Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _KERNEL_STATS_H
3#define _KERNEL_STATS_H
4
5#ifdef CONFIG_SCHEDSTATS
6
7extern struct static_key_false sched_schedstats;
8
9/*
10 * Expects runqueue lock to be held for atomicity of update
11 */
12static inline void
13rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
14{
15 if (rq) {
16 rq->rq_sched_info.run_delay += delta;
17 rq->rq_sched_info.pcount++;
18 }
19}
20
21/*
22 * Expects runqueue lock to be held for atomicity of update
23 */
24static inline void
25rq_sched_info_depart(struct rq *rq, unsigned long long delta)
26{
27 if (rq)
28 rq->rq_cpu_time += delta;
29}
30
31static inline void
32rq_sched_info_dequeue(struct rq *rq, unsigned long long delta)
33{
34 if (rq)
35 rq->rq_sched_info.run_delay += delta;
36}
37#define schedstat_enabled() static_branch_unlikely(&sched_schedstats)
38#define __schedstat_inc(var) do { var++; } while (0)
39#define schedstat_inc(var) do { if (schedstat_enabled()) { var++; } } while (0)
40#define __schedstat_add(var, amt) do { var += (amt); } while (0)
41#define schedstat_add(var, amt) do { if (schedstat_enabled()) { var += (amt); } } while (0)
42#define __schedstat_set(var, val) do { var = (val); } while (0)
43#define schedstat_set(var, val) do { if (schedstat_enabled()) { var = (val); } } while (0)
44#define schedstat_val(var) (var)
45#define schedstat_val_or_zero(var) ((schedstat_enabled()) ? (var) : 0)
46
47void __update_stats_wait_start(struct rq *rq, struct task_struct *p,
48 struct sched_statistics *stats);
49
50void __update_stats_wait_end(struct rq *rq, struct task_struct *p,
51 struct sched_statistics *stats);
52void __update_stats_enqueue_sleeper(struct rq *rq, struct task_struct *p,
53 struct sched_statistics *stats);
54
55static inline void
56check_schedstat_required(void)
57{
58 if (schedstat_enabled())
59 return;
60
61 /* Force schedstat enabled if a dependent tracepoint is active */
62 if (trace_sched_stat_wait_enabled() ||
63 trace_sched_stat_sleep_enabled() ||
64 trace_sched_stat_iowait_enabled() ||
65 trace_sched_stat_blocked_enabled() ||
66 trace_sched_stat_runtime_enabled())
67 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, stat_blocked and stat_runtime require the kernel parameter schedstats=enable or kernel.sched_schedstats=1\n");
68}
69
70#else /* !CONFIG_SCHEDSTATS: */
71
72static inline void rq_sched_info_arrive (struct rq *rq, unsigned long long delta) { }
73static inline void rq_sched_info_dequeue(struct rq *rq, unsigned long long delta) { }
74static inline void rq_sched_info_depart (struct rq *rq, unsigned long long delta) { }
75# define schedstat_enabled() 0
76# define __schedstat_inc(var) do { } while (0)
77# define schedstat_inc(var) do { } while (0)
78# define __schedstat_add(var, amt) do { } while (0)
79# define schedstat_add(var, amt) do { } while (0)
80# define __schedstat_set(var, val) do { } while (0)
81# define schedstat_set(var, val) do { } while (0)
82# define schedstat_val(var) 0
83# define schedstat_val_or_zero(var) 0
84
85# define __update_stats_wait_start(rq, p, stats) do { } while (0)
86# define __update_stats_wait_end(rq, p, stats) do { } while (0)
87# define __update_stats_enqueue_sleeper(rq, p, stats) do { } while (0)
88# define check_schedstat_required() do { } while (0)
89
90#endif /* CONFIG_SCHEDSTATS */
91
92#ifdef CONFIG_FAIR_GROUP_SCHED
93struct sched_entity_stats {
94 struct sched_entity se;
95 struct sched_statistics stats;
96} __no_randomize_layout;
97#endif
98
99static inline struct sched_statistics *
100__schedstats_from_se(struct sched_entity *se)
101{
102#ifdef CONFIG_FAIR_GROUP_SCHED
103 if (!entity_is_task(se))
104 return &container_of(se, struct sched_entity_stats, se)->stats;
105#endif
106 return &task_of(se)->stats;
107}
108
109#ifdef CONFIG_PSI
110void psi_task_change(struct task_struct *task, int clear, int set);
111void psi_task_switch(struct task_struct *prev, struct task_struct *next,
112 bool sleep);
113#ifdef CONFIG_IRQ_TIME_ACCOUNTING
114void psi_account_irqtime(struct rq *rq, struct task_struct *curr, struct task_struct *prev);
115#else
116static inline void psi_account_irqtime(struct rq *rq, struct task_struct *curr,
117 struct task_struct *prev) {}
118#endif /*CONFIG_IRQ_TIME_ACCOUNTING */
119/*
120 * PSI tracks state that persists across sleeps, such as iowaits and
121 * memory stalls. As a result, it has to distinguish between sleeps,
122 * where a task's runnable state changes, and migrations, where a task
123 * and its runnable state are being moved between CPUs and runqueues.
