Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Simple CPU accounting cgroup controller
   4 */
   5
   6#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
   7 #include <asm/cputime.h>
   8#endif
   9
  10#ifdef CONFIG_IRQ_TIME_ACCOUNTING
  11
  12/*
  13 * There are no locks covering percpu hardirq/softirq time.
  14 * They are only modified in vtime_account, on corresponding CPU
  15 * with interrupts disabled. So, writes are safe.
  16 * They are read and saved off onto struct rq in update_rq_clock().
  17 * This may result in other CPU reading this CPU's IRQ time and can
  18 * race with irq/vtime_account on this CPU. We would either get old
  19 * or new value with a side effect of accounting a slice of IRQ time to wrong
  20 * task when IRQ is in progress while we read rq->clock. That is a worthy
  21 * compromise in place of having locks on each IRQ in account_system_time.
  22 */
  23DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
  24
  25static int sched_clock_irqtime;
  26
  27void enable_sched_clock_irqtime(void)
  28{
  29	sched_clock_irqtime = 1;
  30}
  31
  32void disable_sched_clock_irqtime(void)
  33{
  34	sched_clock_irqtime = 0;
  35}
  36
  37static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
  38				  enum cpu_usage_stat idx)
  39{
  40	u64 *cpustat = kcpustat_this_cpu->cpustat;
  41
  42	u64_stats_update_begin(&irqtime->sync);
  43	cpustat[idx] += delta;
  44	irqtime->total += delta;
  45	irqtime->tick_delta += delta;
  46	u64_stats_update_end(&irqtime->sync);
  47}
  48
  49/*
  50 * Called after incrementing preempt_count on {soft,}irq_enter
  51 * and before decrementing preempt_count on {soft,}irq_exit.
  52 */
  53void irqtime_account_irq(struct task_struct *curr, unsigned int offset)
  54{
  55	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
  56	unsigned int pc;
  57	s64 delta;
  58	int cpu;
  59
  60	if (!sched_clock_irqtime)
  61		return;
  62
  63	cpu = smp_processor_id();
  64	delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
  65	irqtime->irq_start_time += delta;
  66	pc = irq_count() - offset;
  67
  68	/*
  69	 * We do not account for softirq time from ksoftirqd here.
  70	 * We want to continue accounting softirq time to ksoftirqd thread
  71	 * in that case, so as not to confuse scheduler with a special task
  72	 * that do not consume any time, but still wants to run.
  73	 */
  74	if (pc & HARDIRQ_MASK)
  75		irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
  76	else if ((pc & SOFTIRQ_OFFSET) && curr != this_cpu_ksoftirqd())
  77		irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
  78}
 
  79
  80static u64 irqtime_tick_accounted(u64 maxtime)
  81{
  82	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
  83	u64 delta;
  84
  85	delta = min(irqtime->tick_delta, maxtime);
  86	irqtime->tick_delta -= delta;
  87
  88	return delta;
  89}
  90
  91#else /* CONFIG_IRQ_TIME_ACCOUNTING */
  92
  93#define sched_clock_irqtime	(0)
  94
  95static u64 irqtime_tick_accounted(u64 dummy)
  96{
  97	return 0;
  98}
  99
 100#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
 101
 102static inline void task_group_account_field(struct task_struct *p, int index,
 103					    u64 tmp)
 104{
 105	/*
 106	 * Since all updates are sure to touch the root cgroup, we
 107	 * get ourselves ahead and touch it first. If the root cgroup
 108	 * is the only cgroup, then nothing else should be necessary.
 109	 *
 110	 */
 111	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
 112
 113	cgroup_account_cputime_field(p, index, tmp);
 114}
 115
 116/*
 117 * Account user CPU time to a process.
 118 * @p: the process that the CPU time gets accounted to
 119 * @cputime: the CPU time spent in user space since the last update
 120 */
 121void account_user_time(struct task_struct *p, u64 cputime)
 122{
 123	int index;
 124
 125	/* Add user time to process. */
 126	p->utime += cputime;
 127	account_group_user_time(p, cputime);
 128
 129	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
 130
 131	/* Add user time to cpustat. */
 132	task_group_account_field(p, index, cputime);
 133
 134	/* Account for user time used */
 135	acct_account_cputime(p);
 136}
 137
 138/*
 139 * Account guest CPU time to a process.
 140 * @p: the process that the CPU time gets accounted to
 141 * @cputime: the CPU time spent in virtual machine since the last update
 142 */
 143void account_guest_time(struct task_struct *p, u64 cputime)
 144{
 145	u64 *cpustat = kcpustat_this_cpu->cpustat;
 146
 147	/* Add guest time to process. */
 148	p->utime += cputime;
 149	account_group_user_time(p, cputime);
 150	p->gtime += cputime;
 151
 152	/* Add guest time to cpustat. */
 153	if (task_nice(p) > 0) {
 154		task_group_account_field(p, CPUTIME_NICE, cputime);
 155		cpustat[CPUTIME_GUEST_NICE] += cputime;
 156	} else {
 157		task_group_account_field(p, CPUTIME_USER, cputime);
 158		cpustat[CPUTIME_GUEST] += cputime;
 159	}
 160}
 161
 162/*
 163 * Account system CPU time to a process and desired cpustat field
 164 * @p: the process that the CPU time gets accounted to
 165 * @cputime: the CPU time spent in kernel space since the last update
 166 * @index: pointer to cpustat field that has to be updated
 167 */
 168void account_system_index_time(struct task_struct *p,
 169			       u64 cputime, enum cpu_usage_stat index)
 170{
 171	/* Add system time to process. */
 172	p->stime += cputime;
 173	account_group_system_time(p, cputime);
 174
 175	/* Add system time to cpustat. */
 176	task_group_account_field(p, index, cputime);
 177
 178	/* Account for system time used */
 179	acct_account_cputime(p);
 180}
 181
 182/*
 183 * Account system CPU time to a process.
 184 * @p: the process that the CPU time gets accounted to
 185 * @hardirq_offset: the offset to subtract from hardirq_count()
 186 * @cputime: the CPU time spent in kernel space since the last update
 187 */
 188void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
 189{
 190	int index;
 191
 192	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
 193		account_guest_time(p, cputime);
 194		return;
 195	}
 196
 197	if (hardirq_count() - hardirq_offset)
 198		index = CPUTIME_IRQ;
 199	else if (in_serving_softirq())
 200		index = CPUTIME_SOFTIRQ;
 201	else
 202		index = CPUTIME_SYSTEM;
 203
 204	account_system_index_time(p, cputime, index);
 205}
 206
 207/*
 208 * Account for involuntary wait time.
 209 * @cputime: the CPU time spent in involuntary wait
 210 */
 211void account_steal_time(u64 cputime)
 212{
 213	u64 *cpustat = kcpustat_this_cpu->cpustat;
 214
 215	cpustat[CPUTIME_STEAL] += cputime;
 216}
 217
 218/*
 219 * Account for idle time.
 220 * @cputime: the CPU time spent in idle wait
 221 */
 222void account_idle_time(u64 cputime)
 223{
 224	u64 *cpustat = kcpustat_this_cpu->cpustat;
 225	struct rq *rq = this_rq();
 226
 227	if (atomic_read(&rq->nr_iowait) > 0)
 228		cpustat[CPUTIME_IOWAIT] += cputime;
 229	else
 230		cpustat[CPUTIME_IDLE] += cputime;
 231}
 232
 233
 234#ifdef CONFIG_SCHED_CORE
 235/*
 236 * Account for forceidle time due to core scheduling.
 237 *
 238 * REQUIRES: schedstat is enabled.
 239 */
 240void __account_forceidle_time(struct task_struct *p, u64 delta)
 241{
 242	__schedstat_add(p->stats.core_forceidle_sum, delta);
 243
 244	task_group_account_field(p, CPUTIME_FORCEIDLE, delta);
 245}
 246#endif
 247
 248/*
 249 * When a guest is interrupted for a longer amount of time, missed clock
 250 * ticks are not redelivered later. Due to that, this function may on
 251 * occasion account more time than the calling functions think elapsed.
 252 */
 253static __always_inline u64 steal_account_process_time(u64 maxtime)
 254{
 255#ifdef CONFIG_PARAVIRT
 256	if (static_key_false(&paravirt_steal_enabled)) {
 257		u64 steal;
 258
 259		steal = paravirt_steal_clock(smp_processor_id());
 260		steal -= this_rq()->prev_steal_time;
 261		steal = min(steal, maxtime);
 262		account_steal_time(steal);
 263		this_rq()->prev_steal_time += steal;
 264
 265		return steal;
 266	}
 267#endif
 268	return 0;
 269}
 270
 271/*
 272 * Account how much elapsed time was spent in steal, IRQ, or softirq time.
 273 */
 274static inline u64 account_other_time(u64 max)
 275{
 276	u64 accounted;
 277
 278	lockdep_assert_irqs_disabled();
 279
 280	accounted = steal_account_process_time(max);
 281
 282	if (accounted < max)
 283		accounted += irqtime_tick_accounted(max - accounted);
 284
 285	return accounted;
 286}
 287
 288#ifdef CONFIG_64BIT
 289static inline u64 read_sum_exec_runtime(struct task_struct *t)
 290{
 291	return t->se.sum_exec_runtime;
 292}
 293#else
 294static u64 read_sum_exec_runtime(struct task_struct *t)
 295{
 296	u64 ns;
 297	struct rq_flags rf;
 298	struct rq *rq;
 299
 300	rq = task_rq_lock(t, &rf);
 301	ns = t->se.sum_exec_runtime;
 302	task_rq_unlock(rq, t, &rf);
 303
 304	return ns;
 305}
 306#endif
 307
 308/*
 309 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
 310 * tasks (sum on group iteration) belonging to @tsk's group.
 311 */
 312void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
 313{
 314	struct signal_struct *sig = tsk->signal;
 315	u64 utime, stime;
 316	struct task_struct *t;
 317	unsigned int seq, nextseq;
 318	unsigned long flags;
 319
 320	/*
 321	 * Update current task runtime to account pending time since last
 322	 * scheduler action or thread_group_cputime() call. This thread group
 323	 * might have other running tasks on different CPUs, but updating
 324	 * their runtime can affect syscall performance, so we skip account
 325	 * those pending times and rely only on values updated on tick or
 326	 * other scheduler action.
 327	 */
 328	if (same_thread_group(current, tsk))
 329		(void) task_sched_runtime(current);
 330
 331	rcu_read_lock();
 332	/* Attempt a lockless read on the first round. */
 333	nextseq = 0;
 334	do {
 335		seq = nextseq;
 336		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
 337		times->utime = sig->utime;
 338		times->stime = sig->stime;
 339		times->sum_exec_runtime = sig->sum_sched_runtime;
 340
 341		for_each_thread(tsk, t) {
 342			task_cputime(t, &utime, &stime);
 343			times->utime += utime;
 344			times->stime += stime;
 345			times->sum_exec_runtime += read_sum_exec_runtime(t);
 346		}
 347		/* If lockless access failed, take the lock. */
 348		nextseq = 1;
 349	} while (need_seqretry(&sig->stats_lock, seq));
 350	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
 351	rcu_read_unlock();
 352}
 353
 354#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 355/*
 356 * Account a tick to a process and cpustat
 357 * @p: the process that the CPU time gets accounted to
 358 * @user_tick: is the tick from userspace
 359 * @rq: the pointer to rq
 360 *
 361 * Tick demultiplexing follows the order
 362 * - pending hardirq update
 363 * - pending softirq update
 364 * - user_time
 365 * - idle_time
 366 * - system time
 367 *   - check for guest_time
 368 *   - else account as system_time
 369 *
 370 * Check for hardirq is done both for system and user time as there is
 371 * no timer going off while we are on hardirq and hence we may never get an
 372 * opportunity to update it solely in system time.
 373 * p->stime and friends are only updated on system time and not on IRQ
 374 * softirq as those do not count in task exec_runtime any more.
 375 */
 376static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
 377					 int ticks)
 378{
 379	u64 other, cputime = TICK_NSEC * ticks;
 380
 381	/*
 382	 * When returning from idle, many ticks can get accounted at
 383	 * once, including some ticks of steal, IRQ, and softirq time.
 384	 * Subtract those ticks from the amount of time accounted to
 385	 * idle, or potentially user or system time. Due to rounding,
 386	 * other time can exceed ticks occasionally.
 387	 */
 388	other = account_other_time(ULONG_MAX);
 389	if (other >= cputime)
 390		return;
 391
 392	cputime -= other;
 393
 394	if (this_cpu_ksoftirqd() == p) {
 395		/*
 396		 * ksoftirqd time do not get accounted in cpu_softirq_time.
 397		 * So, we have to handle it separately here.
 398		 * Also, p->stime needs to be updated for ksoftirqd.
 399		 */
 400		account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
 401	} else if (user_tick) {
 402		account_user_time(p, cputime);
 403	} else if (p == this_rq()->idle) {
 404		account_idle_time(cputime);
 405	} else if (p->flags & PF_VCPU) { /* System time or guest time */
 406		account_guest_time(p, cputime);
 407	} else {
 408		account_system_index_time(p, cputime, CPUTIME_SYSTEM);
 409	}
 410}
 411
 412static void irqtime_account_idle_ticks(int ticks)
 413{
 414	irqtime_account_process_tick(current, 0, ticks);
 415}
 416#else /* CONFIG_IRQ_TIME_ACCOUNTING */
 417static inline void irqtime_account_idle_ticks(int ticks) { }
 418static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
 419						int nr_ticks) { }
 420#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
 421
 422/*
 423 * Use precise platform statistics if available:
 424 */
 425#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 426
 427void vtime_account_irq(struct task_struct *tsk, unsigned int offset)
 
