Loading...
1// SPDX-License-Identifier: GPL-2.0
2#include <fcntl.h>
3#include <stdio.h>
4#include <errno.h>
5#include <stdlib.h>
6#include <string.h>
7#include <unistd.h>
8#include <inttypes.h>
9
10#include "dso.h"
11#include "map.h"
12#include "maps.h"
13#include "symbol.h"
14#include "symsrc.h"
15#include "demangle-cxx.h"
16#include "demangle-ocaml.h"
17#include "demangle-java.h"
18#include "demangle-rust.h"
19#include "machine.h"
20#include "vdso.h"
21#include "debug.h"
22#include "util/copyfile.h"
23#include <linux/ctype.h>
24#include <linux/kernel.h>
25#include <linux/zalloc.h>
26#include <linux/string.h>
27#include <symbol/kallsyms.h>
28#include <internal/lib.h>
29
30#ifdef HAVE_LIBBFD_SUPPORT
31#define PACKAGE 'perf'
32#include <bfd.h>
33#endif
34
35#if defined(HAVE_LIBBFD_SUPPORT) || defined(HAVE_CPLUS_DEMANGLE_SUPPORT)
36#ifndef DMGL_PARAMS
37#define DMGL_PARAMS (1 << 0) /* Include function args */
38#define DMGL_ANSI (1 << 1) /* Include const, volatile, etc */
39#endif
40#endif
41
42#ifndef EM_AARCH64
43#define EM_AARCH64 183 /* ARM 64 bit */
44#endif
45
46#ifndef EM_LOONGARCH
47#define EM_LOONGARCH 258
48#endif
49
50#ifndef ELF32_ST_VISIBILITY
51#define ELF32_ST_VISIBILITY(o) ((o) & 0x03)
52#endif
53
54/* For ELF64 the definitions are the same. */
55#ifndef ELF64_ST_VISIBILITY
56#define ELF64_ST_VISIBILITY(o) ELF32_ST_VISIBILITY (o)
57#endif
58
59/* How to extract information held in the st_other field. */
60#ifndef GELF_ST_VISIBILITY
61#define GELF_ST_VISIBILITY(val) ELF64_ST_VISIBILITY (val)
62#endif
63
64typedef Elf64_Nhdr GElf_Nhdr;
65
66
67#ifndef HAVE_ELF_GETPHDRNUM_SUPPORT
68static int elf_getphdrnum(Elf *elf, size_t *dst)
69{
70 GElf_Ehdr gehdr;
71 GElf_Ehdr *ehdr;
72
73 ehdr = gelf_getehdr(elf, &gehdr);
74 if (!ehdr)
75 return -1;
76
77 *dst = ehdr->e_phnum;
78
79 return 0;
80}
81#endif
82
83#ifndef HAVE_ELF_GETSHDRSTRNDX_SUPPORT
84static int elf_getshdrstrndx(Elf *elf __maybe_unused, size_t *dst __maybe_unused)
85{
86 pr_err("%s: update your libelf to > 0.140, this one lacks elf_getshdrstrndx().\n", __func__);
87 return -1;
88}
89#endif
90
91#ifndef NT_GNU_BUILD_ID
92#define NT_GNU_BUILD_ID 3
93#endif
94
95/**
96 * elf_symtab__for_each_symbol - iterate thru all the symbols
97 *
98 * @syms: struct elf_symtab instance to iterate
99 * @idx: uint32_t idx
100 * @sym: GElf_Sym iterator
101 */
102#define elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) \
103 for (idx = 0, gelf_getsym(syms, idx, &sym);\
104 idx < nr_syms; \
105 idx++, gelf_getsym(syms, idx, &sym))
106
107static inline uint8_t elf_sym__type(const GElf_Sym *sym)
108{
109 return GELF_ST_TYPE(sym->st_info);
110}
111
112static inline uint8_t elf_sym__visibility(const GElf_Sym *sym)
113{
114 return GELF_ST_VISIBILITY(sym->st_other);
115}
116
117#ifndef STT_GNU_IFUNC
118#define STT_GNU_IFUNC 10
119#endif
120
121static inline int elf_sym__is_function(const GElf_Sym *sym)
122{
123 return (elf_sym__type(sym) == STT_FUNC ||
124 elf_sym__type(sym) == STT_GNU_IFUNC) &&
125 sym->st_name != 0 &&
126 sym->st_shndx != SHN_UNDEF;
127}
128
129static inline bool elf_sym__is_object(const GElf_Sym *sym)
130{
131 return elf_sym__type(sym) == STT_OBJECT &&
132 sym->st_name != 0 &&
133 sym->st_shndx != SHN_UNDEF;
134}
135
136static inline int elf_sym__is_label(const GElf_Sym *sym)
137{
138 return elf_sym__type(sym) == STT_NOTYPE &&
139 sym->st_name != 0 &&
140 sym->st_shndx != SHN_UNDEF &&
141 sym->st_shndx != SHN_ABS &&
142 elf_sym__visibility(sym) != STV_HIDDEN &&
143 elf_sym__visibility(sym) != STV_INTERNAL;
144}
145
146static bool elf_sym__filter(GElf_Sym *sym)
147{
148 return elf_sym__is_function(sym) || elf_sym__is_object(sym);
149}
150
151static inline const char *elf_sym__name(const GElf_Sym *sym,
152 const Elf_Data *symstrs)
153{
154 return symstrs->d_buf + sym->st_name;
155}
156
157static inline const char *elf_sec__name(const GElf_Shdr *shdr,
158 const Elf_Data *secstrs)
159{
160 return secstrs->d_buf + shdr->sh_name;
161}
162
163static inline int elf_sec__is_text(const GElf_Shdr *shdr,
164 const Elf_Data *secstrs)
165{
166 return strstr(elf_sec__name(shdr, secstrs), "text") != NULL;
167}
168
169static inline bool elf_sec__is_data(const GElf_Shdr *shdr,
170 const Elf_Data *secstrs)
171{
172 return strstr(elf_sec__name(shdr, secstrs), "data") != NULL;
173}
174
175static bool elf_sec__filter(GElf_Shdr *shdr, Elf_Data *secstrs)
176{
177 return elf_sec__is_text(shdr, secstrs) ||
178 elf_sec__is_data(shdr, secstrs);
179}
180
181static size_t elf_addr_to_index(Elf *elf, GElf_Addr addr)
182{
183 Elf_Scn *sec = NULL;
184 GElf_Shdr shdr;
185 size_t cnt = 1;
186
187 while ((sec = elf_nextscn(elf, sec)) != NULL) {
188 gelf_getshdr(sec, &shdr);
189
190 if ((addr >= shdr.sh_addr) &&
191 (addr < (shdr.sh_addr + shdr.sh_size)))
192 return cnt;
193
194 ++cnt;
195 }
196
197 return -1;
198}
199
200Elf_Scn *elf_section_by_name(Elf *elf, GElf_Ehdr *ep,
201 GElf_Shdr *shp, const char *name, size_t *idx)
202{
203 Elf_Scn *sec = NULL;
204 size_t cnt = 1;
205
206 /* ELF is corrupted/truncated, avoid calling elf_strptr. */
207 if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL))
208 return NULL;
209
210 while ((sec = elf_nextscn(elf, sec)) != NULL) {
211 char *str;
212
213 gelf_getshdr(sec, shp);
214 str = elf_strptr(elf, ep->e_shstrndx, shp->sh_name);
215 if (str && !strcmp(name, str)) {
216 if (idx)
217 *idx = cnt;
218 return sec;
219 }
220 ++cnt;
221 }
222
223 return NULL;
224}
225
226bool filename__has_section(const char *filename, const char *sec)
227{
228 int fd;
229 Elf *elf;
230 GElf_Ehdr ehdr;
231 GElf_Shdr shdr;
232 bool found = false;
233
234 fd = open(filename, O_RDONLY);
235 if (fd < 0)
236 return false;
237
238 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
239 if (elf == NULL)
240 goto out;
241
242 if (gelf_getehdr(elf, &ehdr) == NULL)
243 goto elf_out;
244
245 found = !!elf_section_by_name(elf, &ehdr, &shdr, sec, NULL);
246
247elf_out:
248 elf_end(elf);
249out:
250 close(fd);
251 return found;
252}
253
254static int elf_read_program_header(Elf *elf, u64 vaddr, GElf_Phdr *phdr)
255{
256 size_t i, phdrnum;
257 u64 sz;
258
259 if (elf_getphdrnum(elf, &phdrnum))
260 return -1;
261
262 for (i = 0; i < phdrnum; i++) {
263 if (gelf_getphdr(elf, i, phdr) == NULL)
264 return -1;
265
266 if (phdr->p_type != PT_LOAD)
267 continue;
268
269 sz = max(phdr->p_memsz, phdr->p_filesz);
270 if (!sz)
271 continue;
272
273 if (vaddr >= phdr->p_vaddr && (vaddr < phdr->p_vaddr + sz))
274 return 0;
275 }
276
277 /* Not found any valid program header */
278 return -1;
279}
280
281static bool want_demangle(bool is_kernel_sym)
282{
283 return is_kernel_sym ? symbol_conf.demangle_kernel : symbol_conf.demangle;
284}
285
286/*
287 * Demangle C++ function signature, typically replaced by demangle-cxx.cpp
288 * version.
289 */
290__weak char *cxx_demangle_sym(const char *str __maybe_unused, bool params __maybe_unused,
291 bool modifiers __maybe_unused)
292{
293#ifdef HAVE_LIBBFD_SUPPORT
294 int flags = (params ? DMGL_PARAMS : 0) | (modifiers ? DMGL_ANSI : 0);
295
296 return bfd_demangle(NULL, str, flags);
297#elif defined(HAVE_CPLUS_DEMANGLE_SUPPORT)
298 int flags = (params ? DMGL_PARAMS : 0) | (modifiers ? DMGL_ANSI : 0);
299
300 return cplus_demangle(str, flags);
301#else
302 return NULL;
303#endif
304}
305
306static char *demangle_sym(struct dso *dso, int kmodule, const char *elf_name)
307{
308 char *demangled = NULL;
309
310 /*
311 * We need to figure out if the object was created from C++ sources
312 * DWARF DW_compile_unit has this, but we don't always have access
313 * to it...
314 */
315 if (!want_demangle(dso__kernel(dso) || kmodule))
316 return demangled;
317
318 demangled = cxx_demangle_sym(elf_name, verbose > 0, verbose > 0);
319 if (demangled == NULL) {
320 demangled = ocaml_demangle_sym(elf_name);
321 if (demangled == NULL) {
322 demangled = java_demangle_sym(elf_name, JAVA_DEMANGLE_NORET);
323 }
324 }
325 else if (rust_is_mangled(demangled))
326 /*
327 * Input to Rust demangling is the BFD-demangled
328 * name which it Rust-demangles in place.
329 */
330 rust_demangle_sym(demangled);
331
332 return demangled;
333}
334
335struct rel_info {
336 u32 nr_entries;
337 u32 *sorted;
338 bool is_rela;
339 Elf_Data *reldata;
340 GElf_Rela rela;
341 GElf_Rel rel;
342};
343
344static u32 get_rel_symidx(struct rel_info *ri, u32 idx)
345{
346 idx = ri->sorted ? ri->sorted[idx] : idx;
347 if (ri->is_rela) {
348 gelf_getrela(ri->reldata, idx, &ri->rela);
349 return GELF_R_SYM(ri->rela.r_info);
350 }
351 gelf_getrel(ri->reldata, idx, &ri->rel);
352 return GELF_R_SYM(ri->rel.r_info);
353}
354
355static u64 get_rel_offset(struct rel_info *ri, u32 x)
356{
357 if (ri->is_rela) {
358 GElf_Rela rela;
359
360 gelf_getrela(ri->reldata, x, &rela);
361 return rela.r_offset;
362 } else {
363 GElf_Rel rel;
364
365 gelf_getrel(ri->reldata, x, &rel);
366 return rel.r_offset;
367 }
368}
369
370static int rel_cmp(const void *a, const void *b, void *r)
371{
372 struct rel_info *ri = r;
373 u64 a_offset = get_rel_offset(ri, *(const u32 *)a);
374 u64 b_offset = get_rel_offset(ri, *(const u32 *)b);
375
376 return a_offset < b_offset ? -1 : (a_offset > b_offset ? 1 : 0);
377}
378
379static int sort_rel(struct rel_info *ri)
380{
381 size_t sz = sizeof(ri->sorted[0]);
382 u32 i;
383
384 ri->sorted = calloc(ri->nr_entries, sz);
385 if (!ri->sorted)
386 return -1;
387 for (i = 0; i < ri->nr_entries; i++)
388 ri->sorted[i] = i;
389 qsort_r(ri->sorted, ri->nr_entries, sz, rel_cmp, ri);
390 return 0;
391}
392
393/*
394 * For x86_64, the GNU linker is putting IFUNC information in the relocation
395 * addend.
396 */
397static bool addend_may_be_ifunc(GElf_Ehdr *ehdr, struct rel_info *ri)
398{
399 return ehdr->e_machine == EM_X86_64 && ri->is_rela &&
400 GELF_R_TYPE(ri->rela.r_info) == R_X86_64_IRELATIVE;
401}
402
403static bool get_ifunc_name(Elf *elf, struct dso *dso, GElf_Ehdr *ehdr,
404 struct rel_info *ri, char *buf, size_t buf_sz)
405{
406 u64 addr = ri->rela.r_addend;
407 struct symbol *sym;
408 GElf_Phdr phdr;
409
410 if (!addend_may_be_ifunc(ehdr, ri))
411 return false;
412
413 if (elf_read_program_header(elf, addr, &phdr))
414 return false;
415
416 addr -= phdr.p_vaddr - phdr.p_offset;
417
418 sym = dso__find_symbol_nocache(dso, addr);
419
420 /* Expecting the address to be an IFUNC or IFUNC alias */
421 if (!sym || sym->start != addr || (sym->type != STT_GNU_IFUNC && !sym->ifunc_alias))
422 return false;
423
424 snprintf(buf, buf_sz, "%s@plt", sym->name);
425
426 return true;
427}
428
429static void exit_rel(struct rel_info *ri)
430{
431 zfree(&ri->sorted);
432}
433
434static bool get_plt_sizes(struct dso *dso, GElf_Ehdr *ehdr, GElf_Shdr *shdr_plt,
435 u64 *plt_header_size, u64 *plt_entry_size)
436{
437 switch (ehdr->e_machine) {
438 case EM_ARM:
439 *plt_header_size = 20;
440 *plt_entry_size = 12;
441 return true;
442 case EM_AARCH64:
443 *plt_header_size = 32;
444 *plt_entry_size = 16;
445 return true;
446 case EM_LOONGARCH:
447 *plt_header_size = 32;
448 *plt_entry_size = 16;
449 return true;
450 case EM_SPARC:
451 *plt_header_size = 48;
452 *plt_entry_size = 12;
453 return true;
454 case EM_SPARCV9:
455 *plt_header_size = 128;
456 *plt_entry_size = 32;
457 return true;
458 case EM_386:
459 case EM_X86_64:
460 *plt_entry_size = shdr_plt->sh_entsize;
461 /* Size is 8 or 16, if not, assume alignment indicates size */
462 if (*plt_entry_size != 8 && *plt_entry_size != 16)
463 *plt_entry_size = shdr_plt->sh_addralign == 8 ? 8 : 16;
464 *plt_header_size = *plt_entry_size;
465 break;
466 default: /* FIXME: s390/alpha/mips/parisc/poperpc/sh/xtensa need to be checked */
467 *plt_header_size = shdr_plt->sh_entsize;
468 *plt_entry_size = shdr_plt->sh_entsize;
469 break;
470 }
471 if (*plt_entry_size)
472 return true;
473 pr_debug("Missing PLT entry size for %s\n", dso__long_name(dso));
474 return false;
475}
476
477static bool machine_is_x86(GElf_Half e_machine)
478{
479 return e_machine == EM_386 || e_machine == EM_X86_64;
480}
481
482struct rela_dyn {
483 GElf_Addr offset;
484 u32 sym_idx;
485};
486
487struct rela_dyn_info {
488 struct dso *dso;
489 Elf_Data *plt_got_data;
490 u32 nr_entries;
491 struct rela_dyn *sorted;
492 Elf_Data *dynsym_data;
493 Elf_Data *dynstr_data;
494 Elf_Data *rela_dyn_data;
495};
496
497static void exit_rela_dyn(struct rela_dyn_info *di)
498{
499 zfree(&di->sorted);
500}
501
502static int cmp_offset(const void *a, const void *b)
503{
504 const struct rela_dyn *va = a;
505 const struct rela_dyn *vb = b;
506
507 return va->offset < vb->offset ? -1 : (va->offset > vb->offset ? 1 : 0);
508}
509
510static int sort_rela_dyn(struct rela_dyn_info *di)
511{
512 u32 i, n;
513
514 di->sorted = calloc(di->nr_entries, sizeof(di->sorted[0]));
515 if (!di->sorted)
516 return -1;
517
518 /* Get data for sorting: the offset and symbol index */
519 for (i = 0, n = 0; i < di->nr_entries; i++) {
520 GElf_Rela rela;
521 u32 sym_idx;
522
523 gelf_getrela(di->rela_dyn_data, i, &rela);
524 sym_idx = GELF_R_SYM(rela.r_info);
525 if (sym_idx) {
526 di->sorted[n].sym_idx = sym_idx;
527 di->sorted[n].offset = rela.r_offset;
528 n += 1;
529 }
530 }
531
532 /* Sort by offset */
533 di->nr_entries = n;
534 qsort(di->sorted, n, sizeof(di->sorted[0]), cmp_offset);
535
536 return 0;
537}
538
539static void get_rela_dyn_info(Elf *elf, GElf_Ehdr *ehdr, struct rela_dyn_info *di, Elf_Scn *scn)
540{
541 GElf_Shdr rela_dyn_shdr;
542 GElf_Shdr shdr;
543
544 di->plt_got_data = elf_getdata(scn, NULL);
545
546 scn = elf_section_by_name(elf, ehdr, &rela_dyn_shdr, ".rela.dyn", NULL);
547 if (!scn || !rela_dyn_shdr.sh_link || !rela_dyn_shdr.sh_entsize)
548 return;
549
550 di->nr_entries = rela_dyn_shdr.sh_size / rela_dyn_shdr.sh_entsize;
551 di->rela_dyn_data = elf_getdata(scn, NULL);
552
553 scn = elf_getscn(elf, rela_dyn_shdr.sh_link);
554 if (!scn || !gelf_getshdr(scn, &shdr) || !shdr.sh_link)
555 return;
556
557 di->dynsym_data = elf_getdata(scn, NULL);
558 di->dynstr_data = elf_getdata(elf_getscn(elf, shdr.sh_link), NULL);
559
560 if (!di->plt_got_data || !di->dynstr_data || !di->dynsym_data || !di->rela_dyn_data)
561 return;
562
563 /* Sort into offset order */
564 sort_rela_dyn(di);
565}
566
567/* Get instruction displacement from a plt entry for x86_64 */
568static u32 get_x86_64_plt_disp(const u8 *p)
569{
570 u8 endbr64[] = {0xf3, 0x0f, 0x1e, 0xfa};
571 int n = 0;
572
573 /* Skip endbr64 */
574 if (!memcmp(p, endbr64, sizeof(endbr64)))
575 n += sizeof(endbr64);
576 /* Skip bnd prefix */
577 if (p[n] == 0xf2)
578 n += 1;
579 /* jmp with 4-byte displacement */
580 if (p[n] == 0xff && p[n + 1] == 0x25) {
581 u32 disp;
582
583 n += 2;
584 /* Also add offset from start of entry to end of instruction */
585 memcpy(&disp, p + n, sizeof(disp));
586 return n + 4 + le32toh(disp);
587 }
588 return 0;
589}
590
591static bool get_plt_got_name(GElf_Shdr *shdr, size_t i,
592 struct rela_dyn_info *di,
593 char *buf, size_t buf_sz)
594{
595 struct rela_dyn vi, *vr;
596 const char *sym_name;
597 char *demangled;
598 GElf_Sym sym;
599 bool result;
600 u32 disp;
601
602 if (!di->sorted)
603 return false;
604
605 disp = get_x86_64_plt_disp(di->plt_got_data->d_buf + i);
606 if (!disp)
607 return false;
608
609 /* Compute target offset of the .plt.got entry */
610 vi.offset = shdr->sh_offset + di->plt_got_data->d_off + i + disp;
611
612 /* Find that offset in .rela.dyn (sorted by offset) */
613 vr = bsearch(&vi, di->sorted, di->nr_entries, sizeof(di->sorted[0]), cmp_offset);
614 if (!vr)
615 return false;
616
617 /* Get the associated symbol */
618 gelf_getsym(di->dynsym_data, vr->sym_idx, &sym);
619 sym_name = elf_sym__name(&sym, di->dynstr_data);
620 demangled = demangle_sym(di->dso, 0, sym_name);
621 if (demangled != NULL)
622 sym_name = demangled;
623
624 snprintf(buf, buf_sz, "%s@plt", sym_name);
625
626 result = *sym_name;
627
628 free(demangled);
629
630 return result;
631}
632
633static int dso__synthesize_plt_got_symbols(struct dso *dso, Elf *elf,
634 GElf_Ehdr *ehdr,
635 char *buf, size_t buf_sz)
636{
637 struct rela_dyn_info di = { .dso = dso };
638 struct symbol *sym;
639 GElf_Shdr shdr;
640 Elf_Scn *scn;
641 int err = -1;
642 size_t i;
643
644 scn = elf_section_by_name(elf, ehdr, &shdr, ".plt.got", NULL);
645 if (!scn || !shdr.sh_entsize)
646 return 0;
647
648 if (ehdr->e_machine == EM_X86_64)
649 get_rela_dyn_info(elf, ehdr, &di, scn);
650
651 for (i = 0; i < shdr.sh_size; i += shdr.sh_entsize) {
652 if (!get_plt_got_name(&shdr, i, &di, buf, buf_sz))
653 snprintf(buf, buf_sz, "offset_%#" PRIx64 "@plt", (u64)shdr.sh_offset + i);
654 sym = symbol__new(shdr.sh_offset + i, shdr.sh_entsize, STB_GLOBAL, STT_FUNC, buf);
655 if (!sym)
656 goto out;
657 symbols__insert(dso__symbols(dso), sym);
658 }
659 err = 0;
660out:
661 exit_rela_dyn(&di);
662 return err;
663}
664
665/*
666 * We need to check if we have a .dynsym, so that we can handle the
667 * .plt, synthesizing its symbols, that aren't on the symtabs (be it
668 * .dynsym or .symtab).
