Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.9.
  1/* gf128mul.c - GF(2^128) multiplication functions
  2 *
  3 * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.
  4 * Copyright (c) 2006, Rik Snel <rsnel@cube.dyndns.org>
  5 *
  6 * Based on Dr Brian Gladman's (GPL'd) work published at
  7 * http://gladman.plushost.co.uk/oldsite/cryptography_technology/index.php
  8 * See the original copyright notice below.
  9 *
 10 * This program is free software; you can redistribute it and/or modify it
 11 * under the terms of the GNU General Public License as published by the Free
 12 * Software Foundation; either version 2 of the License, or (at your option)
 13 * any later version.
 14 */
 15
 16/*
 17 ---------------------------------------------------------------------------
 18 Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.   All rights reserved.
 19
 20 LICENSE TERMS
 21
 22 The free distribution and use of this software in both source and binary
 23 form is allowed (with or without changes) provided that:
 24
 25   1. distributions of this source code include the above copyright
 26      notice, this list of conditions and the following disclaimer;
 27
 28   2. distributions in binary form include the above copyright
 29      notice, this list of conditions and the following disclaimer
 30      in the documentation and/or other associated materials;
 31
 32   3. the copyright holder's name is not used to endorse products
 33      built using this software without specific written permission.
 34
 35 ALTERNATIVELY, provided that this notice is retained in full, this product
 36 may be distributed under the terms of the GNU General Public License (GPL),
 37 in which case the provisions of the GPL apply INSTEAD OF those given above.
 38
 39 DISCLAIMER
 40
 41 This software is provided 'as is' with no explicit or implied warranties
 42 in respect of its properties, including, but not limited to, correctness
 43 and/or fitness for purpose.
 44 ---------------------------------------------------------------------------
 45 Issue 31/01/2006
 46
 47 This file provides fast multiplication in GF(2^128) as required by several
 48 cryptographic authentication modes
 49*/
 50
 51#include <crypto/gf128mul.h>
 52#include <linux/kernel.h>
 53#include <linux/module.h>
 54#include <linux/slab.h>
 55
 56#define gf128mul_dat(q) { \
 57	q(0x00), q(0x01), q(0x02), q(0x03), q(0x04), q(0x05), q(0x06), q(0x07),\
 58	q(0x08), q(0x09), q(0x0a), q(0x0b), q(0x0c), q(0x0d), q(0x0e), q(0x0f),\
 59	q(0x10), q(0x11), q(0x12), q(0x13), q(0x14), q(0x15), q(0x16), q(0x17),\
 60	q(0x18), q(0x19), q(0x1a), q(0x1b), q(0x1c), q(0x1d), q(0x1e), q(0x1f),\
 61	q(0x20), q(0x21), q(0x22), q(0x23), q(0x24), q(0x25), q(0x26), q(0x27),\
 62	q(0x28), q(0x29), q(0x2a), q(0x2b), q(0x2c), q(0x2d), q(0x2e), q(0x2f),\
 63	q(0x30), q(0x31), q(0x32), q(0x33), q(0x34), q(0x35), q(0x36), q(0x37),\
 64	q(0x38), q(0x39), q(0x3a), q(0x3b), q(0x3c), q(0x3d), q(0x3e), q(0x3f),\
 65	q(0x40), q(0x41), q(0x42), q(0x43), q(0x44), q(0x45), q(0x46), q(0x47),\