 428{
 429	unsigned int pc = irq_count() - offset;
 
 
 
 430
 431	if (pc & HARDIRQ_OFFSET) {
 432		vtime_account_hardirq(tsk);
 433	} else if (pc & SOFTIRQ_OFFSET) {
 434		vtime_account_softirq(tsk);
 435	} else if (!IS_ENABLED(CONFIG_HAVE_VIRT_CPU_ACCOUNTING_IDLE) &&
 436		   is_idle_task(tsk)) {
 
 
 
 
 
 
 
 
 
 
 
 437		vtime_account_idle(tsk);
 438	} else {
 439		vtime_account_kernel(tsk);
 440	}
 441}
 
 
 442
 443void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
 444		    u64 *ut, u64 *st)
 445{
 446	*ut = curr->utime;
 447	*st = curr->stime;
 448}
 449
 450void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 451{
 452	*ut = p->utime;
 453	*st = p->stime;
 454}
 455EXPORT_SYMBOL_GPL(task_cputime_adjusted);
 456
 457void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 458{
 459	struct task_cputime cputime;
 460
 461	thread_group_cputime(p, &cputime);
 462
 463	*ut = cputime.utime;
 464	*st = cputime.stime;
 465}
 466
 467#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
 468
 469/*
 470 * Account a single tick of CPU time.
 471 * @p: the process that the CPU time gets accounted to
 472 * @user_tick: indicates if the tick is a user or a system tick
 473 */
 474void account_process_tick(struct task_struct *p, int user_tick)
 475{
 476	u64 cputime, steal;
 477
 478	if (vtime_accounting_enabled_this_cpu())
 479		return;
 480
 481	if (sched_clock_irqtime) {
 482		irqtime_account_process_tick(p, user_tick, 1);
 483		return;
 484	}
 485
 486	cputime = TICK_NSEC;
 487	steal = steal_account_process_time(ULONG_MAX);
 488
 489	if (steal >= cputime)
 490		return;
 491
 492	cputime -= steal;
 493
 494	if (user_tick)
 495		account_user_time(p, cputime);
 496	else if ((p != this_rq()->idle) || (irq_count() != HARDIRQ_OFFSET))
 497		account_system_time(p, HARDIRQ_OFFSET, cputime);
 498	else
 499		account_idle_time(cputime);
 500}
 501
 502/*
 503 * Account multiple ticks of idle time.
 504 * @ticks: number of stolen ticks
 505 */
 506void account_idle_ticks(unsigned long ticks)
 507{
 508	u64 cputime, steal;
 509
 510	if (sched_clock_irqtime) {
 511		irqtime_account_idle_ticks(ticks);
 512		return;
 513	}
 514
 515	cputime = ticks * TICK_NSEC;
 516	steal = steal_account_process_time(ULONG_MAX);
 517
 518	if (steal >= cputime)
 519		return;
 520
 521	cputime -= steal;
 522	account_idle_time(cputime);
 523}
 524
 525/*
 526 * Adjust tick based cputime random precision against scheduler runtime
 527 * accounting.
 528 *
 529 * Tick based cputime accounting depend on random scheduling timeslices of a
 530 * task to be interrupted or not by the timer.  Depending on these
 531 * circumstances, the number of these interrupts may be over or
 532 * under-optimistic, matching the real user and system cputime with a variable
 533 * precision.
 534 *
 535 * Fix this by scaling these tick based values against the total runtime
 536 * accounted by the CFS scheduler.
 537 *
 538 * This code provides the following guarantees:
 539 *
 540 *   stime + utime == rtime
 541 *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
 542 *
 543 * Assuming that rtime_i+1 >= rtime_i.
 544 */
 545void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
 546		    u64 *ut, u64 *st)
 547{
 548	u64 rtime, stime, utime;
 549	unsigned long flags;
 550
 551	/* Serialize concurrent callers such that we can honour our guarantees */
 552	raw_spin_lock_irqsave(&prev->lock, flags);
 553	rtime = curr->sum_exec_runtime;
 554
 555	/*
 556	 * This is possible under two circumstances:
 557	 *  - rtime isn't monotonic after all (a bug);
 558	 *  - we got reordered by the lock.
 559	 *
 560	 * In both cases this acts as a filter such that the rest of the code
 561	 * can assume it is monotonic regardless of anything else.
 562	 */
 563	if (prev->stime + prev->utime >= rtime)
 564		goto out;
 565
 566	stime = curr->stime;
 567	utime = curr->utime;
 568
 569	/*
 570	 * If either stime or utime are 0, assume all runtime is userspace.
 571	 * Once a task gets some ticks, the monotonicity code at 'update:'
 572	 * will ensure things converge to the observed ratio.
 573	 */
 574	if (stime == 0) {
 575		utime = rtime;
 576		goto update;
 577	}
 578
 579	if (utime == 0) {
 580		stime = rtime;
 581		goto update;
 582	}
 583
 584	stime = mul_u64_u64_div_u64(stime, rtime, stime + utime);
 585	/*
 586	 * Because mul_u64_u64_div_u64() can approximate on some
 587	 * achitectures; enforce the constraint that: a*b/(b+c) <= a.
 588	 */
 589	if (unlikely(stime > rtime))
 590		stime = rtime;
 591
 592update:
 593	/*
 594	 * Make sure stime doesn't go backwards; this preserves monotonicity
 595	 * for utime because rtime is monotonic.
 596	 *
 597	 *  utime_i+1 = rtime_i+1 - stime_i
 598	 *            = rtime_i+1 - (rtime_i - utime_i)
 599	 *            = (rtime_i+1 - rtime_i) + utime_i
 600	 *            >= utime_i
 601	 */
 602	if (stime < prev->stime)
 603		stime = prev->stime;
 604	utime = rtime - stime;
 605
 606	/*
 607	 * Make sure utime doesn't go backwards; this still preserves
 608	 * monotonicity for stime, analogous argument to above.
 609	 */
 610	if (utime < prev->utime) {
 611		utime = prev->utime;
 612		stime = rtime - utime;
 613	}
 614
 615	prev->stime = stime;
 616	prev->utime = utime;
 617out:
 618	*ut = prev->utime;
 619	*st = prev->stime;
 620	raw_spin_unlock_irqrestore(&prev->lock, flags);
 621}
 622
 623void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 624{
 625	struct task_cputime cputime = {
 626		.sum_exec_runtime = p->se.sum_exec_runtime,
 627	};
 628
 629	if (task_cputime(p, &cputime.utime, &cputime.stime))
 630		cputime.sum_exec_runtime = task_sched_runtime(p);
 631	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
 632}
 633EXPORT_SYMBOL_GPL(task_cputime_adjusted);
 634
 635void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 636{
 637	struct task_cputime cputime;
 638
 639	thread_group_cputime(p, &cputime);
 640	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
 641}
 642#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 643
 644#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
 645static u64 vtime_delta(struct vtime *vtime)
 646{
 647	unsigned long long clock;
 648
 649	clock = sched_clock();
 650	if (clock < vtime->starttime)
 651		return 0;
 652
 653	return clock - vtime->starttime;
 654}
 655
 656static u64 get_vtime_delta(struct vtime *vtime)
 657{
 658	u64 delta = vtime_delta(vtime);
 659	u64 other;
 660
 661	/*
 662	 * Unlike tick based timing, vtime based timing never has lost
 663	 * ticks, and no need for steal time accounting to make up for
 664	 * lost ticks. Vtime accounts a rounded version of actual
 665	 * elapsed time. Limit account_other_time to prevent rounding
 666	 * errors from causing elapsed vtime to go negative.
 667	 */
 668	other = account_other_time(delta);
 669	WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
 670	vtime->starttime += delta;
 671
 672	return delta - other;
 673}
 674
 675static void vtime_account_system(struct task_struct *tsk,
 676				 struct vtime *vtime)
 677{
 678	vtime->stime += get_vtime_delta(vtime);
 679	if (vtime->stime >= TICK_NSEC) {
 680		account_system_time(tsk, irq_count(), vtime->stime);
 681		vtime->stime = 0;
 682	}
 683}
 684
 685static void vtime_account_guest(struct task_struct *tsk,
 686				struct vtime *vtime)
 687{
 688	vtime->gtime += get_vtime_delta(vtime);
 689	if (vtime->gtime >= TICK_NSEC) {
 690		account_guest_time(tsk, vtime->gtime);
 691		vtime->gtime = 0;
 692	}
 693}
 694
 695static void __vtime_account_kernel(struct task_struct *tsk,
 696				   struct vtime *vtime)
 697{
 698	/* We might have scheduled out from guest path */
 699	if (vtime->state == VTIME_GUEST)
 700		vtime_account_guest(tsk, vtime);
 701	else
 702		vtime_account_system(tsk, vtime);
 703}
 704
 705void vtime_account_kernel(struct task_struct *tsk)
 706{
 707	struct vtime *vtime = &tsk->vtime;
 708
 709	if (!vtime_delta(vtime))
 710		return;
 711
 712	write_seqcount_begin(&vtime->seqcount);
 713	__vtime_account_kernel(tsk, vtime);
 714	write_seqcount_end(&vtime->seqcount);
 715}
 716
 717void vtime_user_enter(struct task_struct *tsk)
 718{
 719	struct vtime *vtime = &tsk->vtime;
 720
 721	write_seqcount_begin(&vtime->seqcount);
 722	vtime_account_system(tsk, vtime);
 723	vtime->state = VTIME_USER;
 724	write_seqcount_end(&vtime->seqcount);
 725}
 726
 727void vtime_user_exit(struct task_struct *tsk)
 728{
 729	struct vtime *vtime = &tsk->vtime;
 730
 731	write_seqcount_begin(&vtime->seqcount);
 732	vtime->utime += get_vtime_delta(vtime);
 733	if (vtime->utime >= TICK_NSEC) {
 734		account_user_time(tsk, vtime->utime);
 735		vtime->utime = 0;
 736	}
 737	vtime->state = VTIME_SYS;
 738	write_seqcount_end(&vtime->seqcount);
 739}
 740
 741void vtime_guest_enter(struct task_struct *tsk)
 742{
 743	struct vtime *vtime = &tsk->vtime;
 744	/*
 745	 * The flags must be updated under the lock with
 746	 * the vtime_starttime flush and update.
 747	 * That enforces a right ordering and update sequence
 748	 * synchronization against the reader (task_gtime())
 749	 * that can thus safely catch up with a tickless delta.
 750	 */
 751	write_seqcount_begin(&vtime->seqcount);