124 *
125 * A notable case is a task whose dequeue is delayed. PSI considers
126 * those sleeping, but because they are still on the runqueue they can
127 * go through migration requeues. In this case, *sleeping* states need
128 * to be transferred.
129 */
130static inline void psi_enqueue(struct task_struct *p, int flags)
131{
132 int clear = 0, set = 0;
133
134 if (static_branch_likely(&psi_disabled))
135 return;
136
137 /* Same runqueue, nothing changed for psi */
138 if (flags & ENQUEUE_RESTORE)
139 return;
140
141 /* psi_sched_switch() will handle the flags */
142 if (task_on_cpu(task_rq(p), p))
143 return;
144
145 if (p->se.sched_delayed) {
146 /* CPU migration of "sleeping" task */
147 SCHED_WARN_ON(!(flags & ENQUEUE_MIGRATED));
148 if (p->in_memstall)
149 set |= TSK_MEMSTALL;
150 if (p->in_iowait)
151 set |= TSK_IOWAIT;
152 } else if (flags & ENQUEUE_MIGRATED) {
153 /* CPU migration of runnable task */
154 set = TSK_RUNNING;
155 if (p->in_memstall)
156 set |= TSK_MEMSTALL | TSK_MEMSTALL_RUNNING;
157 } else {
158 /* Wakeup of new or sleeping task */
159 if (p->in_iowait)
160 clear |= TSK_IOWAIT;
161 set = TSK_RUNNING;
162 if (p->in_memstall)
163 set |= TSK_MEMSTALL_RUNNING;
164 }
165
166 psi_task_change(p, clear, set);
167}
168
169static inline void psi_dequeue(struct task_struct *p, int flags)
170{
171 if (static_branch_likely(&psi_disabled))
172 return;
173
174 /* Same runqueue, nothing changed for psi */
175 if (flags & DEQUEUE_SAVE)
176 return;
177
178 /*
179 * A voluntary sleep is a dequeue followed by a task switch. To
180 * avoid walking all ancestors twice, psi_task_switch() handles
181 * TSK_RUNNING and TSK_IOWAIT for us when it moves TSK_ONCPU.
182 * Do nothing here.
183 */
184 if (flags & DEQUEUE_SLEEP)
185 return;
186
187 /*
188 * When migrating a task to another CPU, clear all psi
189 * state. The enqueue callback above will work it out.
190 */
191 psi_task_change(p, p->psi_flags, 0);
192}
193
194static inline void psi_ttwu_dequeue(struct task_struct *p)
195{
196 if (static_branch_likely(&psi_disabled))
197 return;
198 /*
199 * Is the task being migrated during a wakeup? Make sure to
200 * deregister its sleep-persistent psi states from the old
201 * queue, and let psi_enqueue() know it has to requeue.
202 */
203 if (unlikely(p->psi_flags)) {
204 struct rq_flags rf;
205 struct rq *rq;
206
207 rq = __task_rq_lock(p, &rf);
208 psi_task_change(p, p->psi_flags, 0);
209 __task_rq_unlock(rq, &rf);
210 }
211}
212
213static inline void psi_sched_switch(struct task_struct *prev,
214 struct task_struct *next,
215 bool sleep)
216{
217 if (static_branch_likely(&psi_disabled))
218 return;
219
220 psi_task_switch(prev, next, sleep);
221}
222
223#else /* CONFIG_PSI */
224static inline void psi_enqueue(struct task_struct *p, bool migrate) {}
225static inline void psi_dequeue(struct task_struct *p, bool migrate) {}
226static inline void psi_ttwu_dequeue(struct task_struct *p) {}
227static inline void psi_sched_switch(struct task_struct *prev,
228 struct task_struct *next,
229 bool sleep) {}
230static inline void psi_account_irqtime(struct rq *rq, struct task_struct *curr,
231 struct task_struct *prev) {}
232#endif /* CONFIG_PSI */
233
234#ifdef CONFIG_SCHED_INFO
235/*
236 * We are interested in knowing how long it was from the *first* time a
237 * task was queued to the time that it finally hit a CPU, we call this routine
238 * from dequeue_task() to account for possible rq->clock skew across CPUs. The
239 * delta taken on each CPU would annul the skew.
