Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v6.13.7
  1/* SPDX-License-Identifier: GPL-2.0-only */
  2/*
  3 * Kernel-based Virtual Machine driver for Linux
  4 *
  5 * This module enables machines with Intel VT-x extensions to run virtual
  6 * machines without emulation or binary translation.
  7 *
  8 * MMU support
  9 *
 10 * Copyright (C) 2006 Qumranet, Inc.
 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
 12 *
 13 * Authors:
 14 *   Yaniv Kamay  <yaniv@qumranet.com>
 15 *   Avi Kivity   <avi@qumranet.com>
 16 */
 17
 18/*
 19 * The MMU needs to be able to access/walk 32-bit and 64-bit guest page tables,
 20 * as well as guest EPT tables, so the code in this file is compiled thrice,
 21 * once per guest PTE type.  The per-type defines are #undef'd at the end.
 22 */
 23
 24#if PTTYPE == 64
 25	#define pt_element_t u64
 26	#define guest_walker guest_walker64
 27	#define FNAME(name) paging##64_##name
 28	#define PT_LEVEL_BITS 9
 29	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
 30	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
 31	#define PT_HAVE_ACCESSED_DIRTY(mmu) true
 32	#ifdef CONFIG_X86_64
 33	#define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
 34	#else
 35	#define PT_MAX_FULL_LEVELS 2
 36	#endif
 37#elif PTTYPE == 32
 38	#define pt_element_t u32
 39	#define guest_walker guest_walker32
 40	#define FNAME(name) paging##32_##name
 41	#define PT_LEVEL_BITS 10
 42	#define PT_MAX_FULL_LEVELS 2
 43	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
 44	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
 45	#define PT_HAVE_ACCESSED_DIRTY(mmu) true
 46
 47	#define PT32_DIR_PSE36_SIZE 4
 48	#define PT32_DIR_PSE36_SHIFT 13
 49	#define PT32_DIR_PSE36_MASK \
 50		(((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
 51#elif PTTYPE == PTTYPE_EPT
 52	#define pt_element_t u64
 53	#define guest_walker guest_walkerEPT
 54	#define FNAME(name) ept_##name
 55	#define PT_LEVEL_BITS 9
 56	#define PT_GUEST_DIRTY_SHIFT 9
 57	#define PT_GUEST_ACCESSED_SHIFT 8
 58	#define PT_HAVE_ACCESSED_DIRTY(mmu) (!(mmu)->cpu_role.base.ad_disabled)
 59	#define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
 60#else
 61	#error Invalid PTTYPE value
 62#endif
 63
 64/* Common logic, but per-type values.  These also need to be undefined. */
 65#define PT_BASE_ADDR_MASK	((pt_element_t)__PT_BASE_ADDR_MASK)
 66#define PT_LVL_ADDR_MASK(lvl)	__PT_LVL_ADDR_MASK(PT_BASE_ADDR_MASK, lvl, PT_LEVEL_BITS)
 67#define PT_LVL_OFFSET_MASK(lvl)	__PT_LVL_OFFSET_MASK(PT_BASE_ADDR_MASK, lvl, PT_LEVEL_BITS)
 68#define PT_INDEX(addr, lvl)	__PT_INDEX(addr, lvl, PT_LEVEL_BITS)
 69
 70#define PT_GUEST_DIRTY_MASK    (1 << PT_GUEST_DIRTY_SHIFT)
 71#define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)
 72
 73#define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
 74#define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PG_LEVEL_4K)
 75
 76/*
 77 * The guest_walker structure emulates the behavior of the hardware page
 78 * table walker.
 79 */
 80struct guest_walker {
 81	int level;
 82	unsigned max_level;
 83	gfn_t table_gfn[PT_MAX_FULL_LEVELS];
 84	pt_element_t ptes[PT_MAX_FULL_LEVELS];
 85	pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
 86	gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
 87	pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
 88	bool pte_writable[PT_MAX_FULL_LEVELS];
 89	unsigned int pt_access[PT_MAX_FULL_LEVELS];
 90	unsigned int pte_access;
 91	gfn_t gfn;
 92	struct x86_exception fault;
 93};
 94
 95#if PTTYPE == 32
 96static inline gfn_t pse36_gfn_delta(u32 gpte)
 97{
 98	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
 99
100	return (gpte & PT32_DIR_PSE36_MASK) << shift;
101}
102#endif
103
104static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
105{
106	return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
107}
108
109static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
110					     unsigned gpte)
111{
112	unsigned mask;
113
114	/* dirty bit is not supported, so no need to track it */
115	if (!PT_HAVE_ACCESSED_DIRTY(mmu))
116		return;
117
118	BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
119
120	mask = (unsigned)~ACC_WRITE_MASK;
121	/* Allow write access to dirty gptes */
122	mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
123		PT_WRITABLE_MASK;
124	*access &= mask;
125}
126
127static inline int FNAME(is_present_gpte)(unsigned long pte)
128{
129#if PTTYPE != PTTYPE_EPT
130	return pte & PT_PRESENT_MASK;
131#else
132	return pte & 7;
133#endif
134}
135
136static bool FNAME(is_bad_mt_xwr)(struct rsvd_bits_validate *rsvd_check, u64 gpte)
137{
138#if PTTYPE != PTTYPE_EPT
139	return false;
140#else
141	return __is_bad_mt_xwr(rsvd_check, gpte);
142#endif
143}
144
145static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level)
146{
147	return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level) ||
148	       FNAME(is_bad_mt_xwr)(&mmu->guest_rsvd_check, gpte);
149}
150
151static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
152				  struct kvm_mmu_page *sp, u64 *spte,
153				  u64 gpte)
154{
155	if (!FNAME(is_present_gpte)(gpte))
156		goto no_present;
157
158	/* Prefetch only accessed entries (unless A/D bits are disabled). */
159	if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) &&
160	    !(gpte & PT_GUEST_ACCESSED_MASK))
161		goto no_present;
162
163	if (FNAME(is_rsvd_bits_set)(vcpu->arch.mmu, gpte, PG_LEVEL_4K))
164		goto no_present;
165
166	return false;
167
168no_present:
169	drop_spte(vcpu->kvm, spte);
170	return true;
171}
172
173/*
174 * For PTTYPE_EPT, a page table can be executable but not readable
175 * on supported processors. Therefore, set_spte does not automatically
176 * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
177 * to signify readability since it isn't used in the EPT case
178 */
179static inline unsigned FNAME(gpte_access)(u64 gpte)
180{
181	unsigned access;
182#if PTTYPE == PTTYPE_EPT
183	access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
184		((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
185		((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
186#else
187	BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
188	BUILD_BUG_ON(ACC_EXEC_MASK != 1);
189	access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
190	/* Combine NX with P (which is set here) to get ACC_EXEC_MASK.  */
191	access ^= (gpte >> PT64_NX_SHIFT);
192#endif
193
194	return access;
195}
196
197static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
198					     struct kvm_mmu *mmu,
199					     struct guest_walker *walker,
200					     gpa_t addr, int write_fault)
201{
202	unsigned level, index;
203	pt_element_t pte, orig_pte;
204	pt_element_t __user *ptep_user;
205	gfn_t table_gfn;
206	int ret;
207
208	/* dirty/accessed bits are not supported, so no need to update them */
209	if (!PT_HAVE_ACCESSED_DIRTY(mmu))
210		return 0;
211
212	for (level = walker->max_level; level >= walker->level; --level) {
213		pte = orig_pte = walker->ptes[level - 1];
214		table_gfn = walker->table_gfn[level - 1];
215		ptep_user = walker->ptep_user[level - 1];
216		index = offset_in_page(ptep_user) / sizeof(pt_element_t);
217		if (!(pte & PT_GUEST_ACCESSED_MASK)) {
218			trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
219			pte |= PT_GUEST_ACCESSED_MASK;
220		}
221		if (level == walker->level && write_fault &&
222				!(pte & PT_GUEST_DIRTY_MASK)) {
223			trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
224#if PTTYPE == PTTYPE_EPT
225			if (kvm_x86_ops.nested_ops->write_log_dirty(vcpu, addr))
226				return -EINVAL;
227#endif
228			pte |= PT_GUEST_DIRTY_MASK;
229		}
230		if (pte == orig_pte)
231			continue;
232
233		/*
234		 * If the slot is read-only, simply do not process the accessed
235		 * and dirty bits.  This is the correct thing to do if the slot
236		 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
237		 * are only supported if the accessed and dirty bits are already
238		 * set in the ROM (so that MMIO writes are never needed).
239		 *
240		 * Note that NPT does not allow this at all and faults, since
241		 * it always wants nested page table entries for the guest
242		 * page tables to be writable.  And EPT works but will simply
243		 * overwrite the read-only memory to set the accessed and dirty
244		 * bits.
245		 */
246		if (unlikely(!walker->pte_writable[level - 1]))
247			continue;
248
249		ret = __try_cmpxchg_user(ptep_user, &orig_pte, pte, fault);
250		if (ret)
251			return ret;
252
253		kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
254		walker->ptes[level - 1] = pte;
255	}
256	return 0;
257}
258
259static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
260{
261	unsigned pkeys = 0;
262#if PTTYPE == 64
263	pte_t pte = {.pte = gpte};
264
265	pkeys = pte_flags_pkey(pte_flags(pte));
266#endif
267	return pkeys;
268}
269
270static inline bool FNAME(is_last_gpte)(struct kvm_mmu *mmu,
271				       unsigned int level, unsigned int gpte)
272{
273	/*
274	 * For EPT and PAE paging (both variants), bit 7 is either reserved at
275	 * all level or indicates a huge page (ignoring CR3/EPTP).  In either
276	 * case, bit 7 being set terminates the walk.
277	 */
278#if PTTYPE == 32
279	/*
280	 * 32-bit paging requires special handling because bit 7 is ignored if
281	 * CR4.PSE=0, not reserved.  Clear bit 7 in the gpte if the level is
282	 * greater than the last level for which bit 7 is the PAGE_SIZE bit.
283	 *
284	 * The RHS has bit 7 set iff level < (2 + PSE).  If it is clear, bit 7
285	 * is not reserved and does not indicate a large page at this level,
286	 * so clear PT_PAGE_SIZE_MASK in gpte if that is the case.
287	 */
288	gpte &= level - (PT32_ROOT_LEVEL + mmu->cpu_role.ext.cr4_pse);
289#endif
290	/*
291	 * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
292	 * iff level <= PG_LEVEL_4K, which for our purpose means
293	 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
294	 */
295	gpte |= level - PG_LEVEL_4K - 1;
296
297	return gpte & PT_PAGE_SIZE_MASK;
298}
299/*
300 * Fetch a guest pte for a guest virtual address, or for an L2's GPA.
301 */
302static int FNAME(walk_addr_generic)(struct guest_walker *walker,
303				    struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
304				    gpa_t addr, u64 access)
305{
306	int ret;
307	pt_element_t pte;
308	pt_element_t __user *ptep_user;
309	gfn_t table_gfn;
310	u64 pt_access, pte_access;
311	unsigned index, accessed_dirty, pte_pkey;
312	u64 nested_access;
313	gpa_t pte_gpa;
314	bool have_ad;
315	int offset;
316	u64 walk_nx_mask = 0;
317	const int write_fault = access & PFERR_WRITE_MASK;
318	const int user_fault  = access & PFERR_USER_MASK;
319	const int fetch_fault = access & PFERR_FETCH_MASK;
320	u16 errcode = 0;
321	gpa_t real_gpa;
322	gfn_t gfn;
323
324	trace_kvm_mmu_pagetable_walk(addr, access);
325retry_walk:
326	walker->level = mmu->cpu_role.base.level;
327	pte           = kvm_mmu_get_guest_pgd(vcpu, mmu);
328	have_ad       = PT_HAVE_ACCESSED_DIRTY(mmu);
329
330#if PTTYPE == 64
331	walk_nx_mask = 1ULL << PT64_NX_SHIFT;
332	if (walker->level == PT32E_ROOT_LEVEL) {
333		pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
334		trace_kvm_mmu_paging_element(pte, walker->level);
335		if (!FNAME(is_present_gpte)(pte))
336			goto error;
337		--walker->level;
338	}
339#endif
340	walker->max_level = walker->level;
 
