Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.9.
  1// SPDX-License-Identifier: GPL-2.0
  2
  3//! A reference-counted pointer.
  4//!
  5//! This module implements a way for users to create reference-counted objects and pointers to
  6//! them. Such a pointer automatically increments and decrements the count, and drops the
  7//! underlying object when it reaches zero. It is also safe to use concurrently from multiple
  8//! threads.
  9//!
 10//! It is different from the standard library's [`Arc`] in a few ways:
 11//! 1. It is backed by the kernel's `refcount_t` type.
 12//! 2. It does not support weak references, which allows it to be half the size.
 13//! 3. It saturates the reference count instead of aborting when it goes over a threshold.
 14//! 4. It does not provide a `get_mut` method, so the ref counted object is pinned.
 15//! 5. The object in [`Arc`] is pinned implicitly.
 16//!
 17//! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html
 18
 19use crate::{
 20    alloc::{AllocError, Flags, KBox},
 21    bindings,
 22    init::{self, InPlaceInit, Init, PinInit},
 23    try_init,
 24    types::{ForeignOwnable, Opaque},
 25};
 26use core::{
 27    alloc::Layout,
 28    fmt,
 29    marker::{PhantomData, Unsize},
 30    mem::{ManuallyDrop, MaybeUninit},
 31    ops::{Deref, DerefMut},
 32    pin::Pin,
 33    ptr::NonNull,
 34};
 35use macros::pin_data;
 36
 37mod std_vendor;
 38
 39/// A reference-counted pointer to an instance of `T`.
 40///
 41/// The reference count is incremented when new instances of [`Arc`] are created, and decremented
 42/// when they are dropped. When the count reaches zero, the underlying `T` is also dropped.
 43///
 44/// # Invariants
 45///
 46/// The reference count on an instance of [`Arc`] is always non-zero.
 47/// The object pointed to by [`Arc`] is always pinned.
 48///
 49/// # Examples
 50///
 51/// ```
 52/// use kernel::sync::Arc;
 53///
 54/// struct Example {
 55///     a: u32,
 56///     b: u32,
 57/// }
 58///
 59/// // Create a refcounted instance of `Example`.
 60/// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
 61///
 62/// // Get a new pointer to `obj` and increment the refcount.
 63/// let cloned = obj.clone();
 64///
 65/// // Assert that both `obj` and `cloned` point to the same underlying object.
 66/// assert!(core::ptr::eq(&*obj, &*cloned));
 67///
 68/// // Destroy `obj` and decrement its refcount.
 69/// drop(obj);
 70///
 71/// // Check that the values are still accessible through `cloned`.
 72/// assert_eq!(cloned.a, 10);
 73/// assert_eq!(cloned.b, 20);
 74///
 75/// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed.
 76/// # Ok::<(), Error>(())
 77/// ```
 78///
 79/// Using `Arc<T>` as the type of `self`:
 80///
 81/// ```
 82/// use kernel::sync::Arc;
 83///
 84/// struct Example {
 85///     a: u32,
 86///     b: u32,
 87/// }
 88///
 89/// impl Example {
 90///     fn take_over(self: Arc<Self>) {
 91///         // ...
 92///     }
 93///
 94///     fn use_reference(self: &Arc<Self>) {
 95///         // ...
 96///     }
 97/// }
 98///
 99/// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
100/// obj.use_reference();
101/// obj.take_over();
102/// # Ok::<(), Error>(())
103/// ```
104///
105/// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`:
106///
107/// ```
108/// use kernel::sync::{Arc, ArcBorrow};
109///
110/// trait MyTrait {
111///     // Trait has a function whose `self` type is `Arc<Self>`.
112///     fn example1(self: Arc<Self>) {}
113///
114///     // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`.
115///     fn example2(self: ArcBorrow<'_, Self>) {}
116/// }
117///
118/// struct Example;
119/// impl MyTrait for Example {}
120///
121/// // `obj` has type `Arc<Example>`.
122/// let obj: Arc<Example> = Arc::new(Example, GFP_KERNEL)?;
123///
124/// // `coerced` has type `Arc<dyn MyTrait>`.