669 * And always look at the original dso, not at debuginfo packages, that
670 * have the PLT data stripped out (shdr_rel_plt.sh_type == SHT_NOBITS).
671 */
672int dso__synthesize_plt_symbols(struct dso *dso, struct symsrc *ss)
673{
674 uint32_t idx;
675 GElf_Sym sym;
676 u64 plt_offset, plt_header_size, plt_entry_size;
677 GElf_Shdr shdr_plt, plt_sec_shdr;
678 struct symbol *f, *plt_sym;
679 GElf_Shdr shdr_rel_plt, shdr_dynsym;
680 Elf_Data *syms, *symstrs;
681 Elf_Scn *scn_plt_rel, *scn_symstrs, *scn_dynsym;
682 GElf_Ehdr ehdr;
683 char sympltname[1024];
684 Elf *elf;
685 int nr = 0, err = -1;
686 struct rel_info ri = { .is_rela = false };
687 bool lazy_plt;
688
689 elf = ss->elf;
690 ehdr = ss->ehdr;
691
692 if (!elf_section_by_name(elf, &ehdr, &shdr_plt, ".plt", NULL))
693 return 0;
694
695 /*
696 * A symbol from a previous section (e.g. .init) can have been expanded
697 * by symbols__fixup_end() to overlap .plt. Truncate it before adding
698 * a symbol for .plt header.
699 */
700 f = dso__find_symbol_nocache(dso, shdr_plt.sh_offset);
701 if (f && f->start < shdr_plt.sh_offset && f->end > shdr_plt.sh_offset)
702 f->end = shdr_plt.sh_offset;
703
704 if (!get_plt_sizes(dso, &ehdr, &shdr_plt, &plt_header_size, &plt_entry_size))
705 return 0;
706
707 /* Add a symbol for .plt header */
708 plt_sym = symbol__new(shdr_plt.sh_offset, plt_header_size, STB_GLOBAL, STT_FUNC, ".plt");
709 if (!plt_sym)
710 goto out_elf_end;
711 symbols__insert(dso__symbols(dso), plt_sym);
712
713 /* Only x86 has .plt.got */
714 if (machine_is_x86(ehdr.e_machine) &&
715 dso__synthesize_plt_got_symbols(dso, elf, &ehdr, sympltname, sizeof(sympltname)))
716 goto out_elf_end;
717
718 /* Only x86 has .plt.sec */
719 if (machine_is_x86(ehdr.e_machine) &&
720 elf_section_by_name(elf, &ehdr, &plt_sec_shdr, ".plt.sec", NULL)) {
721 if (!get_plt_sizes(dso, &ehdr, &plt_sec_shdr, &plt_header_size, &plt_entry_size))
722 return 0;
723 /* Extend .plt symbol to entire .plt */
724 plt_sym->end = plt_sym->start + shdr_plt.sh_size;
725 /* Use .plt.sec offset */
726 plt_offset = plt_sec_shdr.sh_offset;
727 lazy_plt = false;
728 } else {
729 plt_offset = shdr_plt.sh_offset;
730 lazy_plt = true;
731 }
732
733 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
734 ".rela.plt", NULL);
735 if (scn_plt_rel == NULL) {
736 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
737 ".rel.plt", NULL);
738 if (scn_plt_rel == NULL)
739 return 0;
740 }
741
742 if (shdr_rel_plt.sh_type != SHT_RELA &&
743 shdr_rel_plt.sh_type != SHT_REL)
744 return 0;
745
746 if (!shdr_rel_plt.sh_link)
747 return 0;
748
749 if (shdr_rel_plt.sh_link == ss->dynsym_idx) {
750 scn_dynsym = ss->dynsym;
751 shdr_dynsym = ss->dynshdr;
752 } else if (shdr_rel_plt.sh_link == ss->symtab_idx) {
753 /*
754 * A static executable can have a .plt due to IFUNCs, in which
755 * case .symtab is used not .dynsym.
756 */
757 scn_dynsym = ss->symtab;
758 shdr_dynsym = ss->symshdr;
759 } else {
760 goto out_elf_end;
761 }
762
763 if (!scn_dynsym)
764 return 0;
765
766 /*
767 * Fetch the relocation section to find the idxes to the GOT
768 * and the symbols in the .dynsym they refer to.
769 */
770 ri.reldata = elf_getdata(scn_plt_rel, NULL);
771 if (!ri.reldata)
772 goto out_elf_end;
773
774 syms = elf_getdata(scn_dynsym, NULL);
775 if (syms == NULL)
776 goto out_elf_end;
777
778 scn_symstrs = elf_getscn(elf, shdr_dynsym.sh_link);
779 if (scn_symstrs == NULL)
780 goto out_elf_end;
781
782 symstrs = elf_getdata(scn_symstrs, NULL);
783 if (symstrs == NULL)
784 goto out_elf_end;
785
786 if (symstrs->d_size == 0)
787 goto out_elf_end;
788
789 ri.nr_entries = shdr_rel_plt.sh_size / shdr_rel_plt.sh_entsize;
790
791 ri.is_rela = shdr_rel_plt.sh_type == SHT_RELA;
792
793 if (lazy_plt) {
794 /*
795 * Assume a .plt with the same number of entries as the number
796 * of relocation entries is not lazy and does not have a header.
797 */
798 if (ri.nr_entries * plt_entry_size == shdr_plt.sh_size)
799 dso__delete_symbol(dso, plt_sym);
800 else
801 plt_offset += plt_header_size;
802 }
803
804 /*
805 * x86 doesn't insert IFUNC relocations in .plt order, so sort to get
806 * back in order.
807 */
808 if (machine_is_x86(ehdr.e_machine) && sort_rel(&ri))
809 goto out_elf_end;
810
811 for (idx = 0; idx < ri.nr_entries; idx++) {
812 const char *elf_name = NULL;
813 char *demangled = NULL;
814
815 gelf_getsym(syms, get_rel_symidx(&ri, idx), &sym);
816
817 elf_name = elf_sym__name(&sym, symstrs);
818 demangled = demangle_sym(dso, 0, elf_name);
819 if (demangled)
820 elf_name = demangled;
821 if (*elf_name)
822 snprintf(sympltname, sizeof(sympltname), "%s@plt", elf_name);
823 else if (!get_ifunc_name(elf, dso, &ehdr, &ri, sympltname, sizeof(sympltname)))
824 snprintf(sympltname, sizeof(sympltname),
825 "offset_%#" PRIx64 "@plt", plt_offset);
826 free(demangled);
827
828 f = symbol__new(plt_offset, plt_entry_size, STB_GLOBAL, STT_FUNC, sympltname);
829 if (!f)
830 goto out_elf_end;
831
832 plt_offset += plt_entry_size;
833 symbols__insert(dso__symbols(dso), f);
834 ++nr;
835 }
836
837 err = 0;
838out_elf_end:
839 exit_rel(&ri);
840 if (err == 0)
841 return nr;
842 pr_debug("%s: problems reading %s PLT info.\n",
843 __func__, dso__long_name(dso));
844 return 0;
845}
846
847char *dso__demangle_sym(struct dso *dso, int kmodule, const char *elf_name)
848{
849 return demangle_sym(dso, kmodule, elf_name);
850}
851
852/*
853 * Align offset to 4 bytes as needed for note name and descriptor data.
854 */
855#define NOTE_ALIGN(n) (((n) + 3) & -4U)
856
857static int elf_read_build_id(Elf *elf, void *bf, size_t size)
858{
859 int err = -1;
860 GElf_Ehdr ehdr;
861 GElf_Shdr shdr;
862 Elf_Data *data;
863 Elf_Scn *sec;
864 Elf_Kind ek;
865 void *ptr;
866
867 if (size < BUILD_ID_SIZE)
868 goto out;
869
870 ek = elf_kind(elf);
871 if (ek != ELF_K_ELF)
872 goto out;
873
874 if (gelf_getehdr(elf, &ehdr) == NULL) {
875 pr_err("%s: cannot get elf header.\n", __func__);
876 goto out;
877 }
878
879 /*
880 * Check following sections for notes:
881 * '.note.gnu.build-id'
882 * '.notes'
883 * '.note' (VDSO specific)
884 */
885 do {
886 sec = elf_section_by_name(elf, &ehdr, &shdr,
887 ".note.gnu.build-id", NULL);
888 if (sec)
889 break;
890
891 sec = elf_section_by_name(elf, &ehdr, &shdr,
892 ".notes", NULL);
893 if (sec)
894 break;
895
896 sec = elf_section_by_name(elf, &ehdr, &shdr,
897 ".note", NULL);
898 if (sec)
899 break;
900
901 return err;
902
903 } while (0);
904
905 data = elf_getdata(sec, NULL);
906 if (data == NULL)
907 goto out;
908
909 ptr = data->d_buf;
910 while (ptr < (data->d_buf + data->d_size)) {
911 GElf_Nhdr *nhdr = ptr;
912 size_t namesz = NOTE_ALIGN(nhdr->n_namesz),
913 descsz = NOTE_ALIGN(nhdr->n_descsz);
914 const char *name;
915
916 ptr += sizeof(*nhdr);
917 name = ptr;
918 ptr += namesz;
919 if (nhdr->n_type == NT_GNU_BUILD_ID &&
920 nhdr->n_namesz == sizeof("GNU")) {
921 if (memcmp(name, "GNU", sizeof("GNU")) == 0) {
922 size_t sz = min(size, descsz);
923 memcpy(bf, ptr, sz);
924 memset(bf + sz, 0, size - sz);
925 err = sz;
926 break;
927 }
928 }
929 ptr += descsz;
930 }
931
932out:
933 return err;
934}
935
936#ifdef HAVE_LIBBFD_BUILDID_SUPPORT
937
938static int read_build_id(const char *filename, struct build_id *bid)
939{
940 size_t size = sizeof(bid->data);
941 int err = -1;
942 bfd *abfd;
943
944 abfd = bfd_openr(filename, NULL);
945 if (!abfd)
946 return -1;
947
948 if (!bfd_check_format(abfd, bfd_object)) {
949 pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename);
950 goto out_close;
951 }
952
953 if (!abfd->build_id || abfd->build_id->size > size)
954 goto out_close;
955
956 memcpy(bid->data, abfd->build_id->data, abfd->build_id->size);
957 memset(bid->data + abfd->build_id->size, 0, size - abfd->build_id->size);
958 err = bid->size = abfd->build_id->size;
959
960out_close:
961 bfd_close(abfd);
962 return err;
963}
964
965#else // HAVE_LIBBFD_BUILDID_SUPPORT
966
967static int read_build_id(const char *filename, struct build_id *bid)
968{
969 size_t size = sizeof(bid->data);
970 int fd, err = -1;
971 Elf *elf;
972
973 if (size < BUILD_ID_SIZE)
974 goto out;
975
976 fd = open(filename, O_RDONLY);
977 if (fd < 0)
978 goto out;
979
980 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
981 if (elf == NULL) {
982 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
983 goto out_close;
984 }
985
986 err = elf_read_build_id(elf, bid->data, size);
987 if (err > 0)
988 bid->size = err;
989
990 elf_end(elf);
991out_close:
992 close(fd);
993out:
994 return err;
995}
996
997#endif // HAVE_LIBBFD_BUILDID_SUPPORT
998
999int filename__read_build_id(const char *filename, struct build_id *bid)
1000{
1001 struct kmod_path m = { .name = NULL, };
1002 char path[PATH_MAX];
1003 int err;
1004
1005 if (!filename)
1006 return -EFAULT;
1007
1008 err = kmod_path__parse(&m, filename);
1009 if (err)
1010 return -1;
1011
1012 if (m.comp) {
1013 int error = 0, fd;
1014
1015 fd = filename__decompress(filename, path, sizeof(path), m.comp, &error);
1016 if (fd < 0) {
1017 pr_debug("Failed to decompress (error %d) %s\n",
1018 error, filename);
1019 return -1;
1020 }
1021 close(fd);
1022 filename = path;
1023 }
1024
1025 err = read_build_id(filename, bid);
1026
1027 if (m.comp)
1028 unlink(filename);
1029 return err;
1030}
1031
1032int sysfs__read_build_id(const char *filename, struct build_id *bid)
1033{
1034 size_t size = sizeof(bid->data);
1035 int fd, err = -1;
1036
1037 fd = open(filename, O_RDONLY);
1038 if (fd < 0)
1039 goto out;
1040
1041 while (1) {
1042 char bf[BUFSIZ];
1043 GElf_Nhdr nhdr;
1044 size_t namesz, descsz;
1045
1046 if (read(fd, &nhdr, sizeof(nhdr)) != sizeof(nhdr))
1047 break;
1048
1049 namesz = NOTE_ALIGN(nhdr.n_namesz);
1050 descsz = NOTE_ALIGN(nhdr.n_descsz);
1051 if (nhdr.n_type == NT_GNU_BUILD_ID &&
1052 nhdr.n_namesz == sizeof("GNU")) {
1053 if (read(fd, bf, namesz) != (ssize_t)namesz)
1054 break;
1055 if (memcmp(bf, "GNU", sizeof("GNU")) == 0) {
1056 size_t sz = min(descsz, size);
1057 if (read(fd, bid->data, sz) == (ssize_t)sz) {
1058 memset(bid->data + sz, 0, size - sz);
1059 bid->size = sz;
1060 err = 0;
1061 break;
1062 }
1063 } else if (read(fd, bf, descsz) != (ssize_t)descsz)
1064 break;
1065 } else {
1066 int n = namesz + descsz;
1067
1068 if (n > (int)sizeof(bf)) {
1069 n = sizeof(bf);
1070 pr_debug("%s: truncating reading of build id in sysfs file %s: n_namesz=%u, n_descsz=%u.\n",
1071 __func__, filename, nhdr.n_namesz, nhdr.n_descsz);
1072 }
1073 if (read(fd, bf, n) != n)
1074 break;
1075 }
1076 }
1077 close(fd);
1078out:
1079 return err;
1080}
1081
1082#ifdef HAVE_LIBBFD_SUPPORT
1083
1084int filename__read_debuglink(const char *filename, char *debuglink,
1085 size_t size)
1086{
1087 int err = -1;
1088 asection *section;
1089 bfd *abfd;
1090
1091 abfd = bfd_openr(filename, NULL);
1092 if (!abfd)
1093 return -1;
1094
1095 if (!bfd_check_format(abfd, bfd_object)) {
1096 pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename);
1097 goto out_close;
1098 }
1099
1100 section = bfd_get_section_by_name(abfd, ".gnu_debuglink");
1101 if (!section)
1102 goto out_close;
1103
1104 if (section->size > size)
1105 goto out_close;
1106
1107 if (!bfd_get_section_contents(abfd, section, debuglink, 0,
1108 section->size))
1109 goto out_close;
1110
1111 err = 0;
1112
1113out_close:
1114 bfd_close(abfd);
1115 return err;
1116}
1117
1118#else
1119
1120int filename__read_debuglink(const char *filename, char *debuglink,
1121 size_t size)
1122{
1123 int fd, err = -1;
1124 Elf *elf;
1125 GElf_Ehdr ehdr;
1126 GElf_Shdr shdr;
1127 Elf_Data *data;
1128 Elf_Scn *sec;
1129 Elf_Kind ek;
1130
1131 fd = open(filename, O_RDONLY);
1132 if (fd < 0)
1133 goto out;
1134
1135 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1136 if (elf == NULL) {
1137 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
1138 goto out_close;
1139 }
1140
1141 ek = elf_kind(elf);
1142 if (ek != ELF_K_ELF)
1143 goto out_elf_end;
1144
1145 if (gelf_getehdr(elf, &ehdr) == NULL) {
1146 pr_err("%s: cannot get elf header.\n", __func__);
1147 goto out_elf_end;
1148 }
1149
1150 sec = elf_section_by_name(elf, &ehdr, &shdr,
1151 ".gnu_debuglink", NULL);
1152 if (sec == NULL)
1153 goto out_elf_end;
1154
1155 data = elf_getdata(sec, NULL);
1156 if (data == NULL)
1157 goto out_elf_end;
1158
1159 /* the start of this section is a zero-terminated string */
1160 strncpy(debuglink, data->d_buf, size);
1161
1162 err = 0;
1163
1164out_elf_end:
1165 elf_end(elf);
1166out_close:
1167 close(fd);
1168out:
1169 return err;
1170}
1171
1172#endif
1173
1174static int dso__swap_init(struct dso *dso, unsigned char eidata)
1175{
1176 static unsigned int const endian = 1;
1177
1178 dso__set_needs_swap(dso, DSO_SWAP__NO);
1179
1180 switch (eidata) {
1181 case ELFDATA2LSB:
1182 /* We are big endian, DSO is little endian. */
1183 if (*(unsigned char const *)&endian != 1)
1184 dso__set_needs_swap(dso, DSO_SWAP__YES);
1185 break;
1186
1187 case ELFDATA2MSB:
1188 /* We are little endian, DSO is big endian. */
1189 if (*(unsigned char const *)&endian != 0)
1190 dso__set_needs_swap(dso, DSO_SWAP__YES);
1191 break;
1192
1193 default:
1194 pr_err("unrecognized DSO data encoding %d\n", eidata);
1195 return -EINVAL;
1196 }
1197
1198 return 0;
1199}
1200
1201bool symsrc__possibly_runtime(struct symsrc *ss)
1202{
1203 return ss->dynsym || ss->opdsec;
1204}
1205
1206bool symsrc__has_symtab(struct symsrc *ss)
1207{
1208 return ss->symtab != NULL;
1209}
1210
1211void symsrc__destroy(struct symsrc *ss)
1212{
1213 zfree(&ss->name);
1214 elf_end(ss->elf);
1215 close(ss->fd);
1216}
1217
1218bool elf__needs_adjust_symbols(GElf_Ehdr ehdr)
1219{
1220 /*
1221 * Usually vmlinux is an ELF file with type ET_EXEC for most
1222 * architectures; except Arm64 kernel is linked with option
1223 * '-share', so need to check type ET_DYN.
1224 */
1225 return ehdr.e_type == ET_EXEC || ehdr.e_type == ET_REL ||
1226 ehdr.e_type == ET_DYN;
1227}
1228
1229int symsrc__init(struct symsrc *ss, struct dso *dso, const char *name,
1230 enum dso_binary_type type)
1231{
1232 GElf_Ehdr ehdr;
1233 Elf *elf;
1234 int fd;
1235
1236 if (dso__needs_decompress(dso)) {
1237 fd = dso__decompress_kmodule_fd(dso, name);
1238 if (fd < 0)
1239 return -1;
1240
1241 type = dso__symtab_type(dso);
1242 } else {
1243 fd = open(name, O_RDONLY);
1244 if (fd < 0) {
1245 *dso__load_errno(dso) = errno;
1246 return -1;
1247 }
1248 }
1249
1250 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1251 if (elf == NULL) {
1252 pr_debug("%s: cannot read %s ELF file.\n", __func__, name);
1253 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF;
1254 goto out_close;
1255 }
1256
1257 if (gelf_getehdr(elf, &ehdr) == NULL) {
1258 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF;
1259 pr_debug("%s: cannot get elf header.\n", __func__);
1260 goto out_elf_end;
1261 }
1262
1263 if (dso__swap_init(dso, ehdr.e_ident[EI_DATA])) {
1264 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INTERNAL_ERROR;
1265 goto out_elf_end;
1266 }
1267
1268 /* Always reject images with a mismatched build-id: */
1269 if (dso__has_build_id(dso) && !symbol_conf.ignore_vmlinux_buildid) {
1270 u8 build_id[BUILD_ID_SIZE];
1271 struct build_id bid;
1272 int size;
1273
1274 size = elf_read_build_id(elf, build_id, BUILD_ID_SIZE);
1275 if (size <= 0) {
1276 *dso__load_errno(dso) = DSO_LOAD_ERRNO__CANNOT_READ_BUILDID;
1277 goto out_elf_end;
1278 }
1279
1280 build_id__init(&bid, build_id, size);
1281 if (!dso__build_id_equal(dso, &bid)) {
1282 pr_debug("%s: build id mismatch for %s.\n", __func__, name);
1283 *dso__load_errno(dso) = DSO_LOAD_ERRNO__MISMATCHING_BUILDID;
1284 goto out_elf_end;
1285 }
1286 }
1287
1288 ss->is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
1289
1290 ss->symtab_idx = 0;
1291 ss->symtab = elf_section_by_name(elf, &ehdr, &ss->symshdr, ".symtab",
1292 &ss->symtab_idx);
1293 if (ss->symshdr.sh_type != SHT_SYMTAB)
1294 ss->symtab = NULL;
1295
1296 ss->dynsym_idx = 0;
1297 ss->dynsym = elf_section_by_name(elf, &ehdr, &ss->dynshdr, ".dynsym",
1298 &ss->dynsym_idx);
1299 if (ss->dynshdr.sh_type != SHT_DYNSYM)
1300 ss->dynsym = NULL;
1301
1302 ss->opdidx = 0;
1303 ss->opdsec = elf_section_by_name(elf, &ehdr, &ss->opdshdr, ".opd",
1304 &ss->opdidx);
1305 if (ss->opdshdr.sh_type != SHT_PROGBITS)
1306 ss->opdsec = NULL;
1307
1308 if (dso__kernel(dso) == DSO_SPACE__USER)
1309 ss->adjust_symbols = true;
1310 else
1311 ss->adjust_symbols = elf__needs_adjust_symbols(ehdr);
1312
1313 ss->name = strdup(name);
1314 if (!ss->name) {
1315 *dso__load_errno(dso) = errno;
1316 goto out_elf_end;
1317 }
1318
1319 ss->elf = elf;
1320 ss->fd = fd;
1321 ss->ehdr = ehdr;
1322 ss->type = type;
1323
1324 return 0;
1325
1326out_elf_end:
1327 elf_end(elf);
1328out_close:
1329 close(fd);
1330 return -1;
1331}
1332
1333static bool is_exe_text(int flags)
1334{
1335 return (flags & (SHF_ALLOC | SHF_EXECINSTR)) == (SHF_ALLOC | SHF_EXECINSTR);
1336}
1337
1338/*
1339 * Some executable module sections like .noinstr.text might be laid out with
1340 * .text so they can use the same mapping (memory address to file offset).
