Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *
4 * Bluetooth support for Intel devices
5 *
6 * Copyright (C) 2015 Intel Corporation
7 */
8
9#include <linux/module.h>
10#include <linux/firmware.h>
11#include <linux/regmap.h>
12#include <linux/acpi.h>
13#include <acpi/acpi_bus.h>
14#include <linux/unaligned.h>
15#include <linux/efi.h>
16
17#include <net/bluetooth/bluetooth.h>
18#include <net/bluetooth/hci_core.h>
19
20#include "btintel.h"
21
22#define VERSION "0.1"
23
24#define BDADDR_INTEL (&(bdaddr_t){{0x00, 0x8b, 0x9e, 0x19, 0x03, 0x00}})
25#define RSA_HEADER_LEN 644
26#define CSS_HEADER_OFFSET 8
27#define ECDSA_OFFSET 644
28#define ECDSA_HEADER_LEN 320
29
30#define BTINTEL_EFI_DSBR L"UefiCnvCommonDSBR"
31
32enum {
33 DSM_SET_WDISABLE2_DELAY = 1,
34 DSM_SET_RESET_METHOD = 3,
35};
36
37#define CMD_WRITE_BOOT_PARAMS 0xfc0e
38struct cmd_write_boot_params {
39 __le32 boot_addr;
40 u8 fw_build_num;
41 u8 fw_build_ww;
42 u8 fw_build_yy;
43} __packed;
44
45static struct {
46 const char *driver_name;
47 u8 hw_variant;
48 u32 fw_build_num;
49} coredump_info;
50
51static const guid_t btintel_guid_dsm =
52 GUID_INIT(0xaa10f4e0, 0x81ac, 0x4233,
53 0xab, 0xf6, 0x3b, 0x2a, 0xc5, 0x0e, 0x28, 0xd9);
54
55int btintel_check_bdaddr(struct hci_dev *hdev)
56{
57 struct hci_rp_read_bd_addr *bda;
58 struct sk_buff *skb;
59
60 skb = __hci_cmd_sync(hdev, HCI_OP_READ_BD_ADDR, 0, NULL,
61 HCI_INIT_TIMEOUT);
62 if (IS_ERR(skb)) {
63 int err = PTR_ERR(skb);
64 bt_dev_err(hdev, "Reading Intel device address failed (%d)",
65 err);
66 return err;
67 }
68
69 if (skb->len != sizeof(*bda)) {
70 bt_dev_err(hdev, "Intel device address length mismatch");
71 kfree_skb(skb);
72 return -EIO;
73 }
74
75 bda = (struct hci_rp_read_bd_addr *)skb->data;
76
77 /* For some Intel based controllers, the default Bluetooth device
78 * address 00:03:19:9E:8B:00 can be found. These controllers are
79 * fully operational, but have the danger of duplicate addresses
80 * and that in turn can cause problems with Bluetooth operation.
81 */
82 if (!bacmp(&bda->bdaddr, BDADDR_INTEL)) {
83 bt_dev_err(hdev, "Found Intel default device address (%pMR)",
84 &bda->bdaddr);
85 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
86 }
87
88 kfree_skb(skb);
89
90 return 0;
91}
92EXPORT_SYMBOL_GPL(btintel_check_bdaddr);
93
94int btintel_enter_mfg(struct hci_dev *hdev)
95{
96 static const u8 param[] = { 0x01, 0x00 };
97 struct sk_buff *skb;
98
99 skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT);
100 if (IS_ERR(skb)) {
101 bt_dev_err(hdev, "Entering manufacturer mode failed (%ld)",
102 PTR_ERR(skb));
103 return PTR_ERR(skb);
104 }
105 kfree_skb(skb);
106
107 return 0;
108}
109EXPORT_SYMBOL_GPL(btintel_enter_mfg);
110
111int btintel_exit_mfg(struct hci_dev *hdev, bool reset, bool patched)
112{
113 u8 param[] = { 0x00, 0x00 };
114 struct sk_buff *skb;
115
116 /* The 2nd command parameter specifies the manufacturing exit method:
117 * 0x00: Just disable the manufacturing mode (0x00).
118 * 0x01: Disable manufacturing mode and reset with patches deactivated.
119 * 0x02: Disable manufacturing mode and reset with patches activated.
120 */
121 if (reset)
122 param[1] |= patched ? 0x02 : 0x01;
123
124 skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT);
125 if (IS_ERR(skb)) {
126 bt_dev_err(hdev, "Exiting manufacturer mode failed (%ld)",
127 PTR_ERR(skb));
128 return PTR_ERR(skb);
129 }
130 kfree_skb(skb);
131
132 return 0;
133}
134EXPORT_SYMBOL_GPL(btintel_exit_mfg);
135
136int btintel_set_bdaddr(struct hci_dev *hdev, const bdaddr_t *bdaddr)
137{
138 struct sk_buff *skb;
139 int err;
140
141 skb = __hci_cmd_sync(hdev, 0xfc31, 6, bdaddr, HCI_INIT_TIMEOUT);
142 if (IS_ERR(skb)) {
143 err = PTR_ERR(skb);
144 bt_dev_err(hdev, "Changing Intel device address failed (%d)",
145 err);
146 return err;
147 }
148 kfree_skb(skb);
149
150 return 0;
151}
152EXPORT_SYMBOL_GPL(btintel_set_bdaddr);
153
154static int btintel_set_event_mask(struct hci_dev *hdev, bool debug)
155{
156 u8 mask[8] = { 0x87, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
157 struct sk_buff *skb;
158 int err;
159
160 if (debug)
161 mask[1] |= 0x62;
162
163 skb = __hci_cmd_sync(hdev, 0xfc52, 8, mask, HCI_INIT_TIMEOUT);
164 if (IS_ERR(skb)) {
165 err = PTR_ERR(skb);
166 bt_dev_err(hdev, "Setting Intel event mask failed (%d)", err);
167 return err;
168 }
169 kfree_skb(skb);
170
171 return 0;
172}
173
174int btintel_set_diag(struct hci_dev *hdev, bool enable)
175{
176 struct sk_buff *skb;
177 u8 param[3];
178 int err;
179
180 if (enable) {
181 param[0] = 0x03;
182 param[1] = 0x03;
183 param[2] = 0x03;
184 } else {
185 param[0] = 0x00;
186 param[1] = 0x00;
187 param[2] = 0x00;
188 }
189
190 skb = __hci_cmd_sync(hdev, 0xfc43, 3, param, HCI_INIT_TIMEOUT);
191 if (IS_ERR(skb)) {
192 err = PTR_ERR(skb);
193 if (err == -ENODATA)
194 goto done;
195 bt_dev_err(hdev, "Changing Intel diagnostic mode failed (%d)",
196 err);
197 return err;
198 }
199 kfree_skb(skb);
200
201done:
202 btintel_set_event_mask(hdev, enable);
203 return 0;
204}
205EXPORT_SYMBOL_GPL(btintel_set_diag);
206
207static int btintel_set_diag_mfg(struct hci_dev *hdev, bool enable)
208{
209 int err, ret;
210
211 err = btintel_enter_mfg(hdev);
212 if (err)
213 return err;
214
215 ret = btintel_set_diag(hdev, enable);
216
217 err = btintel_exit_mfg(hdev, false, false);
218 if (err)
219 return err;
220
221 return ret;
222}
223
224static int btintel_set_diag_combined(struct hci_dev *hdev, bool enable)
225{
226 int ret;
227
228 /* Legacy ROM device needs to be in the manufacturer mode to apply
229 * diagnostic setting
230 *
231 * This flag is set after reading the Intel version.
232 */
233 if (btintel_test_flag(hdev, INTEL_ROM_LEGACY))
234 ret = btintel_set_diag_mfg(hdev, enable);
235 else
236 ret = btintel_set_diag(hdev, enable);
237
238 return ret;
239}
240
241void btintel_hw_error(struct hci_dev *hdev, u8 code)
242{
243 struct sk_buff *skb;
244 u8 type = 0x00;
245
246 bt_dev_err(hdev, "Hardware error 0x%2.2x", code);
247
248 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
249 if (IS_ERR(skb)) {
250 bt_dev_err(hdev, "Reset after hardware error failed (%ld)",
251 PTR_ERR(skb));
252 return;
253 }
254 kfree_skb(skb);
255
256 skb = __hci_cmd_sync(hdev, 0xfc22, 1, &type, HCI_INIT_TIMEOUT);
257 if (IS_ERR(skb)) {
258 bt_dev_err(hdev, "Retrieving Intel exception info failed (%ld)",
259 PTR_ERR(skb));
260 return;
261 }
262
263 if (skb->len != 13) {
264 bt_dev_err(hdev, "Exception info size mismatch");
265 kfree_skb(skb);
266 return;
267 }
268
269 bt_dev_err(hdev, "Exception info %s", (char *)(skb->data + 1));
270
271 kfree_skb(skb);
272}
273EXPORT_SYMBOL_GPL(btintel_hw_error);
274
275int btintel_version_info(struct hci_dev *hdev, struct intel_version *ver)
276{
277 const char *variant;
278
279 /* The hardware platform number has a fixed value of 0x37 and
280 * for now only accept this single value.
281 */
282 if (ver->hw_platform != 0x37) {
283 bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
284 ver->hw_platform);
285 return -EINVAL;
286 }
287
288 /* Check for supported iBT hardware variants of this firmware
289 * loading method.
290 *
291 * This check has been put in place to ensure correct forward
292 * compatibility options when newer hardware variants come along.
293 */
294 switch (ver->hw_variant) {
295 case 0x07: /* WP - Legacy ROM */
296 case 0x08: /* StP - Legacy ROM */
297 case 0x0b: /* SfP */
298 case 0x0c: /* WsP */
299 case 0x11: /* JfP */
300 case 0x12: /* ThP */
301 case 0x13: /* HrP */
302 case 0x14: /* CcP */
303 break;
304 default:
305 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
306 ver->hw_variant);
307 return -EINVAL;
308 }
309
310 switch (ver->fw_variant) {
311 case 0x01:
312 variant = "Legacy ROM 2.5";
313 break;
314 case 0x06:
315 variant = "Bootloader";
316 break;
317 case 0x22:
318 variant = "Legacy ROM 2.x";
319 break;
320 case 0x23:
321 variant = "Firmware";
322 break;
323 default:
324 bt_dev_err(hdev, "Unsupported firmware variant(%02x)", ver->fw_variant);
325 return -EINVAL;
326 }
327
328 coredump_info.hw_variant = ver->hw_variant;
329 coredump_info.fw_build_num = ver->fw_build_num;
330
331 bt_dev_info(hdev, "%s revision %u.%u build %u week %u %u",
332 variant, ver->fw_revision >> 4, ver->fw_revision & 0x0f,
333 ver->fw_build_num, ver->fw_build_ww,
334 2000 + ver->fw_build_yy);
335
336 return 0;
337}
338EXPORT_SYMBOL_GPL(btintel_version_info);
339
340static int btintel_secure_send(struct hci_dev *hdev, u8 fragment_type, u32 plen,
341 const void *param)
342{
343 while (plen > 0) {
344 struct sk_buff *skb;
345 u8 cmd_param[253], fragment_len = (plen > 252) ? 252 : plen;
346
347 cmd_param[0] = fragment_type;
348 memcpy(cmd_param + 1, param, fragment_len);
349
350 skb = __hci_cmd_sync(hdev, 0xfc09, fragment_len + 1,
351 cmd_param, HCI_INIT_TIMEOUT);
352 if (IS_ERR(skb))
353 return PTR_ERR(skb);
354
355 kfree_skb(skb);
356
357 plen -= fragment_len;
358 param += fragment_len;
359 }
360
361 return 0;
362}
363
364int btintel_load_ddc_config(struct hci_dev *hdev, const char *ddc_name)
365{
366 const struct firmware *fw;
367 struct sk_buff *skb;
368 const u8 *fw_ptr;
369 int err;
370
371 err = request_firmware_direct(&fw, ddc_name, &hdev->dev);
372 if (err < 0) {
373 bt_dev_err(hdev, "Failed to load Intel DDC file %s (%d)",
374 ddc_name, err);
375 return err;
376 }
377
378 bt_dev_info(hdev, "Found Intel DDC parameters: %s", ddc_name);
379
380 fw_ptr = fw->data;
381
382 /* DDC file contains one or more DDC structure which has
383 * Length (1 byte), DDC ID (2 bytes), and DDC value (Length - 2).
384 */
385 while (fw->size > fw_ptr - fw->data) {
386 u8 cmd_plen = fw_ptr[0] + sizeof(u8);
387
388 skb = __hci_cmd_sync(hdev, 0xfc8b, cmd_plen, fw_ptr,
389 HCI_INIT_TIMEOUT);
390 if (IS_ERR(skb)) {
391 bt_dev_err(hdev, "Failed to send Intel_Write_DDC (%ld)",
392 PTR_ERR(skb));
393 release_firmware(fw);
394 return PTR_ERR(skb);
395 }
396
397 fw_ptr += cmd_plen;
398 kfree_skb(skb);
399 }
400
401 release_firmware(fw);
402
403 bt_dev_info(hdev, "Applying Intel DDC parameters completed");
404
405 return 0;
406}
407EXPORT_SYMBOL_GPL(btintel_load_ddc_config);
408
409int btintel_set_event_mask_mfg(struct hci_dev *hdev, bool debug)
410{
411 int err, ret;
412
413 err = btintel_enter_mfg(hdev);
414 if (err)
415 return err;
416
417 ret = btintel_set_event_mask(hdev, debug);
418
419 err = btintel_exit_mfg(hdev, false, false);
420 if (err)
421 return err;
422
423 return ret;
424}
425EXPORT_SYMBOL_GPL(btintel_set_event_mask_mfg);
426
427int btintel_read_version(struct hci_dev *hdev, struct intel_version *ver)
428{
429 struct sk_buff *skb;
430
431 skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
432 if (IS_ERR(skb)) {
433 bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
434 PTR_ERR(skb));
435 return PTR_ERR(skb);
436 }
437
438 if (!skb || skb->len != sizeof(*ver)) {
439 bt_dev_err(hdev, "Intel version event size mismatch");
440 kfree_skb(skb);
441 return -EILSEQ;
442 }
443
444 memcpy(ver, skb->data, sizeof(*ver));
445
446 kfree_skb(skb);
447
448 return 0;
449}
450EXPORT_SYMBOL_GPL(btintel_read_version);
451
452int btintel_version_info_tlv(struct hci_dev *hdev,
453 struct intel_version_tlv *version)
454{
455 const char *variant;
456
457 /* The hardware platform number has a fixed value of 0x37 and
458 * for now only accept this single value.
459 */
460 if (INTEL_HW_PLATFORM(version->cnvi_bt) != 0x37) {
461 bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)",
462 INTEL_HW_PLATFORM(version->cnvi_bt));
463 return -EINVAL;
464 }
465
466 /* Check for supported iBT hardware variants of this firmware
467 * loading method.
468 *
469 * This check has been put in place to ensure correct forward
470 * compatibility options when newer hardware variants come along.
471 */
472 switch (INTEL_HW_VARIANT(version->cnvi_bt)) {
473 case 0x17: /* TyP */
474 case 0x18: /* Slr */
475 case 0x19: /* Slr-F */
476 case 0x1b: /* Mgr */
477 case 0x1c: /* Gale Peak (GaP) */
478 case 0x1d: /* BlazarU (BzrU) */
479 case 0x1e: /* BlazarI (Bzr) */
480 break;
481 default:
482 bt_dev_err(hdev, "Unsupported Intel hardware variant (0x%x)",
483 INTEL_HW_VARIANT(version->cnvi_bt));
484 return -EINVAL;
485 }
486
487 switch (version->img_type) {
488 case BTINTEL_IMG_BOOTLOADER:
489 variant = "Bootloader";
490 /* It is required that every single firmware fragment is acknowledged
491 * with a command complete event. If the boot parameters indicate
492 * that this bootloader does not send them, then abort the setup.
493 */
494 if (version->limited_cce != 0x00) {
495 bt_dev_err(hdev, "Unsupported Intel firmware loading method (0x%x)",
496 version->limited_cce);
497 return -EINVAL;
498 }
499
500 /* Secure boot engine type should be either 1 (ECDSA) or 0 (RSA) */
501 if (version->sbe_type > 0x01) {
502 bt_dev_err(hdev, "Unsupported Intel secure boot engine type (0x%x)",
503 version->sbe_type);
504 return -EINVAL;
505 }
506
507 bt_dev_info(hdev, "Device revision is %u", version->dev_rev_id);
508 bt_dev_info(hdev, "Secure boot is %s",
509 version->secure_boot ? "enabled" : "disabled");
510 bt_dev_info(hdev, "OTP lock is %s",
511 version->otp_lock ? "enabled" : "disabled");
512 bt_dev_info(hdev, "API lock is %s",
513 version->api_lock ? "enabled" : "disabled");
514 bt_dev_info(hdev, "Debug lock is %s",
515 version->debug_lock ? "enabled" : "disabled");
516 bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
517 version->min_fw_build_nn, version->min_fw_build_cw,
518 2000 + version->min_fw_build_yy);
519 break;
520 case BTINTEL_IMG_IML:
521 variant = "Intermediate loader";
522 break;
523 case BTINTEL_IMG_OP:
524 variant = "Firmware";
525 break;
526 default:
527 bt_dev_err(hdev, "Unsupported image type(%02x)", version->img_type);
528 return -EINVAL;
529 }
530
531 coredump_info.hw_variant = INTEL_HW_VARIANT(version->cnvi_bt);
532 coredump_info.fw_build_num = version->build_num;
533
534 bt_dev_info(hdev, "%s timestamp %u.%u buildtype %u build %u", variant,
535 2000 + (version->timestamp >> 8), version->timestamp & 0xff,
536 version->build_type, version->build_num);
537 if (version->img_type == BTINTEL_IMG_OP)
538 bt_dev_info(hdev, "Firmware SHA1: 0x%8.8x", version->git_sha1);
539
540 return 0;
541}
542EXPORT_SYMBOL_GPL(btintel_version_info_tlv);
543
544int btintel_parse_version_tlv(struct hci_dev *hdev,
545 struct intel_version_tlv *version,
546 struct sk_buff *skb)
547{
548 /* Consume Command Complete Status field */
549 skb_pull(skb, 1);
550
551 /* Event parameters contatin multiple TLVs. Read each of them
552 * and only keep the required data. Also, it use existing legacy
553 * version field like hw_platform, hw_variant, and fw_variant
554 * to keep the existing setup flow
555 */
556 while (skb->len) {
557 struct intel_tlv *tlv;
558
559 /* Make sure skb has a minimum length of the header */
560 if (skb->len < sizeof(*tlv))
561 return -EINVAL;
562
563 tlv = (struct intel_tlv *)skb->data;
564
565 /* Make sure skb has a enough data */
566 if (skb->len < tlv->len + sizeof(*tlv))
567 return -EINVAL;
568
569 switch (tlv->type) {
570 case INTEL_TLV_CNVI_TOP:
571 version->cnvi_top = get_unaligned_le32(tlv->val);
572 break;
573 case INTEL_TLV_CNVR_TOP:
574 version->cnvr_top = get_unaligned_le32(tlv->val);
575 break;
576 case INTEL_TLV_CNVI_BT:
577 version->cnvi_bt = get_unaligned_le32(tlv->val);
578 break;
579 case INTEL_TLV_CNVR_BT:
580 version->cnvr_bt = get_unaligned_le32(tlv->val);
581 break;
582 case INTEL_TLV_DEV_REV_ID:
583 version->dev_rev_id = get_unaligned_le16(tlv->val);
584 break;
585 case INTEL_TLV_IMAGE_TYPE:
586 version->img_type = tlv->val[0];
587 break;
588 case INTEL_TLV_TIME_STAMP:
589 /* If image type is Operational firmware (0x03), then
590 * running FW Calendar Week and Year information can
591 * be extracted from Timestamp information
592 */
593 version->min_fw_build_cw = tlv->val[0];
594 version->min_fw_build_yy = tlv->val[1];
595 version->timestamp = get_unaligned_le16(tlv->val);
596 break;
597 case INTEL_TLV_BUILD_TYPE:
598 version->build_type = tlv->val[0];
599 break;
600 case INTEL_TLV_BUILD_NUM:
601 /* If image type is Operational firmware (0x03), then
602 * running FW build number can be extracted from the
603 * Build information
604 */
605 version->min_fw_build_nn = tlv->val[0];
606 version->build_num = get_unaligned_le32(tlv->val);
607 break;
608 case INTEL_TLV_SECURE_BOOT:
609 version->secure_boot = tlv->val[0];
610 break;
611 case INTEL_TLV_OTP_LOCK:
612 version->otp_lock = tlv->val[0];
613 break;
614 case INTEL_TLV_API_LOCK:
615 version->api_lock = tlv->val[0];
616 break;
617 case INTEL_TLV_DEBUG_LOCK:
618 version->debug_lock = tlv->val[0];
619 break;
620 case INTEL_TLV_MIN_FW:
621 version->min_fw_build_nn = tlv->val[0];
622 version->min_fw_build_cw = tlv->val[1];
623 version->min_fw_build_yy = tlv->val[2];
624 break;
625 case INTEL_TLV_LIMITED_CCE:
626 version->limited_cce = tlv->val[0];
627 break;
628 case INTEL_TLV_SBE_TYPE:
629 version->sbe_type = tlv->val[0];
630 break;
631 case INTEL_TLV_OTP_BDADDR:
632 memcpy(&version->otp_bd_addr, tlv->val,
633 sizeof(bdaddr_t));
634 break;
635 case INTEL_TLV_GIT_SHA1:
636 version->git_sha1 = get_unaligned_le32(tlv->val);
637 break;
638 case INTEL_TLV_FW_ID:
639 snprintf(version->fw_id, sizeof(version->fw_id),
640 "%s", tlv->val);
641 break;
642 default:
643 /* Ignore rest of information */
644 break;
645 }
646 /* consume the current tlv and move to next*/
647 skb_pull(skb, tlv->len + sizeof(*tlv));
648 }
649
650 return 0;
651}
652EXPORT_SYMBOL_GPL(btintel_parse_version_tlv);
653
654static int btintel_read_version_tlv(struct hci_dev *hdev,
655 struct intel_version_tlv *version)
656{
657 struct sk_buff *skb;
658 const u8 param[1] = { 0xFF };
659
660 if (!version)
661 return -EINVAL;
662
663 skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT);
664 if (IS_ERR(skb)) {
665 bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
666 PTR_ERR(skb));
667 return PTR_ERR(skb);
668 }
669
670 if (skb->data[0]) {
671 bt_dev_err(hdev, "Intel Read Version command failed (%02x)",
672 skb->data[0]);
673 kfree_skb(skb);
674 return -EIO;
675 }
676
677 btintel_parse_version_tlv(hdev, version, skb);
678
679 kfree_skb(skb);
680 return 0;
681}
682
683/* ------- REGMAP IBT SUPPORT ------- */
684
685#define IBT_REG_MODE_8BIT 0x00
686#define IBT_REG_MODE_16BIT 0x01
687#define IBT_REG_MODE_32BIT 0x02
688
689struct regmap_ibt_context {
690 struct hci_dev *hdev;
691 __u16 op_write;
692 __u16 op_read;
693};
694
695struct ibt_cp_reg_access {
696 __le32 addr;
697 __u8 mode;
698 __u8 len;
699 __u8 data[];
700} __packed;
701
702struct ibt_rp_reg_access {
703 __u8 status;
704 __le32 addr;
705 __u8 data[];
706} __packed;
707
708static int regmap_ibt_read(void *context, const void *addr, size_t reg_size,
709 void *val, size_t val_size)
710{
711 struct regmap_ibt_context *ctx = context;
712 struct ibt_cp_reg_access cp;
713 struct ibt_rp_reg_access *rp;
714 struct sk_buff *skb;
715 int err = 0;
716
717 if (reg_size != sizeof(__le32))
718 return -EINVAL;
719
720 switch (val_size) {
721 case 1:
722 cp.mode = IBT_REG_MODE_8BIT;
723 break;
724 case 2:
725 cp.mode = IBT_REG_MODE_16BIT;
726 break;
727 case 4:
728 cp.mode = IBT_REG_MODE_32BIT;
729 break;
730 default:
731 return -EINVAL;
732 }
733
734 /* regmap provides a little-endian formatted addr */
735 cp.addr = *(__le32 *)addr;
736 cp.len = val_size;
737
738 bt_dev_dbg(ctx->hdev, "Register (0x%x) read", le32_to_cpu(cp.addr));
739
740 skb = hci_cmd_sync(ctx->hdev, ctx->op_read, sizeof(cp), &cp,
741 HCI_CMD_TIMEOUT);
742 if (IS_ERR(skb)) {
743 err = PTR_ERR(skb);
744 bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error (%d)",
745 le32_to_cpu(cp.addr), err);
746 return err;
747 }
748
749 if (skb->len != sizeof(*rp) + val_size) {
750 bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad len",
751 le32_to_cpu(cp.addr));
752 err = -EINVAL;
753 goto done;
754 }
755
756 rp = (struct ibt_rp_reg_access *)skb->data;
757
758 if (rp->addr != cp.addr) {
759 bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad addr",
760 le32_to_cpu(rp->addr));
761 err = -EINVAL;
762 goto done;
763 }
764
765 memcpy(val, rp->data, val_size);
766
767done:
768 kfree_skb(skb);
769 return err;
770}
771
772static int regmap_ibt_gather_write(void *context,
773 const void *addr, size_t reg_size,
774 const void *val, size_t val_size)
775{
776 struct regmap_ibt_context *ctx = context;
777 struct ibt_cp_reg_access *cp;
778 struct sk_buff *skb;
779 int plen = sizeof(*cp) + val_size;
780 u8 mode;
781 int err = 0;
782
783 if (reg_size != sizeof(__le32))
784 return -EINVAL;
785
786 switch (val_size) {
787 case 1:
788 mode = IBT_REG_MODE_8BIT;
789 break;
790 case 2:
791 mode = IBT_REG_MODE_16BIT;
792 break;
793 case 4:
794 mode = IBT_REG_MODE_32BIT;
795 break;
796 default:
797 return -EINVAL;
798 }
799
800 cp = kmalloc(plen, GFP_KERNEL);
801 if (!cp)
802 return -ENOMEM;
803
804 /* regmap provides a little-endian formatted addr/value */
805 cp->addr = *(__le32 *)addr;
806 cp->mode = mode;
807 cp->len = val_size;
808 memcpy(&cp->data, val, val_size);
809
810 bt_dev_dbg(ctx->hdev, "Register (0x%x) write", le32_to_cpu(cp->addr));
811
812 skb = hci_cmd_sync(ctx->hdev, ctx->op_write, plen, cp, HCI_CMD_TIMEOUT);
813 if (IS_ERR(skb)) {
814 err = PTR_ERR(skb);
815 bt_dev_err(ctx->hdev, "regmap: Register (0x%x) write error (%d)",
816 le32_to_cpu(cp->addr), err);
817 goto done;
818 }
819 kfree_skb(skb);
820
821done:
822 kfree(cp);
823 return err;
824}
825
826static int regmap_ibt_write(void *context, const void *data, size_t count)
827{
828 /* data contains register+value, since we only support 32bit addr,
829 * minimum data size is 4 bytes.