 752	vtime_account_system(tsk, vtime);
 753	tsk->flags |= PF_VCPU;
 754	vtime->state = VTIME_GUEST;
 755	write_seqcount_end(&vtime->seqcount);
 756}
 757EXPORT_SYMBOL_GPL(vtime_guest_enter);
 758
 759void vtime_guest_exit(struct task_struct *tsk)
 760{
 761	struct vtime *vtime = &tsk->vtime;
 762
 763	write_seqcount_begin(&vtime->seqcount);
 764	vtime_account_guest(tsk, vtime);
 765	tsk->flags &= ~PF_VCPU;
 766	vtime->state = VTIME_SYS;
 767	write_seqcount_end(&vtime->seqcount);
 768}
 769EXPORT_SYMBOL_GPL(vtime_guest_exit);
 770
 771void vtime_account_idle(struct task_struct *tsk)
 772{
 773	account_idle_time(get_vtime_delta(&tsk->vtime));
 774}
 775
 776void vtime_task_switch_generic(struct task_struct *prev)
 777{
 778	struct vtime *vtime = &prev->vtime;
 779
 780	write_seqcount_begin(&vtime->seqcount);
 781	if (vtime->state == VTIME_IDLE)
 782		vtime_account_idle(prev);
 783	else
 784		__vtime_account_kernel(prev, vtime);
 785	vtime->state = VTIME_INACTIVE;
 786	vtime->cpu = -1;
 787	write_seqcount_end(&vtime->seqcount);
 788
 789	vtime = &current->vtime;
 790
 791	write_seqcount_begin(&vtime->seqcount);
 792	if (is_idle_task(current))
 793		vtime->state = VTIME_IDLE;
 794	else if (current->flags & PF_VCPU)
 795		vtime->state = VTIME_GUEST;
 796	else
 797		vtime->state = VTIME_SYS;
 798	vtime->starttime = sched_clock();
 799	vtime->cpu = smp_processor_id();
 800	write_seqcount_end(&vtime->seqcount);
 801}
 802
 803void vtime_init_idle(struct task_struct *t, int cpu)
 804{
 805	struct vtime *vtime = &t->vtime;
 806	unsigned long flags;
 807
 808	local_irq_save(flags);
 809	write_seqcount_begin(&vtime->seqcount);
 810	vtime->state = VTIME_IDLE;
 811	vtime->starttime = sched_clock();
 812	vtime->cpu = cpu;
 813	write_seqcount_end(&vtime->seqcount);
 814	local_irq_restore(flags);
 815}
 816
 817u64 task_gtime(struct task_struct *t)
 818{
 819	struct vtime *vtime = &t->vtime;
 820	unsigned int seq;
 821	u64 gtime;
 822
 823	if (!vtime_accounting_enabled())
 824		return t->gtime;
 825
 826	do {
 827		seq = read_seqcount_begin(&vtime->seqcount);
 828
 829		gtime = t->gtime;
 830		if (vtime->state == VTIME_GUEST)
 831			gtime += vtime->gtime + vtime_delta(vtime);
 832
 833	} while (read_seqcount_retry(&vtime->seqcount, seq));
 834
 835	return gtime;
 836}
 837
 838/*
 839 * Fetch cputime raw values from fields of task_struct and
 840 * add up the pending nohz execution time since the last
 841 * cputime snapshot.
 842 */
 843bool task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
 844{
 845	struct vtime *vtime = &t->vtime;
 846	unsigned int seq;
 847	u64 delta;
 848	int ret;
 849
 850	if (!vtime_accounting_enabled()) {
 851		*utime = t->utime;
 852		*stime = t->stime;
 853		return false;
 854	}
 855
 856	do {
 857		ret = false;
 858		seq = read_seqcount_begin(&vtime->seqcount);
 859
 860		*utime = t->utime;
 861		*stime = t->stime;
 862
 863		/* Task is sleeping or idle, nothing to add */
 864		if (vtime->state < VTIME_SYS)
 865			continue;
 866
 867		ret = true;
 868		delta = vtime_delta(vtime);
 869
 870		/*
 871		 * Task runs either in user (including guest) or kernel space,
 872		 * add pending nohz time to the right place.
 873		 */
 874		if (vtime->state == VTIME_SYS)
 875			*stime += vtime->stime + delta;
 876		else
 877			*utime += vtime->utime + delta;
 878	} while (read_seqcount_retry(&vtime->seqcount, seq));
 879
 880	return ret;
 881}
 882
 883static int vtime_state_fetch(struct vtime *vtime, int cpu)
 884{
 885	int state = READ_ONCE(vtime->state);
 886
 887	/*
 888	 * We raced against a context switch, fetch the
 889	 * kcpustat task again.
 890	 */
 891	if (vtime->cpu != cpu && vtime->cpu != -1)
 892		return -EAGAIN;
 893
 894	/*
 895	 * Two possible things here:
 896	 * 1) We are seeing the scheduling out task (prev) or any past one.
 897	 * 2) We are seeing the scheduling in task (next) but it hasn't
 898	 *    passed though vtime_task_switch() yet so the pending
 899	 *    cputime of the prev task may not be flushed yet.
 900	 *
 901	 * Case 1) is ok but 2) is not. So wait for a safe VTIME state.
 902	 */
 903	if (state == VTIME_INACTIVE)
 904		return -EAGAIN;
 905
 906	return state;
 907}
 908
 909static u64 kcpustat_user_vtime(struct vtime *vtime)
 910{
 911	if (vtime->state == VTIME_USER)
 912		return vtime->utime + vtime_delta(vtime);
 913	else if (vtime->state == VTIME_GUEST)
 914		return vtime->gtime + vtime_delta(vtime);
 915	return 0;
 916}
 917
 918static int kcpustat_field_vtime(u64 *cpustat,
 919				struct task_struct *tsk,
 920				enum cpu_usage_stat usage,
 921				int cpu, u64 *val)
 922{
 923	struct vtime *vtime = &tsk->vtime;
 924	unsigned int seq;
 925
 926	do {
 927		int state;
 928
 929		seq = read_seqcount_begin(&vtime->seqcount);
 930
 931		state = vtime_state_fetch(vtime, cpu);
 932		if (state < 0)
 933			return state;
 934
 935		*val = cpustat[usage];
 936
 937		/*
 938		 * Nice VS unnice cputime accounting may be inaccurate if
 939		 * the nice value has changed since the last vtime update.
 940		 * But proper fix would involve interrupting target on nice
 941		 * updates which is a no go on nohz_full (although the scheduler
 942		 * may still interrupt the target if rescheduling is needed...)
 943		 */
 944		switch (usage) {
 945		case CPUTIME_SYSTEM:
 946			if (state == VTIME_SYS)
 947				*val += vtime->stime + vtime_delta(vtime);
 948			break;
 949		case CPUTIME_USER:
 950			if (task_nice(tsk) <= 0)
 951				*val += kcpustat_user_vtime(vtime);
 952			break;
 953		case CPUTIME_NICE:
 954			if (task_nice(tsk) > 0)
 955				*val += kcpustat_user_vtime(vtime);
 956			break;
 957		case CPUTIME_GUEST:
 958			if (state == VTIME_GUEST && task_nice(tsk) <= 0)
 959				*val += vtime->gtime + vtime_delta(vtime);
 960			break;
 961		case CPUTIME_GUEST_NICE:
 962			if (state == VTIME_GUEST && task_nice(tsk) > 0)
 963				*val += vtime->gtime + vtime_delta(vtime);
 964			break;
 965		default:
 966			break;
 967		}
 968	} while (read_seqcount_retry(&vtime->seqcount, seq));
 969
 970	return 0;
 971}
 972
 973u64 kcpustat_field(struct kernel_cpustat *kcpustat,
 974		   enum cpu_usage_stat usage, int cpu)
 975{
 976	u64 *cpustat = kcpustat->cpustat;
 977	u64 val = cpustat[usage];
 978	struct rq *rq;
 979	int err;
 980
 981	if (!vtime_accounting_enabled_cpu(cpu))
 982		return val;
 983
 984	rq = cpu_rq(cpu);
 985
 986	for (;;) {
 987		struct task_struct *curr;
 988
 989		rcu_read_lock();
 990		curr = rcu_dereference(rq->curr);
 991		if (WARN_ON_ONCE(!curr)) {
 992			rcu_read_unlock();
 993			return cpustat[usage];
 994		}
 995
 996		err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val);
 997		rcu_read_unlock();
 998
 999		if (!err)
1000			return val;
1001
1002		cpu_relax();
1003	}
1004}
1005EXPORT_SYMBOL_GPL(kcpustat_field);
1006
1007static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst,
1008				    const struct kernel_cpustat *src,
1009				    struct task_struct *tsk, int cpu)
1010{
1011	struct vtime *vtime = &tsk->vtime;
1012	unsigned int seq;
1013
1014	do {
1015		u64 *cpustat;
1016		u64 delta;
1017		int state;
1018
1019		seq = read_seqcount_begin(&vtime->seqcount);
1020
1021		state = vtime_state_fetch(vtime, cpu);
1022		if (state < 0)
1023			return state;
1024
1025		*dst = *src;
1026		cpustat = dst->cpustat;
1027
1028		/* Task is sleeping, dead or idle, nothing to add */
1029		if (state < VTIME_SYS)
1030			continue;
1031
1032		delta = vtime_delta(vtime);
1033
1034		/*
1035		 * Task runs either in user (including guest) or kernel space,
1036		 * add pending nohz time to the right place.
1037		 */
1038		if (state == VTIME_SYS) {
1039			cpustat[CPUTIME_SYSTEM] += vtime->stime + delta;
1040		} else if (state == VTIME_USER) {
1041			if (task_nice(tsk) > 0)
1042				cpustat[CPUTIME_NICE] += vtime->utime + delta;
1043			else
1044				cpustat[CPUTIME_USER] += vtime->utime + delta;
1045		} else {
1046			WARN_ON_ONCE(state != VTIME_GUEST);
1047			if (task_nice(tsk) > 0) {
1048				cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta;
1049				cpustat[CPUTIME_NICE] += vtime->gtime + delta;
1050			} else {
1051				cpustat[CPUTIME_GUEST] += vtime->gtime + delta;
1052				cpustat[CPUTIME_USER] += vtime->gtime + delta;
1053			}
1054		}
1055	} while (read_seqcount_retry(&vtime->seqcount, seq));
1056
1057	return 0;
1058}
1059
1060void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu)
1061{
1062	const struct kernel_cpustat *src = &kcpustat_cpu(cpu);
1063	struct rq *rq;
1064	int err;
1065
1066	if (!vtime_accounting_enabled_cpu(cpu)) {
1067		*dst = *src;
1068		return;
1069	}
1070
1071	rq = cpu_rq(cpu);
1072
1073	for (;;) {
1074		struct task_struct *curr;
1075
1076		rcu_read_lock();
1077		curr = rcu_dereference(rq->curr);
1078		if (WARN_ON_ONCE(!curr)) {
1079			rcu_read_unlock();
1080			*dst = *src;
1081			return;
1082		}
1083
1084		err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu);
1085		rcu_read_unlock();
1086
1087		if (!err)
1088			return;
1089
1090		cpu_relax();
1091	}
1092}
1093EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch);
1094
1095#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Simple CPU accounting cgroup controller
   4 */
   5#include "sched.h"
 