 66	q(0x48), q(0x49), q(0x4a), q(0x4b), q(0x4c), q(0x4d), q(0x4e), q(0x4f),\
 67	q(0x50), q(0x51), q(0x52), q(0x53), q(0x54), q(0x55), q(0x56), q(0x57),\
 68	q(0x58), q(0x59), q(0x5a), q(0x5b), q(0x5c), q(0x5d), q(0x5e), q(0x5f),\
 69	q(0x60), q(0x61), q(0x62), q(0x63), q(0x64), q(0x65), q(0x66), q(0x67),\
 70	q(0x68), q(0x69), q(0x6a), q(0x6b), q(0x6c), q(0x6d), q(0x6e), q(0x6f),\
 71	q(0x70), q(0x71), q(0x72), q(0x73), q(0x74), q(0x75), q(0x76), q(0x77),\
 72	q(0x78), q(0x79), q(0x7a), q(0x7b), q(0x7c), q(0x7d), q(0x7e), q(0x7f),\
 73	q(0x80), q(0x81), q(0x82), q(0x83), q(0x84), q(0x85), q(0x86), q(0x87),\
 74	q(0x88), q(0x89), q(0x8a), q(0x8b), q(0x8c), q(0x8d), q(0x8e), q(0x8f),\
 75	q(0x90), q(0x91), q(0x92), q(0x93), q(0x94), q(0x95), q(0x96), q(0x97),\
 76	q(0x98), q(0x99), q(0x9a), q(0x9b), q(0x9c), q(0x9d), q(0x9e), q(0x9f),\
 77	q(0xa0), q(0xa1), q(0xa2), q(0xa3), q(0xa4), q(0xa5), q(0xa6), q(0xa7),\
 78	q(0xa8), q(0xa9), q(0xaa), q(0xab), q(0xac), q(0xad), q(0xae), q(0xaf),\
 79	q(0xb0), q(0xb1), q(0xb2), q(0xb3), q(0xb4), q(0xb5), q(0xb6), q(0xb7),\
 80	q(0xb8), q(0xb9), q(0xba), q(0xbb), q(0xbc), q(0xbd), q(0xbe), q(0xbf),\
 81	q(0xc0), q(0xc1), q(0xc2), q(0xc3), q(0xc4), q(0xc5), q(0xc6), q(0xc7),\
 82	q(0xc8), q(0xc9), q(0xca), q(0xcb), q(0xcc), q(0xcd), q(0xce), q(0xcf),\
 83	q(0xd0), q(0xd1), q(0xd2), q(0xd3), q(0xd4), q(0xd5), q(0xd6), q(0xd7),\
 84	q(0xd8), q(0xd9), q(0xda), q(0xdb), q(0xdc), q(0xdd), q(0xde), q(0xdf),\
 85	q(0xe0), q(0xe1), q(0xe2), q(0xe3), q(0xe4), q(0xe5), q(0xe6), q(0xe7),\
 86	q(0xe8), q(0xe9), q(0xea), q(0xeb), q(0xec), q(0xed), q(0xee), q(0xef),\
 87	q(0xf0), q(0xf1), q(0xf2), q(0xf3), q(0xf4), q(0xf5), q(0xf6), q(0xf7),\
 88	q(0xf8), q(0xf9), q(0xfa), q(0xfb), q(0xfc), q(0xfd), q(0xfe), q(0xff) \
 89}
 90
 91/*
 92 * Given a value i in 0..255 as the byte overflow when a field element
 93 * in GF(2^128) is multiplied by x^8, the following macro returns the
 94 * 16-bit value that must be XOR-ed into the low-degree end of the
 95 * product to reduce it modulo the polynomial x^128 + x^7 + x^2 + x + 1.
 96 *
 97 * There are two versions of the macro, and hence two tables: one for
 98 * the "be" convention where the highest-order bit is the coefficient of
 99 * the highest-degree polynomial term, and one for the "le" convention
100 * where the highest-order bit is the coefficient of the lowest-degree
101 * polynomial term.  In both cases the values are stored in CPU byte
102 * endianness such that the coefficients are ordered consistently across
103 * bytes, i.e. in the "be" table bits 15..0 of the stored value
104 * correspond to the coefficients of x^15..x^0, and in the "le" table
105 * bits 15..0 correspond to the coefficients of x^0..x^15.
106 *
107 * Therefore, provided that the appropriate byte endianness conversions
108 * are done by the multiplication functions (and these must be in place
109 * anyway to support both little endian and big endian CPUs), the "be"
110 * table can be used for multiplications of both "bbe" and "ble"
111 * elements, and the "le" table can be used for multiplications of both
112 * "lle" and "lbe" elements.
113 */
114
115#define xda_be(i) ( \
116	(i & 0x80 ? 0x4380 : 0) ^ (i & 0x40 ? 0x21c0 : 0) ^ \
117	(i & 0x20 ? 0x10e0 : 0) ^ (i & 0x10 ? 0x0870 : 0) ^ \
118	(i & 0x08 ? 0x0438 : 0) ^ (i & 0x04 ? 0x021c : 0) ^ \
119	(i & 0x02 ? 0x010e : 0) ^ (i & 0x01 ? 0x0087 : 0) \
120)
121
122#define xda_le(i) ( \
123	(i & 0x80 ? 0xe100 : 0) ^ (i & 0x40 ? 0x7080 : 0) ^ \
124	(i & 0x20 ? 0x3840 : 0) ^ (i & 0x10 ? 0x1c20 : 0) ^ \
125	(i & 0x08 ? 0x0e10 : 0) ^ (i & 0x04 ? 0x0708 : 0) ^ \
126	(i & 0x02 ? 0x0384 : 0) ^ (i & 0x01 ? 0x01c2 : 0) \
127)
128
129static const u16 gf128mul_table_le[256] = gf128mul_dat(xda_le);
130static const u16 gf128mul_table_be[256] = gf128mul_dat(xda_be);
131
132/*
133 * The following functions multiply a field element by x^8 in
134 * the polynomial field representation.  They use 64-bit word operations
135 * to gain speed but compensate for machine endianness and hence work
136 * correctly on both styles of machine.
137 */
138
139static void gf128mul_x8_lle(be128 *x)
140{
141	u64 a = be64_to_cpu(x->a);
142	u64 b = be64_to_cpu(x->b);
143	u64 _tt = gf128mul_table_le[b & 0xff];
144
145	x->b = cpu_to_be64((b >> 8) | (a << 56));
146	x->a = cpu_to_be64((a >> 8) ^ (_tt << 48));
147}
148
149/* time invariant version of gf128mul_x8_lle */
150static void gf128mul_x8_lle_ti(be128 *x)
151{
152	u64 a = be64_to_cpu(x->a);
153	u64 b = be64_to_cpu(x->b);
154	u64 _tt = xda_le(b & 0xff); /* avoid table lookup */
155
156	x->b = cpu_to_be64((b >> 8) | (a << 56));
157	x->a = cpu_to_be64((a >> 8) ^ (_tt << 48));
158}
159
160static void gf128mul_x8_bbe(be128 *x)
161{
162	u64 a = be64_to_cpu(x->a);
163	u64 b = be64_to_cpu(x->b);
164	u64 _tt = gf128mul_table_be[a >> 56];
165
166	x->a = cpu_to_be64((a << 8) | (b >> 56));
167	x->b = cpu_to_be64((b << 8) ^ _tt);
168}
169
170void gf128mul_x8_ble(le128 *r, const le128 *x)
171{
172	u64 a = le64_to_cpu(x->a);
173	u64 b = le64_to_cpu(x->b);
174	u64 _tt = gf128mul_table_be[a >> 56];
175
176	r->a = cpu_to_le64((a << 8) | (b >> 56));
177	r->b = cpu_to_le64((b << 8) ^ _tt);
178}
179EXPORT_SYMBOL(gf128mul_x8_ble);
180
181void gf128mul_lle(be128 *r, const be128 *b)
182{
183	/*
184	 * The p array should be aligned to twice the size of its element type,
185	 * so that every even/odd pair is guaranteed to share a cacheline
186	 * (assuming a cacheline size of 32 bytes or more, which is by far the
187	 * most common). This ensures that each be128_xor() call in the loop
188	 * takes the same amount of time regardless of the value of 'ch', which
189	 * is derived from function parameter 'b', which is commonly used as a
190	 * key, e.g., for GHASH. The odd array elements are all set to zero,
191	 * making each be128_xor() a NOP if its associated bit in 'ch' is not
192	 * set, and this is equivalent to calling be128_xor() conditionally.
193	 * This approach aims to avoid leaking information about such keys
194	 * through execution time variances.
195	 *
196	 * Unfortunately, __aligned(16) or higher does not work on x86 for
197	 * variables on the stack so we need to perform the alignment by hand.
198	 */
199	be128 array[16 + 3] = {};
200	be128 *p = PTR_ALIGN(&array[0], 2 * sizeof(be128));
201	int i;
202
203	p[0] = *r;
204	for (i = 0; i < 7; ++i)
205		gf128mul_x_lle(&p[2 * i + 2], &p[2 * i]);
206
207	memset(r, 0, sizeof(*r));
208	for (i = 0;;) {
209		u8 ch = ((u8 *)b)[15 - i];
210
211		be128_xor(r, r, &p[ 0 + !(ch & 0x80)]);
212		be128_xor(r, r, &p[ 2 + !(ch & 0x40)]);
213		be128_xor(r, r, &p[ 4 + !(ch & 0x20)]);
214		be128_xor(r, r, &p[ 6 + !(ch & 0x10)]);
215		be128_xor(r, r, &p[ 8 + !(ch & 0x08)]);
216		be128_xor(r, r, &p[10 + !(ch & 0x04)]);
217		be128_xor(r, r, &p[12 + !(ch & 0x02)]);
218		be128_xor(r, r, &p[14 + !(ch & 0x01)]);
219
220		if (++i >= 16)
221			break;
222
223		gf128mul_x8_lle_ti(r); /* use the time invariant version */
224	}
225}
226EXPORT_SYMBOL(gf128mul_lle);
227
228void gf128mul_bbe(be128 *r, const be128 *b)
229{
230	be128 p[8];
231	int i;
232
233	p[0] = *r;
234	for (i = 0; i < 7; ++i)
235		gf128mul_x_bbe(&p[i + 1], &p[i]);
236
237	memset(r, 0, sizeof(*r));
238	for (i = 0;;) {
239		u8 ch = ((u8 *)b)[i];
240
241		if (ch & 0x80)
242			be128_xor(r, r, &p[7]);
243		if (ch & 0x40)
244			be128_xor(r, r, &p[6]);
245		if (ch & 0x20)
246			be128_xor(r, r, &p[5]);
247		if (ch & 0x10)
248			be128_xor(r, r, &p[4]);
249		if (ch & 0x08)
250			be128_xor(r, r, &p[3]);
251		if (ch & 0x04)
252			be128_xor(r, r, &p[2]);
253		if (ch & 0x02)
254			be128_xor(r, r, &p[1]);
255		if (ch & 0x01)
256			be128_xor(r, r, &p[0]);
257
258		if (++i >= 16)
259			break;
260
261		gf128mul_x8_bbe(r);
262	}
263}
264EXPORT_SYMBOL(gf128mul_bbe);
265
266/*      This version uses 64k bytes of table space.
267    A 16 byte buffer has to be multiplied by a 16 byte key
268    value in GF(2^128).  If we consider a GF(2^128) value in
269    the buffer's lowest byte, we can construct a table of
270    the 256 16 byte values that result from the 256 values
271    of this byte.  This requires 4096 bytes. But we also
272    need tables for each of the 16 higher bytes in the
273    buffer as well, which makes 64 kbytes in total.
274*/
275/* additional explanation
276 * t[0][BYTE] contains g*BYTE
277 * t[1][BYTE] contains g*x^8*BYTE
278 *  ..
279 * t[15][BYTE] contains g*x^120*BYTE */
280struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g)
281{
282	struct gf128mul_64k *t;
283	int i, j, k;
284
285	t = kzalloc(sizeof(*t), GFP_KERNEL);
286	if (!t)
287		goto out;
288
289	for (i = 0; i < 16; i++) {
290		t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL);
291		if (!t->t[i]) {
292			gf128mul_free_64k(t);
293			t = NULL;
294			goto out;
295		}
296	}
297
298	t->t[0]->t[1] = *g;
299	for (j = 1; j <= 64; j <<= 1)
300		gf128mul_x_bbe(&t->t[0]->t[j + j], &t->t[0]->t[j]);
301
302	for (i = 0;;) {
303		for (j = 2; j < 256; j += j)
304			for (k = 1; k < j; ++k)
305				be128_xor(&t->t[i]->t[j + k],
306					  &t->t[i]->t[j], &t->t[i]->t[k]);
307
308		if (++i >= 16)
309			break;
310
311		for (j = 128; j > 0; j >>= 1) {
312			t->t[i]->t[j] = t->t[i - 1]->t[j];
313			gf128mul_x8_bbe(&t->t[i]->t[j]);
314		}
315	}
316
317out:
318	return t;
319}
320EXPORT_SYMBOL(gf128mul_init_64k_bbe);
321
322void gf128mul_free_64k(struct gf128mul_64k *t)
323{
324	int i;
325
326	for (i = 0; i < 16; i++)
327		kfree_sensitive(t->t[i]);
328	kfree_sensitive(t);
329}
330EXPORT_SYMBOL(gf128mul_free_64k);
331
332void gf128mul_64k_bbe(be128 *a, const struct gf128mul_64k *t)
333{
334	u8 *ap = (u8 *)a;
335	be128 r[1];
336	int i;
337
338	*r = t->t[0]->t[ap[15]];
339	for (i = 1; i < 16; ++i)
340		be128_xor(r, r, &t->t[i]->t[ap[15 - i]]);
341	*a = *r;
342}
343EXPORT_SYMBOL(gf128mul_64k_bbe);
344
345/*      This version uses 4k bytes of table space.
346    A 16 byte buffer has to be multiplied by a 16 byte key
347    value in GF(2^128).  If we consider a GF(2^128) value in a
348    single byte, we can construct a table of the 256 16 byte
349    values that result from the 256 values of this byte.
350    This requires 4096 bytes. If we take the highest byte in
351    the buffer and use this table to get the result, we then
352    have to multiply by x^120 to get the final value. For the
353    next highest byte the result has to be multiplied by x^112
354    and so on. But we can do this by accumulating the result
355    in an accumulator starting with the result for the top
356    byte.  We repeatedly multiply the accumulator value by
357    x^8 and then add in (i.e. xor) the 16 bytes of the next
358    lower byte in the buffer, stopping when we reach the
359    lowest byte. This requires a 4096 byte table.
360*/
361struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g)
362{
363	struct gf128mul_4k *t;
364	int j, k;
365
366	t = kzalloc(sizeof(*t), GFP_KERNEL);
367	if (!t)
368		goto out;
369
370	t->t[128] = *g;
371	for (j = 64; j > 0; j >>= 1)
372		gf128mul_x_lle(&t->t[j], &t->t[j+j]);
373
374	for (j = 2; j < 256; j += j)
375		for (k = 1; k < j; ++k)
376			be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);
377
378out:
379	return t;
380}
381EXPORT_SYMBOL(gf128mul_init_4k_lle);
382
383struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g)
384{
385	struct gf128mul_4k *t;
386	int j, k;
387
388	t = kzalloc(sizeof(*t), GFP_KERNEL);
389	if (!t)
390		goto out;
391
392	t->t[1] = *g;
393	for (j = 1; j <= 64; j <<= 1)
394		gf128mul_x_bbe(&t->t[j + j], &t->t[j]);
395
396	for (j = 2; j < 256; j += j)
397		for (k = 1; k < j; ++k)
398			be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);
399
400out:
401	return t;
402}
403EXPORT_SYMBOL(gf128mul_init_4k_bbe);
404
405void gf128mul_4k_lle(be128 *a, const struct gf128mul_4k *t)
406{
407	u8 *ap = (u8 *)a;
408	be128 r[1];
409	int i = 15;
410
411	*r = t->t[ap[15]];
412	while (i--) {
413		gf128mul_x8_lle(r);
414		be128_xor(r, r, &t->t[ap[i]]);
415	}
416	*a = *r;
417}
418EXPORT_SYMBOL(gf128mul_4k_lle);
419
420void gf128mul_4k_bbe(be128 *a, const struct gf128mul_4k *t)
421{
422	u8 *ap = (u8 *)a;
423	be128 r[1];
424	int i = 0;
425
426	*r = t->t[ap[0]];
427	while (++i < 16) {
428		gf128mul_x8_bbe(r);
429		be128_xor(r, r, &t->t[ap[i]]);
430	}
431	*a = *r;
432}
433EXPORT_SYMBOL(gf128mul_4k_bbe);
434
435MODULE_LICENSE("GPL");
436MODULE_DESCRIPTION("Functions for multiplying elements of GF(2^128)");