830 */
831 if (WARN_ONCE(count < 4, "Invalid register access"))
832 return -EINVAL;
833
834 return regmap_ibt_gather_write(context, data, 4, data + 4, count - 4);
835}
836
837static void regmap_ibt_free_context(void *context)
838{
839 kfree(context);
840}
841
842static const struct regmap_bus regmap_ibt = {
843 .read = regmap_ibt_read,
844 .write = regmap_ibt_write,
845 .gather_write = regmap_ibt_gather_write,
846 .free_context = regmap_ibt_free_context,
847 .reg_format_endian_default = REGMAP_ENDIAN_LITTLE,
848 .val_format_endian_default = REGMAP_ENDIAN_LITTLE,
849};
850
851/* Config is the same for all register regions */
852static const struct regmap_config regmap_ibt_cfg = {
853 .name = "btintel_regmap",
854 .reg_bits = 32,
855 .val_bits = 32,
856};
857
858struct regmap *btintel_regmap_init(struct hci_dev *hdev, u16 opcode_read,
859 u16 opcode_write)
860{
861 struct regmap_ibt_context *ctx;
862
863 bt_dev_info(hdev, "regmap: Init R%x-W%x region", opcode_read,
864 opcode_write);
865
866 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
867 if (!ctx)
868 return ERR_PTR(-ENOMEM);
869
870 ctx->op_read = opcode_read;
871 ctx->op_write = opcode_write;
872 ctx->hdev = hdev;
873
874 return regmap_init(&hdev->dev, ®map_ibt, ctx, ®map_ibt_cfg);
875}
876EXPORT_SYMBOL_GPL(btintel_regmap_init);
877
878int btintel_send_intel_reset(struct hci_dev *hdev, u32 boot_param)
879{
880 struct intel_reset params = { 0x00, 0x01, 0x00, 0x01, 0x00000000 };
881 struct sk_buff *skb;
882
883 params.boot_param = cpu_to_le32(boot_param);
884
885 skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params), ¶ms,
886 HCI_INIT_TIMEOUT);
887 if (IS_ERR(skb)) {
888 bt_dev_err(hdev, "Failed to send Intel Reset command");
889 return PTR_ERR(skb);
890 }
891
892 kfree_skb(skb);
893
894 return 0;
895}
896EXPORT_SYMBOL_GPL(btintel_send_intel_reset);
897
898int btintel_read_boot_params(struct hci_dev *hdev,
899 struct intel_boot_params *params)
900{
901 struct sk_buff *skb;
902
903 skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_INIT_TIMEOUT);
904 if (IS_ERR(skb)) {
905 bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
906 PTR_ERR(skb));
907 return PTR_ERR(skb);
908 }
909
910 if (skb->len != sizeof(*params)) {
911 bt_dev_err(hdev, "Intel boot parameters size mismatch");
912 kfree_skb(skb);
913 return -EILSEQ;
914 }
915
916 memcpy(params, skb->data, sizeof(*params));
917
918 kfree_skb(skb);
919
920 if (params->status) {
921 bt_dev_err(hdev, "Intel boot parameters command failed (%02x)",
922 params->status);
923 return -bt_to_errno(params->status);
924 }
925
926 bt_dev_info(hdev, "Device revision is %u",
927 le16_to_cpu(params->dev_revid));
928
929 bt_dev_info(hdev, "Secure boot is %s",
930 params->secure_boot ? "enabled" : "disabled");
931
932 bt_dev_info(hdev, "OTP lock is %s",
933 params->otp_lock ? "enabled" : "disabled");
934
935 bt_dev_info(hdev, "API lock is %s",
936 params->api_lock ? "enabled" : "disabled");
937
938 bt_dev_info(hdev, "Debug lock is %s",
939 params->debug_lock ? "enabled" : "disabled");
940
941 bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
942 params->min_fw_build_nn, params->min_fw_build_cw,
943 2000 + params->min_fw_build_yy);
944
945 return 0;
946}
947EXPORT_SYMBOL_GPL(btintel_read_boot_params);
948
949static int btintel_sfi_rsa_header_secure_send(struct hci_dev *hdev,
950 const struct firmware *fw)
951{
952 int err;
953
954 /* Start the firmware download transaction with the Init fragment
955 * represented by the 128 bytes of CSS header.
956 */
957 err = btintel_secure_send(hdev, 0x00, 128, fw->data);
958 if (err < 0) {
959 bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
960 goto done;
961 }
962
963 /* Send the 256 bytes of public key information from the firmware
964 * as the PKey fragment.
965 */
966 err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
967 if (err < 0) {
968 bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err);
969 goto done;
970 }
971
972 /* Send the 256 bytes of signature information from the firmware
973 * as the Sign fragment.
974 */
975 err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
976 if (err < 0) {
977 bt_dev_err(hdev, "Failed to send firmware signature (%d)", err);
978 goto done;
979 }
980
981done:
982 return err;
983}
984
985static int btintel_sfi_ecdsa_header_secure_send(struct hci_dev *hdev,
986 const struct firmware *fw)
987{
988 int err;
989
990 /* Start the firmware download transaction with the Init fragment
991 * represented by the 128 bytes of CSS header.
992 */
993 err = btintel_secure_send(hdev, 0x00, 128, fw->data + 644);
994 if (err < 0) {
995 bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
996 return err;
997 }
998
999 /* Send the 96 bytes of public key information from the firmware
1000 * as the PKey fragment.
1001 */
1002 err = btintel_secure_send(hdev, 0x03, 96, fw->data + 644 + 128);
1003 if (err < 0) {
1004 bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err);
1005 return err;
1006 }
1007
1008 /* Send the 96 bytes of signature information from the firmware
1009 * as the Sign fragment
1010 */
1011 err = btintel_secure_send(hdev, 0x02, 96, fw->data + 644 + 224);
1012 if (err < 0) {
1013 bt_dev_err(hdev, "Failed to send firmware signature (%d)",
1014 err);
1015 return err;
1016 }
1017 return 0;
1018}
1019
1020static int btintel_download_firmware_payload(struct hci_dev *hdev,
1021 const struct firmware *fw,
1022 size_t offset)
1023{
1024 int err;
1025 const u8 *fw_ptr;
1026 u32 frag_len;
1027
1028 fw_ptr = fw->data + offset;
1029 frag_len = 0;
1030 err = -EINVAL;
1031
1032 while (fw_ptr - fw->data < fw->size) {
1033 struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
1034
1035 frag_len += sizeof(*cmd) + cmd->plen;
1036
1037 /* The parameter length of the secure send command requires
1038 * a 4 byte alignment. It happens so that the firmware file
1039 * contains proper Intel_NOP commands to align the fragments
1040 * as needed.
1041 *
1042 * Send set of commands with 4 byte alignment from the
1043 * firmware data buffer as a single Data fragment.
1044 */
1045 if (!(frag_len % 4)) {
1046 err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
1047 if (err < 0) {
1048 bt_dev_err(hdev,
1049 "Failed to send firmware data (%d)",
1050 err);
1051 goto done;
1052 }
1053
1054 fw_ptr += frag_len;
1055 frag_len = 0;
1056 }
1057 }
1058
1059done:
1060 return err;
1061}
1062
1063static bool btintel_firmware_version(struct hci_dev *hdev,
1064 u8 num, u8 ww, u8 yy,
1065 const struct firmware *fw,
1066 u32 *boot_addr)
1067{
1068 const u8 *fw_ptr;
1069
1070 fw_ptr = fw->data;
1071
1072 while (fw_ptr - fw->data < fw->size) {
1073 struct hci_command_hdr *cmd = (void *)(fw_ptr);
1074
1075 /* Each SKU has a different reset parameter to use in the
1076 * HCI_Intel_Reset command and it is embedded in the firmware
1077 * data. So, instead of using static value per SKU, check
1078 * the firmware data and save it for later use.
1079 */
1080 if (le16_to_cpu(cmd->opcode) == CMD_WRITE_BOOT_PARAMS) {
1081 struct cmd_write_boot_params *params;
1082
1083 params = (void *)(fw_ptr + sizeof(*cmd));
1084
1085 *boot_addr = le32_to_cpu(params->boot_addr);
1086
1087 bt_dev_info(hdev, "Boot Address: 0x%x", *boot_addr);
1088
1089 bt_dev_info(hdev, "Firmware Version: %u-%u.%u",
1090 params->fw_build_num, params->fw_build_ww,
1091 params->fw_build_yy);
1092
1093 return (num == params->fw_build_num &&
1094 ww == params->fw_build_ww &&
1095 yy == params->fw_build_yy);
1096 }
1097
1098 fw_ptr += sizeof(*cmd) + cmd->plen;
1099 }
1100
1101 return false;
1102}
1103
1104int btintel_download_firmware(struct hci_dev *hdev,
1105 struct intel_version *ver,
1106 const struct firmware *fw,
1107 u32 *boot_param)
1108{
1109 int err;
1110
1111 /* SfP and WsP don't seem to update the firmware version on file
1112 * so version checking is currently not possible.
1113 */
1114 switch (ver->hw_variant) {
1115 case 0x0b: /* SfP */
1116 case 0x0c: /* WsP */
1117 /* Skip version checking */
1118 break;
1119 default:
1120
1121 /* Skip download if firmware has the same version */
1122 if (btintel_firmware_version(hdev, ver->fw_build_num,
1123 ver->fw_build_ww, ver->fw_build_yy,
1124 fw, boot_param)) {
1125 bt_dev_info(hdev, "Firmware already loaded");
1126 /* Return -EALREADY to indicate that the firmware has
1127 * already been loaded.
1128 */
1129 return -EALREADY;
1130 }
1131 }
1132
1133 /* The firmware variant determines if the device is in bootloader
1134 * mode or is running operational firmware. The value 0x06 identifies
1135 * the bootloader and the value 0x23 identifies the operational
1136 * firmware.
1137 *
1138 * If the firmware version has changed that means it needs to be reset
1139 * to bootloader when operational so the new firmware can be loaded.
1140 */
1141 if (ver->fw_variant == 0x23)
1142 return -EINVAL;
1143
1144 err = btintel_sfi_rsa_header_secure_send(hdev, fw);
1145 if (err)
1146 return err;
1147
1148 return btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN);
1149}
1150EXPORT_SYMBOL_GPL(btintel_download_firmware);
1151
1152static int btintel_download_fw_tlv(struct hci_dev *hdev,
1153 struct intel_version_tlv *ver,
1154 const struct firmware *fw, u32 *boot_param,
1155 u8 hw_variant, u8 sbe_type)
1156{
1157 int err;
1158 u32 css_header_ver;
1159
1160 /* Skip download if firmware has the same version */
1161 if (btintel_firmware_version(hdev, ver->min_fw_build_nn,
1162 ver->min_fw_build_cw,
1163 ver->min_fw_build_yy,
1164 fw, boot_param)) {
1165 bt_dev_info(hdev, "Firmware already loaded");
1166 /* Return -EALREADY to indicate that firmware has
1167 * already been loaded.
1168 */
1169 return -EALREADY;
1170 }
1171
1172 /* The firmware variant determines if the device is in bootloader
1173 * mode or is running operational firmware. The value 0x01 identifies
1174 * the bootloader and the value 0x03 identifies the operational
1175 * firmware.
1176 *
1177 * If the firmware version has changed that means it needs to be reset
1178 * to bootloader when operational so the new firmware can be loaded.
1179 */
1180 if (ver->img_type == BTINTEL_IMG_OP)
1181 return -EINVAL;
1182
1183 /* iBT hardware variants 0x0b, 0x0c, 0x11, 0x12, 0x13, 0x14 support
1184 * only RSA secure boot engine. Hence, the corresponding sfi file will
1185 * have RSA header of 644 bytes followed by Command Buffer.
1186 *
1187 * iBT hardware variants 0x17, 0x18 onwards support both RSA and ECDSA
1188 * secure boot engine. As a result, the corresponding sfi file will
1189 * have RSA header of 644, ECDSA header of 320 bytes followed by
1190 * Command Buffer.
1191 *
1192 * CSS Header byte positions 0x08 to 0x0B represent the CSS Header
1193 * version: RSA(0x00010000) , ECDSA (0x00020000)
1194 */
1195 css_header_ver = get_unaligned_le32(fw->data + CSS_HEADER_OFFSET);
1196 if (css_header_ver != 0x00010000) {
1197 bt_dev_err(hdev, "Invalid CSS Header version");
1198 return -EINVAL;
1199 }
1200
1201 if (hw_variant <= 0x14) {
1202 if (sbe_type != 0x00) {
1203 bt_dev_err(hdev, "Invalid SBE type for hardware variant (%d)",
1204 hw_variant);
1205 return -EINVAL;
1206 }
1207
1208 err = btintel_sfi_rsa_header_secure_send(hdev, fw);
1209 if (err)
1210 return err;
1211
1212 err = btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN);
1213 if (err)
1214 return err;
1215 } else if (hw_variant >= 0x17) {
1216 /* Check if CSS header for ECDSA follows the RSA header */
1217 if (fw->data[ECDSA_OFFSET] != 0x06)
1218 return -EINVAL;
1219
1220 /* Check if the CSS Header version is ECDSA(0x00020000) */
1221 css_header_ver = get_unaligned_le32(fw->data + ECDSA_OFFSET + CSS_HEADER_OFFSET);
1222 if (css_header_ver != 0x00020000) {
1223 bt_dev_err(hdev, "Invalid CSS Header version");
1224 return -EINVAL;
1225 }
1226
1227 if (sbe_type == 0x00) {
1228 err = btintel_sfi_rsa_header_secure_send(hdev, fw);
1229 if (err)
1230 return err;
1231
1232 err = btintel_download_firmware_payload(hdev, fw,
1233 RSA_HEADER_LEN + ECDSA_HEADER_LEN);
1234 if (err)
1235 return err;
1236 } else if (sbe_type == 0x01) {
1237 err = btintel_sfi_ecdsa_header_secure_send(hdev, fw);
1238 if (err)
1239 return err;
1240
1241 err = btintel_download_firmware_payload(hdev, fw,
1242 RSA_HEADER_LEN + ECDSA_HEADER_LEN);
1243 if (err)
1244 return err;
1245 }
1246 }
1247 return 0;
1248}
1249
1250static void btintel_reset_to_bootloader(struct hci_dev *hdev)
1251{
1252 struct intel_reset params;
1253 struct sk_buff *skb;
1254
1255 /* PCIe transport uses shared hardware reset mechanism for recovery
1256 * which gets triggered in pcie *setup* function on error.
1257 */
1258 if (hdev->bus == HCI_PCI)
1259 return;
1260
1261 /* Send Intel Reset command. This will result in
1262 * re-enumeration of BT controller.
1263 *
1264 * Intel Reset parameter description:
1265 * reset_type : 0x00 (Soft reset),
1266 * 0x01 (Hard reset)
1267 * patch_enable : 0x00 (Do not enable),
1268 * 0x01 (Enable)
1269 * ddc_reload : 0x00 (Do not reload),
1270 * 0x01 (Reload)
1271 * boot_option: 0x00 (Current image),
1272 * 0x01 (Specified boot address)
1273 * boot_param: Boot address
1274 *
1275 */
1276
1277 params.reset_type = 0x01;
1278 params.patch_enable = 0x01;
1279 params.ddc_reload = 0x01;
1280 params.boot_option = 0x00;
1281 params.boot_param = cpu_to_le32(0x00000000);
1282
1283 skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params),
1284 ¶ms, HCI_INIT_TIMEOUT);
1285 if (IS_ERR(skb)) {
1286 bt_dev_err(hdev, "FW download error recovery failed (%ld)",
1287 PTR_ERR(skb));
1288 return;
1289 }
1290 bt_dev_info(hdev, "Intel reset sent to retry FW download");
1291 kfree_skb(skb);
1292
1293 /* Current Intel BT controllers(ThP/JfP) hold the USB reset
1294 * lines for 2ms when it receives Intel Reset in bootloader mode.
1295 * Whereas, the upcoming Intel BT controllers will hold USB reset
1296 * for 150ms. To keep the delay generic, 150ms is chosen here.
1297 */
1298 msleep(150);
1299}
1300
1301static int btintel_read_debug_features(struct hci_dev *hdev,
1302 struct intel_debug_features *features)
1303{
1304 struct sk_buff *skb;
1305 u8 page_no = 1;
1306
1307 /* Intel controller supports two pages, each page is of 128-bit
1308 * feature bit mask. And each bit defines specific feature support
1309 */
1310 skb = __hci_cmd_sync(hdev, 0xfca6, sizeof(page_no), &page_no,
1311 HCI_INIT_TIMEOUT);
1312 if (IS_ERR(skb)) {
1313 bt_dev_err(hdev, "Reading supported features failed (%ld)",
1314 PTR_ERR(skb));
1315 return PTR_ERR(skb);
1316 }
1317
1318 if (skb->len != (sizeof(features->page1) + 3)) {
1319 bt_dev_err(hdev, "Supported features event size mismatch");
1320 kfree_skb(skb);
1321 return -EILSEQ;
1322 }
1323
1324 memcpy(features->page1, skb->data + 3, sizeof(features->page1));
1325
1326 /* Read the supported features page2 if required in future.
1327 */
1328 kfree_skb(skb);
1329 return 0;
1330}
1331
1332static int btintel_set_debug_features(struct hci_dev *hdev,
1333 const struct intel_debug_features *features)
1334{
1335 u8 mask[11] = { 0x0a, 0x92, 0x02, 0x7f, 0x00, 0x00, 0x00, 0x00,
1336 0x00, 0x00, 0x00 };
1337 u8 period[5] = { 0x04, 0x91, 0x02, 0x05, 0x00 };
1338 u8 trace_enable = 0x02;
1339 struct sk_buff *skb;
1340
1341 if (!features) {
1342 bt_dev_warn(hdev, "Debug features not read");
1343 return -EINVAL;
1344 }
1345
1346 if (!(features->page1[0] & 0x3f)) {
1347 bt_dev_info(hdev, "Telemetry exception format not supported");
1348 return 0;
1349 }
1350
1351 skb = __hci_cmd_sync(hdev, 0xfc8b, 11, mask, HCI_INIT_TIMEOUT);
1352 if (IS_ERR(skb)) {
1353 bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)",
1354 PTR_ERR(skb));
1355 return PTR_ERR(skb);
1356 }
1357 kfree_skb(skb);
1358
1359 skb = __hci_cmd_sync(hdev, 0xfc8b, 5, period, HCI_INIT_TIMEOUT);
1360 if (IS_ERR(skb)) {
1361 bt_dev_err(hdev, "Setting periodicity for link statistics traces failed (%ld)",
1362 PTR_ERR(skb));
1363 return PTR_ERR(skb);
1364 }
1365 kfree_skb(skb);
1366
1367 skb = __hci_cmd_sync(hdev, 0xfca1, 1, &trace_enable, HCI_INIT_TIMEOUT);
1368 if (IS_ERR(skb)) {
1369 bt_dev_err(hdev, "Enable tracing of link statistics events failed (%ld)",
1370 PTR_ERR(skb));
1371 return PTR_ERR(skb);
1372 }
1373 kfree_skb(skb);
1374
1375 bt_dev_info(hdev, "set debug features: trace_enable 0x%02x mask 0x%02x",
1376 trace_enable, mask[3]);
1377
1378 return 0;
1379}
1380
1381static int btintel_reset_debug_features(struct hci_dev *hdev,
1382 const struct intel_debug_features *features)
1383{
1384 u8 mask[11] = { 0x0a, 0x92, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00,
1385 0x00, 0x00, 0x00 };
1386 u8 trace_enable = 0x00;
1387 struct sk_buff *skb;
1388
1389 if (!features) {
1390 bt_dev_warn(hdev, "Debug features not read");
1391 return -EINVAL;
1392 }
1393
1394 if (!(features->page1[0] & 0x3f)) {
1395 bt_dev_info(hdev, "Telemetry exception format not supported");
1396 return 0;
1397 }
1398
1399 /* Should stop the trace before writing ddc event mask. */
1400 skb = __hci_cmd_sync(hdev, 0xfca1, 1, &trace_enable, HCI_INIT_TIMEOUT);
1401 if (IS_ERR(skb)) {
1402 bt_dev_err(hdev, "Stop tracing of link statistics events failed (%ld)",
1403 PTR_ERR(skb));
1404 return PTR_ERR(skb);
1405 }
1406 kfree_skb(skb);
1407
1408 skb = __hci_cmd_sync(hdev, 0xfc8b, 11, mask, HCI_INIT_TIMEOUT);
1409 if (IS_ERR(skb)) {
1410 bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)",
1411 PTR_ERR(skb));
1412 return PTR_ERR(skb);
1413 }
1414 kfree_skb(skb);
1415
1416 bt_dev_info(hdev, "reset debug features: trace_enable 0x%02x mask 0x%02x",
1417 trace_enable, mask[3]);
1418
1419 return 0;
1420}
1421
1422int btintel_set_quality_report(struct hci_dev *hdev, bool enable)
1423{
1424 struct intel_debug_features features;
1425 int err;
1426
1427 bt_dev_dbg(hdev, "enable %d", enable);
1428
1429 /* Read the Intel supported features and if new exception formats
1430 * supported, need to load the additional DDC config to enable.
1431 */
1432 err = btintel_read_debug_features(hdev, &features);
1433 if (err)
1434 return err;
1435
1436 /* Set or reset the debug features. */
1437 if (enable)
1438 err = btintel_set_debug_features(hdev, &features);
1439 else
1440 err = btintel_reset_debug_features(hdev, &features);
1441
1442 return err;
1443}
1444EXPORT_SYMBOL_GPL(btintel_set_quality_report);
1445
1446static void btintel_coredump(struct hci_dev *hdev)
1447{
1448 struct sk_buff *skb;
1449
1450 skb = __hci_cmd_sync(hdev, 0xfc4e, 0, NULL, HCI_CMD_TIMEOUT);
1451 if (IS_ERR(skb)) {
1452 bt_dev_err(hdev, "Coredump failed (%ld)", PTR_ERR(skb));
1453 return;
1454 }
1455
1456 kfree_skb(skb);
1457}
1458
1459static void btintel_dmp_hdr(struct hci_dev *hdev, struct sk_buff *skb)
1460{
1461 char buf[80];
1462
1463 snprintf(buf, sizeof(buf), "Controller Name: 0x%X\n",
1464 coredump_info.hw_variant);
1465 skb_put_data(skb, buf, strlen(buf));
1466
1467 snprintf(buf, sizeof(buf), "Firmware Version: 0x%X\n",
1468 coredump_info.fw_build_num);
1469 skb_put_data(skb, buf, strlen(buf));
1470
1471 snprintf(buf, sizeof(buf), "Driver: %s\n", coredump_info.driver_name);
1472 skb_put_data(skb, buf, strlen(buf));
1473
1474 snprintf(buf, sizeof(buf), "Vendor: Intel\n");
1475 skb_put_data(skb, buf, strlen(buf));
1476}
1477
1478static int btintel_register_devcoredump_support(struct hci_dev *hdev)
1479{
1480 struct intel_debug_features features;
1481 int err;
1482
1483 err = btintel_read_debug_features(hdev, &features);
1484 if (err) {
1485 bt_dev_info(hdev, "Error reading debug features");
1486 return err;
1487 }
1488
1489 if (!(features.page1[0] & 0x3f)) {
1490 bt_dev_dbg(hdev, "Telemetry exception format not supported");
1491 return -EOPNOTSUPP;
1492 }
1493
1494 hci_devcd_register(hdev, btintel_coredump, btintel_dmp_hdr, NULL);
1495
1496 return err;
1497}
1498
1499static const struct firmware *btintel_legacy_rom_get_fw(struct hci_dev *hdev,
1500 struct intel_version *ver)
1501{
1502 const struct firmware *fw;
1503 char fwname[64];
1504 int ret;
1505
1506 snprintf(fwname, sizeof(fwname),
1507 "intel/ibt-hw-%x.%x.%x-fw-%x.%x.%x.%x.%x.bseq",
1508 ver->hw_platform, ver->hw_variant, ver->hw_revision,
1509 ver->fw_variant, ver->fw_revision, ver->fw_build_num,
1510 ver->fw_build_ww, ver->fw_build_yy);
1511
1512 ret = request_firmware(&fw, fwname, &hdev->dev);
1513 if (ret < 0) {
1514 if (ret == -EINVAL) {
1515 bt_dev_err(hdev, "Intel firmware file request failed (%d)",
1516 ret);
1517 return NULL;
1518 }
1519
1520 bt_dev_err(hdev, "failed to open Intel firmware file: %s (%d)",
1521 fwname, ret);
1522
1523 /* If the correct firmware patch file is not found, use the
1524 * default firmware patch file instead
1525 */
1526 snprintf(fwname, sizeof(fwname), "intel/ibt-hw-%x.%x.bseq",
1527 ver->hw_platform, ver->hw_variant);
1528 if (request_firmware(&fw, fwname, &hdev->dev) < 0) {
1529 bt_dev_err(hdev, "failed to open default fw file: %s",
1530 fwname);
1531 return NULL;
1532 }
1533 }
1534
1535 bt_dev_info(hdev, "Intel Bluetooth firmware file: %s", fwname);
1536
1537 return fw;
1538}
1539
1540static int btintel_legacy_rom_patching(struct hci_dev *hdev,
1541 const struct firmware *fw,
1542 const u8 **fw_ptr, int *disable_patch)
1543{
1544 struct sk_buff *skb;
1545 struct hci_command_hdr *cmd;
1546 const u8 *cmd_param;
1547 struct hci_event_hdr *evt = NULL;
1548 const u8 *evt_param = NULL;
1549 int remain = fw->size - (*fw_ptr - fw->data);
1550
1551 /* The first byte indicates the types of the patch command or event.
1552 * 0x01 means HCI command and 0x02 is HCI event. If the first bytes
1553 * in the current firmware buffer doesn't start with 0x01 or
1554 * the size of remain buffer is smaller than HCI command header,
1555 * the firmware file is corrupted and it should stop the patching
1556 * process.
1557 */
1558 if (remain > HCI_COMMAND_HDR_SIZE && *fw_ptr[0] != 0x01) {
1559 bt_dev_err(hdev, "Intel fw corrupted: invalid cmd read");
1560 return -EINVAL;
1561 }
1562 (*fw_ptr)++;
1563 remain--;
1564
1565 cmd = (struct hci_command_hdr *)(*fw_ptr);
1566 *fw_ptr += sizeof(*cmd);
1567 remain -= sizeof(*cmd);
1568
1569 /* Ensure that the remain firmware data is long enough than the length
1570 * of command parameter. If not, the firmware file is corrupted.