125/// let coerced: Arc<dyn MyTrait> = obj;
126/// # Ok::<(), Error>(())
127/// ```
128pub struct Arc<T: ?Sized> {
129    ptr: NonNull<ArcInner<T>>,
130    _p: PhantomData<ArcInner<T>>,
131}
132
133#[pin_data]
134#[repr(C)]
135struct ArcInner<T: ?Sized> {
136    refcount: Opaque<bindings::refcount_t>,
137    data: T,
138}
139
140impl<T: ?Sized> ArcInner<T> {
141    /// Converts a pointer to the contents of an [`Arc`] into a pointer to the [`ArcInner`].
142    ///
143    /// # Safety
144    ///
145    /// `ptr` must have been returned by a previous call to [`Arc::into_raw`], and the `Arc` must
146    /// not yet have been destroyed.
147    unsafe fn container_of(ptr: *const T) -> NonNull<ArcInner<T>> {
148        let refcount_layout = Layout::new::<bindings::refcount_t>();
149        // SAFETY: The caller guarantees that the pointer is valid.
150        let val_layout = Layout::for_value(unsafe { &*ptr });
151        // SAFETY: We're computing the layout of a real struct that existed when compiling this
152        // binary, so its layout is not so large that it can trigger arithmetic overflow.
153        let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 };
154
155        // Pointer casts leave the metadata unchanged. This is okay because the metadata of `T` and
156        // `ArcInner<T>` is the same since `ArcInner` is a struct with `T` as its last field.
157        //
158        // This is documented at:
159        // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>.
160        let ptr = ptr as *const ArcInner<T>;
161
162        // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the
163        // pointer, since it originates from a previous call to `Arc::into_raw` on an `Arc` that is
164        // still valid.
165        let ptr = unsafe { ptr.byte_sub(val_offset) };
166
167        // SAFETY: The pointer can't be null since you can't have an `ArcInner<T>` value at the null
168        // address.
169        unsafe { NonNull::new_unchecked(ptr.cast_mut()) }
170    }
171}
172
173// This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the
174// dynamically-sized type (DST) `U`.
175impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {}
176
177// This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`.
178impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {}
179
180// SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because
181// it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs
182// `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a
183// mutable reference when the reference count reaches zero and `T` is dropped.
184unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
185
186// SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync`
187// because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally,
188// it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an
189// `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when
190// the reference count reaches zero and `T` is dropped.
191unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
192
193impl<T> Arc<T> {
194    /// Constructs a new reference counted instance of `T`.
195    pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> {
196        // INVARIANT: The refcount is initialised to a non-zero value.
197        let value = ArcInner {
198            // SAFETY: There are no safety requirements for this FFI call.
199            refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
200            data: contents,
201        };
202
203        let inner = KBox::new(value, flags)?;
204
205        // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new
206        // `Arc` object.
207        Ok(unsafe { Self::from_inner(KBox::leak(inner).into()) })
208    }
209}
210
211impl<T: ?Sized> Arc<T> {
212    /// Constructs a new [`Arc`] from an existing [`ArcInner`].
213    ///
214    /// # Safety
215    ///
216    /// The caller must ensure that `inner` points to a valid location and has a non-zero reference
217    /// count, one of which will be owned by the new [`Arc`] instance.
218    unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self {
219        // INVARIANT: By the safety requirements, the invariants hold.
220        Arc {
221            ptr: inner,
222            _p: PhantomData,
223        }
224    }
225
226    /// Convert the [`Arc`] into a raw pointer.
227    ///
228    /// The raw pointer has ownership of the refcount that this Arc object owned.
229    pub fn into_raw(self) -> *const T {
230        let ptr = self.ptr.as_ptr();
231        core::mem::forget(self);
232        // SAFETY: The pointer is valid.
233        unsafe { core::ptr::addr_of!((*ptr).data) }
234    }
235
236    /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`].
237    ///
238    /// # Safety
239    ///
240    /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it
241    /// must not be called more than once for each previous call to [`Arc::into_raw`].
242    pub unsafe fn from_raw(ptr: *const T) -> Self {
243        // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
244        // `Arc` that is still valid.
245        let ptr = unsafe { ArcInner::container_of(ptr) };
246
247        // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the
248        // reference count held then will be owned by the new `Arc` object.
