctrs_t1);
862
863 return cppc_cpufreq_perf_to_khz(cpu_data, delivered_perf);
864}
865
866static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state)
867{
868 struct cppc_cpudata *cpu_data = policy->driver_data;
869 struct cppc_perf_caps *caps = &cpu_data->perf_caps;
870 int ret;
871
872 if (!boost_supported) {
873 pr_err("BOOST not supported by CPU or firmware\n");
874 return -EINVAL;
875 }
876
877 if (state)
878 policy->max = cppc_cpufreq_perf_to_khz(cpu_data,
879 caps->highest_perf);
880 else
881 policy->max = cppc_cpufreq_perf_to_khz(cpu_data,
882 caps->nominal_perf);
883 policy->cpuinfo.max_freq = policy->max;
884
885 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
886 if (ret < 0)
887 return ret;
888
889 return 0;
890}
891
892static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
893{
894 struct cppc_cpudata *cpu_data = policy->driver_data;
895
896 return cpufreq_show_cpus(cpu_data->shared_cpu_map, buf);
897}
898cpufreq_freq_attr_ro(freqdomain_cpus);
899
900static struct freq_attr *cppc_cpufreq_attr[] = {
901 &freqdomain_cpus,
902 NULL,
903};
904
905static struct cpufreq_driver cppc_cpufreq_driver = {
906 .flags = CPUFREQ_CONST_LOOPS,
907 .verify = cppc_verify_policy,
908 .target = cppc_cpufreq_set_target,
909 .get = cppc_cpufreq_get_rate,
910 .fast_switch = cppc_cpufreq_fast_switch,
911 .init = cppc_cpufreq_cpu_init,
912 .exit = cppc_cpufreq_cpu_exit,
913 .set_boost = cppc_cpufreq_set_boost,
914 .attr = cppc_cpufreq_attr,
915 .name = "cppc_cpufreq",
916};
917
918/*
919 * HISI platform does not support delivered performance counter and
920 * reference performance counter. It can calculate the performance using the
921 * platform specific mechanism. We reuse the desired performance register to
922 * store the real performance calculated by the platform.
923 */
924static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu)
925{
926 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
927 struct cppc_cpudata *cpu_data = policy->driver_data;
928 u64 desired_perf;
929 int ret;
930
931 cpufreq_cpu_put(policy);
932
933 ret = cppc_get_desired_perf(cpu, &desired_perf);
934 if (ret < 0)
935 return -EIO;
936
937 return cppc_cpufreq_perf_to_khz(cpu_data, desired_perf);
938}
939
940static void cppc_check_hisi_workaround(void)
941{
942 struct acpi_table_header *tbl;
943 acpi_status status = AE_OK;
944 int i;
945
946 status = acpi_get_table(ACPI_SIG_PCCT, 0, &tbl);
947 if (ACPI_FAILURE(status) || !tbl)
948 return;
949
950 for (i = 0; i < ARRAY_SIZE(wa_info); i++) {
951 if (!memcmp(wa_info[i].oem_id, tbl->oem_id, ACPI_OEM_ID_SIZE) &&
952 !memcmp(wa_info[i].oem_table_id, tbl->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
953 wa_info[i].oem_revision == tbl->oem_revision) {
954 /* Overwrite the get() callback */
955 cppc_cpufreq_driver.get = hisi_cppc_cpufreq_get_rate;
956 fie_disabled = FIE_DISABLED;
957 break;
958 }
959 }
960
961 acpi_put_table(tbl);
962}
963
964static int __init cppc_cpufreq_init(void)
965{
966 int ret;
967
968 if (!acpi_cpc_valid())
969 return -ENODEV;
970
971 cppc_check_hisi_workaround();
972 cppc_freq_invariance_init();
973 populate_efficiency_class();
974
975 ret = cpufreq_register_driver(&cppc_cpufreq_driver);
976 if (ret)
977 cppc_freq_invariance_exit();
978
979 return ret;
980}
981
982static inline void free_cpu_data(void)
983{
984 struct cppc_cpudata *iter, *tmp;
985
986 list_for_each_entry_safe(iter, tmp, &cpu_data_list, node) {
987 free_cpumask_var(iter->shared_cpu_map);
988 list_del(&iter->node);
989 kfree(iter);
990 }
991
992}
993
994static void __exit cppc_cpufreq_exit(void)
995{
996 cpufreq_unregister_driver(&cppc_cpufreq_driver);
997 cppc_freq_invariance_exit();
998
999 free_cpu_data();
1000}
1001
1002module_exit(cppc_cpufreq_exit);
1003MODULE_AUTHOR("Ashwin Chaugule");
1004MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
1005MODULE_LICENSE("GPL");
1006
1007late_initcall(cppc_cpufreq_init);
1008
1009static const struct acpi_device_id cppc_acpi_ids[] __used = {
1010 {ACPI_PROCESSOR_DEVICE_HID, },
1011 {}
1012};
1013
1014MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);