 
 
   6
   7#ifdef CONFIG_IRQ_TIME_ACCOUNTING
   8
   9/*
  10 * There are no locks covering percpu hardirq/softirq time.
  11 * They are only modified in vtime_account, on corresponding CPU
  12 * with interrupts disabled. So, writes are safe.
  13 * They are read and saved off onto struct rq in update_rq_clock().
  14 * This may result in other CPU reading this CPU's irq time and can
  15 * race with irq/vtime_account on this CPU. We would either get old
  16 * or new value with a side effect of accounting a slice of irq time to wrong
  17 * task when irq is in progress while we read rq->clock. That is a worthy
  18 * compromise in place of having locks on each irq in account_system_time.
  19 */
  20DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
  21
  22static int sched_clock_irqtime;
  23
  24void enable_sched_clock_irqtime(void)
  25{
  26	sched_clock_irqtime = 1;
  27}
  28
  29void disable_sched_clock_irqtime(void)
  30{
  31	sched_clock_irqtime = 0;
  32}
  33
  34static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
  35				  enum cpu_usage_stat idx)
  36{
  37	u64 *cpustat = kcpustat_this_cpu->cpustat;
  38
  39	u64_stats_update_begin(&irqtime->sync);
  40	cpustat[idx] += delta;
  41	irqtime->total += delta;
  42	irqtime->tick_delta += delta;
  43	u64_stats_update_end(&irqtime->sync);
  44}
  45
  46/*
  47 * Called before incrementing preempt_count on {soft,}irq_enter
  48 * and before decrementing preempt_count on {soft,}irq_exit.
  49 */
  50void irqtime_account_irq(struct task_struct *curr)
  51{
  52	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
 
  53	s64 delta;
  54	int cpu;
  55
  56	if (!sched_clock_irqtime)
  57		return;
  58
  59	cpu = smp_processor_id();
  60	delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
  61	irqtime->irq_start_time += delta;
 
  62
  63	/*
  64	 * We do not account for softirq time from ksoftirqd here.
  65	 * We want to continue accounting softirq time to ksoftirqd thread
  66	 * in that case, so as not to confuse scheduler with a special task
  67	 * that do not consume any time, but still wants to run.
  68	 */
  69	if (hardirq_count())
  70		irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
  71	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  72		irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
  73}
  74EXPORT_SYMBOL_GPL(irqtime_account_irq);
  75
  76static u64 irqtime_tick_accounted(u64 maxtime)
  77{
  78	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
  79	u64 delta;
  80
  81	delta = min(irqtime->tick_delta, maxtime);
  82	irqtime->tick_delta -= delta;
  83
  84	return delta;
  85}
  86
  87#else /* CONFIG_IRQ_TIME_ACCOUNTING */
  88
  89#define sched_clock_irqtime	(0)
  90
  91static u64 irqtime_tick_accounted(u64 dummy)
  92{
  93	return 0;
  94}
  95
  96#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
  97
  98static inline void task_group_account_field(struct task_struct *p, int index,
  99					    u64 tmp)
 100{
 101	/*
 102	 * Since all updates are sure to touch the root cgroup, we
 103	 * get ourselves ahead and touch it first. If the root cgroup
 104	 * is the only cgroup, then nothing else should be necessary.
 105	 *
 106	 */
 107	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
 108
 109	cgroup_account_cputime_field(p, index, tmp);
 110}
 111
 112/*
 113 * Account user CPU time to a process.
 114 * @p: the process that the CPU time gets accounted to
 115 * @cputime: the CPU time spent in user space since the last update
 116 */
 117void account_user_time(struct task_struct *p, u64 cputime)
 118{
 119	int index;
 120
 121	/* Add user time to process. */
 122	p->utime += cputime;
 123	account_group_user_time(p, cputime);
 124
 125	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
 126
 127	/* Add user time to cpustat. */
 128	task_group_account_field(p, index, cputime);
 129
 130	/* Account for user time used */
 131	acct_account_cputime(p);
 132}
 133
 134/*
 135 * Account guest CPU time to a process.
 136 * @p: the process that the CPU time gets accounted to
 137 * @cputime: the CPU time spent in virtual machine since the last update
 138 */
 139void account_guest_time(struct task_struct *p, u64 cputime)
 140{
 141	u64 *cpustat = kcpustat_this_cpu->cpustat;
 142
 143	/* Add guest time to process. */
 144	p->utime += cputime;
 145	account_group_user_time(p, cputime);
 146	p->gtime += cputime;
 147
 148	/* Add guest time to cpustat. */
 149	if (task_nice(p) > 0) {
 150		cpustat[CPUTIME_NICE] += cputime;
 151		cpustat[CPUTIME_GUEST_NICE] += cputime;
 152	} else {
 153		cpustat[CPUTIME_USER] += cputime;
 154		cpustat[CPUTIME_GUEST] += cputime;
 155	}
 156}
 157
 158/*
 159 * Account system CPU time to a process and desired cpustat field
 160 * @p: the process that the CPU time gets accounted to
 161 * @cputime: the CPU time spent in kernel space since the last update
 162 * @index: pointer to cpustat field that has to be updated
 163 */
 164void account_system_index_time(struct task_struct *p,
 165			       u64 cputime, enum cpu_usage_stat index)
 166{
 167	/* Add system time to process. */
 168	p->stime += cputime;
 169	account_group_system_time(p, cputime);
 170
 171	/* Add system time to cpustat. */
 172	task_group_account_field(p, index, cputime);
 173
 174	/* Account for system time used */
 175	acct_account_cputime(p);
 176}
 177
 178/*
 179 * Account system CPU time to a process.
 180 * @p: the process that the CPU time gets accounted to
 181 * @hardirq_offset: the offset to subtract from hardirq_count()
 182 * @cputime: the CPU time spent in kernel space since the last update
 183 */
 184void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
 185{
 186	int index;
 187
 188	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
 189		account_guest_time(p, cputime);
 190		return;
 191	}
 192
 193	if (hardirq_count() - hardirq_offset)
 194		index = CPUTIME_IRQ;
 195	else if (in_serving_softirq())
 196		index = CPUTIME_SOFTIRQ;
 197	else
 198		index = CPUTIME_SYSTEM;
 199
 200	account_system_index_time(p, cputime, index);
 201}
 202
 203/*
 204 * Account for involuntary wait time.
 205 * @cputime: the CPU time spent in involuntary wait
 206 */
 207void account_steal_time(u64 cputime)
 208{
 209	u64 *cpustat = kcpustat_this_cpu->cpustat;
 210
 211	cpustat[CPUTIME_STEAL] += cputime;
 212}
 213
 214/*
 215 * Account for idle time.
 216 * @cputime: the CPU time spent in idle wait
 217 */
 218void account_idle_time(u64 cputime)
 219{
 220	u64 *cpustat = kcpustat_this_cpu->cpustat;
 221	struct rq *rq = this_rq();
 222
 223	if (atomic_read(&rq->nr_iowait) > 0)
 224		cpustat[CPUTIME_IOWAIT] += cputime;
 225	else
 226		cpustat[CPUTIME_IDLE] += cputime;