249        unsafe { Self::from_inner(ptr) }
250    }
251
252    /// Returns an [`ArcBorrow`] from the given [`Arc`].
253    ///
254    /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method
255    /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised.
256    #[inline]
257    pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> {
258        // SAFETY: The constraint that the lifetime of the shared reference must outlive that of
259        // the returned `ArcBorrow` ensures that the object remains alive and that no mutable
260        // reference can be created.
261        unsafe { ArcBorrow::new(self.ptr) }
262    }
263
264    /// Compare whether two [`Arc`] pointers reference the same underlying object.
265    pub fn ptr_eq(this: &Self, other: &Self) -> bool {
266        core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr())
267    }
268
269    /// Converts this [`Arc`] into a [`UniqueArc`], or destroys it if it is not unique.
270    ///
271    /// When this destroys the `Arc`, it does so while properly avoiding races. This means that
272    /// this method will never call the destructor of the value.
273    ///
274    /// # Examples
275    ///
276    /// ```
277    /// use kernel::sync::{Arc, UniqueArc};
278    ///
279    /// let arc = Arc::new(42, GFP_KERNEL)?;
280    /// let unique_arc = arc.into_unique_or_drop();
281    ///
282    /// // The above conversion should succeed since refcount of `arc` is 1.
283    /// assert!(unique_arc.is_some());
284    ///
285    /// assert_eq!(*(unique_arc.unwrap()), 42);
286    ///
287    /// # Ok::<(), Error>(())
288    /// ```
289    ///
290    /// ```
291    /// use kernel::sync::{Arc, UniqueArc};
292    ///
293    /// let arc = Arc::new(42, GFP_KERNEL)?;
294    /// let another = arc.clone();
295    ///
296    /// let unique_arc = arc.into_unique_or_drop();
297    ///
298    /// // The above conversion should fail since refcount of `arc` is >1.
299    /// assert!(unique_arc.is_none());
300    ///
301    /// # Ok::<(), Error>(())
302    /// ```
303    pub fn into_unique_or_drop(self) -> Option<Pin<UniqueArc<T>>> {
304        // We will manually manage the refcount in this method, so we disable the destructor.
305        let me = ManuallyDrop::new(self);
306        // SAFETY: We own a refcount, so the pointer is still valid.
307        let refcount = unsafe { me.ptr.as_ref() }.refcount.get();
308
309        // If the refcount reaches a non-zero value, then we have destroyed this `Arc` and will
310        // return without further touching the `Arc`. If the refcount reaches zero, then there are
311        // no other arcs, and we can create a `UniqueArc`.
312        //
313        // SAFETY: We own a refcount, so the pointer is not dangling.
314        let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
315        if is_zero {
316            // SAFETY: We have exclusive access to the arc, so we can perform unsynchronized
317            // accesses to the refcount.
318            unsafe { core::ptr::write(refcount, bindings::REFCOUNT_INIT(1)) };
319
320            // INVARIANT: We own the only refcount to this arc, so we may create a `UniqueArc`. We
321            // must pin the `UniqueArc` because the values was previously in an `Arc`, and they pin
322            // their values.
323            Some(Pin::from(UniqueArc {
324                inner: ManuallyDrop::into_inner(me),
325            }))
326        } else {
327            None
328        }
329    }
330}
331
332impl<T: 'static> ForeignOwnable for Arc<T> {
333    type Borrowed<'a> = ArcBorrow<'a, T>;
334
335    fn into_foreign(self) -> *const crate::ffi::c_void {
336        ManuallyDrop::new(self).ptr.as_ptr() as _
337    }
338
339    unsafe fn borrow<'a>(ptr: *const crate::ffi::c_void) -> ArcBorrow<'a, T> {
340        // By the safety requirement of this function, we know that `ptr` came from
341        // a previous call to `Arc::into_foreign`.
342        let inner = NonNull::new(ptr as *mut ArcInner<T>).unwrap();
343
344        // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive
345        // for the lifetime of the returned value.
346        unsafe { ArcBorrow::new(inner) }
347    }
348
349    unsafe fn from_foreign(ptr: *const crate::ffi::c_void) -> Self {
350        // SAFETY: By the safety requirement of this function, we know that `ptr` came from
351        // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and
352        // holds a reference count increment that is transferrable to us.