240 */
241static inline void sched_info_dequeue(struct rq *rq, struct task_struct *t)
242{
243 unsigned long long delta = 0;
244
245 if (!t->sched_info.last_queued)
246 return;
247
248 delta = rq_clock(rq) - t->sched_info.last_queued;
249 t->sched_info.last_queued = 0;
250 t->sched_info.run_delay += delta;
251
252 rq_sched_info_dequeue(rq, delta);
253}
254
255/*
256 * Called when a task finally hits the CPU. We can now calculate how
257 * long it was waiting to run. We also note when it began so that we
258 * can keep stats on how long its time-slice is.
259 */
260static void sched_info_arrive(struct rq *rq, struct task_struct *t)
261{
262 unsigned long long now, delta = 0;
263
264 if (!t->sched_info.last_queued)
265 return;
266
267 now = rq_clock(rq);
268 delta = now - t->sched_info.last_queued;
269 t->sched_info.last_queued = 0;
270 t->sched_info.run_delay += delta;
271 t->sched_info.last_arrival = now;
272 t->sched_info.pcount++;
273
274 rq_sched_info_arrive(rq, delta);
275}
276
277/*
278 * This function is only called from enqueue_task(), but also only updates
279 * the timestamp if it is already not set. It's assumed that
280 * sched_info_dequeue() will clear that stamp when appropriate.
281 */
282static inline void sched_info_enqueue(struct rq *rq, struct task_struct *t)
283{
284 if (!t->sched_info.last_queued)
285 t->sched_info.last_queued = rq_clock(rq);
286}
287
288/*
289 * Called when a process ceases being the active-running process involuntarily
290 * due, typically, to expiring its time slice (this may also be called when
291 * switching to the idle task). Now we can calculate how long we ran.
292 * Also, if the process is still in the TASK_RUNNING state, call
293 * sched_info_enqueue() to mark that it has now again started waiting on
294 * the runqueue.
295 */
296static inline void sched_info_depart(struct rq *rq, struct task_struct *t)
297{
298 unsigned long long delta = rq_clock(rq) - t->sched_info.last_arrival;
299
300 rq_sched_info_depart(rq, delta);
301
302 if (task_is_running(t))
303 sched_info_enqueue(rq, t);
304}
305
306/*
307 * Called when tasks are switched involuntarily due, typically, to expiring
308 * their time slice. (This may also be called when switching to or from
309 * the idle task.) We are only called when prev != next.
310 */
311static inline void
312sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
313{
314 /*
315 * prev now departs the CPU. It's not interesting to record
316 * stats about how efficient we were at scheduling the idle
317 * process, however.
318 */
319 if (prev != rq->idle)
320 sched_info_depart(rq, prev);
321
322 if (next != rq->idle)
323 sched_info_arrive(rq, next);
324}
325
326#else /* !CONFIG_SCHED_INFO: */
327# define sched_info_enqueue(rq, t) do { } while (0)
328# define sched_info_dequeue(rq, t) do { } while (0)
329# define sched_info_switch(rq, t, next) do { } while (0)
330#endif /* CONFIG_SCHED_INFO */
331
332#endif /* _KERNEL_STATS_H */
1/* SPDX-License-Identifier: GPL-2.0 */
2
3#ifdef CONFIG_SCHEDSTATS
4
5/*
6 * Expects runqueue lock to be held for atomicity of update
7 */
8static inline void
9rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
10{
11 if (rq) {
12 rq->rq_sched_info.run_delay += delta;
13 rq->rq_sched_info.pcount++;
14 }
15}
16
17/*
18 * Expects runqueue lock to be held for atomicity of update
19 */
20static inline void
21rq_sched_info_depart(struct rq *rq, unsigned long long delta)
22{
23 if (rq)
24 rq->rq_cpu_time += delta;
25}
26
27static inline void
28rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
29{
30 if (rq)
31 rq->rq_sched_info.run_delay += delta;
32}
33#define schedstat_enabled() static_branch_unlikely(&sched_schedstats)
34#define __schedstat_inc(var) do { var++; } while (0)
35#define schedstat_inc(var) do { if (schedstat_enabled()) { var++; } } while (0)
36#define __schedstat_add(var, amt) do { var += (amt); } while (0)
37#define schedstat_add(var, amt) do { if (schedstat_enabled()) { var += (amt); } } while (0)
38#define __schedstat_set(var, val) do { var = (val); } while (0)
39#define schedstat_set(var, val) do { if (schedstat_enabled()) { var = (val); } } while (0)
40#define schedstat_val(var) (var)
41#define schedstat_val_or_zero(var) ((schedstat_enabled()) ? (var) : 0)
42
43#else /* !CONFIG_SCHEDSTATS: */
44static inline void rq_sched_info_arrive (struct rq *rq, unsigned long long delta) { }
45static inline void rq_sched_info_dequeued(struct rq *rq, unsigned long long delta) { }
46static inline void rq_sched_info_depart (struct rq *rq, unsigned long long delta) { }
47# define schedstat_enabled() 0
48# define __schedstat_inc(var) do { } while (0)
49# define schedstat_inc(var) do { } while (0)
50# define __schedstat_add(var, amt) do { } while (0)
51# define schedstat_add(var, amt) do { } while (0)
52# define __schedstat_set(var, val) do { } while (0)
53# define schedstat_set(var, val) do { } while (0)
54# define schedstat_val(var) 0
55# define schedstat_val_or_zero(var) 0
56#endif /* CONFIG_SCHEDSTATS */
57
58#ifdef CONFIG_PSI
59/*
60 * PSI tracks state that persists across sleeps, such as iowaits and
61 * memory stalls. As a result, it has to distinguish between sleeps,
62 * where a task's runnable state changes, and requeues, where a task
63 * and its state are being moved between CPUs and runqueues.
64 */
65static inline void psi_enqueue(struct task_struct *p, bool wakeup)
66{
67 int clear = 0, set = TSK_RUNNING;
68
69 if (static_branch_likely(&psi_disabled))
70 return;
71
72 if (!wakeup || p->sched_psi_wake_requeue) {
73 if (p->in_memstall)
74 set |= TSK_MEMSTALL;
75 if (p->sched_psi_wake_requeue)
76 p->sched_psi_wake_requeue = 0;
77 } else {
78 if (p->in_iowait)
79 clear |= TSK_IOWAIT;
80 }
81
82 psi_task_change(p, clear, set);
83}
84
85static inline void psi_dequeue(struct task_struct *p, bool sleep)
86{
87 int clear = TSK_RUNNING, set = 0;
88
89 if (static_branch_likely(&psi_disabled))
90 return;
91
92 if (!sleep) {
93 if (p->in_memstall)
94 clear |= TSK_MEMSTALL;
95 } else {
96 /*
97 * When a task sleeps, schedule() dequeues it before
98 * switching to the next one. Merge the clearing of
99 * TSK_RUNNING and TSK_ONCPU to save an unnecessary
100 * psi_task_change() call in psi_sched_switch().
101 */
102 clear |= TSK_ONCPU;
103
104 if (p->in_iowait)
105 set |= TSK_IOWAIT;
106 }
107
108 psi_task_change(p, clear, set);
109}
110
111static inline void psi_ttwu_dequeue(struct task_struct *p)
112{
113 if (static_branch_likely(&psi_disabled))
114 return;
115 /*
116 * Is the task being migrated during a wakeup? Make sure to
117 * deregister its sleep-persistent psi states from the old
118 * queue, and let psi_enqueue() know it has to requeue.