1341 * Check if that is the case. Refer to kernel layout_sections(). Return the
1342 * maximum offset.
1343 */
1344static u64 max_text_section(Elf *elf, GElf_Ehdr *ehdr)
1345{
1346 Elf_Scn *sec = NULL;
1347 GElf_Shdr shdr;
1348 u64 offs = 0;
1349
1350 /* Doesn't work for some arch */
1351 if (ehdr->e_machine == EM_PARISC ||
1352 ehdr->e_machine == EM_ALPHA)
1353 return 0;
1354
1355 /* ELF is corrupted/truncated, avoid calling elf_strptr. */
1356 if (!elf_rawdata(elf_getscn(elf, ehdr->e_shstrndx), NULL))
1357 return 0;
1358
1359 while ((sec = elf_nextscn(elf, sec)) != NULL) {
1360 char *sec_name;
1361
1362 if (!gelf_getshdr(sec, &shdr))
1363 break;
1364
1365 if (!is_exe_text(shdr.sh_flags))
1366 continue;
1367
1368 /* .init and .exit sections are not placed with .text */
1369 sec_name = elf_strptr(elf, ehdr->e_shstrndx, shdr.sh_name);
1370 if (!sec_name ||
1371 strstarts(sec_name, ".init") ||
1372 strstarts(sec_name, ".exit"))
1373 break;
1374
1375 /* Must be next to previous, assumes .text is first */
1376 if (offs && PERF_ALIGN(offs, shdr.sh_addralign ?: 1) != shdr.sh_offset)
1377 break;
1378
1379 offs = shdr.sh_offset + shdr.sh_size;
1380 }
1381
1382 return offs;
1383}
1384
1385/**
1386 * ref_reloc_sym_not_found - has kernel relocation symbol been found.
1387 * @kmap: kernel maps and relocation reference symbol
1388 *
1389 * This function returns %true if we are dealing with the kernel maps and the
1390 * relocation reference symbol has not yet been found. Otherwise %false is
1391 * returned.
1392 */
1393static bool ref_reloc_sym_not_found(struct kmap *kmap)
1394{
1395 return kmap && kmap->ref_reloc_sym && kmap->ref_reloc_sym->name &&
1396 !kmap->ref_reloc_sym->unrelocated_addr;
1397}
1398
1399/**
1400 * ref_reloc - kernel relocation offset.
1401 * @kmap: kernel maps and relocation reference symbol
1402 *
1403 * This function returns the offset of kernel addresses as determined by using
1404 * the relocation reference symbol i.e. if the kernel has not been relocated
1405 * then the return value is zero.
1406 */
1407static u64 ref_reloc(struct kmap *kmap)
1408{
1409 if (kmap && kmap->ref_reloc_sym &&
1410 kmap->ref_reloc_sym->unrelocated_addr)
1411 return kmap->ref_reloc_sym->addr -
1412 kmap->ref_reloc_sym->unrelocated_addr;
1413 return 0;
1414}
1415
1416void __weak arch__sym_update(struct symbol *s __maybe_unused,
1417 GElf_Sym *sym __maybe_unused) { }
1418
1419static int dso__process_kernel_symbol(struct dso *dso, struct map *map,
1420 GElf_Sym *sym, GElf_Shdr *shdr,
1421 struct maps *kmaps, struct kmap *kmap,
1422 struct dso **curr_dsop,
1423 const char *section_name,
1424 bool adjust_kernel_syms, bool kmodule, bool *remap_kernel,
1425 u64 max_text_sh_offset)
1426{
1427 struct dso *curr_dso = *curr_dsop;
1428 struct map *curr_map;
1429 char dso_name[PATH_MAX];
1430
1431 /* Adjust symbol to map to file offset */
1432 if (adjust_kernel_syms)
1433 sym->st_value -= shdr->sh_addr - shdr->sh_offset;
1434
1435 if (strcmp(section_name, (dso__short_name(curr_dso) + dso__short_name_len(dso))) == 0)
1436 return 0;
1437
1438 if (strcmp(section_name, ".text") == 0) {
1439 /*
1440 * The initial kernel mapping is based on
1441 * kallsyms and identity maps. Overwrite it to
1442 * map to the kernel dso.
1443 */
1444 if (*remap_kernel && dso__kernel(dso) && !kmodule) {
1445 *remap_kernel = false;
1446 map__set_start(map, shdr->sh_addr + ref_reloc(kmap));
1447 map__set_end(map, map__start(map) + shdr->sh_size);
1448 map__set_pgoff(map, shdr->sh_offset);
1449 map__set_mapping_type(map, MAPPING_TYPE__DSO);
1450 /* Ensure maps are correctly ordered */
1451 if (kmaps) {
1452 int err;
1453 struct map *tmp = map__get(map);
1454
1455 maps__remove(kmaps, map);
1456 err = maps__insert(kmaps, map);
1457 map__put(tmp);
1458 if (err)
1459 return err;
1460 }
1461 }
1462
1463 /*
1464 * The initial module mapping is based on
1465 * /proc/modules mapped to offset zero.
1466 * Overwrite it to map to the module dso.
1467 */
1468 if (*remap_kernel && kmodule) {
1469 *remap_kernel = false;
1470 map__set_pgoff(map, shdr->sh_offset);
1471 }
1472
1473 dso__put(*curr_dsop);
1474 *curr_dsop = dso__get(dso);
1475 return 0;
1476 }
1477
1478 if (!kmap)
1479 return 0;
1480
1481 /*
1482 * perf does not record module section addresses except for .text, but
1483 * some sections can use the same mapping as .text.
1484 */
1485 if (kmodule && adjust_kernel_syms && is_exe_text(shdr->sh_flags) &&
1486 shdr->sh_offset <= max_text_sh_offset) {
1487 dso__put(*curr_dsop);
1488 *curr_dsop = dso__get(dso);
1489 return 0;
1490 }
1491
1492 snprintf(dso_name, sizeof(dso_name), "%s%s", dso__short_name(dso), section_name);
1493
1494 curr_map = maps__find_by_name(kmaps, dso_name);
1495 if (curr_map == NULL) {
1496 u64 start = sym->st_value;
1497
1498 if (kmodule)
1499 start += map__start(map) + shdr->sh_offset;
1500
1501 curr_dso = dso__new(dso_name);
1502 if (curr_dso == NULL)
1503 return -1;
1504 dso__set_kernel(curr_dso, dso__kernel(dso));
1505 RC_CHK_ACCESS(curr_dso)->long_name = dso__long_name(dso);
1506 RC_CHK_ACCESS(curr_dso)->long_name_len = dso__long_name_len(dso);
1507 dso__set_binary_type(curr_dso, dso__binary_type(dso));
1508 dso__set_adjust_symbols(curr_dso, dso__adjust_symbols(dso));
1509 curr_map = map__new2(start, curr_dso);
1510 if (curr_map == NULL) {
1511 dso__put(curr_dso);
1512 return -1;
1513 }
1514 if (dso__kernel(curr_dso))
1515 map__kmap(curr_map)->kmaps = kmaps;
1516
1517 if (adjust_kernel_syms) {
1518 map__set_start(curr_map, shdr->sh_addr + ref_reloc(kmap));
1519 map__set_end(curr_map, map__start(curr_map) + shdr->sh_size);
1520 map__set_pgoff(curr_map, shdr->sh_offset);
1521 } else {
1522 map__set_mapping_type(curr_map, MAPPING_TYPE__IDENTITY);
1523 }
1524 dso__set_symtab_type(curr_dso, dso__symtab_type(dso));
1525 if (maps__insert(kmaps, curr_map))
1526 return -1;
1527 dsos__add(&maps__machine(kmaps)->dsos, curr_dso);
1528 dso__set_loaded(curr_dso);
1529 dso__put(*curr_dsop);
1530 *curr_dsop = curr_dso;
1531 } else {
1532 dso__put(*curr_dsop);
1533 *curr_dsop = dso__get(map__dso(curr_map));
1534 }
1535 map__put(curr_map);
1536
1537 return 0;
1538}
1539
1540static int
1541dso__load_sym_internal(struct dso *dso, struct map *map, struct symsrc *syms_ss,
1542 struct symsrc *runtime_ss, int kmodule, int dynsym)
1543{
1544 struct kmap *kmap = dso__kernel(dso) ? map__kmap(map) : NULL;
1545 struct maps *kmaps = kmap ? map__kmaps(map) : NULL;
1546 struct dso *curr_dso = NULL;
1547 Elf_Data *symstrs, *secstrs, *secstrs_run, *secstrs_sym;
1548 uint32_t nr_syms;
1549 uint32_t idx;
1550 GElf_Ehdr ehdr;
1551 GElf_Shdr shdr;
1552 GElf_Shdr tshdr;
1553 Elf_Data *syms, *opddata = NULL;
1554 GElf_Sym sym;
1555 Elf_Scn *sec, *sec_strndx;
1556 Elf *elf;
1557 int nr = 0;
1558 bool remap_kernel = false, adjust_kernel_syms = false;
1559 u64 max_text_sh_offset = 0;
1560
1561 if (kmap && !kmaps)
1562 return -1;
1563
1564 elf = syms_ss->elf;
1565 ehdr = syms_ss->ehdr;
1566 if (dynsym) {
1567 sec = syms_ss->dynsym;
1568 shdr = syms_ss->dynshdr;
1569 } else {
1570 sec = syms_ss->symtab;
1571 shdr = syms_ss->symshdr;
1572 }
1573
1574 if (elf_section_by_name(runtime_ss->elf, &runtime_ss->ehdr, &tshdr,
1575 ".text", NULL)) {
1576 dso__set_text_offset(dso, tshdr.sh_addr - tshdr.sh_offset);
1577 dso__set_text_end(dso, tshdr.sh_offset + tshdr.sh_size);
1578 }
1579
1580 if (runtime_ss->opdsec)
1581 opddata = elf_rawdata(runtime_ss->opdsec, NULL);
1582
1583 syms = elf_getdata(sec, NULL);
1584 if (syms == NULL)
1585 goto out_elf_end;
1586
1587 sec = elf_getscn(elf, shdr.sh_link);
1588 if (sec == NULL)
1589 goto out_elf_end;
1590
1591 symstrs = elf_getdata(sec, NULL);
1592 if (symstrs == NULL)
1593 goto out_elf_end;
1594
1595 sec_strndx = elf_getscn(runtime_ss->elf, runtime_ss->ehdr.e_shstrndx);
1596 if (sec_strndx == NULL)
1597 goto out_elf_end;
1598
1599 secstrs_run = elf_getdata(sec_strndx, NULL);
1600 if (secstrs_run == NULL)
1601 goto out_elf_end;
1602
1603 sec_strndx = elf_getscn(elf, ehdr.e_shstrndx);
1604 if (sec_strndx == NULL)
1605 goto out_elf_end;
1606
1607 secstrs_sym = elf_getdata(sec_strndx, NULL);
1608 if (secstrs_sym == NULL)
1609 goto out_elf_end;
1610
1611 nr_syms = shdr.sh_size / shdr.sh_entsize;
1612
1613 memset(&sym, 0, sizeof(sym));
1614
1615 /*
1616 * The kernel relocation symbol is needed in advance in order to adjust
1617 * kernel maps correctly.
1618 */
1619 if (ref_reloc_sym_not_found(kmap)) {
1620 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1621 const char *elf_name = elf_sym__name(&sym, symstrs);
1622
1623 if (strcmp(elf_name, kmap->ref_reloc_sym->name))
1624 continue;
1625 kmap->ref_reloc_sym->unrelocated_addr = sym.st_value;
1626 map__set_reloc(map, kmap->ref_reloc_sym->addr - kmap->ref_reloc_sym->unrelocated_addr);
1627 break;
1628 }
1629 }
1630
1631 /*
1632 * Handle any relocation of vdso necessary because older kernels
1633 * attempted to prelink vdso to its virtual address.
1634 */
1635 if (dso__is_vdso(dso))
1636 map__set_reloc(map, map__start(map) - dso__text_offset(dso));
1637
1638 dso__set_adjust_symbols(dso, runtime_ss->adjust_symbols || ref_reloc(kmap));
1639 /*
1640 * Initial kernel and module mappings do not map to the dso.
1641 * Flag the fixups.
1642 */
1643 if (dso__kernel(dso)) {
1644 remap_kernel = true;
1645 adjust_kernel_syms = dso__adjust_symbols(dso);
1646 }
1647
1648 if (kmodule && adjust_kernel_syms)
1649 max_text_sh_offset = max_text_section(runtime_ss->elf, &runtime_ss->ehdr);
1650
1651 curr_dso = dso__get(dso);
1652 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1653 struct symbol *f;
1654 const char *elf_name = elf_sym__name(&sym, symstrs);
1655 char *demangled = NULL;
1656 int is_label = elf_sym__is_label(&sym);
1657 const char *section_name;
1658 bool used_opd = false;
1659
1660 if (!is_label && !elf_sym__filter(&sym))
1661 continue;
1662
1663 /* Reject ARM ELF "mapping symbols": these aren't unique and
1664 * don't identify functions, so will confuse the profile
1665 * output: */
1666 if (ehdr.e_machine == EM_ARM || ehdr.e_machine == EM_AARCH64) {
1667 if (elf_name[0] == '$' && strchr("adtx", elf_name[1])
1668 && (elf_name[2] == '\0' || elf_name[2] == '.'))
1669 continue;
1670 }
1671
1672 if (runtime_ss->opdsec && sym.st_shndx == runtime_ss->opdidx) {
1673 u32 offset = sym.st_value - syms_ss->opdshdr.sh_addr;
1674 u64 *opd = opddata->d_buf + offset;
1675 sym.st_value = DSO__SWAP(dso, u64, *opd);
1676 sym.st_shndx = elf_addr_to_index(runtime_ss->elf,
1677 sym.st_value);
1678 used_opd = true;
1679 }
1680
1681 /*
1682 * When loading symbols in a data mapping, ABS symbols (which
1683 * has a value of SHN_ABS in its st_shndx) failed at
1684 * elf_getscn(). And it marks the loading as a failure so
1685 * already loaded symbols cannot be fixed up.
1686 *
1687 * I'm not sure what should be done. Just ignore them for now.
1688 * - Namhyung Kim
1689 */
1690 if (sym.st_shndx == SHN_ABS)
1691 continue;
1692
1693 sec = elf_getscn(syms_ss->elf, sym.st_shndx);
1694 if (!sec)
1695 goto out_elf_end;
1696
1697 gelf_getshdr(sec, &shdr);
1698
1699 /*
1700 * If the attribute bit SHF_ALLOC is not set, the section
1701 * doesn't occupy memory during process execution.
1702 * E.g. ".gnu.warning.*" section is used by linker to generate
1703 * warnings when calling deprecated functions, the symbols in
1704 * the section aren't loaded to memory during process execution,
1705 * so skip them.
1706 */
1707 if (!(shdr.sh_flags & SHF_ALLOC))
1708 continue;
1709
1710 secstrs = secstrs_sym;
1711
1712 /*
1713 * We have to fallback to runtime when syms' section header has
1714 * NOBITS set. NOBITS results in file offset (sh_offset) not
1715 * being incremented. So sh_offset used below has different
1716 * values for syms (invalid) and runtime (valid).
1717 */
1718 if (shdr.sh_type == SHT_NOBITS) {
1719 sec = elf_getscn(runtime_ss->elf, sym.st_shndx);
1720 if (!sec)
1721 goto out_elf_end;
1722
1723 gelf_getshdr(sec, &shdr);
1724 secstrs = secstrs_run;
1725 }
1726
1727 if (is_label && !elf_sec__filter(&shdr, secstrs))
1728 continue;
1729
1730 section_name = elf_sec__name(&shdr, secstrs);
1731
1732 /* On ARM, symbols for thumb functions have 1 added to
1733 * the symbol address as a flag - remove it */
1734 if ((ehdr.e_machine == EM_ARM) &&
1735 (GELF_ST_TYPE(sym.st_info) == STT_FUNC) &&
1736 (sym.st_value & 1))
1737 --sym.st_value;
1738
1739 if (dso__kernel(dso)) {
1740 if (dso__process_kernel_symbol(dso, map, &sym, &shdr,
1741 kmaps, kmap, &curr_dso,
1742 section_name,
1743 adjust_kernel_syms,
1744 kmodule,
1745 &remap_kernel,
1746 max_text_sh_offset))
1747 goto out_elf_end;
1748 } else if ((used_opd && runtime_ss->adjust_symbols) ||
1749 (!used_opd && syms_ss->adjust_symbols)) {
1750 GElf_Phdr phdr;
1751
1752 if (elf_read_program_header(runtime_ss->elf,
1753 (u64)sym.st_value, &phdr)) {
1754 pr_debug4("%s: failed to find program header for "
1755 "symbol: %s st_value: %#" PRIx64 "\n",
1756 __func__, elf_name, (u64)sym.st_value);
1757 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " "
1758 "sh_addr: %#" PRIx64 " sh_offset: %#" PRIx64 "\n",
1759 __func__, (u64)sym.st_value, (u64)shdr.sh_addr,
1760 (u64)shdr.sh_offset);
1761 /*
1762 * Fail to find program header, let's rollback
1763 * to use shdr.sh_addr and shdr.sh_offset to
1764 * calibrate symbol's file address, though this
1765 * is not necessary for normal C ELF file, we
1766 * still need to handle java JIT symbols in this
1767 * case.
1768 */
1769 sym.st_value -= shdr.sh_addr - shdr.sh_offset;
1770 } else {
1771 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " "
1772 "p_vaddr: %#" PRIx64 " p_offset: %#" PRIx64 "\n",
1773 __func__, (u64)sym.st_value, (u64)phdr.p_vaddr,
1774 (u64)phdr.p_offset);
1775 sym.st_value -= phdr.p_vaddr - phdr.p_offset;
1776 }
1777 }
1778
1779 demangled = demangle_sym(dso, kmodule, elf_name);
1780 if (demangled != NULL)
1781 elf_name = demangled;
1782
1783 f = symbol__new(sym.st_value, sym.st_size,
1784 GELF_ST_BIND(sym.st_info),
1785 GELF_ST_TYPE(sym.st_info), elf_name);
1786 free(demangled);
1787 if (!f)
1788 goto out_elf_end;
1789
1790 arch__sym_update(f, &sym);
1791
1792 __symbols__insert(dso__symbols(curr_dso), f, dso__kernel(dso));
1793 nr++;
1794 }
1795 dso__put(curr_dso);
1796
1797 /*
1798 * For misannotated, zeroed, ASM function sizes.
1799 */
1800 if (nr > 0) {
1801 symbols__fixup_end(dso__symbols(dso), false);
1802 symbols__fixup_duplicate(dso__symbols(dso));
1803 if (kmap) {
1804 /*
1805 * We need to fixup this here too because we create new
1806 * maps here, for things like vsyscall sections.
1807 */
1808 maps__fixup_end(kmaps);
1809 }
1810 }
1811 return nr;
1812out_elf_end:
1813 dso__put(curr_dso);
1814 return -1;
1815}
1816
1817int dso__load_sym(struct dso *dso, struct map *map, struct symsrc *syms_ss,
1818 struct symsrc *runtime_ss, int kmodule)
1819{
1820 int nr = 0;
1821 int err = -1;
1822
1823 dso__set_symtab_type(dso, syms_ss->type);
1824 dso__set_is_64_bit(dso, syms_ss->is_64_bit);
1825 dso__set_rel(dso, syms_ss->ehdr.e_type == ET_REL);
1826
1827 /*
1828 * Modules may already have symbols from kallsyms, but those symbols
1829 * have the wrong values for the dso maps, so remove them.
1830 */
1831 if (kmodule && syms_ss->symtab)
1832 symbols__delete(dso__symbols(dso));
1833
1834 if (!syms_ss->symtab) {
1835 /*
1836 * If the vmlinux is stripped, fail so we will fall back
1837 * to using kallsyms. The vmlinux runtime symbols aren't
1838 * of much use.