341
342	/*
343	 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
344	 * by the MOV to CR instruction are treated as reads and do not cause the
345	 * processor to set the dirty flag in any EPT paging-structure entry.
346	 */
347	nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;
348
349	pte_access = ~0;
350
351	/*
352	 * Queue a page fault for injection if this assertion fails, as callers
353	 * assume that walker.fault contains sane info on a walk failure.  I.e.
354	 * avoid making the situation worse by inducing even worse badness
355	 * between when the assertion fails and when KVM kicks the vCPU out to
356	 * userspace (because the VM is bugged).
357	 */
358	if (KVM_BUG_ON(is_long_mode(vcpu) && !is_pae(vcpu), vcpu->kvm))
359		goto error;
360
361	++walker->level;
362
363	do {
364		struct kvm_memory_slot *slot;
365		unsigned long host_addr;
366
367		pt_access = pte_access;
368		--walker->level;
369
370		index = PT_INDEX(addr, walker->level);
371		table_gfn = gpte_to_gfn(pte);
372		offset    = index * sizeof(pt_element_t);
373		pte_gpa   = gfn_to_gpa(table_gfn) + offset;
374
375		BUG_ON(walker->level < 1);
376		walker->table_gfn[walker->level - 1] = table_gfn;
377		walker->pte_gpa[walker->level - 1] = pte_gpa;
378
379		real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(table_gfn),
380					     nested_access, &walker->fault);
381
382		/*
383		 * FIXME: This can happen if emulation (for of an INS/OUTS
384		 * instruction) triggers a nested page fault.  The exit
385		 * qualification / exit info field will incorrectly have
386		 * "guest page access" as the nested page fault's cause,
387		 * instead of "guest page structure access".  To fix this,
388		 * the x86_exception struct should be augmented with enough
389		 * information to fix the exit_qualification or exit_info_1
390		 * fields.
391		 */
392		if (unlikely(real_gpa == INVALID_GPA))
393			return 0;
394
395		slot = kvm_vcpu_gfn_to_memslot(vcpu, gpa_to_gfn(real_gpa));
396		if (!kvm_is_visible_memslot(slot))
397			goto error;
398
399		host_addr = gfn_to_hva_memslot_prot(slot, gpa_to_gfn(real_gpa),
400					    &walker->pte_writable[walker->level - 1]);
401		if (unlikely(kvm_is_error_hva(host_addr)))
402			goto error;
403
404		ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
405		if (unlikely(__get_user(pte, ptep_user)))
406			goto error;
407		walker->ptep_user[walker->level - 1] = ptep_user;
408
409		trace_kvm_mmu_paging_element(pte, walker->level);
410
411		/*
412		 * Inverting the NX it lets us AND it like other
413		 * permission bits.
414		 */
415		pte_access = pt_access & (pte ^ walk_nx_mask);
416
417		if (unlikely(!FNAME(is_present_gpte)(pte)))
418			goto error;
419
420		if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte, walker->level))) {
421			errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
422			goto error;
423		}
424
425		walker->ptes[walker->level - 1] = pte;
426
427		/* Convert to ACC_*_MASK flags for struct guest_walker.  */
428		walker->pt_access[walker->level - 1] = FNAME(gpte_access)(pt_access ^ walk_nx_mask);
429	} while (!FNAME(is_last_gpte)(mmu, walker->level, pte));
430
431	pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
432	accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;
433
434	/* Convert to ACC_*_MASK flags for struct guest_walker.  */
435	walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask);
436	errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
437	if (unlikely(errcode))
438		goto error;
439
440	gfn = gpte_to_gfn_lvl(pte, walker->level);
441	gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
442
443#if PTTYPE == 32
444	if (walker->level > PG_LEVEL_4K && is_cpuid_PSE36())
445		gfn += pse36_gfn_delta(pte);
446#endif
447
448	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(gfn), access, &walker->fault);
449	if (real_gpa == INVALID_GPA)
450		return 0;
451
452	walker->gfn = real_gpa >> PAGE_SHIFT;
453
454	if (!write_fault)
455		FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
456	else
457		/*
458		 * On a write fault, fold the dirty bit into accessed_dirty.
459		 * For modes without A/D bits support accessed_dirty will be
460		 * always clear.
461		 */
462		accessed_dirty &= pte >>
463			(PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
464
465	if (unlikely(!accessed_dirty)) {
466		ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker,
467							addr, write_fault);
468		if (unlikely(ret < 0))
469			goto error;
470		else if (ret)
471			goto retry_walk;
472	}
473
 
 
 
474	return 1;
475
476error:
477	errcode |= write_fault | user_fault;
478	if (fetch_fault && (is_efer_nx(mmu) || is_cr4_smep(mmu)))
479		errcode |= PFERR_FETCH_MASK;
480
481	walker->fault.vector = PF_VECTOR;
482	walker->fault.error_code_valid = true;
483	walker->fault.error_code = errcode;
484
485#if PTTYPE == PTTYPE_EPT
486	/*
487	 * Use PFERR_RSVD_MASK in error_code to tell if EPT
488	 * misconfiguration requires to be injected. The detection is
489	 * done by is_rsvd_bits_set() above.
490	 *
491	 * We set up the value of exit_qualification to inject:
492	 * [2:0] - Derive from the access bits. The exit_qualification might be
493	 *         out of date if it is serving an EPT misconfiguration.
494	 * [5:3] - Calculated by the page walk of the guest EPT page tables
495	 * [7:8] - Derived from [7:8] of real exit_qualification
496	 *
497	 * The other bits are set to 0.
498	 */
499	if (!(errcode & PFERR_RSVD_MASK)) {
500		walker->fault.exit_qualification = 0;
501
502		if (write_fault)
503			walker->fault.exit_qualification |= EPT_VIOLATION_ACC_WRITE;
504		if (user_fault)
505			walker->fault.exit_qualification |= EPT_VIOLATION_ACC_READ;
506		if (fetch_fault)
507			walker->fault.exit_qualification |= EPT_VIOLATION_ACC_INSTR;
508
509		/*
510		 * Note, pte_access holds the raw RWX bits from the EPTE, not
511		 * ACC_*_MASK flags!
512		 */
513		walker->fault.exit_qualification |= (pte_access & VMX_EPT_RWX_MASK) <<
514						     EPT_VIOLATION_RWX_SHIFT;
515	}
516#endif
517	walker->fault.address = addr;
518	walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
519	walker->fault.async_page_fault = false;
520
521	trace_kvm_mmu_walker_error(walker->fault.error_code);
522	return 0;
523}
524
525static int FNAME(walk_addr)(struct guest_walker *walker,
526			    struct kvm_vcpu *vcpu, gpa_t addr, u64 access)
527{
528	return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr,
529					access);
530}
531
532static bool
533FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
534		     u64 *spte, pt_element_t gpte)
535{
 