353        unsafe { Self::from_inner(NonNull::new(ptr as _).unwrap()) }
354    }
355}
356
357impl<T: ?Sized> Deref for Arc<T> {
358    type Target = T;
359
360    fn deref(&self) -> &Self::Target {
361        // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
362        // safe to dereference it.
363        unsafe { &self.ptr.as_ref().data }
364    }
365}
366
367impl<T: ?Sized> AsRef<T> for Arc<T> {
368    fn as_ref(&self) -> &T {
369        self.deref()
370    }
371}
372
373impl<T: ?Sized> Clone for Arc<T> {
374    fn clone(&self) -> Self {
375        // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero.
376        // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
377        // safe to increment the refcount.
378        unsafe { bindings::refcount_inc(self.ptr.as_ref().refcount.get()) };
379
380        // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`.
381        unsafe { Self::from_inner(self.ptr) }
382    }
383}
384
385impl<T: ?Sized> Drop for Arc<T> {
386    fn drop(&mut self) {
387        // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot
388        // touch `refcount` after it's decremented to a non-zero value because another thread/CPU
389        // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to
390        // freed/invalid memory as long as it is never dereferenced.
391        let refcount = unsafe { self.ptr.as_ref() }.refcount.get();
392
393        // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and
394        // this instance is being dropped, so the broken invariant is not observable.
395        // SAFETY: Also by the type invariant, we are allowed to decrement the refcount.
396        let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
397        if is_zero {
398            // The count reached zero, we must free the memory.
399            //
400            // SAFETY: The pointer was initialised from the result of `KBox::leak`.
401            unsafe { drop(KBox::from_raw(self.ptr.as_ptr())) };
402        }
403    }
404}
405
406impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> {
407    fn from(item: UniqueArc<T>) -> Self {
408        item.inner
409    }
410}
411
412impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> {
413    fn from(item: Pin<UniqueArc<T>>) -> Self {
414        // SAFETY: The type invariants of `Arc` guarantee that the data is pinned.
415        unsafe { Pin::into_inner_unchecked(item).inner }
416    }
417}
418
419/// A borrowed reference to an [`Arc`] instance.
420///
421/// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler
422/// to use just `&T`, which we can trivially get from an [`Arc<T>`] instance.
423///
424/// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>`
425/// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference)
426/// to a pointer ([`Arc<T>`]) to the object (`T`). An [`ArcBorrow`] eliminates this double
427/// indirection while still allowing one to increment the refcount and getting an [`Arc<T>`] when/if
428/// needed.
429///
430/// # Invariants
431///
432/// There are no mutable references to the underlying [`Arc`], and it remains valid for the
433/// lifetime of the [`ArcBorrow`] instance.
434///
435/// # Example
436///
437/// ```
438/// use kernel::sync::{Arc, ArcBorrow};
439///
440/// struct Example;
441///
442/// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> {
443///     e.into()
444/// }
445///
446/// let obj = Arc::new(Example, GFP_KERNEL)?;
447/// let cloned = do_something(obj.as_arc_borrow());
448///
449/// // Assert that both `obj` and `cloned` point to the same underlying object.
450/// assert!(core::ptr::eq(&*obj, &*cloned));
451/// # Ok::<(), Error>(())
452/// ```
453///
454/// Using `ArcBorrow<T>` as the type of `self`:
455///
456/// ```
457/// use kernel::sync::{Arc, ArcBorrow};
458///
459/// struct Example {
460///     a: u32,
461///     b: u32,
462/// }
463///
464/// impl Example {
465///     fn use_reference(self: ArcBorrow<'_, Self>) {
466///         // ...
467///     }
468/// }
469///
470/// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
471/// obj.as_arc_borrow().use_reference();
472/// # Ok::<(), Error>(())
473/// ```
474pub struct ArcBorrow<'a, T: ?Sized + 'a> {
475    inner: NonNull<ArcInner<T>>,
476    _p: PhantomData<&'a ()>,
477}
478
479// This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into
480// `ArcBorrow<U>`.
481impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>>
482    for ArcBorrow<'_, T>
483{
484}
485
486impl<T: ?Sized> Clone for ArcBorrow<'_, T> {
487    fn clone(&self) -> Self {
488        *self
489    }
490}
491
492impl<T: ?Sized> Copy for ArcBorrow<'_, T> {}
493
494impl<T: ?Sized> ArcBorrow<'_, T> {
495    /// Creates a new [`ArcBorrow`] instance.
496    ///
497    /// # Safety
498    ///
499    /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance:
500    /// 1. That `inner` remains valid;
501    /// 2. That no mutable references to `inner` are created.
502    unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self {
503        // INVARIANT: The safety requirements guarantee the invariants.
504        Self {
505            inner,
506            _p: PhantomData,
507        }
508    }
509
510    /// Creates an [`ArcBorrow`] to an [`Arc`] that has previously been deconstructed with
511    /// [`Arc::into_raw`].
512    ///
513    /// # Safety
514    ///
515    /// * The provided pointer must originate from a call to [`Arc::into_raw`].
516    /// * For the duration of the lifetime annotated on this `ArcBorrow`, the reference count must
517    ///   not hit zero.
518    /// * For the duration of the lifetime annotated on this `ArcBorrow`, there must not be a
519    ///   [`UniqueArc`] reference to this value.
520    pub unsafe fn from_raw(ptr: *const T) -> Self {
521        // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
522        // `Arc` that is still valid.
523        let ptr = unsafe { ArcInner::container_of(ptr) };
524
525        // SAFETY: The caller promises that the value remains valid since the reference count must
526        // not hit zero, and no mutable reference will be created since that would involve a
527        // `UniqueArc`.
528        unsafe { Self::new(ptr) }
529    }
530}
531
532impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> {
533    fn from(b: ArcBorrow<'_, T>) -> Self {
534        // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop`
535        // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the
536        // increment.
537        ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) })
538            .deref()
539            .clone()
540    }
541}
542
543impl<T: ?Sized> Deref for ArcBorrow<'_, T> {
544    type Target = T;
545
546    fn deref(&self) -> &Self::Target {
547        // SAFETY: By the type invariant, the underlying object is still alive with no mutable
548        // references to it, so it is safe to create a shared reference.
549        unsafe { &self.inner.as_ref().data }
550    }
551}
552
553/// A refcounted object that is known to have a refcount of 1.
554///
555/// It is mutable and can be converted to an [`Arc`] so that it can be shared.
556///
557/// # Invariants
558///
559/// `inner` always has a reference count of 1.
560///
561/// # Examples
562///
563/// In the following example, we make changes to the inner object before turning it into an
564/// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()`
565/// cannot fail.
566///
567/// ```
568/// use kernel::sync::{Arc, UniqueArc};
569///
570/// struct Example {
571///     a: u32,
572///     b: u32,
573/// }
574///
575/// fn test() -> Result<Arc<Example>> {
576///     let mut x = UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
577///     x.a += 1;
578///     x.b += 1;
579///     Ok(x.into())
580/// }
581///
582/// # test().unwrap();
583/// ```
584///
585/// In the following example we first allocate memory for a refcounted `Example` but we don't
586/// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`],
587/// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens
588/// in one context (e.g., sleepable) and initialisation in another (e.g., atomic):
589///
590/// ```
591/// use kernel::sync::{Arc, UniqueArc};
592///
593/// struct Example {
594///     a: u32,
595///     b: u32,
596/// }
597///
598/// fn test() -> Result<Arc<Example>> {
599///     let x = UniqueArc::new_uninit(GFP_KERNEL)?;
600///     Ok(x.write(Example { a: 10, b: 20 }).into())
601/// }
602///
603/// # test().unwrap();
604/// ```
605///
606/// In the last example below, the caller gets a pinned instance of `Example` while converting to
607/// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during
608/// initialisation, for example, when initialising fields that are wrapped in locks.
609///
610/// ```
611/// use kernel::sync::{Arc, UniqueArc};
612///
613/// struct Example {
614///     a: u32,
615///     b: u32,
616/// }
617///
618/// fn test() -> Result<Arc<Example>> {
619///     let mut pinned = Pin::from(UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?);
620///     // We can modify `pinned` because it is `Unpin`.