 227}
 228
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 229/*
 230 * When a guest is interrupted for a longer amount of time, missed clock
 231 * ticks are not redelivered later. Due to that, this function may on
 232 * occasion account more time than the calling functions think elapsed.
 233 */
 234static __always_inline u64 steal_account_process_time(u64 maxtime)
 235{
 236#ifdef CONFIG_PARAVIRT
 237	if (static_key_false(&paravirt_steal_enabled)) {
 238		u64 steal;
 239
 240		steal = paravirt_steal_clock(smp_processor_id());
 241		steal -= this_rq()->prev_steal_time;
 242		steal = min(steal, maxtime);
 243		account_steal_time(steal);
 244		this_rq()->prev_steal_time += steal;
 245
 246		return steal;
 247	}
 248#endif
 249	return 0;
 250}
 251
 252/*
 253 * Account how much elapsed time was spent in steal, irq, or softirq time.
 254 */
 255static inline u64 account_other_time(u64 max)
 256{
 257	u64 accounted;
 258
 259	lockdep_assert_irqs_disabled();
 260
 261	accounted = steal_account_process_time(max);
 262
 263	if (accounted < max)
 264		accounted += irqtime_tick_accounted(max - accounted);
 265
 266	return accounted;
 267}
 268
 269#ifdef CONFIG_64BIT
 270static inline u64 read_sum_exec_runtime(struct task_struct *t)
 271{
 272	return t->se.sum_exec_runtime;
 273}
 274#else
 275static u64 read_sum_exec_runtime(struct task_struct *t)
 276{
 277	u64 ns;
 278	struct rq_flags rf;
 279	struct rq *rq;
 280
 281	rq = task_rq_lock(t, &rf);
 282	ns = t->se.sum_exec_runtime;
 283	task_rq_unlock(rq, t, &rf);
 284
 285	return ns;
 286}
 287#endif
 288
 289/*
 290 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
 291 * tasks (sum on group iteration) belonging to @tsk's group.
 292 */
 293void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
 294{
 295	struct signal_struct *sig = tsk->signal;
 296	u64 utime, stime;
 297	struct task_struct *t;
 298	unsigned int seq, nextseq;
 299	unsigned long flags;
 300
 301	/*
 302	 * Update current task runtime to account pending time since last
 303	 * scheduler action or thread_group_cputime() call. This thread group
 304	 * might have other running tasks on different CPUs, but updating
 305	 * their runtime can affect syscall performance, so we skip account
 306	 * those pending times and rely only on values updated on tick or
 307	 * other scheduler action.
 308	 */
 309	if (same_thread_group(current, tsk))
 310		(void) task_sched_runtime(current);
 311
 312	rcu_read_lock();
 313	/* Attempt a lockless read on the first round. */
 314	nextseq = 0;
 315	do {
 316		seq = nextseq;
 317		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
 318		times->utime = sig->utime;
 319		times->stime = sig->stime;
 320		times->sum_exec_runtime = sig->sum_sched_runtime;
 321
 322		for_each_thread(tsk, t) {
 323			task_cputime(t, &utime, &stime);
 324			times->utime += utime;
 325			times->stime += stime;
 326			times->sum_exec_runtime += read_sum_exec_runtime(t);
 327		}
 328		/* If lockless access failed, take the lock. */
 329		nextseq = 1;
 330	} while (need_seqretry(&sig->stats_lock, seq));
 331	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
 332	rcu_read_unlock();
 333}
 334
 335#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 336/*
 337 * Account a tick to a process and cpustat
 338 * @p: the process that the CPU time gets accounted to
 339 * @user_tick: is the tick from userspace
 340 * @rq: the pointer to rq
 341 *
 342 * Tick demultiplexing follows the order
 343 * - pending hardirq update
 344 * - pending softirq update
 345 * - user_time
 346 * - idle_time
 347 * - system time
 348 *   - check for guest_time
 349 *   - else account as system_time
 350 *
 351 * Check for hardirq is done both for system and user time as there is
 352 * no timer going off while we are on hardirq and hence we may never get an
 353 * opportunity to update it solely in system time.
 354 * p->stime and friends are only updated on system time and not on irq
 355 * softirq as those do not count in task exec_runtime any more.
 356 */
 357static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
 358					 int ticks)
 359{
 360	u64 other, cputime = TICK_NSEC * ticks;
 361
 362	/*
 363	 * When returning from idle, many ticks can get accounted at
 364	 * once, including some ticks of steal, irq, and softirq time.
 365	 * Subtract those ticks from the amount of time accounted to
 366	 * idle, or potentially user or system time. Due to rounding,
 367	 * other time can exceed ticks occasionally.
 368	 */
 369	other = account_other_time(ULONG_MAX);
 370	if (other >= cputime)
 371		return;
 372
 373	cputime -= other;
 374
 375	if (this_cpu_ksoftirqd() == p) {
 376		/*
 377		 * ksoftirqd time do not get accounted in cpu_softirq_time.
 378		 * So, we have to handle it separately here.
 379		 * Also, p->stime needs to be updated for ksoftirqd.
 380		 */
 381		account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
 382	} else if (user_tick) {
 383		account_user_time(p, cputime);
 384	} else if (p == this_rq()->idle) {
 385		account_idle_time(cputime);
 386	} else if (p->flags & PF_VCPU) { /* System time or guest time */
 387		account_guest_time(p, cputime);
 388	} else {
 389		account_system_index_time(p, cputime, CPUTIME_SYSTEM);
 390	}
 391}
 392
 393static void irqtime_account_idle_ticks(int ticks)
 394{
 395	irqtime_account_process_tick(current, 0, ticks);
 396}
 397#else /* CONFIG_IRQ_TIME_ACCOUNTING */
 398static inline void irqtime_account_idle_ticks(int ticks) { }
 399static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
 400						int nr_ticks) { }
 401#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
 402
 403/*
 404 * Use precise platform statistics if available:
 405 */
 406#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 407
 408# ifndef __ARCH_HAS_VTIME_TASK_SWITCH
 409void vtime_task_switch(struct task_struct *prev)
 410{
 411	if (is_idle_task(prev))
 412		vtime_account_idle(prev);
 413	else
 414		vtime_account_kernel(prev);
 415
 416	vtime_flush(prev);
 417	arch_vtime_task_switch(prev);
 418}
 419# endif
 420
 421/*
 422 * Archs that account the whole time spent in the idle task
 423 * (outside irq) as idle time can rely on this and just implement
 424 * vtime_account_kernel() and vtime_account_idle(). Archs that
 425 * have other meaning of the idle time (s390 only includes the
 426 * time spent by the CPU when it's in low power mode) must override
 427 * vtime_account().
 428 */
 429#ifndef __ARCH_HAS_VTIME_ACCOUNT
 430void vtime_account_irq_enter(struct task_struct *tsk)
 431{
 432	if (!in_interrupt() && is_idle_task(tsk))
 433		vtime_account_idle(tsk);
 434	else
 435		vtime_account_kernel(tsk);
 