119 */
120 if (unlikely(p->in_iowait || p->in_memstall)) {
121 struct rq_flags rf;
122 struct rq *rq;
123 int clear = 0;
124
125 if (p->in_iowait)
126 clear |= TSK_IOWAIT;
127 if (p->in_memstall)
128 clear |= TSK_MEMSTALL;
129
130 rq = __task_rq_lock(p, &rf);
131 psi_task_change(p, clear, 0);
132 p->sched_psi_wake_requeue = 1;
133 __task_rq_unlock(rq, &rf);
134 }
135}
136
137static inline void psi_sched_switch(struct task_struct *prev,
138 struct task_struct *next,
139 bool sleep)
140{
141 if (static_branch_likely(&psi_disabled))
142 return;
143
144 psi_task_switch(prev, next, sleep);
145}
146
147static inline void psi_task_tick(struct rq *rq)
148{
149 if (static_branch_likely(&psi_disabled))
150 return;
151
152 if (unlikely(rq->curr->in_memstall))
153 psi_memstall_tick(rq->curr, cpu_of(rq));
154}
155#else /* CONFIG_PSI */
156static inline void psi_enqueue(struct task_struct *p, bool wakeup) {}
157static inline void psi_dequeue(struct task_struct *p, bool sleep) {}
158static inline void psi_ttwu_dequeue(struct task_struct *p) {}
159static inline void psi_sched_switch(struct task_struct *prev,
160 struct task_struct *next,
161 bool sleep) {}
162static inline void psi_task_tick(struct rq *rq) {}
163#endif /* CONFIG_PSI */
164
165#ifdef CONFIG_SCHED_INFO
166static inline void sched_info_reset_dequeued(struct task_struct *t)
167{
168 t->sched_info.last_queued = 0;
169}
170
171/*
172 * We are interested in knowing how long it was from the *first* time a
173 * task was queued to the time that it finally hit a CPU, we call this routine
174 * from dequeue_task() to account for possible rq->clock skew across CPUs. The
175 * delta taken on each CPU would annul the skew.
176 */
177static inline void sched_info_dequeued(struct rq *rq, struct task_struct *t)
178{
179 unsigned long long now = rq_clock(rq), delta = 0;
180
181 if (sched_info_on()) {
182 if (t->sched_info.last_queued)
183 delta = now - t->sched_info.last_queued;
184 }
185 sched_info_reset_dequeued(t);
186 t->sched_info.run_delay += delta;
187
188 rq_sched_info_dequeued(rq, delta);
189}
190
191/*
192 * Called when a task finally hits the CPU. We can now calculate how
193 * long it was waiting to run. We also note when it began so that we
194 * can keep stats on how long its timeslice is.
195 */
196static void sched_info_arrive(struct rq *rq, struct task_struct *t)
197{
198 unsigned long long now = rq_clock(rq), delta = 0;
199
200 if (t->sched_info.last_queued)
201 delta = now - t->sched_info.last_queued;
202 sched_info_reset_dequeued(t);
203 t->sched_info.run_delay += delta;
204 t->sched_info.last_arrival = now;
205 t->sched_info.pcount++;
206
207 rq_sched_info_arrive(rq, delta);
208}
209
210/*
211 * This function is only called from enqueue_task(), but also only updates
212 * the timestamp if it is already not set. It's assumed that
213 * sched_info_dequeued() will clear that stamp when appropriate.
214 */
215static inline void sched_info_queued(struct rq *rq, struct task_struct *t)
216{
217 if (sched_info_on()) {
218 if (!t->sched_info.last_queued)
219 t->sched_info.last_queued = rq_clock(rq);
220 }
221}
222
223/*
224 * Called when a process ceases being the active-running process involuntarily
225 * due, typically, to expiring its time slice (this may also be called when
226 * switching to the idle task). Now we can calculate how long we ran.
227 * Also, if the process is still in the TASK_RUNNING state, call
228 * sched_info_queued() to mark that it has now again started waiting on
229 * the runqueue.
230 */
231static inline void sched_info_depart(struct rq *rq, struct task_struct *t)
232{
233 unsigned long long delta = rq_clock(rq) - t->sched_info.last_arrival;
234
235 rq_sched_info_depart(rq, delta);
236
237 if (t->state == TASK_RUNNING)
238 sched_info_queued(rq, t);
239}
240
241/*
242 * Called when tasks are switched involuntarily due, typically, to expiring
243 * their time slice. (This may also be called when switching to or from
244 * the idle task.) We are only called when prev != next.
245 */
246static inline void
247__sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
248{
249 /*
250 * prev now departs the CPU. It's not interesting to record
251 * stats about how efficient we were at scheduling the idle
252 * process, however.
253 */
254 if (prev != rq->idle)
255 sched_info_depart(rq, prev);
256
257 if (next != rq->idle)
258 sched_info_arrive(rq, next);
259}
260
261static inline void
262sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
263{
264 if (sched_info_on())
265 __sched_info_switch(rq, prev, next);
266}
267
268#else /* !CONFIG_SCHED_INFO: */
269# define sched_info_queued(rq, t) do { } while (0)
270# define sched_info_reset_dequeued(t) do { } while (0)
271# define sched_info_dequeued(rq, t) do { } while (0)
272# define sched_info_depart(rq, t) do { } while (0)
273# define sched_info_arrive(rq, next) do { } while (0)
274# define sched_info_switch(rq, t, next) do { } while (0)
275#endif /* CONFIG_SCHED_INFO */