536	unsigned pte_access;
537	gfn_t gfn;
 
538
539	if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
540		return false;
541
 
 
542	gfn = gpte_to_gfn(gpte);
543	pte_access = sp->role.access & FNAME(gpte_access)(gpte);
544	FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
545
546	return kvm_mmu_prefetch_sptes(vcpu, gfn, spte, 1, pte_access);
 
 
 
 
 
 
 
 
 
 
 
547}
548
549static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
550				struct guest_walker *gw, int level)
551{
552	pt_element_t curr_pte;
553	gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
554	u64 mask;
555	int r, index;
556
557	if (level == PG_LEVEL_4K) {
558		mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
559		base_gpa = pte_gpa & ~mask;
560		index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
561
562		r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
563				gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
564		curr_pte = gw->prefetch_ptes[index];
565	} else
566		r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
567				  &curr_pte, sizeof(curr_pte));
568
569	return r || curr_pte != gw->ptes[level - 1];
570}
571
572static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
573				u64 *sptep)
574{
575	struct kvm_mmu_page *sp;
576	pt_element_t *gptep = gw->prefetch_ptes;
577	u64 *spte;
578	int i;
579
580	sp = sptep_to_sp(sptep);
581
582	if (sp->role.level > PG_LEVEL_4K)
583		return;
584
585	/*
586	 * If addresses are being invalidated, skip prefetching to avoid
587	 * accidentally prefetching those addresses.
588	 */
589	if (unlikely(vcpu->kvm->mmu_invalidate_in_progress))
590		return;
591
592	if (sp->role.direct)
593		return __direct_pte_prefetch(vcpu, sp, sptep);
594
595	i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1);
596	spte = sp->spt + i;
597
598	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
599		if (spte == sptep)
600			continue;
601
602		if (is_shadow_present_pte(*spte))
603			continue;
604
605		if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i]))
606			break;
607	}
608}
609
610/*
611 * Fetch a shadow pte for a specific level in the paging hierarchy.
612 * If the guest tries to write a write-protected page, we need to
613 * emulate this operation, return 1 to indicate this case.
614 */
615static int FNAME(fetch)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
616			 struct guest_walker *gw)
617{
618	struct kvm_mmu_page *sp = NULL;
619	struct kvm_shadow_walk_iterator it;
620	unsigned int direct_access, access;
621	int top_level, ret;
622	gfn_t base_gfn = fault->gfn;
623
624	WARN_ON_ONCE(gw->gfn != base_gfn);
625	direct_access = gw->pte_access;
626
627	top_level = vcpu->arch.mmu->cpu_role.base.level;
628	if (top_level == PT32E_ROOT_LEVEL)
629		top_level = PT32_ROOT_LEVEL;
630	/*
631	 * Verify that the top-level gpte is still there.  Since the page
632	 * is a root page, it is either write protected (and cannot be
633	 * changed from now on) or it is invalid (in which case, we don't
634	 * really care if it changes underneath us after this point).
635	 */
636	if (FNAME(gpte_changed)(vcpu, gw, top_level))
637		return RET_PF_RETRY;
638
639	if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
640		return RET_PF_RETRY;
641
642	/*
643	 * Load a new root and retry the faulting instruction in the extremely
644	 * unlikely scenario that the guest root gfn became visible between
645	 * loading a dummy root and handling the resulting page fault, e.g. if
646	 * userspace create a memslot in the interim.
647	 */
648	if (unlikely(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa))) {
649		kvm_make_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu);
650		return RET_PF_RETRY;
651	}
652
653	for_each_shadow_entry(vcpu, fault->addr, it) {
 
 
654		gfn_t table_gfn;
655
656		clear_sp_write_flooding_count(it.sptep);
657		if (it.level == gw->level)
658			break;
659
660		table_gfn = gw->table_gfn[it.level - 2];
661		access = gw->pt_access[it.level - 2];
662		sp = kvm_mmu_get_child_sp(vcpu, it.sptep, table_gfn,
663					  false, access);
664
665		/*
666		 * Synchronize the new page before linking it, as the CPU (KVM)
667		 * is architecturally disallowed from inserting non-present
668		 * entries into the TLB, i.e. the guest isn't required to flush
669		 * the TLB when changing the gPTE from non-present to present.
670		 *
671		 * For PG_LEVEL_4K, kvm_mmu_find_shadow_page() has already
672		 * synchronized the page via kvm_sync_page().
673		 *
674		 * For higher level pages, which cannot be unsync themselves
675		 * but can have unsync children, synchronize via the slower
676		 * mmu_sync_children().  If KVM needs to drop mmu_lock due to
677		 * contention or to reschedule, instruct the caller to retry
678		 * the #PF (mmu_sync_children() ensures forward progress will
679		 * be made).
680		 */
681		if (sp != ERR_PTR(-EEXIST) && sp->unsync_children &&
682		    mmu_sync_children(vcpu, sp, false))
683			return RET_PF_RETRY;
 
 
684
685		/*
686		 * Verify that the gpte in the page, which is now either
687		 * write-protected or unsync, wasn't modified between the fault
688		 * and acquiring mmu_lock.  This needs to be done even when
689		 * reusing an existing shadow page to ensure the information
690		 * gathered by the walker matches the information stored in the
691		 * shadow page (which could have been modified by a different
692		 * vCPU even if the page was already linked).  Holding mmu_lock
693		 * prevents the shadow page from changing after this point.
694		 */
695		if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
696			return RET_PF_RETRY;
697
698		if (sp != ERR_PTR(-EEXIST))
699			link_shadow_page(vcpu, it.sptep, sp);
700
701		if (fault->write && table_gfn == fault->gfn)
702			fault->write_fault_to_shadow_pgtable = true;
703	}
704
705	/*
706	 * Adjust the hugepage size _after_ resolving indirect shadow pages.
707	 * KVM doesn't support mapping hugepages into the guest for gfns that
708	 * are being shadowed by KVM, i.e. allocating a new shadow page may
709	 * affect the allowed hugepage size.
710	 */
711	kvm_mmu_hugepage_adjust(vcpu, fault);
712
713	trace_kvm_mmu_spte_requested(fault);
714
715	for (; shadow_walk_okay(&it); shadow_walk_next(&it)) {
 
 
716		/*
717		 * We cannot overwrite existing page tables with an NX
718		 * large page, as the leaf could be executable.
719		 */
720		if (fault->nx_huge_page_workaround_enabled)
721			disallowed_hugepage_adjust(fault, *it.sptep, it.level);
722
723		base_gfn = gfn_round_for_level(fault->gfn, it.level);
724		if (it.level == fault->goal_level)
725			break;
726
727		validate_direct_spte(vcpu, it.sptep, direct_access);
728
729		sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn,
730					  true, direct_access);
731		if (sp == ERR_PTR(-EEXIST))
732			continue;
733
734		link_shadow_page(vcpu, it.sptep, sp);
735		if (fault->huge_page_disallowed)
736			account_nx_huge_page(vcpu->kvm, sp,
737					     fault->req_level >= it.level);
738	}
739
740	if (WARN_ON_ONCE(it.level != fault->goal_level))
741		return -EFAULT;
742
743	ret = mmu_set_spte(vcpu, fault->slot, it.sptep, gw->pte_access,
744			   base_gfn, fault->pfn, fault);
745	if (ret == RET_PF_SPURIOUS)
746		return ret;
747
748	FNAME(pte_prefetch)(vcpu, gw, it.sptep);
749	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
750}
751
752/*
753 * Page fault handler.  There are several causes for a page fault:
754 *   - there is no shadow pte for the guest pte
755 *   - write access through a shadow pte marked read only so that we can set
756 *     the dirty bit
757 *   - write access to a shadow pte marked read only so we can update the page
758 *     dirty bitmap, when userspace requests it
759 *   - mmio access; in this case we will never install a present shadow pte
760 *   - normal guest page fault due to the guest pte marked not present, not
761 *     writable, or not executable
762 *
763 *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or
764 *           a negative value on error.
765 */
766static int FNAME(page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
767{
768	struct guest_walker walker;
769	int r;
 
 
770
 
771	WARN_ON_ONCE(fault->is_tdp);
772
773	/*
774	 * Look up the guest pte for the faulting address.
775	 * If PFEC.RSVD is set, this is a shadow page fault.
776	 * The bit needs to be cleared before walking guest page tables.
777	 */
778	r = FNAME(walk_addr)(&walker, vcpu, fault->addr,
779			     fault->error_code & ~PFERR_RSVD_MASK);
780
781	/*
782	 * The page is not mapped by the guest.  Let the guest handle it.
783	 */
784	if (!r) {
 
785		if (!fault->prefetch)
786			kvm_inject_emulated_page_fault(vcpu, &walker.fault);
787
788		return RET_PF_RETRY;
789	}
790
791	fault->gfn = walker.gfn;
792	fault->max_level = walker.level;
793	fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn);
794
795	if (page_fault_handle_page_track(vcpu, fault)) {
796		shadow_page_table_clear_flood(vcpu, fault->addr);
797		return RET_PF_WRITE_PROTECTED;
798	}
799
800	r = mmu_topup_memory_caches(vcpu, true);
801	if (r)
802		return r;
803
804	r = kvm_mmu_faultin_pfn(vcpu, fault, walker.pte_access);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
805	if (r != RET_PF_CONTINUE)
806		return r;
807
808	/*
809	 * Do not change pte_access if the pfn is a mmio page, otherwise
810	 * we will cache the incorrect access into mmio spte.
811	 */
812	if (fault->write && !(walker.pte_access & ACC_WRITE_MASK) &&
813	    !is_cr0_wp(vcpu->arch.mmu) && !fault->user && fault->slot) {
814		walker.pte_access |= ACC_WRITE_MASK;
815		walker.pte_access &= ~ACC_USER_MASK;
816
817		/*
818		 * If we converted a user page to a kernel page,
819		 * so that the kernel can write to it when cr0.wp=0,
820		 * then we should prevent the kernel from executing it
821		 * if SMEP is enabled.
822		 */
823		if (is_cr4_smep(vcpu->arch.mmu))
824			walker.pte_access &= ~ACC_EXEC_MASK;
825	}
826
827	r = RET_PF_RETRY;
828	write_lock(&vcpu->kvm->mmu_lock);
829
830	if (is_page_fault_stale(vcpu, fault))
831		goto out_unlock;
832
833	r = make_mmu_pages_available(vcpu);
834	if (r)
835		goto out_unlock;
836	r = FNAME(fetch)(vcpu, fault, &walker);
837
838out_unlock:
839	kvm_mmu_finish_page_fault(vcpu, fault, r);
840	write_unlock(&vcpu->kvm->mmu_lock);
 
841	return r;
842}
843
844static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
845{
846	int offset = 0;
847
848	WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K);
849
850	if (PTTYPE == 32)
851		offset = sp->role.quadrant << SPTE_LEVEL_BITS;
852
853	return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
854}
855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
856/* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */
857static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
858			       gpa_t addr, u64 access,
859			       struct x86_exception *exception)
860{
861	struct guest_walker walker;
862	gpa_t gpa = INVALID_GPA;
863	int r;
864
865#ifndef CONFIG_X86_64
866	/* A 64-bit GVA should be impossible on 32-bit KVM. */
867	WARN_ON_ONCE((addr >> 32) && mmu == vcpu->arch.walk_mmu);
868#endif
869
870	r = FNAME(walk_addr_generic)(&walker, vcpu, mmu, addr, access);
871
872	if (r) {
873		gpa = gfn_to_gpa(walker.gfn);
874		gpa |= addr & ~PAGE_MASK;
875	} else if (exception)
876		*exception = walker.fault;
877
878	return gpa;
879}
880
881/*
882 * Using the information in sp->shadowed_translation (kvm_mmu_page_get_gfn()) is
883 * safe because SPTEs are protected by mmu_notifiers and memslot generations, so
884 * the pfn for a given gfn can't change unless all SPTEs pointing to the gfn are
885 * nuked first.
886 *
887 * Returns
888 * < 0: failed to sync spte
889 *   0: the spte is synced and no tlb flushing is required
890 * > 0: the spte is synced and tlb flushing is required
891 */
892static int FNAME(sync_spte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i)
893{
 
 
894	bool host_writable;
895	gpa_t first_pte_gpa;
896	u64 *sptep, spte;
897	struct kvm_memory_slot *slot;
898	unsigned pte_access;
899	pt_element_t gpte;
900	gpa_t pte_gpa;
901	gfn_t gfn;
902
903	if (WARN_ON_ONCE(sp->spt[i] == SHADOW_NONPRESENT_VALUE ||
904			 !sp->shadowed_translation))
905		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
906
907	first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
908	pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
909
910	if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
911				       sizeof(pt_element_t)))
912		return -1;
 
 
 
 
913
914	if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte))
915		return 1;
916
917	gfn = gpte_to_gfn(gpte);
918	pte_access = sp->role.access;
919	pte_access &= FNAME(gpte_access)(gpte);
920	FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
921
922	if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access))
923		return 0;
 
924
925	/*
926	 * Drop the SPTE if the new protections result in no effective
927	 * "present" bit or if the gfn is changing.  The former case
928	 * only affects EPT with execute-only support with pte_access==0;
929	 * all other paging modes will create a read-only SPTE if
930	 * pte_access is zero.
931	 */
932	if ((pte_access | shadow_present_mask) == SHADOW_NONPRESENT_VALUE ||
933	    gfn != kvm_mmu_page_get_gfn(sp, i)) {
934		drop_spte(vcpu->kvm, &sp->spt[i]);
935		return 1;
936	}
937	/*
938	 * Do nothing if the permissions are unchanged.  The existing SPTE is
939	 * still, and prefetch_invalid_gpte() has verified that the A/D bits
940	 * are set in the "new" gPTE, i.e. there is no danger of missing an A/D
941	 * update due to A/D bits being set in the SPTE but not the gPTE.
942	 */
943	if (kvm_mmu_page_get_access(sp, i) == pte_access)
944		return 0;
 
 
 
 
 
 
 
 
 
945
946	/* Update the shadowed access bits in case they changed. */
947	kvm_mmu_page_set_access(sp, i, pte_access);
 
 
 
 
 
948
949	sptep = &sp->spt[i];
950	spte = *sptep;
951	host_writable = spte & shadow_host_writable_mask;
952	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
953	make_spte(vcpu, sp, slot, pte_access, gfn,
954		  spte_to_pfn(spte), spte, true, true,
955		  host_writable, &spte);
956
957	/*
958	 * There is no need to mark the pfn dirty, as the new protections must
959	 * be a subset of the old protections, i.e. synchronizing a SPTE cannot
960	 * change the SPTE from read-only to writable.
961	 */
962	return mmu_spte_update(sptep, spte);
963}
964
965#undef pt_element_t
966#undef guest_walker
967#undef FNAME
968#undef PT_BASE_ADDR_MASK
969#undef PT_INDEX
970#undef PT_LVL_ADDR_MASK
971#undef PT_LVL_OFFSET_MASK
972#undef PT_LEVEL_BITS
973#undef PT_MAX_FULL_LEVELS
974#undef gpte_to_gfn
975#undef gpte_to_gfn_lvl
976#undef PT_GUEST_ACCESSED_MASK
977#undef PT_GUEST_DIRTY_MASK
978#undef PT_GUEST_DIRTY_SHIFT
979#undef PT_GUEST_ACCESSED_SHIFT
980#undef PT_HAVE_ACCESSED_DIRTY
v6.2
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 *
   5 * This module enables machines with Intel VT-x extensions to run virtual
   6 * machines without emulation or binary translation.
   7 *
   8 * MMU support
   9 *
  10 * Copyright (C) 2006 Qumranet, Inc.
  11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  12 *
  13 * Authors:
  14 *   Yaniv Kamay  <yaniv@qumranet.com>
  15 *   Avi Kivity   <avi@qumranet.com>
  16 */
  17
  18/*
  19 * The MMU needs to be able to access/walk 32-bit and 64-bit guest page tables,
  20 * as well as guest EPT tables, so the code in this file is compiled thrice,
  21 * once per guest PTE type.  The per-type defines are #undef'd at the end.
  22 */
  23
  24#if PTTYPE == 64
  25	#define pt_element_t u64
  26	#define guest_walker guest_walker64
  27	#define FNAME(name) paging##64_##name
  28	#define PT_LEVEL_BITS 9
  29	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
  30	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
  31	#define PT_HAVE_ACCESSED_DIRTY(mmu) true
  32	#ifdef CONFIG_X86_64
  33	#define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
  34	#else
  35	#define PT_MAX_FULL_LEVELS 2
  36	#endif
  37#elif PTTYPE == 32
  38	#define pt_element_t u32
  39	#define guest_walker guest_walker32
  40	#define FNAME(name) paging##32_##name
  41	#define PT_LEVEL_BITS 10
  42	#define PT_MAX_FULL_LEVELS 2
  43	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
  44	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
  45	#define PT_HAVE_ACCESSED_DIRTY(mmu) true
  46
  47	#define PT32_DIR_PSE36_SIZE 4
  48	#define PT32_DIR_PSE36_SHIFT 13
  49	#define PT32_DIR_PSE36_MASK \
  50		(((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
  51#elif PTTYPE == PTTYPE_EPT
  52	#define pt_element_t u64
  53	#define guest_walker guest_walkerEPT
  54	#define FNAME(name) ept_##name
  55	#define PT_LEVEL_BITS 9
  56	#define PT_GUEST_DIRTY_SHIFT 9
  57	#define PT_GUEST_ACCESSED_SHIFT 8
  58	#define PT_HAVE_ACCESSED_DIRTY(mmu) (!(mmu)->cpu_role.base.ad_disabled)
  59	#define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
  60#else
  61	#error Invalid PTTYPE value
  62#endif
  63
  64/* Common logic, but per-type values.  These also need to be undefined. */
  65#define PT_BASE_ADDR_MASK	((pt_element_t)(((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)))
  66#define PT_LVL_ADDR_MASK(lvl)	__PT_LVL_ADDR_MASK(PT_BASE_ADDR_MASK, lvl, PT_LEVEL_BITS)
  67#define PT_LVL_OFFSET_MASK(lvl)	__PT_LVL_OFFSET_MASK(PT_BASE_ADDR_MASK, lvl, PT_LEVEL_BITS)
  68#define PT_INDEX(addr, lvl)	__PT_INDEX(addr, lvl, PT_LEVEL_BITS)
  69
  70#define PT_GUEST_DIRTY_MASK    (1 << PT_GUEST_DIRTY_SHIFT)
  71#define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)
  72
  73#define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
  74#define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PG_LEVEL_4K)
  75
  76/*
  77 * The guest_walker structure emulates the behavior of the hardware page
  78 * table walker.
  79 */
  80struct guest_walker {
  81	int level;
  82	unsigned max_level;
  83	gfn_t table_gfn[PT_MAX_FULL_LEVELS];
  84	pt_element_t ptes[PT_MAX_FULL_LEVELS];
  85	pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
  86	gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
  87	pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
  88	bool pte_writable[PT_MAX_FULL_LEVELS];
  89	unsigned int pt_access[PT_MAX_FULL_LEVELS];
  90	unsigned int pte_access;
  91	gfn_t gfn;
  92	struct x86_exception fault;
  93};
  94
  95#if PTTYPE == 32
  96static inline gfn_t pse36_gfn_delta(u32 gpte)
  97{
  98	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  99
 100	return (gpte & PT32_DIR_PSE36_MASK) << shift;
 101}
 102#endif
 103
 104static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
 105{
 106	return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
 107}
 108
 109static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
 110					     unsigned gpte)
 111{
 112	unsigned mask;
 113
 114	/* dirty bit is not supported, so no need to track it */
 115	if (!PT_HAVE_ACCESSED_DIRTY(mmu))
 116		return;
 117
 118	BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
 119
 120	mask = (unsigned)~ACC_WRITE_MASK;
 121	/* Allow write access to dirty gptes */
 122	mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
 123		PT_WRITABLE_MASK;
 124	*access &= mask;
 125}
 126
 127static inline int FNAME(is_present_gpte)(unsigned long pte)
 128{
 129#if PTTYPE != PTTYPE_EPT
 130	return pte & PT_PRESENT_MASK;
 131#else
 132	return pte & 7;
 133#endif
 134}
 135
 136static bool FNAME(is_bad_mt_xwr)(struct rsvd_bits_validate *rsvd_check, u64 gpte)
 137{
 138#if PTTYPE != PTTYPE_EPT
 139	return false;
 140#else
 141	return __is_bad_mt_xwr(rsvd_check, gpte);
 142#endif
 143}
 144
 145static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level)
 146{
 147	return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level) ||
 148	       FNAME(is_bad_mt_xwr)(&mmu->guest_rsvd_check, gpte);
 149}
 150
 151static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
 152				  struct kvm_mmu_page *sp, u64 *spte,
 153				  u64 gpte)
 154{
 155	if (!FNAME(is_present_gpte)(gpte))
 156		goto no_present;
 157
 158	/* Prefetch only accessed entries (unless A/D bits are disabled). */
 159	if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) &&
 160	    !(gpte & PT_GUEST_ACCESSED_MASK))
 161		goto no_present;
 162
 163	if (FNAME(is_rsvd_bits_set)(vcpu->arch.mmu, gpte, PG_LEVEL_4K))
 164		goto no_present;
 165
 166	return false;
 167
 168no_present:
 169	drop_spte(vcpu->kvm, spte);
 170	return true;
 171}
 172
 173/*
 174 * For PTTYPE_EPT, a page table can be executable but not readable
 175 * on supported processors. Therefore, set_spte does not automatically
 176 * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
 177 * to signify readability since it isn't used in the EPT case
 178 */
 179static inline unsigned FNAME(gpte_access)(u64 gpte)
 180{
 181	unsigned access;
 182#if PTTYPE == PTTYPE_EPT
 183	access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
 184		((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
 185		((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
 186#else
 187	BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
 188	BUILD_BUG_ON(ACC_EXEC_MASK != 1);
 189	access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
 190	/* Combine NX with P (which is set here) to get ACC_EXEC_MASK.  */
 191	access ^= (gpte >> PT64_NX_SHIFT);
 192#endif
 193
 194	return access;
 195}
 196
 197static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
 198					     struct kvm_mmu *mmu,
 199					     struct guest_walker *walker,
 200					     gpa_t addr, int write_fault)
 201{
 202	unsigned level, index;
 203	pt_element_t pte, orig_pte;
 204	pt_element_t __user *ptep_user;
 205	gfn_t table_gfn;
 206	int ret;
 207
 208	/* dirty/accessed bits are not supported, so no need to update them */
 209	if (!PT_HAVE_ACCESSED_DIRTY(mmu))
 210		return 0;
 211
 212	for (level = walker->max_level; level >= walker->level; --level) {
 213		pte = orig_pte = walker->ptes[level - 1];
 214		table_gfn = walker->table_gfn[level - 1];
 215		ptep_user = walker->ptep_user[level - 1];
 216		index = offset_in_page(ptep_user) / sizeof(pt_element_t);
 217		if (!(pte & PT_GUEST_ACCESSED_MASK)) {
 218			trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
 219			pte |= PT_GUEST_ACCESSED_MASK;
 220		}
 221		if (level == walker->level && write_fault &&
 222				!(pte & PT_GUEST_DIRTY_MASK)) {
 223			trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
 224#if PTTYPE == PTTYPE_EPT
 225			if (kvm_x86_ops.nested_ops->write_log_dirty(vcpu, addr))
 226				return -EINVAL;
 227#endif
 228			pte |= PT_GUEST_DIRTY_MASK;
 229		}
 230		if (pte == orig_pte)
 231			continue;
 232
 233		/*
 234		 * If the slot is read-only, simply do not process the accessed
 235		 * and dirty bits.  This is the correct thing to do if the slot
 236		 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
 237		 * are only supported if the accessed and dirty bits are already
 238		 * set in the ROM (so that MMIO writes are never needed).
 239		 *
 240		 * Note that NPT does not allow this at all and faults, since
 241		 * it always wants nested page table entries for the guest
 242		 * page tables to be writable.  And EPT works but will simply
 243		 * overwrite the read-only memory to set the accessed and dirty
 244		 * bits.
 245		 */
 246		if (unlikely(!walker->pte_writable[level - 1]))
 247			continue;
 248
 249		ret = __try_cmpxchg_user(ptep_user, &orig_pte, pte, fault);
 250		if (ret)
 251			return ret;
 252
 253		kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
 254		walker->ptes[level - 1] = pte;
 255	}
 256	return 0;
 257}
 258
 259static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
 260{
 261	unsigned pkeys = 0;
 262#if PTTYPE == 64
 263	pte_t pte = {.pte = gpte};
 264
 265	pkeys = pte_flags_pkey(pte_flags(pte));
 266#endif
 267	return pkeys;
 268}
 269
 270static inline bool FNAME(is_last_gpte)(struct kvm_mmu *mmu,
 271				       unsigned int level, unsigned int gpte)
 272{
 273	/*
 274	 * For EPT and PAE paging (both variants), bit 7 is either reserved at
 275	 * all level or indicates a huge page (ignoring CR3/EPTP).  In either
 276	 * case, bit 7 being set terminates the walk.
 277	 */
 278#if PTTYPE == 32
 279	/*
 280	 * 32-bit paging requires special handling because bit 7 is ignored if
 281	 * CR4.PSE=0, not reserved.  Clear bit 7 in the gpte if the level is
 282	 * greater than the last level for which bit 7 is the PAGE_SIZE bit.
 283	 *
 284	 * The RHS has bit 7 set iff level < (2 + PSE).  If it is clear, bit 7
 285	 * is not reserved and does not indicate a large page at this level,
 286	 * so clear PT_PAGE_SIZE_MASK in gpte if that is the case.
 287	 */
 288	gpte &= level - (PT32_ROOT_LEVEL + mmu->cpu_role.ext.cr4_pse);
 289#endif
 290	/*
 291	 * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
 292	 * iff level <= PG_LEVEL_4K, which for our purpose means
 293	 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
 294	 */
 295	gpte |= level - PG_LEVEL_4K - 1;
 296
 297	return gpte & PT_PAGE_SIZE_MASK;
 298}
 299/*
 300 * Fetch a guest pte for a guest virtual address, or for an L2's GPA.
 301 */
 302static int FNAME(walk_addr_generic)(struct guest_walker *walker,
 303				    struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 304				    gpa_t addr, u64 access)
 305{
 306	int ret;
 307	pt_element_t pte;
 308	pt_element_t __user *ptep_user;
 309	gfn_t table_gfn;
 310	u64 pt_access, pte_access;
 311	unsigned index, accessed_dirty, pte_pkey;
 312	u64 nested_access;
 313	gpa_t pte_gpa;
 314	bool have_ad;
 315	int offset;
 316	u64 walk_nx_mask = 0;
 317	const int write_fault = access & PFERR_WRITE_MASK;
 318	const int user_fault  = access & PFERR_USER_MASK;
 319	const int fetch_fault = access & PFERR_FETCH_MASK;
 320	u16 errcode = 0;
 321	gpa_t real_gpa;
 322	gfn_t gfn;
 323
 324	trace_kvm_mmu_pagetable_walk(addr, access);
 325retry_walk:
 326	walker->level = mmu->cpu_role.base.level;
 327	pte           = mmu->get_guest_pgd(vcpu);
 328	have_ad       = PT_HAVE_ACCESSED_DIRTY(mmu);
 329
 330#if PTTYPE == 64
 331	walk_nx_mask = 1ULL << PT64_NX_SHIFT;
 332	if (walker->level == PT32E_ROOT_LEVEL) {
 333		pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
 334		trace_kvm_mmu_paging_element(pte, walker->level);
 335		if (!FNAME(is_present_gpte)(pte))
 336			goto error;
 337		--walker->level;
 338	}
 339#endif
 340	walker->max_level = walker->level;
 341	ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
 342
 343	/*
 344	 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
 345	 * by the MOV to CR instruction are treated as reads and do not cause the
 346	 * processor to set the dirty flag in any EPT paging-structure entry.
 347	 */
 348	nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;
 349
 350	pte_access = ~0;
 
 
 
 
 
 
 
 
 
 
 
 351	++walker->level;
 352
 353	do {
 
 354		unsigned long host_addr;
 355
 356		pt_access = pte_access;
 357		--walker->level;
 358
 359		index = PT_INDEX(addr, walker->level);
 360		table_gfn = gpte_to_gfn(pte);
 361		offset    = index * sizeof(pt_element_t);
 362		pte_gpa   = gfn_to_gpa(table_gfn) + offset;
 363
 364		BUG_ON(walker->level < 1);
 365		walker->table_gfn[walker->level - 1] = table_gfn;
 366		walker->pte_gpa[walker->level - 1] = pte_gpa;
 367
 368		real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(table_gfn),
 369					     nested_access, &walker->fault);
 370
 371		/*
 372		 * FIXME: This can happen if emulation (for of an INS/OUTS
 373		 * instruction) triggers a nested page fault.  The exit
 374		 * qualification / exit info field will incorrectly have
 375		 * "guest page access" as the nested page fault's cause,
 376		 * instead of "guest page structure access".  To fix this,
 377		 * the x86_exception struct should be augmented with enough
 378		 * information to fix the exit_qualification or exit_info_1
 379		 * fields.
 380		 */
 381		if (unlikely(real_gpa == INVALID_GPA))
 382			return 0;
 383
 384		host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gpa_to_gfn(real_gpa),
 
 
 
 
 385					    &walker->pte_writable[walker->level - 1]);
 386		if (unlikely(kvm_is_error_hva(host_addr)))
 387			goto error;
 388
 389		ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
 390		if (unlikely(__get_user(pte, ptep_user)))
 391			goto error;
 392		walker->ptep_user[walker->level - 1] = ptep_user;
 393
 394		trace_kvm_mmu_paging_element(pte, walker->level);
 395
 396		/*
 397		 * Inverting the NX it lets us AND it like other
 398		 * permission bits.
 399		 */
 400		pte_access = pt_access & (pte ^ walk_nx_mask);
 401
 402		if (unlikely(!FNAME(is_present_gpte)(pte)))
 403			goto error;
 404
 405		if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte, walker->level))) {
 406			errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
 407			goto error;
 408		}
 409
 410		walker->ptes[walker->level - 1] = pte;
 411
 412		/* Convert to ACC_*_MASK flags for struct guest_walker.  */
 413		walker->pt_access[walker->level - 1] = FNAME(gpte_access)(pt_access ^ walk_nx_mask);
 414	} while (!FNAME(is_last_gpte)(mmu, walker->level, pte));
 415
 416	pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
 417	accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;
 418
 419	/* Convert to ACC_*_MASK flags for struct guest_walker.  */
 420	walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask);
 421	errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
 422	if (unlikely(errcode))
 423		goto error;
 424
 425	gfn = gpte_to_gfn_lvl(pte, walker->level);
 426	gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
 427
 428#if PTTYPE == 32
 429	if (walker->level > PG_LEVEL_4K && is_cpuid_PSE36())
 430		gfn += pse36_gfn_delta(pte);
 431#endif
 432
 433	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(gfn), access, &walker->fault);
 434	if (real_gpa == INVALID_GPA)
 435		return 0;
 436
 437	walker->gfn = real_gpa >> PAGE_SHIFT;
 438
 439	if (!write_fault)
 440		FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
 441	else
 442		/*
 443		 * On a write fault, fold the dirty bit into accessed_dirty.
 444		 * For modes without A/D bits support accessed_dirty will be
 445		 * always clear.
 446		 */
 447		accessed_dirty &= pte >>
 448			(PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
 449
 450	if (unlikely(!accessed_dirty)) {
 451		ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker,
 452							addr, write_fault);
 453		if (unlikely(ret < 0))
 454			goto error;
 455		else if (ret)
 456			goto retry_walk;
 457	}
 458
 459	pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
 460		 __func__, (u64)pte, walker->pte_access,
 461		 walker->pt_access[walker->level - 1]);
 462	return 1;
 463
 464error:
 465	errcode |= write_fault | user_fault;
 466	if (fetch_fault && (is_efer_nx(mmu) || is_cr4_smep(mmu)))
 467		errcode |= PFERR_FETCH_MASK;
 468
 469	walker->fault.vector = PF_VECTOR;
 470	walker->fault.error_code_valid = true;
 471	walker->fault.error_code = errcode;
 472
 473#if PTTYPE == PTTYPE_EPT
 474	/*
 475	 * Use PFERR_RSVD_MASK in error_code to tell if EPT
 476	 * misconfiguration requires to be injected. The detection is
 477	 * done by is_rsvd_bits_set() above.
 478	 *
 479	 * We set up the value of exit_qualification to inject:
 480	 * [2:0] - Derive from the access bits. The exit_qualification might be
 481	 *         out of date if it is serving an EPT misconfiguration.
 482	 * [5:3] - Calculated by the page walk of the guest EPT page tables
 483	 * [7:8] - Derived from [7:8] of real exit_qualification
 484	 *
 485	 * The other bits are set to 0.
 486	 */
 487	if (!(errcode & PFERR_RSVD_MASK)) {
 488		vcpu->arch.exit_qualification &= (EPT_VIOLATION_GVA_IS_VALID |
 489						  EPT_VIOLATION_GVA_TRANSLATED);
 490		if (write_fault)
 491			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE;
 492		if (user_fault)
 493			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ;
 494		if (fetch_fault)
 495			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR;
 496
 497		/*
 498		 * Note, pte_access holds the raw RWX bits from the EPTE, not
 499		 * ACC_*_MASK flags!
 500		 */
 501		vcpu->arch.exit_qualification |= (pte_access & VMX_EPT_RWX_MASK) <<
 502						 EPT_VIOLATION_RWX_SHIFT;
 503	}
 504#endif
 505	walker->fault.address = addr;
 506	walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
 507	walker->fault.async_page_fault = false;
 508
 509	trace_kvm_mmu_walker_error(walker->fault.error_code);
 510	return 0;
 511}
 512
 513static int FNAME(walk_addr)(struct guest_walker *walker,
 514			    struct kvm_vcpu *vcpu, gpa_t addr, u64 access)
 515{
 516	return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr,
 517					access);
 518}
 519
 520static bool
 521FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
 522		     u64 *spte, pt_element_t gpte, bool no_dirty_log)
 523{
 524	struct kvm_memory_slot *slot;
 525	unsigned pte_access;
 526	gfn_t gfn;
 527	kvm_pfn_t pfn;
 528
 529	if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
 530		return false;
 531
 532	pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
 533
 534	gfn = gpte_to_gfn(gpte);
 535	pte_access = sp->role.access & FNAME(gpte_access)(gpte);
 536	FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
 537
 538	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn,
 539			no_dirty_log && (pte_access & ACC_WRITE_MASK));
 540	if (!slot)
 541		return false;
 542
 543	pfn = gfn_to_pfn_memslot_atomic(slot, gfn);
 544	if (is_error_pfn(pfn))
 545		return false;
 546
 547	mmu_set_spte(vcpu, slot, spte, pte_access, gfn, pfn, NULL);
 548	kvm_release_pfn_clean(pfn);
 549	return true;
 550}
 551
 552static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
 553				struct guest_walker *gw, int level)
 554{
 555	pt_element_t curr_pte;
 556	gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
 557	u64 mask;
 558	int r, index;
 559
 560	if (level == PG_LEVEL_4K) {
 561		mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
 562		base_gpa = pte_gpa & ~mask;
 563		index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
 564
 565		r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
 566				gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
 567		curr_pte = gw->prefetch_ptes[index];
 568	} else
 569		r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
 570				  &curr_pte, sizeof(curr_pte));
 571
 572	return r || curr_pte != gw->ptes[level - 1];
 573}
 574
 575static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
 576				u64 *sptep)
 577{
 578	struct kvm_mmu_page *sp;
 579	pt_element_t *gptep = gw->prefetch_ptes;
 580	u64 *spte;
 581	int i;
 582
 583	sp = sptep_to_sp(sptep);
 584
 585	if (sp->role.level > PG_LEVEL_4K)
 586		return;
 587
 588	/*
 589	 * If addresses are being invalidated, skip prefetching to avoid
 590	 * accidentally prefetching those addresses.
 591	 */
 592	if (unlikely(vcpu->kvm->mmu_invalidate_in_progress))
 593		return;
 594
 595	if (sp->role.direct)
 596		return __direct_pte_prefetch(vcpu, sp, sptep);
 597
 598	i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1);
 599	spte = sp->spt + i;
 600
 601	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
 602		if (spte == sptep)
 603			continue;
 604
 605		if (is_shadow_present_pte(*spte))
 606			continue;
 607
 608		if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
 609			break;
 610	}
 611}
 612
 613/*
 614 * Fetch a shadow pte for a specific level in the paging hierarchy.
 615 * If the guest tries to write a write-protected page, we need to
 616 * emulate this operation, return 1 to indicate this case.
 617 */
 618static int FNAME(fetch)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
 619			 struct guest_walker *gw)
 620{
 621	struct kvm_mmu_page *sp = NULL;
 622	struct kvm_shadow_walk_iterator it;
 623	unsigned int direct_access, access;
 624	int top_level, ret;
 625	gfn_t base_gfn = fault->gfn;
 626
 627	WARN_ON_ONCE(gw->gfn != base_gfn);
 628	direct_access = gw->pte_access;
 629
 630	top_level = vcpu->arch.mmu->cpu_role.base.level;
 631	if (top_level == PT32E_ROOT_LEVEL)
 632		top_level = PT32_ROOT_LEVEL;
 633	/*
 634	 * Verify that the top-level gpte is still there.  Since the page
 635	 * is a root page, it is either write protected (and cannot be
 636	 * changed from now on) or it is invalid (in which case, we don't
 637	 * really care if it changes underneath us after this point).
 638	 */
 639	if (FNAME(gpte_changed)(vcpu, gw, top_level))
 640		goto out_gpte_changed;
 
 
 
 641
 642	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
 643		goto out_gpte_changed;
 
 
 
 
 
 
 
 
 644
 645	for (shadow_walk_init(&it, vcpu, fault->addr);
 646	     shadow_walk_okay(&it) && it.level > gw->level;
 647	     shadow_walk_next(&it)) {
 648		gfn_t table_gfn;
 649
 650		clear_sp_write_flooding_count(it.sptep);
 
 
 651
 652		table_gfn = gw->table_gfn[it.level - 2];
 653		access = gw->pt_access[it.level - 2];
 654		sp = kvm_mmu_get_child_sp(vcpu, it.sptep, table_gfn,
 655					  false, access);
 656
 657		if (sp != ERR_PTR(-EEXIST)) {
 658			/*
 659			 * We must synchronize the pagetable before linking it
 660			 * because the guest doesn't need to flush tlb when
 661			 * the gpte is changed from non-present to present.
 662			 * Otherwise, the guest may use the wrong mapping.
 663			 *
 664			 * For PG_LEVEL_4K, kvm_mmu_get_page() has already
 665			 * synchronized it transiently via kvm_sync_page().
 666			 *
 667			 * For higher level pagetable, we synchronize it via
 668			 * the slower mmu_sync_children().  If it needs to
 669			 * break, some progress has been made; return
 670			 * RET_PF_RETRY and retry on the next #PF.
 671			 * KVM_REQ_MMU_SYNC is not necessary but it
 672			 * expedites the process.
 673			 */
 674			if (sp->unsync_children &&
 675			    mmu_sync_children(vcpu, sp, false))
 676				return RET_PF_RETRY;
 677		}
 678
 679		/*
 680		 * Verify that the gpte in the page we've just write
 681		 * protected is still there.
 
 
 
 
 
 
 682		 */
 683		if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
 684			goto out_gpte_changed;
 685
 686		if (sp != ERR_PTR(-EEXIST))
 687			link_shadow_page(vcpu, it.sptep, sp);
 
 
 
 688	}
 689
 
 
 
 
 
 
 690	kvm_mmu_hugepage_adjust(vcpu, fault);
 691
 692	trace_kvm_mmu_spte_requested(fault);
 693
 694	for (; shadow_walk_okay(&it); shadow_walk_next(&it)) {
 695		clear_sp_write_flooding_count(it.sptep);
 696
 697		/*
 698		 * We cannot overwrite existing page tables with an NX
 699		 * large page, as the leaf could be executable.
 700		 */
 701		if (fault->nx_huge_page_workaround_enabled)
 702			disallowed_hugepage_adjust(fault, *it.sptep, it.level);
 703
 704		base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
 705		if (it.level == fault->goal_level)
 706			break;
 707
 708		validate_direct_spte(vcpu, it.sptep, direct_access);
 709
 710		sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn,
 711					  true, direct_access);
 712		if (sp == ERR_PTR(-EEXIST))
 713			continue;
 714
 715		link_shadow_page(vcpu, it.sptep, sp);
 716		if (fault->huge_page_disallowed)
 717			account_nx_huge_page(vcpu->kvm, sp,
 718					     fault->req_level >= it.level);
 719	}
 720
 721	if (WARN_ON_ONCE(it.level != fault->goal_level))
 722		return -EFAULT;
 723
 724	ret = mmu_set_spte(vcpu, fault->slot, it.sptep, gw->pte_access,
 725			   base_gfn, fault->pfn, fault);
 726	if (ret == RET_PF_SPURIOUS)
 727		return ret;
 728
 729	FNAME(pte_prefetch)(vcpu, gw, it.sptep);
 730	return ret;
 731
 732out_gpte_changed:
 733	return RET_PF_RETRY;
 734}
 735
 736 /*
 737 * To see whether the mapped gfn can write its page table in the current
 738 * mapping.
 739 *
 740 * It is the helper function of FNAME(page_fault). When guest uses large page
 741 * size to map the writable gfn which is used as current page table, we should
 742 * force kvm to use small page size to map it because new shadow page will be
 743 * created when kvm establishes shadow page table that stop kvm using large
 744 * page size. Do it early can avoid unnecessary #PF and emulation.
 745 *
 746 * @write_fault_to_shadow_pgtable will return true if the fault gfn is
 747 * currently used as its page table.
 748 *
 749 * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
 750 * since the PDPT is always shadowed, that means, we can not use large page
 751 * size to map the gfn which is used as PDPT.
 752 */
 753static bool
 754FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
 755			      struct guest_walker *walker, bool user_fault,
 756			      bool *write_fault_to_shadow_pgtable)
 757{
 758	int level;
 759	gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
 760	bool self_changed = false;
 761
 762	if (!(walker->pte_access & ACC_WRITE_MASK ||
 763	    (!is_cr0_wp(vcpu->arch.mmu) && !user_fault)))
 764		return false;
 765
 766	for (level = walker->level; level <= walker->max_level; level++) {
 767		gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
 768
 769		self_changed |= !(gfn & mask);
 770		*write_fault_to_shadow_pgtable |= !gfn;
 771	}
 772
 773	return self_changed;
 774}
 775
 776/*
 777 * Page fault handler.  There are several causes for a page fault:
 778 *   - there is no shadow pte for the guest pte
 779 *   - write access through a shadow pte marked read only so that we can set
 780 *     the dirty bit
 781 *   - write access to a shadow pte marked read only so we can update the page
 782 *     dirty bitmap, when userspace requests it
 783 *   - mmio access; in this case we will never install a present shadow pte
 784 *   - normal guest page fault due to the guest pte marked not present, not
 785 *     writable, or not executable
 786 *
 787 *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or
 788 *           a negative value on error.
 789 */
 790static int FNAME(page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
 791{
 792	struct guest_walker walker;
 793	int r;
 794	unsigned long mmu_seq;
 795	bool is_self_change_mapping;
 796
 797	pgprintk("%s: addr %lx err %x\n", __func__, fault->addr, fault->error_code);
 798	WARN_ON_ONCE(fault->is_tdp);
 799
 800	/*
 801	 * Look up the guest pte for the faulting address.
 802	 * If PFEC.RSVD is set, this is a shadow page fault.
 803	 * The bit needs to be cleared before walking guest page tables.
 804	 */
 805	r = FNAME(walk_addr)(&walker, vcpu, fault->addr,
 806			     fault->error_code & ~PFERR_RSVD_MASK);
 807
 808	/*
 809	 * The page is not mapped by the guest.  Let the guest handle it.
 810	 */
 811	if (!r) {
 812		pgprintk("%s: guest page fault\n", __func__);
 813		if (!fault->prefetch)
 814			kvm_inject_emulated_page_fault(vcpu, &walker.fault);
 815
 816		return RET_PF_RETRY;
 817	}
 818
 819	fault->gfn = walker.gfn;
 
 820	fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn);
 821
 822	if (page_fault_handle_page_track(vcpu, fault)) {
 823		shadow_page_table_clear_flood(vcpu, fault->addr);
 824		return RET_PF_EMULATE;
 825	}
 826
 827	r = mmu_topup_memory_caches(vcpu, true);
 828	if (r)
 829		return r;
 830
 831	vcpu->arch.write_fault_to_shadow_pgtable = false;
 832
 833	is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
 834	      &walker, fault->user, &vcpu->arch.write_fault_to_shadow_pgtable);
 835
 836	if (is_self_change_mapping)
 837		fault->max_level = PG_LEVEL_4K;
 838	else
 839		fault->max_level = walker.level;
 840
 841	mmu_seq = vcpu->kvm->mmu_invalidate_seq;
 842	smp_rmb();
 843
 844	r = kvm_faultin_pfn(vcpu, fault);
 845	if (r != RET_PF_CONTINUE)
 846		return r;
 847
 848	r = handle_abnormal_pfn(vcpu, fault, walker.pte_access);
 849	if (r != RET_PF_CONTINUE)
 850		return r;
 851
 852	/*
 853	 * Do not change pte_access if the pfn is a mmio page, otherwise
 854	 * we will cache the incorrect access into mmio spte.
 855	 */
 856	if (fault->write && !(walker.pte_access & ACC_WRITE_MASK) &&
 857	    !is_cr0_wp(vcpu->arch.mmu) && !fault->user && fault->slot) {
 858		walker.pte_access |= ACC_WRITE_MASK;
 859		walker.pte_access &= ~ACC_USER_MASK;
 860
 861		/*
 862		 * If we converted a user page to a kernel page,
 863		 * so that the kernel can write to it when cr0.wp=0,
 864		 * then we should prevent the kernel from executing it
 865		 * if SMEP is enabled.
 866		 */
 867		if (is_cr4_smep(vcpu->arch.mmu))
 868			walker.pte_access &= ~ACC_EXEC_MASK;
 869	}
 870
 871	r = RET_PF_RETRY;
 872	write_lock(&vcpu->kvm->mmu_lock);
 873
 874	if (is_page_fault_stale(vcpu, fault, mmu_seq))
 875		goto out_unlock;
 876
 877	r = make_mmu_pages_available(vcpu);
 878	if (r)
 879		goto out_unlock;
 880	r = FNAME(fetch)(vcpu, fault, &walker);
 881
 882out_unlock:
 
 883	write_unlock(&vcpu->kvm->mmu_lock);
 884	kvm_release_pfn_clean(fault->pfn);
 885	return r;
 886}
 887
 888static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
 889{
 890	int offset = 0;
 891
 892	WARN_ON(sp->role.level != PG_LEVEL_4K);
 893
 894	if (PTTYPE == 32)
 895		offset = sp->role.quadrant << SPTE_LEVEL_BITS;
 896
 897	return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
 898}
 899
 900static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa)
 901{
 902	struct kvm_shadow_walk_iterator iterator;
 903	struct kvm_mmu_page *sp;
 904	u64 old_spte;
 905	int level;
 906	u64 *sptep;
 907
 908	vcpu_clear_mmio_info(vcpu, gva);
 909
 910	/*
 911	 * No need to check return value here, rmap_can_add() can
 912	 * help us to skip pte prefetch later.
 913	 */
 914	mmu_topup_memory_caches(vcpu, true);
 915
 916	if (!VALID_PAGE(root_hpa)) {
 917		WARN_ON(1);
 918		return;
 919	}
 920
 921	write_lock(&vcpu->kvm->mmu_lock);
 922	for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) {
 923		level = iterator.level;
 924		sptep = iterator.sptep;
 925
 926		sp = sptep_to_sp(sptep);
 927		old_spte = *sptep;
 928		if (is_last_spte(old_spte, level)) {
 929			pt_element_t gpte;
 930			gpa_t pte_gpa;
 931
 932			if (!sp->unsync)
 933				break;
 934
 935			pte_gpa = FNAME(get_level1_sp_gpa)(sp);
 936			pte_gpa += spte_index(sptep) * sizeof(pt_element_t);
 937
 938			mmu_page_zap_pte(vcpu->kvm, sp, sptep, NULL);
 939			if (is_shadow_present_pte(old_spte))
 940				kvm_flush_remote_tlbs_with_address(vcpu->kvm,
 941					sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
 942
 943			if (!rmap_can_add(vcpu))
 944				break;
 945
 946			if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
 947						       sizeof(pt_element_t)))
 948				break;
 949
 950			FNAME(prefetch_gpte)(vcpu, sp, sptep, gpte, false);
 951		}
 952
 953		if (!sp->unsync_children)
 954			break;
 955	}
 956	write_unlock(&vcpu->kvm->mmu_lock);
 957}
 958
 959/* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */
 960static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 961			       gpa_t addr, u64 access,
 962			       struct x86_exception *exception)
 963{
 964	struct guest_walker walker;
 965	gpa_t gpa = INVALID_GPA;
 966	int r;
 967
 968#ifndef CONFIG_X86_64
 969	/* A 64-bit GVA should be impossible on 32-bit KVM. */
 970	WARN_ON_ONCE((addr >> 32) && mmu == vcpu->arch.walk_mmu);
 971#endif
 972
 973	r = FNAME(walk_addr_generic)(&walker, vcpu, mmu, addr, access);
 974
 975	if (r) {
 976		gpa = gfn_to_gpa(walker.gfn);
 977		gpa |= addr & ~PAGE_MASK;
 978	} else if (exception)
 979		*exception = walker.fault;
 980
 981	return gpa;
 982}
 983
 984/*
 985 * Using the information in sp->shadowed_translation (kvm_mmu_page_get_gfn()) is
 986 * safe because:
 987 * - The spte has a reference to the struct page, so the pfn for a given gfn
 988 *   can't change unless all sptes pointing to it are nuked first.
 989 *
 990 * Returns
 991 * < 0: the sp should be zapped
 992 *   0: the sp is synced and no tlb flushing is required
 993 * > 0: the sp is synced and tlb flushing is required
 994 */
 995static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
 996{
 997	union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role;
 998	int i;
 999	bool host_writable;
1000	gpa_t first_pte_gpa;
1001	bool flush = false;
 
 
 
 
 
1002
1003	/*
1004	 * Ignore various flags when verifying that it's safe to sync a shadow
1005	 * page using the current MMU context.
1006	 *
1007	 *  - level: not part of the overall MMU role and will never match as the MMU's
1008	 *           level tracks the root level
1009	 *  - access: updated based on the new guest PTE
1010	 *  - quadrant: not part of the overall MMU role (similar to level)
1011	 */
1012	const union kvm_mmu_page_role sync_role_ign = {
1013		.level = 0xf,
1014		.access = 0x7,
1015		.quadrant = 0x3,
1016		.passthrough = 0x1,
1017	};
1018
1019	/*
1020	 * Direct pages can never be unsync, and KVM should never attempt to
1021	 * sync a shadow page for a different MMU context, e.g. if the role
1022	 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the
1023	 * reserved bits checks will be wrong, etc...
1024	 */
1025	if (WARN_ON_ONCE(sp->role.direct ||
1026			 (sp->role.word ^ root_role.word) & ~sync_role_ign.word))
1027		return -1;
1028
1029	first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
 
1030
1031	for (i = 0; i < SPTE_ENT_PER_PAGE; i++) {
1032		u64 *sptep, spte;
1033		struct kvm_memory_slot *slot;
1034		unsigned pte_access;
1035		pt_element_t gpte;
1036		gpa_t pte_gpa;
1037		gfn_t gfn;
1038
1039		if (!sp->spt[i])
1040			continue;
1041
1042		pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
 
 
 
1043
1044		if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
1045					       sizeof(pt_element_t)))
1046			return -1;
1047
1048		if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
1049			flush = true;
1050			continue;
1051		}
1052
1053		gfn = gpte_to_gfn(gpte);
1054		pte_access = sp->role.access;
1055		pte_access &= FNAME(gpte_access)(gpte);
1056		FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
1057
1058		if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access))
1059			continue;
1060
1061		/*
1062		 * Drop the SPTE if the new protections would result in a RWX=0
1063		 * SPTE or if the gfn is changing.  The RWX=0 case only affects
1064		 * EPT with execute-only support, i.e. EPT without an effective
1065		 * "present" bit, as all other paging modes will create a
1066		 * read-only SPTE if pte_access is zero.
1067		 */
1068		if ((!pte_access && !shadow_present_mask) ||
1069		    gfn != kvm_mmu_page_get_gfn(sp, i)) {
1070			drop_spte(vcpu->kvm, &sp->spt[i]);
1071			flush = true;
1072			continue;
1073		}
1074
1075		/* Update the shadowed access bits in case they changed. */
1076		kvm_mmu_page_set_access(sp, i, pte_access);
1077
1078		sptep = &sp->spt[i];
1079		spte = *sptep;
1080		host_writable = spte & shadow_host_writable_mask;
1081		slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1082		make_spte(vcpu, sp, slot, pte_access, gfn,
1083			  spte_to_pfn(spte), spte, true, false,
1084			  host_writable, &spte);
1085
1086		flush |= mmu_spte_update(sptep, spte);
1087	}
1088
1089	/*
1090	 * Note, any flush is purely for KVM's correctness, e.g. when dropping
1091	 * an existing SPTE or clearing W/A/D bits to ensure an mmu_notifier
1092	 * unmap or dirty logging event doesn't fail to flush.  The guest is
1093	 * responsible for flushing the TLB to ensure any changes in protection
1094	 * bits are recognized, i.e. until the guest flushes or page faults on
1095	 * a relevant address, KVM is architecturally allowed to let vCPUs use
1096	 * cached translations with the old protection bits.
 
1097	 */
1098	return flush;
1099}
1100
1101#undef pt_element_t
1102#undef guest_walker
1103#undef FNAME
1104#undef PT_BASE_ADDR_MASK
1105#undef PT_INDEX
1106#undef PT_LVL_ADDR_MASK
1107#undef PT_LVL_OFFSET_MASK
1108#undef PT_LEVEL_BITS
1109#undef PT_MAX_FULL_LEVELS
1110#undef gpte_to_gfn
1111#undef gpte_to_gfn_lvl
1112#undef PT_GUEST_ACCESSED_MASK
1113#undef PT_GUEST_DIRTY_MASK
1114#undef PT_GUEST_DIRTY_SHIFT
1115#undef PT_GUEST_ACCESSED_SHIFT
1116#undef PT_HAVE_ACCESSED_DIRTY