1571 */
1572 if (remain < cmd->plen) {
1573 bt_dev_err(hdev, "Intel fw corrupted: invalid cmd len");
1574 return -EFAULT;
1575 }
1576
1577 /* If there is a command that loads a patch in the firmware
1578 * file, then enable the patch upon success, otherwise just
1579 * disable the manufacturer mode, for example patch activation
1580 * is not required when the default firmware patch file is used
1581 * because there are no patch data to load.
1582 */
1583 if (*disable_patch && le16_to_cpu(cmd->opcode) == 0xfc8e)
1584 *disable_patch = 0;
1585
1586 cmd_param = *fw_ptr;
1587 *fw_ptr += cmd->plen;
1588 remain -= cmd->plen;
1589
1590 /* This reads the expected events when the above command is sent to the
1591 * device. Some vendor commands expects more than one events, for
1592 * example command status event followed by vendor specific event.
1593 * For this case, it only keeps the last expected event. so the command
1594 * can be sent with __hci_cmd_sync_ev() which returns the sk_buff of
1595 * last expected event.
1596 */
1597 while (remain > HCI_EVENT_HDR_SIZE && *fw_ptr[0] == 0x02) {
1598 (*fw_ptr)++;
1599 remain--;
1600
1601 evt = (struct hci_event_hdr *)(*fw_ptr);
1602 *fw_ptr += sizeof(*evt);
1603 remain -= sizeof(*evt);
1604
1605 if (remain < evt->plen) {
1606 bt_dev_err(hdev, "Intel fw corrupted: invalid evt len");
1607 return -EFAULT;
1608 }
1609
1610 evt_param = *fw_ptr;
1611 *fw_ptr += evt->plen;
1612 remain -= evt->plen;
1613 }
1614
1615 /* Every HCI commands in the firmware file has its correspond event.
1616 * If event is not found or remain is smaller than zero, the firmware
1617 * file is corrupted.
1618 */
1619 if (!evt || !evt_param || remain < 0) {
1620 bt_dev_err(hdev, "Intel fw corrupted: invalid evt read");
1621 return -EFAULT;
1622 }
1623
1624 skb = __hci_cmd_sync_ev(hdev, le16_to_cpu(cmd->opcode), cmd->plen,
1625 cmd_param, evt->evt, HCI_INIT_TIMEOUT);
1626 if (IS_ERR(skb)) {
1627 bt_dev_err(hdev, "sending Intel patch command (0x%4.4x) failed (%ld)",
1628 cmd->opcode, PTR_ERR(skb));
1629 return PTR_ERR(skb);
1630 }
1631
1632 /* It ensures that the returned event matches the event data read from
1633 * the firmware file. At fist, it checks the length and then
1634 * the contents of the event.
1635 */
1636 if (skb->len != evt->plen) {
1637 bt_dev_err(hdev, "mismatch event length (opcode 0x%4.4x)",
1638 le16_to_cpu(cmd->opcode));
1639 kfree_skb(skb);
1640 return -EFAULT;
1641 }
1642
1643 if (memcmp(skb->data, evt_param, evt->plen)) {
1644 bt_dev_err(hdev, "mismatch event parameter (opcode 0x%4.4x)",
1645 le16_to_cpu(cmd->opcode));
1646 kfree_skb(skb);
1647 return -EFAULT;
1648 }
1649 kfree_skb(skb);
1650
1651 return 0;
1652}
1653
1654static int btintel_legacy_rom_setup(struct hci_dev *hdev,
1655 struct intel_version *ver)
1656{
1657 const struct firmware *fw;
1658 const u8 *fw_ptr;
1659 int disable_patch, err;
1660 struct intel_version new_ver;
1661
1662 BT_DBG("%s", hdev->name);
1663
1664 /* fw_patch_num indicates the version of patch the device currently
1665 * have. If there is no patch data in the device, it is always 0x00.
1666 * So, if it is other than 0x00, no need to patch the device again.
1667 */
1668 if (ver->fw_patch_num) {
1669 bt_dev_info(hdev,
1670 "Intel device is already patched. patch num: %02x",
1671 ver->fw_patch_num);
1672 goto complete;
1673 }
1674
1675 /* Opens the firmware patch file based on the firmware version read
1676 * from the controller. If it fails to open the matching firmware
1677 * patch file, it tries to open the default firmware patch file.
1678 * If no patch file is found, allow the device to operate without
1679 * a patch.
1680 */
1681 fw = btintel_legacy_rom_get_fw(hdev, ver);
1682 if (!fw)
1683 goto complete;
1684 fw_ptr = fw->data;
1685
1686 /* Enable the manufacturer mode of the controller.
1687 * Only while this mode is enabled, the driver can download the
1688 * firmware patch data and configuration parameters.
1689 */
1690 err = btintel_enter_mfg(hdev);
1691 if (err) {
1692 release_firmware(fw);
1693 return err;
1694 }
1695
1696 disable_patch = 1;
1697
1698 /* The firmware data file consists of list of Intel specific HCI
1699 * commands and its expected events. The first byte indicates the
1700 * type of the message, either HCI command or HCI event.
1701 *
1702 * It reads the command and its expected event from the firmware file,
1703 * and send to the controller. Once __hci_cmd_sync_ev() returns,
1704 * the returned event is compared with the event read from the firmware
1705 * file and it will continue until all the messages are downloaded to
1706 * the controller.
1707 *
1708 * Once the firmware patching is completed successfully,
1709 * the manufacturer mode is disabled with reset and activating the
1710 * downloaded patch.
1711 *
1712 * If the firmware patching fails, the manufacturer mode is
1713 * disabled with reset and deactivating the patch.
1714 *
1715 * If the default patch file is used, no reset is done when disabling
1716 * the manufacturer.
1717 */
1718 while (fw->size > fw_ptr - fw->data) {
1719 int ret;
1720
1721 ret = btintel_legacy_rom_patching(hdev, fw, &fw_ptr,
1722 &disable_patch);
1723 if (ret < 0)
1724 goto exit_mfg_deactivate;
1725 }
1726
1727 release_firmware(fw);
1728
1729 if (disable_patch)
1730 goto exit_mfg_disable;
1731
1732 /* Patching completed successfully and disable the manufacturer mode
1733 * with reset and activate the downloaded firmware patches.
1734 */
1735 err = btintel_exit_mfg(hdev, true, true);
1736 if (err)
1737 return err;
1738
1739 /* Need build number for downloaded fw patches in
1740 * every power-on boot
1741 */
1742 err = btintel_read_version(hdev, &new_ver);
1743 if (err)
1744 return err;
1745
1746 bt_dev_info(hdev, "Intel BT fw patch 0x%02x completed & activated",
1747 new_ver.fw_patch_num);
1748
1749 goto complete;
1750
1751exit_mfg_disable:
1752 /* Disable the manufacturer mode without reset */
1753 err = btintel_exit_mfg(hdev, false, false);
1754 if (err)
1755 return err;
1756
1757 bt_dev_info(hdev, "Intel firmware patch completed");
1758
1759 goto complete;
1760
1761exit_mfg_deactivate:
1762 release_firmware(fw);
1763
1764 /* Patching failed. Disable the manufacturer mode with reset and
1765 * deactivate the downloaded firmware patches.
1766 */
1767 err = btintel_exit_mfg(hdev, true, false);
1768 if (err)
1769 return err;
1770
1771 bt_dev_info(hdev, "Intel firmware patch completed and deactivated");
1772
1773complete:
1774 /* Set the event mask for Intel specific vendor events. This enables
1775 * a few extra events that are useful during general operation.
1776 */
1777 btintel_set_event_mask_mfg(hdev, false);
1778
1779 btintel_check_bdaddr(hdev);
1780
1781 return 0;
1782}
1783
1784static int btintel_download_wait(struct hci_dev *hdev, ktime_t calltime, int msec)
1785{
1786 ktime_t delta, rettime;
1787 unsigned long long duration;
1788 int err;
1789
1790 btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
1791
1792 bt_dev_info(hdev, "Waiting for firmware download to complete");
1793
1794 err = btintel_wait_on_flag_timeout(hdev, INTEL_DOWNLOADING,
1795 TASK_INTERRUPTIBLE,
1796 msecs_to_jiffies(msec));
1797 if (err == -EINTR) {
1798 bt_dev_err(hdev, "Firmware loading interrupted");
1799 return err;
1800 }
1801
1802 if (err) {
1803 bt_dev_err(hdev, "Firmware loading timeout");
1804 return -ETIMEDOUT;
1805 }
1806
1807 if (btintel_test_flag(hdev, INTEL_FIRMWARE_FAILED)) {
1808 bt_dev_err(hdev, "Firmware loading failed");
1809 return -ENOEXEC;
1810 }
1811
1812 rettime = ktime_get();
1813 delta = ktime_sub(rettime, calltime);
1814 duration = (unsigned long long)ktime_to_ns(delta) >> 10;
1815
1816 bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
1817
1818 return 0;
1819}
1820
1821static int btintel_boot_wait(struct hci_dev *hdev, ktime_t calltime, int msec)
1822{
1823 ktime_t delta, rettime;
1824 unsigned long long duration;
1825 int err;
1826
1827 bt_dev_info(hdev, "Waiting for device to boot");
1828
1829 err = btintel_wait_on_flag_timeout(hdev, INTEL_BOOTING,
1830 TASK_INTERRUPTIBLE,
1831 msecs_to_jiffies(msec));
1832 if (err == -EINTR) {
1833 bt_dev_err(hdev, "Device boot interrupted");
1834 return -EINTR;
1835 }
1836
1837 if (err) {
1838 bt_dev_err(hdev, "Device boot timeout");
1839 return -ETIMEDOUT;
1840 }
1841
1842 rettime = ktime_get();
1843 delta = ktime_sub(rettime, calltime);
1844 duration = (unsigned long long) ktime_to_ns(delta) >> 10;
1845
1846 bt_dev_info(hdev, "Device booted in %llu usecs", duration);
1847
1848 return 0;
1849}
1850
1851static int btintel_boot_wait_d0(struct hci_dev *hdev, ktime_t calltime,
1852 int msec)
1853{
1854 ktime_t delta, rettime;
1855 unsigned long long duration;
1856 int err;
1857
1858 bt_dev_info(hdev, "Waiting for device transition to d0");
1859
1860 err = btintel_wait_on_flag_timeout(hdev, INTEL_WAIT_FOR_D0,
1861 TASK_INTERRUPTIBLE,
1862 msecs_to_jiffies(msec));
1863 if (err == -EINTR) {
1864 bt_dev_err(hdev, "Device d0 move interrupted");
1865 return -EINTR;
1866 }
1867
1868 if (err) {
1869 bt_dev_err(hdev, "Device d0 move timeout");
1870 return -ETIMEDOUT;
1871 }
1872
1873 rettime = ktime_get();
1874 delta = ktime_sub(rettime, calltime);
1875 duration = (unsigned long long)ktime_to_ns(delta) >> 10;
1876
1877 bt_dev_info(hdev, "Device moved to D0 in %llu usecs", duration);
1878
1879 return 0;
1880}
1881
1882static int btintel_boot(struct hci_dev *hdev, u32 boot_addr)
1883{
1884 ktime_t calltime;
1885 int err;
1886
1887 calltime = ktime_get();
1888
1889 btintel_set_flag(hdev, INTEL_BOOTING);
1890 btintel_set_flag(hdev, INTEL_WAIT_FOR_D0);
1891
1892 err = btintel_send_intel_reset(hdev, boot_addr);
1893 if (err) {
1894 bt_dev_err(hdev, "Intel Soft Reset failed (%d)", err);
1895 btintel_reset_to_bootloader(hdev);
1896 return err;
1897 }
1898
1899 /* The bootloader will not indicate when the device is ready. This
1900 * is done by the operational firmware sending bootup notification.
1901 *
1902 * Booting into operational firmware should not take longer than
1903 * 5 second. However if that happens, then just fail the setup
1904 * since something went wrong.
1905 */
1906 err = btintel_boot_wait(hdev, calltime, 5000);
1907 if (err == -ETIMEDOUT) {
1908 btintel_reset_to_bootloader(hdev);
1909 goto exit_error;
1910 }
1911
1912 if (hdev->bus == HCI_PCI) {
1913 /* In case of PCIe, after receiving bootup event, driver performs
1914 * D0 entry by writing 0 to sleep control register (check
1915 * btintel_pcie_recv_event())
1916 * Firmware acks with alive interrupt indicating host is full ready to
1917 * perform BT operation. Lets wait here till INTEL_WAIT_FOR_D0
1918 * bit is cleared.
1919 */
1920 calltime = ktime_get();
1921 err = btintel_boot_wait_d0(hdev, calltime, 2000);
1922 }
1923
1924exit_error:
1925 return err;
1926}
1927
1928static int btintel_get_fw_name(struct intel_version *ver,
1929 struct intel_boot_params *params,
1930 char *fw_name, size_t len,
1931 const char *suffix)
1932{
1933 switch (ver->hw_variant) {
1934 case 0x0b: /* SfP */
1935 case 0x0c: /* WsP */
1936 snprintf(fw_name, len, "intel/ibt-%u-%u.%s",
1937 ver->hw_variant,
1938 le16_to_cpu(params->dev_revid),
1939 suffix);
1940 break;
1941 case 0x11: /* JfP */
1942 case 0x12: /* ThP */
1943 case 0x13: /* HrP */
1944 case 0x14: /* CcP */
1945 snprintf(fw_name, len, "intel/ibt-%u-%u-%u.%s",
1946 ver->hw_variant,
1947 ver->hw_revision,
1948 ver->fw_revision,
1949 suffix);
1950 break;
1951 default:
1952 return -EINVAL;
1953 }
1954
1955 return 0;
1956}
1957
1958static int btintel_download_fw(struct hci_dev *hdev,
1959 struct intel_version *ver,
1960 struct intel_boot_params *params,
1961 u32 *boot_param)
1962{
1963 const struct firmware *fw;
1964 char fwname[64];
1965 int err;
1966 ktime_t calltime;
1967
1968 if (!ver || !params)
1969 return -EINVAL;
1970
1971 /* The firmware variant determines if the device is in bootloader
1972 * mode or is running operational firmware. The value 0x06 identifies
1973 * the bootloader and the value 0x23 identifies the operational
1974 * firmware.
1975 *
1976 * When the operational firmware is already present, then only
1977 * the check for valid Bluetooth device address is needed. This
1978 * determines if the device will be added as configured or
1979 * unconfigured controller.
1980 *
1981 * It is not possible to use the Secure Boot Parameters in this
1982 * case since that command is only available in bootloader mode.
1983 */
1984 if (ver->fw_variant == 0x23) {
1985 btintel_clear_flag(hdev, INTEL_BOOTLOADER);
1986 btintel_check_bdaddr(hdev);
1987
1988 /* SfP and WsP don't seem to update the firmware version on file
1989 * so version checking is currently possible.
1990 */
1991 switch (ver->hw_variant) {
1992 case 0x0b: /* SfP */
1993 case 0x0c: /* WsP */
1994 return 0;
1995 }
1996
1997 /* Proceed to download to check if the version matches */
1998 goto download;
1999 }
2000
2001 /* Read the secure boot parameters to identify the operating
2002 * details of the bootloader.
2003 */
2004 err = btintel_read_boot_params(hdev, params);
2005 if (err)
2006 return err;
2007
2008 /* It is required that every single firmware fragment is acknowledged
2009 * with a command complete event. If the boot parameters indicate
2010 * that this bootloader does not send them, then abort the setup.
2011 */
2012 if (params->limited_cce != 0x00) {
2013 bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
2014 params->limited_cce);
2015 return -EINVAL;
2016 }
2017
2018 /* If the OTP has no valid Bluetooth device address, then there will
2019 * also be no valid address for the operational firmware.
2020 */
2021 if (!bacmp(¶ms->otp_bdaddr, BDADDR_ANY)) {
2022 bt_dev_info(hdev, "No device address configured");
2023 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
2024 }
2025
2026download:
2027 /* With this Intel bootloader only the hardware variant and device
2028 * revision information are used to select the right firmware for SfP
2029 * and WsP.
2030 *
2031 * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
2032 *
2033 * Currently the supported hardware variants are:
2034 * 11 (0x0b) for iBT3.0 (LnP/SfP)
2035 * 12 (0x0c) for iBT3.5 (WsP)
2036 *
2037 * For ThP/JfP and for future SKU's, the FW name varies based on HW
2038 * variant, HW revision and FW revision, as these are dependent on CNVi
2039 * and RF Combination.
2040 *
2041 * 17 (0x11) for iBT3.5 (JfP)
2042 * 18 (0x12) for iBT3.5 (ThP)
2043 *
2044 * The firmware file name for these will be
2045 * ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi.
2046 *
2047 */
2048 err = btintel_get_fw_name(ver, params, fwname, sizeof(fwname), "sfi");
2049 if (err < 0) {
2050 if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
2051 /* Firmware has already been loaded */
2052 btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2053 return 0;
2054 }
2055
2056 bt_dev_err(hdev, "Unsupported Intel firmware naming");
2057 return -EINVAL;
2058 }
2059
2060 err = firmware_request_nowarn(&fw, fwname, &hdev->dev);
2061 if (err < 0) {
2062 if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
2063 /* Firmware has already been loaded */
2064 btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2065 return 0;
2066 }
2067
2068 bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)",
2069 fwname, err);
2070 return err;
2071 }
2072
2073 bt_dev_info(hdev, "Found device firmware: %s", fwname);
2074
2075 if (fw->size < 644) {
2076 bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
2077 fw->size);
2078 err = -EBADF;
2079 goto done;
2080 }
2081
2082 calltime = ktime_get();
2083
2084 btintel_set_flag(hdev, INTEL_DOWNLOADING);
2085
2086 /* Start firmware downloading and get boot parameter */
2087 err = btintel_download_firmware(hdev, ver, fw, boot_param);
2088 if (err < 0) {
2089 if (err == -EALREADY) {
2090 /* Firmware has already been loaded */
2091 btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2092 err = 0;
2093 goto done;
2094 }
2095
2096 /* When FW download fails, send Intel Reset to retry
2097 * FW download.
2098 */
2099 btintel_reset_to_bootloader(hdev);
2100 goto done;
2101 }
2102
2103 /* Before switching the device into operational mode and with that
2104 * booting the loaded firmware, wait for the bootloader notification
2105 * that all fragments have been successfully received.
2106 *
2107 * When the event processing receives the notification, then the
2108 * INTEL_DOWNLOADING flag will be cleared.
2109 *
2110 * The firmware loading should not take longer than 5 seconds
2111 * and thus just timeout if that happens and fail the setup
2112 * of this device.
2113 */
2114 err = btintel_download_wait(hdev, calltime, 5000);
2115 if (err == -ETIMEDOUT)
2116 btintel_reset_to_bootloader(hdev);
2117
2118done:
2119 release_firmware(fw);
2120 return err;
2121}
2122
2123static int btintel_bootloader_setup(struct hci_dev *hdev,
2124 struct intel_version *ver)
2125{
2126 struct intel_version new_ver;
2127 struct intel_boot_params params;
2128 u32 boot_param;
2129 char ddcname[64];
2130 int err;
2131
2132 BT_DBG("%s", hdev->name);
2133
2134 /* Set the default boot parameter to 0x0 and it is updated to
2135 * SKU specific boot parameter after reading Intel_Write_Boot_Params
2136 * command while downloading the firmware.
2137 */
2138 boot_param = 0x00000000;
2139
2140 btintel_set_flag(hdev, INTEL_BOOTLOADER);
2141
2142 err = btintel_download_fw(hdev, ver, ¶ms, &boot_param);
2143 if (err)
2144 return err;
2145
2146 /* controller is already having an operational firmware */
2147 if (ver->fw_variant == 0x23)
2148 goto finish;
2149
2150 err = btintel_boot(hdev, boot_param);
2151 if (err)
2152 return err;
2153
2154 btintel_clear_flag(hdev, INTEL_BOOTLOADER);
2155
2156 err = btintel_get_fw_name(ver, ¶ms, ddcname,
2157 sizeof(ddcname), "ddc");
2158
2159 if (err < 0) {
2160 bt_dev_err(hdev, "Unsupported Intel firmware naming");
2161 } else {
2162 /* Once the device is running in operational mode, it needs to
2163 * apply the device configuration (DDC) parameters.
2164 *
2165 * The device can work without DDC parameters, so even if it
2166 * fails to load the file, no need to fail the setup.
2167 */
2168 btintel_load_ddc_config(hdev, ddcname);
2169 }
2170
2171 hci_dev_clear_flag(hdev, HCI_QUALITY_REPORT);
2172
2173 /* Read the Intel version information after loading the FW */
2174 err = btintel_read_version(hdev, &new_ver);
2175 if (err)
2176 return err;
2177
2178 btintel_version_info(hdev, &new_ver);
2179
2180finish:
2181 /* Set the event mask for Intel specific vendor events. This enables
2182 * a few extra events that are useful during general operation. It
2183 * does not enable any debugging related events.
2184 *
2185 * The device will function correctly without these events enabled
2186 * and thus no need to fail the setup.
2187 */
2188 btintel_set_event_mask(hdev, false);
2189
2190 return 0;
2191}
2192
2193static void btintel_get_fw_name_tlv(const struct intel_version_tlv *ver,
2194 char *fw_name, size_t len,
2195 const char *suffix)
2196{
2197 const char *format;
2198 u32 cnvi, cnvr;
2199
2200 cnvi = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvi_top),
2201 INTEL_CNVX_TOP_STEP(ver->cnvi_top));
2202
2203 cnvr = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvr_top),
2204 INTEL_CNVX_TOP_STEP(ver->cnvr_top));
2205
2206 /* Only Blazar product supports downloading of intermediate loader
2207 * image
2208 */
2209 if (INTEL_HW_VARIANT(ver->cnvi_bt) >= 0x1e) {
2210 u8 zero[BTINTEL_FWID_MAXLEN];
2211
2212 if (ver->img_type == BTINTEL_IMG_BOOTLOADER) {
2213 format = "intel/ibt-%04x-%04x-iml.%s";
2214 snprintf(fw_name, len, format, cnvi, cnvr, suffix);
2215 return;
2216 }
2217
2218 memset(zero, 0, sizeof(zero));
2219
2220 /* ibt-<cnvi_top type+cnvi_top step>-<cnvr_top type+cnvr_top step-fw_id> */
2221 if (memcmp(ver->fw_id, zero, sizeof(zero))) {
2222 format = "intel/ibt-%04x-%04x-%s.%s";
2223 snprintf(fw_name, len, format, cnvi, cnvr,
2224 ver->fw_id, suffix);
2225 return;
2226 }
2227 /* If firmware id is not present, fallback to legacy naming
2228 * convention
2229 */
2230 }
2231 /* Fallback to legacy naming convention for other controllers
2232 * ibt-<cnvi_top type+cnvi_top step>-<cnvr_top type+cnvr_top step>
2233 */
2234 format = "intel/ibt-%04x-%04x.%s";
2235 snprintf(fw_name, len, format, cnvi, cnvr, suffix);
2236}
2237
2238static void btintel_get_iml_tlv(const struct intel_version_tlv *ver,
2239 char *fw_name, size_t len,
2240 const char *suffix)
2241{
2242 const char *format;
2243 u32 cnvi, cnvr;
2244
2245 cnvi = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvi_top),
2246 INTEL_CNVX_TOP_STEP(ver->cnvi_top));
2247
2248 cnvr = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvr_top),
2249 INTEL_CNVX_TOP_STEP(ver->cnvr_top));
2250
2251 format = "intel/ibt-%04x-%04x-iml.%s";
2252 snprintf(fw_name, len, format, cnvi, cnvr, suffix);
2253}
2254
2255static int btintel_prepare_fw_download_tlv(struct hci_dev *hdev,
2256 struct intel_version_tlv *ver,
2257 u32 *boot_param)
2258{
2259 const struct firmware *fw;
2260 char fwname[128];
2261 int err;
2262 ktime_t calltime;
2263
2264 if (!ver || !boot_param)
2265 return -EINVAL;
2266
2267 /* The firmware variant determines if the device is in bootloader
2268 * mode or is running operational firmware. The value 0x03 identifies
2269 * the bootloader and the value 0x23 identifies the operational
2270 * firmware.
2271 *
2272 * When the operational firmware is already present, then only
2273 * the check for valid Bluetooth device address is needed. This
2274 * determines if the device will be added as configured or
2275 * unconfigured controller.
2276 *
2277 * It is not possible to use the Secure Boot Parameters in this
2278 * case since that command is only available in bootloader mode.
2279 */
2280 if (ver->img_type == BTINTEL_IMG_OP) {
2281 btintel_clear_flag(hdev, INTEL_BOOTLOADER);
2282 btintel_check_bdaddr(hdev);
2283 } else {
2284 /*
2285 * Check for valid bd address in boot loader mode. Device
2286 * will be marked as unconfigured if empty bd address is
2287 * found.
2288 */
2289 if (!bacmp(&ver->otp_bd_addr, BDADDR_ANY)) {
2290 bt_dev_info(hdev, "No device address configured");
2291 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
2292 }
2293 }
2294
2295 if (ver->img_type == BTINTEL_IMG_OP) {
2296 /* Controller running OP image. In case of FW downgrade,
2297 * FWID TLV may not be present and driver may attempt to load
2298 * firmware image which doesn't exist. Lets compare the version
2299 * of IML image
2300 */
2301 if (INTEL_HW_VARIANT(ver->cnvi_bt) >= 0x1e)
2302 btintel_get_iml_tlv(ver, fwname, sizeof(fwname), "sfi");
2303 else
2304 btintel_get_fw_name_tlv(ver, fwname, sizeof(fwname), "sfi");
2305 } else {
2306 btintel_get_fw_name_tlv(ver, fwname, sizeof(fwname), "sfi");
2307 }
2308
2309 err = firmware_request_nowarn(&fw, fwname, &hdev->dev);
2310 if (err < 0) {
2311 if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
2312 /* Firmware has already been loaded */
2313 btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2314 return 0;
2315 }
2316
2317 bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)",
2318 fwname, err);
2319
2320 return err;
2321 }
2322
2323 bt_dev_info(hdev, "Found device firmware: %s", fwname);
2324
2325 if (fw->size < 644) {
2326 bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
2327 fw->size);
2328 err = -EBADF;
2329 goto done;
2330 }
2331
2332 calltime = ktime_get();
2333
2334 btintel_set_flag(hdev, INTEL_DOWNLOADING);
2335
2336 /* Start firmware downloading and get boot parameter */
2337 err = btintel_download_fw_tlv(hdev, ver, fw, boot_param,
2338 INTEL_HW_VARIANT(ver->cnvi_bt),
2339 ver->sbe_type);
2340 if (err < 0) {
2341 if (err == -EALREADY) {
2342 /* Firmware has already been loaded */
2343 btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2344 err = 0;
2345 goto done;
2346 }
2347
2348 /* When FW download fails, send Intel Reset to retry
2349 * FW download.