 436}
 437EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
 438#endif /* __ARCH_HAS_VTIME_ACCOUNT */
 439
 440void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
 441		    u64 *ut, u64 *st)
 442{
 443	*ut = curr->utime;
 444	*st = curr->stime;
 445}
 446
 447void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 448{
 449	*ut = p->utime;
 450	*st = p->stime;
 451}
 452EXPORT_SYMBOL_GPL(task_cputime_adjusted);
 453
 454void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 455{
 456	struct task_cputime cputime;
 457
 458	thread_group_cputime(p, &cputime);
 459
 460	*ut = cputime.utime;
 461	*st = cputime.stime;
 462}
 463
 464#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
 465
 466/*
 467 * Account a single tick of CPU time.
 468 * @p: the process that the CPU time gets accounted to
 469 * @user_tick: indicates if the tick is a user or a system tick
 470 */
 471void account_process_tick(struct task_struct *p, int user_tick)
 472{
 473	u64 cputime, steal;
 474
 475	if (vtime_accounting_enabled_this_cpu())
 476		return;
 477
 478	if (sched_clock_irqtime) {
 479		irqtime_account_process_tick(p, user_tick, 1);
 480		return;
 481	}
 482
 483	cputime = TICK_NSEC;
 484	steal = steal_account_process_time(ULONG_MAX);
 485
 486	if (steal >= cputime)
 487		return;
 488
 489	cputime -= steal;
 490
 491	if (user_tick)
 492		account_user_time(p, cputime);
 493	else if ((p != this_rq()->idle) || (irq_count() != HARDIRQ_OFFSET))
 494		account_system_time(p, HARDIRQ_OFFSET, cputime);
 495	else
 496		account_idle_time(cputime);
 497}
 498
 499/*
 500 * Account multiple ticks of idle time.
 501 * @ticks: number of stolen ticks
 502 */
 503void account_idle_ticks(unsigned long ticks)
 504{
 505	u64 cputime, steal;
 506
 507	if (sched_clock_irqtime) {
 508		irqtime_account_idle_ticks(ticks);
 509		return;
 510	}
 511
 512	cputime = ticks * TICK_NSEC;
 513	steal = steal_account_process_time(ULONG_MAX);
 514
 515	if (steal >= cputime)
 516		return;
 517
 518	cputime -= steal;
 519	account_idle_time(cputime);
 520}
 521
 522/*
 523 * Adjust tick based cputime random precision against scheduler runtime
 524 * accounting.
 525 *
 526 * Tick based cputime accounting depend on random scheduling timeslices of a
 527 * task to be interrupted or not by the timer.  Depending on these
 528 * circumstances, the number of these interrupts may be over or
 529 * under-optimistic, matching the real user and system cputime with a variable
 530 * precision.
 531 *
 532 * Fix this by scaling these tick based values against the total runtime
 533 * accounted by the CFS scheduler.
 534 *
 535 * This code provides the following guarantees:
 536 *
 537 *   stime + utime == rtime
 538 *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
 539 *
 540 * Assuming that rtime_i+1 >= rtime_i.
 541 */
 542void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
 543		    u64 *ut, u64 *st)
 544{
 545	u64 rtime, stime, utime;
 546	unsigned long flags;
 547
 548	/* Serialize concurrent callers such that we can honour our guarantees */
 549	raw_spin_lock_irqsave(&prev->lock, flags);
 550	rtime = curr->sum_exec_runtime;
 551
 552	/*
 553	 * This is possible under two circumstances:
 554	 *  - rtime isn't monotonic after all (a bug);
 555	 *  - we got reordered by the lock.
 556	 *
 557	 * In both cases this acts as a filter such that the rest of the code
 558	 * can assume it is monotonic regardless of anything else.
 559	 */
 560	if (prev->stime + prev->utime >= rtime)
 561		goto out;
 562
 563	stime = curr->stime;
 564	utime = curr->utime;
 565
 566	/*
 567	 * If either stime or utime are 0, assume all runtime is userspace.
 568	 * Once a task gets some ticks, the monotonicy code at 'update:'
 569	 * will ensure things converge to the observed ratio.
 570	 */
 571	if (stime == 0) {
 572		utime = rtime;
 573		goto update;
 574	}
 575
 576	if (utime == 0) {
 577		stime = rtime;
 578		goto update;
 579	}
 580
 581	stime = mul_u64_u64_div_u64(stime, rtime, stime + utime);
 