621///     pinned.as_mut().a += 1;
622///     Ok(pinned.into())
623/// }
624///
625/// # test().unwrap();
626/// ```
627pub struct UniqueArc<T: ?Sized> {
628    inner: Arc<T>,
629}
630
631impl<T> UniqueArc<T> {
632    /// Tries to allocate a new [`UniqueArc`] instance.
633    pub fn new(value: T, flags: Flags) -> Result<Self, AllocError> {
634        Ok(Self {
635            // INVARIANT: The newly-created object has a refcount of 1.
636            inner: Arc::new(value, flags)?,
637        })
638    }
639
640    /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet.
641    pub fn new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError> {
642        // INVARIANT: The refcount is initialised to a non-zero value.
643        let inner = KBox::try_init::<AllocError>(
644            try_init!(ArcInner {
645                // SAFETY: There are no safety requirements for this FFI call.
646                refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
647                data <- init::uninit::<T, AllocError>(),
648            }? AllocError),
649            flags,
650        )?;
651        Ok(UniqueArc {
652            // INVARIANT: The newly-created object has a refcount of 1.
653            // SAFETY: The pointer from the `KBox` is valid.
654            inner: unsafe { Arc::from_inner(KBox::leak(inner).into()) },
655        })
656    }
657}
658
659impl<T> UniqueArc<MaybeUninit<T>> {
660    /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it.
661    pub fn write(mut self, value: T) -> UniqueArc<T> {
662        self.deref_mut().write(value);
663        // SAFETY: We just wrote the value to be initialized.
664        unsafe { self.assume_init() }
665    }
666
667    /// Unsafely assume that `self` is initialized.
668    ///
669    /// # Safety
670    ///
671    /// The caller guarantees that the value behind this pointer has been initialized. It is
672    /// *immediate* UB to call this when the value is not initialized.
673    pub unsafe fn assume_init(self) -> UniqueArc<T> {
674        let inner = ManuallyDrop::new(self).inner.ptr;
675        UniqueArc {
676            // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be
677            // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`.
678            inner: unsafe { Arc::from_inner(inner.cast()) },
679        }
680    }
681
682    /// Initialize `self` using the given initializer.
683    pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> {
684        // SAFETY: The supplied pointer is valid for initialization.
685        match unsafe { init.__init(self.as_mut_ptr()) } {
686            // SAFETY: Initialization completed successfully.
687            Ok(()) => Ok(unsafe { self.assume_init() }),
688            Err(err) => Err(err),
689        }
690    }
691
692    /// Pin-initialize `self` using the given pin-initializer.
693    pub fn pin_init_with<E>(
694        mut self,
695        init: impl PinInit<T, E>,
696    ) -> core::result::Result<Pin<UniqueArc<T>>, E> {
697        // SAFETY: The supplied pointer is valid for initialization and we will later pin the value
698        // to ensure it does not move.
699        match unsafe { init.__pinned_init(self.as_mut_ptr()) } {
700            // SAFETY: Initialization completed successfully.
701            Ok(()) => Ok(unsafe { self.assume_init() }.into()),
702            Err(err) => Err(err),
703        }
704    }
705}
706
707impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> {
708    fn from(obj: UniqueArc<T>) -> Self {
709        // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T`
710        // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`.
711        unsafe { Pin::new_unchecked(obj) }
712    }
713}
714
715impl<T: ?Sized> Deref for UniqueArc<T> {
716    type Target = T;
717
718    fn deref(&self) -> &Self::Target {
719        self.inner.deref()
720    }
721}
722
723impl<T: ?Sized> DerefMut for UniqueArc<T> {
724    fn deref_mut(&mut self) -> &mut Self::Target {
725        // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so
726        // it is safe to dereference it. Additionally, we know there is only one reference when
727        // it's inside a `UniqueArc`, so it is safe to get a mutable reference.
728        unsafe { &mut self.inner.ptr.as_mut().data }
729    }
730}
731
732impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> {
733    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
734        fmt::Display::fmt(self.deref(), f)
735    }
736}
737
738impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> {
739    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
740        fmt::Display::fmt(self.deref(), f)
741    }
742}
743
744impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> {
745    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
746        fmt::Debug::fmt(self.deref(), f)
747    }
748}
749
750impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> {
751    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
752        fmt::Debug::fmt(self.deref(), f)
753    }
754}