2350 */
2351 btintel_reset_to_bootloader(hdev);
2352 goto done;
2353 }
2354
2355 /* Before switching the device into operational mode and with that
2356 * booting the loaded firmware, wait for the bootloader notification
2357 * that all fragments have been successfully received.
2358 *
2359 * When the event processing receives the notification, then the
2360 * BTUSB_DOWNLOADING flag will be cleared.
2361 *
2362 * The firmware loading should not take longer than 5 seconds
2363 * and thus just timeout if that happens and fail the setup
2364 * of this device.
2365 */
2366 err = btintel_download_wait(hdev, calltime, 5000);
2367 if (err == -ETIMEDOUT)
2368 btintel_reset_to_bootloader(hdev);
2369
2370done:
2371 release_firmware(fw);
2372 return err;
2373}
2374
2375static int btintel_get_codec_config_data(struct hci_dev *hdev,
2376 __u8 link, struct bt_codec *codec,
2377 __u8 *ven_len, __u8 **ven_data)
2378{
2379 int err = 0;
2380
2381 if (!ven_data || !ven_len)
2382 return -EINVAL;
2383
2384 *ven_len = 0;
2385 *ven_data = NULL;
2386
2387 if (link != ESCO_LINK) {
2388 bt_dev_err(hdev, "Invalid link type(%u)", link);
2389 return -EINVAL;
2390 }
2391
2392 *ven_data = kmalloc(sizeof(__u8), GFP_KERNEL);
2393 if (!*ven_data) {
2394 err = -ENOMEM;
2395 goto error;
2396 }
2397
2398 /* supports only CVSD and mSBC offload codecs */
2399 switch (codec->id) {
2400 case 0x02:
2401 **ven_data = 0x00;
2402 break;
2403 case 0x05:
2404 **ven_data = 0x01;
2405 break;
2406 default:
2407 err = -EINVAL;
2408 bt_dev_err(hdev, "Invalid codec id(%u)", codec->id);
2409 goto error;
2410 }
2411 /* codec and its capabilities are pre-defined to ids
2412 * preset id = 0x00 represents CVSD codec with sampling rate 8K
2413 * preset id = 0x01 represents mSBC codec with sampling rate 16K
2414 */
2415 *ven_len = sizeof(__u8);
2416 return err;
2417
2418error:
2419 kfree(*ven_data);
2420 *ven_data = NULL;
2421 return err;
2422}
2423
2424static int btintel_get_data_path_id(struct hci_dev *hdev, __u8 *data_path_id)
2425{
2426 /* Intel uses 1 as data path id for all the usecases */
2427 *data_path_id = 1;
2428 return 0;
2429}
2430
2431static int btintel_configure_offload(struct hci_dev *hdev)
2432{
2433 struct sk_buff *skb;
2434 int err = 0;
2435 struct intel_offload_use_cases *use_cases;
2436
2437 skb = __hci_cmd_sync(hdev, 0xfc86, 0, NULL, HCI_INIT_TIMEOUT);
2438 if (IS_ERR(skb)) {
2439 bt_dev_err(hdev, "Reading offload use cases failed (%ld)",
2440 PTR_ERR(skb));
2441 return PTR_ERR(skb);
2442 }
2443
2444 if (skb->len < sizeof(*use_cases)) {
2445 err = -EIO;
2446 goto error;
2447 }
2448
2449 use_cases = (void *)skb->data;
2450
2451 if (use_cases->status) {
2452 err = -bt_to_errno(skb->data[0]);
2453 goto error;
2454 }
2455
2456 if (use_cases->preset[0] & 0x03) {
2457 hdev->get_data_path_id = btintel_get_data_path_id;
2458 hdev->get_codec_config_data = btintel_get_codec_config_data;
2459 }
2460error:
2461 kfree_skb(skb);
2462 return err;
2463}
2464
2465static void btintel_set_ppag(struct hci_dev *hdev, struct intel_version_tlv *ver)
2466{
2467 struct sk_buff *skb;
2468 struct hci_ppag_enable_cmd ppag_cmd;
2469 acpi_handle handle;
2470 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
2471 union acpi_object *p, *elements;
2472 u32 domain, mode;
2473 acpi_status status;
2474
2475 /* PPAG is not supported if CRF is HrP2, Jfp2, JfP1 */
2476 switch (ver->cnvr_top & 0xFFF) {
2477 case 0x504: /* Hrp2 */
2478 case 0x202: /* Jfp2 */
2479 case 0x201: /* Jfp1 */
2480 bt_dev_dbg(hdev, "PPAG not supported for Intel CNVr (0x%3x)",
2481 ver->cnvr_top & 0xFFF);
2482 return;
2483 }
2484
2485 handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev));
2486 if (!handle) {
2487 bt_dev_info(hdev, "No support for BT device in ACPI firmware");
2488 return;
2489 }
2490
2491 status = acpi_evaluate_object(handle, "PPAG", NULL, &buffer);
2492 if (ACPI_FAILURE(status)) {
2493 if (status == AE_NOT_FOUND) {
2494 bt_dev_dbg(hdev, "PPAG-BT: ACPI entry not found");
2495 return;
2496 }
2497 bt_dev_warn(hdev, "PPAG-BT: ACPI Failure: %s", acpi_format_exception(status));
2498 return;
2499 }
2500
2501 p = buffer.pointer;
2502 if (p->type != ACPI_TYPE_PACKAGE || p->package.count != 2) {
2503 bt_dev_warn(hdev, "PPAG-BT: Invalid object type: %d or package count: %d",
2504 p->type, p->package.count);
2505 kfree(buffer.pointer);
2506 return;
2507 }
2508
2509 elements = p->package.elements;
2510
2511 /* PPAG table is located at element[1] */
2512 p = &elements[1];
2513
2514 domain = (u32)p->package.elements[0].integer.value;
2515 mode = (u32)p->package.elements[1].integer.value;
2516 kfree(buffer.pointer);
2517
2518 if (domain != 0x12) {
2519 bt_dev_dbg(hdev, "PPAG-BT: Bluetooth domain is disabled in ACPI firmware");
2520 return;
2521 }
2522
2523 /* PPAG mode
2524 * BIT 0 : 0 Disabled in EU
2525 * 1 Enabled in EU
2526 * BIT 1 : 0 Disabled in China
2527 * 1 Enabled in China
2528 */
2529 mode &= 0x03;
2530
2531 if (!mode) {
2532 bt_dev_dbg(hdev, "PPAG-BT: EU, China mode are disabled in BIOS");
2533 return;
2534 }
2535
2536 ppag_cmd.ppag_enable_flags = cpu_to_le32(mode);
2537
2538 skb = __hci_cmd_sync(hdev, INTEL_OP_PPAG_CMD, sizeof(ppag_cmd),
2539 &ppag_cmd, HCI_CMD_TIMEOUT);
2540 if (IS_ERR(skb)) {
2541 bt_dev_warn(hdev, "Failed to send PPAG Enable (%ld)", PTR_ERR(skb));
2542 return;
2543 }
2544 bt_dev_info(hdev, "PPAG-BT: Enabled (Mode %d)", mode);
2545 kfree_skb(skb);
2546}
2547
2548static int btintel_acpi_reset_method(struct hci_dev *hdev)
2549{
2550 int ret = 0;
2551 acpi_status status;
2552 union acpi_object *p, *ref;
2553 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2554
2555 status = acpi_evaluate_object(ACPI_HANDLE(GET_HCIDEV_DEV(hdev)), "_PRR", NULL, &buffer);
2556 if (ACPI_FAILURE(status)) {
2557 bt_dev_err(hdev, "Failed to run _PRR method");
2558 ret = -ENODEV;
2559 return ret;
2560 }
2561 p = buffer.pointer;
2562
2563 if (p->package.count != 1 || p->type != ACPI_TYPE_PACKAGE) {
2564 bt_dev_err(hdev, "Invalid arguments");
2565 ret = -EINVAL;
2566 goto exit_on_error;
2567 }
2568
2569 ref = &p->package.elements[0];
2570 if (ref->type != ACPI_TYPE_LOCAL_REFERENCE) {
2571 bt_dev_err(hdev, "Invalid object type: 0x%x", ref->type);
2572 ret = -EINVAL;
2573 goto exit_on_error;
2574 }
2575
2576 status = acpi_evaluate_object(ref->reference.handle, "_RST", NULL, NULL);
2577 if (ACPI_FAILURE(status)) {
2578 bt_dev_err(hdev, "Failed to run_RST method");
2579 ret = -ENODEV;
2580 goto exit_on_error;
2581 }
2582
2583exit_on_error:
2584 kfree(buffer.pointer);
2585 return ret;
2586}
2587
2588static void btintel_set_dsm_reset_method(struct hci_dev *hdev,
2589 struct intel_version_tlv *ver_tlv)
2590{
2591 struct btintel_data *data = hci_get_priv(hdev);
2592 acpi_handle handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev));
2593 u8 reset_payload[4] = {0x01, 0x00, 0x01, 0x00};
2594 union acpi_object *obj, argv4;
2595 enum {
2596 RESET_TYPE_WDISABLE2,
2597 RESET_TYPE_VSEC
2598 };
2599
2600 handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev));
2601
2602 if (!handle) {
2603 bt_dev_dbg(hdev, "No support for bluetooth device in ACPI firmware");
2604 return;
2605 }
2606
2607 if (!acpi_has_method(handle, "_PRR")) {
2608 bt_dev_err(hdev, "No support for _PRR ACPI method");
2609 return;
2610 }
2611
2612 switch (ver_tlv->cnvi_top & 0xfff) {
2613 case 0x910: /* GalePeak2 */
2614 reset_payload[2] = RESET_TYPE_VSEC;
2615 break;
2616 default:
2617 /* WDISABLE2 is the default reset method */
2618 reset_payload[2] = RESET_TYPE_WDISABLE2;
2619
2620 if (!acpi_check_dsm(handle, &btintel_guid_dsm, 0,
2621 BIT(DSM_SET_WDISABLE2_DELAY))) {
2622 bt_dev_err(hdev, "No dsm support to set reset delay");
2623 return;
2624 }
2625 argv4.integer.type = ACPI_TYPE_INTEGER;
2626 /* delay required to toggle BT power */
2627 argv4.integer.value = 160;
2628 obj = acpi_evaluate_dsm(handle, &btintel_guid_dsm, 0,
2629 DSM_SET_WDISABLE2_DELAY, &argv4);
2630 if (!obj) {
2631 bt_dev_err(hdev, "Failed to call dsm to set reset delay");
2632 return;
2633 }
2634 ACPI_FREE(obj);
2635 }
2636
2637 bt_dev_info(hdev, "DSM reset method type: 0x%02x", reset_payload[2]);
2638
2639 if (!acpi_check_dsm(handle, &btintel_guid_dsm, 0,
2640 DSM_SET_RESET_METHOD)) {
2641 bt_dev_warn(hdev, "No support for dsm to set reset method");
2642 return;
2643 }
2644 argv4.buffer.type = ACPI_TYPE_BUFFER;
2645 argv4.buffer.length = sizeof(reset_payload);
2646 argv4.buffer.pointer = reset_payload;
2647
2648 obj = acpi_evaluate_dsm(handle, &btintel_guid_dsm, 0,
2649 DSM_SET_RESET_METHOD, &argv4);
2650 if (!obj) {
2651 bt_dev_err(hdev, "Failed to call dsm to set reset method");
2652 return;
2653 }
2654 ACPI_FREE(obj);
2655 data->acpi_reset_method = btintel_acpi_reset_method;
2656}
2657
2658#define BTINTEL_ISODATA_HANDLE_BASE 0x900
2659
2660static u8 btintel_classify_pkt_type(struct hci_dev *hdev, struct sk_buff *skb)
2661{
2662 /*
2663 * Distinguish ISO data packets form ACL data packets
2664 * based on their connection handle value range.
2665 */
2666 if (hci_skb_pkt_type(skb) == HCI_ACLDATA_PKT) {
2667 __u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle);
2668
2669 if (hci_handle(handle) >= BTINTEL_ISODATA_HANDLE_BASE)
2670 return HCI_ISODATA_PKT;
2671 }
2672
2673 return hci_skb_pkt_type(skb);
2674}
2675
2676/*
2677 * UefiCnvCommonDSBR UEFI variable provides information from the OEM platforms
2678 * if they have replaced the BRI (Bluetooth Radio Interface) resistor to
2679 * overcome the potential STEP errors on their designs. Based on the
2680 * configauration, bluetooth firmware shall adjust the BRI response line drive
2681 * strength. The below structure represents DSBR data.
2682 * struct {
2683 * u8 header;
2684 * u32 dsbr;
2685 * } __packed;
2686 *
2687 * header - defines revision number of the structure
2688 * dsbr - defines drive strength BRI response
2689 * bit0
2690 * 0 - instructs bluetooth firmware to use default values
2691 * 1 - instructs bluetooth firmware to override default values
2692 * bit3:1
2693 * Reserved
2694 * bit7:4
2695 * DSBR override values (only if bit0 is set. Default value is 0xF
2696 * bit31:7
2697 * Reserved
2698 * Expected values for dsbr field:
2699 * 1. 0xF1 - indicates that the resistor on board is 33 Ohm
2700 * 2. 0x00 or 0xB1 - indicates that the resistor on board is 10 Ohm
2701 * 3. Non existing UEFI variable or invalid (none of the above) - indicates
2702 * that the resistor on board is 10 Ohm
2703 * Even if uefi variable is not present, driver shall send 0xfc0a command to
2704 * firmware to use default values.
2705 *
2706 */
2707static int btintel_uefi_get_dsbr(u32 *dsbr_var)
2708{
2709 struct btintel_dsbr {
2710 u8 header;
2711 u32 dsbr;
2712 } __packed data;
2713
2714 efi_status_t status;
2715 unsigned long data_size = 0;
2716 efi_guid_t guid = EFI_GUID(0xe65d8884, 0xd4af, 0x4b20, 0x8d, 0x03,
2717 0x77, 0x2e, 0xcc, 0x3d, 0xa5, 0x31);
2718
2719 if (!IS_ENABLED(CONFIG_EFI))
2720 return -EOPNOTSUPP;
2721
2722 if (!efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE))
2723 return -EOPNOTSUPP;
2724
2725 status = efi.get_variable(BTINTEL_EFI_DSBR, &guid, NULL, &data_size,
2726 NULL);
2727
2728 if (status != EFI_BUFFER_TOO_SMALL || !data_size)
2729 return -EIO;
2730
2731 status = efi.get_variable(BTINTEL_EFI_DSBR, &guid, NULL, &data_size,
2732 &data);
2733
2734 if (status != EFI_SUCCESS)
2735 return -ENXIO;
2736
2737 *dsbr_var = data.dsbr;
2738 return 0;
2739}
2740
2741static int btintel_set_dsbr(struct hci_dev *hdev, struct intel_version_tlv *ver)
2742{
2743 struct btintel_dsbr_cmd {
2744 u8 enable;
2745 u8 dsbr;
2746 } __packed;
2747
2748 struct btintel_dsbr_cmd cmd;
2749 struct sk_buff *skb;
2750 u32 dsbr, cnvi;
2751 u8 status;
2752 int err;
2753
2754 cnvi = ver->cnvi_top & 0xfff;
2755 /* DSBR command needs to be sent for,
2756 * 1. BlazarI or BlazarIW + B0 step product in IML image.
2757 * 2. Gale Peak2 or BlazarU in OP image.
2758 */
2759
2760 switch (cnvi) {
2761 case BTINTEL_CNVI_BLAZARI:
2762 case BTINTEL_CNVI_BLAZARIW:
2763 if (ver->img_type == BTINTEL_IMG_IML &&
2764 INTEL_CNVX_TOP_STEP(ver->cnvi_top) == 0x01)
2765 break;
2766 return 0;
2767 case BTINTEL_CNVI_GAP:
2768 case BTINTEL_CNVI_BLAZARU:
2769 if (ver->img_type == BTINTEL_IMG_OP &&
2770 hdev->bus == HCI_USB)
2771 break;
2772 return 0;
2773 default:
2774 return 0;
2775 }
2776
2777 dsbr = 0;
2778 err = btintel_uefi_get_dsbr(&dsbr);
2779 if (err < 0)
2780 bt_dev_dbg(hdev, "Error reading efi: %ls (%d)",
2781 BTINTEL_EFI_DSBR, err);
2782
2783 cmd.enable = dsbr & BIT(0);
2784 cmd.dsbr = dsbr >> 4 & 0xF;
2785
2786 bt_dev_info(hdev, "dsbr: enable: 0x%2.2x value: 0x%2.2x", cmd.enable,
2787 cmd.dsbr);
2788
2789 skb = __hci_cmd_sync(hdev, 0xfc0a, sizeof(cmd), &cmd, HCI_CMD_TIMEOUT);
2790 if (IS_ERR(skb))
2791 return -bt_to_errno(PTR_ERR(skb));
2792
2793 status = skb->data[0];
2794 kfree_skb(skb);
2795
2796 if (status)
2797 return -bt_to_errno(status);
2798
2799 return 0;
2800}
2801
2802int btintel_bootloader_setup_tlv(struct hci_dev *hdev,
2803 struct intel_version_tlv *ver)
2804{
2805 u32 boot_param;
2806 char ddcname[64];
2807 int err;
2808 struct intel_version_tlv new_ver;
2809
2810 bt_dev_dbg(hdev, "");
2811
2812 /* Set the default boot parameter to 0x0 and it is updated to
2813 * SKU specific boot parameter after reading Intel_Write_Boot_Params
2814 * command while downloading the firmware.
2815 */
2816 boot_param = 0x00000000;
2817
2818 /* In case of PCIe, this function might get called multiple times with
2819 * same hdev instance if there is any error on firmware download.
2820 * Need to clear stale bits of previous firmware download attempt.
2821 */
2822 for (int i = 0; i < __INTEL_NUM_FLAGS; i++)
2823 btintel_clear_flag(hdev, i);
2824
2825 btintel_set_flag(hdev, INTEL_BOOTLOADER);
2826
2827 err = btintel_prepare_fw_download_tlv(hdev, ver, &boot_param);
2828 if (err)
2829 return err;
2830
2831 /* check if controller is already having an operational firmware */
2832 if (ver->img_type == BTINTEL_IMG_OP)
2833 goto finish;
2834
2835 err = btintel_boot(hdev, boot_param);
2836 if (err)
2837 return err;
2838
2839 err = btintel_read_version_tlv(hdev, ver);
2840 if (err)
2841 return err;
2842
2843 /* set drive strength of BRI response */
2844 err = btintel_set_dsbr(hdev, ver);
2845 if (err) {
2846 bt_dev_err(hdev, "Failed to send dsbr command (%d)", err);
2847 return err;
2848 }
2849
2850 /* If image type returned is BTINTEL_IMG_IML, then controller supports
2851 * intermediate loader image
2852 */
2853 if (ver->img_type == BTINTEL_IMG_IML) {
2854 err = btintel_prepare_fw_download_tlv(hdev, ver, &boot_param);
2855 if (err)
2856 return err;
2857
2858 err = btintel_boot(hdev, boot_param);
2859 if (err)
2860 return err;
2861 }
2862
2863 btintel_clear_flag(hdev, INTEL_BOOTLOADER);
2864
2865 btintel_get_fw_name_tlv(ver, ddcname, sizeof(ddcname), "ddc");
2866 /* Once the device is running in operational mode, it needs to
2867 * apply the device configuration (DDC) parameters.
2868 *
2869 * The device can work without DDC parameters, so even if it
2870 * fails to load the file, no need to fail the setup.
2871 */
2872 btintel_load_ddc_config(hdev, ddcname);
2873
2874 /* Read supported use cases and set callbacks to fetch datapath id */
2875 btintel_configure_offload(hdev);
2876
2877 hci_dev_clear_flag(hdev, HCI_QUALITY_REPORT);
2878
2879 /* Set PPAG feature */
2880 btintel_set_ppag(hdev, ver);
2881
2882 /* Read the Intel version information after loading the FW */
2883 err = btintel_read_version_tlv(hdev, &new_ver);
2884 if (err)
2885 return err;
2886
2887 btintel_version_info_tlv(hdev, &new_ver);
2888
2889finish:
2890 /* Set the event mask for Intel specific vendor events. This enables
2891 * a few extra events that are useful during general operation. It
2892 * does not enable any debugging related events.
2893 *
2894 * The device will function correctly without these events enabled
2895 * and thus no need to fail the setup.
2896 */
2897 btintel_set_event_mask(hdev, false);
2898
2899 return 0;
2900}
2901EXPORT_SYMBOL_GPL(btintel_bootloader_setup_tlv);
2902
2903void btintel_set_msft_opcode(struct hci_dev *hdev, u8 hw_variant)
2904{
2905 switch (hw_variant) {
2906 /* Legacy bootloader devices that supports MSFT Extension */
2907 case 0x11: /* JfP */
2908 case 0x12: /* ThP */
2909 case 0x13: /* HrP */
2910 case 0x14: /* CcP */
2911 /* All Intel new generation controllers support the Microsoft vendor
2912 * extension are using 0xFC1E for VsMsftOpCode.
2913 */
2914 case 0x17:
2915 case 0x18:
2916 case 0x19:
2917 case 0x1b:
2918 case 0x1c:
2919 case 0x1d:
2920 case 0x1e:
2921 hci_set_msft_opcode(hdev, 0xFC1E);
2922 break;
2923 default:
2924 /* Not supported */
2925 break;
2926 }
2927}
2928EXPORT_SYMBOL_GPL(btintel_set_msft_opcode);
2929
2930void btintel_print_fseq_info(struct hci_dev *hdev)
2931{
2932 struct sk_buff *skb;
2933 u8 *p;
2934 u32 val;
2935 const char *str;
2936
2937 skb = __hci_cmd_sync(hdev, 0xfcb3, 0, NULL, HCI_CMD_TIMEOUT);
2938 if (IS_ERR(skb)) {
2939 bt_dev_dbg(hdev, "Reading fseq status command failed (%ld)",
2940 PTR_ERR(skb));
2941 return;
2942 }
2943
2944 if (skb->len < (sizeof(u32) * 16 + 2)) {
2945 bt_dev_dbg(hdev, "Malformed packet of length %u received",
2946 skb->len);
2947 kfree_skb(skb);
2948 return;
2949 }
2950
2951 p = skb_pull_data(skb, 1);
2952 if (*p) {
2953 bt_dev_dbg(hdev, "Failed to get fseq status (0x%2.2x)", *p);
2954 kfree_skb(skb);
2955 return;
2956 }
2957
2958 p = skb_pull_data(skb, 1);
2959 switch (*p) {
2960 case 0:
2961 str = "Success";
2962 break;
2963 case 1:
2964 str = "Fatal error";
2965 break;
2966 case 2:
2967 str = "Semaphore acquire error";
2968 break;
2969 default:
2970 str = "Unknown error";
2971 break;
2972 }
2973
2974 if (*p) {
2975 bt_dev_err(hdev, "Fseq status: %s (0x%2.2x)", str, *p);
2976 kfree_skb(skb);
2977 return;
2978 }
2979
2980 bt_dev_info(hdev, "Fseq status: %s (0x%2.2x)", str, *p);
2981
2982 val = get_unaligned_le32(skb_pull_data(skb, 4));
2983 bt_dev_dbg(hdev, "Reason: 0x%8.8x", val);
2984
2985 val = get_unaligned_le32(skb_pull_data(skb, 4));
2986 bt_dev_dbg(hdev, "Global version: 0x%8.8x", val);
2987
2988 val = get_unaligned_le32(skb_pull_data(skb, 4));
2989 bt_dev_dbg(hdev, "Installed version: 0x%8.8x", val);
2990
2991 p = skb->data;
2992 skb_pull_data(skb, 4);
2993 bt_dev_info(hdev, "Fseq executed: %2.2u.%2.2u.%2.2u.%2.2u", p[0], p[1],
2994 p[2], p[3]);
2995
2996 p = skb->data;
2997 skb_pull_data(skb, 4);
2998 bt_dev_info(hdev, "Fseq BT Top: %2.2u.%2.2u.%2.2u.%2.2u", p[0], p[1],
2999 p[2], p[3]);
3000
3001 val = get_unaligned_le32(skb_pull_data(skb, 4));
3002 bt_dev_dbg(hdev, "Fseq Top init version: 0x%8.8x", val);
3003
3004 val = get_unaligned_le32(skb_pull_data(skb, 4));
3005 bt_dev_dbg(hdev, "Fseq Cnvio init version: 0x%8.8x", val);
3006
3007 val = get_unaligned_le32(skb_pull_data(skb, 4));
3008 bt_dev_dbg(hdev, "Fseq MBX Wifi file version: 0x%8.8x", val);
3009
3010 val = get_unaligned_le32(skb_pull_data(skb, 4));
3011 bt_dev_dbg(hdev, "Fseq BT version: 0x%8.8x", val);
3012
3013 val = get_unaligned_le32(skb_pull_data(skb, 4));
3014 bt_dev_dbg(hdev, "Fseq Top reset address: 0x%8.8x", val);
3015
3016 val = get_unaligned_le32(skb_pull_data(skb, 4));
3017 bt_dev_dbg(hdev, "Fseq MBX timeout: 0x%8.8x", val);
3018
3019 val = get_unaligned_le32(skb_pull_data(skb, 4));
3020 bt_dev_dbg(hdev, "Fseq MBX ack: 0x%8.8x", val);
3021
3022 val = get_unaligned_le32(skb_pull_data(skb, 4));
3023 bt_dev_dbg(hdev, "Fseq CNVi id: 0x%8.8x", val);
3024
3025 val = get_unaligned_le32(skb_pull_data(skb, 4));
3026 bt_dev_dbg(hdev, "Fseq CNVr id: 0x%8.8x", val);
3027
3028 val = get_unaligned_le32(skb_pull_data(skb, 4));
3029 bt_dev_dbg(hdev, "Fseq Error handle: 0x%8.8x", val);
3030
3031 val = get_unaligned_le32(skb_pull_data(skb, 4));
3032 bt_dev_dbg(hdev, "Fseq Magic noalive indication: 0x%8.8x", val);
3033
3034 val = get_unaligned_le32(skb_pull_data(skb, 4));
3035 bt_dev_dbg(hdev, "Fseq OTP version: 0x%8.8x", val);
3036
3037 val = get_unaligned_le32(skb_pull_data(skb, 4));
3038 bt_dev_dbg(hdev, "Fseq MBX otp version: 0x%8.8x", val);
3039
3040 kfree_skb(skb);
3041}
3042EXPORT_SYMBOL_GPL(btintel_print_fseq_info);
3043
3044static int btintel_setup_combined(struct hci_dev *hdev)
3045{
3046 const u8 param[1] = { 0xFF };
3047 struct intel_version ver;
3048 struct intel_version_tlv ver_tlv;
3049 struct sk_buff *skb;
3050 int err;
3051
3052 BT_DBG("%s", hdev->name);
3053
3054 /* The some controllers have a bug with the first HCI command sent to it
3055 * returning number of completed commands as zero. This would stall the
3056 * command processing in the Bluetooth core.
3057 *
3058 * As a workaround, send HCI Reset command first which will reset the
3059 * number of completed commands and allow normal command processing
3060 * from now on.
3061 *
3062 * Regarding the INTEL_BROKEN_SHUTDOWN_LED flag, these devices maybe
3063 * in the SW_RFKILL ON state as a workaround of fixing LED issue during
3064 * the shutdown() procedure, and once the device is in SW_RFKILL ON
3065 * state, the only way to exit out of it is sending the HCI_Reset
3066 * command.
3067 */
3068 if (btintel_test_flag(hdev, INTEL_BROKEN_INITIAL_NCMD) ||
3069 btintel_test_flag(hdev, INTEL_BROKEN_SHUTDOWN_LED)) {
3070 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
3071 HCI_INIT_TIMEOUT);
3072 if (IS_ERR(skb)) {
3073 bt_dev_err(hdev,
3074 "sending initial HCI reset failed (%ld)",
3075 PTR_ERR(skb));
3076 return PTR_ERR(skb);
3077 }
3078 kfree_skb(skb);
3079 }
3080
3081 /* Starting from TyP device, the command parameter and response are
3082 * changed even though the OCF for HCI_Intel_Read_Version command
3083 * remains same. The legacy devices can handle even if the
3084 * command has a parameter and returns a correct version information.
3085 * So, it uses new format to support both legacy and new format.
3086 */
3087 skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT);
3088 if (IS_ERR(skb)) {
3089 bt_dev_err(hdev, "Reading Intel version command failed (%ld)",
3090 PTR_ERR(skb));
3091 return PTR_ERR(skb);
3092 }
3093
3094 /* Check the status */
3095 if (skb->data[0]) {
3096 bt_dev_err(hdev, "Intel Read Version command failed (%02x)",
3097 skb->data[0]);
3098 err = -EIO;
3099 goto exit_error;
3100 }
3101
3102 /* Apply the common HCI quirks for Intel device */
3103 set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks);
3104 set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
3105 set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks);
3106
3107 /* Set up the quality report callback for Intel devices */
3108 hdev->set_quality_report = btintel_set_quality_report;
3109
3110 /* For Legacy device, check the HW platform value and size */
3111 if (skb->len == sizeof(ver) && skb->data[1] == 0x37) {
3112 bt_dev_dbg(hdev, "Read the legacy Intel version information");
3113
3114 memcpy(&ver, skb->data, sizeof(ver));
3115
3116 /* Display version information */
3117 btintel_version_info(hdev, &ver);
3118
3119 /* Check for supported iBT hardware variants of this firmware
3120 * loading method.
3121 *
3122 * This check has been put in place to ensure correct forward
3123 * compatibility options when newer hardware variants come
3124 * along.
3125 */
3126 switch (ver.hw_variant) {
3127 case 0x07: /* WP */
3128 case 0x08: /* StP */
3129 /* Legacy ROM product */
3130 btintel_set_flag(hdev, INTEL_ROM_LEGACY);
3131
3132 /* Apply the device specific HCI quirks
3133 *
3134 * WBS for SdP - For the Legacy ROM products, only SdP
3135 * supports the WBS. But the version information is not
3136 * enough to use here because the StP2 and SdP have same
3137 * hw_variant and fw_variant. So, this flag is set by
3138 * the transport driver (btusb) based on the HW info
3139 * (idProduct)
3140 */
3141 if (!btintel_test_flag(hdev,
3142 INTEL_ROM_LEGACY_NO_WBS_SUPPORT))
3143 set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
3144 &hdev->quirks);
3145
3146 err = btintel_legacy_rom_setup(hdev, &ver);
3147 break;
3148 case 0x0b: /* SfP */
3149 case 0x11: /* JfP */
3150 case 0x12: /* ThP */
3151 case 0x13: /* HrP */
3152 case 0x14: /* CcP */
3153 fallthrough;
3154 case 0x0c: /* WsP */
3155 /* Apply the device specific HCI quirks
3156 *
3157 * All Legacy bootloader devices support WBS
3158 */
3159 set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
3160 &hdev->quirks);
3161
3162 /* These variants don't seem to support LE Coded PHY */
3163 set_bit(HCI_QUIRK_BROKEN_LE_CODED, &hdev->quirks);
3164
3165 /* Setup MSFT Extension support */
3166 btintel_set_msft_opcode(hdev, ver.hw_variant);
3167
3168 err = btintel_bootloader_setup(hdev, &ver);
3169 btintel_register_devcoredump_support(hdev);
3170 break;
3171 default:
3172 bt_dev_err(hdev, "Unsupported Intel hw variant (%u)",
3173 ver.hw_variant);
3174 err = -EINVAL;
3175 }
3176
3177 hci_set_hw_info(hdev,
3178 "INTEL platform=%u variant=%u revision=%u",
3179 ver.hw_platform, ver.hw_variant,
3180 ver.hw_revision);
3181
3182 goto exit_error;
3183 }
3184
3185 /* memset ver_tlv to start with clean state as few fields are exclusive
3186 * to bootloader mode and are not populated in operational mode
3187 */
3188 memset(&ver_tlv, 0, sizeof(ver_tlv));
3189 /* For TLV type device, parse the tlv data */
3190 err = btintel_parse_version_tlv(hdev, &ver_tlv, skb);
3191 if (err) {
3192 bt_dev_err(hdev, "Failed to parse TLV version information");
3193 goto exit_error;
3194 }
3195
3196 if (INTEL_HW_PLATFORM(ver_tlv.cnvi_bt) != 0x37) {
3197 bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)",
3198 INTEL_HW_PLATFORM(ver_tlv.cnvi_bt));
3199 err = -EINVAL;
3200 goto exit_error;
3201 }
3202
3203 /* Check for supported iBT hardware variants of this firmware
3204 * loading method.
3205 *
3206 * This check has been put in place to ensure correct forward
3207 * compatibility options when newer hardware variants come
3208 * along.
3209 */
3210 switch (INTEL_HW_VARIANT(ver_tlv.cnvi_bt)) {
3211 case 0x11: /* JfP */
3212 case 0x12: /* ThP */
3213 case 0x13: /* HrP */
3214 case 0x14: /* CcP */
3215 /* Some legacy bootloader devices starting from JfP,
3216 * the operational firmware supports both old and TLV based
3217 * HCI_Intel_Read_Version command based on the command
3218 * parameter.
3219 *
3220 * For upgrading firmware case, the TLV based version cannot
3221 * be used because the firmware filename for legacy bootloader
3222 * is based on the old format.
3223 *
3224 * Also, it is not easy to convert TLV based version from the
3225 * legacy version format.
3226 *
3227 * So, as a workaround for those devices, use the legacy
3228 * HCI_Intel_Read_Version to get the version information and
3229 * run the legacy bootloader setup.
3230 */
3231 err = btintel_read_version(hdev, &ver);
3232 if (err)
3233 break;
3234
3235 /* Apply the device specific HCI quirks
3236 *
3237 * All Legacy bootloader devices support WBS
3238 */
3239 set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks);
3240
3241 /* These variants don't seem to support LE Coded PHY */
3242 set_bit(HCI_QUIRK_BROKEN_LE_CODED, &hdev->quirks);
3243
3244 /* Setup MSFT Extension support */
3245 btintel_set_msft_opcode(hdev, ver.hw_variant);
3246
3247 err = btintel_bootloader_setup(hdev, &ver);
3248 btintel_register_devcoredump_support(hdev);
3249 break;
3250 case 0x18: /* GfP2 */
3251 case 0x1c: /* GaP */
3252 /* Re-classify packet type for controllers with LE audio */
3253 hdev->classify_pkt_type = btintel_classify_pkt_type;
3254 fallthrough;
3255 case 0x17:
3256 case 0x19:
3257 case 0x1b:
3258 case 0x1d:
3259 case 0x1e:
3260 /* Display version information of TLV type */
3261 btintel_version_info_tlv(hdev, &ver_tlv);
3262
3263 /* Apply the device specific HCI quirks for TLV based devices
3264 *
3265 * All TLV based devices support WBS
3266 */
3267 set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks);
3268
3269 /* Setup MSFT Extension support */
3270 btintel_set_msft_opcode(hdev,
3271 INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
3272 btintel_set_dsm_reset_method(hdev, &ver_tlv);
3273
3274 err = btintel_bootloader_setup_tlv(hdev, &ver_tlv);
3275 if (err)
3276 goto exit_error;
3277
3278 btintel_register_devcoredump_support(hdev);
3279 btintel_print_fseq_info(hdev);
3280 break;
3281 default:
3282 bt_dev_err(hdev, "Unsupported Intel hw variant (%u)",
3283 INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
3284 err = -EINVAL;
3285 break;
3286 }
3287
3288 hci_set_hw_info(hdev, "INTEL platform=%u variant=%u",
3289 INTEL_HW_PLATFORM(ver_tlv.cnvi_bt),
3290 INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
3291
3292exit_error:
3293 kfree_skb(skb);
3294
3295 return err;
3296}
3297
3298int btintel_shutdown_combined(struct hci_dev *hdev)
3299{
3300 struct sk_buff *skb;
3301 int ret;
3302
3303 /* Send HCI Reset to the controller to stop any BT activity which
3304 * were triggered. This will help to save power and maintain the
3305 * sync b/w Host and controller
3306 */
3307 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
3308 if (IS_ERR(skb)) {
3309 bt_dev_err(hdev, "HCI reset during shutdown failed");
3310 return PTR_ERR(skb);
3311 }
3312 kfree_skb(skb);
3313
3314
3315 /* Some platforms have an issue with BT LED when the interface is
3316 * down or BT radio is turned off, which takes 5 seconds to BT LED
3317 * goes off. As a workaround, sends HCI_Intel_SW_RFKILL to put the
3318 * device in the RFKILL ON state which turns off the BT LED immediately.
3319 */
3320 if (btintel_test_flag(hdev, INTEL_BROKEN_SHUTDOWN_LED)) {
3321 skb = __hci_cmd_sync(hdev, 0xfc3f, 0, NULL, HCI_INIT_TIMEOUT);
3322 if (IS_ERR(skb)) {
3323 ret = PTR_ERR(skb);
3324 bt_dev_err(hdev, "turning off Intel device LED failed");
3325 return ret;
3326 }
3327 kfree_skb(skb);
3328 }
3329
3330 return 0;
3331}
3332EXPORT_SYMBOL_GPL(btintel_shutdown_combined);
3333
3334int btintel_configure_setup(struct hci_dev *hdev, const char *driver_name)
3335{
3336 hdev->manufacturer = 2;
3337 hdev->setup = btintel_setup_combined;
3338 hdev->shutdown = btintel_shutdown_combined;
3339 hdev->hw_error = btintel_hw_error;
3340 hdev->set_diag = btintel_set_diag_combined;
3341 hdev->set_bdaddr = btintel_set_bdaddr;
3342
3343 coredump_info.driver_name = driver_name;
3344
3345 return 0;
3346}
3347EXPORT_SYMBOL_GPL(btintel_configure_setup);
3348
3349int btintel_diagnostics(struct hci_dev *hdev, struct sk_buff *skb)
3350{
3351 struct intel_tlv *tlv = (void *)&skb->data[5];
3352
3353 /* The first event is always an event type TLV */
3354 if (tlv->type != INTEL_TLV_TYPE_ID)
3355 goto recv_frame;
3356
3357 switch (tlv->val[0]) {
3358 case INTEL_TLV_SYSTEM_EXCEPTION:
3359 case INTEL_TLV_FATAL_EXCEPTION:
3360 case INTEL_TLV_DEBUG_EXCEPTION:
3361 case INTEL_TLV_TEST_EXCEPTION:
3362 /* Generate devcoredump from exception */
3363 if (!hci_devcd_init(hdev, skb->len)) {
3364 hci_devcd_append(hdev, skb_clone(skb, GFP_ATOMIC));
3365 hci_devcd_complete(hdev);
3366 } else {
3367 bt_dev_err(hdev, "Failed to generate devcoredump");
3368 }
3369 break;
3370 default:
3371 bt_dev_err(hdev, "Invalid exception type %02X", tlv->val[0]);
3372 }
3373
3374recv_frame:
3375 return hci_recv_frame(hdev, skb);
3376}
3377EXPORT_SYMBOL_GPL(btintel_diagnostics);
3378
3379int btintel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
3380{
3381 struct hci_event_hdr *hdr = (void *)skb->data;
3382 const char diagnostics_hdr[] = { 0x87, 0x80, 0x03 };
3383
3384 if (skb->len > HCI_EVENT_HDR_SIZE && hdr->evt == 0xff &&
3385 hdr->plen > 0) {
3386 const void *ptr = skb->data + HCI_EVENT_HDR_SIZE + 1;
3387 unsigned int len = skb->len - HCI_EVENT_HDR_SIZE - 1;
3388
3389 if (btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
3390 switch (skb->data[2]) {
3391 case 0x02:
3392 /* When switching to the operational firmware
3393 * the device sends a vendor specific event
3394 * indicating that the bootup completed.
3395 */
3396 btintel_bootup(hdev, ptr, len);
3397 kfree_skb(skb);
3398 return 0;
3399 case 0x06:
3400 /* When the firmware loading completes the
3401 * device sends out a vendor specific event
3402 * indicating the result of the firmware
3403 * loading.
3404 */
3405 btintel_secure_send_result(hdev, ptr, len);
3406 kfree_skb(skb);
3407 return 0;
3408 }
3409 }
3410
3411 /* Handle all diagnostics events separately. May still call
3412 * hci_recv_frame.
3413 */
3414 if (len >= sizeof(diagnostics_hdr) &&
3415 memcmp(&skb->data[2], diagnostics_hdr,
3416 sizeof(diagnostics_hdr)) == 0) {
3417 return btintel_diagnostics(hdev, skb);
3418 }
3419 }
3420
3421 return hci_recv_frame(hdev, skb);
3422}
3423EXPORT_SYMBOL_GPL(btintel_recv_event);
3424
3425void btintel_bootup(struct hci_dev *hdev, const void *ptr, unsigned int len)
3426{
3427 const struct intel_bootup *evt = ptr;
3428
3429 if (len != sizeof(*evt))
3430 return;
3431
3432 if (btintel_test_and_clear_flag(hdev, INTEL_BOOTING))
3433 btintel_wake_up_flag(hdev, INTEL_BOOTING);
3434}
3435EXPORT_SYMBOL_GPL(btintel_bootup);
3436
3437void btintel_secure_send_result(struct hci_dev *hdev,
3438 const void *ptr, unsigned int len)
3439{
3440 const struct intel_secure_send_result *evt = ptr;
3441
3442 if (len != sizeof(*evt))
3443 return;
3444
3445 if (evt->result)
3446 btintel_set_flag(hdev, INTEL_FIRMWARE_FAILED);
3447
3448 if (btintel_test_and_clear_flag(hdev, INTEL_DOWNLOADING) &&
3449 btintel_test_flag(hdev, INTEL_FIRMWARE_LOADED))
3450 btintel_wake_up_flag(hdev, INTEL_DOWNLOADING);
3451}
3452EXPORT_SYMBOL_GPL(btintel_secure_send_result);
3453
3454MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>");
3455MODULE_DESCRIPTION("Bluetooth support for Intel devices ver " VERSION);
3456MODULE_VERSION(VERSION);
3457MODULE_LICENSE("GPL");
3458MODULE_FIRMWARE("intel/ibt-11-5.sfi");
3459MODULE_FIRMWARE("intel/ibt-11-5.ddc");
3460MODULE_FIRMWARE("intel/ibt-12-16.sfi");
3461MODULE_FIRMWARE("intel/ibt-12-16.ddc");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *
4 * Bluetooth support for Intel devices
5 *
6 * Copyright (C) 2015 Intel Corporation
7 */
8
9#include <linux/module.h>
10#include <linux/firmware.h>
11#include <linux/regmap.h>
12#include <asm/unaligned.h>
13
14#include <net/bluetooth/bluetooth.h>
15#include <net/bluetooth/hci_core.h>
16
17#include "btintel.h"
18
19#define VERSION "0.1"
20
21#define BDADDR_INTEL (&(bdaddr_t){{0x00, 0x8b, 0x9e, 0x19, 0x03, 0x00}})
22#define RSA_HEADER_LEN 644
23#define CSS_HEADER_OFFSET 8
24#define ECDSA_OFFSET 644
25#define ECDSA_HEADER_LEN 320
26
27#define CMD_WRITE_BOOT_PARAMS 0xfc0e
28struct cmd_write_boot_params {
29 __le32 boot_addr;
30 u8 fw_build_num;
31 u8 fw_build_ww;
32 u8 fw_build_yy;
33} __packed;
34
35int btintel_check_bdaddr(struct hci_dev *hdev)
36{
37 struct hci_rp_read_bd_addr *bda;
38 struct sk_buff *skb;
39
40 skb = __hci_cmd_sync(hdev, HCI_OP_READ_BD_ADDR, 0, NULL,
41 HCI_INIT_TIMEOUT);
42 if (IS_ERR(skb)) {
43 int err = PTR_ERR(skb);
44 bt_dev_err(hdev, "Reading Intel device address failed (%d)",
45 err);
46 return err;
47 }
48
49 if (skb->len != sizeof(*bda)) {
50 bt_dev_err(hdev, "Intel device address length mismatch");
51 kfree_skb(skb);
52 return -EIO;
53 }
54
55 bda = (struct hci_rp_read_bd_addr *)skb->data;
56
57 /* For some Intel based controllers, the default Bluetooth device
58 * address 00:03:19:9E:8B:00 can be found. These controllers are
59 * fully operational, but have the danger of duplicate addresses
60 * and that in turn can cause problems with Bluetooth operation.
61 */
62 if (!bacmp(&bda->bdaddr, BDADDR_INTEL)) {
63 bt_dev_err(hdev, "Found Intel default device address (%pMR)",
64 &bda->bdaddr);
65 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
66 }
67
68 kfree_skb(skb);
69
70 return 0;
71}
72EXPORT_SYMBOL_GPL(btintel_check_bdaddr);
73
74int btintel_enter_mfg(struct hci_dev *hdev)
75{
76 static const u8 param[] = { 0x01, 0x00 };
77 struct sk_buff *skb;
78
79 skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT);
80 if (IS_ERR(skb)) {
81 bt_dev_err(hdev, "Entering manufacturer mode failed (%ld)",
82 PTR_ERR(skb));
83 return PTR_ERR(skb);
84 }
85 kfree_skb(skb);
86
87 return 0;
88}
89EXPORT_SYMBOL_GPL(btintel_enter_mfg);
90
91int btintel_exit_mfg(struct hci_dev *hdev, bool reset, bool patched)
92{
93 u8 param[] = { 0x00, 0x00 };
94 struct sk_buff *skb;
95
96 /* The 2nd command parameter specifies the manufacturing exit method:
97 * 0x00: Just disable the manufacturing mode (0x00).
98 * 0x01: Disable manufacturing mode and reset with patches deactivated.
99 * 0x02: Disable manufacturing mode and reset with patches activated.
100 */
101 if (reset)
102 param[1] |= patched ? 0x02 : 0x01;
103
104 skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT);
105 if (IS_ERR(skb)) {
106 bt_dev_err(hdev, "Exiting manufacturer mode failed (%ld)",
107 PTR_ERR(skb));
108 return PTR_ERR(skb);
109 }
110 kfree_skb(skb);
111
112 return 0;
113}
114EXPORT_SYMBOL_GPL(btintel_exit_mfg);
115
116int btintel_set_bdaddr(struct hci_dev *hdev, const bdaddr_t *bdaddr)
117{
118 struct sk_buff *skb;
119 int err;
120
121 skb = __hci_cmd_sync(hdev, 0xfc31, 6, bdaddr, HCI_INIT_TIMEOUT);
122 if (IS_ERR(skb)) {
123 err = PTR_ERR(skb);
124 bt_dev_err(hdev, "Changing Intel device address failed (%d)",
125 err);
126 return err;
127 }
128 kfree_skb(skb);
129
130 return 0;
131}
132EXPORT_SYMBOL_GPL(btintel_set_bdaddr);
133
134static int btintel_set_event_mask(struct hci_dev *hdev, bool debug)
135{
136 u8 mask[8] = { 0x87, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
137 struct sk_buff *skb;
138 int err;
139
140 if (debug)
141 mask[1] |= 0x62;
142
143 skb = __hci_cmd_sync(hdev, 0xfc52, 8, mask, HCI_INIT_TIMEOUT);
144 if (IS_ERR(skb)) {
145 err = PTR_ERR(skb);
146 bt_dev_err(hdev, "Setting Intel event mask failed (%d)", err);
147 return err;
148 }
149 kfree_skb(skb);
150
151 return 0;
152}
153
154int btintel_set_diag(struct hci_dev *hdev, bool enable)
155{
156 struct sk_buff *skb;
157 u8 param[3];
158 int err;
159
160 if (enable) {
161 param[0] = 0x03;
162 param[1] = 0x03;
163 param[2] = 0x03;
164 } else {
165 param[0] = 0x00;
166 param[1] = 0x00;
167 param[2] = 0x00;
168 }
169
170 skb = __hci_cmd_sync(hdev, 0xfc43, 3, param, HCI_INIT_TIMEOUT);
171 if (IS_ERR(skb)) {
172 err = PTR_ERR(skb);
173 if (err == -ENODATA)
174 goto done;
175 bt_dev_err(hdev, "Changing Intel diagnostic mode failed (%d)",
176 err);
177 return err;
178 }
179 kfree_skb(skb);
180
181done:
182 btintel_set_event_mask(hdev, enable);
183 return 0;
184}
185EXPORT_SYMBOL_GPL(btintel_set_diag);
186
187static int btintel_set_diag_mfg(struct hci_dev *hdev, bool enable)
188{
189 int err, ret;
190
191 err = btintel_enter_mfg(hdev);
192 if (err)
193 return err;
194
195 ret = btintel_set_diag(hdev, enable);
196
197 err = btintel_exit_mfg(hdev, false, false);
198 if (err)
199 return err;
200
201 return ret;
202}
203
204static int btintel_set_diag_combined(struct hci_dev *hdev, bool enable)
205{
206 int ret;
207
208 /* Legacy ROM device needs to be in the manufacturer mode to apply
209 * diagnostic setting
210 *
211 * This flag is set after reading the Intel version.
212 */
213 if (btintel_test_flag(hdev, INTEL_ROM_LEGACY))
214 ret = btintel_set_diag_mfg(hdev, enable);
215 else
216 ret = btintel_set_diag(hdev, enable);
217
218 return ret;
219}
220
221static void btintel_hw_error(struct hci_dev *hdev, u8 code)
222{
223 struct sk_buff *skb;
224 u8 type = 0x00;
225
226 bt_dev_err(hdev, "Hardware error 0x%2.2x", code);
227
228 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
229 if (IS_ERR(skb)) {
230 bt_dev_err(hdev, "Reset after hardware error failed (%ld)",
231 PTR_ERR(skb));
232 return;
233 }
234 kfree_skb(skb);
235
236 skb = __hci_cmd_sync(hdev, 0xfc22, 1, &type, HCI_INIT_TIMEOUT);
237 if (IS_ERR(skb)) {
238 bt_dev_err(hdev, "Retrieving Intel exception info failed (%ld)",
239 PTR_ERR(skb));
240 return;
241 }
242
243 if (skb->len != 13) {
244 bt_dev_err(hdev, "Exception info size mismatch");
245 kfree_skb(skb);
246 return;
247 }
248
249 bt_dev_err(hdev, "Exception info %s", (char *)(skb->data + 1));
250
251 kfree_skb(skb);
252}
253
254int btintel_version_info(struct hci_dev *hdev, struct intel_version *ver)
255{
256 const char *variant;
257
258 /* The hardware platform number has a fixed value of 0x37 and
259 * for now only accept this single value.
260 */
261 if (ver->hw_platform != 0x37) {
262 bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
263 ver->hw_platform);
264 return -EINVAL;
265 }
266
267 /* Check for supported iBT hardware variants of this firmware
268 * loading method.
269 *
270 * This check has been put in place to ensure correct forward
271 * compatibility options when newer hardware variants come along.
272 */
273 switch (ver->hw_variant) {
274 case 0x07: /* WP - Legacy ROM */
275 case 0x08: /* StP - Legacy ROM */
276 case 0x0b: /* SfP */
277 case 0x0c: /* WsP */
278 case 0x11: /* JfP */
279 case 0x12: /* ThP */
280 case 0x13: /* HrP */
281 case 0x14: /* CcP */
282 break;
283 default:
284 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
285 ver->hw_variant);
286 return -EINVAL;
287 }
288
289 switch (ver->fw_variant) {
290 case 0x01:
291 variant = "Legacy ROM 2.5";
292 break;
293 case 0x06:
294 variant = "Bootloader";
295 break;
296 case 0x22:
297 variant = "Legacy ROM 2.x";
298 break;
299 case 0x23:
300 variant = "Firmware";
301 break;
302 default:
303 bt_dev_err(hdev, "Unsupported firmware variant(%02x)", ver->fw_variant);
304 return -EINVAL;
305 }
306
307 bt_dev_info(hdev, "%s revision %u.%u build %u week %u %u",
308 variant, ver->fw_revision >> 4, ver->fw_revision & 0x0f,
309 ver->fw_build_num, ver->fw_build_ww,
310 2000 + ver->fw_build_yy);
311
312 return 0;
313}
314EXPORT_SYMBOL_GPL(btintel_version_info);
315
316static int btintel_secure_send(struct hci_dev *hdev, u8 fragment_type, u32 plen,
317 const void *param)
318{
319 while (plen > 0) {
320 struct sk_buff *skb;
321 u8 cmd_param[253], fragment_len = (plen > 252) ? 252 : plen;
322
323 cmd_param[0] = fragment_type;
324 memcpy(cmd_param + 1, param, fragment_len);
325
326 skb = __hci_cmd_sync(hdev, 0xfc09, fragment_len + 1,
327 cmd_param, HCI_INIT_TIMEOUT);
328 if (IS_ERR(skb))
329 return PTR_ERR(skb);
330
331 kfree_skb(skb);
332
333 plen -= fragment_len;
334 param += fragment_len;
335 }
336
337 return 0;
338}
339
340int btintel_load_ddc_config(struct hci_dev *hdev, const char *ddc_name)
341{
342 const struct firmware *fw;
343 struct sk_buff *skb;
344 const u8 *fw_ptr;
345 int err;
346
347 err = request_firmware_direct(&fw, ddc_name, &hdev->dev);
348 if (err < 0) {
349 bt_dev_err(hdev, "Failed to load Intel DDC file %s (%d)",
350 ddc_name, err);
351 return err;
352 }
353
354 bt_dev_info(hdev, "Found Intel DDC parameters: %s", ddc_name);
355
356 fw_ptr = fw->data;
357
358 /* DDC file contains one or more DDC structure which has
359 * Length (1 byte), DDC ID (2 bytes), and DDC value (Length - 2).
360 */
361 while (fw->size > fw_ptr - fw->data) {
362 u8 cmd_plen = fw_ptr[0] + sizeof(u8);
363
364 skb = __hci_cmd_sync(hdev, 0xfc8b, cmd_plen, fw_ptr,
365 HCI_INIT_TIMEOUT);
366 if (IS_ERR(skb)) {
367 bt_dev_err(hdev, "Failed to send Intel_Write_DDC (%ld)",
368 PTR_ERR(skb));
369 release_firmware(fw);
370 return PTR_ERR(skb);
371 }
372
373 fw_ptr += cmd_plen;
374 kfree_skb(skb);
375 }
376
377 release_firmware(fw);
378
379 bt_dev_info(hdev, "Applying Intel DDC parameters completed");
380
381 return 0;
382}
383EXPORT_SYMBOL_GPL(btintel_load_ddc_config);
384
385int btintel_set_event_mask_mfg(struct hci_dev *hdev, bool debug)
386{
387 int err, ret;
388
389 err = btintel_enter_mfg(hdev);
390 if (err)
391 return err;
392
393 ret = btintel_set_event_mask(hdev, debug);
394
395 err = btintel_exit_mfg(hdev, false, false);
396 if (err)
397 return err;
398
399 return ret;
400}
401EXPORT_SYMBOL_GPL(btintel_set_event_mask_mfg);
402
403int btintel_read_version(struct hci_dev *hdev, struct intel_version *ver)
404{
405 struct sk_buff *skb;
406
407 skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
408 if (IS_ERR(skb)) {
409 bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
410 PTR_ERR(skb));
411 return PTR_ERR(skb);
412 }
413
414 if (skb->len != sizeof(*ver)) {
415 bt_dev_err(hdev, "Intel version event size mismatch");
416 kfree_skb(skb);
417 return -EILSEQ;
418 }
419
420 memcpy(ver, skb->data, sizeof(*ver));
421
422 kfree_skb(skb);
423
424 return 0;
425}
426EXPORT_SYMBOL_GPL(btintel_read_version);
427
428static int btintel_version_info_tlv(struct hci_dev *hdev,
429 struct intel_version_tlv *version)
430{
431 const char *variant;
432
433 /* The hardware platform number has a fixed value of 0x37 and
434 * for now only accept this single value.
435 */
436 if (INTEL_HW_PLATFORM(version->cnvi_bt) != 0x37) {
437 bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)",
438 INTEL_HW_PLATFORM(version->cnvi_bt));
439 return -EINVAL;
440 }
441
442 /* Check for supported iBT hardware variants of this firmware
443 * loading method.
444 *
445 * This check has been put in place to ensure correct forward
446 * compatibility options when newer hardware variants come along.
447 */
448 switch (INTEL_HW_VARIANT(version->cnvi_bt)) {
449 case 0x17: /* TyP */
450 case 0x18: /* Slr */
451 case 0x19: /* Slr-F */
452 case 0x1b: /* Mgr */
453 break;
454 default:
455 bt_dev_err(hdev, "Unsupported Intel hardware variant (0x%x)",
456 INTEL_HW_VARIANT(version->cnvi_bt));
457 return -EINVAL;
458 }
459
460 switch (version->img_type) {
461 case 0x01:
462 variant = "Bootloader";
463 /* It is required that every single firmware fragment is acknowledged
464 * with a command complete event. If the boot parameters indicate
465 * that this bootloader does not send them, then abort the setup.
466 */
467 if (version->limited_cce != 0x00) {
468 bt_dev_err(hdev, "Unsupported Intel firmware loading method (0x%x)",
469 version->limited_cce);
470 return -EINVAL;
471 }
472
473 /* Secure boot engine type should be either 1 (ECDSA) or 0 (RSA) */
474 if (version->sbe_type > 0x01) {
475 bt_dev_err(hdev, "Unsupported Intel secure boot engine type (0x%x)",
476 version->sbe_type);
477 return -EINVAL;
478 }
479
480 bt_dev_info(hdev, "Device revision is %u", version->dev_rev_id);
481 bt_dev_info(hdev, "Secure boot is %s",
482 version->secure_boot ? "enabled" : "disabled");
483 bt_dev_info(hdev, "OTP lock is %s",
484 version->otp_lock ? "enabled" : "disabled");
485 bt_dev_info(hdev, "API lock is %s",
486 version->api_lock ? "enabled" : "disabled");
487 bt_dev_info(hdev, "Debug lock is %s",
488 version->debug_lock ? "enabled" : "disabled");
489 bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
490 version->min_fw_build_nn, version->min_fw_build_cw,
491 2000 + version->min_fw_build_yy);
492 break;
493 case 0x03:
494 variant = "Firmware";
495 break;
496 default:
497 bt_dev_err(hdev, "Unsupported image type(%02x)", version->img_type);
498 return -EINVAL;
499 }
500
501 bt_dev_info(hdev, "%s timestamp %u.%u buildtype %u build %u", variant,
502 2000 + (version->timestamp >> 8), version->timestamp & 0xff,
503 version->build_type, version->build_num);
504
505 return 0;
506}
507
508static int btintel_parse_version_tlv(struct hci_dev *hdev,
509 struct intel_version_tlv *version,
510 struct sk_buff *skb)
511{
512 /* Consume Command Complete Status field */
513 skb_pull(skb, 1);
514
515 /* Event parameters contatin multiple TLVs. Read each of them
516 * and only keep the required data. Also, it use existing legacy
517 * version field like hw_platform, hw_variant, and fw_variant
518 * to keep the existing setup flow
519 */
520 while (skb->len) {
521 struct intel_tlv *tlv;
522
523 /* Make sure skb has a minimum length of the header */
524 if (skb->len < sizeof(*tlv))
525 return -EINVAL;
526
527 tlv = (struct intel_tlv *)skb->data;
528
529 /* Make sure skb has a enough data */
530 if (skb->len < tlv->len + sizeof(*tlv))
531 return -EINVAL;
532
533 switch (tlv->type) {
534 case INTEL_TLV_CNVI_TOP:
535 version->cnvi_top = get_unaligned_le32(tlv->val);
536 break;
537 case INTEL_TLV_CNVR_TOP:
538 version->cnvr_top = get_unaligned_le32(tlv->val);
539 break;
540 case INTEL_TLV_CNVI_BT:
541 version->cnvi_bt = get_unaligned_le32(tlv->val);
542 break;
543 case INTEL_TLV_CNVR_BT:
544 version->cnvr_bt = get_unaligned_le32(tlv->val);
545 break;
546 case INTEL_TLV_DEV_REV_ID:
547 version->dev_rev_id = get_unaligned_le16(tlv->val);
548 break;
549 case INTEL_TLV_IMAGE_TYPE:
550 version->img_type = tlv->val[0];
551 break;
552 case INTEL_TLV_TIME_STAMP:
553 /* If image type is Operational firmware (0x03), then
554 * running FW Calendar Week and Year information can
555 * be extracted from Timestamp information
556 */
557 version->min_fw_build_cw = tlv->val[0];
558 version->min_fw_build_yy = tlv->val[1];
559 version->timestamp = get_unaligned_le16(tlv->val);
560 break;
561 case INTEL_TLV_BUILD_TYPE:
562 version->build_type = tlv->val[0];
563 break;
564 case INTEL_TLV_BUILD_NUM:
565 /* If image type is Operational firmware (0x03), then
566 * running FW build number can be extracted from the
567 * Build information
568 */
569 version->min_fw_build_nn = tlv->val[0];
570 version->build_num = get_unaligned_le32(tlv->val);
571 break;
572 case INTEL_TLV_SECURE_BOOT:
573 version->secure_boot = tlv->val[0];
574 break;
575 case INTEL_TLV_OTP_LOCK:
576 version->otp_lock = tlv->val[0];
577 break;
578 case INTEL_TLV_API_LOCK:
579 version->api_lock = tlv->val[0];
580 break;
581 case INTEL_TLV_DEBUG_LOCK:
582 version->debug_lock = tlv->val[0];
583 break;
584 case INTEL_TLV_MIN_FW:
585 version->min_fw_build_nn = tlv->val[0];
586 version->min_fw_build_cw = tlv->val[1];
587 version->min_fw_build_yy = tlv->val[2];
588 break;
589 case INTEL_TLV_LIMITED_CCE:
590 version->limited_cce = tlv->val[0];
591 break;
592 case INTEL_TLV_SBE_TYPE:
593 version->sbe_type = tlv->val[0];
594 break;
595 case INTEL_TLV_OTP_BDADDR:
596 memcpy(&version->otp_bd_addr, tlv->val,
597 sizeof(bdaddr_t));
598 break;
599 default:
600 /* Ignore rest of information */
601 break;
602 }
603 /* consume the current tlv and move to next*/
604 skb_pull(skb, tlv->len + sizeof(*tlv));
605 }
606
607 return 0;
608}
609
610static int btintel_read_version_tlv(struct hci_dev *hdev,
611 struct intel_version_tlv *version)
612{
613 struct sk_buff *skb;
614 const u8 param[1] = { 0xFF };
615
616 if (!version)
617 return -EINVAL;
618
619 skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT);
620 if (IS_ERR(skb)) {
621 bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
622 PTR_ERR(skb));
623 return PTR_ERR(skb);
624 }
625
626 if (skb->data[0]) {
627 bt_dev_err(hdev, "Intel Read Version command failed (%02x)",
628 skb->data[0]);
629 kfree_skb(skb);
630 return -EIO;
631 }
632
633 btintel_parse_version_tlv(hdev, version, skb);
634
635 kfree_skb(skb);
636 return 0;
637}
638
639/* ------- REGMAP IBT SUPPORT ------- */
640
641#define IBT_REG_MODE_8BIT 0x00
642#define IBT_REG_MODE_16BIT 0x01
643#define IBT_REG_MODE_32BIT 0x02
644
645struct regmap_ibt_context {
646 struct hci_dev *hdev;
647 __u16 op_write;
648 __u16 op_read;
649};
650
651struct ibt_cp_reg_access {
652 __le32 addr;
653 __u8 mode;
654 __u8 len;
655 __u8 data[];
656} __packed;
657
658struct ibt_rp_reg_access {
659 __u8 status;
660 __le32 addr;
661 __u8 data[];
662} __packed;
663
664static int regmap_ibt_read(void *context, const void *addr, size_t reg_size,
665 void *val, size_t val_size)
666{
667 struct regmap_ibt_context *ctx = context;
668 struct ibt_cp_reg_access cp;
669 struct ibt_rp_reg_access *rp;
670 struct sk_buff *skb;
671 int err = 0;
672
673 if (reg_size != sizeof(__le32))
674 return -EINVAL;
675
676 switch (val_size) {
677 case 1:
678 cp.mode = IBT_REG_MODE_8BIT;
679 break;
680 case 2:
681 cp.mode = IBT_REG_MODE_16BIT;
682 break;
683 case 4:
684 cp.mode = IBT_REG_MODE_32BIT;
685 break;
686 default:
687 return -EINVAL;
688 }
689
690 /* regmap provides a little-endian formatted addr */
691 cp.addr = *(__le32 *)addr;
692 cp.len = val_size;
693
694 bt_dev_dbg(ctx->hdev, "Register (0x%x) read", le32_to_cpu(cp.addr));
695
696 skb = hci_cmd_sync(ctx->hdev, ctx->op_read, sizeof(cp), &cp,
697 HCI_CMD_TIMEOUT);
698 if (IS_ERR(skb)) {
699 err = PTR_ERR(skb);
700 bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error (%d)",
701 le32_to_cpu(cp.addr), err);
702 return err;
703 }
704
705 if (skb->len != sizeof(*rp) + val_size) {
706 bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad len",
707 le32_to_cpu(cp.addr));
708 err = -EINVAL;
709 goto done;
710 }
711
712 rp = (struct ibt_rp_reg_access *)skb->data;
713
714 if (rp->addr != cp.addr) {
715 bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad addr",
716 le32_to_cpu(rp->addr));
717 err = -EINVAL;
718 goto done;
719 }
720
721 memcpy(val, rp->data, val_size);
722
723done:
724 kfree_skb(skb);
725 return err;
726}
727
728static int regmap_ibt_gather_write(void *context,
729 const void *addr, size_t reg_size,
730 const void *val, size_t val_size)
731{
732 struct regmap_ibt_context *ctx = context;
733 struct ibt_cp_reg_access *cp;
734 struct sk_buff *skb;
735 int plen = sizeof(*cp) + val_size;
736 u8 mode;
737 int err = 0;
738
739 if (reg_size != sizeof(__le32))
740 return -EINVAL;
741
742 switch (val_size) {
743 case 1:
744 mode = IBT_REG_MODE_8BIT;
745 break;
746 case 2:
747 mode = IBT_REG_MODE_16BIT;
748 break;
749 case 4:
750 mode = IBT_REG_MODE_32BIT;
751 break;
752 default:
753 return -EINVAL;
754 }
755
756 cp = kmalloc(plen, GFP_KERNEL);
757 if (!cp)
758 return -ENOMEM;
759
760 /* regmap provides a little-endian formatted addr/value */
761 cp->addr = *(__le32 *)addr;
762 cp->mode = mode;
763 cp->len = val_size;
764 memcpy(&cp->data, val, val_size);
765
766 bt_dev_dbg(ctx->hdev, "Register (0x%x) write", le32_to_cpu(cp->addr));
767
768 skb = hci_cmd_sync(ctx->hdev, ctx->op_write, plen, cp, HCI_CMD_TIMEOUT);
769 if (IS_ERR(skb)) {
770 err = PTR_ERR(skb);
771 bt_dev_err(ctx->hdev, "regmap: Register (0x%x) write error (%d)",
772 le32_to_cpu(cp->addr), err);
773 goto done;
774 }
775 kfree_skb(skb);
776
777done:
778 kfree(cp);
779 return err;
780}
781
782static int regmap_ibt_write(void *context, const void *data, size_t count)
783{
784 /* data contains register+value, since we only support 32bit addr,
785 * minimum data size is 4 bytes.
786 */
787 if (WARN_ONCE(count < 4, "Invalid register access"))
788 return -EINVAL;
789
790 return regmap_ibt_gather_write(context, data, 4, data + 4, count - 4);
791}
792
793static void regmap_ibt_free_context(void *context)
794{
795 kfree(context);
796}
797
798static const struct regmap_bus regmap_ibt = {
799 .read = regmap_ibt_read,
800 .write = regmap_ibt_write,
801 .gather_write = regmap_ibt_gather_write,
802 .free_context = regmap_ibt_free_context,
803 .reg_format_endian_default = REGMAP_ENDIAN_LITTLE,
804 .val_format_endian_default = REGMAP_ENDIAN_LITTLE,
805};
806
807/* Config is the same for all register regions */
808static const struct regmap_config regmap_ibt_cfg = {
809 .name = "btintel_regmap",
810 .reg_bits = 32,
811 .val_bits = 32,
812};
813
814struct regmap *btintel_regmap_init(struct hci_dev *hdev, u16 opcode_read,
815 u16 opcode_write)
816{
817 struct regmap_ibt_context *ctx;
818
819 bt_dev_info(hdev, "regmap: Init R%x-W%x region", opcode_read,
820 opcode_write);
821
822 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
823 if (!ctx)
824 return ERR_PTR(-ENOMEM);
825
826 ctx->op_read = opcode_read;
827 ctx->op_write = opcode_write;
828 ctx->hdev = hdev;
829
830 return regmap_init(&hdev->dev, ®map_ibt, ctx, ®map_ibt_cfg);
831}
832EXPORT_SYMBOL_GPL(btintel_regmap_init);
833
834int btintel_send_intel_reset(struct hci_dev *hdev, u32 boot_param)
835{
836 struct intel_reset params = { 0x00, 0x01, 0x00, 0x01, 0x00000000 };
837 struct sk_buff *skb;
838
839 params.boot_param = cpu_to_le32(boot_param);
840
841 skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params), ¶ms,
842 HCI_INIT_TIMEOUT);
843 if (IS_ERR(skb)) {
844 bt_dev_err(hdev, "Failed to send Intel Reset command");
845 return PTR_ERR(skb);
846 }
847
848 kfree_skb(skb);
849
850 return 0;
851}
852EXPORT_SYMBOL_GPL(btintel_send_intel_reset);
853
854int btintel_read_boot_params(struct hci_dev *hdev,
855 struct intel_boot_params *params)
856{
857 struct sk_buff *skb;
858
859 skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_INIT_TIMEOUT);
860 if (IS_ERR(skb)) {
861 bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
862 PTR_ERR(skb));
863 return PTR_ERR(skb);
864 }
865
866 if (skb->len != sizeof(*params)) {
867 bt_dev_err(hdev, "Intel boot parameters size mismatch");
868 kfree_skb(skb);
869 return -EILSEQ;
870 }
871
872 memcpy(params, skb->data, sizeof(*params));
873
874 kfree_skb(skb);
875
876 if (params->status) {
877 bt_dev_err(hdev, "Intel boot parameters command failed (%02x)",
878 params->status);
879 return -bt_to_errno(params->status);
880 }
881
882 bt_dev_info(hdev, "Device revision is %u",
883 le16_to_cpu(params->dev_revid));
884
885 bt_dev_info(hdev, "Secure boot is %s",
886 params->secure_boot ? "enabled" : "disabled");
887
888 bt_dev_info(hdev, "OTP lock is %s",
889 params->otp_lock ? "enabled" : "disabled");
890
891 bt_dev_info(hdev, "API lock is %s",
892 params->api_lock ? "enabled" : "disabled");
893
894 bt_dev_info(hdev, "Debug lock is %s",
895 params->debug_lock ? "enabled" : "disabled");
896
897 bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
898 params->min_fw_build_nn, params->min_fw_build_cw,
899 2000 + params->min_fw_build_yy);
900
901 return 0;
902}
903EXPORT_SYMBOL_GPL(btintel_read_boot_params);
904
905static int btintel_sfi_rsa_header_secure_send(struct hci_dev *hdev,
906 const struct firmware *fw)
907{
908 int err;
909
910 /* Start the firmware download transaction with the Init fragment
911 * represented by the 128 bytes of CSS header.
912 */
913 err = btintel_secure_send(hdev, 0x00, 128, fw->data);
914 if (err < 0) {
915 bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
916 goto done;
917 }
918
919 /* Send the 256 bytes of public key information from the firmware
920 * as the PKey fragment.
921 */
922 err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
923 if (err < 0) {
924 bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err);
925 goto done;
926 }
927
928 /* Send the 256 bytes of signature information from the firmware
929 * as the Sign fragment.
930 */
931 err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
932 if (err < 0) {
933 bt_dev_err(hdev, "Failed to send firmware signature (%d)", err);
934 goto done;
935 }
936
937done:
938 return err;
939}
940
941static int btintel_sfi_ecdsa_header_secure_send(struct hci_dev *hdev,
942 const struct firmware *fw)
943{
944 int err;
945
946 /* Start the firmware download transaction with the Init fragment
947 * represented by the 128 bytes of CSS header.
948 */
949 err = btintel_secure_send(hdev, 0x00, 128, fw->data + 644);
950 if (err < 0) {
951 bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
952 return err;
953 }
954
955 /* Send the 96 bytes of public key information from the firmware
956 * as the PKey fragment.
957 */
958 err = btintel_secure_send(hdev, 0x03, 96, fw->data + 644 + 128);
959 if (err < 0) {
960 bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err);
961 return err;
962 }
963
964 /* Send the 96 bytes of signature information from the firmware
965 * as the Sign fragment
966 */
967 err = btintel_secure_send(hdev, 0x02, 96, fw->data + 644 + 224);
968 if (err < 0) {
969 bt_dev_err(hdev, "Failed to send firmware signature (%d)",
970 err);
971 return err;
972 }
973 return 0;
974}
975
976static int btintel_download_firmware_payload(struct hci_dev *hdev,
977 const struct firmware *fw,
978 size_t offset)
979{
980 int err;
981 const u8 *fw_ptr;
982 u32 frag_len;
983
984 fw_ptr = fw->data + offset;
985 frag_len = 0;
986 err = -EINVAL;
987
988 while (fw_ptr - fw->data < fw->size) {
989 struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
990
991 frag_len += sizeof(*cmd) + cmd->plen;
992
993 /* The parameter length of the secure send command requires
994 * a 4 byte alignment. It happens so that the firmware file
995 * contains proper Intel_NOP commands to align the fragments
996 * as needed.
997 *
998 * Send set of commands with 4 byte alignment from the
999 * firmware data buffer as a single Data fragement.
1000 */
1001 if (!(frag_len % 4)) {
1002 err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
1003 if (err < 0) {
1004 bt_dev_err(hdev,
1005 "Failed to send firmware data (%d)",
1006 err);
1007 goto done;
1008 }
1009
1010 fw_ptr += frag_len;
1011 frag_len = 0;
1012 }
1013 }
1014
1015done:
1016 return err;
1017}
1018
1019static bool btintel_firmware_version(struct hci_dev *hdev,
1020 u8 num, u8 ww, u8 yy,
1021 const struct firmware *fw,
1022 u32 *boot_addr)
1023{
1024 const u8 *fw_ptr;
1025
1026 fw_ptr = fw->data;
1027
1028 while (fw_ptr - fw->data < fw->size) {
1029 struct hci_command_hdr *cmd = (void *)(fw_ptr);
1030
1031 /* Each SKU has a different reset parameter to use in the
1032 * HCI_Intel_Reset command and it is embedded in the firmware
1033 * data. So, instead of using static value per SKU, check
1034 * the firmware data and save it for later use.
1035 */
1036 if (le16_to_cpu(cmd->opcode) == CMD_WRITE_BOOT_PARAMS) {
1037 struct cmd_write_boot_params *params;
1038
1039 params = (void *)(fw_ptr + sizeof(*cmd));
1040
1041 *boot_addr = le32_to_cpu(params->boot_addr);
1042
1043 bt_dev_info(hdev, "Boot Address: 0x%x", *boot_addr);
1044
1045 bt_dev_info(hdev, "Firmware Version: %u-%u.%u",
1046 params->fw_build_num, params->fw_build_ww,
1047 params->fw_build_yy);
1048
1049 return (num == params->fw_build_num &&
1050 ww == params->fw_build_ww &&
1051 yy == params->fw_build_yy);
1052 }
1053
1054 fw_ptr += sizeof(*cmd) + cmd->plen;
1055 }
1056
1057 return false;
1058}
1059
1060int btintel_download_firmware(struct hci_dev *hdev,
1061 struct intel_version *ver,
1062 const struct firmware *fw,
1063 u32 *boot_param)
1064{
1065 int err;
1066
1067 /* SfP and WsP don't seem to update the firmware version on file
1068 * so version checking is currently not possible.
1069 */
1070 switch (ver->hw_variant) {
1071 case 0x0b: /* SfP */
1072 case 0x0c: /* WsP */
1073 /* Skip version checking */
1074 break;
1075 default:
1076
1077 /* Skip download if firmware has the same version */
1078 if (btintel_firmware_version(hdev, ver->fw_build_num,
1079 ver->fw_build_ww, ver->fw_build_yy,
1080 fw, boot_param)) {
1081 bt_dev_info(hdev, "Firmware already loaded");
1082 /* Return -EALREADY to indicate that the firmware has
1083 * already been loaded.
1084 */
1085 return -EALREADY;
1086 }
1087 }
1088
1089 /* The firmware variant determines if the device is in bootloader
1090 * mode or is running operational firmware. The value 0x06 identifies
1091 * the bootloader and the value 0x23 identifies the operational
1092 * firmware.
1093 *
1094 * If the firmware version has changed that means it needs to be reset
1095 * to bootloader when operational so the new firmware can be loaded.
1096 */
1097 if (ver->fw_variant == 0x23)
1098 return -EINVAL;
1099
1100 err = btintel_sfi_rsa_header_secure_send(hdev, fw);
1101 if (err)
1102 return err;
1103
1104 return btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN);
1105}
1106EXPORT_SYMBOL_GPL(btintel_download_firmware);
1107
1108static int btintel_download_fw_tlv(struct hci_dev *hdev,
1109 struct intel_version_tlv *ver,
1110 const struct firmware *fw, u32 *boot_param,
1111 u8 hw_variant, u8 sbe_type)
1112{
1113 int err;
1114 u32 css_header_ver;
1115
1116 /* Skip download if firmware has the same version */
1117 if (btintel_firmware_version(hdev, ver->min_fw_build_nn,
1118 ver->min_fw_build_cw,
1119 ver->min_fw_build_yy,
1120 fw, boot_param)) {
1121 bt_dev_info(hdev, "Firmware already loaded");
1122 /* Return -EALREADY to indicate that firmware has
1123 * already been loaded.
1124 */
1125 return -EALREADY;
1126 }
1127
1128 /* The firmware variant determines if the device is in bootloader
1129 * mode or is running operational firmware. The value 0x01 identifies
1130 * the bootloader and the value 0x03 identifies the operational
1131 * firmware.
1132 *
1133 * If the firmware version has changed that means it needs to be reset
1134 * to bootloader when operational so the new firmware can be loaded.
1135 */
1136 if (ver->img_type == 0x03)
1137 return -EINVAL;
1138
1139 /* iBT hardware variants 0x0b, 0x0c, 0x11, 0x12, 0x13, 0x14 support
1140 * only RSA secure boot engine. Hence, the corresponding sfi file will
1141 * have RSA header of 644 bytes followed by Command Buffer.
1142 *
1143 * iBT hardware variants 0x17, 0x18 onwards support both RSA and ECDSA
1144 * secure boot engine. As a result, the corresponding sfi file will
1145 * have RSA header of 644, ECDSA header of 320 bytes followed by
1146 * Command Buffer.
1147 *
1148 * CSS Header byte positions 0x08 to 0x0B represent the CSS Header
1149 * version: RSA(0x00010000) , ECDSA (0x00020000)
1150 */
1151 css_header_ver = get_unaligned_le32(fw->data + CSS_HEADER_OFFSET);
1152 if (css_header_ver != 0x00010000) {
1153 bt_dev_err(hdev, "Invalid CSS Header version");
1154 return -EINVAL;
1155 }
1156
1157 if (hw_variant <= 0x14) {
1158 if (sbe_type != 0x00) {
1159 bt_dev_err(hdev, "Invalid SBE type for hardware variant (%d)",
1160 hw_variant);
1161 return -EINVAL;
1162 }
1163
1164 err = btintel_sfi_rsa_header_secure_send(hdev, fw);
1165 if (err)
1166 return err;
1167
1168 err = btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN);
1169 if (err)
1170 return err;
1171 } else if (hw_variant >= 0x17) {
1172 /* Check if CSS header for ECDSA follows the RSA header */
1173 if (fw->data[ECDSA_OFFSET] != 0x06)
1174 return -EINVAL;
1175
1176 /* Check if the CSS Header version is ECDSA(0x00020000) */
1177 css_header_ver = get_unaligned_le32(fw->data + ECDSA_OFFSET + CSS_HEADER_OFFSET);
1178 if (css_header_ver != 0x00020000) {
1179 bt_dev_err(hdev, "Invalid CSS Header version");
1180 return -EINVAL;
1181 }
1182
1183 if (sbe_type == 0x00) {
1184 err = btintel_sfi_rsa_header_secure_send(hdev, fw);
1185 if (err)
1186 return err;
1187
1188 err = btintel_download_firmware_payload(hdev, fw,
1189 RSA_HEADER_LEN + ECDSA_HEADER_LEN);
1190 if (err)
1191 return err;
1192 } else if (sbe_type == 0x01) {
1193 err = btintel_sfi_ecdsa_header_secure_send(hdev, fw);
1194 if (err)
1195 return err;
1196
1197 err = btintel_download_firmware_payload(hdev, fw,
1198 RSA_HEADER_LEN + ECDSA_HEADER_LEN);
1199 if (err)
1200 return err;
1201 }
1202 }
1203 return 0;
1204}
1205
1206static void btintel_reset_to_bootloader(struct hci_dev *hdev)
1207{
1208 struct intel_reset params;
1209 struct sk_buff *skb;
1210
1211 /* Send Intel Reset command. This will result in
1212 * re-enumeration of BT controller.
1213 *
1214 * Intel Reset parameter description:
1215 * reset_type : 0x00 (Soft reset),
1216 * 0x01 (Hard reset)
1217 * patch_enable : 0x00 (Do not enable),
1218 * 0x01 (Enable)
1219 * ddc_reload : 0x00 (Do not reload),
1220 * 0x01 (Reload)
1221 * boot_option: 0x00 (Current image),
1222 * 0x01 (Specified boot address)
1223 * boot_param: Boot address
1224 *
1225 */
1226 params.reset_type = 0x01;
1227 params.patch_enable = 0x01;
1228 params.ddc_reload = 0x01;
1229 params.boot_option = 0x00;
1230 params.boot_param = cpu_to_le32(0x00000000);
1231
1232 skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params),
1233 ¶ms, HCI_INIT_TIMEOUT);
1234 if (IS_ERR(skb)) {
1235 bt_dev_err(hdev, "FW download error recovery failed (%ld)",
1236 PTR_ERR(skb));
1237 return;
1238 }
1239 bt_dev_info(hdev, "Intel reset sent to retry FW download");
1240 kfree_skb(skb);
1241
1242 /* Current Intel BT controllers(ThP/JfP) hold the USB reset
1243 * lines for 2ms when it receives Intel Reset in bootloader mode.
1244 * Whereas, the upcoming Intel BT controllers will hold USB reset
1245 * for 150ms. To keep the delay generic, 150ms is chosen here.
1246 */
1247 msleep(150);
1248}
1249
1250static int btintel_read_debug_features(struct hci_dev *hdev,
1251 struct intel_debug_features *features)
1252{
1253 struct sk_buff *skb;
1254 u8 page_no = 1;
1255
1256 /* Intel controller supports two pages, each page is of 128-bit
1257 * feature bit mask. And each bit defines specific feature support
1258 */
1259 skb = __hci_cmd_sync(hdev, 0xfca6, sizeof(page_no), &page_no,
1260 HCI_INIT_TIMEOUT);
1261 if (IS_ERR(skb)) {
1262 bt_dev_err(hdev, "Reading supported features failed (%ld)",
1263 PTR_ERR(skb));
1264 return PTR_ERR(skb);
1265 }
1266
1267 if (skb->len != (sizeof(features->page1) + 3)) {
1268 bt_dev_err(hdev, "Supported features event size mismatch");
1269 kfree_skb(skb);
1270 return -EILSEQ;
1271 }
1272
1273 memcpy(features->page1, skb->data + 3, sizeof(features->page1));
1274
1275 /* Read the supported features page2 if required in future.
1276 */
1277 kfree_skb(skb);
1278 return 0;
1279}
1280
1281static int btintel_set_debug_features(struct hci_dev *hdev,
1282 const struct intel_debug_features *features)
1283{
1284 u8 mask[11] = { 0x0a, 0x92, 0x02, 0x7f, 0x00, 0x00, 0x00, 0x00,
1285 0x00, 0x00, 0x00 };
1286 u8 period[5] = { 0x04, 0x91, 0x02, 0x05, 0x00 };
1287 u8 trace_enable = 0x02;
1288 struct sk_buff *skb;
1289
1290 if (!features) {
1291 bt_dev_warn(hdev, "Debug features not read");
1292 return -EINVAL;
1293 }
1294
1295 if (!(features->page1[0] & 0x3f)) {
1296 bt_dev_info(hdev, "Telemetry exception format not supported");
1297 return 0;
1298 }
1299
1300 skb = __hci_cmd_sync(hdev, 0xfc8b, 11, mask, HCI_INIT_TIMEOUT);
1301 if (IS_ERR(skb)) {
1302 bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)",
1303 PTR_ERR(skb));
1304 return PTR_ERR(skb);
1305 }
1306 kfree_skb(skb);
1307
1308 skb = __hci_cmd_sync(hdev, 0xfc8b, 5, period, HCI_INIT_TIMEOUT);
1309 if (IS_ERR(skb)) {
1310 bt_dev_err(hdev, "Setting periodicity for link statistics traces failed (%ld)",
1311 PTR_ERR(skb));
1312 return PTR_ERR(skb);
1313 }
1314 kfree_skb(skb);
1315
1316 skb = __hci_cmd_sync(hdev, 0xfca1, 1, &trace_enable, HCI_INIT_TIMEOUT);
1317 if (IS_ERR(skb)) {
1318 bt_dev_err(hdev, "Enable tracing of link statistics events failed (%ld)",
1319 PTR_ERR(skb));
1320 return PTR_ERR(skb);
1321 }
1322 kfree_skb(skb);
1323
1324 bt_dev_info(hdev, "set debug features: trace_enable 0x%02x mask 0x%02x",
1325 trace_enable, mask[3]);
1326
1327 return 0;
1328}
1329
1330static int btintel_reset_debug_features(struct hci_dev *hdev,
1331 const struct intel_debug_features *features)
1332{
1333 u8 mask[11] = { 0x0a, 0x92, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00,
1334 0x00, 0x00, 0x00 };
1335 u8 trace_enable = 0x00;
1336 struct sk_buff *skb;
1337
1338 if (!features) {
1339 bt_dev_warn(hdev, "Debug features not read");
1340 return -EINVAL;
1341 }
1342
1343 if (!(features->page1[0] & 0x3f)) {
1344 bt_dev_info(hdev, "Telemetry exception format not supported");
1345 return 0;
1346 }
1347
1348 /* Should stop the trace before writing ddc event mask. */
1349 skb = __hci_cmd_sync(hdev, 0xfca1, 1, &trace_enable, HCI_INIT_TIMEOUT);
1350 if (IS_ERR(skb)) {
1351 bt_dev_err(hdev, "Stop tracing of link statistics events failed (%ld)",
1352 PTR_ERR(skb));
1353 return PTR_ERR(skb);
1354 }
1355 kfree_skb(skb);
1356
1357 skb = __hci_cmd_sync(hdev, 0xfc8b, 11, mask, HCI_INIT_TIMEOUT);
1358 if (IS_ERR(skb)) {
1359 bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)",
1360 PTR_ERR(skb));
1361 return PTR_ERR(skb);
1362 }
1363 kfree_skb(skb);
1364
1365 bt_dev_info(hdev, "reset debug features: trace_enable 0x%02x mask 0x%02x",
1366 trace_enable, mask[3]);
1367
1368 return 0;
1369}
1370
1371int btintel_set_quality_report(struct hci_dev *hdev, bool enable)
1372{
1373 struct intel_debug_features features;
1374 int err;
1375
1376 bt_dev_dbg(hdev, "enable %d", enable);
1377
1378 /* Read the Intel supported features and if new exception formats
1379 * supported, need to load the additional DDC config to enable.
1380 */
1381 err = btintel_read_debug_features(hdev, &features);
1382 if (err)
1383 return err;
1384
1385 /* Set or reset the debug features. */
1386 if (enable)
1387 err = btintel_set_debug_features(hdev, &features);
1388 else
1389 err = btintel_reset_debug_features(hdev, &features);
1390
1391 return err;
1392}
1393EXPORT_SYMBOL_GPL(btintel_set_quality_report);
1394
1395static const struct firmware *btintel_legacy_rom_get_fw(struct hci_dev *hdev,
1396 struct intel_version *ver)
1397{
1398 const struct firmware *fw;
1399 char fwname[64];
1400 int ret;
1401
1402 snprintf(fwname, sizeof(fwname),
1403 "intel/ibt-hw-%x.%x.%x-fw-%x.%x.%x.%x.%x.bseq",
1404 ver->hw_platform, ver->hw_variant, ver->hw_revision,
1405 ver->fw_variant, ver->fw_revision, ver->fw_build_num,
1406 ver->fw_build_ww, ver->fw_build_yy);
1407
1408 ret = request_firmware(&fw, fwname, &hdev->dev);
1409 if (ret < 0) {
1410 if (ret == -EINVAL) {
1411 bt_dev_err(hdev, "Intel firmware file request failed (%d)",
1412 ret);
1413 return NULL;
1414 }
1415
1416 bt_dev_err(hdev, "failed to open Intel firmware file: %s (%d)",
1417 fwname, ret);
1418
1419 /* If the correct firmware patch file is not found, use the
1420 * default firmware patch file instead
1421 */
1422 snprintf(fwname, sizeof(fwname), "intel/ibt-hw-%x.%x.bseq",
1423 ver->hw_platform, ver->hw_variant);
1424 if (request_firmware(&fw, fwname, &hdev->dev) < 0) {
1425 bt_dev_err(hdev, "failed to open default fw file: %s",
1426 fwname);
1427 return NULL;
1428 }
1429 }
1430
1431 bt_dev_info(hdev, "Intel Bluetooth firmware file: %s", fwname);
1432
1433 return fw;
1434}
1435
1436static int btintel_legacy_rom_patching(struct hci_dev *hdev,
1437 const struct firmware *fw,
1438 const u8 **fw_ptr, int *disable_patch)
1439{
1440 struct sk_buff *skb;
1441 struct hci_command_hdr *cmd;
1442 const u8 *cmd_param;
1443 struct hci_event_hdr *evt = NULL;
1444 const u8 *evt_param = NULL;
1445 int remain = fw->size - (*fw_ptr - fw->data);
1446
1447 /* The first byte indicates the types of the patch command or event.
1448 * 0x01 means HCI command and 0x02 is HCI event. If the first bytes
1449 * in the current firmware buffer doesn't start with 0x01 or
1450 * the size of remain buffer is smaller than HCI command header,
1451 * the firmware file is corrupted and it should stop the patching
1452 * process.
1453 */
1454 if (remain > HCI_COMMAND_HDR_SIZE && *fw_ptr[0] != 0x01) {
1455 bt_dev_err(hdev, "Intel fw corrupted: invalid cmd read");
1456 return -EINVAL;
1457 }
1458 (*fw_ptr)++;
1459 remain--;
1460
1461 cmd = (struct hci_command_hdr *)(*fw_ptr);
1462 *fw_ptr += sizeof(*cmd);
1463 remain -= sizeof(*cmd);
1464
1465 /* Ensure that the remain firmware data is long enough than the length
1466 * of command parameter. If not, the firmware file is corrupted.
1467 */
1468 if (remain < cmd->plen) {
1469 bt_dev_err(hdev, "Intel fw corrupted: invalid cmd len");
1470 return -EFAULT;
1471 }
1472
1473 /* If there is a command that loads a patch in the firmware
1474 * file, then enable the patch upon success, otherwise just
1475 * disable the manufacturer mode, for example patch activation
1476 * is not required when the default firmware patch file is used
1477 * because there are no patch data to load.
1478 */
1479 if (*disable_patch && le16_to_cpu(cmd->opcode) == 0xfc8e)
1480 *disable_patch = 0;
1481
1482 cmd_param = *fw_ptr;
1483 *fw_ptr += cmd->plen;
1484 remain -= cmd->plen;
1485
1486 /* This reads the expected events when the above command is sent to the
1487 * device. Some vendor commands expects more than one events, for
1488 * example command status event followed by vendor specific event.
1489 * For this case, it only keeps the last expected event. so the command
1490 * can be sent with __hci_cmd_sync_ev() which returns the sk_buff of
1491 * last expected event.
1492 */
1493 while (remain > HCI_EVENT_HDR_SIZE && *fw_ptr[0] == 0x02) {
1494 (*fw_ptr)++;
1495 remain--;
1496
1497 evt = (struct hci_event_hdr *)(*fw_ptr);
1498 *fw_ptr += sizeof(*evt);
1499 remain -= sizeof(*evt);
1500
1501 if (remain < evt->plen) {
1502 bt_dev_err(hdev, "Intel fw corrupted: invalid evt len");
1503 return -EFAULT;
1504 }
1505
1506 evt_param = *fw_ptr;
1507 *fw_ptr += evt->plen;
1508 remain -= evt->plen;
1509 }
1510
1511 /* Every HCI commands in the firmware file has its correspond event.
1512 * If event is not found or remain is smaller than zero, the firmware
1513 * file is corrupted.
1514 */
1515 if (!evt || !evt_param || remain < 0) {
1516 bt_dev_err(hdev, "Intel fw corrupted: invalid evt read");
1517 return -EFAULT;
1518 }
1519
1520 skb = __hci_cmd_sync_ev(hdev, le16_to_cpu(cmd->opcode), cmd->plen,
1521 cmd_param, evt->evt, HCI_INIT_TIMEOUT);
1522 if (IS_ERR(skb)) {
1523 bt_dev_err(hdev, "sending Intel patch command (0x%4.4x) failed (%ld)",
1524 cmd->opcode, PTR_ERR(skb));
1525 return PTR_ERR(skb);
1526 }
1527
1528 /* It ensures that the returned event matches the event data read from
1529 * the firmware file. At fist, it checks the length and then
1530 * the contents of the event.
1531 */
1532 if (skb->len != evt->plen) {
1533 bt_dev_err(hdev, "mismatch event length (opcode 0x%4.4x)",
1534 le16_to_cpu(cmd->opcode));
1535 kfree_skb(skb);
1536 return -EFAULT;
1537 }
1538
1539 if (memcmp(skb->data, evt_param, evt->plen)) {
1540 bt_dev_err(hdev, "mismatch event parameter (opcode 0x%4.4x)",
1541 le16_to_cpu(cmd->opcode));
1542 kfree_skb(skb);
1543 return -EFAULT;
1544 }
1545 kfree_skb(skb);
1546
1547 return 0;
1548}
1549
1550static int btintel_legacy_rom_setup(struct hci_dev *hdev,
1551 struct intel_version *ver)
1552{
1553 const struct firmware *fw;
1554 const u8 *fw_ptr;
1555 int disable_patch, err;
1556 struct intel_version new_ver;
1557
1558 BT_DBG("%s", hdev->name);
1559
1560 /* fw_patch_num indicates the version of patch the device currently
1561 * have. If there is no patch data in the device, it is always 0x00.
1562 * So, if it is other than 0x00, no need to patch the device again.
1563 */
1564 if (ver->fw_patch_num) {
1565 bt_dev_info(hdev,
1566 "Intel device is already patched. patch num: %02x",
1567 ver->fw_patch_num);
1568 goto complete;
1569 }
1570
1571 /* Opens the firmware patch file based on the firmware version read
1572 * from the controller. If it fails to open the matching firmware
1573 * patch file, it tries to open the default firmware patch file.
1574 * If no patch file is found, allow the device to operate without
1575 * a patch.
1576 */
1577 fw = btintel_legacy_rom_get_fw(hdev, ver);
1578 if (!fw)
1579 goto complete;
1580 fw_ptr = fw->data;
1581
1582 /* Enable the manufacturer mode of the controller.
1583 * Only while this mode is enabled, the driver can download the
1584 * firmware patch data and configuration parameters.
1585 */
1586 err = btintel_enter_mfg(hdev);
1587 if (err) {
1588 release_firmware(fw);
1589 return err;
1590 }
1591
1592 disable_patch = 1;
1593
1594 /* The firmware data file consists of list of Intel specific HCI
1595 * commands and its expected events. The first byte indicates the
1596 * type of the message, either HCI command or HCI event.
1597 *
1598 * It reads the command and its expected event from the firmware file,
1599 * and send to the controller. Once __hci_cmd_sync_ev() returns,
1600 * the returned event is compared with the event read from the firmware
1601 * file and it will continue until all the messages are downloaded to
1602 * the controller.
1603 *
1604 * Once the firmware patching is completed successfully,
1605 * the manufacturer mode is disabled with reset and activating the
1606 * downloaded patch.
1607 *
1608 * If the firmware patching fails, the manufacturer mode is
1609 * disabled with reset and deactivating the patch.
1610 *
1611 * If the default patch file is used, no reset is done when disabling
1612 * the manufacturer.
1613 */
1614 while (fw->size > fw_ptr - fw->data) {
1615 int ret;
1616
1617 ret = btintel_legacy_rom_patching(hdev, fw, &fw_ptr,
1618 &disable_patch);
1619 if (ret < 0)
1620 goto exit_mfg_deactivate;
1621 }
1622
1623 release_firmware(fw);
1624
1625 if (disable_patch)
1626 goto exit_mfg_disable;
1627
1628 /* Patching completed successfully and disable the manufacturer mode
1629 * with reset and activate the downloaded firmware patches.
1630 */
1631 err = btintel_exit_mfg(hdev, true, true);
1632 if (err)
1633 return err;
1634
1635 /* Need build number for downloaded fw patches in
1636 * every power-on boot
1637 */
1638 err = btintel_read_version(hdev, &new_ver);
1639 if (err)
1640 return err;
1641
1642 bt_dev_info(hdev, "Intel BT fw patch 0x%02x completed & activated",
1643 new_ver.fw_patch_num);
1644
1645 goto complete;
1646
1647exit_mfg_disable:
1648 /* Disable the manufacturer mode without reset */
1649 err = btintel_exit_mfg(hdev, false, false);
1650 if (err)
1651 return err;
1652
1653 bt_dev_info(hdev, "Intel firmware patch completed");
1654
1655 goto complete;
1656
1657exit_mfg_deactivate:
1658 release_firmware(fw);
1659
1660 /* Patching failed. Disable the manufacturer mode with reset and
1661 * deactivate the downloaded firmware patches.
1662 */
1663 err = btintel_exit_mfg(hdev, true, false);
1664 if (err)
1665 return err;
1666
1667 bt_dev_info(hdev, "Intel firmware patch completed and deactivated");
1668
1669complete:
1670 /* Set the event mask for Intel specific vendor events. This enables
1671 * a few extra events that are useful during general operation.
1672 */
1673 btintel_set_event_mask_mfg(hdev, false);
1674
1675 btintel_check_bdaddr(hdev);
1676
1677 return 0;
1678}
1679
1680static int btintel_download_wait(struct hci_dev *hdev, ktime_t calltime, int msec)
1681{
1682 ktime_t delta, rettime;
1683 unsigned long long duration;
1684 int err;
1685
1686 btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
1687
1688 bt_dev_info(hdev, "Waiting for firmware download to complete");
1689
1690 err = btintel_wait_on_flag_timeout(hdev, INTEL_DOWNLOADING,
1691 TASK_INTERRUPTIBLE,
1692 msecs_to_jiffies(msec));
1693 if (err == -EINTR) {
1694 bt_dev_err(hdev, "Firmware loading interrupted");
1695 return err;
1696 }
1697
1698 if (err) {
1699 bt_dev_err(hdev, "Firmware loading timeout");
1700 return -ETIMEDOUT;
1701 }
1702
1703 if (btintel_test_flag(hdev, INTEL_FIRMWARE_FAILED)) {
1704 bt_dev_err(hdev, "Firmware loading failed");
1705 return -ENOEXEC;
1706 }
1707
1708 rettime = ktime_get();
1709 delta = ktime_sub(rettime, calltime);
1710 duration = (unsigned long long)ktime_to_ns(delta) >> 10;
1711
1712 bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
1713
1714 return 0;
1715}
1716
1717static int btintel_boot_wait(struct hci_dev *hdev, ktime_t calltime, int msec)
1718{
1719 ktime_t delta, rettime;
1720 unsigned long long duration;
1721 int err;
1722
1723 bt_dev_info(hdev, "Waiting for device to boot");
1724
1725 err = btintel_wait_on_flag_timeout(hdev, INTEL_BOOTING,
1726 TASK_INTERRUPTIBLE,
1727 msecs_to_jiffies(msec));
1728 if (err == -EINTR) {
1729 bt_dev_err(hdev, "Device boot interrupted");
1730 return -EINTR;
1731 }
1732
1733 if (err) {
1734 bt_dev_err(hdev, "Device boot timeout");
1735 return -ETIMEDOUT;
1736 }
1737
1738 rettime = ktime_get();
1739 delta = ktime_sub(rettime, calltime);
1740 duration = (unsigned long long) ktime_to_ns(delta) >> 10;
1741
1742 bt_dev_info(hdev, "Device booted in %llu usecs", duration);
1743
1744 return 0;
1745}
1746
1747static int btintel_boot(struct hci_dev *hdev, u32 boot_addr)
1748{
1749 ktime_t calltime;
1750 int err;
1751
1752 calltime = ktime_get();
1753
1754 btintel_set_flag(hdev, INTEL_BOOTING);
1755
1756 err = btintel_send_intel_reset(hdev, boot_addr);
1757 if (err) {
1758 bt_dev_err(hdev, "Intel Soft Reset failed (%d)", err);
1759 btintel_reset_to_bootloader(hdev);
1760 return err;
1761 }
1762
1763 /* The bootloader will not indicate when the device is ready. This
1764 * is done by the operational firmware sending bootup notification.
1765 *
1766 * Booting into operational firmware should not take longer than
1767 * 1 second. However if that happens, then just fail the setup
1768 * since something went wrong.
1769 */
1770 err = btintel_boot_wait(hdev, calltime, 1000);
1771 if (err == -ETIMEDOUT)
1772 btintel_reset_to_bootloader(hdev);
1773
1774 return err;
1775}
1776
1777static int btintel_get_fw_name(struct intel_version *ver,
1778 struct intel_boot_params *params,
1779 char *fw_name, size_t len,
1780 const char *suffix)
1781{
1782 switch (ver->hw_variant) {
1783 case 0x0b: /* SfP */
1784 case 0x0c: /* WsP */
1785 snprintf(fw_name, len, "intel/ibt-%u-%u.%s",
1786 ver->hw_variant,
1787 le16_to_cpu(params->dev_revid),
1788 suffix);
1789 break;
1790 case 0x11: /* JfP */
1791 case 0x12: /* ThP */
1792 case 0x13: /* HrP */
1793 case 0x14: /* CcP */
1794 snprintf(fw_name, len, "intel/ibt-%u-%u-%u.%s",
1795 ver->hw_variant,
1796 ver->hw_revision,
1797 ver->fw_revision,
1798 suffix);
1799 break;
1800 default:
1801 return -EINVAL;
1802 }
1803
1804 return 0;
1805}
1806
1807static int btintel_download_fw(struct hci_dev *hdev,
1808 struct intel_version *ver,
1809 struct intel_boot_params *params,
1810 u32 *boot_param)
1811{
1812 const struct firmware *fw;
1813 char fwname[64];
1814 int err;
1815 ktime_t calltime;
1816
1817 if (!ver || !params)
1818 return -EINVAL;
1819
1820 /* The firmware variant determines if the device is in bootloader
1821 * mode or is running operational firmware. The value 0x06 identifies
1822 * the bootloader and the value 0x23 identifies the operational
1823 * firmware.
1824 *
1825 * When the operational firmware is already present, then only
1826 * the check for valid Bluetooth device address is needed. This
1827 * determines if the device will be added as configured or
1828 * unconfigured controller.
1829 *
1830 * It is not possible to use the Secure Boot Parameters in this
1831 * case since that command is only available in bootloader mode.
1832 */
1833 if (ver->fw_variant == 0x23) {
1834 btintel_clear_flag(hdev, INTEL_BOOTLOADER);
1835 btintel_check_bdaddr(hdev);
1836
1837 /* SfP and WsP don't seem to update the firmware version on file
1838 * so version checking is currently possible.
1839 */
1840 switch (ver->hw_variant) {
1841 case 0x0b: /* SfP */
1842 case 0x0c: /* WsP */
1843 return 0;
1844 }
1845
1846 /* Proceed to download to check if the version matches */
1847 goto download;
1848 }
1849
1850 /* Read the secure boot parameters to identify the operating
1851 * details of the bootloader.
1852 */
1853 err = btintel_read_boot_params(hdev, params);
1854 if (err)
1855 return err;
1856
1857 /* It is required that every single firmware fragment is acknowledged
1858 * with a command complete event. If the boot parameters indicate
1859 * that this bootloader does not send them, then abort the setup.
1860 */
1861 if (params->limited_cce != 0x00) {
1862 bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
1863 params->limited_cce);
1864 return -EINVAL;
1865 }
1866
1867 /* If the OTP has no valid Bluetooth device address, then there will
1868 * also be no valid address for the operational firmware.
1869 */
1870 if (!bacmp(¶ms->otp_bdaddr, BDADDR_ANY)) {
1871 bt_dev_info(hdev, "No device address configured");
1872 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
1873 }
1874
1875download:
1876 /* With this Intel bootloader only the hardware variant and device
1877 * revision information are used to select the right firmware for SfP
1878 * and WsP.
1879 *
1880 * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
1881 *
1882 * Currently the supported hardware variants are:
1883 * 11 (0x0b) for iBT3.0 (LnP/SfP)
1884 * 12 (0x0c) for iBT3.5 (WsP)
1885 *
1886 * For ThP/JfP and for future SKU's, the FW name varies based on HW
1887 * variant, HW revision and FW revision, as these are dependent on CNVi
1888 * and RF Combination.
1889 *
1890 * 17 (0x11) for iBT3.5 (JfP)
1891 * 18 (0x12) for iBT3.5 (ThP)
1892 *
1893 * The firmware file name for these will be
1894 * ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi.
1895 *
1896 */
1897 err = btintel_get_fw_name(ver, params, fwname, sizeof(fwname), "sfi");
1898 if (err < 0) {
1899 if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
1900 /* Firmware has already been loaded */
1901 btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
1902 return 0;
1903 }
1904
1905 bt_dev_err(hdev, "Unsupported Intel firmware naming");
1906 return -EINVAL;
1907 }
1908
1909 err = firmware_request_nowarn(&fw, fwname, &hdev->dev);
1910 if (err < 0) {
1911 if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
1912 /* Firmware has already been loaded */
1913 btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
1914 return 0;
1915 }
1916
1917 bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)",
1918 fwname, err);
1919 return err;
1920 }
1921
1922 bt_dev_info(hdev, "Found device firmware: %s", fwname);
1923
1924 if (fw->size < 644) {
1925 bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
1926 fw->size);
1927 err = -EBADF;
1928 goto done;
1929 }
1930
1931 calltime = ktime_get();
1932
1933 btintel_set_flag(hdev, INTEL_DOWNLOADING);
1934
1935 /* Start firmware downloading and get boot parameter */
1936 err = btintel_download_firmware(hdev, ver, fw, boot_param);
1937 if (err < 0) {
1938 if (err == -EALREADY) {
1939 /* Firmware has already been loaded */
1940 btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
1941 err = 0;
1942 goto done;
1943 }
1944
1945 /* When FW download fails, send Intel Reset to retry
1946 * FW download.
1947 */
1948 btintel_reset_to_bootloader(hdev);
1949 goto done;
1950 }
1951
1952 /* Before switching the device into operational mode and with that
1953 * booting the loaded firmware, wait for the bootloader notification
1954 * that all fragments have been successfully received.
1955 *
1956 * When the event processing receives the notification, then the
1957 * INTEL_DOWNLOADING flag will be cleared.
1958 *
1959 * The firmware loading should not take longer than 5 seconds
1960 * and thus just timeout if that happens and fail the setup
1961 * of this device.
1962 */
1963 err = btintel_download_wait(hdev, calltime, 5000);
1964 if (err == -ETIMEDOUT)
1965 btintel_reset_to_bootloader(hdev);
1966
1967done:
1968 release_firmware(fw);
1969 return err;
1970}
1971
1972static int btintel_bootloader_setup(struct hci_dev *hdev,
1973 struct intel_version *ver)
1974{
1975 struct intel_version new_ver;
1976 struct intel_boot_params params;
1977 u32 boot_param;
1978 char ddcname[64];
1979 int err;
1980
1981 BT_DBG("%s", hdev->name);
1982
1983 /* Set the default boot parameter to 0x0 and it is updated to
1984 * SKU specific boot parameter after reading Intel_Write_Boot_Params
1985 * command while downloading the firmware.
1986 */
1987 boot_param = 0x00000000;
1988
1989 btintel_set_flag(hdev, INTEL_BOOTLOADER);
1990
1991 err = btintel_download_fw(hdev, ver, ¶ms, &boot_param);
1992 if (err)
1993 return err;
1994
1995 /* controller is already having an operational firmware */
1996 if (ver->fw_variant == 0x23)
1997 goto finish;
1998
1999 err = btintel_boot(hdev, boot_param);
2000 if (err)
2001 return err;
2002
2003 btintel_clear_flag(hdev, INTEL_BOOTLOADER);
2004
2005 err = btintel_get_fw_name(ver, ¶ms, ddcname,
2006 sizeof(ddcname), "ddc");
2007
2008 if (err < 0) {
2009 bt_dev_err(hdev, "Unsupported Intel firmware naming");
2010 } else {
2011 /* Once the device is running in operational mode, it needs to
2012 * apply the device configuration (DDC) parameters.
2013 *
2014 * The device can work without DDC parameters, so even if it
2015 * fails to load the file, no need to fail the setup.
2016 */
2017 btintel_load_ddc_config(hdev, ddcname);
2018 }
2019
2020 hci_dev_clear_flag(hdev, HCI_QUALITY_REPORT);
2021
2022 /* Read the Intel version information after loading the FW */
2023 err = btintel_read_version(hdev, &new_ver);
2024 if (err)
2025 return err;
2026
2027 btintel_version_info(hdev, &new_ver);
2028
2029finish:
2030 /* Set the event mask for Intel specific vendor events. This enables
2031 * a few extra events that are useful during general operation. It
2032 * does not enable any debugging related events.
2033 *
2034 * The device will function correctly without these events enabled
2035 * and thus no need to fail the setup.
2036 */
2037 btintel_set_event_mask(hdev, false);
2038
2039 return 0;
2040}
2041
2042static void btintel_get_fw_name_tlv(const struct intel_version_tlv *ver,
2043 char *fw_name, size_t len,
2044 const char *suffix)
2045{
2046 /* The firmware file name for new generation controllers will be
2047 * ibt-<cnvi_top type+cnvi_top step>-<cnvr_top type+cnvr_top step>
2048 */
2049 snprintf(fw_name, len, "intel/ibt-%04x-%04x.%s",
2050 INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvi_top),
2051 INTEL_CNVX_TOP_STEP(ver->cnvi_top)),
2052 INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvr_top),
2053 INTEL_CNVX_TOP_STEP(ver->cnvr_top)),
2054 suffix);
2055}
2056
2057static int btintel_prepare_fw_download_tlv(struct hci_dev *hdev,
2058 struct intel_version_tlv *ver,
2059 u32 *boot_param)
2060{
2061 const struct firmware *fw;
2062 char fwname[64];
2063 int err;
2064 ktime_t calltime;
2065
2066 if (!ver || !boot_param)
2067 return -EINVAL;
2068
2069 /* The firmware variant determines if the device is in bootloader
2070 * mode or is running operational firmware. The value 0x03 identifies
2071 * the bootloader and the value 0x23 identifies the operational
2072 * firmware.
2073 *
2074 * When the operational firmware is already present, then only
2075 * the check for valid Bluetooth device address is needed. This
2076 * determines if the device will be added as configured or
2077 * unconfigured controller.
2078 *
2079 * It is not possible to use the Secure Boot Parameters in this
2080 * case since that command is only available in bootloader mode.
2081 */
2082 if (ver->img_type == 0x03) {
2083 btintel_clear_flag(hdev, INTEL_BOOTLOADER);
2084 btintel_check_bdaddr(hdev);
2085 } else {
2086 /*
2087 * Check for valid bd address in boot loader mode. Device
2088 * will be marked as unconfigured if empty bd address is
2089 * found.
2090 */
2091 if (!bacmp(&ver->otp_bd_addr, BDADDR_ANY)) {
2092 bt_dev_info(hdev, "No device address configured");
2093 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
2094 }
2095 }
2096
2097 btintel_get_fw_name_tlv(ver, fwname, sizeof(fwname), "sfi");
2098 err = firmware_request_nowarn(&fw, fwname, &hdev->dev);
2099 if (err < 0) {
2100 if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
2101 /* Firmware has already been loaded */
2102 btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2103 return 0;
2104 }
2105
2106 bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)",
2107 fwname, err);
2108
2109 return err;
2110 }
2111
2112 bt_dev_info(hdev, "Found device firmware: %s", fwname);
2113
2114 if (fw->size < 644) {
2115 bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
2116 fw->size);
2117 err = -EBADF;
2118 goto done;
2119 }
2120
2121 calltime = ktime_get();
2122
2123 btintel_set_flag(hdev, INTEL_DOWNLOADING);
2124
2125 /* Start firmware downloading and get boot parameter */
2126 err = btintel_download_fw_tlv(hdev, ver, fw, boot_param,
2127 INTEL_HW_VARIANT(ver->cnvi_bt),
2128 ver->sbe_type);
2129 if (err < 0) {
2130 if (err == -EALREADY) {
2131 /* Firmware has already been loaded */
2132 btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2133 err = 0;
2134 goto done;
2135 }
2136
2137 /* When FW download fails, send Intel Reset to retry
2138 * FW download.
2139 */
2140 btintel_reset_to_bootloader(hdev);
2141 goto done;
2142 }
2143
2144 /* Before switching the device into operational mode and with that
2145 * booting the loaded firmware, wait for the bootloader notification
2146 * that all fragments have been successfully received.
2147 *
2148 * When the event processing receives the notification, then the
2149 * BTUSB_DOWNLOADING flag will be cleared.
2150 *
2151 * The firmware loading should not take longer than 5 seconds
2152 * and thus just timeout if that happens and fail the setup
2153 * of this device.
2154 */
2155 err = btintel_download_wait(hdev, calltime, 5000);
2156 if (err == -ETIMEDOUT)
2157 btintel_reset_to_bootloader(hdev);
2158
2159done:
2160 release_firmware(fw);
2161 return err;
2162}
2163
2164static int btintel_get_codec_config_data(struct hci_dev *hdev,
2165 __u8 link, struct bt_codec *codec,
2166 __u8 *ven_len, __u8 **ven_data)
2167{
2168 int err = 0;
2169
2170 if (!ven_data || !ven_len)
2171 return -EINVAL;
2172
2173 *ven_len = 0;
2174 *ven_data = NULL;
2175
2176 if (link != ESCO_LINK) {
2177 bt_dev_err(hdev, "Invalid link type(%u)", link);
2178 return -EINVAL;
2179 }
2180
2181 *ven_data = kmalloc(sizeof(__u8), GFP_KERNEL);
2182 if (!*ven_data) {
2183 err = -ENOMEM;
2184 goto error;
2185 }
2186
2187 /* supports only CVSD and mSBC offload codecs */
2188 switch (codec->id) {
2189 case 0x02:
2190 **ven_data = 0x00;
2191 break;
2192 case 0x05:
2193 **ven_data = 0x01;
2194 break;
2195 default:
2196 err = -EINVAL;
2197 bt_dev_err(hdev, "Invalid codec id(%u)", codec->id);
2198 goto error;
2199 }
2200 /* codec and its capabilities are pre-defined to ids
2201 * preset id = 0x00 represents CVSD codec with sampling rate 8K
2202 * preset id = 0x01 represents mSBC codec with sampling rate 16K
2203 */
2204 *ven_len = sizeof(__u8);
2205 return err;
2206
2207error:
2208 kfree(*ven_data);
2209 *ven_data = NULL;
2210 return err;
2211}
2212
2213static int btintel_get_data_path_id(struct hci_dev *hdev, __u8 *data_path_id)
2214{
2215 /* Intel uses 1 as data path id for all the usecases */
2216 *data_path_id = 1;
2217 return 0;
2218}
2219
2220static int btintel_configure_offload(struct hci_dev *hdev)
2221{
2222 struct sk_buff *skb;
2223 int err = 0;
2224 struct intel_offload_use_cases *use_cases;
2225
2226 skb = __hci_cmd_sync(hdev, 0xfc86, 0, NULL, HCI_INIT_TIMEOUT);
2227 if (IS_ERR(skb)) {
2228 bt_dev_err(hdev, "Reading offload use cases failed (%ld)",
2229 PTR_ERR(skb));
2230 return PTR_ERR(skb);
2231 }
2232
2233 if (skb->len < sizeof(*use_cases)) {
2234 err = -EIO;
2235 goto error;
2236 }
2237
2238 use_cases = (void *)skb->data;
2239
2240 if (use_cases->status) {
2241 err = -bt_to_errno(skb->data[0]);
2242 goto error;
2243 }
2244
2245 if (use_cases->preset[0] & 0x03) {
2246 hdev->get_data_path_id = btintel_get_data_path_id;
2247 hdev->get_codec_config_data = btintel_get_codec_config_data;
2248 }
2249error:
2250 kfree_skb(skb);
2251 return err;
2252}
2253
2254static int btintel_bootloader_setup_tlv(struct hci_dev *hdev,
2255 struct intel_version_tlv *ver)
2256{
2257 u32 boot_param;
2258 char ddcname[64];
2259 int err;
2260 struct intel_version_tlv new_ver;
2261
2262 bt_dev_dbg(hdev, "");
2263
2264 /* Set the default boot parameter to 0x0 and it is updated to
2265 * SKU specific boot parameter after reading Intel_Write_Boot_Params
2266 * command while downloading the firmware.
2267 */
2268 boot_param = 0x00000000;
2269
2270 btintel_set_flag(hdev, INTEL_BOOTLOADER);
2271
2272 err = btintel_prepare_fw_download_tlv(hdev, ver, &boot_param);
2273 if (err)
2274 return err;
2275
2276 /* check if controller is already having an operational firmware */
2277 if (ver->img_type == 0x03)
2278 goto finish;
2279
2280 err = btintel_boot(hdev, boot_param);
2281 if (err)
2282 return err;
2283
2284 btintel_clear_flag(hdev, INTEL_BOOTLOADER);
2285
2286 btintel_get_fw_name_tlv(ver, ddcname, sizeof(ddcname), "ddc");
2287 /* Once the device is running in operational mode, it needs to
2288 * apply the device configuration (DDC) parameters.
2289 *
2290 * The device can work without DDC parameters, so even if it
2291 * fails to load the file, no need to fail the setup.
2292 */
2293 btintel_load_ddc_config(hdev, ddcname);
2294
2295 /* Read supported use cases and set callbacks to fetch datapath id */
2296 btintel_configure_offload(hdev);
2297
2298 hci_dev_clear_flag(hdev, HCI_QUALITY_REPORT);
2299
2300 /* Read the Intel version information after loading the FW */
2301 err = btintel_read_version_tlv(hdev, &new_ver);
2302 if (err)
2303 return err;
2304
2305 btintel_version_info_tlv(hdev, &new_ver);
2306
2307finish:
2308 /* Set the event mask for Intel specific vendor events. This enables
2309 * a few extra events that are useful during general operation. It
2310 * does not enable any debugging related events.
2311 *
2312 * The device will function correctly without these events enabled
2313 * and thus no need to fail the setup.
2314 */
2315 btintel_set_event_mask(hdev, false);
2316
2317 return 0;
2318}
2319
2320static void btintel_set_msft_opcode(struct hci_dev *hdev, u8 hw_variant)
2321{
2322 switch (hw_variant) {
2323 /* Legacy bootloader devices that supports MSFT Extension */
2324 case 0x11: /* JfP */
2325 case 0x12: /* ThP */
2326 case 0x13: /* HrP */
2327 case 0x14: /* CcP */
2328 /* All Intel new genration controllers support the Microsoft vendor
2329 * extension are using 0xFC1E for VsMsftOpCode.
2330 */
2331 case 0x17:
2332 case 0x18:
2333 case 0x19:
2334 case 0x1b:
2335 hci_set_msft_opcode(hdev, 0xFC1E);
2336 break;
2337 default:
2338 /* Not supported */
2339 break;
2340 }
2341}
2342
2343static int btintel_setup_combined(struct hci_dev *hdev)
2344{
2345 const u8 param[1] = { 0xFF };
2346 struct intel_version ver;
2347 struct intel_version_tlv ver_tlv;
2348 struct sk_buff *skb;
2349 int err;
2350
2351 BT_DBG("%s", hdev->name);
2352
2353 /* The some controllers have a bug with the first HCI command sent to it
2354 * returning number of completed commands as zero. This would stall the
2355 * command processing in the Bluetooth core.
2356 *
2357 * As a workaround, send HCI Reset command first which will reset the
2358 * number of completed commands and allow normal command processing
2359 * from now on.
2360 *
2361 * Regarding the INTEL_BROKEN_SHUTDOWN_LED flag, these devices maybe
2362 * in the SW_RFKILL ON state as a workaround of fixing LED issue during
2363 * the shutdown() procedure, and once the device is in SW_RFKILL ON
2364 * state, the only way to exit out of it is sending the HCI_Reset
2365 * command.
2366 */
2367 if (btintel_test_flag(hdev, INTEL_BROKEN_INITIAL_NCMD) ||
2368 btintel_test_flag(hdev, INTEL_BROKEN_SHUTDOWN_LED)) {
2369 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
2370 HCI_INIT_TIMEOUT);
2371 if (IS_ERR(skb)) {
2372 bt_dev_err(hdev,
2373 "sending initial HCI reset failed (%ld)",
2374 PTR_ERR(skb));
2375 return PTR_ERR(skb);
2376 }
2377 kfree_skb(skb);
2378 }
2379
2380 /* Starting from TyP device, the command parameter and response are
2381 * changed even though the OCF for HCI_Intel_Read_Version command
2382 * remains same. The legacy devices can handle even if the
2383 * command has a parameter and returns a correct version information.
2384 * So, it uses new format to support both legacy and new format.
2385 */
2386 skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT);
2387 if (IS_ERR(skb)) {
2388 bt_dev_err(hdev, "Reading Intel version command failed (%ld)",
2389 PTR_ERR(skb));
2390 return PTR_ERR(skb);
2391 }
2392
2393 /* Check the status */
2394 if (skb->data[0]) {
2395 bt_dev_err(hdev, "Intel Read Version command failed (%02x)",
2396 skb->data[0]);
2397 err = -EIO;
2398 goto exit_error;
2399 }
2400
2401 /* Apply the common HCI quirks for Intel device */
2402 set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks);
2403 set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
2404 set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks);
2405
2406 /* Set up the quality report callback for Intel devices */
2407 hdev->set_quality_report = btintel_set_quality_report;
2408
2409 /* For Legacy device, check the HW platform value and size */
2410 if (skb->len == sizeof(ver) && skb->data[1] == 0x37) {
2411 bt_dev_dbg(hdev, "Read the legacy Intel version information");
2412
2413 memcpy(&ver, skb->data, sizeof(ver));
2414
2415 /* Display version information */
2416 btintel_version_info(hdev, &ver);
2417
2418 /* Check for supported iBT hardware variants of this firmware
2419 * loading method.
2420 *
2421 * This check has been put in place to ensure correct forward
2422 * compatibility options when newer hardware variants come
2423 * along.
2424 */
2425 switch (ver.hw_variant) {
2426 case 0x07: /* WP */
2427 case 0x08: /* StP */
2428 /* Legacy ROM product */
2429 btintel_set_flag(hdev, INTEL_ROM_LEGACY);
2430
2431 /* Apply the device specific HCI quirks
2432 *
2433 * WBS for SdP - For the Legacy ROM products, only SdP
2434 * supports the WBS. But the version information is not
2435 * enough to use here because the StP2 and SdP have same
2436 * hw_variant and fw_variant. So, this flag is set by
2437 * the transport driver (btusb) based on the HW info
2438 * (idProduct)
2439 */
2440 if (!btintel_test_flag(hdev,
2441 INTEL_ROM_LEGACY_NO_WBS_SUPPORT))
2442 set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
2443 &hdev->quirks);
2444 if (ver.hw_variant == 0x08 && ver.fw_variant == 0x22)
2445 set_bit(HCI_QUIRK_VALID_LE_STATES,
2446 &hdev->quirks);
2447
2448 err = btintel_legacy_rom_setup(hdev, &ver);
2449 break;
2450 case 0x0b: /* SfP */
2451 case 0x11: /* JfP */
2452 case 0x12: /* ThP */
2453 case 0x13: /* HrP */
2454 case 0x14: /* CcP */
2455 set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
2456 fallthrough;
2457 case 0x0c: /* WsP */
2458 /* Apply the device specific HCI quirks
2459 *
2460 * All Legacy bootloader devices support WBS
2461 */
2462 set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
2463 &hdev->quirks);
2464
2465 /* Setup MSFT Extension support */
2466 btintel_set_msft_opcode(hdev, ver.hw_variant);
2467
2468 err = btintel_bootloader_setup(hdev, &ver);
2469 break;
2470 default:
2471 bt_dev_err(hdev, "Unsupported Intel hw variant (%u)",
2472 ver.hw_variant);
2473 err = -EINVAL;
2474 }
2475
2476 goto exit_error;
2477 }
2478
2479 /* memset ver_tlv to start with clean state as few fields are exclusive
2480 * to bootloader mode and are not populated in operational mode
2481 */
2482 memset(&ver_tlv, 0, sizeof(ver_tlv));
2483 /* For TLV type device, parse the tlv data */
2484 err = btintel_parse_version_tlv(hdev, &ver_tlv, skb);
2485 if (err) {
2486 bt_dev_err(hdev, "Failed to parse TLV version information");
2487 goto exit_error;
2488 }
2489
2490 if (INTEL_HW_PLATFORM(ver_tlv.cnvi_bt) != 0x37) {
2491 bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)",
2492 INTEL_HW_PLATFORM(ver_tlv.cnvi_bt));
2493 err = -EINVAL;
2494 goto exit_error;
2495 }
2496
2497 /* Check for supported iBT hardware variants of this firmware
2498 * loading method.
2499 *
2500 * This check has been put in place to ensure correct forward
2501 * compatibility options when newer hardware variants come
2502 * along.
2503 */
2504 switch (INTEL_HW_VARIANT(ver_tlv.cnvi_bt)) {
2505 case 0x11: /* JfP */
2506 case 0x12: /* ThP */
2507 case 0x13: /* HrP */
2508 case 0x14: /* CcP */
2509 /* Some legacy bootloader devices starting from JfP,
2510 * the operational firmware supports both old and TLV based
2511 * HCI_Intel_Read_Version command based on the command
2512 * parameter.
2513 *
2514 * For upgrading firmware case, the TLV based version cannot
2515 * be used because the firmware filename for legacy bootloader
2516 * is based on the old format.
2517 *
2518 * Also, it is not easy to convert TLV based version from the
2519 * legacy version format.
2520 *
2521 * So, as a workaround for those devices, use the legacy
2522 * HCI_Intel_Read_Version to get the version information and
2523 * run the legacy bootloader setup.
2524 */
2525 err = btintel_read_version(hdev, &ver);
2526 if (err)
2527 break;
2528
2529 /* Apply the device specific HCI quirks
2530 *
2531 * All Legacy bootloader devices support WBS
2532 */
2533 set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks);
2534
2535 /* Set Valid LE States quirk */
2536 set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
2537
2538 /* Setup MSFT Extension support */
2539 btintel_set_msft_opcode(hdev, ver.hw_variant);
2540
2541 err = btintel_bootloader_setup(hdev, &ver);
2542 break;
2543 case 0x17:
2544 case 0x18:
2545 case 0x19:
2546 case 0x1b:
2547 /* Display version information of TLV type */
2548 btintel_version_info_tlv(hdev, &ver_tlv);
2549
2550 /* Apply the device specific HCI quirks for TLV based devices
2551 *
2552 * All TLV based devices support WBS
2553 */
2554 set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks);
2555
2556 /* Valid LE States quirk for GfP */
2557 if (INTEL_HW_VARIANT(ver_tlv.cnvi_bt) == 0x18)
2558 set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
2559
2560 /* Setup MSFT Extension support */
2561 btintel_set_msft_opcode(hdev,
2562 INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
2563
2564 err = btintel_bootloader_setup_tlv(hdev, &ver_tlv);
2565 break;
2566 default:
2567 bt_dev_err(hdev, "Unsupported Intel hw variant (%u)",
2568 INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
2569 err = -EINVAL;
2570 break;
2571 }
2572
2573exit_error:
2574 kfree_skb(skb);
2575
2576 return err;
2577}
2578
2579static int btintel_shutdown_combined(struct hci_dev *hdev)
2580{
2581 struct sk_buff *skb;
2582 int ret;
2583
2584 /* Send HCI Reset to the controller to stop any BT activity which
2585 * were triggered. This will help to save power and maintain the
2586 * sync b/w Host and controller
2587 */
2588 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
2589 if (IS_ERR(skb)) {
2590 bt_dev_err(hdev, "HCI reset during shutdown failed");
2591 return PTR_ERR(skb);
2592 }
2593 kfree_skb(skb);
2594
2595
2596 /* Some platforms have an issue with BT LED when the interface is
2597 * down or BT radio is turned off, which takes 5 seconds to BT LED
2598 * goes off. As a workaround, sends HCI_Intel_SW_RFKILL to put the
2599 * device in the RFKILL ON state which turns off the BT LED immediately.
2600 */
2601 if (btintel_test_flag(hdev, INTEL_BROKEN_SHUTDOWN_LED)) {
2602 skb = __hci_cmd_sync(hdev, 0xfc3f, 0, NULL, HCI_INIT_TIMEOUT);
2603 if (IS_ERR(skb)) {
2604 ret = PTR_ERR(skb);
2605 bt_dev_err(hdev, "turning off Intel device LED failed");
2606 return ret;
2607 }
2608 kfree_skb(skb);
2609 }
2610
2611 return 0;
2612}
2613
2614int btintel_configure_setup(struct hci_dev *hdev)
2615{
2616 hdev->manufacturer = 2;
2617 hdev->setup = btintel_setup_combined;
2618 hdev->shutdown = btintel_shutdown_combined;
2619 hdev->hw_error = btintel_hw_error;
2620 hdev->set_diag = btintel_set_diag_combined;
2621 hdev->set_bdaddr = btintel_set_bdaddr;
2622
2623 return 0;
2624}
2625EXPORT_SYMBOL_GPL(btintel_configure_setup);
2626
2627void btintel_bootup(struct hci_dev *hdev, const void *ptr, unsigned int len)
2628{
2629 const struct intel_bootup *evt = ptr;
2630
2631 if (len != sizeof(*evt))
2632 return;
2633
2634 if (btintel_test_and_clear_flag(hdev, INTEL_BOOTING))
2635 btintel_wake_up_flag(hdev, INTEL_BOOTING);
2636}
2637EXPORT_SYMBOL_GPL(btintel_bootup);
2638
2639void btintel_secure_send_result(struct hci_dev *hdev,
2640 const void *ptr, unsigned int len)
2641{
2642 const struct intel_secure_send_result *evt = ptr;
2643
2644 if (len != sizeof(*evt))
2645 return;
2646
2647 if (evt->result)
2648 btintel_set_flag(hdev, INTEL_FIRMWARE_FAILED);
2649
2650 if (btintel_test_and_clear_flag(hdev, INTEL_DOWNLOADING) &&
2651 btintel_test_flag(hdev, INTEL_FIRMWARE_LOADED))
2652 btintel_wake_up_flag(hdev, INTEL_DOWNLOADING);
2653}
2654EXPORT_SYMBOL_GPL(btintel_secure_send_result);
2655
2656MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>");
2657MODULE_DESCRIPTION("Bluetooth support for Intel devices ver " VERSION);
2658MODULE_VERSION(VERSION);
2659MODULE_LICENSE("GPL");
2660MODULE_FIRMWARE("intel/ibt-11-5.sfi");
2661MODULE_FIRMWARE("intel/ibt-11-5.ddc");
2662MODULE_FIRMWARE("intel/ibt-12-16.sfi");
2663MODULE_FIRMWARE("intel/ibt-12-16.ddc");