 
 
 
 
 
 582
 583update:
 584	/*
 585	 * Make sure stime doesn't go backwards; this preserves monotonicity
 586	 * for utime because rtime is monotonic.
 587	 *
 588	 *  utime_i+1 = rtime_i+1 - stime_i
 589	 *            = rtime_i+1 - (rtime_i - utime_i)
 590	 *            = (rtime_i+1 - rtime_i) + utime_i
 591	 *            >= utime_i
 592	 */
 593	if (stime < prev->stime)
 594		stime = prev->stime;
 595	utime = rtime - stime;
 596
 597	/*
 598	 * Make sure utime doesn't go backwards; this still preserves
 599	 * monotonicity for stime, analogous argument to above.
 600	 */
 601	if (utime < prev->utime) {
 602		utime = prev->utime;
 603		stime = rtime - utime;
 604	}
 605
 606	prev->stime = stime;
 607	prev->utime = utime;
 608out:
 609	*ut = prev->utime;
 610	*st = prev->stime;
 611	raw_spin_unlock_irqrestore(&prev->lock, flags);
 612}
 613
 614void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 615{
 616	struct task_cputime cputime = {
 617		.sum_exec_runtime = p->se.sum_exec_runtime,
 618	};
 619
 620	task_cputime(p, &cputime.utime, &cputime.stime);
 
 621	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
 622}
 623EXPORT_SYMBOL_GPL(task_cputime_adjusted);
 624
 625void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 626{
 627	struct task_cputime cputime;
 628
 629	thread_group_cputime(p, &cputime);
 630	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
 631}
 632#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 633
 634#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
 635static u64 vtime_delta(struct vtime *vtime)
 636{
 637	unsigned long long clock;
 638
 639	clock = sched_clock();
 640	if (clock < vtime->starttime)
 641		return 0;
 642
 643	return clock - vtime->starttime;
 644}
 645
 646static u64 get_vtime_delta(struct vtime *vtime)
 647{
 648	u64 delta = vtime_delta(vtime);
 649	u64 other;
 650
 651	/*
 652	 * Unlike tick based timing, vtime based timing never has lost
 653	 * ticks, and no need for steal time accounting to make up for
 654	 * lost ticks. Vtime accounts a rounded version of actual
 655	 * elapsed time. Limit account_other_time to prevent rounding
 656	 * errors from causing elapsed vtime to go negative.
 657	 */
 658	other = account_other_time(delta);
 659	WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
 660	vtime->starttime += delta;
 661
 662	return delta - other;
 663}
 664
 665static void vtime_account_system(struct task_struct *tsk,
 666				 struct vtime *vtime)
 667{
 668	vtime->stime += get_vtime_delta(vtime);
 669	if (vtime->stime >= TICK_NSEC) {
 670		account_system_time(tsk, irq_count(), vtime->stime);
 671		vtime->stime = 0;
 672	}
 673}
 674
 675static void vtime_account_guest(struct task_struct *tsk,
 676				struct vtime *vtime)
 677{
 678	vtime->gtime += get_vtime_delta(vtime);
 679	if (vtime->gtime >= TICK_NSEC) {
 680		account_guest_time(tsk, vtime->gtime);
 681		vtime->gtime = 0;
 682	}
 683}
 684
 685static void __vtime_account_kernel(struct task_struct *tsk,
 686				   struct vtime *vtime)
 687{
 688	/* We might have scheduled out from guest path */
 689	if (vtime->state == VTIME_GUEST)
 690		vtime_account_guest(tsk, vtime);
 691	else
 692		vtime_account_system(tsk, vtime);
 693}
 694
 695void vtime_account_kernel(struct task_struct *tsk)
 696{
 697	struct vtime *vtime = &tsk->vtime;
 698
 699	if (!vtime_delta(vtime))
 700		return;
 701
 702	write_seqcount_begin(&vtime->seqcount);
 703	__vtime_account_kernel(tsk, vtime);
 704	write_seqcount_end(&vtime->seqcount);
 705}
 706
 707void vtime_user_enter(struct task_struct *tsk)
 708{
 709	struct vtime *vtime = &tsk->vtime;
 710
 711	write_seqcount_begin(&vtime->seqcount);
 712	vtime_account_system(tsk, vtime);
 713	vtime->state = VTIME_USER;
 714	write_seqcount_end(&vtime->seqcount);
 715}
 716
 717void vtime_user_exit(struct task_struct *tsk)
 718{
 719	struct vtime *vtime = &tsk->vtime;
 720
 721	write_seqcount_begin(&vtime->seqcount);
 722	vtime->utime += get_vtime_delta(vtime);
 723	if (vtime->utime >= TICK_NSEC) {
 724		account_user_time(tsk, vtime->utime);
 725		vtime->utime = 0;
 726	}
 727	vtime->state = VTIME_SYS;
 728	write_seqcount_end(&vtime->seqcount);
 729}
 730
 731void vtime_guest_enter(struct task_struct *tsk)
 732{
 733	struct vtime *vtime = &tsk->vtime;
 734	/*
 735	 * The flags must be updated under the lock with
 736	 * the vtime_starttime flush and update.
 737	 * That enforces a right ordering and update sequence
 738	 * synchronization against the reader (task_gtime())
 739	 * that can thus safely catch up with a tickless delta.
 740	 */
 741	write_seqcount_begin(&vtime->seqcount);
 742	vtime_account_system(tsk, vtime);
 743	tsk->flags |= PF_VCPU;
 744	vtime->state = VTIME_GUEST;
 745	write_seqcount_end(&vtime->seqcount);
 746}
 747EXPORT_SYMBOL_GPL(vtime_guest_enter);
 748
 749void vtime_guest_exit(struct task_struct *tsk)
 750{
 751	struct vtime *vtime = &tsk->vtime;
 752
 753	write_seqcount_begin(&vtime->seqcount);
 754	vtime_account_guest(tsk, vtime);
 755	tsk->flags &= ~PF_VCPU;
 756	vtime->state = VTIME_SYS;
 757	write_seqcount_end(&vtime->seqcount);
 758}
 759EXPORT_SYMBOL_GPL(vtime_guest_exit);
 760
 761void vtime_account_idle(struct task_struct *tsk)
 762{
 763	account_idle_time(get_vtime_delta(&tsk->vtime));
 764}
 765
 766void vtime_task_switch_generic(struct task_struct *prev)
 767{
 768	struct vtime *vtime = &prev->vtime;
 769
 770	write_seqcount_begin(&vtime->seqcount);
 771	if (vtime->state == VTIME_IDLE)
 772		vtime_account_idle(prev);
 773	else
 774		__vtime_account_kernel(prev, vtime);
 775	vtime->state = VTIME_INACTIVE;
 776	vtime->cpu = -1;
 777	write_seqcount_end(&vtime->seqcount);
 778
 779	vtime = &current->vtime;
 780
 781	write_seqcount_begin(&vtime->seqcount);
 782	if (is_idle_task(current))
 783		vtime->state = VTIME_IDLE;
 784	else if (current->flags & PF_VCPU)
 785		vtime->state = VTIME_GUEST;
 786	else
 787		vtime->state = VTIME_SYS;
 788	vtime->starttime = sched_clock();
 789	vtime->cpu = smp_processor_id();
 790	write_seqcount_end(&vtime->seqcount);
 791}
 792
 793void vtime_init_idle(struct task_struct *t, int cpu)
 794{
 795	struct vtime *vtime = &t->vtime;
 796	unsigned long flags;
 797
 798	local_irq_save(flags);
 799	write_seqcount_begin(&vtime->seqcount);
 800	vtime->state = VTIME_IDLE;
 801	vtime->starttime = sched_clock();
 802	vtime->cpu = cpu;
 803	write_seqcount_end(&vtime->seqcount);
 804	local_irq_restore(flags);
 805}
 806
 807u64 task_gtime(struct task_struct *t)
 808{
 809	struct vtime *vtime = &t->vtime;
 810	unsigned int seq;
 811	u64 gtime;
 812
 813	if (!vtime_accounting_enabled())
 814		return t->gtime;
 815
 816	do {
 817		seq = read_seqcount_begin(&vtime->seqcount);
 818
 819		gtime = t->gtime;
 820		if (vtime->state == VTIME_GUEST)
 821			gtime += vtime->gtime + vtime_delta(vtime);
 822
 823	} while (read_seqcount_retry(&vtime->seqcount, seq));
 824
 825	return gtime;
 826}
 827
 828/*
 829 * Fetch cputime raw values from fields of task_struct and
 830 * add up the pending nohz execution time since the last
 831 * cputime snapshot.
 832 */
 833void task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
 834{
 835	struct vtime *vtime = &t->vtime;
 836	unsigned int seq;
 837	u64 delta;
 