1839 */
1840 if (dso__kernel(dso))
1841 return err;
1842 } else {
1843 err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss,
1844 kmodule, 0);
1845 if (err < 0)
1846 return err;
1847 nr = err;
1848 }
1849
1850 if (syms_ss->dynsym) {
1851 err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss,
1852 kmodule, 1);
1853 if (err < 0)
1854 return err;
1855 err += nr;
1856 }
1857
1858 return err;
1859}
1860
1861static int elf_read_maps(Elf *elf, bool exe, mapfn_t mapfn, void *data)
1862{
1863 GElf_Phdr phdr;
1864 size_t i, phdrnum;
1865 int err;
1866 u64 sz;
1867
1868 if (elf_getphdrnum(elf, &phdrnum))
1869 return -1;
1870
1871 for (i = 0; i < phdrnum; i++) {
1872 if (gelf_getphdr(elf, i, &phdr) == NULL)
1873 return -1;
1874 if (phdr.p_type != PT_LOAD)
1875 continue;
1876 if (exe) {
1877 if (!(phdr.p_flags & PF_X))
1878 continue;
1879 } else {
1880 if (!(phdr.p_flags & PF_R))
1881 continue;
1882 }
1883 sz = min(phdr.p_memsz, phdr.p_filesz);
1884 if (!sz)
1885 continue;
1886 err = mapfn(phdr.p_vaddr, sz, phdr.p_offset, data);
1887 if (err)
1888 return err;
1889 }
1890 return 0;
1891}
1892
1893int file__read_maps(int fd, bool exe, mapfn_t mapfn, void *data,
1894 bool *is_64_bit)
1895{
1896 int err;
1897 Elf *elf;
1898
1899 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1900 if (elf == NULL)
1901 return -1;
1902
1903 if (is_64_bit)
1904 *is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
1905
1906 err = elf_read_maps(elf, exe, mapfn, data);
1907
1908 elf_end(elf);
1909 return err;
1910}
1911
1912enum dso_type dso__type_fd(int fd)
1913{
1914 enum dso_type dso_type = DSO__TYPE_UNKNOWN;
1915 GElf_Ehdr ehdr;
1916 Elf_Kind ek;
1917 Elf *elf;
1918
1919 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1920 if (elf == NULL)
1921 goto out;
1922
1923 ek = elf_kind(elf);
1924 if (ek != ELF_K_ELF)
1925 goto out_end;
1926
1927 if (gelf_getclass(elf) == ELFCLASS64) {
1928 dso_type = DSO__TYPE_64BIT;
1929 goto out_end;
1930 }
1931
1932 if (gelf_getehdr(elf, &ehdr) == NULL)
1933 goto out_end;
1934
1935 if (ehdr.e_machine == EM_X86_64)
1936 dso_type = DSO__TYPE_X32BIT;
1937 else
1938 dso_type = DSO__TYPE_32BIT;
1939out_end:
1940 elf_end(elf);
1941out:
1942 return dso_type;
1943}
1944
1945static int copy_bytes(int from, off_t from_offs, int to, off_t to_offs, u64 len)
1946{
1947 ssize_t r;
1948 size_t n;
1949 int err = -1;
1950 char *buf = malloc(page_size);
1951
1952 if (buf == NULL)
1953 return -1;
1954
1955 if (lseek(to, to_offs, SEEK_SET) != to_offs)
1956 goto out;
1957
1958 if (lseek(from, from_offs, SEEK_SET) != from_offs)
1959 goto out;
1960
1961 while (len) {
1962 n = page_size;
1963 if (len < n)
1964 n = len;
1965 /* Use read because mmap won't work on proc files */
1966 r = read(from, buf, n);
1967 if (r < 0)
1968 goto out;
1969 if (!r)
1970 break;
1971 n = r;
1972 r = write(to, buf, n);
1973 if (r < 0)
1974 goto out;
1975 if ((size_t)r != n)
1976 goto out;
1977 len -= n;
1978 }
1979
1980 err = 0;
1981out:
1982 free(buf);
1983 return err;
1984}
1985
1986struct kcore {
1987 int fd;
1988 int elfclass;
1989 Elf *elf;
1990 GElf_Ehdr ehdr;
1991};
1992
1993static int kcore__open(struct kcore *kcore, const char *filename)
1994{
1995 GElf_Ehdr *ehdr;
1996
1997 kcore->fd = open(filename, O_RDONLY);
1998 if (kcore->fd == -1)
1999 return -1;
2000
2001 kcore->elf = elf_begin(kcore->fd, ELF_C_READ, NULL);
2002 if (!kcore->elf)
2003 goto out_close;
2004
2005 kcore->elfclass = gelf_getclass(kcore->elf);
2006 if (kcore->elfclass == ELFCLASSNONE)
2007 goto out_end;
2008
2009 ehdr = gelf_getehdr(kcore->elf, &kcore->ehdr);
2010 if (!ehdr)
2011 goto out_end;
2012
2013 return 0;
2014
2015out_end:
2016 elf_end(kcore->elf);
2017out_close:
2018 close(kcore->fd);
2019 return -1;
2020}
2021
2022static int kcore__init(struct kcore *kcore, char *filename, int elfclass,
2023 bool temp)
2024{
2025 kcore->elfclass = elfclass;
2026
2027 if (temp)
2028 kcore->fd = mkstemp(filename);
2029 else
2030 kcore->fd = open(filename, O_WRONLY | O_CREAT | O_EXCL, 0400);
2031 if (kcore->fd == -1)
2032 return -1;
2033
2034 kcore->elf = elf_begin(kcore->fd, ELF_C_WRITE, NULL);
2035 if (!kcore->elf)
2036 goto out_close;
2037
2038 if (!gelf_newehdr(kcore->elf, elfclass))
2039 goto out_end;
2040
2041 memset(&kcore->ehdr, 0, sizeof(GElf_Ehdr));
2042
2043 return 0;
2044
2045out_end:
2046 elf_end(kcore->elf);
2047out_close:
2048 close(kcore->fd);
2049 unlink(filename);
2050 return -1;
2051}
2052
2053static void kcore__close(struct kcore *kcore)
2054{
2055 elf_end(kcore->elf);
2056 close(kcore->fd);
2057}
2058
2059static int kcore__copy_hdr(struct kcore *from, struct kcore *to, size_t count)
2060{
2061 GElf_Ehdr *ehdr = &to->ehdr;
2062 GElf_Ehdr *kehdr = &from->ehdr;
2063
2064 memcpy(ehdr->e_ident, kehdr->e_ident, EI_NIDENT);
2065 ehdr->e_type = kehdr->e_type;
2066 ehdr->e_machine = kehdr->e_machine;
2067 ehdr->e_version = kehdr->e_version;
2068 ehdr->e_entry = 0;
2069 ehdr->e_shoff = 0;
2070 ehdr->e_flags = kehdr->e_flags;
2071 ehdr->e_phnum = count;
2072 ehdr->e_shentsize = 0;
2073 ehdr->e_shnum = 0;
2074 ehdr->e_shstrndx = 0;
2075
2076 if (from->elfclass == ELFCLASS32) {
2077 ehdr->e_phoff = sizeof(Elf32_Ehdr);
2078 ehdr->e_ehsize = sizeof(Elf32_Ehdr);
2079 ehdr->e_phentsize = sizeof(Elf32_Phdr);
2080 } else {
2081 ehdr->e_phoff = sizeof(Elf64_Ehdr);
2082 ehdr->e_ehsize = sizeof(Elf64_Ehdr);
2083 ehdr->e_phentsize = sizeof(Elf64_Phdr);
2084 }
2085
2086 if (!gelf_update_ehdr(to->elf, ehdr))
2087 return -1;
2088
2089 if (!gelf_newphdr(to->elf, count))
2090 return -1;
2091
2092 return 0;
2093}
2094
2095static int kcore__add_phdr(struct kcore *kcore, int idx, off_t offset,
2096 u64 addr, u64 len)
2097{
2098 GElf_Phdr phdr = {
2099 .p_type = PT_LOAD,
2100 .p_flags = PF_R | PF_W | PF_X,
2101 .p_offset = offset,
2102 .p_vaddr = addr,
2103 .p_paddr = 0,
2104 .p_filesz = len,
2105 .p_memsz = len,
2106 .p_align = page_size,
2107 };
2108
2109 if (!gelf_update_phdr(kcore->elf, idx, &phdr))
2110 return -1;
2111
2112 return 0;
2113}
2114
2115static off_t kcore__write(struct kcore *kcore)
2116{
2117 return elf_update(kcore->elf, ELF_C_WRITE);
2118}
2119
2120struct phdr_data {
2121 off_t offset;
2122 off_t rel;
2123 u64 addr;
2124 u64 len;
2125 struct list_head node;
2126 struct phdr_data *remaps;
2127};
2128
2129struct sym_data {
2130 u64 addr;
2131 struct list_head node;
2132};
2133
2134struct kcore_copy_info {
2135 u64 stext;
2136 u64 etext;
2137 u64 first_symbol;
2138 u64 last_symbol;
2139 u64 first_module;
2140 u64 first_module_symbol;
2141 u64 last_module_symbol;
2142 size_t phnum;
2143 struct list_head phdrs;
2144 struct list_head syms;
2145};
2146
2147#define kcore_copy__for_each_phdr(k, p) \
2148 list_for_each_entry((p), &(k)->phdrs, node)
2149
2150static struct phdr_data *phdr_data__new(u64 addr, u64 len, off_t offset)
2151{
2152 struct phdr_data *p = zalloc(sizeof(*p));
2153
2154 if (p) {
2155 p->addr = addr;
2156 p->len = len;
2157 p->offset = offset;
2158 }
2159
2160 return p;
2161}
2162
2163static struct phdr_data *kcore_copy_info__addnew(struct kcore_copy_info *kci,
2164 u64 addr, u64 len,
2165 off_t offset)
2166{
2167 struct phdr_data *p = phdr_data__new(addr, len, offset);
2168
2169 if (p)
2170 list_add_tail(&p->node, &kci->phdrs);
2171
2172 return p;
2173}
2174
2175static void kcore_copy__free_phdrs(struct kcore_copy_info *kci)
2176{
2177 struct phdr_data *p, *tmp;
2178
2179 list_for_each_entry_safe(p, tmp, &kci->phdrs, node) {
2180 list_del_init(&p->node);
2181 free(p);
2182 }
2183}
2184
2185static struct sym_data *kcore_copy__new_sym(struct kcore_copy_info *kci,
2186 u64 addr)
2187{
2188 struct sym_data *s = zalloc(sizeof(*s));
2189
2190 if (s) {
2191 s->addr = addr;
2192 list_add_tail(&s->node, &kci->syms);
2193 }
2194
2195 return s;
2196}
2197
2198static void kcore_copy__free_syms(struct kcore_copy_info *kci)
2199{
2200 struct sym_data *s, *tmp;
2201
2202 list_for_each_entry_safe(s, tmp, &kci->syms, node) {
2203 list_del_init(&s->node);
2204 free(s);
2205 }
2206}
2207
2208static int kcore_copy__process_kallsyms(void *arg, const char *name, char type,
2209 u64 start)
2210{
2211 struct kcore_copy_info *kci = arg;
2212
2213 if (!kallsyms__is_function(type))
2214 return 0;
2215
2216 if (strchr(name, '[')) {
2217 if (!kci->first_module_symbol || start < kci->first_module_symbol)
2218 kci->first_module_symbol = start;
2219 if (start > kci->last_module_symbol)
2220 kci->last_module_symbol = start;
2221 return 0;
2222 }
2223
2224 if (!kci->first_symbol || start < kci->first_symbol)
2225 kci->first_symbol = start;
2226
2227 if (!kci->last_symbol || start > kci->last_symbol)
2228 kci->last_symbol = start;
2229
2230 if (!strcmp(name, "_stext")) {
2231 kci->stext = start;
2232 return 0;
2233 }
2234
2235 if (!strcmp(name, "_etext")) {
2236 kci->etext = start;
2237 return 0;
2238 }
2239
2240 if (is_entry_trampoline(name) && !kcore_copy__new_sym(kci, start))
2241 return -1;
2242
2243 return 0;
2244}
2245
2246static int kcore_copy__parse_kallsyms(struct kcore_copy_info *kci,
2247 const char *dir)
2248{
2249 char kallsyms_filename[PATH_MAX];
2250
2251 scnprintf(kallsyms_filename, PATH_MAX, "%s/kallsyms", dir);
2252
2253 if (symbol__restricted_filename(kallsyms_filename, "/proc/kallsyms"))
2254 return -1;
2255
2256 if (kallsyms__parse(kallsyms_filename, kci,
2257 kcore_copy__process_kallsyms) < 0)
2258 return -1;
2259
2260 return 0;
2261}
2262
2263static int kcore_copy__process_modules(void *arg,
2264 const char *name __maybe_unused,
2265 u64 start, u64 size __maybe_unused)
2266{
2267 struct kcore_copy_info *kci = arg;
2268
2269 if (!kci->first_module || start < kci->first_module)
2270 kci->first_module = start;
2271
2272 return 0;
2273}
2274
2275static int kcore_copy__parse_modules(struct kcore_copy_info *kci,
2276 const char *dir)
2277{
2278 char modules_filename[PATH_MAX];
2279
2280 scnprintf(modules_filename, PATH_MAX, "%s/modules", dir);
2281
2282 if (symbol__restricted_filename(modules_filename, "/proc/modules"))
2283 return -1;
2284
2285 if (modules__parse(modules_filename, kci,
2286 kcore_copy__process_modules) < 0)
2287 return -1;
2288
2289 return 0;
2290}
2291
2292static int kcore_copy__map(struct kcore_copy_info *kci, u64 start, u64 end,
2293 u64 pgoff, u64 s, u64 e)
2294{
2295 u64 len, offset;
2296
2297 if (s < start || s >= end)
2298 return 0;
2299
2300 offset = (s - start) + pgoff;
2301 len = e < end ? e - s : end - s;
2302
2303 return kcore_copy_info__addnew(kci, s, len, offset) ? 0 : -1;
2304}
2305
2306static int kcore_copy__read_map(u64 start, u64 len, u64 pgoff, void *data)
2307{
2308 struct kcore_copy_info *kci = data;
2309 u64 end = start + len;
2310 struct sym_data *sdat;
2311
2312 if (kcore_copy__map(kci, start, end, pgoff, kci->stext, kci->etext))
2313 return -1;
2314
2315 if (kcore_copy__map(kci, start, end, pgoff, kci->first_module,
2316 kci->last_module_symbol))
2317 return -1;
2318
2319 list_for_each_entry(sdat, &kci->syms, node) {
2320 u64 s = round_down(sdat->addr, page_size);
2321
2322 if (kcore_copy__map(kci, start, end, pgoff, s, s + len))
2323 return -1;
2324 }
2325
2326 return 0;
2327}
2328
2329static int kcore_copy__read_maps(struct kcore_copy_info *kci, Elf *elf)
2330{
2331 if (elf_read_maps(elf, true, kcore_copy__read_map, kci) < 0)
2332 return -1;
2333
2334 return 0;
2335}
2336
2337static void kcore_copy__find_remaps(struct kcore_copy_info *kci)
2338{
2339 struct phdr_data *p, *k = NULL;
2340 u64 kend;
2341
2342 if (!kci->stext)
2343 return;
2344
2345 /* Find phdr that corresponds to the kernel map (contains stext) */
2346 kcore_copy__for_each_phdr(kci, p) {
2347 u64 pend = p->addr + p->len - 1;
2348
2349 if (p->addr <= kci->stext && pend >= kci->stext) {
2350 k = p;
2351 break;
2352 }
2353 }
2354
2355 if (!k)
2356 return;
2357
2358 kend = k->offset + k->len;
2359
2360 /* Find phdrs that remap the kernel */
2361 kcore_copy__for_each_phdr(kci, p) {
2362 u64 pend = p->offset + p->len;
2363
2364 if (p == k)
2365 continue;
2366
2367 if (p->offset >= k->offset && pend <= kend)
2368 p->remaps = k;
2369 }
2370}
2371
2372static void kcore_copy__layout(struct kcore_copy_info *kci)
2373{
2374 struct phdr_data *p;
2375 off_t rel = 0;
2376
2377 kcore_copy__find_remaps(kci);
2378
2379 kcore_copy__for_each_phdr(kci, p) {
2380 if (!p->remaps) {
2381 p->rel = rel;
2382 rel += p->len;
2383 }
2384 kci->phnum += 1;
2385 }
2386
2387 kcore_copy__for_each_phdr(kci, p) {
2388 struct phdr_data *k = p->remaps;
2389
2390 if (k)
2391 p->rel = p->offset - k->offset + k->rel;
2392 }
2393}
2394
2395static int kcore_copy__calc_maps(struct kcore_copy_info *kci, const char *dir,
2396 Elf *elf)
2397{
2398 if (kcore_copy__parse_kallsyms(kci, dir))
2399 return -1;
2400
2401 if (kcore_copy__parse_modules(kci, dir))
2402 return -1;
2403
2404 if (kci->stext)
2405 kci->stext = round_down(kci->stext, page_size);
2406 else
2407 kci->stext = round_down(kci->first_symbol, page_size);
2408
2409 if (kci->etext) {
2410 kci->etext = round_up(kci->etext, page_size);
2411 } else if (kci->last_symbol) {
2412 kci->etext = round_up(kci->last_symbol, page_size);
2413 kci->etext += page_size;
2414 }
2415
2416 if (kci->first_module_symbol &&
2417 (!kci->first_module || kci->first_module_symbol < kci->first_module))
2418 kci->first_module = kci->first_module_symbol;
2419
2420 kci->first_module = round_down(kci->first_module, page_size);
2421
2422 if (kci->last_module_symbol) {
2423 kci->last_module_symbol = round_up(kci->last_module_symbol,
2424 page_size);
2425 kci->last_module_symbol += page_size;
2426 }
2427
2428 if (!kci->stext || !kci->etext)
2429 return -1;
2430
2431 if (kci->first_module && !kci->last_module_symbol)
2432 return -1;
2433
2434 if (kcore_copy__read_maps(kci, elf))
2435 return -1;
2436
2437 kcore_copy__layout(kci);
2438
2439 return 0;
2440}
2441
2442static int kcore_copy__copy_file(const char *from_dir, const char *to_dir,
2443 const char *name)
2444{
2445 char from_filename[PATH_MAX];
2446 char to_filename[PATH_MAX];
2447
2448 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
2449 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
2450
2451 return copyfile_mode(from_filename, to_filename, 0400);
2452}
2453
2454static int kcore_copy__unlink(const char *dir, const char *name)
2455{
2456 char filename[PATH_MAX];
2457
2458 scnprintf(filename, PATH_MAX, "%s/%s", dir, name);
2459
2460 return unlink(filename);
2461}
2462
2463static int kcore_copy__compare_fds(int from, int to)
2464{
2465 char *buf_from;
2466 char *buf_to;
2467 ssize_t ret;
2468 size_t len;
2469 int err = -1;
2470
2471 buf_from = malloc(page_size);
2472 buf_to = malloc(page_size);
2473 if (!buf_from || !buf_to)
2474 goto out;
2475
2476 while (1) {
2477 /* Use read because mmap won't work on proc files */
2478 ret = read(from, buf_from, page_size);
2479 if (ret < 0)
2480 goto out;
2481
2482 if (!ret)
2483 break;
2484
2485 len = ret;
2486
2487 if (readn(to, buf_to, len) != (int)len)
2488 goto out;
2489
2490 if (memcmp(buf_from, buf_to, len))
2491 goto out;
2492 }
2493
2494 err = 0;
2495out:
2496 free(buf_to);
2497 free(buf_from);
2498 return err;
2499}
2500
2501static int kcore_copy__compare_files(const char *from_filename,
2502 const char *to_filename)
2503{
2504 int from, to, err = -1;
2505
2506 from = open(from_filename, O_RDONLY);
2507 if (from < 0)
2508 return -1;
2509
2510 to = open(to_filename, O_RDONLY);
2511 if (to < 0)
2512 goto out_close_from;
2513
2514 err = kcore_copy__compare_fds(from, to);
2515
2516 close(to);
2517out_close_from:
2518 close(from);
2519 return err;
2520}
2521
2522static int kcore_copy__compare_file(const char *from_dir, const char *to_dir,
2523 const char *name)
2524{
2525 char from_filename[PATH_MAX];
2526 char to_filename[PATH_MAX];
2527
2528 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
2529 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
2530
2531 return kcore_copy__compare_files(from_filename, to_filename);
2532}
2533
2534/**
2535 * kcore_copy - copy kallsyms, modules and kcore from one directory to another.
2536 * @from_dir: from directory
2537 * @to_dir: to directory
2538 *
2539 * This function copies kallsyms, modules and kcore files from one directory to
2540 * another. kallsyms and modules are copied entirely. Only code segments are
2541 * copied from kcore. It is assumed that two segments suffice: one for the
2542 * kernel proper and one for all the modules. The code segments are determined
2543 * from kallsyms and modules files. The kernel map starts at _stext or the
2544 * lowest function symbol, and ends at _etext or the highest function symbol.
2545 * The module map starts at the lowest module address and ends at the highest
2546 * module symbol. Start addresses are rounded down to the nearest page. End
2547 * addresses are rounded up to the nearest page. An extra page is added to the
2548 * highest kernel symbol and highest module symbol to, hopefully, encompass that
2549 * symbol too. Because it contains only code sections, the resulting kcore is
2550 * unusual. One significant peculiarity is that the mapping (start -> pgoff)
2551 * is not the same for the kernel map and the modules map. That happens because
2552 * the data is copied adjacently whereas the original kcore has gaps. Finally,
2553 * kallsyms file is compared with its copy to check that modules have not been
2554 * loaded or unloaded while the copies were taking place.
2555 *
2556 * Return: %0 on success, %-1 on failure.
2557 */
2558int kcore_copy(const char *from_dir, const char *to_dir)
2559{
2560 struct kcore kcore;
2561 struct kcore extract;
2562 int idx = 0, err = -1;
2563 off_t offset, sz;
2564 struct kcore_copy_info kci = { .stext = 0, };
2565 char kcore_filename[PATH_MAX];
2566 char extract_filename[PATH_MAX];
2567 struct phdr_data *p;
2568
2569 INIT_LIST_HEAD(&kci.phdrs);
2570 INIT_LIST_HEAD(&kci.syms);
2571
2572 if (kcore_copy__copy_file(from_dir, to_dir, "kallsyms"))
2573 return -1;
2574
2575 if (kcore_copy__copy_file(from_dir, to_dir, "modules"))
2576 goto out_unlink_kallsyms;
2577
2578 scnprintf(kcore_filename, PATH_MAX, "%s/kcore", from_dir);
2579 scnprintf(extract_filename, PATH_MAX, "%s/kcore", to_dir);
2580
2581 if (kcore__open(&kcore, kcore_filename))
2582 goto out_unlink_modules;
2583
2584 if (kcore_copy__calc_maps(&kci, from_dir, kcore.elf))
2585 goto out_kcore_close;
2586
2587 if (kcore__init(&extract, extract_filename, kcore.elfclass, false))
2588 goto out_kcore_close;
2589
2590 if (kcore__copy_hdr(&kcore, &extract, kci.phnum))
2591 goto out_extract_close;
2592
2593 offset = gelf_fsize(extract.elf, ELF_T_EHDR, 1, EV_CURRENT) +
2594 gelf_fsize(extract.elf, ELF_T_PHDR, kci.phnum, EV_CURRENT);
2595 offset = round_up(offset, page_size);
2596
2597 kcore_copy__for_each_phdr(&kci, p) {
2598 off_t offs = p->rel + offset;
2599
2600 if (kcore__add_phdr(&extract, idx++, offs, p->addr, p->len))
2601 goto out_extract_close;
2602 }
2603
2604 sz = kcore__write(&extract);
2605 if (sz < 0 || sz > offset)
2606 goto out_extract_close;
2607
2608 kcore_copy__for_each_phdr(&kci, p) {
2609 off_t offs = p->rel + offset;
2610
2611 if (p->remaps)
2612 continue;
2613 if (copy_bytes(kcore.fd, p->offset, extract.fd, offs, p->len))
2614 goto out_extract_close;
2615 }
2616
2617 if (kcore_copy__compare_file(from_dir, to_dir, "kallsyms"))
2618 goto out_extract_close;
2619
2620 err = 0;
2621
2622out_extract_close:
2623 kcore__close(&extract);
2624 if (err)
2625 unlink(extract_filename);
2626out_kcore_close:
2627 kcore__close(&kcore);
2628out_unlink_modules:
2629 if (err)
2630 kcore_copy__unlink(to_dir, "modules");
2631out_unlink_kallsyms:
2632 if (err)
2633 kcore_copy__unlink(to_dir, "kallsyms");
2634
2635 kcore_copy__free_phdrs(&kci);
2636 kcore_copy__free_syms(&kci);
2637
2638 return err;
2639}
2640
2641int kcore_extract__create(struct kcore_extract *kce)
2642{
2643 struct kcore kcore;
2644 struct kcore extract;
2645 size_t count = 1;
2646 int idx = 0, err = -1;
2647 off_t offset = page_size, sz;
2648
2649 if (kcore__open(&kcore, kce->kcore_filename))
2650 return -1;
2651
2652 strcpy(kce->extract_filename, PERF_KCORE_EXTRACT);
2653 if (kcore__init(&extract, kce->extract_filename, kcore.elfclass, true))
2654 goto out_kcore_close;
2655
2656 if (kcore__copy_hdr(&kcore, &extract, count))
2657 goto out_extract_close;
2658
2659 if (kcore__add_phdr(&extract, idx, offset, kce->addr, kce->len))
2660 goto out_extract_close;
2661
2662 sz = kcore__write(&extract);
2663 if (sz < 0 || sz > offset)
2664 goto out_extract_close;
2665
2666 if (copy_bytes(kcore.fd, kce->offs, extract.fd, offset, kce->len))
2667 goto out_extract_close;
2668
2669 err = 0;
2670
2671out_extract_close:
2672 kcore__close(&extract);
2673 if (err)
2674 unlink(kce->extract_filename);
2675out_kcore_close:
2676 kcore__close(&kcore);
2677
2678 return err;
2679}
2680
2681void kcore_extract__delete(struct kcore_extract *kce)
2682{
2683 unlink(kce->extract_filename);
2684}
2685
2686#ifdef HAVE_GELF_GETNOTE_SUPPORT
2687
2688static void sdt_adjust_loc(struct sdt_note *tmp, GElf_Addr base_off)
2689{
2690 if (!base_off)
2691 return;
2692
2693 if (tmp->bit32)
2694 tmp->addr.a32[SDT_NOTE_IDX_LOC] =
2695 tmp->addr.a32[SDT_NOTE_IDX_LOC] + base_off -
2696 tmp->addr.a32[SDT_NOTE_IDX_BASE];
2697 else
2698 tmp->addr.a64[SDT_NOTE_IDX_LOC] =
2699 tmp->addr.a64[SDT_NOTE_IDX_LOC] + base_off -
2700 tmp->addr.a64[SDT_NOTE_IDX_BASE];
2701}
2702
2703static void sdt_adjust_refctr(struct sdt_note *tmp, GElf_Addr base_addr,
2704 GElf_Addr base_off)
2705{
2706 if (!base_off)
2707 return;
2708
2709 if (tmp->bit32 && tmp->addr.a32[SDT_NOTE_IDX_REFCTR])
2710 tmp->addr.a32[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2711 else if (tmp->addr.a64[SDT_NOTE_IDX_REFCTR])
2712 tmp->addr.a64[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2713}
2714
2715/**
2716 * populate_sdt_note : Parse raw data and identify SDT note
2717 * @elf: elf of the opened file
2718 * @data: raw data of a section with description offset applied
2719 * @len: note description size
2720 * @type: type of the note
2721 * @sdt_notes: List to add the SDT note
2722 *
2723 * Responsible for parsing the @data in section .note.stapsdt in @elf and
2724 * if its an SDT note, it appends to @sdt_notes list.
2725 */
2726static int populate_sdt_note(Elf **elf, const char *data, size_t len,
2727 struct list_head *sdt_notes)
2728{
2729 const char *provider, *name, *args;
2730 struct sdt_note *tmp = NULL;
2731 GElf_Ehdr ehdr;
2732 GElf_Shdr shdr;
2733 int ret = -EINVAL;
2734
2735 union {
2736 Elf64_Addr a64[NR_ADDR];
2737 Elf32_Addr a32[NR_ADDR];
2738 } buf;
2739
2740 Elf_Data dst = {
2741 .d_buf = &buf, .d_type = ELF_T_ADDR, .d_version = EV_CURRENT,
2742 .d_size = gelf_fsize((*elf), ELF_T_ADDR, NR_ADDR, EV_CURRENT),
2743 .d_off = 0, .d_align = 0
2744 };
2745 Elf_Data src = {
2746 .d_buf = (void *) data, .d_type = ELF_T_ADDR,
2747 .d_version = EV_CURRENT, .d_size = dst.d_size, .d_off = 0,
2748 .d_align = 0
2749 };
2750
2751 tmp = (struct sdt_note *)calloc(1, sizeof(struct sdt_note));
2752 if (!tmp) {
2753 ret = -ENOMEM;
2754 goto out_err;
2755 }
2756
2757 INIT_LIST_HEAD(&tmp->note_list);
2758
2759 if (len < dst.d_size + 3)
2760 goto out_free_note;
2761
2762 /* Translation from file representation to memory representation */
2763 if (gelf_xlatetom(*elf, &dst, &src,
2764 elf_getident(*elf, NULL)[EI_DATA]) == NULL) {
2765 pr_err("gelf_xlatetom : %s\n", elf_errmsg(-1));
2766 goto out_free_note;
2767 }
2768
2769 /* Populate the fields of sdt_note */
2770 provider = data + dst.d_size;
2771
2772 name = (const char *)memchr(provider, '\0', data + len - provider);
2773 if (name++ == NULL)
2774 goto out_free_note;
2775
2776 tmp->provider = strdup(provider);
2777 if (!tmp->provider) {
2778 ret = -ENOMEM;
2779 goto out_free_note;
2780 }
2781 tmp->name = strdup(name);
2782 if (!tmp->name) {
2783 ret = -ENOMEM;
2784 goto out_free_prov;
2785 }
2786
2787 args = memchr(name, '\0', data + len - name);
2788
2789 /*
2790 * There is no argument if:
2791 * - We reached the end of the note;
2792 * - There is not enough room to hold a potential string;
2793 * - The argument string is empty or just contains ':'.
2794 */
2795 if (args == NULL || data + len - args < 2 ||
2796 args[1] == ':' || args[1] == '\0')
2797 tmp->args = NULL;
2798 else {
2799 tmp->args = strdup(++args);
2800 if (!tmp->args) {
2801 ret = -ENOMEM;
2802 goto out_free_name;
2803 }
2804 }
2805
2806 if (gelf_getclass(*elf) == ELFCLASS32) {
2807 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf32_Addr));
2808 tmp->bit32 = true;
2809 } else {
2810 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf64_Addr));
2811 tmp->bit32 = false;
2812 }
2813
2814 if (!gelf_getehdr(*elf, &ehdr)) {
2815 pr_debug("%s : cannot get elf header.\n", __func__);
2816 ret = -EBADF;
2817 goto out_free_args;
2818 }
2819
2820 /* Adjust the prelink effect :
2821 * Find out the .stapsdt.base section.
2822 * This scn will help us to handle prelinking (if present).
2823 * Compare the retrieved file offset of the base section with the
2824 * base address in the description of the SDT note. If its different,
2825 * then accordingly, adjust the note location.
2826 */
2827 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_BASE_SCN, NULL))
2828 sdt_adjust_loc(tmp, shdr.sh_offset);
2829
2830 /* Adjust reference counter offset */
2831 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_PROBES_SCN, NULL))
2832 sdt_adjust_refctr(tmp, shdr.sh_addr, shdr.sh_offset);
2833
2834 list_add_tail(&tmp->note_list, sdt_notes);
2835 return 0;
2836
2837out_free_args:
2838 zfree(&tmp->args);
2839out_free_name:
2840 zfree(&tmp->name);
2841out_free_prov:
2842 zfree(&tmp->provider);
2843out_free_note:
2844 free(tmp);
2845out_err:
2846 return ret;
2847}
2848
2849/**
2850 * construct_sdt_notes_list : constructs a list of SDT notes
2851 * @elf : elf to look into
2852 * @sdt_notes : empty list_head
2853 *
2854 * Scans the sections in 'elf' for the section
2855 * .note.stapsdt. It, then calls populate_sdt_note to find
2856 * out the SDT events and populates the 'sdt_notes'.
2857 */
2858static int construct_sdt_notes_list(Elf *elf, struct list_head *sdt_notes)
2859{
2860 GElf_Ehdr ehdr;
2861 Elf_Scn *scn = NULL;
2862 Elf_Data *data;
2863 GElf_Shdr shdr;
2864 size_t shstrndx, next;
2865 GElf_Nhdr nhdr;
2866 size_t name_off, desc_off, offset;
2867 int ret = 0;
2868
2869 if (gelf_getehdr(elf, &ehdr) == NULL) {
2870 ret = -EBADF;
2871 goto out_ret;
2872 }
2873 if (elf_getshdrstrndx(elf, &shstrndx) != 0) {
2874 ret = -EBADF;
2875 goto out_ret;
2876 }
2877
2878 /* Look for the required section */
2879 scn = elf_section_by_name(elf, &ehdr, &shdr, SDT_NOTE_SCN, NULL);
2880 if (!scn) {
2881 ret = -ENOENT;
2882 goto out_ret;
2883 }
2884
2885 if ((shdr.sh_type != SHT_NOTE) || (shdr.sh_flags & SHF_ALLOC)) {
2886 ret = -ENOENT;
2887 goto out_ret;
2888 }
2889
2890 data = elf_getdata(scn, NULL);
2891
2892 /* Get the SDT notes */
2893 for (offset = 0; (next = gelf_getnote(data, offset, &nhdr, &name_off,
2894 &desc_off)) > 0; offset = next) {
2895 if (nhdr.n_namesz == sizeof(SDT_NOTE_NAME) &&
2896 !memcmp(data->d_buf + name_off, SDT_NOTE_NAME,
2897 sizeof(SDT_NOTE_NAME))) {
2898 /* Check the type of the note */
2899 if (nhdr.n_type != SDT_NOTE_TYPE)
2900 goto out_ret;
2901
2902 ret = populate_sdt_note(&elf, ((data->d_buf) + desc_off),
2903 nhdr.n_descsz, sdt_notes);
2904 if (ret < 0)
2905 goto out_ret;
2906 }
2907 }
2908 if (list_empty(sdt_notes))
2909 ret = -ENOENT;
2910
2911out_ret:
2912 return ret;
2913}
2914
2915/**
2916 * get_sdt_note_list : Wrapper to construct a list of sdt notes
2917 * @head : empty list_head
2918 * @target : file to find SDT notes from
2919 *
2920 * This opens the file, initializes
2921 * the ELF and then calls construct_sdt_notes_list.
2922 */
2923int get_sdt_note_list(struct list_head *head, const char *target)
2924{
2925 Elf *elf;
2926 int fd, ret;
2927
2928 fd = open(target, O_RDONLY);
2929 if (fd < 0)
2930 return -EBADF;
2931
2932 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
2933 if (!elf) {
2934 ret = -EBADF;
2935 goto out_close;
2936 }
2937 ret = construct_sdt_notes_list(elf, head);
2938 elf_end(elf);
2939out_close:
2940 close(fd);
2941 return ret;
2942}
2943
2944/**
2945 * cleanup_sdt_note_list : free the sdt notes' list
2946 * @sdt_notes: sdt notes' list
2947 *
2948 * Free up the SDT notes in @sdt_notes.
2949 * Returns the number of SDT notes free'd.
2950 */
2951int cleanup_sdt_note_list(struct list_head *sdt_notes)
2952{
2953 struct sdt_note *tmp, *pos;
2954 int nr_free = 0;
2955
2956 list_for_each_entry_safe(pos, tmp, sdt_notes, note_list) {
2957 list_del_init(&pos->note_list);
2958 zfree(&pos->args);
2959 zfree(&pos->name);
2960 zfree(&pos->provider);
2961 free(pos);
2962 nr_free++;
2963 }
2964 return nr_free;
2965}
2966
2967/**
2968 * sdt_notes__get_count: Counts the number of sdt events
2969 * @start: list_head to sdt_notes list
2970 *
2971 * Returns the number of SDT notes in a list
2972 */
2973int sdt_notes__get_count(struct list_head *start)
2974{
2975 struct sdt_note *sdt_ptr;
2976 int count = 0;
2977
2978 list_for_each_entry(sdt_ptr, start, note_list)
2979 count++;
2980 return count;
2981}
2982#endif
2983
2984void symbol__elf_init(void)
2985{
2986 elf_version(EV_CURRENT);
2987}
1// SPDX-License-Identifier: GPL-2.0
2#include <fcntl.h>
3#include <stdio.h>
4#include <errno.h>
5#include <stdlib.h>
6#include <string.h>
7#include <unistd.h>
8#include <inttypes.h>
9
10#include "dso.h"
11#include "map.h"
12#include "maps.h"
13#include "symbol.h"
14#include "symsrc.h"
15#include "demangle-java.h"
16#include "demangle-rust.h"
17#include "machine.h"
18#include "vdso.h"
19#include "debug.h"
20#include "util/copyfile.h"
21#include <linux/ctype.h>
22#include <linux/kernel.h>
23#include <linux/zalloc.h>
24#include <symbol/kallsyms.h>
25#include <internal/lib.h>
26
27#ifndef EM_AARCH64
28#define EM_AARCH64 183 /* ARM 64 bit */
29#endif
30
31#ifndef ELF32_ST_VISIBILITY
32#define ELF32_ST_VISIBILITY(o) ((o) & 0x03)
33#endif
34
35/* For ELF64 the definitions are the same. */
36#ifndef ELF64_ST_VISIBILITY
37#define ELF64_ST_VISIBILITY(o) ELF32_ST_VISIBILITY (o)
38#endif
39
40/* How to extract information held in the st_other field. */
41#ifndef GELF_ST_VISIBILITY
42#define GELF_ST_VISIBILITY(val) ELF64_ST_VISIBILITY (val)
43#endif
44
45typedef Elf64_Nhdr GElf_Nhdr;
46
47#ifndef DMGL_PARAMS
48#define DMGL_NO_OPTS 0 /* For readability... */
49#define DMGL_PARAMS (1 << 0) /* Include function args */
50#define DMGL_ANSI (1 << 1) /* Include const, volatile, etc */
51#endif
52
53#ifdef HAVE_CPLUS_DEMANGLE_SUPPORT
54extern char *cplus_demangle(const char *, int);
55
56static inline char *bfd_demangle(void __maybe_unused *v, const char *c, int i)
57{
58 return cplus_demangle(c, i);
59}
60#else
61#ifdef NO_DEMANGLE
62static inline char *bfd_demangle(void __maybe_unused *v,
63 const char __maybe_unused *c,
64 int __maybe_unused i)
65{
66 return NULL;
67}
68#else
69#define PACKAGE 'perf'
70#include <bfd.h>
71#endif
72#endif
73
74#ifndef HAVE_ELF_GETPHDRNUM_SUPPORT
75static int elf_getphdrnum(Elf *elf, size_t *dst)
76{
77 GElf_Ehdr gehdr;
78 GElf_Ehdr *ehdr;
79
80 ehdr = gelf_getehdr(elf, &gehdr);
81 if (!ehdr)
82 return -1;
83
84 *dst = ehdr->e_phnum;
85
86 return 0;
87}
88#endif
89
90#ifndef HAVE_ELF_GETSHDRSTRNDX_SUPPORT
91static int elf_getshdrstrndx(Elf *elf __maybe_unused, size_t *dst __maybe_unused)
92{
93 pr_err("%s: update your libelf to > 0.140, this one lacks elf_getshdrstrndx().\n", __func__);
94 return -1;
95}
96#endif
97
98#ifndef NT_GNU_BUILD_ID
99#define NT_GNU_BUILD_ID 3
100#endif
101
102/**
103 * elf_symtab__for_each_symbol - iterate thru all the symbols
104 *
105 * @syms: struct elf_symtab instance to iterate
106 * @idx: uint32_t idx
107 * @sym: GElf_Sym iterator
108 */
109#define elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) \
110 for (idx = 0, gelf_getsym(syms, idx, &sym);\
111 idx < nr_syms; \
112 idx++, gelf_getsym(syms, idx, &sym))
113
114static inline uint8_t elf_sym__type(const GElf_Sym *sym)
115{
116 return GELF_ST_TYPE(sym->st_info);
117}
118
119static inline uint8_t elf_sym__visibility(const GElf_Sym *sym)
120{
121 return GELF_ST_VISIBILITY(sym->st_other);
122}
123
124#ifndef STT_GNU_IFUNC
125#define STT_GNU_IFUNC 10
126#endif
127
128static inline int elf_sym__is_function(const GElf_Sym *sym)
129{
130 return (elf_sym__type(sym) == STT_FUNC ||
131 elf_sym__type(sym) == STT_GNU_IFUNC) &&
132 sym->st_name != 0 &&
133 sym->st_shndx != SHN_UNDEF;
134}
135
136static inline bool elf_sym__is_object(const GElf_Sym *sym)
137{
138 return elf_sym__type(sym) == STT_OBJECT &&
139 sym->st_name != 0 &&
140 sym->st_shndx != SHN_UNDEF;
141}
142
143static inline int elf_sym__is_label(const GElf_Sym *sym)
144{
145 return elf_sym__type(sym) == STT_NOTYPE &&
146 sym->st_name != 0 &&
147 sym->st_shndx != SHN_UNDEF &&
148 sym->st_shndx != SHN_ABS &&
149 elf_sym__visibility(sym) != STV_HIDDEN &&
150 elf_sym__visibility(sym) != STV_INTERNAL;
151}
152
153static bool elf_sym__filter(GElf_Sym *sym)
154{
155 return elf_sym__is_function(sym) || elf_sym__is_object(sym);
156}
157
158static inline const char *elf_sym__name(const GElf_Sym *sym,
159 const Elf_Data *symstrs)
160{
161 return symstrs->d_buf + sym->st_name;
162}
163
164static inline const char *elf_sec__name(const GElf_Shdr *shdr,
165 const Elf_Data *secstrs)
166{
167 return secstrs->d_buf + shdr->sh_name;
168}
169
170static inline int elf_sec__is_text(const GElf_Shdr *shdr,
171 const Elf_Data *secstrs)
172{
173 return strstr(elf_sec__name(shdr, secstrs), "text") != NULL;
174}
175
176static inline bool elf_sec__is_data(const GElf_Shdr *shdr,
177 const Elf_Data *secstrs)
178{
179 return strstr(elf_sec__name(shdr, secstrs), "data") != NULL;
180}
181
182static bool elf_sec__filter(GElf_Shdr *shdr, Elf_Data *secstrs)
183{
184 return elf_sec__is_text(shdr, secstrs) ||
185 elf_sec__is_data(shdr, secstrs);
186}
187
188static size_t elf_addr_to_index(Elf *elf, GElf_Addr addr)
189{
190 Elf_Scn *sec = NULL;
191 GElf_Shdr shdr;
192 size_t cnt = 1;
193
194 while ((sec = elf_nextscn(elf, sec)) != NULL) {
195 gelf_getshdr(sec, &shdr);
196
197 if ((addr >= shdr.sh_addr) &&
198 (addr < (shdr.sh_addr + shdr.sh_size)))
199 return cnt;
200
201 ++cnt;
202 }
203
204 return -1;
205}
206
207Elf_Scn *elf_section_by_name(Elf *elf, GElf_Ehdr *ep,
208 GElf_Shdr *shp, const char *name, size_t *idx)
209{
210 Elf_Scn *sec = NULL;
211 size_t cnt = 1;
212
213 /* Elf is corrupted/truncated, avoid calling elf_strptr. */
214 if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL))
215 return NULL;
216
217 while ((sec = elf_nextscn(elf, sec)) != NULL) {
218 char *str;
219
220 gelf_getshdr(sec, shp);
221 str = elf_strptr(elf, ep->e_shstrndx, shp->sh_name);
222 if (str && !strcmp(name, str)) {
223 if (idx)
224 *idx = cnt;
225 return sec;
226 }
227 ++cnt;
228 }
229
230 return NULL;
231}
232
233static bool want_demangle(bool is_kernel_sym)
234{
235 return is_kernel_sym ? symbol_conf.demangle_kernel : symbol_conf.demangle;
236}
237
238static char *demangle_sym(struct dso *dso, int kmodule, const char *elf_name)
239{
240 int demangle_flags = verbose > 0 ? (DMGL_PARAMS | DMGL_ANSI) : DMGL_NO_OPTS;
241 char *demangled = NULL;
242
243 /*
244 * We need to figure out if the object was created from C++ sources
245 * DWARF DW_compile_unit has this, but we don't always have access
246 * to it...
247 */
248 if (!want_demangle(dso->kernel || kmodule))
249 return demangled;
250
251 demangled = bfd_demangle(NULL, elf_name, demangle_flags);
252 if (demangled == NULL)
253 demangled = java_demangle_sym(elf_name, JAVA_DEMANGLE_NORET);
254 else if (rust_is_mangled(demangled))
255 /*
256 * Input to Rust demangling is the BFD-demangled
257 * name which it Rust-demangles in place.
258 */
259 rust_demangle_sym(demangled);
260
261 return demangled;
262}
263
264#define elf_section__for_each_rel(reldata, pos, pos_mem, idx, nr_entries) \
265 for (idx = 0, pos = gelf_getrel(reldata, 0, &pos_mem); \
266 idx < nr_entries; \
267 ++idx, pos = gelf_getrel(reldata, idx, &pos_mem))
268
269#define elf_section__for_each_rela(reldata, pos, pos_mem, idx, nr_entries) \
270 for (idx = 0, pos = gelf_getrela(reldata, 0, &pos_mem); \
271 idx < nr_entries; \
272 ++idx, pos = gelf_getrela(reldata, idx, &pos_mem))
273
274/*
275 * We need to check if we have a .dynsym, so that we can handle the
276 * .plt, synthesizing its symbols, that aren't on the symtabs (be it
277 * .dynsym or .symtab).
278 * And always look at the original dso, not at debuginfo packages, that
279 * have the PLT data stripped out (shdr_rel_plt.sh_type == SHT_NOBITS).
280 */
281int dso__synthesize_plt_symbols(struct dso *dso, struct symsrc *ss)
282{
283 uint32_t nr_rel_entries, idx;
284 GElf_Sym sym;
285 u64 plt_offset, plt_header_size, plt_entry_size;
286 GElf_Shdr shdr_plt;
287 struct symbol *f;
288 GElf_Shdr shdr_rel_plt, shdr_dynsym;
289 Elf_Data *reldata, *syms, *symstrs;
290 Elf_Scn *scn_plt_rel, *scn_symstrs, *scn_dynsym;
291 size_t dynsym_idx;
292 GElf_Ehdr ehdr;
293 char sympltname[1024];
294 Elf *elf;
295 int nr = 0, symidx, err = 0;
296
297 if (!ss->dynsym)
298 return 0;
299
300 elf = ss->elf;
301 ehdr = ss->ehdr;
302
303 scn_dynsym = ss->dynsym;
304 shdr_dynsym = ss->dynshdr;
305 dynsym_idx = ss->dynsym_idx;
306
307 if (scn_dynsym == NULL)
308 goto out_elf_end;
309
310 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
311 ".rela.plt", NULL);
312 if (scn_plt_rel == NULL) {
313 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
314 ".rel.plt", NULL);
315 if (scn_plt_rel == NULL)
316 goto out_elf_end;
317 }
318
319 err = -1;
320
321 if (shdr_rel_plt.sh_link != dynsym_idx)
322 goto out_elf_end;
323
324 if (elf_section_by_name(elf, &ehdr, &shdr_plt, ".plt", NULL) == NULL)
325 goto out_elf_end;
326
327 /*
328 * Fetch the relocation section to find the idxes to the GOT
329 * and the symbols in the .dynsym they refer to.
330 */
331 reldata = elf_getdata(scn_plt_rel, NULL);
332 if (reldata == NULL)
333 goto out_elf_end;
334
335 syms = elf_getdata(scn_dynsym, NULL);
336 if (syms == NULL)
337 goto out_elf_end;
338
339 scn_symstrs = elf_getscn(elf, shdr_dynsym.sh_link);
340 if (scn_symstrs == NULL)
341 goto out_elf_end;
342
343 symstrs = elf_getdata(scn_symstrs, NULL);
344 if (symstrs == NULL)
345 goto out_elf_end;
346
347 if (symstrs->d_size == 0)
348 goto out_elf_end;
349
350 nr_rel_entries = shdr_rel_plt.sh_size / shdr_rel_plt.sh_entsize;
351 plt_offset = shdr_plt.sh_offset;
352 switch (ehdr.e_machine) {
353 case EM_ARM:
354 plt_header_size = 20;
355 plt_entry_size = 12;
356 break;
357
358 case EM_AARCH64:
359 plt_header_size = 32;
360 plt_entry_size = 16;
361 break;
362
363 case EM_SPARC:
364 plt_header_size = 48;
365 plt_entry_size = 12;
366 break;
367
368 case EM_SPARCV9:
369 plt_header_size = 128;
370 plt_entry_size = 32;
371 break;
372
373 default: /* FIXME: s390/alpha/mips/parisc/poperpc/sh/xtensa need to be checked */
374 plt_header_size = shdr_plt.sh_entsize;
375 plt_entry_size = shdr_plt.sh_entsize;
376 break;
377 }
378 plt_offset += plt_header_size;
379
380 if (shdr_rel_plt.sh_type == SHT_RELA) {
381 GElf_Rela pos_mem, *pos;
382
383 elf_section__for_each_rela(reldata, pos, pos_mem, idx,
384 nr_rel_entries) {
385 const char *elf_name = NULL;
386 char *demangled = NULL;
387 symidx = GELF_R_SYM(pos->r_info);
388 gelf_getsym(syms, symidx, &sym);
389
390 elf_name = elf_sym__name(&sym, symstrs);
391 demangled = demangle_sym(dso, 0, elf_name);
392 if (demangled != NULL)
393 elf_name = demangled;
394 snprintf(sympltname, sizeof(sympltname),
395 "%s@plt", elf_name);
396 free(demangled);
397
398 f = symbol__new(plt_offset, plt_entry_size,
399 STB_GLOBAL, STT_FUNC, sympltname);
400 if (!f)
401 goto out_elf_end;
402
403 plt_offset += plt_entry_size;
404 symbols__insert(&dso->symbols, f);
405 ++nr;
406 }
407 } else if (shdr_rel_plt.sh_type == SHT_REL) {
408 GElf_Rel pos_mem, *pos;
409 elf_section__for_each_rel(reldata, pos, pos_mem, idx,
410 nr_rel_entries) {
411 const char *elf_name = NULL;
412 char *demangled = NULL;
413 symidx = GELF_R_SYM(pos->r_info);
414 gelf_getsym(syms, symidx, &sym);
415
416 elf_name = elf_sym__name(&sym, symstrs);
417 demangled = demangle_sym(dso, 0, elf_name);
418 if (demangled != NULL)
419 elf_name = demangled;
420 snprintf(sympltname, sizeof(sympltname),
421 "%s@plt", elf_name);
422 free(demangled);
423
424 f = symbol__new(plt_offset, plt_entry_size,
425 STB_GLOBAL, STT_FUNC, sympltname);
426 if (!f)
427 goto out_elf_end;
428
429 plt_offset += plt_entry_size;
430 symbols__insert(&dso->symbols, f);
431 ++nr;
432 }
433 }
434
435 err = 0;
436out_elf_end:
437 if (err == 0)
438 return nr;
439 pr_debug("%s: problems reading %s PLT info.\n",
440 __func__, dso->long_name);
441 return 0;
442}
443
444char *dso__demangle_sym(struct dso *dso, int kmodule, const char *elf_name)
445{
446 return demangle_sym(dso, kmodule, elf_name);
447}
448
449/*
450 * Align offset to 4 bytes as needed for note name and descriptor data.
451 */
452#define NOTE_ALIGN(n) (((n) + 3) & -4U)
453
454static int elf_read_build_id(Elf *elf, void *bf, size_t size)
455{
456 int err = -1;
457 GElf_Ehdr ehdr;
458 GElf_Shdr shdr;
459 Elf_Data *data;
460 Elf_Scn *sec;
461 Elf_Kind ek;
462 void *ptr;
463
464 if (size < BUILD_ID_SIZE)
465 goto out;
466
467 ek = elf_kind(elf);
468 if (ek != ELF_K_ELF)
469 goto out;
470
471 if (gelf_getehdr(elf, &ehdr) == NULL) {
472 pr_err("%s: cannot get elf header.\n", __func__);
473 goto out;
474 }
475
476 /*
477 * Check following sections for notes:
478 * '.note.gnu.build-id'
479 * '.notes'
480 * '.note' (VDSO specific)
481 */
482 do {
483 sec = elf_section_by_name(elf, &ehdr, &shdr,
484 ".note.gnu.build-id", NULL);
485 if (sec)
486 break;
487
488 sec = elf_section_by_name(elf, &ehdr, &shdr,
489 ".notes", NULL);
490 if (sec)
491 break;
492
493 sec = elf_section_by_name(elf, &ehdr, &shdr,
494 ".note", NULL);
495 if (sec)
496 break;
497
498 return err;
499
500 } while (0);
501
502 data = elf_getdata(sec, NULL);
503 if (data == NULL)
504 goto out;
505
506 ptr = data->d_buf;
507 while (ptr < (data->d_buf + data->d_size)) {
508 GElf_Nhdr *nhdr = ptr;
509 size_t namesz = NOTE_ALIGN(nhdr->n_namesz),
510 descsz = NOTE_ALIGN(nhdr->n_descsz);
511 const char *name;
512
513 ptr += sizeof(*nhdr);
514 name = ptr;
515 ptr += namesz;
516 if (nhdr->n_type == NT_GNU_BUILD_ID &&
517 nhdr->n_namesz == sizeof("GNU")) {
518 if (memcmp(name, "GNU", sizeof("GNU")) == 0) {
519 size_t sz = min(size, descsz);
520 memcpy(bf, ptr, sz);
521 memset(bf + sz, 0, size - sz);
522 err = descsz;
523 break;
524 }
525 }
526 ptr += descsz;
527 }
528
529out:
530 return err;
531}
532
533int filename__read_build_id(const char *filename, void *bf, size_t size)
534{
535 int fd, err = -1;
536 Elf *elf;
537
538 if (size < BUILD_ID_SIZE)
539 goto out;
540
541 fd = open(filename, O_RDONLY);
542 if (fd < 0)
543 goto out;
544
545 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
546 if (elf == NULL) {
547 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
548 goto out_close;
549 }
550
551 err = elf_read_build_id(elf, bf, size);
552
553 elf_end(elf);
554out_close:
555 close(fd);
556out:
557 return err;
558}
559
560int sysfs__read_build_id(const char *filename, void *build_id, size_t size)
561{
562 int fd, err = -1;
563
564 if (size < BUILD_ID_SIZE)
565 goto out;
566
567 fd = open(filename, O_RDONLY);
568 if (fd < 0)
569 goto out;
570
571 while (1) {
572 char bf[BUFSIZ];
573 GElf_Nhdr nhdr;
574 size_t namesz, descsz;
575
576 if (read(fd, &nhdr, sizeof(nhdr)) != sizeof(nhdr))
577 break;
578
579 namesz = NOTE_ALIGN(nhdr.n_namesz);
580 descsz = NOTE_ALIGN(nhdr.n_descsz);
581 if (nhdr.n_type == NT_GNU_BUILD_ID &&
582 nhdr.n_namesz == sizeof("GNU")) {
583 if (read(fd, bf, namesz) != (ssize_t)namesz)
584 break;
585 if (memcmp(bf, "GNU", sizeof("GNU")) == 0) {
586 size_t sz = min(descsz, size);
587 if (read(fd, build_id, sz) == (ssize_t)sz) {
588 memset(build_id + sz, 0, size - sz);
589 err = 0;
590 break;
591 }
592 } else if (read(fd, bf, descsz) != (ssize_t)descsz)
593 break;
594 } else {
595 int n = namesz + descsz;
596
597 if (n > (int)sizeof(bf)) {
598 n = sizeof(bf);
599 pr_debug("%s: truncating reading of build id in sysfs file %s: n_namesz=%u, n_descsz=%u.\n",
600 __func__, filename, nhdr.n_namesz, nhdr.n_descsz);
601 }
602 if (read(fd, bf, n) != n)
603 break;
604 }
605 }
606 close(fd);
607out:
608 return err;
609}
610
611int filename__read_debuglink(const char *filename, char *debuglink,
612 size_t size)
613{
614 int fd, err = -1;
615 Elf *elf;
616 GElf_Ehdr ehdr;
617 GElf_Shdr shdr;
618 Elf_Data *data;
619 Elf_Scn *sec;
620 Elf_Kind ek;
621
622 fd = open(filename, O_RDONLY);
623 if (fd < 0)
624 goto out;
625
626 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
627 if (elf == NULL) {
628 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
629 goto out_close;
630 }
631
632 ek = elf_kind(elf);
633 if (ek != ELF_K_ELF)
634 goto out_elf_end;
635
636 if (gelf_getehdr(elf, &ehdr) == NULL) {
637 pr_err("%s: cannot get elf header.\n", __func__);
638 goto out_elf_end;
639 }
640
641 sec = elf_section_by_name(elf, &ehdr, &shdr,
642 ".gnu_debuglink", NULL);
643 if (sec == NULL)
644 goto out_elf_end;
645
646 data = elf_getdata(sec, NULL);
647 if (data == NULL)
648 goto out_elf_end;
649
650 /* the start of this section is a zero-terminated string */
651 strncpy(debuglink, data->d_buf, size);
652
653 err = 0;
654
655out_elf_end:
656 elf_end(elf);
657out_close:
658 close(fd);
659out:
660 return err;
661}
662
663static int dso__swap_init(struct dso *dso, unsigned char eidata)
664{
665 static unsigned int const endian = 1;
666
667 dso->needs_swap = DSO_SWAP__NO;
668
669 switch (eidata) {
670 case ELFDATA2LSB:
671 /* We are big endian, DSO is little endian. */
672 if (*(unsigned char const *)&endian != 1)
673 dso->needs_swap = DSO_SWAP__YES;
674 break;
675
676 case ELFDATA2MSB:
677 /* We are little endian, DSO is big endian. */
678 if (*(unsigned char const *)&endian != 0)
679 dso->needs_swap = DSO_SWAP__YES;
680 break;
681
682 default:
683 pr_err("unrecognized DSO data encoding %d\n", eidata);
684 return -EINVAL;
685 }
686
687 return 0;
688}
689
690bool symsrc__possibly_runtime(struct symsrc *ss)
691{
692 return ss->dynsym || ss->opdsec;
693}
694
695bool symsrc__has_symtab(struct symsrc *ss)
696{
697 return ss->symtab != NULL;
698}
699
700void symsrc__destroy(struct symsrc *ss)
701{
702 zfree(&ss->name);
703 elf_end(ss->elf);
704 close(ss->fd);
705}
706
707bool elf__needs_adjust_symbols(GElf_Ehdr ehdr)
708{
709 /*
710 * Usually vmlinux is an ELF file with type ET_EXEC for most
711 * architectures; except Arm64 kernel is linked with option
712 * '-share', so need to check type ET_DYN.
713 */
714 return ehdr.e_type == ET_EXEC || ehdr.e_type == ET_REL ||
715 ehdr.e_type == ET_DYN;
716}
717
718int symsrc__init(struct symsrc *ss, struct dso *dso, const char *name,
719 enum dso_binary_type type)
720{
721 GElf_Ehdr ehdr;
722 Elf *elf;
723 int fd;
724
725 if (dso__needs_decompress(dso)) {
726 fd = dso__decompress_kmodule_fd(dso, name);
727 if (fd < 0)
728 return -1;
729
730 type = dso->symtab_type;
731 } else {
732 fd = open(name, O_RDONLY);
733 if (fd < 0) {
734 dso->load_errno = errno;
735 return -1;
736 }
737 }
738
739 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
740 if (elf == NULL) {
741 pr_debug("%s: cannot read %s ELF file.\n", __func__, name);
742 dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF;
743 goto out_close;
744 }
745
746 if (gelf_getehdr(elf, &ehdr) == NULL) {
747 dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF;
748 pr_debug("%s: cannot get elf header.\n", __func__);
749 goto out_elf_end;
750 }
751
752 if (dso__swap_init(dso, ehdr.e_ident[EI_DATA])) {
753 dso->load_errno = DSO_LOAD_ERRNO__INTERNAL_ERROR;
754 goto out_elf_end;
755 }
756
757 /* Always reject images with a mismatched build-id: */
758 if (dso->has_build_id && !symbol_conf.ignore_vmlinux_buildid) {
759 u8 build_id[BUILD_ID_SIZE];
760
761 if (elf_read_build_id(elf, build_id, BUILD_ID_SIZE) < 0) {
762 dso->load_errno = DSO_LOAD_ERRNO__CANNOT_READ_BUILDID;
763 goto out_elf_end;
764 }
765
766 if (!dso__build_id_equal(dso, build_id)) {
767 pr_debug("%s: build id mismatch for %s.\n", __func__, name);
768 dso->load_errno = DSO_LOAD_ERRNO__MISMATCHING_BUILDID;
769 goto out_elf_end;
770 }
771 }
772
773 ss->is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
774
775 ss->symtab = elf_section_by_name(elf, &ehdr, &ss->symshdr, ".symtab",
776 NULL);
777 if (ss->symshdr.sh_type != SHT_SYMTAB)
778 ss->symtab = NULL;
779
780 ss->dynsym_idx = 0;
781 ss->dynsym = elf_section_by_name(elf, &ehdr, &ss->dynshdr, ".dynsym",
782 &ss->dynsym_idx);
783 if (ss->dynshdr.sh_type != SHT_DYNSYM)
784 ss->dynsym = NULL;
785
786 ss->opdidx = 0;
787 ss->opdsec = elf_section_by_name(elf, &ehdr, &ss->opdshdr, ".opd",
788 &ss->opdidx);
789 if (ss->opdshdr.sh_type != SHT_PROGBITS)
790 ss->opdsec = NULL;
791
792 if (dso->kernel == DSO_SPACE__USER)
793 ss->adjust_symbols = true;
794 else
795 ss->adjust_symbols = elf__needs_adjust_symbols(ehdr);
796
797 ss->name = strdup(name);
798 if (!ss->name) {
799 dso->load_errno = errno;
800 goto out_elf_end;
801 }
802
803 ss->elf = elf;
804 ss->fd = fd;
805 ss->ehdr = ehdr;
806 ss->type = type;
807
808 return 0;
809
810out_elf_end:
811 elf_end(elf);
812out_close:
813 close(fd);
814 return -1;
815}
816
817/**
818 * ref_reloc_sym_not_found - has kernel relocation symbol been found.
819 * @kmap: kernel maps and relocation reference symbol
820 *
821 * This function returns %true if we are dealing with the kernel maps and the
822 * relocation reference symbol has not yet been found. Otherwise %false is
823 * returned.
824 */
825static bool ref_reloc_sym_not_found(struct kmap *kmap)
826{
827 return kmap && kmap->ref_reloc_sym && kmap->ref_reloc_sym->name &&
828 !kmap->ref_reloc_sym->unrelocated_addr;
829}
830
831/**
832 * ref_reloc - kernel relocation offset.
833 * @kmap: kernel maps and relocation reference symbol
834 *
835 * This function returns the offset of kernel addresses as determined by using
836 * the relocation reference symbol i.e. if the kernel has not been relocated
837 * then the return value is zero.
838 */
839static u64 ref_reloc(struct kmap *kmap)
840{
841 if (kmap && kmap->ref_reloc_sym &&
842 kmap->ref_reloc_sym->unrelocated_addr)
843 return kmap->ref_reloc_sym->addr -
844 kmap->ref_reloc_sym->unrelocated_addr;
845 return 0;
846}
847
848void __weak arch__sym_update(struct symbol *s __maybe_unused,
849 GElf_Sym *sym __maybe_unused) { }
850
851static int dso__process_kernel_symbol(struct dso *dso, struct map *map,
852 GElf_Sym *sym, GElf_Shdr *shdr,
853 struct maps *kmaps, struct kmap *kmap,
854 struct dso **curr_dsop, struct map **curr_mapp,
855 const char *section_name,
856 bool adjust_kernel_syms, bool kmodule, bool *remap_kernel)
857{
858 struct dso *curr_dso = *curr_dsop;
859 struct map *curr_map;
860 char dso_name[PATH_MAX];
861
862 /* Adjust symbol to map to file offset */
863 if (adjust_kernel_syms)
864 sym->st_value -= shdr->sh_addr - shdr->sh_offset;
865
866 if (strcmp(section_name, (curr_dso->short_name + dso->short_name_len)) == 0)
867 return 0;
868
869 if (strcmp(section_name, ".text") == 0) {
870 /*
871 * The initial kernel mapping is based on
872 * kallsyms and identity maps. Overwrite it to
873 * map to the kernel dso.
874 */
875 if (*remap_kernel && dso->kernel && !kmodule) {
876 *remap_kernel = false;
877 map->start = shdr->sh_addr + ref_reloc(kmap);
878 map->end = map->start + shdr->sh_size;
879 map->pgoff = shdr->sh_offset;
880 map->map_ip = map__map_ip;
881 map->unmap_ip = map__unmap_ip;
882 /* Ensure maps are correctly ordered */
883 if (kmaps) {
884 map__get(map);
885 maps__remove(kmaps, map);
886 maps__insert(kmaps, map);
887 map__put(map);
888 }
889 }
890
891 /*
892 * The initial module mapping is based on
893 * /proc/modules mapped to offset zero.
894 * Overwrite it to map to the module dso.
895 */
896 if (*remap_kernel && kmodule) {
897 *remap_kernel = false;
898 map->pgoff = shdr->sh_offset;
899 }
900
901 *curr_mapp = map;
902 *curr_dsop = dso;
903 return 0;
904 }
905
906 if (!kmap)
907 return 0;
908
909 snprintf(dso_name, sizeof(dso_name), "%s%s", dso->short_name, section_name);
910
911 curr_map = maps__find_by_name(kmaps, dso_name);
912 if (curr_map == NULL) {
913 u64 start = sym->st_value;
914
915 if (kmodule)
916 start += map->start + shdr->sh_offset;
917
918 curr_dso = dso__new(dso_name);
919 if (curr_dso == NULL)
920 return -1;
921 curr_dso->kernel = dso->kernel;
922 curr_dso->long_name = dso->long_name;
923 curr_dso->long_name_len = dso->long_name_len;
924 curr_map = map__new2(start, curr_dso);
925 dso__put(curr_dso);
926 if (curr_map == NULL)
927 return -1;
928
929 if (curr_dso->kernel)
930 map__kmap(curr_map)->kmaps = kmaps;
931
932 if (adjust_kernel_syms) {
933 curr_map->start = shdr->sh_addr + ref_reloc(kmap);
934 curr_map->end = curr_map->start + shdr->sh_size;
935 curr_map->pgoff = shdr->sh_offset;
936 } else {
937 curr_map->map_ip = curr_map->unmap_ip = identity__map_ip;
938 }
939 curr_dso->symtab_type = dso->symtab_type;
940 maps__insert(kmaps, curr_map);
941 /*
942 * Add it before we drop the referece to curr_map, i.e. while
943 * we still are sure to have a reference to this DSO via
944 * *curr_map->dso.
945 */
946 dsos__add(&kmaps->machine->dsos, curr_dso);
947 /* kmaps already got it */
948 map__put(curr_map);
949 dso__set_loaded(curr_dso);
950 *curr_mapp = curr_map;
951 *curr_dsop = curr_dso;
952 } else
953 *curr_dsop = curr_map->dso;
954
955 return 0;
956}
957
958int dso__load_sym(struct dso *dso, struct map *map, struct symsrc *syms_ss,
959 struct symsrc *runtime_ss, int kmodule)
960{
961 struct kmap *kmap = dso->kernel ? map__kmap(map) : NULL;
962 struct maps *kmaps = kmap ? map__kmaps(map) : NULL;
963 struct map *curr_map = map;
964 struct dso *curr_dso = dso;
965 Elf_Data *symstrs, *secstrs;
966 uint32_t nr_syms;
967 int err = -1;
968 uint32_t idx;
969 GElf_Ehdr ehdr;
970 GElf_Shdr shdr;
971 GElf_Shdr tshdr;
972 Elf_Data *syms, *opddata = NULL;
973 GElf_Sym sym;
974 Elf_Scn *sec, *sec_strndx;
975 Elf *elf;
976 int nr = 0;
977 bool remap_kernel = false, adjust_kernel_syms = false;
978
979 if (kmap && !kmaps)
980 return -1;
981
982 dso->symtab_type = syms_ss->type;
983 dso->is_64_bit = syms_ss->is_64_bit;
984 dso->rel = syms_ss->ehdr.e_type == ET_REL;
985
986 /*
987 * Modules may already have symbols from kallsyms, but those symbols
988 * have the wrong values for the dso maps, so remove them.
989 */
990 if (kmodule && syms_ss->symtab)
991 symbols__delete(&dso->symbols);
992
993 if (!syms_ss->symtab) {
994 /*
995 * If the vmlinux is stripped, fail so we will fall back
996 * to using kallsyms. The vmlinux runtime symbols aren't
997 * of much use.
998 */
999 if (dso->kernel)
1000 goto out_elf_end;
1001
1002 syms_ss->symtab = syms_ss->dynsym;
1003 syms_ss->symshdr = syms_ss->dynshdr;
1004 }
1005
1006 elf = syms_ss->elf;
1007 ehdr = syms_ss->ehdr;
1008 sec = syms_ss->symtab;
1009 shdr = syms_ss->symshdr;
1010
1011 if (elf_section_by_name(runtime_ss->elf, &runtime_ss->ehdr, &tshdr,
1012 ".text", NULL))
1013 dso->text_offset = tshdr.sh_addr - tshdr.sh_offset;
1014
1015 if (runtime_ss->opdsec)
1016 opddata = elf_rawdata(runtime_ss->opdsec, NULL);
1017
1018 syms = elf_getdata(sec, NULL);
1019 if (syms == NULL)
1020 goto out_elf_end;
1021
1022 sec = elf_getscn(elf, shdr.sh_link);
1023 if (sec == NULL)
1024 goto out_elf_end;
1025
1026 symstrs = elf_getdata(sec, NULL);
1027 if (symstrs == NULL)
1028 goto out_elf_end;
1029
1030 sec_strndx = elf_getscn(runtime_ss->elf, runtime_ss->ehdr.e_shstrndx);
1031 if (sec_strndx == NULL)
1032 goto out_elf_end;
1033
1034 secstrs = elf_getdata(sec_strndx, NULL);
1035 if (secstrs == NULL)
1036 goto out_elf_end;
1037
1038 nr_syms = shdr.sh_size / shdr.sh_entsize;
1039
1040 memset(&sym, 0, sizeof(sym));
1041
1042 /*
1043 * The kernel relocation symbol is needed in advance in order to adjust
1044 * kernel maps correctly.
1045 */
1046 if (ref_reloc_sym_not_found(kmap)) {
1047 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1048 const char *elf_name = elf_sym__name(&sym, symstrs);
1049
1050 if (strcmp(elf_name, kmap->ref_reloc_sym->name))
1051 continue;
1052 kmap->ref_reloc_sym->unrelocated_addr = sym.st_value;
1053 map->reloc = kmap->ref_reloc_sym->addr -
1054 kmap->ref_reloc_sym->unrelocated_addr;
1055 break;
1056 }
1057 }
1058
1059 /*
1060 * Handle any relocation of vdso necessary because older kernels
1061 * attempted to prelink vdso to its virtual address.
1062 */
1063 if (dso__is_vdso(dso))
1064 map->reloc = map->start - dso->text_offset;
1065
1066 dso->adjust_symbols = runtime_ss->adjust_symbols || ref_reloc(kmap);
1067 /*
1068 * Initial kernel and module mappings do not map to the dso.
1069 * Flag the fixups.
1070 */
1071 if (dso->kernel) {
1072 remap_kernel = true;
1073 adjust_kernel_syms = dso->adjust_symbols;
1074 }
1075 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1076 struct symbol *f;
1077 const char *elf_name = elf_sym__name(&sym, symstrs);
1078 char *demangled = NULL;
1079 int is_label = elf_sym__is_label(&sym);
1080 const char *section_name;
1081 bool used_opd = false;
1082
1083 if (!is_label && !elf_sym__filter(&sym))
1084 continue;
1085
1086 /* Reject ARM ELF "mapping symbols": these aren't unique and
1087 * don't identify functions, so will confuse the profile
1088 * output: */
1089 if (ehdr.e_machine == EM_ARM || ehdr.e_machine == EM_AARCH64) {
1090 if (elf_name[0] == '$' && strchr("adtx", elf_name[1])
1091 && (elf_name[2] == '\0' || elf_name[2] == '.'))
1092 continue;
1093 }
1094
1095 if (runtime_ss->opdsec && sym.st_shndx == runtime_ss->opdidx) {
1096 u32 offset = sym.st_value - syms_ss->opdshdr.sh_addr;
1097 u64 *opd = opddata->d_buf + offset;
1098 sym.st_value = DSO__SWAP(dso, u64, *opd);
1099 sym.st_shndx = elf_addr_to_index(runtime_ss->elf,
1100 sym.st_value);
1101 used_opd = true;
1102 }
1103 /*
1104 * When loading symbols in a data mapping, ABS symbols (which
1105 * has a value of SHN_ABS in its st_shndx) failed at
1106 * elf_getscn(). And it marks the loading as a failure so
1107 * already loaded symbols cannot be fixed up.
1108 *
1109 * I'm not sure what should be done. Just ignore them for now.
1110 * - Namhyung Kim
1111 */
1112 if (sym.st_shndx == SHN_ABS)
1113 continue;
1114
1115 sec = elf_getscn(runtime_ss->elf, sym.st_shndx);
1116 if (!sec)
1117 goto out_elf_end;
1118
1119 gelf_getshdr(sec, &shdr);
1120
1121 if (is_label && !elf_sec__filter(&shdr, secstrs))
1122 continue;
1123
1124 section_name = elf_sec__name(&shdr, secstrs);
1125
1126 /* On ARM, symbols for thumb functions have 1 added to
1127 * the symbol address as a flag - remove it */
1128 if ((ehdr.e_machine == EM_ARM) &&
1129 (GELF_ST_TYPE(sym.st_info) == STT_FUNC) &&
1130 (sym.st_value & 1))
1131 --sym.st_value;
1132
1133 if (dso->kernel) {
1134 if (dso__process_kernel_symbol(dso, map, &sym, &shdr, kmaps, kmap, &curr_dso, &curr_map,
1135 section_name, adjust_kernel_syms, kmodule, &remap_kernel))
1136 goto out_elf_end;
1137 } else if ((used_opd && runtime_ss->adjust_symbols) ||
1138 (!used_opd && syms_ss->adjust_symbols)) {
1139 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " "
1140 "sh_addr: %#" PRIx64 " sh_offset: %#" PRIx64 "\n", __func__,
1141 (u64)sym.st_value, (u64)shdr.sh_addr,
1142 (u64)shdr.sh_offset);
1143 sym.st_value -= shdr.sh_addr - shdr.sh_offset;
1144 }
1145
1146 demangled = demangle_sym(dso, kmodule, elf_name);
1147 if (demangled != NULL)
1148 elf_name = demangled;
1149
1150 f = symbol__new(sym.st_value, sym.st_size,
1151 GELF_ST_BIND(sym.st_info),
1152 GELF_ST_TYPE(sym.st_info), elf_name);
1153 free(demangled);
1154 if (!f)
1155 goto out_elf_end;
1156
1157 arch__sym_update(f, &sym);
1158
1159 __symbols__insert(&curr_dso->symbols, f, dso->kernel);
1160 nr++;
1161 }
1162
1163 /*
1164 * For misannotated, zeroed, ASM function sizes.
1165 */
1166 if (nr > 0) {
1167 symbols__fixup_end(&dso->symbols);
1168 symbols__fixup_duplicate(&dso->symbols);
1169 if (kmap) {
1170 /*
1171 * We need to fixup this here too because we create new
1172 * maps here, for things like vsyscall sections.
1173 */
1174 maps__fixup_end(kmaps);
1175 }
1176 }
1177 err = nr;
1178out_elf_end:
1179 return err;
1180}
1181
1182static int elf_read_maps(Elf *elf, bool exe, mapfn_t mapfn, void *data)
1183{
1184 GElf_Phdr phdr;
1185 size_t i, phdrnum;
1186 int err;
1187 u64 sz;
1188
1189 if (elf_getphdrnum(elf, &phdrnum))
1190 return -1;
1191
1192 for (i = 0; i < phdrnum; i++) {
1193 if (gelf_getphdr(elf, i, &phdr) == NULL)
1194 return -1;
1195 if (phdr.p_type != PT_LOAD)
1196 continue;
1197 if (exe) {
1198 if (!(phdr.p_flags & PF_X))
1199 continue;
1200 } else {
1201 if (!(phdr.p_flags & PF_R))
1202 continue;
1203 }
1204 sz = min(phdr.p_memsz, phdr.p_filesz);
1205 if (!sz)
1206 continue;
1207 err = mapfn(phdr.p_vaddr, sz, phdr.p_offset, data);
1208 if (err)
1209 return err;
1210 }
1211 return 0;
1212}
1213
1214int file__read_maps(int fd, bool exe, mapfn_t mapfn, void *data,
1215 bool *is_64_bit)
1216{
1217 int err;
1218 Elf *elf;
1219
1220 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1221 if (elf == NULL)
1222 return -1;
1223
1224 if (is_64_bit)
1225 *is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
1226
1227 err = elf_read_maps(elf, exe, mapfn, data);
1228
1229 elf_end(elf);
1230 return err;
1231}
1232
1233enum dso_type dso__type_fd(int fd)
1234{
1235 enum dso_type dso_type = DSO__TYPE_UNKNOWN;
1236 GElf_Ehdr ehdr;
1237 Elf_Kind ek;
1238 Elf *elf;
1239
1240 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1241 if (elf == NULL)
1242 goto out;
1243
1244 ek = elf_kind(elf);
1245 if (ek != ELF_K_ELF)
1246 goto out_end;
1247
1248 if (gelf_getclass(elf) == ELFCLASS64) {
1249 dso_type = DSO__TYPE_64BIT;
1250 goto out_end;
1251 }
1252
1253 if (gelf_getehdr(elf, &ehdr) == NULL)
1254 goto out_end;
1255
1256 if (ehdr.e_machine == EM_X86_64)
1257 dso_type = DSO__TYPE_X32BIT;
1258 else
1259 dso_type = DSO__TYPE_32BIT;
1260out_end:
1261 elf_end(elf);
1262out:
1263 return dso_type;
1264}
1265
1266static int copy_bytes(int from, off_t from_offs, int to, off_t to_offs, u64 len)
1267{
1268 ssize_t r;
1269 size_t n;
1270 int err = -1;
1271 char *buf = malloc(page_size);
1272
1273 if (buf == NULL)
1274 return -1;
1275
1276 if (lseek(to, to_offs, SEEK_SET) != to_offs)
1277 goto out;
1278
1279 if (lseek(from, from_offs, SEEK_SET) != from_offs)
1280 goto out;
1281
1282 while (len) {
1283 n = page_size;
1284 if (len < n)
1285 n = len;
1286 /* Use read because mmap won't work on proc files */
1287 r = read(from, buf, n);
1288 if (r < 0)
1289 goto out;
1290 if (!r)
1291 break;
1292 n = r;
1293 r = write(to, buf, n);
1294 if (r < 0)
1295 goto out;
1296 if ((size_t)r != n)
1297 goto out;
1298 len -= n;
1299 }
1300
1301 err = 0;
1302out:
1303 free(buf);
1304 return err;
1305}
1306
1307struct kcore {
1308 int fd;
1309 int elfclass;
1310 Elf *elf;
1311 GElf_Ehdr ehdr;
1312};
1313
1314static int kcore__open(struct kcore *kcore, const char *filename)
1315{
1316 GElf_Ehdr *ehdr;
1317
1318 kcore->fd = open(filename, O_RDONLY);
1319 if (kcore->fd == -1)
1320 return -1;
1321
1322 kcore->elf = elf_begin(kcore->fd, ELF_C_READ, NULL);
1323 if (!kcore->elf)
1324 goto out_close;
1325
1326 kcore->elfclass = gelf_getclass(kcore->elf);
1327 if (kcore->elfclass == ELFCLASSNONE)
1328 goto out_end;
1329
1330 ehdr = gelf_getehdr(kcore->elf, &kcore->ehdr);
1331 if (!ehdr)
1332 goto out_end;
1333
1334 return 0;
1335
1336out_end:
1337 elf_end(kcore->elf);
1338out_close:
1339 close(kcore->fd);
1340 return -1;
1341}
1342
1343static int kcore__init(struct kcore *kcore, char *filename, int elfclass,
1344 bool temp)
1345{
1346 kcore->elfclass = elfclass;
1347
1348 if (temp)
1349 kcore->fd = mkstemp(filename);
1350 else
1351 kcore->fd = open(filename, O_WRONLY | O_CREAT | O_EXCL, 0400);
1352 if (kcore->fd == -1)
1353 return -1;
1354
1355 kcore->elf = elf_begin(kcore->fd, ELF_C_WRITE, NULL);
1356 if (!kcore->elf)
1357 goto out_close;
1358
1359 if (!gelf_newehdr(kcore->elf, elfclass))
1360 goto out_end;
1361
1362 memset(&kcore->ehdr, 0, sizeof(GElf_Ehdr));
1363
1364 return 0;
1365
1366out_end:
1367 elf_end(kcore->elf);
1368out_close:
1369 close(kcore->fd);
1370 unlink(filename);
1371 return -1;
1372}
1373
1374static void kcore__close(struct kcore *kcore)
1375{
1376 elf_end(kcore->elf);
1377 close(kcore->fd);
1378}
1379
1380static int kcore__copy_hdr(struct kcore *from, struct kcore *to, size_t count)
1381{
1382 GElf_Ehdr *ehdr = &to->ehdr;
1383 GElf_Ehdr *kehdr = &from->ehdr;
1384
1385 memcpy(ehdr->e_ident, kehdr->e_ident, EI_NIDENT);
1386 ehdr->e_type = kehdr->e_type;
1387 ehdr->e_machine = kehdr->e_machine;
1388 ehdr->e_version = kehdr->e_version;
1389 ehdr->e_entry = 0;
1390 ehdr->e_shoff = 0;
1391 ehdr->e_flags = kehdr->e_flags;
1392 ehdr->e_phnum = count;
1393 ehdr->e_shentsize = 0;
1394 ehdr->e_shnum = 0;
1395 ehdr->e_shstrndx = 0;
1396
1397 if (from->elfclass == ELFCLASS32) {
1398 ehdr->e_phoff = sizeof(Elf32_Ehdr);
1399 ehdr->e_ehsize = sizeof(Elf32_Ehdr);
1400 ehdr->e_phentsize = sizeof(Elf32_Phdr);
1401 } else {
1402 ehdr->e_phoff = sizeof(Elf64_Ehdr);
1403 ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1404 ehdr->e_phentsize = sizeof(Elf64_Phdr);
1405 }
1406
1407 if (!gelf_update_ehdr(to->elf, ehdr))
1408 return -1;
1409
1410 if (!gelf_newphdr(to->elf, count))
1411 return -1;
1412
1413 return 0;
1414}
1415
1416static int kcore__add_phdr(struct kcore *kcore, int idx, off_t offset,
1417 u64 addr, u64 len)
1418{
1419 GElf_Phdr phdr = {
1420 .p_type = PT_LOAD,
1421 .p_flags = PF_R | PF_W | PF_X,
1422 .p_offset = offset,
1423 .p_vaddr = addr,
1424 .p_paddr = 0,
1425 .p_filesz = len,
1426 .p_memsz = len,
1427 .p_align = page_size,
1428 };
1429
1430 if (!gelf_update_phdr(kcore->elf, idx, &phdr))
1431 return -1;
1432
1433 return 0;
1434}
1435
1436static off_t kcore__write(struct kcore *kcore)
1437{
1438 return elf_update(kcore->elf, ELF_C_WRITE);
1439}
1440
1441struct phdr_data {
1442 off_t offset;
1443 off_t rel;
1444 u64 addr;
1445 u64 len;
1446 struct list_head node;
1447 struct phdr_data *remaps;
1448};
1449
1450struct sym_data {
1451 u64 addr;
1452 struct list_head node;
1453};
1454
1455struct kcore_copy_info {
1456 u64 stext;
1457 u64 etext;
1458 u64 first_symbol;
1459 u64 last_symbol;
1460 u64 first_module;
1461 u64 first_module_symbol;
1462 u64 last_module_symbol;
1463 size_t phnum;
1464 struct list_head phdrs;
1465 struct list_head syms;
1466};
1467
1468#define kcore_copy__for_each_phdr(k, p) \
1469 list_for_each_entry((p), &(k)->phdrs, node)
1470
1471static struct phdr_data *phdr_data__new(u64 addr, u64 len, off_t offset)
1472{
1473 struct phdr_data *p = zalloc(sizeof(*p));
1474
1475 if (p) {
1476 p->addr = addr;
1477 p->len = len;
1478 p->offset = offset;
1479 }
1480
1481 return p;
1482}
1483
1484static struct phdr_data *kcore_copy_info__addnew(struct kcore_copy_info *kci,
1485 u64 addr, u64 len,
1486 off_t offset)
1487{
1488 struct phdr_data *p = phdr_data__new(addr, len, offset);
1489
1490 if (p)
1491 list_add_tail(&p->node, &kci->phdrs);
1492
1493 return p;
1494}
1495
1496static void kcore_copy__free_phdrs(struct kcore_copy_info *kci)
1497{
1498 struct phdr_data *p, *tmp;
1499
1500 list_for_each_entry_safe(p, tmp, &kci->phdrs, node) {
1501 list_del_init(&p->node);
1502 free(p);
1503 }
1504}
1505
1506static struct sym_data *kcore_copy__new_sym(struct kcore_copy_info *kci,
1507 u64 addr)
1508{
1509 struct sym_data *s = zalloc(sizeof(*s));
1510
1511 if (s) {
1512 s->addr = addr;
1513 list_add_tail(&s->node, &kci->syms);
1514 }
1515
1516 return s;
1517}
1518
1519static void kcore_copy__free_syms(struct kcore_copy_info *kci)
1520{
1521 struct sym_data *s, *tmp;
1522
1523 list_for_each_entry_safe(s, tmp, &kci->syms, node) {
1524 list_del_init(&s->node);
1525 free(s);
1526 }
1527}
1528
1529static int kcore_copy__process_kallsyms(void *arg, const char *name, char type,
1530 u64 start)
1531{
1532 struct kcore_copy_info *kci = arg;
1533
1534 if (!kallsyms__is_function(type))
1535 return 0;
1536
1537 if (strchr(name, '[')) {
1538 if (!kci->first_module_symbol || start < kci->first_module_symbol)
1539 kci->first_module_symbol = start;
1540 if (start > kci->last_module_symbol)
1541 kci->last_module_symbol = start;
1542 return 0;
1543 }
1544
1545 if (!kci->first_symbol || start < kci->first_symbol)
1546 kci->first_symbol = start;
1547
1548 if (!kci->last_symbol || start > kci->last_symbol)
1549 kci->last_symbol = start;
1550
1551 if (!strcmp(name, "_stext")) {
1552 kci->stext = start;
1553 return 0;
1554 }
1555
1556 if (!strcmp(name, "_etext")) {
1557 kci->etext = start;
1558 return 0;
1559 }
1560
1561 if (is_entry_trampoline(name) && !kcore_copy__new_sym(kci, start))
1562 return -1;
1563
1564 return 0;
1565}
1566
1567static int kcore_copy__parse_kallsyms(struct kcore_copy_info *kci,
1568 const char *dir)
1569{
1570 char kallsyms_filename[PATH_MAX];
1571
1572 scnprintf(kallsyms_filename, PATH_MAX, "%s/kallsyms", dir);
1573
1574 if (symbol__restricted_filename(kallsyms_filename, "/proc/kallsyms"))
1575 return -1;
1576
1577 if (kallsyms__parse(kallsyms_filename, kci,
1578 kcore_copy__process_kallsyms) < 0)
1579 return -1;
1580
1581 return 0;
1582}
1583
1584static int kcore_copy__process_modules(void *arg,
1585 const char *name __maybe_unused,
1586 u64 start, u64 size __maybe_unused)
1587{
1588 struct kcore_copy_info *kci = arg;
1589
1590 if (!kci->first_module || start < kci->first_module)
1591 kci->first_module = start;
1592
1593 return 0;
1594}
1595
1596static int kcore_copy__parse_modules(struct kcore_copy_info *kci,
1597 const char *dir)
1598{
1599 char modules_filename[PATH_MAX];
1600
1601 scnprintf(modules_filename, PATH_MAX, "%s/modules", dir);
1602
1603 if (symbol__restricted_filename(modules_filename, "/proc/modules"))
1604 return -1;
1605
1606 if (modules__parse(modules_filename, kci,
1607 kcore_copy__process_modules) < 0)
1608 return -1;
1609
1610 return 0;
1611}
1612
1613static int kcore_copy__map(struct kcore_copy_info *kci, u64 start, u64 end,
1614 u64 pgoff, u64 s, u64 e)
1615{
1616 u64 len, offset;
1617
1618 if (s < start || s >= end)
1619 return 0;
1620
1621 offset = (s - start) + pgoff;
1622 len = e < end ? e - s : end - s;
1623
1624 return kcore_copy_info__addnew(kci, s, len, offset) ? 0 : -1;
1625}
1626
1627static int kcore_copy__read_map(u64 start, u64 len, u64 pgoff, void *data)
1628{
1629 struct kcore_copy_info *kci = data;
1630 u64 end = start + len;
1631 struct sym_data *sdat;
1632
1633 if (kcore_copy__map(kci, start, end, pgoff, kci->stext, kci->etext))
1634 return -1;
1635
1636 if (kcore_copy__map(kci, start, end, pgoff, kci->first_module,
1637 kci->last_module_symbol))
1638 return -1;
1639
1640 list_for_each_entry(sdat, &kci->syms, node) {
1641 u64 s = round_down(sdat->addr, page_size);
1642
1643 if (kcore_copy__map(kci, start, end, pgoff, s, s + len))
1644 return -1;
1645 }
1646
1647 return 0;
1648}
1649
1650static int kcore_copy__read_maps(struct kcore_copy_info *kci, Elf *elf)
1651{
1652 if (elf_read_maps(elf, true, kcore_copy__read_map, kci) < 0)
1653 return -1;
1654
1655 return 0;
1656}
1657
1658static void kcore_copy__find_remaps(struct kcore_copy_info *kci)
1659{
1660 struct phdr_data *p, *k = NULL;
1661 u64 kend;
1662
1663 if (!kci->stext)
1664 return;
1665
1666 /* Find phdr that corresponds to the kernel map (contains stext) */
1667 kcore_copy__for_each_phdr(kci, p) {
1668 u64 pend = p->addr + p->len - 1;
1669
1670 if (p->addr <= kci->stext && pend >= kci->stext) {
1671 k = p;
1672 break;
1673 }
1674 }
1675
1676 if (!k)
1677 return;
1678
1679 kend = k->offset + k->len;
1680
1681 /* Find phdrs that remap the kernel */
1682 kcore_copy__for_each_phdr(kci, p) {
1683 u64 pend = p->offset + p->len;
1684
1685 if (p == k)
1686 continue;
1687
1688 if (p->offset >= k->offset && pend <= kend)
1689 p->remaps = k;
1690 }
1691}
1692
1693static void kcore_copy__layout(struct kcore_copy_info *kci)
1694{
1695 struct phdr_data *p;
1696 off_t rel = 0;
1697
1698 kcore_copy__find_remaps(kci);
1699
1700 kcore_copy__for_each_phdr(kci, p) {
1701 if (!p->remaps) {
1702 p->rel = rel;
1703 rel += p->len;
1704 }
1705 kci->phnum += 1;
1706 }
1707
1708 kcore_copy__for_each_phdr(kci, p) {
1709 struct phdr_data *k = p->remaps;
1710
1711 if (k)
1712 p->rel = p->offset - k->offset + k->rel;
1713 }
1714}
1715
1716static int kcore_copy__calc_maps(struct kcore_copy_info *kci, const char *dir,
1717 Elf *elf)
1718{
1719 if (kcore_copy__parse_kallsyms(kci, dir))
1720 return -1;
1721
1722 if (kcore_copy__parse_modules(kci, dir))
1723 return -1;
1724
1725 if (kci->stext)
1726 kci->stext = round_down(kci->stext, page_size);
1727 else
1728 kci->stext = round_down(kci->first_symbol, page_size);
1729
1730 if (kci->etext) {
1731 kci->etext = round_up(kci->etext, page_size);
1732 } else if (kci->last_symbol) {
1733 kci->etext = round_up(kci->last_symbol, page_size);
1734 kci->etext += page_size;
1735 }
1736
1737 if (kci->first_module_symbol &&
1738 (!kci->first_module || kci->first_module_symbol < kci->first_module))
1739 kci->first_module = kci->first_module_symbol;
1740
1741 kci->first_module = round_down(kci->first_module, page_size);
1742
1743 if (kci->last_module_symbol) {
1744 kci->last_module_symbol = round_up(kci->last_module_symbol,
1745 page_size);
1746 kci->last_module_symbol += page_size;
1747 }
1748
1749 if (!kci->stext || !kci->etext)
1750 return -1;
1751
1752 if (kci->first_module && !kci->last_module_symbol)
1753 return -1;
1754
1755 if (kcore_copy__read_maps(kci, elf))
1756 return -1;
1757
1758 kcore_copy__layout(kci);
1759
1760 return 0;
1761}
1762
1763static int kcore_copy__copy_file(const char *from_dir, const char *to_dir,
1764 const char *name)
1765{
1766 char from_filename[PATH_MAX];
1767 char to_filename[PATH_MAX];
1768
1769 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
1770 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
1771
1772 return copyfile_mode(from_filename, to_filename, 0400);
1773}
1774
1775static int kcore_copy__unlink(const char *dir, const char *name)
1776{
1777 char filename[PATH_MAX];
1778
1779 scnprintf(filename, PATH_MAX, "%s/%s", dir, name);
1780
1781 return unlink(filename);
1782}
1783
1784static int kcore_copy__compare_fds(int from, int to)
1785{
1786 char *buf_from;
1787 char *buf_to;
1788 ssize_t ret;
1789 size_t len;
1790 int err = -1;
1791
1792 buf_from = malloc(page_size);
1793 buf_to = malloc(page_size);
1794 if (!buf_from || !buf_to)
1795 goto out;
1796
1797 while (1) {
1798 /* Use read because mmap won't work on proc files */
1799 ret = read(from, buf_from, page_size);
1800 if (ret < 0)
1801 goto out;
1802
1803 if (!ret)
1804 break;
1805
1806 len = ret;
1807
1808 if (readn(to, buf_to, len) != (int)len)
1809 goto out;
1810
1811 if (memcmp(buf_from, buf_to, len))
1812 goto out;
1813 }
1814
1815 err = 0;
1816out:
1817 free(buf_to);
1818 free(buf_from);
1819 return err;
1820}
1821
1822static int kcore_copy__compare_files(const char *from_filename,
1823 const char *to_filename)
1824{
1825 int from, to, err = -1;
1826
1827 from = open(from_filename, O_RDONLY);
1828 if (from < 0)
1829 return -1;
1830
1831 to = open(to_filename, O_RDONLY);
1832 if (to < 0)
1833 goto out_close_from;
1834
1835 err = kcore_copy__compare_fds(from, to);
1836
1837 close(to);
1838out_close_from:
1839 close(from);
1840 return err;
1841}
1842
1843static int kcore_copy__compare_file(const char *from_dir, const char *to_dir,
1844 const char *name)
1845{
1846 char from_filename[PATH_MAX];
1847 char to_filename[PATH_MAX];
1848
1849 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
1850 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
1851
1852 return kcore_copy__compare_files(from_filename, to_filename);
1853}
1854
1855/**
1856 * kcore_copy - copy kallsyms, modules and kcore from one directory to another.
1857 * @from_dir: from directory
1858 * @to_dir: to directory
1859 *
1860 * This function copies kallsyms, modules and kcore files from one directory to
1861 * another. kallsyms and modules are copied entirely. Only code segments are
1862 * copied from kcore. It is assumed that two segments suffice: one for the
1863 * kernel proper and one for all the modules. The code segments are determined
1864 * from kallsyms and modules files. The kernel map starts at _stext or the
1865 * lowest function symbol, and ends at _etext or the highest function symbol.
1866 * The module map starts at the lowest module address and ends at the highest
1867 * module symbol. Start addresses are rounded down to the nearest page. End
1868 * addresses are rounded up to the nearest page. An extra page is added to the
1869 * highest kernel symbol and highest module symbol to, hopefully, encompass that
1870 * symbol too. Because it contains only code sections, the resulting kcore is
1871 * unusual. One significant peculiarity is that the mapping (start -> pgoff)
1872 * is not the same for the kernel map and the modules map. That happens because
1873 * the data is copied adjacently whereas the original kcore has gaps. Finally,
1874 * kallsyms and modules files are compared with their copies to check that
1875 * modules have not been loaded or unloaded while the copies were taking place.
1876 *
1877 * Return: %0 on success, %-1 on failure.
1878 */
1879int kcore_copy(const char *from_dir, const char *to_dir)
1880{
1881 struct kcore kcore;
1882 struct kcore extract;
1883 int idx = 0, err = -1;
1884 off_t offset, sz;
1885 struct kcore_copy_info kci = { .stext = 0, };
1886 char kcore_filename[PATH_MAX];
1887 char extract_filename[PATH_MAX];
1888 struct phdr_data *p;
1889
1890 INIT_LIST_HEAD(&kci.phdrs);
1891 INIT_LIST_HEAD(&kci.syms);
1892
1893 if (kcore_copy__copy_file(from_dir, to_dir, "kallsyms"))
1894 return -1;
1895
1896 if (kcore_copy__copy_file(from_dir, to_dir, "modules"))
1897 goto out_unlink_kallsyms;
1898
1899 scnprintf(kcore_filename, PATH_MAX, "%s/kcore", from_dir);
1900 scnprintf(extract_filename, PATH_MAX, "%s/kcore", to_dir);
1901
1902 if (kcore__open(&kcore, kcore_filename))
1903 goto out_unlink_modules;
1904
1905 if (kcore_copy__calc_maps(&kci, from_dir, kcore.elf))
1906 goto out_kcore_close;
1907
1908 if (kcore__init(&extract, extract_filename, kcore.elfclass, false))
1909 goto out_kcore_close;
1910
1911 if (kcore__copy_hdr(&kcore, &extract, kci.phnum))
1912 goto out_extract_close;
1913
1914 offset = gelf_fsize(extract.elf, ELF_T_EHDR, 1, EV_CURRENT) +
1915 gelf_fsize(extract.elf, ELF_T_PHDR, kci.phnum, EV_CURRENT);
1916 offset = round_up(offset, page_size);
1917
1918 kcore_copy__for_each_phdr(&kci, p) {
1919 off_t offs = p->rel + offset;
1920
1921 if (kcore__add_phdr(&extract, idx++, offs, p->addr, p->len))
1922 goto out_extract_close;
1923 }
1924
1925 sz = kcore__write(&extract);
1926 if (sz < 0 || sz > offset)
1927 goto out_extract_close;
1928
1929 kcore_copy__for_each_phdr(&kci, p) {
1930 off_t offs = p->rel + offset;
1931
1932 if (p->remaps)
1933 continue;
1934 if (copy_bytes(kcore.fd, p->offset, extract.fd, offs, p->len))
1935 goto out_extract_close;
1936 }
1937
1938 if (kcore_copy__compare_file(from_dir, to_dir, "modules"))
1939 goto out_extract_close;
1940
1941 if (kcore_copy__compare_file(from_dir, to_dir, "kallsyms"))
1942 goto out_extract_close;
1943
1944 err = 0;
1945
1946out_extract_close:
1947 kcore__close(&extract);
1948 if (err)
1949 unlink(extract_filename);
1950out_kcore_close:
1951 kcore__close(&kcore);
1952out_unlink_modules:
1953 if (err)
1954 kcore_copy__unlink(to_dir, "modules");
1955out_unlink_kallsyms:
1956 if (err)
1957 kcore_copy__unlink(to_dir, "kallsyms");
1958
1959 kcore_copy__free_phdrs(&kci);
1960 kcore_copy__free_syms(&kci);
1961
1962 return err;
1963}
1964
1965int kcore_extract__create(struct kcore_extract *kce)
1966{
1967 struct kcore kcore;
1968 struct kcore extract;
1969 size_t count = 1;
1970 int idx = 0, err = -1;
1971 off_t offset = page_size, sz;
1972
1973 if (kcore__open(&kcore, kce->kcore_filename))
1974 return -1;
1975
1976 strcpy(kce->extract_filename, PERF_KCORE_EXTRACT);
1977 if (kcore__init(&extract, kce->extract_filename, kcore.elfclass, true))
1978 goto out_kcore_close;
1979
1980 if (kcore__copy_hdr(&kcore, &extract, count))
1981 goto out_extract_close;
1982
1983 if (kcore__add_phdr(&extract, idx, offset, kce->addr, kce->len))
1984 goto out_extract_close;
1985
1986 sz = kcore__write(&extract);
1987 if (sz < 0 || sz > offset)
1988 goto out_extract_close;
1989
1990 if (copy_bytes(kcore.fd, kce->offs, extract.fd, offset, kce->len))
1991 goto out_extract_close;
1992
1993 err = 0;
1994
1995out_extract_close:
1996 kcore__close(&extract);
1997 if (err)
1998 unlink(kce->extract_filename);
1999out_kcore_close:
2000 kcore__close(&kcore);
2001
2002 return err;
2003}
2004
2005void kcore_extract__delete(struct kcore_extract *kce)
2006{
2007 unlink(kce->extract_filename);
2008}
2009
2010#ifdef HAVE_GELF_GETNOTE_SUPPORT
2011
2012static void sdt_adjust_loc(struct sdt_note *tmp, GElf_Addr base_off)
2013{
2014 if (!base_off)
2015 return;
2016
2017 if (tmp->bit32)
2018 tmp->addr.a32[SDT_NOTE_IDX_LOC] =
2019 tmp->addr.a32[SDT_NOTE_IDX_LOC] + base_off -
2020 tmp->addr.a32[SDT_NOTE_IDX_BASE];
2021 else
2022 tmp->addr.a64[SDT_NOTE_IDX_LOC] =
2023 tmp->addr.a64[SDT_NOTE_IDX_LOC] + base_off -
2024 tmp->addr.a64[SDT_NOTE_IDX_BASE];
2025}
2026
2027static void sdt_adjust_refctr(struct sdt_note *tmp, GElf_Addr base_addr,
2028 GElf_Addr base_off)
2029{
2030 if (!base_off)
2031 return;
2032
2033 if (tmp->bit32 && tmp->addr.a32[SDT_NOTE_IDX_REFCTR])
2034 tmp->addr.a32[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2035 else if (tmp->addr.a64[SDT_NOTE_IDX_REFCTR])
2036 tmp->addr.a64[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2037}
2038
2039/**
2040 * populate_sdt_note : Parse raw data and identify SDT note
2041 * @elf: elf of the opened file
2042 * @data: raw data of a section with description offset applied
2043 * @len: note description size
2044 * @type: type of the note
2045 * @sdt_notes: List to add the SDT note
2046 *
2047 * Responsible for parsing the @data in section .note.stapsdt in @elf and
2048 * if its an SDT note, it appends to @sdt_notes list.
2049 */
2050static int populate_sdt_note(Elf **elf, const char *data, size_t len,
2051 struct list_head *sdt_notes)
2052{
2053 const char *provider, *name, *args;
2054 struct sdt_note *tmp = NULL;
2055 GElf_Ehdr ehdr;
2056 GElf_Shdr shdr;
2057 int ret = -EINVAL;
2058
2059 union {
2060 Elf64_Addr a64[NR_ADDR];
2061 Elf32_Addr a32[NR_ADDR];
2062 } buf;
2063
2064 Elf_Data dst = {
2065 .d_buf = &buf, .d_type = ELF_T_ADDR, .d_version = EV_CURRENT,
2066 .d_size = gelf_fsize((*elf), ELF_T_ADDR, NR_ADDR, EV_CURRENT),
2067 .d_off = 0, .d_align = 0
2068 };
2069 Elf_Data src = {
2070 .d_buf = (void *) data, .d_type = ELF_T_ADDR,
2071 .d_version = EV_CURRENT, .d_size = dst.d_size, .d_off = 0,
2072 .d_align = 0
2073 };
2074
2075 tmp = (struct sdt_note *)calloc(1, sizeof(struct sdt_note));
2076 if (!tmp) {
2077 ret = -ENOMEM;
2078 goto out_err;
2079 }
2080
2081 INIT_LIST_HEAD(&tmp->note_list);
2082
2083 if (len < dst.d_size + 3)
2084 goto out_free_note;
2085
2086 /* Translation from file representation to memory representation */
2087 if (gelf_xlatetom(*elf, &dst, &src,
2088 elf_getident(*elf, NULL)[EI_DATA]) == NULL) {
2089 pr_err("gelf_xlatetom : %s\n", elf_errmsg(-1));
2090 goto out_free_note;
2091 }
2092
2093 /* Populate the fields of sdt_note */
2094 provider = data + dst.d_size;
2095
2096 name = (const char *)memchr(provider, '\0', data + len - provider);
2097 if (name++ == NULL)
2098 goto out_free_note;
2099
2100 tmp->provider = strdup(provider);
2101 if (!tmp->provider) {
2102 ret = -ENOMEM;
2103 goto out_free_note;
2104 }
2105 tmp->name = strdup(name);
2106 if (!tmp->name) {
2107 ret = -ENOMEM;
2108 goto out_free_prov;
2109 }
2110
2111 args = memchr(name, '\0', data + len - name);
2112
2113 /*
2114 * There is no argument if:
2115 * - We reached the end of the note;
2116 * - There is not enough room to hold a potential string;
2117 * - The argument string is empty or just contains ':'.
2118 */
2119 if (args == NULL || data + len - args < 2 ||
2120 args[1] == ':' || args[1] == '\0')
2121 tmp->args = NULL;
2122 else {
2123 tmp->args = strdup(++args);
2124 if (!tmp->args) {
2125 ret = -ENOMEM;
2126 goto out_free_name;
2127 }
2128 }
2129
2130 if (gelf_getclass(*elf) == ELFCLASS32) {
2131 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf32_Addr));
2132 tmp->bit32 = true;
2133 } else {
2134 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf64_Addr));
2135 tmp->bit32 = false;
2136 }
2137
2138 if (!gelf_getehdr(*elf, &ehdr)) {
2139 pr_debug("%s : cannot get elf header.\n", __func__);
2140 ret = -EBADF;
2141 goto out_free_args;
2142 }
2143
2144 /* Adjust the prelink effect :
2145 * Find out the .stapsdt.base section.
2146 * This scn will help us to handle prelinking (if present).
2147 * Compare the retrieved file offset of the base section with the
2148 * base address in the description of the SDT note. If its different,
2149 * then accordingly, adjust the note location.
2150 */
2151 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_BASE_SCN, NULL))
2152 sdt_adjust_loc(tmp, shdr.sh_offset);
2153
2154 /* Adjust reference counter offset */
2155 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_PROBES_SCN, NULL))
2156 sdt_adjust_refctr(tmp, shdr.sh_addr, shdr.sh_offset);
2157
2158 list_add_tail(&tmp->note_list, sdt_notes);
2159 return 0;
2160
2161out_free_args:
2162 zfree(&tmp->args);
2163out_free_name:
2164 zfree(&tmp->name);
2165out_free_prov:
2166 zfree(&tmp->provider);
2167out_free_note:
2168 free(tmp);
2169out_err:
2170 return ret;
2171}
2172
2173/**
2174 * construct_sdt_notes_list : constructs a list of SDT notes
2175 * @elf : elf to look into
2176 * @sdt_notes : empty list_head
2177 *
2178 * Scans the sections in 'elf' for the section
2179 * .note.stapsdt. It, then calls populate_sdt_note to find
2180 * out the SDT events and populates the 'sdt_notes'.
2181 */
2182static int construct_sdt_notes_list(Elf *elf, struct list_head *sdt_notes)
2183{
2184 GElf_Ehdr ehdr;
2185 Elf_Scn *scn = NULL;
2186 Elf_Data *data;
2187 GElf_Shdr shdr;
2188 size_t shstrndx, next;
2189 GElf_Nhdr nhdr;
2190 size_t name_off, desc_off, offset;
2191 int ret = 0;
2192
2193 if (gelf_getehdr(elf, &ehdr) == NULL) {
2194 ret = -EBADF;
2195 goto out_ret;
2196 }
2197 if (elf_getshdrstrndx(elf, &shstrndx) != 0) {
2198 ret = -EBADF;
2199 goto out_ret;
2200 }
2201
2202 /* Look for the required section */
2203 scn = elf_section_by_name(elf, &ehdr, &shdr, SDT_NOTE_SCN, NULL);
2204 if (!scn) {
2205 ret = -ENOENT;
2206 goto out_ret;
2207 }
2208
2209 if ((shdr.sh_type != SHT_NOTE) || (shdr.sh_flags & SHF_ALLOC)) {
2210 ret = -ENOENT;
2211 goto out_ret;
2212 }
2213
2214 data = elf_getdata(scn, NULL);
2215
2216 /* Get the SDT notes */
2217 for (offset = 0; (next = gelf_getnote(data, offset, &nhdr, &name_off,
2218 &desc_off)) > 0; offset = next) {
2219 if (nhdr.n_namesz == sizeof(SDT_NOTE_NAME) &&
2220 !memcmp(data->d_buf + name_off, SDT_NOTE_NAME,
2221 sizeof(SDT_NOTE_NAME))) {
2222 /* Check the type of the note */
2223 if (nhdr.n_type != SDT_NOTE_TYPE)
2224 goto out_ret;
2225
2226 ret = populate_sdt_note(&elf, ((data->d_buf) + desc_off),
2227 nhdr.n_descsz, sdt_notes);
2228 if (ret < 0)
2229 goto out_ret;
2230 }
2231 }
2232 if (list_empty(sdt_notes))
2233 ret = -ENOENT;
2234
2235out_ret:
2236 return ret;
2237}
2238
2239/**
2240 * get_sdt_note_list : Wrapper to construct a list of sdt notes
2241 * @head : empty list_head
2242 * @target : file to find SDT notes from
2243 *
2244 * This opens the file, initializes
2245 * the ELF and then calls construct_sdt_notes_list.
2246 */
2247int get_sdt_note_list(struct list_head *head, const char *target)
2248{
2249 Elf *elf;
2250 int fd, ret;
2251
2252 fd = open(target, O_RDONLY);
2253 if (fd < 0)
2254 return -EBADF;
2255
2256 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
2257 if (!elf) {
2258 ret = -EBADF;
2259 goto out_close;
2260 }
2261 ret = construct_sdt_notes_list(elf, head);
2262 elf_end(elf);
2263out_close:
2264 close(fd);
2265 return ret;
2266}
2267
2268/**
2269 * cleanup_sdt_note_list : free the sdt notes' list
2270 * @sdt_notes: sdt notes' list
2271 *
2272 * Free up the SDT notes in @sdt_notes.
2273 * Returns the number of SDT notes free'd.
2274 */
2275int cleanup_sdt_note_list(struct list_head *sdt_notes)
2276{
2277 struct sdt_note *tmp, *pos;
2278 int nr_free = 0;
2279
2280 list_for_each_entry_safe(pos, tmp, sdt_notes, note_list) {
2281 list_del_init(&pos->note_list);
2282 zfree(&pos->name);
2283 zfree(&pos->provider);
2284 free(pos);
2285 nr_free++;
2286 }
2287 return nr_free;
2288}
2289
2290/**
2291 * sdt_notes__get_count: Counts the number of sdt events
2292 * @start: list_head to sdt_notes list
2293 *
2294 * Returns the number of SDT notes in a list
2295 */
2296int sdt_notes__get_count(struct list_head *start)
2297{
2298 struct sdt_note *sdt_ptr;
2299 int count = 0;
2300
2301 list_for_each_entry(sdt_ptr, start, note_list)
2302 count++;
2303 return count;
2304}
2305#endif
2306
2307void symbol__elf_init(void)
2308{
2309 elf_version(EV_CURRENT);
2310}