 838
 839	if (!vtime_accounting_enabled()) {
 840		*utime = t->utime;
 841		*stime = t->stime;
 842		return;
 843	}
 844
 845	do {
 
 846		seq = read_seqcount_begin(&vtime->seqcount);
 847
 848		*utime = t->utime;
 849		*stime = t->stime;
 850
 851		/* Task is sleeping or idle, nothing to add */
 852		if (vtime->state < VTIME_SYS)
 853			continue;
 854
 
 855		delta = vtime_delta(vtime);
 856
 857		/*
 858		 * Task runs either in user (including guest) or kernel space,
 859		 * add pending nohz time to the right place.
 860		 */
 861		if (vtime->state == VTIME_SYS)
 862			*stime += vtime->stime + delta;
 863		else
 864			*utime += vtime->utime + delta;
 865	} while (read_seqcount_retry(&vtime->seqcount, seq));
 
 
 866}
 867
 868static int vtime_state_fetch(struct vtime *vtime, int cpu)
 869{
 870	int state = READ_ONCE(vtime->state);
 871
 872	/*
 873	 * We raced against a context switch, fetch the
 874	 * kcpustat task again.
 875	 */
 876	if (vtime->cpu != cpu && vtime->cpu != -1)
 877		return -EAGAIN;
 878
 879	/*
 880	 * Two possible things here:
 881	 * 1) We are seeing the scheduling out task (prev) or any past one.
 882	 * 2) We are seeing the scheduling in task (next) but it hasn't
 883	 *    passed though vtime_task_switch() yet so the pending
 884	 *    cputime of the prev task may not be flushed yet.
 885	 *
 886	 * Case 1) is ok but 2) is not. So wait for a safe VTIME state.
 887	 */
 888	if (state == VTIME_INACTIVE)
 889		return -EAGAIN;
 890
 891	return state;
 892}
 893
 894static u64 kcpustat_user_vtime(struct vtime *vtime)
 895{
 896	if (vtime->state == VTIME_USER)
 897		return vtime->utime + vtime_delta(vtime);
 898	else if (vtime->state == VTIME_GUEST)
 899		return vtime->gtime + vtime_delta(vtime);
 900	return 0;
 901}
 902
 903static int kcpustat_field_vtime(u64 *cpustat,
 904				struct task_struct *tsk,
 905				enum cpu_usage_stat usage,
 906				int cpu, u64 *val)
 907{
 908	struct vtime *vtime = &tsk->vtime;
 909	unsigned int seq;
 910
 911	do {
 912		int state;
 913
 914		seq = read_seqcount_begin(&vtime->seqcount);
 915
 916		state = vtime_state_fetch(vtime, cpu);
 917		if (state < 0)
 918			return state;
 919
 920		*val = cpustat[usage];
 921
 922		/*
 923		 * Nice VS unnice cputime accounting may be inaccurate if
 924		 * the nice value has changed since the last vtime update.
 925		 * But proper fix would involve interrupting target on nice
 926		 * updates which is a no go on nohz_full (although the scheduler
 927		 * may still interrupt the target if rescheduling is needed...)
 928		 */
 929		switch (usage) {
 930		case CPUTIME_SYSTEM:
 931			if (state == VTIME_SYS)
 932				*val += vtime->stime + vtime_delta(vtime);
 933			break;
 934		case CPUTIME_USER:
 935			if (task_nice(tsk) <= 0)
 936				*val += kcpustat_user_vtime(vtime);
 937			break;
 938		case CPUTIME_NICE:
 939			if (task_nice(tsk) > 0)
 940				*val += kcpustat_user_vtime(vtime);
 941			break;
 942		case CPUTIME_GUEST:
 943			if (state == VTIME_GUEST && task_nice(tsk) <= 0)
 944				*val += vtime->gtime + vtime_delta(vtime);
 945			break;
 946		case CPUTIME_GUEST_NICE:
 947			if (state == VTIME_GUEST && task_nice(tsk) > 0)
 948				*val += vtime->gtime + vtime_delta(vtime);
 949			break;
 950		default:
 951			break;
 952		}
 953	} while (read_seqcount_retry(&vtime->seqcount, seq));
 954
 955	return 0;
 956}
 957
 958u64 kcpustat_field(struct kernel_cpustat *kcpustat,
 959		   enum cpu_usage_stat usage, int cpu)
 960{
 961	u64 *cpustat = kcpustat->cpustat;
 962	u64 val = cpustat[usage];
 963	struct rq *rq;
 964	int err;
 965
 966	if (!vtime_accounting_enabled_cpu(cpu))
 967		return val;
 968
 969	rq = cpu_rq(cpu);
 970
 971	for (;;) {
 972		struct task_struct *curr;
 973
 974		rcu_read_lock();
 975		curr = rcu_dereference(rq->curr);
 976		if (WARN_ON_ONCE(!curr)) {
 977			rcu_read_unlock();
 978			return cpustat[usage];
 979		}
 980
 981		err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val);
 982		rcu_read_unlock();
 983
 984		if (!err)
 985			return val;
 986
 987		cpu_relax();
 988	}
 989}
 990EXPORT_SYMBOL_GPL(kcpustat_field);
 991
 992static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst,
 993				    const struct kernel_cpustat *src,
 994				    struct task_struct *tsk, int cpu)
 995{
 996	struct vtime *vtime = &tsk->vtime;
 997	unsigned int seq;
 998
 999	do {
1000		u64 *cpustat;
1001		u64 delta;
1002		int state;
1003
1004		seq = read_seqcount_begin(&vtime->seqcount);
1005
1006		state = vtime_state_fetch(vtime, cpu);
1007		if (state < 0)
1008			return state;
1009
1010		*dst = *src;
1011		cpustat = dst->cpustat;
1012
1013		/* Task is sleeping, dead or idle, nothing to add */
1014		if (state < VTIME_SYS)
1015			continue;
1016
1017		delta = vtime_delta(vtime);
1018
1019		/*
1020		 * Task runs either in user (including guest) or kernel space,
1021		 * add pending nohz time to the right place.
1022		 */
1023		if (state == VTIME_SYS) {
1024			cpustat[CPUTIME_SYSTEM] += vtime->stime + delta;
1025		} else if (state == VTIME_USER) {
1026			if (task_nice(tsk) > 0)
1027				cpustat[CPUTIME_NICE] += vtime->utime + delta;
1028			else
1029				cpustat[CPUTIME_USER] += vtime->utime + delta;
1030		} else {
1031			WARN_ON_ONCE(state != VTIME_GUEST);
1032			if (task_nice(tsk) > 0) {
1033				cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta;
1034				cpustat[CPUTIME_NICE] += vtime->gtime + delta;
1035			} else {
1036				cpustat[CPUTIME_GUEST] += vtime->gtime + delta;
1037				cpustat[CPUTIME_USER] += vtime->gtime + delta;
1038			}
1039		}
1040	} while (read_seqcount_retry(&vtime->seqcount, seq));
1041
1042	return 0;
1043}
1044
1045void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu)
1046{
1047	const struct kernel_cpustat *src = &kcpustat_cpu(cpu);
1048	struct rq *rq;
1049	int err;
1050
1051	if (!vtime_accounting_enabled_cpu(cpu)) {
1052		*dst = *src;
1053		return;
1054	}
1055
1056	rq = cpu_rq(cpu);
1057
1058	for (;;) {
1059		struct task_struct *curr;
1060
1061		rcu_read_lock();
1062		curr = rcu_dereference(rq->curr);
1063		if (WARN_ON_ONCE(!curr)) {
1064			rcu_read_unlock();
1065			*dst = *src;
1066			return;
1067		}
1068
1069		err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu);
1070		rcu_read_unlock();
1071
1072		if (!err)
1073			return;
1074
1075		cpu_relax();
1076	}
1077}
1078EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch);
1079
1080#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */