Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_mount.h"
14#include "xfs_inode.h"
15#include "xfs_trans.h"
16#include "xfs_buf_item.h"
17#include "xfs_btree.h"
18#include "xfs_errortag.h"
19#include "xfs_error.h"
20#include "xfs_trace.h"
21#include "xfs_alloc.h"
22#include "xfs_log.h"
23#include "xfs_btree_staging.h"
24#include "xfs_ag.h"
25#include "xfs_alloc_btree.h"
26#include "xfs_ialloc_btree.h"
27#include "xfs_bmap_btree.h"
28#include "xfs_rmap_btree.h"
29#include "xfs_refcount_btree.h"
30#include "xfs_health.h"
31#include "xfs_buf_mem.h"
32#include "xfs_btree_mem.h"
33
34/*
35 * Btree magic numbers.
36 */
37uint32_t
38xfs_btree_magic(
39 struct xfs_mount *mp,
40 const struct xfs_btree_ops *ops)
41{
42 int idx = xfs_has_crc(mp) ? 1 : 0;
43 __be32 magic = ops->buf_ops->magic[idx];
44
45 /* Ensure we asked for crc for crc-only magics. */
46 ASSERT(magic != 0);
47 return be32_to_cpu(magic);
48}
49
50/*
51 * These sibling pointer checks are optimised for null sibling pointers. This
52 * happens a lot, and we don't need to byte swap at runtime if the sibling
53 * pointer is NULL.
54 *
55 * These are explicitly marked at inline because the cost of calling them as
56 * functions instead of inlining them is about 36 bytes extra code per call site
57 * on x86-64. Yes, gcc-11 fails to inline them, and explicit inlining of these
58 * two sibling check functions reduces the compiled code size by over 300
59 * bytes.
60 */
61static inline xfs_failaddr_t
62xfs_btree_check_fsblock_siblings(
63 struct xfs_mount *mp,
64 xfs_fsblock_t fsb,
65 __be64 dsibling)
66{
67 xfs_fsblock_t sibling;
68
69 if (dsibling == cpu_to_be64(NULLFSBLOCK))
70 return NULL;
71
72 sibling = be64_to_cpu(dsibling);
73 if (sibling == fsb)
74 return __this_address;
75 if (!xfs_verify_fsbno(mp, sibling))
76 return __this_address;
77 return NULL;
78}
79
80static inline xfs_failaddr_t
81xfs_btree_check_memblock_siblings(
82 struct xfs_buftarg *btp,
83 xfbno_t bno,
84 __be64 dsibling)
85{
86 xfbno_t sibling;
87
88 if (dsibling == cpu_to_be64(NULLFSBLOCK))
89 return NULL;
90
91 sibling = be64_to_cpu(dsibling);
92 if (sibling == bno)
93 return __this_address;
94 if (!xmbuf_verify_daddr(btp, xfbno_to_daddr(sibling)))
95 return __this_address;
96 return NULL;
97}
98
99static inline xfs_failaddr_t
100xfs_btree_check_agblock_siblings(
101 struct xfs_perag *pag,
102 xfs_agblock_t agbno,
103 __be32 dsibling)
104{
105 xfs_agblock_t sibling;
106
107 if (dsibling == cpu_to_be32(NULLAGBLOCK))
108 return NULL;
109
110 sibling = be32_to_cpu(dsibling);
111 if (sibling == agbno)
112 return __this_address;
113 if (!xfs_verify_agbno(pag, sibling))
114 return __this_address;
115 return NULL;
116}
117
118static xfs_failaddr_t
119__xfs_btree_check_lblock_hdr(
120 struct xfs_btree_cur *cur,
121 struct xfs_btree_block *block,
122 int level,
123 struct xfs_buf *bp)
124{
125 struct xfs_mount *mp = cur->bc_mp;
126
127 if (xfs_has_crc(mp)) {
128 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
129 return __this_address;
130 if (block->bb_u.l.bb_blkno !=
131 cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
132 return __this_address;
133 if (block->bb_u.l.bb_pad != cpu_to_be32(0))
134 return __this_address;
135 }
136
137 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(mp, cur->bc_ops))
138 return __this_address;
139 if (be16_to_cpu(block->bb_level) != level)
140 return __this_address;
141 if (be16_to_cpu(block->bb_numrecs) >
142 cur->bc_ops->get_maxrecs(cur, level))
143 return __this_address;
144
145 return NULL;
146}
147
148/*
149 * Check a long btree block header. Return the address of the failing check,
150 * or NULL if everything is ok.
151 */
152static xfs_failaddr_t
153__xfs_btree_check_fsblock(
154 struct xfs_btree_cur *cur,
155 struct xfs_btree_block *block,
156 int level,
157 struct xfs_buf *bp)
158{
159 struct xfs_mount *mp = cur->bc_mp;
160 xfs_failaddr_t fa;
161 xfs_fsblock_t fsb;
162
163 fa = __xfs_btree_check_lblock_hdr(cur, block, level, bp);
164 if (fa)
165 return fa;
166
167 /*
168 * For inode-rooted btrees, the root block sits in the inode fork. In
169 * that case bp is NULL, and the block must not have any siblings.
170 */
171 if (!bp) {
172 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK))
173 return __this_address;
174 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK))
175 return __this_address;
176 return NULL;
177 }
178
179 fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
180 fa = xfs_btree_check_fsblock_siblings(mp, fsb,
181 block->bb_u.l.bb_leftsib);
182 if (!fa)
183 fa = xfs_btree_check_fsblock_siblings(mp, fsb,
184 block->bb_u.l.bb_rightsib);
185 return fa;
186}
187
188/*
189 * Check an in-memory btree block header. Return the address of the failing
190 * check, or NULL if everything is ok.
191 */
192static xfs_failaddr_t
193__xfs_btree_check_memblock(
194 struct xfs_btree_cur *cur,
195 struct xfs_btree_block *block,
196 int level,
197 struct xfs_buf *bp)
198{
199 struct xfs_buftarg *btp = cur->bc_mem.xfbtree->target;
200 xfs_failaddr_t fa;
201 xfbno_t bno;
202
203 fa = __xfs_btree_check_lblock_hdr(cur, block, level, bp);
204 if (fa)
205 return fa;
206
207 bno = xfs_daddr_to_xfbno(xfs_buf_daddr(bp));
208 fa = xfs_btree_check_memblock_siblings(btp, bno,
209 block->bb_u.l.bb_leftsib);
210 if (!fa)
211 fa = xfs_btree_check_memblock_siblings(btp, bno,
212 block->bb_u.l.bb_rightsib);
213 return fa;
214}
215
216/*
217 * Check a short btree block header. Return the address of the failing check,
218 * or NULL if everything is ok.
219 */
220static xfs_failaddr_t
221__xfs_btree_check_agblock(
222 struct xfs_btree_cur *cur,
223 struct xfs_btree_block *block,
224 int level,
225 struct xfs_buf *bp)
226{
227 struct xfs_mount *mp = cur->bc_mp;
228 struct xfs_perag *pag = to_perag(cur->bc_group);
229 xfs_failaddr_t fa;
230 xfs_agblock_t agbno;
231
232 if (xfs_has_crc(mp)) {
233 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
234 return __this_address;
235 if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
236 return __this_address;
237 }
238
239 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(mp, cur->bc_ops))
240 return __this_address;
241 if (be16_to_cpu(block->bb_level) != level)
242 return __this_address;
243 if (be16_to_cpu(block->bb_numrecs) >
244 cur->bc_ops->get_maxrecs(cur, level))
245 return __this_address;
246
247 agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
248 fa = xfs_btree_check_agblock_siblings(pag, agbno,
249 block->bb_u.s.bb_leftsib);
250 if (!fa)
251 fa = xfs_btree_check_agblock_siblings(pag, agbno,
252 block->bb_u.s.bb_rightsib);
253 return fa;
254}
255
256/*
257 * Internal btree block check.
258 *
259 * Return NULL if the block is ok or the address of the failed check otherwise.
260 */
261xfs_failaddr_t
262__xfs_btree_check_block(
263 struct xfs_btree_cur *cur,
264 struct xfs_btree_block *block,
265 int level,
266 struct xfs_buf *bp)
267{
268 switch (cur->bc_ops->type) {
269 case XFS_BTREE_TYPE_MEM:
270 return __xfs_btree_check_memblock(cur, block, level, bp);
271 case XFS_BTREE_TYPE_AG:
272 return __xfs_btree_check_agblock(cur, block, level, bp);
273 case XFS_BTREE_TYPE_INODE:
274 return __xfs_btree_check_fsblock(cur, block, level, bp);
275 default:
276 ASSERT(0);
277 return __this_address;
278 }
279}
280
281static inline unsigned int xfs_btree_block_errtag(struct xfs_btree_cur *cur)
282{
283 if (cur->bc_ops->ptr_len == XFS_BTREE_SHORT_PTR_LEN)
284 return XFS_ERRTAG_BTREE_CHECK_SBLOCK;
285 return XFS_ERRTAG_BTREE_CHECK_LBLOCK;
286}
287
288/*
289 * Debug routine: check that block header is ok.
290 */
291int
292xfs_btree_check_block(
293 struct xfs_btree_cur *cur, /* btree cursor */
294 struct xfs_btree_block *block, /* generic btree block pointer */
295 int level, /* level of the btree block */
296 struct xfs_buf *bp) /* buffer containing block, if any */
297{
298 struct xfs_mount *mp = cur->bc_mp;
299 xfs_failaddr_t fa;
300
301 fa = __xfs_btree_check_block(cur, block, level, bp);
302 if (XFS_IS_CORRUPT(mp, fa != NULL) ||
303 XFS_TEST_ERROR(false, mp, xfs_btree_block_errtag(cur))) {
304 if (bp)
305 trace_xfs_btree_corrupt(bp, _RET_IP_);
306 xfs_btree_mark_sick(cur);
307 return -EFSCORRUPTED;
308 }
309 return 0;
310}
311
312int
313__xfs_btree_check_ptr(
314 struct xfs_btree_cur *cur,
315 const union xfs_btree_ptr *ptr,
316 int index,
317 int level)
318{
319 if (level <= 0)
320 return -EFSCORRUPTED;
321
322 switch (cur->bc_ops->type) {
323 case XFS_BTREE_TYPE_MEM:
324 if (!xfbtree_verify_bno(cur->bc_mem.xfbtree,
325 be64_to_cpu((&ptr->l)[index])))
326 return -EFSCORRUPTED;
327 break;
328 case XFS_BTREE_TYPE_INODE:
329 if (!xfs_verify_fsbno(cur->bc_mp,
330 be64_to_cpu((&ptr->l)[index])))
331 return -EFSCORRUPTED;
332 break;
333 case XFS_BTREE_TYPE_AG:
334 if (!xfs_verify_agbno(to_perag(cur->bc_group),
335 be32_to_cpu((&ptr->s)[index])))
336 return -EFSCORRUPTED;
337 break;
338 }
339
340 return 0;
341}
342
343/*
344 * Check that a given (indexed) btree pointer at a certain level of a
345 * btree is valid and doesn't point past where it should.
346 */
347static int
348xfs_btree_check_ptr(
349 struct xfs_btree_cur *cur,
350 const union xfs_btree_ptr *ptr,
351 int index,
352 int level)
353{
354 int error;
355
356 error = __xfs_btree_check_ptr(cur, ptr, index, level);
357 if (error) {
358 switch (cur->bc_ops->type) {
359 case XFS_BTREE_TYPE_MEM:
360 xfs_err(cur->bc_mp,
361"In-memory: Corrupt %sbt flags 0x%x pointer at level %d index %d fa %pS.",
362 cur->bc_ops->name, cur->bc_flags, level, index,
363 __this_address);
364 break;
365 case XFS_BTREE_TYPE_INODE:
366 xfs_err(cur->bc_mp,
367"Inode %llu fork %d: Corrupt %sbt pointer at level %d index %d.",
368 cur->bc_ino.ip->i_ino,
369 cur->bc_ino.whichfork, cur->bc_ops->name,
370 level, index);
371 break;
372 case XFS_BTREE_TYPE_AG:
373 xfs_err(cur->bc_mp,
374"AG %u: Corrupt %sbt pointer at level %d index %d.",
375 cur->bc_group->xg_gno, cur->bc_ops->name,
376 level, index);
377 break;
378 }
379 xfs_btree_mark_sick(cur);
380 }
381
382 return error;
383}
384
385#ifdef DEBUG
386# define xfs_btree_debug_check_ptr xfs_btree_check_ptr
387#else
388# define xfs_btree_debug_check_ptr(...) (0)
389#endif
390
391/*
392 * Calculate CRC on the whole btree block and stuff it into the
393 * long-form btree header.
394 *
395 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
396 * it into the buffer so recovery knows what the last modification was that made
397 * it to disk.
398 */
399void
400xfs_btree_fsblock_calc_crc(
401 struct xfs_buf *bp)
402{
403 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
404 struct xfs_buf_log_item *bip = bp->b_log_item;
405
406 if (!xfs_has_crc(bp->b_mount))
407 return;
408 if (bip)
409 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
410 xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
411}
412
413bool
414xfs_btree_fsblock_verify_crc(
415 struct xfs_buf *bp)
416{
417 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
418 struct xfs_mount *mp = bp->b_mount;
419
420 if (xfs_has_crc(mp)) {
421 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
422 return false;
423 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
424 }
425
426 return true;
427}
428
429/*
430 * Calculate CRC on the whole btree block and stuff it into the
431 * short-form btree header.
432 *
433 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
434 * it into the buffer so recovery knows what the last modification was that made
435 * it to disk.
436 */
437void
438xfs_btree_agblock_calc_crc(
439 struct xfs_buf *bp)
440{
441 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
442 struct xfs_buf_log_item *bip = bp->b_log_item;
443
444 if (!xfs_has_crc(bp->b_mount))
445 return;
446 if (bip)
447 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
448 xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
449}
450
451bool
452xfs_btree_agblock_verify_crc(
453 struct xfs_buf *bp)
454{
455 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
456 struct xfs_mount *mp = bp->b_mount;
457
458 if (xfs_has_crc(mp)) {
459 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
460 return false;
461 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
462 }
463
464 return true;
465}
466
467static int
468xfs_btree_free_block(
469 struct xfs_btree_cur *cur,
470 struct xfs_buf *bp)
471{
472 int error;
473
474 trace_xfs_btree_free_block(cur, bp);
475
476 /*
477 * Don't allow block freeing for a staging cursor, because staging
478 * cursors do not support regular btree modifications.
479 */
480 if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) {
481 ASSERT(0);
482 return -EFSCORRUPTED;
483 }
484
485 error = cur->bc_ops->free_block(cur, bp);
486 if (!error) {
487 xfs_trans_binval(cur->bc_tp, bp);
488 XFS_BTREE_STATS_INC(cur, free);
489 }
490 return error;
491}
492
493/*
494 * Delete the btree cursor.
495 */
496void
497xfs_btree_del_cursor(
498 struct xfs_btree_cur *cur, /* btree cursor */
499 int error) /* del because of error */
500{
501 int i; /* btree level */
502
503 /*
504 * Clear the buffer pointers and release the buffers. If we're doing
505 * this because of an error, inspect all of the entries in the bc_bufs
506 * array for buffers to be unlocked. This is because some of the btree
507 * code works from level n down to 0, and if we get an error along the
508 * way we won't have initialized all the entries down to 0.
509 */
510 for (i = 0; i < cur->bc_nlevels; i++) {
511 if (cur->bc_levels[i].bp)
512 xfs_trans_brelse(cur->bc_tp, cur->bc_levels[i].bp);
513 else if (!error)
514 break;
515 }
516
517 /*
518 * If we are doing a BMBT update, the number of unaccounted blocks
519 * allocated during this cursor life time should be zero. If it's not
520 * zero, then we should be shut down or on our way to shutdown due to
521 * cancelling a dirty transaction on error.
522 */
523 ASSERT(!xfs_btree_is_bmap(cur->bc_ops) || cur->bc_bmap.allocated == 0 ||
524 xfs_is_shutdown(cur->bc_mp) || error != 0);
525
526 if (cur->bc_group)
527 xfs_group_put(cur->bc_group);
528 kmem_cache_free(cur->bc_cache, cur);
529}
530
531/* Return the buffer target for this btree's buffer. */
532static inline struct xfs_buftarg *
533xfs_btree_buftarg(
534 struct xfs_btree_cur *cur)
535{
536 if (cur->bc_ops->type == XFS_BTREE_TYPE_MEM)
537 return cur->bc_mem.xfbtree->target;
538 return cur->bc_mp->m_ddev_targp;
539}
540
541/* Return the block size (in units of 512b sectors) for this btree. */
542static inline unsigned int
543xfs_btree_bbsize(
544 struct xfs_btree_cur *cur)
545{
546 if (cur->bc_ops->type == XFS_BTREE_TYPE_MEM)
547 return XFBNO_BBSIZE;
548 return cur->bc_mp->m_bsize;
549}
550
551/*
552 * Duplicate the btree cursor.
553 * Allocate a new one, copy the record, re-get the buffers.
554 */
555int /* error */
556xfs_btree_dup_cursor(
557 struct xfs_btree_cur *cur, /* input cursor */
558 struct xfs_btree_cur **ncur) /* output cursor */
559{
560 struct xfs_mount *mp = cur->bc_mp;
561 struct xfs_trans *tp = cur->bc_tp;
562 struct xfs_buf *bp;
563 struct xfs_btree_cur *new;
564 int error;
565 int i;
566
567 /*
568 * Don't allow staging cursors to be duplicated because they're supposed
569 * to be kept private to a single thread.
570 */
571 if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) {
572 ASSERT(0);
573 return -EFSCORRUPTED;
574 }
575
576 /*
577 * Allocate a new cursor like the old one.
578 */
579 new = cur->bc_ops->dup_cursor(cur);
580
581 /*
582 * Copy the record currently in the cursor.
583 */
584 new->bc_rec = cur->bc_rec;
585
586 /*
587 * For each level current, re-get the buffer and copy the ptr value.
588 */
589 for (i = 0; i < new->bc_nlevels; i++) {
590 new->bc_levels[i].ptr = cur->bc_levels[i].ptr;
591 new->bc_levels[i].ra = cur->bc_levels[i].ra;
592 bp = cur->bc_levels[i].bp;
593 if (bp) {
594 error = xfs_trans_read_buf(mp, tp,
595 xfs_btree_buftarg(cur),
596 xfs_buf_daddr(bp),
597 xfs_btree_bbsize(cur), 0, &bp,
598 cur->bc_ops->buf_ops);
599 if (xfs_metadata_is_sick(error))
600 xfs_btree_mark_sick(new);
601 if (error) {
602 xfs_btree_del_cursor(new, error);
603 *ncur = NULL;
604 return error;
605 }
606 }
607 new->bc_levels[i].bp = bp;
608 }
609 *ncur = new;
610 return 0;
611}
612
613/*
614 * XFS btree block layout and addressing:
615 *
616 * There are two types of blocks in the btree: leaf and non-leaf blocks.
617 *
618 * The leaf record start with a header then followed by records containing
619 * the values. A non-leaf block also starts with the same header, and
620 * then first contains lookup keys followed by an equal number of pointers
621 * to the btree blocks at the previous level.
622 *
623 * +--------+-------+-------+-------+-------+-------+-------+
624 * Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
625 * +--------+-------+-------+-------+-------+-------+-------+
626 *
627 * +--------+-------+-------+-------+-------+-------+-------+
628 * Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
629 * +--------+-------+-------+-------+-------+-------+-------+
630 *
631 * The header is called struct xfs_btree_block for reasons better left unknown
632 * and comes in different versions for short (32bit) and long (64bit) block
633 * pointers. The record and key structures are defined by the btree instances
634 * and opaque to the btree core. The block pointers are simple disk endian
635 * integers, available in a short (32bit) and long (64bit) variant.
636 *
637 * The helpers below calculate the offset of a given record, key or pointer
638 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
639 * record, key or pointer (xfs_btree_*_addr). Note that all addressing
640 * inside the btree block is done using indices starting at one, not zero!
641 *
642 * If XFS_BTGEO_OVERLAPPING is set, then this btree supports keys containing
643 * overlapping intervals. In such a tree, records are still sorted lowest to
644 * highest and indexed by the smallest key value that refers to the record.
645 * However, nodes are different: each pointer has two associated keys -- one
646 * indexing the lowest key available in the block(s) below (the same behavior
647 * as the key in a regular btree) and another indexing the highest key
648 * available in the block(s) below. Because records are /not/ sorted by the
649 * highest key, all leaf block updates require us to compute the highest key
650 * that matches any record in the leaf and to recursively update the high keys
651 * in the nodes going further up in the tree, if necessary. Nodes look like
652 * this:
653 *
654 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
655 * Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
656 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
657 *
658 * To perform an interval query on an overlapped tree, perform the usual
659 * depth-first search and use the low and high keys to decide if we can skip
660 * that particular node. If a leaf node is reached, return the records that
661 * intersect the interval. Note that an interval query may return numerous
662 * entries. For a non-overlapped tree, simply search for the record associated
663 * with the lowest key and iterate forward until a non-matching record is
664 * found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
665 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
666 * more detail.
667 *
668 * Why do we care about overlapping intervals? Let's say you have a bunch of
669 * reverse mapping records on a reflink filesystem:
670 *
671 * 1: +- file A startblock B offset C length D -----------+
672 * 2: +- file E startblock F offset G length H --------------+
673 * 3: +- file I startblock F offset J length K --+
674 * 4: +- file L... --+
675 *
676 * Now say we want to map block (B+D) into file A at offset (C+D). Ideally,
677 * we'd simply increment the length of record 1. But how do we find the record
678 * that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return
679 * record 3 because the keys are ordered first by startblock. An interval
680 * query would return records 1 and 2 because they both overlap (B+D-1), and
681 * from that we can pick out record 1 as the appropriate left neighbor.
682 *
683 * In the non-overlapped case you can do a LE lookup and decrement the cursor
684 * because a record's interval must end before the next record.
685 */
686
687/*
688 * Return size of the btree block header for this btree instance.
689 */
690static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
691{
692 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
693 if (xfs_has_crc(cur->bc_mp))
694 return XFS_BTREE_LBLOCK_CRC_LEN;
695 return XFS_BTREE_LBLOCK_LEN;
696 }
697 if (xfs_has_crc(cur->bc_mp))
698 return XFS_BTREE_SBLOCK_CRC_LEN;
699 return XFS_BTREE_SBLOCK_LEN;
700}
701
702/*
703 * Calculate offset of the n-th record in a btree block.
704 */
705STATIC size_t
706xfs_btree_rec_offset(
707 struct xfs_btree_cur *cur,
708 int n)
709{
710 return xfs_btree_block_len(cur) +
711 (n - 1) * cur->bc_ops->rec_len;
712}
713
714/*
715 * Calculate offset of the n-th key in a btree block.
716 */
717STATIC size_t
718xfs_btree_key_offset(
719 struct xfs_btree_cur *cur,
720 int n)
721{
722 return xfs_btree_block_len(cur) +
723 (n - 1) * cur->bc_ops->key_len;
724}
725
726/*
727 * Calculate offset of the n-th high key in a btree block.
728 */
729STATIC size_t
730xfs_btree_high_key_offset(
731 struct xfs_btree_cur *cur,
732 int n)
733{
734 return xfs_btree_block_len(cur) +
735 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
736}
737
738/*
739 * Calculate offset of the n-th block pointer in a btree block.
740 */
741STATIC size_t
742xfs_btree_ptr_offset(
743 struct xfs_btree_cur *cur,
744 int n,
745 int level)
746{
747 return xfs_btree_block_len(cur) +
748 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
749 (n - 1) * cur->bc_ops->ptr_len;
750}
751
752/*
753 * Return a pointer to the n-th record in the btree block.
754 */
755union xfs_btree_rec *
756xfs_btree_rec_addr(
757 struct xfs_btree_cur *cur,
758 int n,
759 struct xfs_btree_block *block)
760{
761 return (union xfs_btree_rec *)
762 ((char *)block + xfs_btree_rec_offset(cur, n));
763}
764
765/*
766 * Return a pointer to the n-th key in the btree block.
767 */
768union xfs_btree_key *
769xfs_btree_key_addr(
770 struct xfs_btree_cur *cur,
771 int n,
772 struct xfs_btree_block *block)
773{
774 return (union xfs_btree_key *)
775 ((char *)block + xfs_btree_key_offset(cur, n));
776}
777
778/*
779 * Return a pointer to the n-th high key in the btree block.
780 */
781union xfs_btree_key *
782xfs_btree_high_key_addr(
783 struct xfs_btree_cur *cur,
784 int n,
785 struct xfs_btree_block *block)
786{
787 return (union xfs_btree_key *)
788 ((char *)block + xfs_btree_high_key_offset(cur, n));
789}
790
791/*
792 * Return a pointer to the n-th block pointer in the btree block.
793 */
794union xfs_btree_ptr *
795xfs_btree_ptr_addr(
796 struct xfs_btree_cur *cur,
797 int n,
798 struct xfs_btree_block *block)
799{
800 int level = xfs_btree_get_level(block);
801
802 ASSERT(block->bb_level != 0);
803
804 return (union xfs_btree_ptr *)
805 ((char *)block + xfs_btree_ptr_offset(cur, n, level));
806}
807
808struct xfs_ifork *
809xfs_btree_ifork_ptr(
810 struct xfs_btree_cur *cur)
811{
812 ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
813
814 if (cur->bc_flags & XFS_BTREE_STAGING)
815 return cur->bc_ino.ifake->if_fork;
816 return xfs_ifork_ptr(cur->bc_ino.ip, cur->bc_ino.whichfork);
817}
818
819/*
820 * Get the root block which is stored in the inode.
821 *
822 * For now this btree implementation assumes the btree root is always
823 * stored in the if_broot field of an inode fork.
824 */
825STATIC struct xfs_btree_block *
826xfs_btree_get_iroot(
827 struct xfs_btree_cur *cur)
828{
829 struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur);
830
831 return (struct xfs_btree_block *)ifp->if_broot;
832}
833
834/*
835 * Retrieve the block pointer from the cursor at the given level.
836 * This may be an inode btree root or from a buffer.
837 */
838struct xfs_btree_block * /* generic btree block pointer */
839xfs_btree_get_block(
840 struct xfs_btree_cur *cur, /* btree cursor */
841 int level, /* level in btree */
842 struct xfs_buf **bpp) /* buffer containing the block */
843{
844 if (xfs_btree_at_iroot(cur, level)) {
845 *bpp = NULL;
846 return xfs_btree_get_iroot(cur);
847 }
848
849 *bpp = cur->bc_levels[level].bp;
850 return XFS_BUF_TO_BLOCK(*bpp);
851}
852
853/*
854 * Change the cursor to point to the first record at the given level.
855 * Other levels are unaffected.
856 */
857STATIC int /* success=1, failure=0 */
858xfs_btree_firstrec(
859 struct xfs_btree_cur *cur, /* btree cursor */
860 int level) /* level to change */
861{
862 struct xfs_btree_block *block; /* generic btree block pointer */
863 struct xfs_buf *bp; /* buffer containing block */
864
865 /*
866 * Get the block pointer for this level.
867 */
868 block = xfs_btree_get_block(cur, level, &bp);
869 if (xfs_btree_check_block(cur, block, level, bp))
870 return 0;
871 /*
872 * It's empty, there is no such record.
873 */
874 if (!block->bb_numrecs)
875 return 0;
876 /*
877 * Set the ptr value to 1, that's the first record/key.
878 */
879 cur->bc_levels[level].ptr = 1;
880 return 1;
881}
882
883/*
884 * Change the cursor to point to the last record in the current block
885 * at the given level. Other levels are unaffected.
886 */
887STATIC int /* success=1, failure=0 */
888xfs_btree_lastrec(
889 struct xfs_btree_cur *cur, /* btree cursor */
890 int level) /* level to change */
891{
892 struct xfs_btree_block *block; /* generic btree block pointer */
893 struct xfs_buf *bp; /* buffer containing block */
894
895 /*
896 * Get the block pointer for this level.
897 */
898 block = xfs_btree_get_block(cur, level, &bp);
899 if (xfs_btree_check_block(cur, block, level, bp))
900 return 0;
901 /*
902 * It's empty, there is no such record.
903 */
904 if (!block->bb_numrecs)
905 return 0;
906 /*
907 * Set the ptr value to numrecs, that's the last record/key.
908 */
909 cur->bc_levels[level].ptr = be16_to_cpu(block->bb_numrecs);
910 return 1;
911}
912
913/*
914 * Compute first and last byte offsets for the fields given.
915 * Interprets the offsets table, which contains struct field offsets.
916 */
917void
918xfs_btree_offsets(
919 uint32_t fields, /* bitmask of fields */
920 const short *offsets, /* table of field offsets */
921 int nbits, /* number of bits to inspect */
922 int *first, /* output: first byte offset */
923 int *last) /* output: last byte offset */
924{
925 int i; /* current bit number */
926 uint32_t imask; /* mask for current bit number */
927
928 ASSERT(fields != 0);
929 /*
930 * Find the lowest bit, so the first byte offset.
931 */
932 for (i = 0, imask = 1u; ; i++, imask <<= 1) {
933 if (imask & fields) {
934 *first = offsets[i];
935 break;
936 }
937 }
938 /*
939 * Find the highest bit, so the last byte offset.
940 */
941 for (i = nbits - 1, imask = 1u << i; ; i--, imask >>= 1) {
942 if (imask & fields) {
943 *last = offsets[i + 1] - 1;
944 break;
945 }
946 }
947}
948
949STATIC int
950xfs_btree_readahead_fsblock(
951 struct xfs_btree_cur *cur,
952 int lr,
953 struct xfs_btree_block *block)
954{
955 struct xfs_mount *mp = cur->bc_mp;
956 xfs_fsblock_t left = be64_to_cpu(block->bb_u.l.bb_leftsib);
957 xfs_fsblock_t right = be64_to_cpu(block->bb_u.l.bb_rightsib);
958 int rval = 0;
959
960 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
961 xfs_buf_readahead(mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, left),
962 mp->m_bsize, cur->bc_ops->buf_ops);
963 rval++;
964 }
965
966 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
967 xfs_buf_readahead(mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, right),
968 mp->m_bsize, cur->bc_ops->buf_ops);
969 rval++;
970 }
971
972 return rval;
973}
974
975STATIC int
976xfs_btree_readahead_memblock(
977 struct xfs_btree_cur *cur,
978 int lr,
979 struct xfs_btree_block *block)
980{
981 struct xfs_buftarg *btp = cur->bc_mem.xfbtree->target;
982 xfbno_t left = be64_to_cpu(block->bb_u.l.bb_leftsib);
983 xfbno_t right = be64_to_cpu(block->bb_u.l.bb_rightsib);
984 int rval = 0;
985
986 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
987 xfs_buf_readahead(btp, xfbno_to_daddr(left), XFBNO_BBSIZE,
988 cur->bc_ops->buf_ops);
989 rval++;
990 }
991
992 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
993 xfs_buf_readahead(btp, xfbno_to_daddr(right), XFBNO_BBSIZE,
994 cur->bc_ops->buf_ops);
995 rval++;
996 }
997
998 return rval;
999}
1000
1001STATIC int
1002xfs_btree_readahead_agblock(
1003 struct xfs_btree_cur *cur,
1004 int lr,
1005 struct xfs_btree_block *block)
1006{
1007 struct xfs_mount *mp = cur->bc_mp;
1008 struct xfs_perag *pag = to_perag(cur->bc_group);
1009 xfs_agblock_t left = be32_to_cpu(block->bb_u.s.bb_leftsib);
1010 xfs_agblock_t right = be32_to_cpu(block->bb_u.s.bb_rightsib);
1011 int rval = 0;
1012
1013 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
1014 xfs_buf_readahead(mp->m_ddev_targp,
1015 xfs_agbno_to_daddr(pag, left), mp->m_bsize,
1016 cur->bc_ops->buf_ops);
1017 rval++;
1018 }
1019
1020 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
1021 xfs_buf_readahead(mp->m_ddev_targp,
1022 xfs_agbno_to_daddr(pag, right), mp->m_bsize,
1023 cur->bc_ops->buf_ops);
1024 rval++;
1025 }
1026
1027 return rval;
1028}
1029
1030/*
1031 * Read-ahead btree blocks, at the given level.
1032 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
1033 */
1034STATIC int
1035xfs_btree_readahead(
1036 struct xfs_btree_cur *cur, /* btree cursor */
1037 int lev, /* level in btree */
1038 int lr) /* left/right bits */
1039{
1040 struct xfs_btree_block *block;
1041
1042 /*
1043 * No readahead needed if we are at the root level and the
1044 * btree root is stored in the inode.
1045 */
1046 if (xfs_btree_at_iroot(cur, lev))
1047 return 0;
1048
1049 if ((cur->bc_levels[lev].ra | lr) == cur->bc_levels[lev].ra)
1050 return 0;
1051
1052 cur->bc_levels[lev].ra |= lr;
1053 block = XFS_BUF_TO_BLOCK(cur->bc_levels[lev].bp);
1054
1055 switch (cur->bc_ops->type) {
1056 case XFS_BTREE_TYPE_AG:
1057 return xfs_btree_readahead_agblock(cur, lr, block);
1058 case XFS_BTREE_TYPE_INODE:
1059 return xfs_btree_readahead_fsblock(cur, lr, block);
1060 case XFS_BTREE_TYPE_MEM:
1061 return xfs_btree_readahead_memblock(cur, lr, block);
1062 default:
1063 ASSERT(0);
1064 return 0;
1065 }
1066}
1067
1068STATIC int
1069xfs_btree_ptr_to_daddr(
1070 struct xfs_btree_cur *cur,
1071 const union xfs_btree_ptr *ptr,
1072 xfs_daddr_t *daddr)
1073{
1074 int error;
1075
1076 error = xfs_btree_check_ptr(cur, ptr, 0, 1);
1077 if (error)
1078 return error;
1079
1080 switch (cur->bc_ops->type) {
1081 case XFS_BTREE_TYPE_AG:
1082 *daddr = xfs_agbno_to_daddr(to_perag(cur->bc_group),
1083 be32_to_cpu(ptr->s));
1084 break;
1085 case XFS_BTREE_TYPE_INODE:
1086 *daddr = XFS_FSB_TO_DADDR(cur->bc_mp, be64_to_cpu(ptr->l));
1087 break;
1088 case XFS_BTREE_TYPE_MEM:
1089 *daddr = xfbno_to_daddr(be64_to_cpu(ptr->l));
1090 break;
1091 }
1092 return 0;
1093}
1094
1095/*
1096 * Readahead @count btree blocks at the given @ptr location.
1097 *
1098 * We don't need to care about long or short form btrees here as we have a
1099 * method of converting the ptr directly to a daddr available to us.
1100 */
1101STATIC void
1102xfs_btree_readahead_ptr(
1103 struct xfs_btree_cur *cur,
1104 union xfs_btree_ptr *ptr,
1105 xfs_extlen_t count)
1106{
1107 xfs_daddr_t daddr;
1108
1109 if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
1110 return;
1111 xfs_buf_readahead(xfs_btree_buftarg(cur), daddr,
1112 xfs_btree_bbsize(cur) * count,
1113 cur->bc_ops->buf_ops);
1114}
1115
1116/*
1117 * Set the buffer for level "lev" in the cursor to bp, releasing
1118 * any previous buffer.
1119 */
1120STATIC void
1121xfs_btree_setbuf(
1122 struct xfs_btree_cur *cur, /* btree cursor */
1123 int lev, /* level in btree */
1124 struct xfs_buf *bp) /* new buffer to set */
1125{
1126 struct xfs_btree_block *b; /* btree block */
1127
1128 if (cur->bc_levels[lev].bp)
1129 xfs_trans_brelse(cur->bc_tp, cur->bc_levels[lev].bp);
1130 cur->bc_levels[lev].bp = bp;
1131 cur->bc_levels[lev].ra = 0;
1132
1133 b = XFS_BUF_TO_BLOCK(bp);
1134 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1135 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1136 cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1137 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1138 cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1139 } else {
1140 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1141 cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1142 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1143 cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1144 }
1145}
1146
1147bool
1148xfs_btree_ptr_is_null(
1149 struct xfs_btree_cur *cur,
1150 const union xfs_btree_ptr *ptr)
1151{
1152 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
1153 return ptr->l == cpu_to_be64(NULLFSBLOCK);
1154 else
1155 return ptr->s == cpu_to_be32(NULLAGBLOCK);
1156}
1157
1158void
1159xfs_btree_set_ptr_null(
1160 struct xfs_btree_cur *cur,
1161 union xfs_btree_ptr *ptr)
1162{
1163 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
1164 ptr->l = cpu_to_be64(NULLFSBLOCK);
1165 else
1166 ptr->s = cpu_to_be32(NULLAGBLOCK);
1167}
1168
1169static inline bool
1170xfs_btree_ptrs_equal(
1171 struct xfs_btree_cur *cur,
1172 union xfs_btree_ptr *ptr1,
1173 union xfs_btree_ptr *ptr2)
1174{
1175 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
1176 return ptr1->l == ptr2->l;
1177 return ptr1->s == ptr2->s;
1178}
1179
1180/*
1181 * Get/set/init sibling pointers
1182 */
1183void
1184xfs_btree_get_sibling(
1185 struct xfs_btree_cur *cur,
1186 struct xfs_btree_block *block,
1187 union xfs_btree_ptr *ptr,
1188 int lr)
1189{
1190 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1191
1192 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1193 if (lr == XFS_BB_RIGHTSIB)
1194 ptr->l = block->bb_u.l.bb_rightsib;
1195 else
1196 ptr->l = block->bb_u.l.bb_leftsib;
1197 } else {
1198 if (lr == XFS_BB_RIGHTSIB)
1199 ptr->s = block->bb_u.s.bb_rightsib;
1200 else
1201 ptr->s = block->bb_u.s.bb_leftsib;
1202 }
1203}
1204
1205void
1206xfs_btree_set_sibling(
1207 struct xfs_btree_cur *cur,
1208 struct xfs_btree_block *block,
1209 const union xfs_btree_ptr *ptr,
1210 int lr)
1211{
1212 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1213
1214 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1215 if (lr == XFS_BB_RIGHTSIB)
1216 block->bb_u.l.bb_rightsib = ptr->l;
1217 else
1218 block->bb_u.l.bb_leftsib = ptr->l;
1219 } else {
1220 if (lr == XFS_BB_RIGHTSIB)
1221 block->bb_u.s.bb_rightsib = ptr->s;
1222 else
1223 block->bb_u.s.bb_leftsib = ptr->s;
1224 }
1225}
1226
1227static void
1228__xfs_btree_init_block(
1229 struct xfs_mount *mp,
1230 struct xfs_btree_block *buf,
1231 const struct xfs_btree_ops *ops,
1232 xfs_daddr_t blkno,
1233 __u16 level,
1234 __u16 numrecs,
1235 __u64 owner)
1236{
1237 bool crc = xfs_has_crc(mp);
1238 __u32 magic = xfs_btree_magic(mp, ops);
1239
1240 buf->bb_magic = cpu_to_be32(magic);
1241 buf->bb_level = cpu_to_be16(level);
1242 buf->bb_numrecs = cpu_to_be16(numrecs);
1243
1244 if (ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1245 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1246 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1247 if (crc) {
1248 buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1249 buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1250 uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1251 buf->bb_u.l.bb_pad = 0;
1252 buf->bb_u.l.bb_lsn = 0;
1253 }
1254 } else {
1255 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1256 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1257 if (crc) {
1258 buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1259 /* owner is a 32 bit value on short blocks */
1260 buf->bb_u.s.bb_owner = cpu_to_be32((__u32)owner);
1261 uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1262 buf->bb_u.s.bb_lsn = 0;
1263 }
1264 }
1265}
1266
1267void
1268xfs_btree_init_block(
1269 struct xfs_mount *mp,
1270 struct xfs_btree_block *block,
1271 const struct xfs_btree_ops *ops,
1272 __u16 level,
1273 __u16 numrecs,
1274 __u64 owner)
1275{
1276 __xfs_btree_init_block(mp, block, ops, XFS_BUF_DADDR_NULL, level,
1277 numrecs, owner);
1278}
1279
1280void
1281xfs_btree_init_buf(
1282 struct xfs_mount *mp,
1283 struct xfs_buf *bp,
1284 const struct xfs_btree_ops *ops,
1285 __u16 level,
1286 __u16 numrecs,
1287 __u64 owner)
1288{
1289 __xfs_btree_init_block(mp, XFS_BUF_TO_BLOCK(bp), ops,
1290 xfs_buf_daddr(bp), level, numrecs, owner);
1291 bp->b_ops = ops->buf_ops;
1292}
1293
1294static inline __u64
1295xfs_btree_owner(
1296 struct xfs_btree_cur *cur)
1297{
1298 switch (cur->bc_ops->type) {
1299 case XFS_BTREE_TYPE_MEM:
1300 return cur->bc_mem.xfbtree->owner;
1301 case XFS_BTREE_TYPE_INODE:
1302 return cur->bc_ino.ip->i_ino;
1303 case XFS_BTREE_TYPE_AG:
1304 return cur->bc_group->xg_gno;
1305 default:
1306 ASSERT(0);
1307 return 0;
1308 }
1309}
1310
1311void
1312xfs_btree_init_block_cur(
1313 struct xfs_btree_cur *cur,
1314 struct xfs_buf *bp,
1315 int level,
1316 int numrecs)
1317{
1318 xfs_btree_init_buf(cur->bc_mp, bp, cur->bc_ops, level, numrecs,
1319 xfs_btree_owner(cur));
1320}
1321
1322STATIC void
1323xfs_btree_buf_to_ptr(
1324 struct xfs_btree_cur *cur,
1325 struct xfs_buf *bp,
1326 union xfs_btree_ptr *ptr)
1327{
1328 switch (cur->bc_ops->type) {
1329 case XFS_BTREE_TYPE_AG:
1330 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1331 xfs_buf_daddr(bp)));
1332 break;
1333 case XFS_BTREE_TYPE_INODE:
1334 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1335 xfs_buf_daddr(bp)));
1336 break;
1337 case XFS_BTREE_TYPE_MEM:
1338 ptr->l = cpu_to_be64(xfs_daddr_to_xfbno(xfs_buf_daddr(bp)));
1339 break;
1340 }
1341}
1342
1343static inline void
1344xfs_btree_set_refs(
1345 struct xfs_btree_cur *cur,
1346 struct xfs_buf *bp)
1347{
1348 xfs_buf_set_ref(bp, cur->bc_ops->lru_refs);
1349}
1350
1351int
1352xfs_btree_get_buf_block(
1353 struct xfs_btree_cur *cur,
1354 const union xfs_btree_ptr *ptr,
1355 struct xfs_btree_block **block,
1356 struct xfs_buf **bpp)
1357{
1358 xfs_daddr_t d;
1359 int error;
1360
1361 error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1362 if (error)
1363 return error;
1364 error = xfs_trans_get_buf(cur->bc_tp, xfs_btree_buftarg(cur), d,
1365 xfs_btree_bbsize(cur), 0, bpp);
1366 if (error)
1367 return error;
1368
1369 (*bpp)->b_ops = cur->bc_ops->buf_ops;
1370 *block = XFS_BUF_TO_BLOCK(*bpp);
1371 return 0;
1372}
1373
1374/*
1375 * Read in the buffer at the given ptr and return the buffer and
1376 * the block pointer within the buffer.
1377 */
1378int
1379xfs_btree_read_buf_block(
1380 struct xfs_btree_cur *cur,
1381 const union xfs_btree_ptr *ptr,
1382 int flags,
1383 struct xfs_btree_block **block,
1384 struct xfs_buf **bpp)
1385{
1386 struct xfs_mount *mp = cur->bc_mp;
1387 xfs_daddr_t d;
1388 int error;
1389
1390 /* need to sort out how callers deal with failures first */
1391 ASSERT(!(flags & XBF_TRYLOCK));
1392
1393 error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1394 if (error)
1395 return error;
1396 error = xfs_trans_read_buf(mp, cur->bc_tp, xfs_btree_buftarg(cur), d,
1397 xfs_btree_bbsize(cur), flags, bpp,
1398 cur->bc_ops->buf_ops);
1399 if (xfs_metadata_is_sick(error))
1400 xfs_btree_mark_sick(cur);
1401 if (error)
1402 return error;
1403
1404 xfs_btree_set_refs(cur, *bpp);
1405 *block = XFS_BUF_TO_BLOCK(*bpp);
1406 return 0;
1407}
1408
1409/*
1410 * Copy keys from one btree block to another.
1411 */
1412void
1413xfs_btree_copy_keys(
1414 struct xfs_btree_cur *cur,
1415 union xfs_btree_key *dst_key,
1416 const union xfs_btree_key *src_key,
1417 int numkeys)
1418{
1419 ASSERT(numkeys >= 0);
1420 memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1421}
1422
1423/*
1424 * Copy records from one btree block to another.
1425 */
1426STATIC void
1427xfs_btree_copy_recs(
1428 struct xfs_btree_cur *cur,
1429 union xfs_btree_rec *dst_rec,
1430 union xfs_btree_rec *src_rec,
1431 int numrecs)
1432{
1433 ASSERT(numrecs >= 0);
1434 memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1435}
1436
1437/*
1438 * Copy block pointers from one btree block to another.
1439 */
1440void
1441xfs_btree_copy_ptrs(
1442 struct xfs_btree_cur *cur,
1443 union xfs_btree_ptr *dst_ptr,
1444 const union xfs_btree_ptr *src_ptr,
1445 int numptrs)
1446{
1447 ASSERT(numptrs >= 0);
1448 memcpy(dst_ptr, src_ptr, numptrs * cur->bc_ops->ptr_len);
1449}
1450
1451/*
1452 * Shift keys one index left/right inside a single btree block.
1453 */
1454STATIC void
1455xfs_btree_shift_keys(
1456 struct xfs_btree_cur *cur,
1457 union xfs_btree_key *key,
1458 int dir,
1459 int numkeys)
1460{
1461 char *dst_key;
1462
1463 ASSERT(numkeys >= 0);
1464 ASSERT(dir == 1 || dir == -1);
1465
1466 dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1467 memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1468}
1469
1470/*
1471 * Shift records one index left/right inside a single btree block.
1472 */
1473STATIC void
1474xfs_btree_shift_recs(
1475 struct xfs_btree_cur *cur,
1476 union xfs_btree_rec *rec,
1477 int dir,
1478 int numrecs)
1479{
1480 char *dst_rec;
1481
1482 ASSERT(numrecs >= 0);
1483 ASSERT(dir == 1 || dir == -1);
1484
1485 dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1486 memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1487}
1488
1489/*
1490 * Shift block pointers one index left/right inside a single btree block.
1491 */
1492STATIC void
1493xfs_btree_shift_ptrs(
1494 struct xfs_btree_cur *cur,
1495 union xfs_btree_ptr *ptr,
1496 int dir,
1497 int numptrs)
1498{
1499 char *dst_ptr;
1500
1501 ASSERT(numptrs >= 0);
1502 ASSERT(dir == 1 || dir == -1);
1503
1504 dst_ptr = (char *)ptr + (dir * cur->bc_ops->ptr_len);
1505 memmove(dst_ptr, ptr, numptrs * cur->bc_ops->ptr_len);
1506}
1507
1508/*
1509 * Log key values from the btree block.
1510 */
1511STATIC void
1512xfs_btree_log_keys(
1513 struct xfs_btree_cur *cur,
1514 struct xfs_buf *bp,
1515 int first,
1516 int last)
1517{
1518
1519 if (bp) {
1520 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1521 xfs_trans_log_buf(cur->bc_tp, bp,
1522 xfs_btree_key_offset(cur, first),
1523 xfs_btree_key_offset(cur, last + 1) - 1);
1524 } else {
1525 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1526 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1527 }
1528}
1529
1530/*
1531 * Log record values from the btree block.
1532 */
1533void
1534xfs_btree_log_recs(
1535 struct xfs_btree_cur *cur,
1536 struct xfs_buf *bp,
1537 int first,
1538 int last)
1539{
1540
1541 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1542 xfs_trans_log_buf(cur->bc_tp, bp,
1543 xfs_btree_rec_offset(cur, first),
1544 xfs_btree_rec_offset(cur, last + 1) - 1);
1545
1546}
1547
1548/*
1549 * Log block pointer fields from a btree block (nonleaf).
1550 */
1551STATIC void
1552xfs_btree_log_ptrs(
1553 struct xfs_btree_cur *cur, /* btree cursor */
1554 struct xfs_buf *bp, /* buffer containing btree block */
1555 int first, /* index of first pointer to log */
1556 int last) /* index of last pointer to log */
1557{
1558
1559 if (bp) {
1560 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
1561 int level = xfs_btree_get_level(block);
1562
1563 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1564 xfs_trans_log_buf(cur->bc_tp, bp,
1565 xfs_btree_ptr_offset(cur, first, level),
1566 xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1567 } else {
1568 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1569 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1570 }
1571
1572}
1573
1574/*
1575 * Log fields from a btree block header.
1576 */
1577void
1578xfs_btree_log_block(
1579 struct xfs_btree_cur *cur, /* btree cursor */
1580 struct xfs_buf *bp, /* buffer containing btree block */
1581 uint32_t fields) /* mask of fields: XFS_BB_... */
1582{
1583 int first; /* first byte offset logged */
1584 int last; /* last byte offset logged */
1585 static const short soffsets[] = { /* table of offsets (short) */
1586 offsetof(struct xfs_btree_block, bb_magic),
1587 offsetof(struct xfs_btree_block, bb_level),
1588 offsetof(struct xfs_btree_block, bb_numrecs),
1589 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1590 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1591 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1592 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1593 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1594 offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1595 offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1596 XFS_BTREE_SBLOCK_CRC_LEN
1597 };
1598 static const short loffsets[] = { /* table of offsets (long) */
1599 offsetof(struct xfs_btree_block, bb_magic),
1600 offsetof(struct xfs_btree_block, bb_level),
1601 offsetof(struct xfs_btree_block, bb_numrecs),
1602 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1603 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1604 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1605 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1606 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1607 offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1608 offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1609 offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1610 XFS_BTREE_LBLOCK_CRC_LEN
1611 };
1612
1613 if (bp) {
1614 int nbits;
1615
1616 if (xfs_has_crc(cur->bc_mp)) {
1617 /*
1618 * We don't log the CRC when updating a btree
1619 * block but instead recreate it during log
1620 * recovery. As the log buffers have checksums
1621 * of their own this is safe and avoids logging a crc
1622 * update in a lot of places.
1623 */
1624 if (fields == XFS_BB_ALL_BITS)
1625 fields = XFS_BB_ALL_BITS_CRC;
1626 nbits = XFS_BB_NUM_BITS_CRC;
1627 } else {
1628 nbits = XFS_BB_NUM_BITS;
1629 }
1630 xfs_btree_offsets(fields,
1631 (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) ?
1632 loffsets : soffsets,
1633 nbits, &first, &last);
1634 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1635 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1636 } else {
1637 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1638 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1639 }
1640}
1641
1642/*
1643 * Increment cursor by one record at the level.
1644 * For nonzero levels the leaf-ward information is untouched.
1645 */
1646int /* error */
1647xfs_btree_increment(
1648 struct xfs_btree_cur *cur,
1649 int level,
1650 int *stat) /* success/failure */
1651{
1652 struct xfs_btree_block *block;
1653 union xfs_btree_ptr ptr;
1654 struct xfs_buf *bp;
1655 int error; /* error return value */
1656 int lev;
1657
1658 ASSERT(level < cur->bc_nlevels);
1659
1660 /* Read-ahead to the right at this level. */
1661 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1662
1663 /* Get a pointer to the btree block. */
1664 block = xfs_btree_get_block(cur, level, &bp);
1665
1666#ifdef DEBUG
1667 error = xfs_btree_check_block(cur, block, level, bp);
1668 if (error)
1669 goto error0;
1670#endif
1671
1672 /* We're done if we remain in the block after the increment. */
1673 if (++cur->bc_levels[level].ptr <= xfs_btree_get_numrecs(block))
1674 goto out1;
1675
1676 /* Fail if we just went off the right edge of the tree. */
1677 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1678 if (xfs_btree_ptr_is_null(cur, &ptr))
1679 goto out0;
1680
1681 XFS_BTREE_STATS_INC(cur, increment);
1682
1683 /*
1684 * March up the tree incrementing pointers.
1685 * Stop when we don't go off the right edge of a block.
1686 */
1687 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1688 block = xfs_btree_get_block(cur, lev, &bp);
1689
1690#ifdef DEBUG
1691 error = xfs_btree_check_block(cur, block, lev, bp);
1692 if (error)
1693 goto error0;
1694#endif
1695
1696 if (++cur->bc_levels[lev].ptr <= xfs_btree_get_numrecs(block))
1697 break;
1698
1699 /* Read-ahead the right block for the next loop. */
1700 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1701 }
1702
1703 /*
1704 * If we went off the root then we are either seriously
1705 * confused or have the tree root in an inode.
1706 */
1707 if (lev == cur->bc_nlevels) {
1708 if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE)
1709 goto out0;
1710 ASSERT(0);
1711 xfs_btree_mark_sick(cur);
1712 error = -EFSCORRUPTED;
1713 goto error0;
1714 }
1715 ASSERT(lev < cur->bc_nlevels);
1716
1717 /*
1718 * Now walk back down the tree, fixing up the cursor's buffer
1719 * pointers and key numbers.
1720 */
1721 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1722 union xfs_btree_ptr *ptrp;
1723
1724 ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1725 --lev;
1726 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1727 if (error)
1728 goto error0;
1729
1730 xfs_btree_setbuf(cur, lev, bp);
1731 cur->bc_levels[lev].ptr = 1;
1732 }
1733out1:
1734 *stat = 1;
1735 return 0;
1736
1737out0:
1738 *stat = 0;
1739 return 0;
1740
1741error0:
1742 return error;
1743}
1744
1745/*
1746 * Decrement cursor by one record at the level.
1747 * For nonzero levels the leaf-ward information is untouched.
1748 */
1749int /* error */
1750xfs_btree_decrement(
1751 struct xfs_btree_cur *cur,
1752 int level,
1753 int *stat) /* success/failure */
1754{
1755 struct xfs_btree_block *block;
1756 struct xfs_buf *bp;
1757 int error; /* error return value */
1758 int lev;
1759 union xfs_btree_ptr ptr;
1760
1761 ASSERT(level < cur->bc_nlevels);
1762
1763 /* Read-ahead to the left at this level. */
1764 xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1765
1766 /* We're done if we remain in the block after the decrement. */
1767 if (--cur->bc_levels[level].ptr > 0)
1768 goto out1;
1769
1770 /* Get a pointer to the btree block. */
1771 block = xfs_btree_get_block(cur, level, &bp);
1772
1773#ifdef DEBUG
1774 error = xfs_btree_check_block(cur, block, level, bp);
1775 if (error)
1776 goto error0;
1777#endif
1778
1779 /* Fail if we just went off the left edge of the tree. */
1780 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1781 if (xfs_btree_ptr_is_null(cur, &ptr))
1782 goto out0;
1783
1784 XFS_BTREE_STATS_INC(cur, decrement);
1785
1786 /*
1787 * March up the tree decrementing pointers.
1788 * Stop when we don't go off the left edge of a block.
1789 */
1790 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1791 if (--cur->bc_levels[lev].ptr > 0)
1792 break;
1793 /* Read-ahead the left block for the next loop. */
1794 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1795 }
1796
1797 /*
1798 * If we went off the root then we are seriously confused.
1799 * or the root of the tree is in an inode.
1800 */
1801 if (lev == cur->bc_nlevels) {
1802 if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE)
1803 goto out0;
1804 ASSERT(0);
1805 xfs_btree_mark_sick(cur);
1806 error = -EFSCORRUPTED;
1807 goto error0;
1808 }
1809 ASSERT(lev < cur->bc_nlevels);
1810
1811 /*
1812 * Now walk back down the tree, fixing up the cursor's buffer
1813 * pointers and key numbers.
1814 */
1815 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1816 union xfs_btree_ptr *ptrp;
1817
1818 ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1819 --lev;
1820 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1821 if (error)
1822 goto error0;
1823 xfs_btree_setbuf(cur, lev, bp);
1824 cur->bc_levels[lev].ptr = xfs_btree_get_numrecs(block);
1825 }
1826out1:
1827 *stat = 1;
1828 return 0;
1829
1830out0:
1831 *stat = 0;
1832 return 0;
1833
1834error0:
1835 return error;
1836}
1837
1838/*
1839 * Check the btree block owner now that we have the context to know who the
1840 * real owner is.
1841 */
1842static inline xfs_failaddr_t
1843xfs_btree_check_block_owner(
1844 struct xfs_btree_cur *cur,
1845 struct xfs_btree_block *block)
1846{
1847 __u64 owner;
1848
1849 if (!xfs_has_crc(cur->bc_mp) ||
1850 (cur->bc_flags & XFS_BTREE_BMBT_INVALID_OWNER))
1851 return NULL;
1852
1853 owner = xfs_btree_owner(cur);
1854 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1855 if (be64_to_cpu(block->bb_u.l.bb_owner) != owner)
1856 return __this_address;
1857 } else {
1858 if (be32_to_cpu(block->bb_u.s.bb_owner) != owner)
1859 return __this_address;
1860 }
1861
1862 return NULL;
1863}
1864
1865int
1866xfs_btree_lookup_get_block(
1867 struct xfs_btree_cur *cur, /* btree cursor */
1868 int level, /* level in the btree */
1869 const union xfs_btree_ptr *pp, /* ptr to btree block */
1870 struct xfs_btree_block **blkp) /* return btree block */
1871{
1872 struct xfs_buf *bp; /* buffer pointer for btree block */
1873 xfs_daddr_t daddr;
1874 int error = 0;
1875
1876 /* special case the root block if in an inode */
1877 if (xfs_btree_at_iroot(cur, level)) {
1878 *blkp = xfs_btree_get_iroot(cur);
1879 return 0;
1880 }
1881
1882 /*
1883 * If the old buffer at this level for the disk address we are
1884 * looking for re-use it.
1885 *
1886 * Otherwise throw it away and get a new one.
1887 */
1888 bp = cur->bc_levels[level].bp;
1889 error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1890 if (error)
1891 return error;
1892 if (bp && xfs_buf_daddr(bp) == daddr) {
1893 *blkp = XFS_BUF_TO_BLOCK(bp);
1894 return 0;
1895 }
1896
1897 error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1898 if (error)
1899 return error;
1900
1901 /* Check the inode owner since the verifiers don't. */
1902 if (xfs_btree_check_block_owner(cur, *blkp) != NULL)
1903 goto out_bad;
1904
1905 /* Did we get the level we were looking for? */
1906 if (be16_to_cpu((*blkp)->bb_level) != level)
1907 goto out_bad;
1908
1909 /* Check that internal nodes have at least one record. */
1910 if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1911 goto out_bad;
1912
1913 xfs_btree_setbuf(cur, level, bp);
1914 return 0;
1915
1916out_bad:
1917 *blkp = NULL;
1918 xfs_buf_mark_corrupt(bp);
1919 xfs_trans_brelse(cur->bc_tp, bp);
1920 xfs_btree_mark_sick(cur);
1921 return -EFSCORRUPTED;
1922}
1923
1924/*
1925 * Get current search key. For level 0 we don't actually have a key
1926 * structure so we make one up from the record. For all other levels
1927 * we just return the right key.
1928 */
1929STATIC union xfs_btree_key *
1930xfs_lookup_get_search_key(
1931 struct xfs_btree_cur *cur,
1932 int level,
1933 int keyno,
1934 struct xfs_btree_block *block,
1935 union xfs_btree_key *kp)
1936{
1937 if (level == 0) {
1938 cur->bc_ops->init_key_from_rec(kp,
1939 xfs_btree_rec_addr(cur, keyno, block));
1940 return kp;
1941 }
1942
1943 return xfs_btree_key_addr(cur, keyno, block);
1944}
1945
1946/*
1947 * Initialize a pointer to the root block.
1948 */
1949void
1950xfs_btree_init_ptr_from_cur(
1951 struct xfs_btree_cur *cur,
1952 union xfs_btree_ptr *ptr)
1953{
1954 if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE) {
1955 /*
1956 * Inode-rooted btrees call xfs_btree_get_iroot to find the root
1957 * in xfs_btree_lookup_get_block and don't need a pointer here.
1958 */
1959 ptr->l = 0;
1960 } else if (cur->bc_flags & XFS_BTREE_STAGING) {
1961 ptr->s = cpu_to_be32(cur->bc_ag.afake->af_root);
1962 } else {
1963 cur->bc_ops->init_ptr_from_cur(cur, ptr);
1964 }
1965}
1966
1967/*
1968 * Lookup the record. The cursor is made to point to it, based on dir.
1969 * stat is set to 0 if can't find any such record, 1 for success.
1970 */
1971int /* error */
1972xfs_btree_lookup(
1973 struct xfs_btree_cur *cur, /* btree cursor */
1974 xfs_lookup_t dir, /* <=, ==, or >= */
1975 int *stat) /* success/failure */
1976{
1977 struct xfs_btree_block *block; /* current btree block */
1978 int64_t diff; /* difference for the current key */
1979 int error; /* error return value */
1980 int keyno; /* current key number */
1981 int level; /* level in the btree */
1982 union xfs_btree_ptr *pp; /* ptr to btree block */
1983 union xfs_btree_ptr ptr; /* ptr to btree block */
1984
1985 XFS_BTREE_STATS_INC(cur, lookup);
1986
1987 /* No such thing as a zero-level tree. */
1988 if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0)) {
1989 xfs_btree_mark_sick(cur);
1990 return -EFSCORRUPTED;
1991 }
1992
1993 block = NULL;
1994 keyno = 0;
1995
1996 /* initialise start pointer from cursor */
1997 xfs_btree_init_ptr_from_cur(cur, &ptr);
1998 pp = &ptr;
1999
2000 /*
2001 * Iterate over each level in the btree, starting at the root.
2002 * For each level above the leaves, find the key we need, based
2003 * on the lookup record, then follow the corresponding block
2004 * pointer down to the next level.
2005 */
2006 for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
2007 /* Get the block we need to do the lookup on. */
2008 error = xfs_btree_lookup_get_block(cur, level, pp, &block);
2009 if (error)
2010 goto error0;
2011
2012 if (diff == 0) {
2013 /*
2014 * If we already had a key match at a higher level, we
2015 * know we need to use the first entry in this block.
2016 */
2017 keyno = 1;
2018 } else {
2019 /* Otherwise search this block. Do a binary search. */
2020
2021 int high; /* high entry number */
2022 int low; /* low entry number */
2023
2024 /* Set low and high entry numbers, 1-based. */
2025 low = 1;
2026 high = xfs_btree_get_numrecs(block);
2027 if (!high) {
2028 /* Block is empty, must be an empty leaf. */
2029 if (level != 0 || cur->bc_nlevels != 1) {
2030 XFS_CORRUPTION_ERROR(__func__,
2031 XFS_ERRLEVEL_LOW,
2032 cur->bc_mp, block,
2033 sizeof(*block));
2034 xfs_btree_mark_sick(cur);
2035 return -EFSCORRUPTED;
2036 }
2037
2038 cur->bc_levels[0].ptr = dir != XFS_LOOKUP_LE;
2039 *stat = 0;
2040 return 0;
2041 }
2042
2043 /* Binary search the block. */
2044 while (low <= high) {
2045 union xfs_btree_key key;
2046 union xfs_btree_key *kp;
2047
2048 XFS_BTREE_STATS_INC(cur, compare);
2049
2050 /* keyno is average of low and high. */
2051 keyno = (low + high) >> 1;
2052
2053 /* Get current search key */
2054 kp = xfs_lookup_get_search_key(cur, level,
2055 keyno, block, &key);
2056
2057 /*
2058 * Compute difference to get next direction:
2059 * - less than, move right
2060 * - greater than, move left
2061 * - equal, we're done
2062 */
2063 diff = cur->bc_ops->key_diff(cur, kp);
2064 if (diff < 0)
2065 low = keyno + 1;
2066 else if (diff > 0)
2067 high = keyno - 1;
2068 else
2069 break;
2070 }
2071 }
2072
2073 /*
2074 * If there are more levels, set up for the next level
2075 * by getting the block number and filling in the cursor.
2076 */
2077 if (level > 0) {
2078 /*
2079 * If we moved left, need the previous key number,
2080 * unless there isn't one.
2081 */
2082 if (diff > 0 && --keyno < 1)
2083 keyno = 1;
2084 pp = xfs_btree_ptr_addr(cur, keyno, block);
2085
2086 error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
2087 if (error)
2088 goto error0;
2089
2090 cur->bc_levels[level].ptr = keyno;
2091 }
2092 }
2093
2094 /* Done with the search. See if we need to adjust the results. */
2095 if (dir != XFS_LOOKUP_LE && diff < 0) {
2096 keyno++;
2097 /*
2098 * If ge search and we went off the end of the block, but it's
2099 * not the last block, we're in the wrong block.
2100 */
2101 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
2102 if (dir == XFS_LOOKUP_GE &&
2103 keyno > xfs_btree_get_numrecs(block) &&
2104 !xfs_btree_ptr_is_null(cur, &ptr)) {
2105 int i;
2106
2107 cur->bc_levels[0].ptr = keyno;
2108 error = xfs_btree_increment(cur, 0, &i);
2109 if (error)
2110 goto error0;
2111 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
2112 xfs_btree_mark_sick(cur);
2113 return -EFSCORRUPTED;
2114 }
2115 *stat = 1;
2116 return 0;
2117 }
2118 } else if (dir == XFS_LOOKUP_LE && diff > 0)
2119 keyno--;
2120 cur->bc_levels[0].ptr = keyno;
2121
2122 /* Return if we succeeded or not. */
2123 if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
2124 *stat = 0;
2125 else if (dir != XFS_LOOKUP_EQ || diff == 0)
2126 *stat = 1;
2127 else
2128 *stat = 0;
2129 return 0;
2130
2131error0:
2132 return error;
2133}
2134
2135/* Find the high key storage area from a regular key. */
2136union xfs_btree_key *
2137xfs_btree_high_key_from_key(
2138 struct xfs_btree_cur *cur,
2139 union xfs_btree_key *key)
2140{
2141 ASSERT(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING);
2142 return (union xfs_btree_key *)((char *)key +
2143 (cur->bc_ops->key_len / 2));
2144}
2145
2146/* Determine the low (and high if overlapped) keys of a leaf block */
2147STATIC void
2148xfs_btree_get_leaf_keys(
2149 struct xfs_btree_cur *cur,
2150 struct xfs_btree_block *block,
2151 union xfs_btree_key *key)
2152{
2153 union xfs_btree_key max_hkey;
2154 union xfs_btree_key hkey;
2155 union xfs_btree_rec *rec;
2156 union xfs_btree_key *high;
2157 int n;
2158
2159 rec = xfs_btree_rec_addr(cur, 1, block);
2160 cur->bc_ops->init_key_from_rec(key, rec);
2161
2162 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2163
2164 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2165 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2166 rec = xfs_btree_rec_addr(cur, n, block);
2167 cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2168 if (xfs_btree_keycmp_gt(cur, &hkey, &max_hkey))
2169 max_hkey = hkey;
2170 }
2171
2172 high = xfs_btree_high_key_from_key(cur, key);
2173 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2174 }
2175}
2176
2177/* Determine the low (and high if overlapped) keys of a node block */
2178STATIC void
2179xfs_btree_get_node_keys(
2180 struct xfs_btree_cur *cur,
2181 struct xfs_btree_block *block,
2182 union xfs_btree_key *key)
2183{
2184 union xfs_btree_key *hkey;
2185 union xfs_btree_key *max_hkey;
2186 union xfs_btree_key *high;
2187 int n;
2188
2189 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2190 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2191 cur->bc_ops->key_len / 2);
2192
2193 max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2194 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2195 hkey = xfs_btree_high_key_addr(cur, n, block);
2196 if (xfs_btree_keycmp_gt(cur, hkey, max_hkey))
2197 max_hkey = hkey;
2198 }
2199
2200 high = xfs_btree_high_key_from_key(cur, key);
2201 memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2202 } else {
2203 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2204 cur->bc_ops->key_len);
2205 }
2206}
2207
2208/* Derive the keys for any btree block. */
2209void
2210xfs_btree_get_keys(
2211 struct xfs_btree_cur *cur,
2212 struct xfs_btree_block *block,
2213 union xfs_btree_key *key)
2214{
2215 if (be16_to_cpu(block->bb_level) == 0)
2216 xfs_btree_get_leaf_keys(cur, block, key);
2217 else
2218 xfs_btree_get_node_keys(cur, block, key);
2219}
2220
2221/*
2222 * Decide if we need to update the parent keys of a btree block. For
2223 * a standard btree this is only necessary if we're updating the first
2224 * record/key. For an overlapping btree, we must always update the
2225 * keys because the highest key can be in any of the records or keys
2226 * in the block.
2227 */
2228static inline bool
2229xfs_btree_needs_key_update(
2230 struct xfs_btree_cur *cur,
2231 int ptr)
2232{
2233 return (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) || ptr == 1;
2234}
2235
2236/*
2237 * Update the low and high parent keys of the given level, progressing
2238 * towards the root. If force_all is false, stop if the keys for a given
2239 * level do not need updating.
2240 */
2241STATIC int
2242__xfs_btree_updkeys(
2243 struct xfs_btree_cur *cur,
2244 int level,
2245 struct xfs_btree_block *block,
2246 struct xfs_buf *bp0,
2247 bool force_all)
2248{
2249 union xfs_btree_key key; /* keys from current level */
2250 union xfs_btree_key *lkey; /* keys from the next level up */
2251 union xfs_btree_key *hkey;
2252 union xfs_btree_key *nlkey; /* keys from the next level up */
2253 union xfs_btree_key *nhkey;
2254 struct xfs_buf *bp;
2255 int ptr;
2256
2257 ASSERT(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING);
2258
2259 /* Exit if there aren't any parent levels to update. */
2260 if (level + 1 >= cur->bc_nlevels)
2261 return 0;
2262
2263 trace_xfs_btree_updkeys(cur, level, bp0);
2264
2265 lkey = &key;
2266 hkey = xfs_btree_high_key_from_key(cur, lkey);
2267 xfs_btree_get_keys(cur, block, lkey);
2268 for (level++; level < cur->bc_nlevels; level++) {
2269#ifdef DEBUG
2270 int error;
2271#endif
2272 block = xfs_btree_get_block(cur, level, &bp);
2273 trace_xfs_btree_updkeys(cur, level, bp);
2274#ifdef DEBUG
2275 error = xfs_btree_check_block(cur, block, level, bp);
2276 if (error)
2277 return error;
2278#endif
2279 ptr = cur->bc_levels[level].ptr;
2280 nlkey = xfs_btree_key_addr(cur, ptr, block);
2281 nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2282 if (!force_all &&
2283 xfs_btree_keycmp_eq(cur, nlkey, lkey) &&
2284 xfs_btree_keycmp_eq(cur, nhkey, hkey))
2285 break;
2286 xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2287 xfs_btree_log_keys(cur, bp, ptr, ptr);
2288 if (level + 1 >= cur->bc_nlevels)
2289 break;
2290 xfs_btree_get_node_keys(cur, block, lkey);
2291 }
2292
2293 return 0;
2294}
2295
2296/* Update all the keys from some level in cursor back to the root. */
2297STATIC int
2298xfs_btree_updkeys_force(
2299 struct xfs_btree_cur *cur,
2300 int level)
2301{
2302 struct xfs_buf *bp;
2303 struct xfs_btree_block *block;
2304
2305 block = xfs_btree_get_block(cur, level, &bp);
2306 return __xfs_btree_updkeys(cur, level, block, bp, true);
2307}
2308
2309/*
2310 * Update the parent keys of the given level, progressing towards the root.
2311 */
2312STATIC int
2313xfs_btree_update_keys(
2314 struct xfs_btree_cur *cur,
2315 int level)
2316{
2317 struct xfs_btree_block *block;
2318 struct xfs_buf *bp;
2319 union xfs_btree_key *kp;
2320 union xfs_btree_key key;
2321 int ptr;
2322
2323 ASSERT(level >= 0);
2324
2325 block = xfs_btree_get_block(cur, level, &bp);
2326 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING)
2327 return __xfs_btree_updkeys(cur, level, block, bp, false);
2328
2329 /*
2330 * Go up the tree from this level toward the root.
2331 * At each level, update the key value to the value input.
2332 * Stop when we reach a level where the cursor isn't pointing
2333 * at the first entry in the block.
2334 */
2335 xfs_btree_get_keys(cur, block, &key);
2336 for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2337#ifdef DEBUG
2338 int error;
2339#endif
2340 block = xfs_btree_get_block(cur, level, &bp);
2341#ifdef DEBUG
2342 error = xfs_btree_check_block(cur, block, level, bp);
2343 if (error)
2344 return error;
2345#endif
2346 ptr = cur->bc_levels[level].ptr;
2347 kp = xfs_btree_key_addr(cur, ptr, block);
2348 xfs_btree_copy_keys(cur, kp, &key, 1);
2349 xfs_btree_log_keys(cur, bp, ptr, ptr);
2350 }
2351
2352 return 0;
2353}
2354
2355/*
2356 * Update the record referred to by cur to the value in the
2357 * given record. This either works (return 0) or gets an
2358 * EFSCORRUPTED error.
2359 */
2360int
2361xfs_btree_update(
2362 struct xfs_btree_cur *cur,
2363 union xfs_btree_rec *rec)
2364{
2365 struct xfs_btree_block *block;
2366 struct xfs_buf *bp;
2367 int error;
2368 int ptr;
2369 union xfs_btree_rec *rp;
2370
2371 /* Pick up the current block. */
2372 block = xfs_btree_get_block(cur, 0, &bp);
2373
2374#ifdef DEBUG
2375 error = xfs_btree_check_block(cur, block, 0, bp);
2376 if (error)
2377 goto error0;
2378#endif
2379 /* Get the address of the rec to be updated. */
2380 ptr = cur->bc_levels[0].ptr;
2381 rp = xfs_btree_rec_addr(cur, ptr, block);
2382
2383 /* Fill in the new contents and log them. */
2384 xfs_btree_copy_recs(cur, rp, rec, 1);
2385 xfs_btree_log_recs(cur, bp, ptr, ptr);
2386
2387 /* Pass new key value up to our parent. */
2388 if (xfs_btree_needs_key_update(cur, ptr)) {
2389 error = xfs_btree_update_keys(cur, 0);
2390 if (error)
2391 goto error0;
2392 }
2393
2394 return 0;
2395
2396error0:
2397 return error;
2398}
2399
2400/*
2401 * Move 1 record left from cur/level if possible.
2402 * Update cur to reflect the new path.
2403 */
2404STATIC int /* error */
2405xfs_btree_lshift(
2406 struct xfs_btree_cur *cur,
2407 int level,
2408 int *stat) /* success/failure */
2409{
2410 struct xfs_buf *lbp; /* left buffer pointer */
2411 struct xfs_btree_block *left; /* left btree block */
2412 int lrecs; /* left record count */
2413 struct xfs_buf *rbp; /* right buffer pointer */
2414 struct xfs_btree_block *right; /* right btree block */
2415 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2416 int rrecs; /* right record count */
2417 union xfs_btree_ptr lptr; /* left btree pointer */
2418 union xfs_btree_key *rkp = NULL; /* right btree key */
2419 union xfs_btree_ptr *rpp = NULL; /* right address pointer */
2420 union xfs_btree_rec *rrp = NULL; /* right record pointer */
2421 int error; /* error return value */
2422 int i;
2423
2424 if (xfs_btree_at_iroot(cur, level))
2425 goto out0;
2426
2427 /* Set up variables for this block as "right". */
2428 right = xfs_btree_get_block(cur, level, &rbp);
2429
2430#ifdef DEBUG
2431 error = xfs_btree_check_block(cur, right, level, rbp);
2432 if (error)
2433 goto error0;
2434#endif
2435
2436 /* If we've got no left sibling then we can't shift an entry left. */
2437 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2438 if (xfs_btree_ptr_is_null(cur, &lptr))
2439 goto out0;
2440
2441 /*
2442 * If the cursor entry is the one that would be moved, don't
2443 * do it... it's too complicated.
2444 */
2445 if (cur->bc_levels[level].ptr <= 1)
2446 goto out0;
2447
2448 /* Set up the left neighbor as "left". */
2449 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2450 if (error)
2451 goto error0;
2452
2453 /* If it's full, it can't take another entry. */
2454 lrecs = xfs_btree_get_numrecs(left);
2455 if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2456 goto out0;
2457
2458 rrecs = xfs_btree_get_numrecs(right);
2459
2460 /*
2461 * We add one entry to the left side and remove one for the right side.
2462 * Account for it here, the changes will be updated on disk and logged
2463 * later.
2464 */
2465 lrecs++;
2466 rrecs--;
2467
2468 XFS_BTREE_STATS_INC(cur, lshift);
2469 XFS_BTREE_STATS_ADD(cur, moves, 1);
2470
2471 /*
2472 * If non-leaf, copy a key and a ptr to the left block.
2473 * Log the changes to the left block.
2474 */
2475 if (level > 0) {
2476 /* It's a non-leaf. Move keys and pointers. */
2477 union xfs_btree_key *lkp; /* left btree key */
2478 union xfs_btree_ptr *lpp; /* left address pointer */
2479
2480 lkp = xfs_btree_key_addr(cur, lrecs, left);
2481 rkp = xfs_btree_key_addr(cur, 1, right);
2482
2483 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2484 rpp = xfs_btree_ptr_addr(cur, 1, right);
2485
2486 error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2487 if (error)
2488 goto error0;
2489
2490 xfs_btree_copy_keys(cur, lkp, rkp, 1);
2491 xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2492
2493 xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2494 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2495
2496 ASSERT(cur->bc_ops->keys_inorder(cur,
2497 xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2498 } else {
2499 /* It's a leaf. Move records. */
2500 union xfs_btree_rec *lrp; /* left record pointer */
2501
2502 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2503 rrp = xfs_btree_rec_addr(cur, 1, right);
2504
2505 xfs_btree_copy_recs(cur, lrp, rrp, 1);
2506 xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2507
2508 ASSERT(cur->bc_ops->recs_inorder(cur,
2509 xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2510 }
2511
2512 xfs_btree_set_numrecs(left, lrecs);
2513 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2514
2515 xfs_btree_set_numrecs(right, rrecs);
2516 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2517
2518 /*
2519 * Slide the contents of right down one entry.
2520 */
2521 XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2522 if (level > 0) {
2523 /* It's a nonleaf. operate on keys and ptrs */
2524 for (i = 0; i < rrecs; i++) {
2525 error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2526 if (error)
2527 goto error0;
2528 }
2529
2530 xfs_btree_shift_keys(cur,
2531 xfs_btree_key_addr(cur, 2, right),
2532 -1, rrecs);
2533 xfs_btree_shift_ptrs(cur,
2534 xfs_btree_ptr_addr(cur, 2, right),
2535 -1, rrecs);
2536
2537 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2538 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2539 } else {
2540 /* It's a leaf. operate on records */
2541 xfs_btree_shift_recs(cur,
2542 xfs_btree_rec_addr(cur, 2, right),
2543 -1, rrecs);
2544 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2545 }
2546
2547 /*
2548 * Using a temporary cursor, update the parent key values of the
2549 * block on the left.
2550 */
2551 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2552 error = xfs_btree_dup_cursor(cur, &tcur);
2553 if (error)
2554 goto error0;
2555 i = xfs_btree_firstrec(tcur, level);
2556 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2557 xfs_btree_mark_sick(cur);
2558 error = -EFSCORRUPTED;
2559 goto error0;
2560 }
2561
2562 error = xfs_btree_decrement(tcur, level, &i);
2563 if (error)
2564 goto error1;
2565
2566 /* Update the parent high keys of the left block, if needed. */
2567 error = xfs_btree_update_keys(tcur, level);
2568 if (error)
2569 goto error1;
2570
2571 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2572 }
2573
2574 /* Update the parent keys of the right block. */
2575 error = xfs_btree_update_keys(cur, level);
2576 if (error)
2577 goto error0;
2578
2579 /* Slide the cursor value left one. */
2580 cur->bc_levels[level].ptr--;
2581
2582 *stat = 1;
2583 return 0;
2584
2585out0:
2586 *stat = 0;
2587 return 0;
2588
2589error0:
2590 return error;
2591
2592error1:
2593 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2594 return error;
2595}
2596
2597/*
2598 * Move 1 record right from cur/level if possible.
2599 * Update cur to reflect the new path.
2600 */
2601STATIC int /* error */
2602xfs_btree_rshift(
2603 struct xfs_btree_cur *cur,
2604 int level,
2605 int *stat) /* success/failure */
2606{
2607 struct xfs_buf *lbp; /* left buffer pointer */
2608 struct xfs_btree_block *left; /* left btree block */
2609 struct xfs_buf *rbp; /* right buffer pointer */
2610 struct xfs_btree_block *right; /* right btree block */
2611 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2612 union xfs_btree_ptr rptr; /* right block pointer */
2613 union xfs_btree_key *rkp; /* right btree key */
2614 int rrecs; /* right record count */
2615 int lrecs; /* left record count */
2616 int error; /* error return value */
2617 int i; /* loop counter */
2618
2619 if (xfs_btree_at_iroot(cur, level))
2620 goto out0;
2621
2622 /* Set up variables for this block as "left". */
2623 left = xfs_btree_get_block(cur, level, &lbp);
2624
2625#ifdef DEBUG
2626 error = xfs_btree_check_block(cur, left, level, lbp);
2627 if (error)
2628 goto error0;
2629#endif
2630
2631 /* If we've got no right sibling then we can't shift an entry right. */
2632 xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2633 if (xfs_btree_ptr_is_null(cur, &rptr))
2634 goto out0;
2635
2636 /*
2637 * If the cursor entry is the one that would be moved, don't
2638 * do it... it's too complicated.
2639 */
2640 lrecs = xfs_btree_get_numrecs(left);
2641 if (cur->bc_levels[level].ptr >= lrecs)
2642 goto out0;
2643
2644 /* Set up the right neighbor as "right". */
2645 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2646 if (error)
2647 goto error0;
2648
2649 /* If it's full, it can't take another entry. */
2650 rrecs = xfs_btree_get_numrecs(right);
2651 if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2652 goto out0;
2653
2654 XFS_BTREE_STATS_INC(cur, rshift);
2655 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2656
2657 /*
2658 * Make a hole at the start of the right neighbor block, then
2659 * copy the last left block entry to the hole.
2660 */
2661 if (level > 0) {
2662 /* It's a nonleaf. make a hole in the keys and ptrs */
2663 union xfs_btree_key *lkp;
2664 union xfs_btree_ptr *lpp;
2665 union xfs_btree_ptr *rpp;
2666
2667 lkp = xfs_btree_key_addr(cur, lrecs, left);
2668 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2669 rkp = xfs_btree_key_addr(cur, 1, right);
2670 rpp = xfs_btree_ptr_addr(cur, 1, right);
2671
2672 for (i = rrecs - 1; i >= 0; i--) {
2673 error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2674 if (error)
2675 goto error0;
2676 }
2677
2678 xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2679 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2680
2681 error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2682 if (error)
2683 goto error0;
2684
2685 /* Now put the new data in, and log it. */
2686 xfs_btree_copy_keys(cur, rkp, lkp, 1);
2687 xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2688
2689 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2690 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2691
2692 ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2693 xfs_btree_key_addr(cur, 2, right)));
2694 } else {
2695 /* It's a leaf. make a hole in the records */
2696 union xfs_btree_rec *lrp;
2697 union xfs_btree_rec *rrp;
2698
2699 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2700 rrp = xfs_btree_rec_addr(cur, 1, right);
2701
2702 xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2703
2704 /* Now put the new data in, and log it. */
2705 xfs_btree_copy_recs(cur, rrp, lrp, 1);
2706 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2707 }
2708
2709 /*
2710 * Decrement and log left's numrecs, bump and log right's numrecs.
2711 */
2712 xfs_btree_set_numrecs(left, --lrecs);
2713 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2714
2715 xfs_btree_set_numrecs(right, ++rrecs);
2716 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2717
2718 /*
2719 * Using a temporary cursor, update the parent key values of the
2720 * block on the right.
2721 */
2722 error = xfs_btree_dup_cursor(cur, &tcur);
2723 if (error)
2724 goto error0;
2725 i = xfs_btree_lastrec(tcur, level);
2726 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2727 xfs_btree_mark_sick(cur);
2728 error = -EFSCORRUPTED;
2729 goto error0;
2730 }
2731
2732 error = xfs_btree_increment(tcur, level, &i);
2733 if (error)
2734 goto error1;
2735
2736 /* Update the parent high keys of the left block, if needed. */
2737 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2738 error = xfs_btree_update_keys(cur, level);
2739 if (error)
2740 goto error1;
2741 }
2742
2743 /* Update the parent keys of the right block. */
2744 error = xfs_btree_update_keys(tcur, level);
2745 if (error)
2746 goto error1;
2747
2748 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2749
2750 *stat = 1;
2751 return 0;
2752
2753out0:
2754 *stat = 0;
2755 return 0;
2756
2757error0:
2758 return error;
2759
2760error1:
2761 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2762 return error;
2763}
2764
2765static inline int
2766xfs_btree_alloc_block(
2767 struct xfs_btree_cur *cur,
2768 const union xfs_btree_ptr *hint_block,
2769 union xfs_btree_ptr *new_block,
2770 int *stat)
2771{
2772 int error;
2773
2774 /*
2775 * Don't allow block allocation for a staging cursor, because staging
2776 * cursors do not support regular btree modifications.
2777 *
2778 * Bulk loading uses a separate callback to obtain new blocks from a
2779 * preallocated list, which prevents ENOSPC failures during loading.
2780 */
2781 if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) {
2782 ASSERT(0);
2783 return -EFSCORRUPTED;
2784 }
2785
2786 error = cur->bc_ops->alloc_block(cur, hint_block, new_block, stat);
2787 trace_xfs_btree_alloc_block(cur, new_block, *stat, error);
2788 return error;
2789}
2790
2791/*
2792 * Split cur/level block in half.
2793 * Return new block number and the key to its first
2794 * record (to be inserted into parent).
2795 */
2796STATIC int /* error */
2797__xfs_btree_split(
2798 struct xfs_btree_cur *cur,
2799 int level,
2800 union xfs_btree_ptr *ptrp,
2801 union xfs_btree_key *key,
2802 struct xfs_btree_cur **curp,
2803 int *stat) /* success/failure */
2804{
2805 union xfs_btree_ptr lptr; /* left sibling block ptr */
2806 struct xfs_buf *lbp; /* left buffer pointer */
2807 struct xfs_btree_block *left; /* left btree block */
2808 union xfs_btree_ptr rptr; /* right sibling block ptr */
2809 struct xfs_buf *rbp; /* right buffer pointer */
2810 struct xfs_btree_block *right; /* right btree block */
2811 union xfs_btree_ptr rrptr; /* right-right sibling ptr */
2812 struct xfs_buf *rrbp; /* right-right buffer pointer */
2813 struct xfs_btree_block *rrblock; /* right-right btree block */
2814 int lrecs;
2815 int rrecs;
2816 int src_index;
2817 int error; /* error return value */
2818 int i;
2819
2820 XFS_BTREE_STATS_INC(cur, split);
2821
2822 /* Set up left block (current one). */
2823 left = xfs_btree_get_block(cur, level, &lbp);
2824
2825#ifdef DEBUG
2826 error = xfs_btree_check_block(cur, left, level, lbp);
2827 if (error)
2828 goto error0;
2829#endif
2830
2831 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2832
2833 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2834 error = xfs_btree_alloc_block(cur, &lptr, &rptr, stat);
2835 if (error)
2836 goto error0;
2837 if (*stat == 0)
2838 goto out0;
2839 XFS_BTREE_STATS_INC(cur, alloc);
2840
2841 /* Set up the new block as "right". */
2842 error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2843 if (error)
2844 goto error0;
2845
2846 /* Fill in the btree header for the new right block. */
2847 xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2848
2849 /*
2850 * Split the entries between the old and the new block evenly.
2851 * Make sure that if there's an odd number of entries now, that
2852 * each new block will have the same number of entries.
2853 */
2854 lrecs = xfs_btree_get_numrecs(left);
2855 rrecs = lrecs / 2;
2856 if ((lrecs & 1) && cur->bc_levels[level].ptr <= rrecs + 1)
2857 rrecs++;
2858 src_index = (lrecs - rrecs + 1);
2859
2860 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2861
2862 /* Adjust numrecs for the later get_*_keys() calls. */
2863 lrecs -= rrecs;
2864 xfs_btree_set_numrecs(left, lrecs);
2865 xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2866
2867 /*
2868 * Copy btree block entries from the left block over to the
2869 * new block, the right. Update the right block and log the
2870 * changes.
2871 */
2872 if (level > 0) {
2873 /* It's a non-leaf. Move keys and pointers. */
2874 union xfs_btree_key *lkp; /* left btree key */
2875 union xfs_btree_ptr *lpp; /* left address pointer */
2876 union xfs_btree_key *rkp; /* right btree key */
2877 union xfs_btree_ptr *rpp; /* right address pointer */
2878
2879 lkp = xfs_btree_key_addr(cur, src_index, left);
2880 lpp = xfs_btree_ptr_addr(cur, src_index, left);
2881 rkp = xfs_btree_key_addr(cur, 1, right);
2882 rpp = xfs_btree_ptr_addr(cur, 1, right);
2883
2884 for (i = src_index; i < rrecs; i++) {
2885 error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2886 if (error)
2887 goto error0;
2888 }
2889
2890 /* Copy the keys & pointers to the new block. */
2891 xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2892 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2893
2894 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2895 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2896
2897 /* Stash the keys of the new block for later insertion. */
2898 xfs_btree_get_node_keys(cur, right, key);
2899 } else {
2900 /* It's a leaf. Move records. */
2901 union xfs_btree_rec *lrp; /* left record pointer */
2902 union xfs_btree_rec *rrp; /* right record pointer */
2903
2904 lrp = xfs_btree_rec_addr(cur, src_index, left);
2905 rrp = xfs_btree_rec_addr(cur, 1, right);
2906
2907 /* Copy records to the new block. */
2908 xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2909 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2910
2911 /* Stash the keys of the new block for later insertion. */
2912 xfs_btree_get_leaf_keys(cur, right, key);
2913 }
2914
2915 /*
2916 * Find the left block number by looking in the buffer.
2917 * Adjust sibling pointers.
2918 */
2919 xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2920 xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2921 xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2922 xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2923
2924 xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2925 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2926
2927 /*
2928 * If there's a block to the new block's right, make that block
2929 * point back to right instead of to left.
2930 */
2931 if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2932 error = xfs_btree_read_buf_block(cur, &rrptr,
2933 0, &rrblock, &rrbp);
2934 if (error)
2935 goto error0;
2936 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2937 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2938 }
2939
2940 /* Update the parent high keys of the left block, if needed. */
2941 if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2942 error = xfs_btree_update_keys(cur, level);
2943 if (error)
2944 goto error0;
2945 }
2946
2947 /*
2948 * If the cursor is really in the right block, move it there.
2949 * If it's just pointing past the last entry in left, then we'll
2950 * insert there, so don't change anything in that case.
2951 */
2952 if (cur->bc_levels[level].ptr > lrecs + 1) {
2953 xfs_btree_setbuf(cur, level, rbp);
2954 cur->bc_levels[level].ptr -= lrecs;
2955 }
2956 /*
2957 * If there are more levels, we'll need another cursor which refers
2958 * the right block, no matter where this cursor was.
2959 */
2960 if (level + 1 < cur->bc_nlevels) {
2961 error = xfs_btree_dup_cursor(cur, curp);
2962 if (error)
2963 goto error0;
2964 (*curp)->bc_levels[level + 1].ptr++;
2965 }
2966 *ptrp = rptr;
2967 *stat = 1;
2968 return 0;
2969out0:
2970 *stat = 0;
2971 return 0;
2972
2973error0:
2974 return error;
2975}
2976
2977#ifdef __KERNEL__
2978struct xfs_btree_split_args {
2979 struct xfs_btree_cur *cur;
2980 int level;
2981 union xfs_btree_ptr *ptrp;
2982 union xfs_btree_key *key;
2983 struct xfs_btree_cur **curp;
2984 int *stat; /* success/failure */
2985 int result;
2986 bool kswapd; /* allocation in kswapd context */
2987 struct completion *done;
2988 struct work_struct work;
2989};
2990
2991/*
2992 * Stack switching interfaces for allocation
2993 */
2994static void
2995xfs_btree_split_worker(
2996 struct work_struct *work)
2997{
2998 struct xfs_btree_split_args *args = container_of(work,
2999 struct xfs_btree_split_args, work);
3000 unsigned long pflags;
3001 unsigned long new_pflags = 0;
3002
3003 /*
3004 * we are in a transaction context here, but may also be doing work
3005 * in kswapd context, and hence we may need to inherit that state
3006 * temporarily to ensure that we don't block waiting for memory reclaim
3007 * in any way.
3008 */
3009 if (args->kswapd)
3010 new_pflags |= PF_MEMALLOC | PF_KSWAPD;
3011
3012 current_set_flags_nested(&pflags, new_pflags);
3013 xfs_trans_set_context(args->cur->bc_tp);
3014
3015 args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
3016 args->key, args->curp, args->stat);
3017
3018 xfs_trans_clear_context(args->cur->bc_tp);
3019 current_restore_flags_nested(&pflags, new_pflags);
3020
3021 /*
3022 * Do not access args after complete() has run here. We don't own args
3023 * and the owner may run and free args before we return here.
3024 */
3025 complete(args->done);
3026
3027}
3028
3029/*
3030 * BMBT split requests often come in with little stack to work on so we push
3031 * them off to a worker thread so there is lots of stack to use. For the other
3032 * btree types, just call directly to avoid the context switch overhead here.
3033 *
3034 * Care must be taken here - the work queue rescuer thread introduces potential
3035 * AGF <> worker queue deadlocks if the BMBT block allocation has to lock new
3036 * AGFs to allocate blocks. A task being run by the rescuer could attempt to
3037 * lock an AGF that is already locked by a task queued to run by the rescuer,
3038 * resulting in an ABBA deadlock as the rescuer cannot run the lock holder to
3039 * release it until the current thread it is running gains the lock.
3040 *
3041 * To avoid this issue, we only ever queue BMBT splits that don't have an AGF
3042 * already locked to allocate from. The only place that doesn't hold an AGF
3043 * locked is unwritten extent conversion at IO completion, but that has already
3044 * been offloaded to a worker thread and hence has no stack consumption issues
3045 * we have to worry about.
3046 */
3047STATIC int /* error */
3048xfs_btree_split(
3049 struct xfs_btree_cur *cur,
3050 int level,
3051 union xfs_btree_ptr *ptrp,
3052 union xfs_btree_key *key,
3053 struct xfs_btree_cur **curp,
3054 int *stat) /* success/failure */
3055{
3056 struct xfs_btree_split_args args;
3057 DECLARE_COMPLETION_ONSTACK(done);
3058
3059 if (!xfs_btree_is_bmap(cur->bc_ops) ||
3060 cur->bc_tp->t_highest_agno == NULLAGNUMBER)
3061 return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
3062
3063 args.cur = cur;
3064 args.level = level;
3065 args.ptrp = ptrp;
3066 args.key = key;
3067 args.curp = curp;
3068 args.stat = stat;
3069 args.done = &done;
3070 args.kswapd = current_is_kswapd();
3071 INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
3072 queue_work(xfs_alloc_wq, &args.work);
3073 wait_for_completion(&done);
3074 destroy_work_on_stack(&args.work);
3075 return args.result;
3076}
3077#else
3078#define xfs_btree_split __xfs_btree_split
3079#endif /* __KERNEL__ */
3080
3081/*
3082 * Copy the old inode root contents into a real block and make the
3083 * broot point to it.
3084 */
3085int /* error */
3086xfs_btree_new_iroot(
3087 struct xfs_btree_cur *cur, /* btree cursor */
3088 int *logflags, /* logging flags for inode */
3089 int *stat) /* return status - 0 fail */
3090{
3091 struct xfs_buf *cbp; /* buffer for cblock */
3092 struct xfs_btree_block *block; /* btree block */
3093 struct xfs_btree_block *cblock; /* child btree block */
3094 union xfs_btree_key *ckp; /* child key pointer */
3095 union xfs_btree_ptr *cpp; /* child ptr pointer */
3096 union xfs_btree_key *kp; /* pointer to btree key */
3097 union xfs_btree_ptr *pp; /* pointer to block addr */
3098 union xfs_btree_ptr nptr; /* new block addr */
3099 int level; /* btree level */
3100 int error; /* error return code */
3101 int i; /* loop counter */
3102
3103 XFS_BTREE_STATS_INC(cur, newroot);
3104
3105 ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
3106
3107 level = cur->bc_nlevels - 1;
3108
3109 block = xfs_btree_get_iroot(cur);
3110 pp = xfs_btree_ptr_addr(cur, 1, block);
3111
3112 /* Allocate the new block. If we can't do it, we're toast. Give up. */
3113 error = xfs_btree_alloc_block(cur, pp, &nptr, stat);
3114 if (error)
3115 goto error0;
3116 if (*stat == 0)
3117 return 0;
3118
3119 XFS_BTREE_STATS_INC(cur, alloc);
3120
3121 /* Copy the root into a real block. */
3122 error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
3123 if (error)
3124 goto error0;
3125
3126 /*
3127 * we can't just memcpy() the root in for CRC enabled btree blocks.
3128 * In that case have to also ensure the blkno remains correct
3129 */
3130 memcpy(cblock, block, xfs_btree_block_len(cur));
3131 if (xfs_has_crc(cur->bc_mp)) {
3132 __be64 bno = cpu_to_be64(xfs_buf_daddr(cbp));
3133 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
3134 cblock->bb_u.l.bb_blkno = bno;
3135 else
3136 cblock->bb_u.s.bb_blkno = bno;
3137 }
3138
3139 be16_add_cpu(&block->bb_level, 1);
3140 xfs_btree_set_numrecs(block, 1);
3141 cur->bc_nlevels++;
3142 ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3143 cur->bc_levels[level + 1].ptr = 1;
3144
3145 kp = xfs_btree_key_addr(cur, 1, block);
3146 ckp = xfs_btree_key_addr(cur, 1, cblock);
3147 xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
3148
3149 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3150 for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
3151 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3152 if (error)
3153 goto error0;
3154 }
3155
3156 xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
3157
3158 error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
3159 if (error)
3160 goto error0;
3161
3162 xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
3163
3164 xfs_iroot_realloc(cur->bc_ino.ip,
3165 1 - xfs_btree_get_numrecs(cblock),
3166 cur->bc_ino.whichfork);
3167
3168 xfs_btree_setbuf(cur, level, cbp);
3169
3170 /*
3171 * Do all this logging at the end so that
3172 * the root is at the right level.
3173 */
3174 xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3175 xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3176 xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3177
3178 *logflags |=
3179 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork);
3180 *stat = 1;
3181 return 0;
3182error0:
3183 return error;
3184}
3185
3186static void
3187xfs_btree_set_root(
3188 struct xfs_btree_cur *cur,
3189 const union xfs_btree_ptr *ptr,
3190 int inc)
3191{
3192 if (cur->bc_flags & XFS_BTREE_STAGING) {
3193 /* Update the btree root information for a per-AG fake root. */
3194 cur->bc_ag.afake->af_root = be32_to_cpu(ptr->s);
3195 cur->bc_ag.afake->af_levels += inc;
3196 } else {
3197 cur->bc_ops->set_root(cur, ptr, inc);
3198 }
3199}
3200
3201/*
3202 * Allocate a new root block, fill it in.
3203 */
3204STATIC int /* error */
3205xfs_btree_new_root(
3206 struct xfs_btree_cur *cur, /* btree cursor */
3207 int *stat) /* success/failure */
3208{
3209 struct xfs_btree_block *block; /* one half of the old root block */
3210 struct xfs_buf *bp; /* buffer containing block */
3211 int error; /* error return value */
3212 struct xfs_buf *lbp; /* left buffer pointer */
3213 struct xfs_btree_block *left; /* left btree block */
3214 struct xfs_buf *nbp; /* new (root) buffer */
3215 struct xfs_btree_block *new; /* new (root) btree block */
3216 int nptr; /* new value for key index, 1 or 2 */
3217 struct xfs_buf *rbp; /* right buffer pointer */
3218 struct xfs_btree_block *right; /* right btree block */
3219 union xfs_btree_ptr rptr;
3220 union xfs_btree_ptr lptr;
3221
3222 XFS_BTREE_STATS_INC(cur, newroot);
3223
3224 /* initialise our start point from the cursor */
3225 xfs_btree_init_ptr_from_cur(cur, &rptr);
3226
3227 /* Allocate the new block. If we can't do it, we're toast. Give up. */
3228 error = xfs_btree_alloc_block(cur, &rptr, &lptr, stat);
3229 if (error)
3230 goto error0;
3231 if (*stat == 0)
3232 goto out0;
3233 XFS_BTREE_STATS_INC(cur, alloc);
3234
3235 /* Set up the new block. */
3236 error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3237 if (error)
3238 goto error0;
3239
3240 /* Set the root in the holding structure increasing the level by 1. */
3241 xfs_btree_set_root(cur, &lptr, 1);
3242
3243 /*
3244 * At the previous root level there are now two blocks: the old root,
3245 * and the new block generated when it was split. We don't know which
3246 * one the cursor is pointing at, so we set up variables "left" and
3247 * "right" for each case.
3248 */
3249 block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3250
3251#ifdef DEBUG
3252 error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3253 if (error)
3254 goto error0;
3255#endif
3256
3257 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3258 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3259 /* Our block is left, pick up the right block. */
3260 lbp = bp;
3261 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3262 left = block;
3263 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3264 if (error)
3265 goto error0;
3266 bp = rbp;
3267 nptr = 1;
3268 } else {
3269 /* Our block is right, pick up the left block. */
3270 rbp = bp;
3271 xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3272 right = block;
3273 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3274 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3275 if (error)
3276 goto error0;
3277 bp = lbp;
3278 nptr = 2;
3279 }
3280
3281 /* Fill in the new block's btree header and log it. */
3282 xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3283 xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3284 ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3285 !xfs_btree_ptr_is_null(cur, &rptr));
3286
3287 /* Fill in the key data in the new root. */
3288 if (xfs_btree_get_level(left) > 0) {
3289 /*
3290 * Get the keys for the left block's keys and put them directly
3291 * in the parent block. Do the same for the right block.
3292 */
3293 xfs_btree_get_node_keys(cur, left,
3294 xfs_btree_key_addr(cur, 1, new));
3295 xfs_btree_get_node_keys(cur, right,
3296 xfs_btree_key_addr(cur, 2, new));
3297 } else {
3298 /*
3299 * Get the keys for the left block's records and put them
3300 * directly in the parent block. Do the same for the right
3301 * block.
3302 */
3303 xfs_btree_get_leaf_keys(cur, left,
3304 xfs_btree_key_addr(cur, 1, new));
3305 xfs_btree_get_leaf_keys(cur, right,
3306 xfs_btree_key_addr(cur, 2, new));
3307 }
3308 xfs_btree_log_keys(cur, nbp, 1, 2);
3309
3310 /* Fill in the pointer data in the new root. */
3311 xfs_btree_copy_ptrs(cur,
3312 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3313 xfs_btree_copy_ptrs(cur,
3314 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3315 xfs_btree_log_ptrs(cur, nbp, 1, 2);
3316
3317 /* Fix up the cursor. */
3318 xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3319 cur->bc_levels[cur->bc_nlevels].ptr = nptr;
3320 cur->bc_nlevels++;
3321 ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3322 *stat = 1;
3323 return 0;
3324error0:
3325 return error;
3326out0:
3327 *stat = 0;
3328 return 0;
3329}
3330
3331STATIC int
3332xfs_btree_make_block_unfull(
3333 struct xfs_btree_cur *cur, /* btree cursor */
3334 int level, /* btree level */
3335 int numrecs,/* # of recs in block */
3336 int *oindex,/* old tree index */
3337 int *index, /* new tree index */
3338 union xfs_btree_ptr *nptr, /* new btree ptr */
3339 struct xfs_btree_cur **ncur, /* new btree cursor */
3340 union xfs_btree_key *key, /* key of new block */
3341 int *stat)
3342{
3343 int error = 0;
3344
3345 if (xfs_btree_at_iroot(cur, level)) {
3346 struct xfs_inode *ip = cur->bc_ino.ip;
3347
3348 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3349 /* A root block that can be made bigger. */
3350 xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork);
3351 *stat = 1;
3352 } else {
3353 /* A root block that needs replacing */
3354 int logflags = 0;
3355
3356 error = xfs_btree_new_iroot(cur, &logflags, stat);
3357 if (error || *stat == 0)
3358 return error;
3359
3360 xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3361 }
3362
3363 return 0;
3364 }
3365
3366 /* First, try shifting an entry to the right neighbor. */
3367 error = xfs_btree_rshift(cur, level, stat);
3368 if (error || *stat)
3369 return error;
3370
3371 /* Next, try shifting an entry to the left neighbor. */
3372 error = xfs_btree_lshift(cur, level, stat);
3373 if (error)
3374 return error;
3375
3376 if (*stat) {
3377 *oindex = *index = cur->bc_levels[level].ptr;
3378 return 0;
3379 }
3380
3381 /*
3382 * Next, try splitting the current block in half.
3383 *
3384 * If this works we have to re-set our variables because we
3385 * could be in a different block now.
3386 */
3387 error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3388 if (error || *stat == 0)
3389 return error;
3390
3391
3392 *index = cur->bc_levels[level].ptr;
3393 return 0;
3394}
3395
3396/*
3397 * Insert one record/level. Return information to the caller
3398 * allowing the next level up to proceed if necessary.
3399 */
3400STATIC int
3401xfs_btree_insrec(
3402 struct xfs_btree_cur *cur, /* btree cursor */
3403 int level, /* level to insert record at */
3404 union xfs_btree_ptr *ptrp, /* i/o: block number inserted */
3405 union xfs_btree_rec *rec, /* record to insert */
3406 union xfs_btree_key *key, /* i/o: block key for ptrp */
3407 struct xfs_btree_cur **curp, /* output: new cursor replacing cur */
3408 int *stat) /* success/failure */
3409{
3410 struct xfs_btree_block *block; /* btree block */
3411 struct xfs_buf *bp; /* buffer for block */
3412 union xfs_btree_ptr nptr; /* new block ptr */
3413 struct xfs_btree_cur *ncur = NULL; /* new btree cursor */
3414 union xfs_btree_key nkey; /* new block key */
3415 union xfs_btree_key *lkey;
3416 int optr; /* old key/record index */
3417 int ptr; /* key/record index */
3418 int numrecs;/* number of records */
3419 int error; /* error return value */
3420 int i;
3421 xfs_daddr_t old_bn;
3422
3423 ncur = NULL;
3424 lkey = &nkey;
3425
3426 /*
3427 * If we have an external root pointer, and we've made it to the
3428 * root level, allocate a new root block and we're done.
3429 */
3430 if (cur->bc_ops->type != XFS_BTREE_TYPE_INODE &&
3431 level >= cur->bc_nlevels) {
3432 error = xfs_btree_new_root(cur, stat);
3433 xfs_btree_set_ptr_null(cur, ptrp);
3434
3435 return error;
3436 }
3437
3438 /* If we're off the left edge, return failure. */
3439 ptr = cur->bc_levels[level].ptr;
3440 if (ptr == 0) {
3441 *stat = 0;
3442 return 0;
3443 }
3444
3445 optr = ptr;
3446
3447 XFS_BTREE_STATS_INC(cur, insrec);
3448
3449 /* Get pointers to the btree buffer and block. */
3450 block = xfs_btree_get_block(cur, level, &bp);
3451 old_bn = bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL;
3452 numrecs = xfs_btree_get_numrecs(block);
3453
3454#ifdef DEBUG
3455 error = xfs_btree_check_block(cur, block, level, bp);
3456 if (error)
3457 goto error0;
3458
3459 /* Check that the new entry is being inserted in the right place. */
3460 if (ptr <= numrecs) {
3461 if (level == 0) {
3462 ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3463 xfs_btree_rec_addr(cur, ptr, block)));
3464 } else {
3465 ASSERT(cur->bc_ops->keys_inorder(cur, key,
3466 xfs_btree_key_addr(cur, ptr, block)));
3467 }
3468 }
3469#endif
3470
3471 /*
3472 * If the block is full, we can't insert the new entry until we
3473 * make the block un-full.
3474 */
3475 xfs_btree_set_ptr_null(cur, &nptr);
3476 if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3477 error = xfs_btree_make_block_unfull(cur, level, numrecs,
3478 &optr, &ptr, &nptr, &ncur, lkey, stat);
3479 if (error || *stat == 0)
3480 goto error0;
3481 }
3482
3483 /*
3484 * The current block may have changed if the block was
3485 * previously full and we have just made space in it.
3486 */
3487 block = xfs_btree_get_block(cur, level, &bp);
3488 numrecs = xfs_btree_get_numrecs(block);
3489
3490#ifdef DEBUG
3491 error = xfs_btree_check_block(cur, block, level, bp);
3492 if (error)
3493 goto error0;
3494#endif
3495
3496 /*
3497 * At this point we know there's room for our new entry in the block
3498 * we're pointing at.
3499 */
3500 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3501
3502 if (level > 0) {
3503 /* It's a nonleaf. make a hole in the keys and ptrs */
3504 union xfs_btree_key *kp;
3505 union xfs_btree_ptr *pp;
3506
3507 kp = xfs_btree_key_addr(cur, ptr, block);
3508 pp = xfs_btree_ptr_addr(cur, ptr, block);
3509
3510 for (i = numrecs - ptr; i >= 0; i--) {
3511 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3512 if (error)
3513 goto error0;
3514 }
3515
3516 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3517 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3518
3519 error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3520 if (error)
3521 goto error0;
3522
3523 /* Now put the new data in, bump numrecs and log it. */
3524 xfs_btree_copy_keys(cur, kp, key, 1);
3525 xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3526 numrecs++;
3527 xfs_btree_set_numrecs(block, numrecs);
3528 xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3529 xfs_btree_log_keys(cur, bp, ptr, numrecs);
3530#ifdef DEBUG
3531 if (ptr < numrecs) {
3532 ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3533 xfs_btree_key_addr(cur, ptr + 1, block)));
3534 }
3535#endif
3536 } else {
3537 /* It's a leaf. make a hole in the records */
3538 union xfs_btree_rec *rp;
3539
3540 rp = xfs_btree_rec_addr(cur, ptr, block);
3541
3542 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3543
3544 /* Now put the new data in, bump numrecs and log it. */
3545 xfs_btree_copy_recs(cur, rp, rec, 1);
3546 xfs_btree_set_numrecs(block, ++numrecs);
3547 xfs_btree_log_recs(cur, bp, ptr, numrecs);
3548#ifdef DEBUG
3549 if (ptr < numrecs) {
3550 ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3551 xfs_btree_rec_addr(cur, ptr + 1, block)));
3552 }
3553#endif
3554 }
3555
3556 /* Log the new number of records in the btree header. */
3557 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3558
3559 /*
3560 * Update btree keys to reflect the newly added record or keyptr.
3561 * There are three cases here to be aware of. Normally, all we have to
3562 * do is walk towards the root, updating keys as necessary.
3563 *
3564 * If the caller had us target a full block for the insertion, we dealt
3565 * with that by calling the _make_block_unfull function. If the
3566 * "make unfull" function splits the block, it'll hand us back the key
3567 * and pointer of the new block. We haven't yet added the new block to
3568 * the next level up, so if we decide to add the new record to the new
3569 * block (bp->b_bn != old_bn), we have to update the caller's pointer
3570 * so that the caller adds the new block with the correct key.
3571 *
3572 * However, there is a third possibility-- if the selected block is the
3573 * root block of an inode-rooted btree and cannot be expanded further,
3574 * the "make unfull" function moves the root block contents to a new
3575 * block and updates the root block to point to the new block. In this
3576 * case, no block pointer is passed back because the block has already
3577 * been added to the btree. In this case, we need to use the regular
3578 * key update function, just like the first case. This is critical for
3579 * overlapping btrees, because the high key must be updated to reflect
3580 * the entire tree, not just the subtree accessible through the first
3581 * child of the root (which is now two levels down from the root).
3582 */
3583 if (!xfs_btree_ptr_is_null(cur, &nptr) &&
3584 bp && xfs_buf_daddr(bp) != old_bn) {
3585 xfs_btree_get_keys(cur, block, lkey);
3586 } else if (xfs_btree_needs_key_update(cur, optr)) {
3587 error = xfs_btree_update_keys(cur, level);
3588 if (error)
3589 goto error0;
3590 }
3591
3592 /*
3593 * Return the new block number, if any.
3594 * If there is one, give back a record value and a cursor too.
3595 */
3596 *ptrp = nptr;
3597 if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3598 xfs_btree_copy_keys(cur, key, lkey, 1);
3599 *curp = ncur;
3600 }
3601
3602 *stat = 1;
3603 return 0;
3604
3605error0:
3606 if (ncur)
3607 xfs_btree_del_cursor(ncur, error);
3608 return error;
3609}
3610
3611/*
3612 * Insert the record at the point referenced by cur.
3613 *
3614 * A multi-level split of the tree on insert will invalidate the original
3615 * cursor. All callers of this function should assume that the cursor is
3616 * no longer valid and revalidate it.
3617 */
3618int
3619xfs_btree_insert(
3620 struct xfs_btree_cur *cur,
3621 int *stat)
3622{
3623 int error; /* error return value */
3624 int i; /* result value, 0 for failure */
3625 int level; /* current level number in btree */
3626 union xfs_btree_ptr nptr; /* new block number (split result) */
3627 struct xfs_btree_cur *ncur; /* new cursor (split result) */
3628 struct xfs_btree_cur *pcur; /* previous level's cursor */
3629 union xfs_btree_key bkey; /* key of block to insert */
3630 union xfs_btree_key *key;
3631 union xfs_btree_rec rec; /* record to insert */
3632
3633 level = 0;
3634 ncur = NULL;
3635 pcur = cur;
3636 key = &bkey;
3637
3638 xfs_btree_set_ptr_null(cur, &nptr);
3639
3640 /* Make a key out of the record data to be inserted, and save it. */
3641 cur->bc_ops->init_rec_from_cur(cur, &rec);
3642 cur->bc_ops->init_key_from_rec(key, &rec);
3643
3644 /*
3645 * Loop going up the tree, starting at the leaf level.
3646 * Stop when we don't get a split block, that must mean that
3647 * the insert is finished with this level.
3648 */
3649 do {
3650 /*
3651 * Insert nrec/nptr into this level of the tree.
3652 * Note if we fail, nptr will be null.
3653 */
3654 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3655 &ncur, &i);
3656 if (error) {
3657 if (pcur != cur)
3658 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3659 goto error0;
3660 }
3661
3662 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3663 xfs_btree_mark_sick(cur);
3664 error = -EFSCORRUPTED;
3665 goto error0;
3666 }
3667 level++;
3668
3669 /*
3670 * See if the cursor we just used is trash.
3671 * Can't trash the caller's cursor, but otherwise we should
3672 * if ncur is a new cursor or we're about to be done.
3673 */
3674 if (pcur != cur &&
3675 (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3676 /* Save the state from the cursor before we trash it */
3677 if (cur->bc_ops->update_cursor &&
3678 !(cur->bc_flags & XFS_BTREE_STAGING))
3679 cur->bc_ops->update_cursor(pcur, cur);
3680 cur->bc_nlevels = pcur->bc_nlevels;
3681 xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3682 }
3683 /* If we got a new cursor, switch to it. */
3684 if (ncur) {
3685 pcur = ncur;
3686 ncur = NULL;
3687 }
3688 } while (!xfs_btree_ptr_is_null(cur, &nptr));
3689
3690 *stat = i;
3691 return 0;
3692error0:
3693 return error;
3694}
3695
3696/*
3697 * Try to merge a non-leaf block back into the inode root.
3698 *
3699 * Note: the killroot names comes from the fact that we're effectively
3700 * killing the old root block. But because we can't just delete the
3701 * inode we have to copy the single block it was pointing to into the
3702 * inode.
3703 */
3704STATIC int
3705xfs_btree_kill_iroot(
3706 struct xfs_btree_cur *cur)
3707{
3708 int whichfork = cur->bc_ino.whichfork;
3709 struct xfs_inode *ip = cur->bc_ino.ip;
3710 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
3711 struct xfs_btree_block *block;
3712 struct xfs_btree_block *cblock;
3713 union xfs_btree_key *kp;
3714 union xfs_btree_key *ckp;
3715 union xfs_btree_ptr *pp;
3716 union xfs_btree_ptr *cpp;
3717 struct xfs_buf *cbp;
3718 int level;
3719 int index;
3720 int numrecs;
3721 int error;
3722#ifdef DEBUG
3723 union xfs_btree_ptr ptr;
3724#endif
3725 int i;
3726
3727 ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
3728 ASSERT(cur->bc_nlevels > 1);
3729
3730 /*
3731 * Don't deal with the root block needs to be a leaf case.
3732 * We're just going to turn the thing back into extents anyway.
3733 */
3734 level = cur->bc_nlevels - 1;
3735 if (level == 1)
3736 goto out0;
3737
3738 /*
3739 * Give up if the root has multiple children.
3740 */
3741 block = xfs_btree_get_iroot(cur);
3742 if (xfs_btree_get_numrecs(block) != 1)
3743 goto out0;
3744
3745 cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3746 numrecs = xfs_btree_get_numrecs(cblock);
3747
3748 /*
3749 * Only do this if the next level will fit.
3750 * Then the data must be copied up to the inode,
3751 * instead of freeing the root you free the next level.
3752 */
3753 if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3754 goto out0;
3755
3756 XFS_BTREE_STATS_INC(cur, killroot);
3757
3758#ifdef DEBUG
3759 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3760 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3761 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3762 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3763#endif
3764
3765 index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3766 if (index) {
3767 xfs_iroot_realloc(cur->bc_ino.ip, index,
3768 cur->bc_ino.whichfork);
3769 block = ifp->if_broot;
3770 }
3771
3772 be16_add_cpu(&block->bb_numrecs, index);
3773 ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3774
3775 kp = xfs_btree_key_addr(cur, 1, block);
3776 ckp = xfs_btree_key_addr(cur, 1, cblock);
3777 xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3778
3779 pp = xfs_btree_ptr_addr(cur, 1, block);
3780 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3781
3782 for (i = 0; i < numrecs; i++) {
3783 error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3784 if (error)
3785 return error;
3786 }
3787
3788 xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3789
3790 error = xfs_btree_free_block(cur, cbp);
3791 if (error)
3792 return error;
3793
3794 cur->bc_levels[level - 1].bp = NULL;
3795 be16_add_cpu(&block->bb_level, -1);
3796 xfs_trans_log_inode(cur->bc_tp, ip,
3797 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork));
3798 cur->bc_nlevels--;
3799out0:
3800 return 0;
3801}
3802
3803/*
3804 * Kill the current root node, and replace it with it's only child node.
3805 */
3806STATIC int
3807xfs_btree_kill_root(
3808 struct xfs_btree_cur *cur,
3809 struct xfs_buf *bp,
3810 int level,
3811 union xfs_btree_ptr *newroot)
3812{
3813 int error;
3814
3815 XFS_BTREE_STATS_INC(cur, killroot);
3816
3817 /*
3818 * Update the root pointer, decreasing the level by 1 and then
3819 * free the old root.
3820 */
3821 xfs_btree_set_root(cur, newroot, -1);
3822
3823 error = xfs_btree_free_block(cur, bp);
3824 if (error)
3825 return error;
3826
3827 cur->bc_levels[level].bp = NULL;
3828 cur->bc_levels[level].ra = 0;
3829 cur->bc_nlevels--;
3830
3831 return 0;
3832}
3833
3834STATIC int
3835xfs_btree_dec_cursor(
3836 struct xfs_btree_cur *cur,
3837 int level,
3838 int *stat)
3839{
3840 int error;
3841 int i;
3842
3843 if (level > 0) {
3844 error = xfs_btree_decrement(cur, level, &i);
3845 if (error)
3846 return error;
3847 }
3848
3849 *stat = 1;
3850 return 0;
3851}
3852
3853/*
3854 * Single level of the btree record deletion routine.
3855 * Delete record pointed to by cur/level.
3856 * Remove the record from its block then rebalance the tree.
3857 * Return 0 for error, 1 for done, 2 to go on to the next level.
3858 */
3859STATIC int /* error */
3860xfs_btree_delrec(
3861 struct xfs_btree_cur *cur, /* btree cursor */
3862 int level, /* level removing record from */
3863 int *stat) /* fail/done/go-on */
3864{
3865 struct xfs_btree_block *block; /* btree block */
3866 union xfs_btree_ptr cptr; /* current block ptr */
3867 struct xfs_buf *bp; /* buffer for block */
3868 int error; /* error return value */
3869 int i; /* loop counter */
3870 union xfs_btree_ptr lptr; /* left sibling block ptr */
3871 struct xfs_buf *lbp; /* left buffer pointer */
3872 struct xfs_btree_block *left; /* left btree block */
3873 int lrecs = 0; /* left record count */
3874 int ptr; /* key/record index */
3875 union xfs_btree_ptr rptr; /* right sibling block ptr */
3876 struct xfs_buf *rbp; /* right buffer pointer */
3877 struct xfs_btree_block *right; /* right btree block */
3878 struct xfs_btree_block *rrblock; /* right-right btree block */
3879 struct xfs_buf *rrbp; /* right-right buffer pointer */
3880 int rrecs = 0; /* right record count */
3881 struct xfs_btree_cur *tcur; /* temporary btree cursor */
3882 int numrecs; /* temporary numrec count */
3883
3884 tcur = NULL;
3885
3886 /* Get the index of the entry being deleted, check for nothing there. */
3887 ptr = cur->bc_levels[level].ptr;
3888 if (ptr == 0) {
3889 *stat = 0;
3890 return 0;
3891 }
3892
3893 /* Get the buffer & block containing the record or key/ptr. */
3894 block = xfs_btree_get_block(cur, level, &bp);
3895 numrecs = xfs_btree_get_numrecs(block);
3896
3897#ifdef DEBUG
3898 error = xfs_btree_check_block(cur, block, level, bp);
3899 if (error)
3900 goto error0;
3901#endif
3902
3903 /* Fail if we're off the end of the block. */
3904 if (ptr > numrecs) {
3905 *stat = 0;
3906 return 0;
3907 }
3908
3909 XFS_BTREE_STATS_INC(cur, delrec);
3910 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3911
3912 /* Excise the entries being deleted. */
3913 if (level > 0) {
3914 /* It's a nonleaf. operate on keys and ptrs */
3915 union xfs_btree_key *lkp;
3916 union xfs_btree_ptr *lpp;
3917
3918 lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3919 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3920
3921 for (i = 0; i < numrecs - ptr; i++) {
3922 error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3923 if (error)
3924 goto error0;
3925 }
3926
3927 if (ptr < numrecs) {
3928 xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3929 xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3930 xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3931 xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3932 }
3933 } else {
3934 /* It's a leaf. operate on records */
3935 if (ptr < numrecs) {
3936 xfs_btree_shift_recs(cur,
3937 xfs_btree_rec_addr(cur, ptr + 1, block),
3938 -1, numrecs - ptr);
3939 xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3940 }
3941 }
3942
3943 /*
3944 * Decrement and log the number of entries in the block.
3945 */
3946 xfs_btree_set_numrecs(block, --numrecs);
3947 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3948
3949 /*
3950 * We're at the root level. First, shrink the root block in-memory.
3951 * Try to get rid of the next level down. If we can't then there's
3952 * nothing left to do.
3953 */
3954 if (xfs_btree_at_iroot(cur, level)) {
3955 xfs_iroot_realloc(cur->bc_ino.ip, -1, cur->bc_ino.whichfork);
3956
3957 error = xfs_btree_kill_iroot(cur);
3958 if (error)
3959 goto error0;
3960
3961 error = xfs_btree_dec_cursor(cur, level, stat);
3962 if (error)
3963 goto error0;
3964 *stat = 1;
3965 return 0;
3966 }
3967
3968 /*
3969 * If this is the root level, and there's only one entry left, and it's
3970 * NOT the leaf level, then we can get rid of this level.
3971 */
3972 if (level == cur->bc_nlevels - 1) {
3973 if (numrecs == 1 && level > 0) {
3974 union xfs_btree_ptr *pp;
3975 /*
3976 * pp is still set to the first pointer in the block.
3977 * Make it the new root of the btree.
3978 */
3979 pp = xfs_btree_ptr_addr(cur, 1, block);
3980 error = xfs_btree_kill_root(cur, bp, level, pp);
3981 if (error)
3982 goto error0;
3983 } else if (level > 0) {
3984 error = xfs_btree_dec_cursor(cur, level, stat);
3985 if (error)
3986 goto error0;
3987 }
3988 *stat = 1;
3989 return 0;
3990 }
3991
3992 /*
3993 * If we deleted the leftmost entry in the block, update the
3994 * key values above us in the tree.
3995 */
3996 if (xfs_btree_needs_key_update(cur, ptr)) {
3997 error = xfs_btree_update_keys(cur, level);
3998 if (error)
3999 goto error0;
4000 }
4001
4002 /*
4003 * If the number of records remaining in the block is at least
4004 * the minimum, we're done.
4005 */
4006 if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
4007 error = xfs_btree_dec_cursor(cur, level, stat);
4008 if (error)
4009 goto error0;
4010 return 0;
4011 }
4012
4013 /*
4014 * Otherwise, we have to move some records around to keep the
4015 * tree balanced. Look at the left and right sibling blocks to
4016 * see if we can re-balance by moving only one record.
4017 */
4018 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4019 xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
4020
4021 if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE) {
4022 /*
4023 * One child of root, need to get a chance to copy its contents
4024 * into the root and delete it. Can't go up to next level,
4025 * there's nothing to delete there.
4026 */
4027 if (xfs_btree_ptr_is_null(cur, &rptr) &&
4028 xfs_btree_ptr_is_null(cur, &lptr) &&
4029 level == cur->bc_nlevels - 2) {
4030 error = xfs_btree_kill_iroot(cur);
4031 if (!error)
4032 error = xfs_btree_dec_cursor(cur, level, stat);
4033 if (error)
4034 goto error0;
4035 return 0;
4036 }
4037 }
4038
4039 ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
4040 !xfs_btree_ptr_is_null(cur, &lptr));
4041
4042 /*
4043 * Duplicate the cursor so our btree manipulations here won't
4044 * disrupt the next level up.
4045 */
4046 error = xfs_btree_dup_cursor(cur, &tcur);
4047 if (error)
4048 goto error0;
4049
4050 /*
4051 * If there's a right sibling, see if it's ok to shift an entry
4052 * out of it.
4053 */
4054 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
4055 /*
4056 * Move the temp cursor to the last entry in the next block.
4057 * Actually any entry but the first would suffice.
4058 */
4059 i = xfs_btree_lastrec(tcur, level);
4060 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4061 xfs_btree_mark_sick(cur);
4062 error = -EFSCORRUPTED;
4063 goto error0;
4064 }
4065
4066 error = xfs_btree_increment(tcur, level, &i);
4067 if (error)
4068 goto error0;
4069 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4070 xfs_btree_mark_sick(cur);
4071 error = -EFSCORRUPTED;
4072 goto error0;
4073 }
4074
4075 i = xfs_btree_lastrec(tcur, level);
4076 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4077 xfs_btree_mark_sick(cur);
4078 error = -EFSCORRUPTED;
4079 goto error0;
4080 }
4081
4082 /* Grab a pointer to the block. */
4083 right = xfs_btree_get_block(tcur, level, &rbp);
4084#ifdef DEBUG
4085 error = xfs_btree_check_block(tcur, right, level, rbp);
4086 if (error)
4087 goto error0;
4088#endif
4089 /* Grab the current block number, for future use. */
4090 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
4091
4092 /*
4093 * If right block is full enough so that removing one entry
4094 * won't make it too empty, and left-shifting an entry out
4095 * of right to us works, we're done.
4096 */
4097 if (xfs_btree_get_numrecs(right) - 1 >=
4098 cur->bc_ops->get_minrecs(tcur, level)) {
4099 error = xfs_btree_lshift(tcur, level, &i);
4100 if (error)
4101 goto error0;
4102 if (i) {
4103 ASSERT(xfs_btree_get_numrecs(block) >=
4104 cur->bc_ops->get_minrecs(tcur, level));
4105
4106 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4107 tcur = NULL;
4108
4109 error = xfs_btree_dec_cursor(cur, level, stat);
4110 if (error)
4111 goto error0;
4112 return 0;
4113 }
4114 }
4115
4116 /*
4117 * Otherwise, grab the number of records in right for
4118 * future reference, and fix up the temp cursor to point
4119 * to our block again (last record).
4120 */
4121 rrecs = xfs_btree_get_numrecs(right);
4122 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4123 i = xfs_btree_firstrec(tcur, level);
4124 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4125 xfs_btree_mark_sick(cur);
4126 error = -EFSCORRUPTED;
4127 goto error0;
4128 }
4129
4130 error = xfs_btree_decrement(tcur, level, &i);
4131 if (error)
4132 goto error0;
4133 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4134 xfs_btree_mark_sick(cur);
4135 error = -EFSCORRUPTED;
4136 goto error0;
4137 }
4138 }
4139 }
4140
4141 /*
4142 * If there's a left sibling, see if it's ok to shift an entry
4143 * out of it.
4144 */
4145 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4146 /*
4147 * Move the temp cursor to the first entry in the
4148 * previous block.
4149 */
4150 i = xfs_btree_firstrec(tcur, level);
4151 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4152 xfs_btree_mark_sick(cur);
4153 error = -EFSCORRUPTED;
4154 goto error0;
4155 }
4156
4157 error = xfs_btree_decrement(tcur, level, &i);
4158 if (error)
4159 goto error0;
4160 i = xfs_btree_firstrec(tcur, level);
4161 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4162 xfs_btree_mark_sick(cur);
4163 error = -EFSCORRUPTED;
4164 goto error0;
4165 }
4166
4167 /* Grab a pointer to the block. */
4168 left = xfs_btree_get_block(tcur, level, &lbp);
4169#ifdef DEBUG
4170 error = xfs_btree_check_block(cur, left, level, lbp);
4171 if (error)
4172 goto error0;
4173#endif
4174 /* Grab the current block number, for future use. */
4175 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
4176
4177 /*
4178 * If left block is full enough so that removing one entry
4179 * won't make it too empty, and right-shifting an entry out
4180 * of left to us works, we're done.
4181 */
4182 if (xfs_btree_get_numrecs(left) - 1 >=
4183 cur->bc_ops->get_minrecs(tcur, level)) {
4184 error = xfs_btree_rshift(tcur, level, &i);
4185 if (error)
4186 goto error0;
4187 if (i) {
4188 ASSERT(xfs_btree_get_numrecs(block) >=
4189 cur->bc_ops->get_minrecs(tcur, level));
4190 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4191 tcur = NULL;
4192 if (level == 0)
4193 cur->bc_levels[0].ptr++;
4194
4195 *stat = 1;
4196 return 0;
4197 }
4198 }
4199
4200 /*
4201 * Otherwise, grab the number of records in right for
4202 * future reference.
4203 */
4204 lrecs = xfs_btree_get_numrecs(left);
4205 }
4206
4207 /* Delete the temp cursor, we're done with it. */
4208 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4209 tcur = NULL;
4210
4211 /* If here, we need to do a join to keep the tree balanced. */
4212 ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4213
4214 if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4215 lrecs + xfs_btree_get_numrecs(block) <=
4216 cur->bc_ops->get_maxrecs(cur, level)) {
4217 /*
4218 * Set "right" to be the starting block,
4219 * "left" to be the left neighbor.
4220 */
4221 rptr = cptr;
4222 right = block;
4223 rbp = bp;
4224 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4225 if (error)
4226 goto error0;
4227
4228 /*
4229 * If that won't work, see if we can join with the right neighbor block.
4230 */
4231 } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4232 rrecs + xfs_btree_get_numrecs(block) <=
4233 cur->bc_ops->get_maxrecs(cur, level)) {
4234 /*
4235 * Set "left" to be the starting block,
4236 * "right" to be the right neighbor.
4237 */
4238 lptr = cptr;
4239 left = block;
4240 lbp = bp;
4241 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4242 if (error)
4243 goto error0;
4244
4245 /*
4246 * Otherwise, we can't fix the imbalance.
4247 * Just return. This is probably a logic error, but it's not fatal.
4248 */
4249 } else {
4250 error = xfs_btree_dec_cursor(cur, level, stat);
4251 if (error)
4252 goto error0;
4253 return 0;
4254 }
4255
4256 rrecs = xfs_btree_get_numrecs(right);
4257 lrecs = xfs_btree_get_numrecs(left);
4258
4259 /*
4260 * We're now going to join "left" and "right" by moving all the stuff
4261 * in "right" to "left" and deleting "right".
4262 */
4263 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4264 if (level > 0) {
4265 /* It's a non-leaf. Move keys and pointers. */
4266 union xfs_btree_key *lkp; /* left btree key */
4267 union xfs_btree_ptr *lpp; /* left address pointer */
4268 union xfs_btree_key *rkp; /* right btree key */
4269 union xfs_btree_ptr *rpp; /* right address pointer */
4270
4271 lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4272 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4273 rkp = xfs_btree_key_addr(cur, 1, right);
4274 rpp = xfs_btree_ptr_addr(cur, 1, right);
4275
4276 for (i = 1; i < rrecs; i++) {
4277 error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4278 if (error)
4279 goto error0;
4280 }
4281
4282 xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4283 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4284
4285 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4286 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4287 } else {
4288 /* It's a leaf. Move records. */
4289 union xfs_btree_rec *lrp; /* left record pointer */
4290 union xfs_btree_rec *rrp; /* right record pointer */
4291
4292 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4293 rrp = xfs_btree_rec_addr(cur, 1, right);
4294
4295 xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4296 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4297 }
4298
4299 XFS_BTREE_STATS_INC(cur, join);
4300
4301 /*
4302 * Fix up the number of records and right block pointer in the
4303 * surviving block, and log it.
4304 */
4305 xfs_btree_set_numrecs(left, lrecs + rrecs);
4306 xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB);
4307 xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4308 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4309
4310 /* If there is a right sibling, point it to the remaining block. */
4311 xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4312 if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4313 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4314 if (error)
4315 goto error0;
4316 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4317 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4318 }
4319
4320 /* Free the deleted block. */
4321 error = xfs_btree_free_block(cur, rbp);
4322 if (error)
4323 goto error0;
4324
4325 /*
4326 * If we joined with the left neighbor, set the buffer in the
4327 * cursor to the left block, and fix up the index.
4328 */
4329 if (bp != lbp) {
4330 cur->bc_levels[level].bp = lbp;
4331 cur->bc_levels[level].ptr += lrecs;
4332 cur->bc_levels[level].ra = 0;
4333 }
4334 /*
4335 * If we joined with the right neighbor and there's a level above
4336 * us, increment the cursor at that level.
4337 */
4338 else if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE ||
4339 level + 1 < cur->bc_nlevels) {
4340 error = xfs_btree_increment(cur, level + 1, &i);
4341 if (error)
4342 goto error0;
4343 }
4344
4345 /*
4346 * Readjust the ptr at this level if it's not a leaf, since it's
4347 * still pointing at the deletion point, which makes the cursor
4348 * inconsistent. If this makes the ptr 0, the caller fixes it up.
4349 * We can't use decrement because it would change the next level up.
4350 */
4351 if (level > 0)
4352 cur->bc_levels[level].ptr--;
4353
4354 /*
4355 * We combined blocks, so we have to update the parent keys if the
4356 * btree supports overlapped intervals. However,
4357 * bc_levels[level + 1].ptr points to the old block so that the caller
4358 * knows which record to delete. Therefore, the caller must be savvy
4359 * enough to call updkeys for us if we return stat == 2. The other
4360 * exit points from this function don't require deletions further up
4361 * the tree, so they can call updkeys directly.
4362 */
4363
4364 /* Return value means the next level up has something to do. */
4365 *stat = 2;
4366 return 0;
4367
4368error0:
4369 if (tcur)
4370 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4371 return error;
4372}
4373
4374/*
4375 * Delete the record pointed to by cur.
4376 * The cursor refers to the place where the record was (could be inserted)
4377 * when the operation returns.
4378 */
4379int /* error */
4380xfs_btree_delete(
4381 struct xfs_btree_cur *cur,
4382 int *stat) /* success/failure */
4383{
4384 int error; /* error return value */
4385 int level;
4386 int i;
4387 bool joined = false;
4388
4389 /*
4390 * Go up the tree, starting at leaf level.
4391 *
4392 * If 2 is returned then a join was done; go to the next level.
4393 * Otherwise we are done.
4394 */
4395 for (level = 0, i = 2; i == 2; level++) {
4396 error = xfs_btree_delrec(cur, level, &i);
4397 if (error)
4398 goto error0;
4399 if (i == 2)
4400 joined = true;
4401 }
4402
4403 /*
4404 * If we combined blocks as part of deleting the record, delrec won't
4405 * have updated the parent high keys so we have to do that here.
4406 */
4407 if (joined && (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING)) {
4408 error = xfs_btree_updkeys_force(cur, 0);
4409 if (error)
4410 goto error0;
4411 }
4412
4413 if (i == 0) {
4414 for (level = 1; level < cur->bc_nlevels; level++) {
4415 if (cur->bc_levels[level].ptr == 0) {
4416 error = xfs_btree_decrement(cur, level, &i);
4417 if (error)
4418 goto error0;
4419 break;
4420 }
4421 }
4422 }
4423
4424 *stat = i;
4425 return 0;
4426error0:
4427 return error;
4428}
4429
4430/*
4431 * Get the data from the pointed-to record.
4432 */
4433int /* error */
4434xfs_btree_get_rec(
4435 struct xfs_btree_cur *cur, /* btree cursor */
4436 union xfs_btree_rec **recp, /* output: btree record */
4437 int *stat) /* output: success/failure */
4438{
4439 struct xfs_btree_block *block; /* btree block */
4440 struct xfs_buf *bp; /* buffer pointer */
4441 int ptr; /* record number */
4442#ifdef DEBUG
4443 int error; /* error return value */
4444#endif
4445
4446 ptr = cur->bc_levels[0].ptr;
4447 block = xfs_btree_get_block(cur, 0, &bp);
4448
4449#ifdef DEBUG
4450 error = xfs_btree_check_block(cur, block, 0, bp);
4451 if (error)
4452 return error;
4453#endif
4454
4455 /*
4456 * Off the right end or left end, return failure.
4457 */
4458 if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4459 *stat = 0;
4460 return 0;
4461 }
4462
4463 /*
4464 * Point to the record and extract its data.
4465 */
4466 *recp = xfs_btree_rec_addr(cur, ptr, block);
4467 *stat = 1;
4468 return 0;
4469}
4470
4471/* Visit a block in a btree. */
4472STATIC int
4473xfs_btree_visit_block(
4474 struct xfs_btree_cur *cur,
4475 int level,
4476 xfs_btree_visit_blocks_fn fn,
4477 void *data)
4478{
4479 struct xfs_btree_block *block;
4480 struct xfs_buf *bp;
4481 union xfs_btree_ptr rptr, bufptr;
4482 int error;
4483
4484 /* do right sibling readahead */
4485 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4486 block = xfs_btree_get_block(cur, level, &bp);
4487
4488 /* process the block */
4489 error = fn(cur, level, data);
4490 if (error)
4491 return error;
4492
4493 /* now read rh sibling block for next iteration */
4494 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4495 if (xfs_btree_ptr_is_null(cur, &rptr))
4496 return -ENOENT;
4497
4498 /*
4499 * We only visit blocks once in this walk, so we have to avoid the
4500 * internal xfs_btree_lookup_get_block() optimisation where it will
4501 * return the same block without checking if the right sibling points
4502 * back to us and creates a cyclic reference in the btree.
4503 */
4504 xfs_btree_buf_to_ptr(cur, bp, &bufptr);
4505 if (xfs_btree_ptrs_equal(cur, &rptr, &bufptr)) {
4506 xfs_btree_mark_sick(cur);
4507 return -EFSCORRUPTED;
4508 }
4509
4510 return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4511}
4512
4513
4514/* Visit every block in a btree. */
4515int
4516xfs_btree_visit_blocks(
4517 struct xfs_btree_cur *cur,
4518 xfs_btree_visit_blocks_fn fn,
4519 unsigned int flags,
4520 void *data)
4521{
4522 union xfs_btree_ptr lptr;
4523 int level;
4524 struct xfs_btree_block *block = NULL;
4525 int error = 0;
4526
4527 xfs_btree_init_ptr_from_cur(cur, &lptr);
4528
4529 /* for each level */
4530 for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4531 /* grab the left hand block */
4532 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4533 if (error)
4534 return error;
4535
4536 /* readahead the left most block for the next level down */
4537 if (level > 0) {
4538 union xfs_btree_ptr *ptr;
4539
4540 ptr = xfs_btree_ptr_addr(cur, 1, block);
4541 xfs_btree_readahead_ptr(cur, ptr, 1);
4542
4543 /* save for the next iteration of the loop */
4544 xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4545
4546 if (!(flags & XFS_BTREE_VISIT_LEAVES))
4547 continue;
4548 } else if (!(flags & XFS_BTREE_VISIT_RECORDS)) {
4549 continue;
4550 }
4551
4552 /* for each buffer in the level */
4553 do {
4554 error = xfs_btree_visit_block(cur, level, fn, data);
4555 } while (!error);
4556
4557 if (error != -ENOENT)
4558 return error;
4559 }
4560
4561 return 0;
4562}
4563
4564/*
4565 * Change the owner of a btree.
4566 *
4567 * The mechanism we use here is ordered buffer logging. Because we don't know
4568 * how many buffers were are going to need to modify, we don't really want to
4569 * have to make transaction reservations for the worst case of every buffer in a
4570 * full size btree as that may be more space that we can fit in the log....
4571 *
4572 * We do the btree walk in the most optimal manner possible - we have sibling
4573 * pointers so we can just walk all the blocks on each level from left to right
4574 * in a single pass, and then move to the next level and do the same. We can
4575 * also do readahead on the sibling pointers to get IO moving more quickly,
4576 * though for slow disks this is unlikely to make much difference to performance
4577 * as the amount of CPU work we have to do before moving to the next block is
4578 * relatively small.
4579 *
4580 * For each btree block that we load, modify the owner appropriately, set the
4581 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4582 * we mark the region we change dirty so that if the buffer is relogged in
4583 * a subsequent transaction the changes we make here as an ordered buffer are
4584 * correctly relogged in that transaction. If we are in recovery context, then
4585 * just queue the modified buffer as delayed write buffer so the transaction
4586 * recovery completion writes the changes to disk.
4587 */
4588struct xfs_btree_block_change_owner_info {
4589 uint64_t new_owner;
4590 struct list_head *buffer_list;
4591};
4592
4593static int
4594xfs_btree_block_change_owner(
4595 struct xfs_btree_cur *cur,
4596 int level,
4597 void *data)
4598{
4599 struct xfs_btree_block_change_owner_info *bbcoi = data;
4600 struct xfs_btree_block *block;
4601 struct xfs_buf *bp;
4602
4603 /* modify the owner */
4604 block = xfs_btree_get_block(cur, level, &bp);
4605 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
4606 if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4607 return 0;
4608 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4609 } else {
4610 if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4611 return 0;
4612 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4613 }
4614
4615 /*
4616 * If the block is a root block hosted in an inode, we might not have a
4617 * buffer pointer here and we shouldn't attempt to log the change as the
4618 * information is already held in the inode and discarded when the root
4619 * block is formatted into the on-disk inode fork. We still change it,
4620 * though, so everything is consistent in memory.
4621 */
4622 if (!bp) {
4623 ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
4624 ASSERT(level == cur->bc_nlevels - 1);
4625 return 0;
4626 }
4627
4628 if (cur->bc_tp) {
4629 if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4630 xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4631 return -EAGAIN;
4632 }
4633 } else {
4634 xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4635 }
4636
4637 return 0;
4638}
4639
4640int
4641xfs_btree_change_owner(
4642 struct xfs_btree_cur *cur,
4643 uint64_t new_owner,
4644 struct list_head *buffer_list)
4645{
4646 struct xfs_btree_block_change_owner_info bbcoi;
4647
4648 bbcoi.new_owner = new_owner;
4649 bbcoi.buffer_list = buffer_list;
4650
4651 return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4652 XFS_BTREE_VISIT_ALL, &bbcoi);
4653}
4654
4655/* Verify the v5 fields of a long-format btree block. */
4656xfs_failaddr_t
4657xfs_btree_fsblock_v5hdr_verify(
4658 struct xfs_buf *bp,
4659 uint64_t owner)
4660{
4661 struct xfs_mount *mp = bp->b_mount;
4662 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4663
4664 if (!xfs_has_crc(mp))
4665 return __this_address;
4666 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4667 return __this_address;
4668 if (block->bb_u.l.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4669 return __this_address;
4670 if (owner != XFS_RMAP_OWN_UNKNOWN &&
4671 be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4672 return __this_address;
4673 return NULL;
4674}
4675
4676/* Verify a long-format btree block. */
4677xfs_failaddr_t
4678xfs_btree_fsblock_verify(
4679 struct xfs_buf *bp,
4680 unsigned int max_recs)
4681{
4682 struct xfs_mount *mp = bp->b_mount;
4683 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4684 xfs_fsblock_t fsb;
4685 xfs_failaddr_t fa;
4686
4687 ASSERT(!xfs_buftarg_is_mem(bp->b_target));
4688
4689 /* numrecs verification */
4690 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4691 return __this_address;
4692
4693 /* sibling pointer verification */
4694 fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
4695 fa = xfs_btree_check_fsblock_siblings(mp, fsb,
4696 block->bb_u.l.bb_leftsib);
4697 if (!fa)
4698 fa = xfs_btree_check_fsblock_siblings(mp, fsb,
4699 block->bb_u.l.bb_rightsib);
4700 return fa;
4701}
4702
4703/* Verify an in-memory btree block. */
4704xfs_failaddr_t
4705xfs_btree_memblock_verify(
4706 struct xfs_buf *bp,
4707 unsigned int max_recs)
4708{
4709 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4710 struct xfs_buftarg *btp = bp->b_target;
4711 xfs_failaddr_t fa;
4712 xfbno_t bno;
4713
4714 ASSERT(xfs_buftarg_is_mem(bp->b_target));
4715
4716 /* numrecs verification */
4717 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4718 return __this_address;
4719
4720 /* sibling pointer verification */
4721 bno = xfs_daddr_to_xfbno(xfs_buf_daddr(bp));
4722 fa = xfs_btree_check_memblock_siblings(btp, bno,
4723 block->bb_u.l.bb_leftsib);
4724 if (fa)
4725 return fa;
4726 fa = xfs_btree_check_memblock_siblings(btp, bno,
4727 block->bb_u.l.bb_rightsib);
4728 if (fa)
4729 return fa;
4730
4731 return NULL;
4732}
4733/**
4734 * xfs_btree_agblock_v5hdr_verify() -- verify the v5 fields of a short-format
4735 * btree block
4736 *
4737 * @bp: buffer containing the btree block
4738 */
4739xfs_failaddr_t
4740xfs_btree_agblock_v5hdr_verify(
4741 struct xfs_buf *bp)
4742{
4743 struct xfs_mount *mp = bp->b_mount;
4744 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4745 struct xfs_perag *pag = bp->b_pag;
4746
4747 if (!xfs_has_crc(mp))
4748 return __this_address;
4749 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4750 return __this_address;
4751 if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4752 return __this_address;
4753 if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag_agno(pag))
4754 return __this_address;
4755 return NULL;
4756}
4757
4758/**
4759 * xfs_btree_agblock_verify() -- verify a short-format btree block
4760 *
4761 * @bp: buffer containing the btree block
4762 * @max_recs: maximum records allowed in this btree node
4763 */
4764xfs_failaddr_t
4765xfs_btree_agblock_verify(
4766 struct xfs_buf *bp,
4767 unsigned int max_recs)
4768{
4769 struct xfs_mount *mp = bp->b_mount;
4770 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4771 xfs_agblock_t agbno;
4772 xfs_failaddr_t fa;
4773
4774 ASSERT(!xfs_buftarg_is_mem(bp->b_target));
4775
4776 /* numrecs verification */
4777 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4778 return __this_address;
4779
4780 /* sibling pointer verification */
4781 agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
4782 fa = xfs_btree_check_agblock_siblings(bp->b_pag, agbno,
4783 block->bb_u.s.bb_leftsib);
4784 if (!fa)
4785 fa = xfs_btree_check_agblock_siblings(bp->b_pag, agbno,
4786 block->bb_u.s.bb_rightsib);
4787 return fa;
4788}
4789
4790/*
4791 * For the given limits on leaf and keyptr records per block, calculate the
4792 * height of the tree needed to index the number of leaf records.
4793 */
4794unsigned int
4795xfs_btree_compute_maxlevels(
4796 const unsigned int *limits,
4797 unsigned long long records)
4798{
4799 unsigned long long level_blocks = howmany_64(records, limits[0]);
4800 unsigned int height = 1;
4801
4802 while (level_blocks > 1) {
4803 level_blocks = howmany_64(level_blocks, limits[1]);
4804 height++;
4805 }
4806
4807 return height;
4808}
4809
4810/*
4811 * For the given limits on leaf and keyptr records per block, calculate the
4812 * number of blocks needed to index the given number of leaf records.
4813 */
4814unsigned long long
4815xfs_btree_calc_size(
4816 const unsigned int *limits,
4817 unsigned long long records)
4818{
4819 unsigned long long level_blocks = howmany_64(records, limits[0]);
4820 unsigned long long blocks = level_blocks;
4821
4822 while (level_blocks > 1) {
4823 level_blocks = howmany_64(level_blocks, limits[1]);
4824 blocks += level_blocks;
4825 }
4826
4827 return blocks;
4828}
4829
4830/*
4831 * Given a number of available blocks for the btree to consume with records and
4832 * pointers, calculate the height of the tree needed to index all the records
4833 * that space can hold based on the number of pointers each interior node
4834 * holds.
4835 *
4836 * We start by assuming a single level tree consumes a single block, then track
4837 * the number of blocks each node level consumes until we no longer have space
4838 * to store the next node level. At this point, we are indexing all the leaf
4839 * blocks in the space, and there's no more free space to split the tree any
4840 * further. That's our maximum btree height.
4841 */
4842unsigned int
4843xfs_btree_space_to_height(
4844 const unsigned int *limits,
4845 unsigned long long leaf_blocks)
4846{
4847 /*
4848 * The root btree block can have fewer than minrecs pointers in it
4849 * because the tree might not be big enough to require that amount of
4850 * fanout. Hence it has a minimum size of 2 pointers, not limits[1].
4851 */
4852 unsigned long long node_blocks = 2;
4853 unsigned long long blocks_left = leaf_blocks - 1;
4854 unsigned int height = 1;
4855
4856 if (leaf_blocks < 1)
4857 return 0;
4858
4859 while (node_blocks < blocks_left) {
4860 blocks_left -= node_blocks;
4861 node_blocks *= limits[1];
4862 height++;
4863 }
4864
4865 return height;
4866}
4867
4868/*
4869 * Query a regular btree for all records overlapping a given interval.
4870 * Start with a LE lookup of the key of low_rec and return all records
4871 * until we find a record with a key greater than the key of high_rec.
4872 */
4873STATIC int
4874xfs_btree_simple_query_range(
4875 struct xfs_btree_cur *cur,
4876 const union xfs_btree_key *low_key,
4877 const union xfs_btree_key *high_key,
4878 xfs_btree_query_range_fn fn,
4879 void *priv)
4880{
4881 union xfs_btree_rec *recp;
4882 union xfs_btree_key rec_key;
4883 int stat;
4884 bool firstrec = true;
4885 int error;
4886
4887 ASSERT(cur->bc_ops->init_high_key_from_rec);
4888 ASSERT(cur->bc_ops->diff_two_keys);
4889
4890 /*
4891 * Find the leftmost record. The btree cursor must be set
4892 * to the low record used to generate low_key.
4893 */
4894 stat = 0;
4895 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4896 if (error)
4897 goto out;
4898
4899 /* Nothing? See if there's anything to the right. */
4900 if (!stat) {
4901 error = xfs_btree_increment(cur, 0, &stat);
4902 if (error)
4903 goto out;
4904 }
4905
4906 while (stat) {
4907 /* Find the record. */
4908 error = xfs_btree_get_rec(cur, &recp, &stat);
4909 if (error || !stat)
4910 break;
4911
4912 /* Skip if low_key > high_key(rec). */
4913 if (firstrec) {
4914 cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4915 firstrec = false;
4916 if (xfs_btree_keycmp_gt(cur, low_key, &rec_key))
4917 goto advloop;
4918 }
4919
4920 /* Stop if low_key(rec) > high_key. */
4921 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4922 if (xfs_btree_keycmp_gt(cur, &rec_key, high_key))
4923 break;
4924
4925 /* Callback */
4926 error = fn(cur, recp, priv);
4927 if (error)
4928 break;
4929
4930advloop:
4931 /* Move on to the next record. */
4932 error = xfs_btree_increment(cur, 0, &stat);
4933 if (error)
4934 break;
4935 }
4936
4937out:
4938 return error;
4939}
4940
4941/*
4942 * Query an overlapped interval btree for all records overlapping a given
4943 * interval. This function roughly follows the algorithm given in
4944 * "Interval Trees" of _Introduction to Algorithms_, which is section
4945 * 14.3 in the 2nd and 3rd editions.
4946 *
4947 * First, generate keys for the low and high records passed in.
4948 *
4949 * For any leaf node, generate the high and low keys for the record.
4950 * If the record keys overlap with the query low/high keys, pass the
4951 * record to the function iterator.
4952 *
4953 * For any internal node, compare the low and high keys of each
4954 * pointer against the query low/high keys. If there's an overlap,
4955 * follow the pointer.
4956 *
4957 * As an optimization, we stop scanning a block when we find a low key
4958 * that is greater than the query's high key.
4959 */
4960STATIC int
4961xfs_btree_overlapped_query_range(
4962 struct xfs_btree_cur *cur,
4963 const union xfs_btree_key *low_key,
4964 const union xfs_btree_key *high_key,
4965 xfs_btree_query_range_fn fn,
4966 void *priv)
4967{
4968 union xfs_btree_ptr ptr;
4969 union xfs_btree_ptr *pp;
4970 union xfs_btree_key rec_key;
4971 union xfs_btree_key rec_hkey;
4972 union xfs_btree_key *lkp;
4973 union xfs_btree_key *hkp;
4974 union xfs_btree_rec *recp;
4975 struct xfs_btree_block *block;
4976 int level;
4977 struct xfs_buf *bp;
4978 int i;
4979 int error;
4980
4981 /* Load the root of the btree. */
4982 level = cur->bc_nlevels - 1;
4983 xfs_btree_init_ptr_from_cur(cur, &ptr);
4984 error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4985 if (error)
4986 return error;
4987 xfs_btree_get_block(cur, level, &bp);
4988 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4989#ifdef DEBUG
4990 error = xfs_btree_check_block(cur, block, level, bp);
4991 if (error)
4992 goto out;
4993#endif
4994 cur->bc_levels[level].ptr = 1;
4995
4996 while (level < cur->bc_nlevels) {
4997 block = xfs_btree_get_block(cur, level, &bp);
4998
4999 /* End of node, pop back towards the root. */
5000 if (cur->bc_levels[level].ptr >
5001 be16_to_cpu(block->bb_numrecs)) {
5002pop_up:
5003 if (level < cur->bc_nlevels - 1)
5004 cur->bc_levels[level + 1].ptr++;
5005 level++;
5006 continue;
5007 }
5008
5009 if (level == 0) {
5010 /* Handle a leaf node. */
5011 recp = xfs_btree_rec_addr(cur, cur->bc_levels[0].ptr,
5012 block);
5013
5014 cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
5015 cur->bc_ops->init_key_from_rec(&rec_key, recp);
5016
5017 /*
5018 * If (query's high key < record's low key), then there
5019 * are no more interesting records in this block. Pop
5020 * up to the leaf level to find more record blocks.
5021 *
5022 * If (record's high key >= query's low key) and
5023 * (query's high key >= record's low key), then
5024 * this record overlaps the query range; callback.
5025 */
5026 if (xfs_btree_keycmp_lt(cur, high_key, &rec_key))
5027 goto pop_up;
5028 if (xfs_btree_keycmp_ge(cur, &rec_hkey, low_key)) {
5029 error = fn(cur, recp, priv);
5030 if (error)
5031 break;
5032 }
5033 cur->bc_levels[level].ptr++;
5034 continue;
5035 }
5036
5037 /* Handle an internal node. */
5038 lkp = xfs_btree_key_addr(cur, cur->bc_levels[level].ptr, block);
5039 hkp = xfs_btree_high_key_addr(cur, cur->bc_levels[level].ptr,
5040 block);
5041 pp = xfs_btree_ptr_addr(cur, cur->bc_levels[level].ptr, block);
5042
5043 /*
5044 * If (query's high key < pointer's low key), then there are no
5045 * more interesting keys in this block. Pop up one leaf level
5046 * to continue looking for records.
5047 *
5048 * If (pointer's high key >= query's low key) and
5049 * (query's high key >= pointer's low key), then
5050 * this record overlaps the query range; follow pointer.
5051 */
5052 if (xfs_btree_keycmp_lt(cur, high_key, lkp))
5053 goto pop_up;
5054 if (xfs_btree_keycmp_ge(cur, hkp, low_key)) {
5055 level--;
5056 error = xfs_btree_lookup_get_block(cur, level, pp,
5057 &block);
5058 if (error)
5059 goto out;
5060 xfs_btree_get_block(cur, level, &bp);
5061 trace_xfs_btree_overlapped_query_range(cur, level, bp);
5062#ifdef DEBUG
5063 error = xfs_btree_check_block(cur, block, level, bp);
5064 if (error)
5065 goto out;
5066#endif
5067 cur->bc_levels[level].ptr = 1;
5068 continue;
5069 }
5070 cur->bc_levels[level].ptr++;
5071 }
5072
5073out:
5074 /*
5075 * If we don't end this function with the cursor pointing at a record
5076 * block, a subsequent non-error cursor deletion will not release
5077 * node-level buffers, causing a buffer leak. This is quite possible
5078 * with a zero-results range query, so release the buffers if we
5079 * failed to return any results.
5080 */
5081 if (cur->bc_levels[0].bp == NULL) {
5082 for (i = 0; i < cur->bc_nlevels; i++) {
5083 if (cur->bc_levels[i].bp) {
5084 xfs_trans_brelse(cur->bc_tp,
5085 cur->bc_levels[i].bp);
5086 cur->bc_levels[i].bp = NULL;
5087 cur->bc_levels[i].ptr = 0;
5088 cur->bc_levels[i].ra = 0;
5089 }
5090 }
5091 }
5092
5093 return error;
5094}
5095
5096static inline void
5097xfs_btree_key_from_irec(
5098 struct xfs_btree_cur *cur,
5099 union xfs_btree_key *key,
5100 const union xfs_btree_irec *irec)
5101{
5102 union xfs_btree_rec rec;
5103
5104 cur->bc_rec = *irec;
5105 cur->bc_ops->init_rec_from_cur(cur, &rec);
5106 cur->bc_ops->init_key_from_rec(key, &rec);
5107}
5108
5109/*
5110 * Query a btree for all records overlapping a given interval of keys. The
5111 * supplied function will be called with each record found; return one of the
5112 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
5113 * code. This function returns -ECANCELED, zero, or a negative error code.
5114 */
5115int
5116xfs_btree_query_range(
5117 struct xfs_btree_cur *cur,
5118 const union xfs_btree_irec *low_rec,
5119 const union xfs_btree_irec *high_rec,
5120 xfs_btree_query_range_fn fn,
5121 void *priv)
5122{
5123 union xfs_btree_key low_key;
5124 union xfs_btree_key high_key;
5125
5126 /* Find the keys of both ends of the interval. */
5127 xfs_btree_key_from_irec(cur, &high_key, high_rec);
5128 xfs_btree_key_from_irec(cur, &low_key, low_rec);
5129
5130 /* Enforce low key <= high key. */
5131 if (!xfs_btree_keycmp_le(cur, &low_key, &high_key))
5132 return -EINVAL;
5133
5134 if (!(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING))
5135 return xfs_btree_simple_query_range(cur, &low_key,
5136 &high_key, fn, priv);
5137 return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
5138 fn, priv);
5139}
5140
5141/* Query a btree for all records. */
5142int
5143xfs_btree_query_all(
5144 struct xfs_btree_cur *cur,
5145 xfs_btree_query_range_fn fn,
5146 void *priv)
5147{
5148 union xfs_btree_key low_key;
5149 union xfs_btree_key high_key;
5150
5151 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
5152 memset(&low_key, 0, sizeof(low_key));
5153 memset(&high_key, 0xFF, sizeof(high_key));
5154
5155 return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
5156}
5157
5158static int
5159xfs_btree_count_blocks_helper(
5160 struct xfs_btree_cur *cur,
5161 int level,
5162 void *data)
5163{
5164 xfs_filblks_t *blocks = data;
5165 (*blocks)++;
5166
5167 return 0;
5168}
5169
5170/* Count the blocks in a btree and return the result in *blocks. */
5171int
5172xfs_btree_count_blocks(
5173 struct xfs_btree_cur *cur,
5174 xfs_filblks_t *blocks)
5175{
5176 *blocks = 0;
5177 return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
5178 XFS_BTREE_VISIT_ALL, blocks);
5179}
5180
5181/* Compare two btree pointers. */
5182int64_t
5183xfs_btree_diff_two_ptrs(
5184 struct xfs_btree_cur *cur,
5185 const union xfs_btree_ptr *a,
5186 const union xfs_btree_ptr *b)
5187{
5188 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
5189 return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
5190 return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
5191}
5192
5193struct xfs_btree_has_records {
5194 /* Keys for the start and end of the range we want to know about. */
5195 union xfs_btree_key start_key;
5196 union xfs_btree_key end_key;
5197
5198 /* Mask for key comparisons, if desired. */
5199 const union xfs_btree_key *key_mask;
5200
5201 /* Highest record key we've seen so far. */
5202 union xfs_btree_key high_key;
5203
5204 enum xbtree_recpacking outcome;
5205};
5206
5207STATIC int
5208xfs_btree_has_records_helper(
5209 struct xfs_btree_cur *cur,
5210 const union xfs_btree_rec *rec,
5211 void *priv)
5212{
5213 union xfs_btree_key rec_key;
5214 union xfs_btree_key rec_high_key;
5215 struct xfs_btree_has_records *info = priv;
5216 enum xbtree_key_contig key_contig;
5217
5218 cur->bc_ops->init_key_from_rec(&rec_key, rec);
5219
5220 if (info->outcome == XBTREE_RECPACKING_EMPTY) {
5221 info->outcome = XBTREE_RECPACKING_SPARSE;
5222
5223 /*
5224 * If the first record we find does not overlap the start key,
5225 * then there is a hole at the start of the search range.
5226 * Classify this as sparse and stop immediately.
5227 */
5228 if (xfs_btree_masked_keycmp_lt(cur, &info->start_key, &rec_key,
5229 info->key_mask))
5230 return -ECANCELED;
5231 } else {
5232 /*
5233 * If a subsequent record does not overlap with the any record
5234 * we've seen so far, there is a hole in the middle of the
5235 * search range. Classify this as sparse and stop.
5236 * If the keys overlap and this btree does not allow overlap,
5237 * signal corruption.
5238 */
5239 key_contig = cur->bc_ops->keys_contiguous(cur, &info->high_key,
5240 &rec_key, info->key_mask);
5241 if (key_contig == XBTREE_KEY_OVERLAP &&
5242 !(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING))
5243 return -EFSCORRUPTED;
5244 if (key_contig == XBTREE_KEY_GAP)
5245 return -ECANCELED;
5246 }
5247
5248 /*
5249 * If high_key(rec) is larger than any other high key we've seen,
5250 * remember it for later.
5251 */
5252 cur->bc_ops->init_high_key_from_rec(&rec_high_key, rec);
5253 if (xfs_btree_masked_keycmp_gt(cur, &rec_high_key, &info->high_key,
5254 info->key_mask))
5255 info->high_key = rec_high_key; /* struct copy */
5256
5257 return 0;
5258}
5259
5260/*
5261 * Scan part of the keyspace of a btree and tell us if that keyspace does not
5262 * map to any records; is fully mapped to records; or is partially mapped to
5263 * records. This is the btree record equivalent to determining if a file is
5264 * sparse.
5265 *
5266 * For most btree types, the record scan should use all available btree key
5267 * fields to compare the keys encountered. These callers should pass NULL for
5268 * @mask. However, some callers (e.g. scanning physical space in the rmapbt)
5269 * want to ignore some part of the btree record keyspace when performing the
5270 * comparison. These callers should pass in a union xfs_btree_key object with
5271 * the fields that *should* be a part of the comparison set to any nonzero
5272 * value, and the rest zeroed.
5273 */
5274int
5275xfs_btree_has_records(
5276 struct xfs_btree_cur *cur,
5277 const union xfs_btree_irec *low,
5278 const union xfs_btree_irec *high,
5279 const union xfs_btree_key *mask,
5280 enum xbtree_recpacking *outcome)
5281{
5282 struct xfs_btree_has_records info = {
5283 .outcome = XBTREE_RECPACKING_EMPTY,
5284 .key_mask = mask,
5285 };
5286 int error;
5287
5288 /* Not all btrees support this operation. */
5289 if (!cur->bc_ops->keys_contiguous) {
5290 ASSERT(0);
5291 return -EOPNOTSUPP;
5292 }
5293
5294 xfs_btree_key_from_irec(cur, &info.start_key, low);
5295 xfs_btree_key_from_irec(cur, &info.end_key, high);
5296
5297 error = xfs_btree_query_range(cur, low, high,
5298 xfs_btree_has_records_helper, &info);
5299 if (error == -ECANCELED)
5300 goto out;
5301 if (error)
5302 return error;
5303
5304 if (info.outcome == XBTREE_RECPACKING_EMPTY)
5305 goto out;
5306
5307 /*
5308 * If the largest high_key(rec) we saw during the walk is greater than
5309 * the end of the search range, classify this as full. Otherwise,
5310 * there is a hole at the end of the search range.
5311 */
5312 if (xfs_btree_masked_keycmp_ge(cur, &info.high_key, &info.end_key,
5313 mask))
5314 info.outcome = XBTREE_RECPACKING_FULL;
5315
5316out:
5317 *outcome = info.outcome;
5318 return 0;
5319}
5320
5321/* Are there more records in this btree? */
5322bool
5323xfs_btree_has_more_records(
5324 struct xfs_btree_cur *cur)
5325{
5326 struct xfs_btree_block *block;
5327 struct xfs_buf *bp;
5328
5329 block = xfs_btree_get_block(cur, 0, &bp);
5330
5331 /* There are still records in this block. */
5332 if (cur->bc_levels[0].ptr < xfs_btree_get_numrecs(block))
5333 return true;
5334
5335 /* There are more record blocks. */
5336 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
5337 return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
5338 else
5339 return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
5340}
5341
5342/* Set up all the btree cursor caches. */
5343int __init
5344xfs_btree_init_cur_caches(void)
5345{
5346 int error;
5347
5348 error = xfs_allocbt_init_cur_cache();
5349 if (error)
5350 return error;
5351 error = xfs_inobt_init_cur_cache();
5352 if (error)
5353 goto err;
5354 error = xfs_bmbt_init_cur_cache();
5355 if (error)
5356 goto err;
5357 error = xfs_rmapbt_init_cur_cache();
5358 if (error)
5359 goto err;
5360 error = xfs_refcountbt_init_cur_cache();
5361 if (error)
5362 goto err;
5363
5364 return 0;
5365err:
5366 xfs_btree_destroy_cur_caches();
5367 return error;
5368}
5369
5370/* Destroy all the btree cursor caches, if they've been allocated. */
5371void
5372xfs_btree_destroy_cur_caches(void)
5373{
5374 xfs_allocbt_destroy_cur_cache();
5375 xfs_inobt_destroy_cur_cache();
5376 xfs_bmbt_destroy_cur_cache();
5377 xfs_rmapbt_destroy_cur_cache();
5378 xfs_refcountbt_destroy_cur_cache();
5379}
5380
5381/* Move the btree cursor before the first record. */
5382int
5383xfs_btree_goto_left_edge(
5384 struct xfs_btree_cur *cur)
5385{
5386 int stat = 0;
5387 int error;
5388
5389 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
5390 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
5391 if (error)
5392 return error;
5393 if (!stat)
5394 return 0;
5395
5396 error = xfs_btree_decrement(cur, 0, &stat);
5397 if (error)
5398 return error;
5399 if (stat != 0) {
5400 ASSERT(0);
5401 xfs_btree_mark_sick(cur);
5402 return -EFSCORRUPTED;
5403 }
5404
5405 return 0;
5406}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_mount.h"
14#include "xfs_inode.h"
15#include "xfs_trans.h"
16#include "xfs_buf_item.h"
17#include "xfs_btree.h"
18#include "xfs_errortag.h"
19#include "xfs_error.h"
20#include "xfs_trace.h"
21#include "xfs_alloc.h"
22#include "xfs_log.h"
23#include "xfs_btree_staging.h"
24
25/*
26 * Cursor allocation zone.
27 */
28kmem_zone_t *xfs_btree_cur_zone;
29
30/*
31 * Btree magic numbers.
32 */
33static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
34 { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
35 XFS_FIBT_MAGIC, 0 },
36 { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
37 XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
38 XFS_REFC_CRC_MAGIC }
39};
40
41uint32_t
42xfs_btree_magic(
43 int crc,
44 xfs_btnum_t btnum)
45{
46 uint32_t magic = xfs_magics[crc][btnum];
47
48 /* Ensure we asked for crc for crc-only magics. */
49 ASSERT(magic != 0);
50 return magic;
51}
52
53/*
54 * Check a long btree block header. Return the address of the failing check,
55 * or NULL if everything is ok.
56 */
57xfs_failaddr_t
58__xfs_btree_check_lblock(
59 struct xfs_btree_cur *cur,
60 struct xfs_btree_block *block,
61 int level,
62 struct xfs_buf *bp)
63{
64 struct xfs_mount *mp = cur->bc_mp;
65 xfs_btnum_t btnum = cur->bc_btnum;
66 int crc = xfs_sb_version_hascrc(&mp->m_sb);
67
68 if (crc) {
69 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
70 return __this_address;
71 if (block->bb_u.l.bb_blkno !=
72 cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
73 return __this_address;
74 if (block->bb_u.l.bb_pad != cpu_to_be32(0))
75 return __this_address;
76 }
77
78 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
79 return __this_address;
80 if (be16_to_cpu(block->bb_level) != level)
81 return __this_address;
82 if (be16_to_cpu(block->bb_numrecs) >
83 cur->bc_ops->get_maxrecs(cur, level))
84 return __this_address;
85 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
86 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_leftsib),
87 level + 1))
88 return __this_address;
89 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
90 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_rightsib),
91 level + 1))
92 return __this_address;
93
94 return NULL;
95}
96
97/* Check a long btree block header. */
98static int
99xfs_btree_check_lblock(
100 struct xfs_btree_cur *cur,
101 struct xfs_btree_block *block,
102 int level,
103 struct xfs_buf *bp)
104{
105 struct xfs_mount *mp = cur->bc_mp;
106 xfs_failaddr_t fa;
107
108 fa = __xfs_btree_check_lblock(cur, block, level, bp);
109 if (XFS_IS_CORRUPT(mp, fa != NULL) ||
110 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_LBLOCK)) {
111 if (bp)
112 trace_xfs_btree_corrupt(bp, _RET_IP_);
113 return -EFSCORRUPTED;
114 }
115 return 0;
116}
117
118/*
119 * Check a short btree block header. Return the address of the failing check,
120 * or NULL if everything is ok.
121 */
122xfs_failaddr_t
123__xfs_btree_check_sblock(
124 struct xfs_btree_cur *cur,
125 struct xfs_btree_block *block,
126 int level,
127 struct xfs_buf *bp)
128{
129 struct xfs_mount *mp = cur->bc_mp;
130 xfs_btnum_t btnum = cur->bc_btnum;
131 int crc = xfs_sb_version_hascrc(&mp->m_sb);
132
133 if (crc) {
134 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
135 return __this_address;
136 if (block->bb_u.s.bb_blkno !=
137 cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
138 return __this_address;
139 }
140
141 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
142 return __this_address;
143 if (be16_to_cpu(block->bb_level) != level)
144 return __this_address;
145 if (be16_to_cpu(block->bb_numrecs) >
146 cur->bc_ops->get_maxrecs(cur, level))
147 return __this_address;
148 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
149 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_leftsib),
150 level + 1))
151 return __this_address;
152 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
153 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_rightsib),
154 level + 1))
155 return __this_address;
156
157 return NULL;
158}
159
160/* Check a short btree block header. */
161STATIC int
162xfs_btree_check_sblock(
163 struct xfs_btree_cur *cur,
164 struct xfs_btree_block *block,
165 int level,
166 struct xfs_buf *bp)
167{
168 struct xfs_mount *mp = cur->bc_mp;
169 xfs_failaddr_t fa;
170
171 fa = __xfs_btree_check_sblock(cur, block, level, bp);
172 if (XFS_IS_CORRUPT(mp, fa != NULL) ||
173 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_SBLOCK)) {
174 if (bp)
175 trace_xfs_btree_corrupt(bp, _RET_IP_);
176 return -EFSCORRUPTED;
177 }
178 return 0;
179}
180
181/*
182 * Debug routine: check that block header is ok.
183 */
184int
185xfs_btree_check_block(
186 struct xfs_btree_cur *cur, /* btree cursor */
187 struct xfs_btree_block *block, /* generic btree block pointer */
188 int level, /* level of the btree block */
189 struct xfs_buf *bp) /* buffer containing block, if any */
190{
191 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
192 return xfs_btree_check_lblock(cur, block, level, bp);
193 else
194 return xfs_btree_check_sblock(cur, block, level, bp);
195}
196
197/* Check that this long pointer is valid and points within the fs. */
198bool
199xfs_btree_check_lptr(
200 struct xfs_btree_cur *cur,
201 xfs_fsblock_t fsbno,
202 int level)
203{
204 if (level <= 0)
205 return false;
206 return xfs_verify_fsbno(cur->bc_mp, fsbno);
207}
208
209/* Check that this short pointer is valid and points within the AG. */
210bool
211xfs_btree_check_sptr(
212 struct xfs_btree_cur *cur,
213 xfs_agblock_t agbno,
214 int level)
215{
216 if (level <= 0)
217 return false;
218 return xfs_verify_agbno(cur->bc_mp, cur->bc_ag.agno, agbno);
219}
220
221/*
222 * Check that a given (indexed) btree pointer at a certain level of a
223 * btree is valid and doesn't point past where it should.
224 */
225static int
226xfs_btree_check_ptr(
227 struct xfs_btree_cur *cur,
228 union xfs_btree_ptr *ptr,
229 int index,
230 int level)
231{
232 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
233 if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]),
234 level))
235 return 0;
236 xfs_err(cur->bc_mp,
237"Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.",
238 cur->bc_ino.ip->i_ino,
239 cur->bc_ino.whichfork, cur->bc_btnum,
240 level, index);
241 } else {
242 if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]),
243 level))
244 return 0;
245 xfs_err(cur->bc_mp,
246"AG %u: Corrupt btree %d pointer at level %d index %d.",
247 cur->bc_ag.agno, cur->bc_btnum,
248 level, index);
249 }
250
251 return -EFSCORRUPTED;
252}
253
254#ifdef DEBUG
255# define xfs_btree_debug_check_ptr xfs_btree_check_ptr
256#else
257# define xfs_btree_debug_check_ptr(...) (0)
258#endif
259
260/*
261 * Calculate CRC on the whole btree block and stuff it into the
262 * long-form btree header.
263 *
264 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
265 * it into the buffer so recovery knows what the last modification was that made
266 * it to disk.
267 */
268void
269xfs_btree_lblock_calc_crc(
270 struct xfs_buf *bp)
271{
272 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
273 struct xfs_buf_log_item *bip = bp->b_log_item;
274
275 if (!xfs_sb_version_hascrc(&bp->b_mount->m_sb))
276 return;
277 if (bip)
278 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
279 xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
280}
281
282bool
283xfs_btree_lblock_verify_crc(
284 struct xfs_buf *bp)
285{
286 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
287 struct xfs_mount *mp = bp->b_mount;
288
289 if (xfs_sb_version_hascrc(&mp->m_sb)) {
290 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
291 return false;
292 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
293 }
294
295 return true;
296}
297
298/*
299 * Calculate CRC on the whole btree block and stuff it into the
300 * short-form btree header.
301 *
302 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
303 * it into the buffer so recovery knows what the last modification was that made
304 * it to disk.
305 */
306void
307xfs_btree_sblock_calc_crc(
308 struct xfs_buf *bp)
309{
310 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
311 struct xfs_buf_log_item *bip = bp->b_log_item;
312
313 if (!xfs_sb_version_hascrc(&bp->b_mount->m_sb))
314 return;
315 if (bip)
316 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
317 xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
318}
319
320bool
321xfs_btree_sblock_verify_crc(
322 struct xfs_buf *bp)
323{
324 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
325 struct xfs_mount *mp = bp->b_mount;
326
327 if (xfs_sb_version_hascrc(&mp->m_sb)) {
328 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
329 return false;
330 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
331 }
332
333 return true;
334}
335
336static int
337xfs_btree_free_block(
338 struct xfs_btree_cur *cur,
339 struct xfs_buf *bp)
340{
341 int error;
342
343 error = cur->bc_ops->free_block(cur, bp);
344 if (!error) {
345 xfs_trans_binval(cur->bc_tp, bp);
346 XFS_BTREE_STATS_INC(cur, free);
347 }
348 return error;
349}
350
351/*
352 * Delete the btree cursor.
353 */
354void
355xfs_btree_del_cursor(
356 xfs_btree_cur_t *cur, /* btree cursor */
357 int error) /* del because of error */
358{
359 int i; /* btree level */
360
361 /*
362 * Clear the buffer pointers, and release the buffers.
363 * If we're doing this in the face of an error, we
364 * need to make sure to inspect all of the entries
365 * in the bc_bufs array for buffers to be unlocked.
366 * This is because some of the btree code works from
367 * level n down to 0, and if we get an error along
368 * the way we won't have initialized all the entries
369 * down to 0.
370 */
371 for (i = 0; i < cur->bc_nlevels; i++) {
372 if (cur->bc_bufs[i])
373 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
374 else if (!error)
375 break;
376 }
377 /*
378 * Can't free a bmap cursor without having dealt with the
379 * allocated indirect blocks' accounting.
380 */
381 ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP ||
382 cur->bc_ino.allocated == 0);
383 /*
384 * Free the cursor.
385 */
386 if (unlikely(cur->bc_flags & XFS_BTREE_STAGING))
387 kmem_free((void *)cur->bc_ops);
388 kmem_cache_free(xfs_btree_cur_zone, cur);
389}
390
391/*
392 * Duplicate the btree cursor.
393 * Allocate a new one, copy the record, re-get the buffers.
394 */
395int /* error */
396xfs_btree_dup_cursor(
397 xfs_btree_cur_t *cur, /* input cursor */
398 xfs_btree_cur_t **ncur) /* output cursor */
399{
400 xfs_buf_t *bp; /* btree block's buffer pointer */
401 int error; /* error return value */
402 int i; /* level number of btree block */
403 xfs_mount_t *mp; /* mount structure for filesystem */
404 xfs_btree_cur_t *new; /* new cursor value */
405 xfs_trans_t *tp; /* transaction pointer, can be NULL */
406
407 tp = cur->bc_tp;
408 mp = cur->bc_mp;
409
410 /*
411 * Allocate a new cursor like the old one.
412 */
413 new = cur->bc_ops->dup_cursor(cur);
414
415 /*
416 * Copy the record currently in the cursor.
417 */
418 new->bc_rec = cur->bc_rec;
419
420 /*
421 * For each level current, re-get the buffer and copy the ptr value.
422 */
423 for (i = 0; i < new->bc_nlevels; i++) {
424 new->bc_ptrs[i] = cur->bc_ptrs[i];
425 new->bc_ra[i] = cur->bc_ra[i];
426 bp = cur->bc_bufs[i];
427 if (bp) {
428 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
429 XFS_BUF_ADDR(bp), mp->m_bsize,
430 0, &bp,
431 cur->bc_ops->buf_ops);
432 if (error) {
433 xfs_btree_del_cursor(new, error);
434 *ncur = NULL;
435 return error;
436 }
437 }
438 new->bc_bufs[i] = bp;
439 }
440 *ncur = new;
441 return 0;
442}
443
444/*
445 * XFS btree block layout and addressing:
446 *
447 * There are two types of blocks in the btree: leaf and non-leaf blocks.
448 *
449 * The leaf record start with a header then followed by records containing
450 * the values. A non-leaf block also starts with the same header, and
451 * then first contains lookup keys followed by an equal number of pointers
452 * to the btree blocks at the previous level.
453 *
454 * +--------+-------+-------+-------+-------+-------+-------+
455 * Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
456 * +--------+-------+-------+-------+-------+-------+-------+
457 *
458 * +--------+-------+-------+-------+-------+-------+-------+
459 * Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
460 * +--------+-------+-------+-------+-------+-------+-------+
461 *
462 * The header is called struct xfs_btree_block for reasons better left unknown
463 * and comes in different versions for short (32bit) and long (64bit) block
464 * pointers. The record and key structures are defined by the btree instances
465 * and opaque to the btree core. The block pointers are simple disk endian
466 * integers, available in a short (32bit) and long (64bit) variant.
467 *
468 * The helpers below calculate the offset of a given record, key or pointer
469 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
470 * record, key or pointer (xfs_btree_*_addr). Note that all addressing
471 * inside the btree block is done using indices starting at one, not zero!
472 *
473 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
474 * overlapping intervals. In such a tree, records are still sorted lowest to
475 * highest and indexed by the smallest key value that refers to the record.
476 * However, nodes are different: each pointer has two associated keys -- one
477 * indexing the lowest key available in the block(s) below (the same behavior
478 * as the key in a regular btree) and another indexing the highest key
479 * available in the block(s) below. Because records are /not/ sorted by the
480 * highest key, all leaf block updates require us to compute the highest key
481 * that matches any record in the leaf and to recursively update the high keys
482 * in the nodes going further up in the tree, if necessary. Nodes look like
483 * this:
484 *
485 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
486 * Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
487 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
488 *
489 * To perform an interval query on an overlapped tree, perform the usual
490 * depth-first search and use the low and high keys to decide if we can skip
491 * that particular node. If a leaf node is reached, return the records that
492 * intersect the interval. Note that an interval query may return numerous
493 * entries. For a non-overlapped tree, simply search for the record associated
494 * with the lowest key and iterate forward until a non-matching record is
495 * found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
496 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
497 * more detail.
498 *
499 * Why do we care about overlapping intervals? Let's say you have a bunch of
500 * reverse mapping records on a reflink filesystem:
501 *
502 * 1: +- file A startblock B offset C length D -----------+
503 * 2: +- file E startblock F offset G length H --------------+
504 * 3: +- file I startblock F offset J length K --+
505 * 4: +- file L... --+
506 *
507 * Now say we want to map block (B+D) into file A at offset (C+D). Ideally,
508 * we'd simply increment the length of record 1. But how do we find the record
509 * that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return
510 * record 3 because the keys are ordered first by startblock. An interval
511 * query would return records 1 and 2 because they both overlap (B+D-1), and
512 * from that we can pick out record 1 as the appropriate left neighbor.
513 *
514 * In the non-overlapped case you can do a LE lookup and decrement the cursor
515 * because a record's interval must end before the next record.
516 */
517
518/*
519 * Return size of the btree block header for this btree instance.
520 */
521static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
522{
523 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
524 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
525 return XFS_BTREE_LBLOCK_CRC_LEN;
526 return XFS_BTREE_LBLOCK_LEN;
527 }
528 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
529 return XFS_BTREE_SBLOCK_CRC_LEN;
530 return XFS_BTREE_SBLOCK_LEN;
531}
532
533/*
534 * Return size of btree block pointers for this btree instance.
535 */
536static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
537{
538 return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
539 sizeof(__be64) : sizeof(__be32);
540}
541
542/*
543 * Calculate offset of the n-th record in a btree block.
544 */
545STATIC size_t
546xfs_btree_rec_offset(
547 struct xfs_btree_cur *cur,
548 int n)
549{
550 return xfs_btree_block_len(cur) +
551 (n - 1) * cur->bc_ops->rec_len;
552}
553
554/*
555 * Calculate offset of the n-th key in a btree block.
556 */
557STATIC size_t
558xfs_btree_key_offset(
559 struct xfs_btree_cur *cur,
560 int n)
561{
562 return xfs_btree_block_len(cur) +
563 (n - 1) * cur->bc_ops->key_len;
564}
565
566/*
567 * Calculate offset of the n-th high key in a btree block.
568 */
569STATIC size_t
570xfs_btree_high_key_offset(
571 struct xfs_btree_cur *cur,
572 int n)
573{
574 return xfs_btree_block_len(cur) +
575 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
576}
577
578/*
579 * Calculate offset of the n-th block pointer in a btree block.
580 */
581STATIC size_t
582xfs_btree_ptr_offset(
583 struct xfs_btree_cur *cur,
584 int n,
585 int level)
586{
587 return xfs_btree_block_len(cur) +
588 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
589 (n - 1) * xfs_btree_ptr_len(cur);
590}
591
592/*
593 * Return a pointer to the n-th record in the btree block.
594 */
595union xfs_btree_rec *
596xfs_btree_rec_addr(
597 struct xfs_btree_cur *cur,
598 int n,
599 struct xfs_btree_block *block)
600{
601 return (union xfs_btree_rec *)
602 ((char *)block + xfs_btree_rec_offset(cur, n));
603}
604
605/*
606 * Return a pointer to the n-th key in the btree block.
607 */
608union xfs_btree_key *
609xfs_btree_key_addr(
610 struct xfs_btree_cur *cur,
611 int n,
612 struct xfs_btree_block *block)
613{
614 return (union xfs_btree_key *)
615 ((char *)block + xfs_btree_key_offset(cur, n));
616}
617
618/*
619 * Return a pointer to the n-th high key in the btree block.
620 */
621union xfs_btree_key *
622xfs_btree_high_key_addr(
623 struct xfs_btree_cur *cur,
624 int n,
625 struct xfs_btree_block *block)
626{
627 return (union xfs_btree_key *)
628 ((char *)block + xfs_btree_high_key_offset(cur, n));
629}
630
631/*
632 * Return a pointer to the n-th block pointer in the btree block.
633 */
634union xfs_btree_ptr *
635xfs_btree_ptr_addr(
636 struct xfs_btree_cur *cur,
637 int n,
638 struct xfs_btree_block *block)
639{
640 int level = xfs_btree_get_level(block);
641
642 ASSERT(block->bb_level != 0);
643
644 return (union xfs_btree_ptr *)
645 ((char *)block + xfs_btree_ptr_offset(cur, n, level));
646}
647
648struct xfs_ifork *
649xfs_btree_ifork_ptr(
650 struct xfs_btree_cur *cur)
651{
652 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
653
654 if (cur->bc_flags & XFS_BTREE_STAGING)
655 return cur->bc_ino.ifake->if_fork;
656 return XFS_IFORK_PTR(cur->bc_ino.ip, cur->bc_ino.whichfork);
657}
658
659/*
660 * Get the root block which is stored in the inode.
661 *
662 * For now this btree implementation assumes the btree root is always
663 * stored in the if_broot field of an inode fork.
664 */
665STATIC struct xfs_btree_block *
666xfs_btree_get_iroot(
667 struct xfs_btree_cur *cur)
668{
669 struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur);
670
671 return (struct xfs_btree_block *)ifp->if_broot;
672}
673
674/*
675 * Retrieve the block pointer from the cursor at the given level.
676 * This may be an inode btree root or from a buffer.
677 */
678struct xfs_btree_block * /* generic btree block pointer */
679xfs_btree_get_block(
680 struct xfs_btree_cur *cur, /* btree cursor */
681 int level, /* level in btree */
682 struct xfs_buf **bpp) /* buffer containing the block */
683{
684 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
685 (level == cur->bc_nlevels - 1)) {
686 *bpp = NULL;
687 return xfs_btree_get_iroot(cur);
688 }
689
690 *bpp = cur->bc_bufs[level];
691 return XFS_BUF_TO_BLOCK(*bpp);
692}
693
694/*
695 * Change the cursor to point to the first record at the given level.
696 * Other levels are unaffected.
697 */
698STATIC int /* success=1, failure=0 */
699xfs_btree_firstrec(
700 xfs_btree_cur_t *cur, /* btree cursor */
701 int level) /* level to change */
702{
703 struct xfs_btree_block *block; /* generic btree block pointer */
704 xfs_buf_t *bp; /* buffer containing block */
705
706 /*
707 * Get the block pointer for this level.
708 */
709 block = xfs_btree_get_block(cur, level, &bp);
710 if (xfs_btree_check_block(cur, block, level, bp))
711 return 0;
712 /*
713 * It's empty, there is no such record.
714 */
715 if (!block->bb_numrecs)
716 return 0;
717 /*
718 * Set the ptr value to 1, that's the first record/key.
719 */
720 cur->bc_ptrs[level] = 1;
721 return 1;
722}
723
724/*
725 * Change the cursor to point to the last record in the current block
726 * at the given level. Other levels are unaffected.
727 */
728STATIC int /* success=1, failure=0 */
729xfs_btree_lastrec(
730 xfs_btree_cur_t *cur, /* btree cursor */
731 int level) /* level to change */
732{
733 struct xfs_btree_block *block; /* generic btree block pointer */
734 xfs_buf_t *bp; /* buffer containing block */
735
736 /*
737 * Get the block pointer for this level.
738 */
739 block = xfs_btree_get_block(cur, level, &bp);
740 if (xfs_btree_check_block(cur, block, level, bp))
741 return 0;
742 /*
743 * It's empty, there is no such record.
744 */
745 if (!block->bb_numrecs)
746 return 0;
747 /*
748 * Set the ptr value to numrecs, that's the last record/key.
749 */
750 cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
751 return 1;
752}
753
754/*
755 * Compute first and last byte offsets for the fields given.
756 * Interprets the offsets table, which contains struct field offsets.
757 */
758void
759xfs_btree_offsets(
760 int64_t fields, /* bitmask of fields */
761 const short *offsets, /* table of field offsets */
762 int nbits, /* number of bits to inspect */
763 int *first, /* output: first byte offset */
764 int *last) /* output: last byte offset */
765{
766 int i; /* current bit number */
767 int64_t imask; /* mask for current bit number */
768
769 ASSERT(fields != 0);
770 /*
771 * Find the lowest bit, so the first byte offset.
772 */
773 for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
774 if (imask & fields) {
775 *first = offsets[i];
776 break;
777 }
778 }
779 /*
780 * Find the highest bit, so the last byte offset.
781 */
782 for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
783 if (imask & fields) {
784 *last = offsets[i + 1] - 1;
785 break;
786 }
787 }
788}
789
790/*
791 * Get a buffer for the block, return it read in.
792 * Long-form addressing.
793 */
794int
795xfs_btree_read_bufl(
796 struct xfs_mount *mp, /* file system mount point */
797 struct xfs_trans *tp, /* transaction pointer */
798 xfs_fsblock_t fsbno, /* file system block number */
799 struct xfs_buf **bpp, /* buffer for fsbno */
800 int refval, /* ref count value for buffer */
801 const struct xfs_buf_ops *ops)
802{
803 struct xfs_buf *bp; /* return value */
804 xfs_daddr_t d; /* real disk block address */
805 int error;
806
807 if (!xfs_verify_fsbno(mp, fsbno))
808 return -EFSCORRUPTED;
809 d = XFS_FSB_TO_DADDR(mp, fsbno);
810 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
811 mp->m_bsize, 0, &bp, ops);
812 if (error)
813 return error;
814 if (bp)
815 xfs_buf_set_ref(bp, refval);
816 *bpp = bp;
817 return 0;
818}
819
820/*
821 * Read-ahead the block, don't wait for it, don't return a buffer.
822 * Long-form addressing.
823 */
824/* ARGSUSED */
825void
826xfs_btree_reada_bufl(
827 struct xfs_mount *mp, /* file system mount point */
828 xfs_fsblock_t fsbno, /* file system block number */
829 xfs_extlen_t count, /* count of filesystem blocks */
830 const struct xfs_buf_ops *ops)
831{
832 xfs_daddr_t d;
833
834 ASSERT(fsbno != NULLFSBLOCK);
835 d = XFS_FSB_TO_DADDR(mp, fsbno);
836 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
837}
838
839/*
840 * Read-ahead the block, don't wait for it, don't return a buffer.
841 * Short-form addressing.
842 */
843/* ARGSUSED */
844void
845xfs_btree_reada_bufs(
846 struct xfs_mount *mp, /* file system mount point */
847 xfs_agnumber_t agno, /* allocation group number */
848 xfs_agblock_t agbno, /* allocation group block number */
849 xfs_extlen_t count, /* count of filesystem blocks */
850 const struct xfs_buf_ops *ops)
851{
852 xfs_daddr_t d;
853
854 ASSERT(agno != NULLAGNUMBER);
855 ASSERT(agbno != NULLAGBLOCK);
856 d = XFS_AGB_TO_DADDR(mp, agno, agbno);
857 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
858}
859
860STATIC int
861xfs_btree_readahead_lblock(
862 struct xfs_btree_cur *cur,
863 int lr,
864 struct xfs_btree_block *block)
865{
866 int rval = 0;
867 xfs_fsblock_t left = be64_to_cpu(block->bb_u.l.bb_leftsib);
868 xfs_fsblock_t right = be64_to_cpu(block->bb_u.l.bb_rightsib);
869
870 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
871 xfs_btree_reada_bufl(cur->bc_mp, left, 1,
872 cur->bc_ops->buf_ops);
873 rval++;
874 }
875
876 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
877 xfs_btree_reada_bufl(cur->bc_mp, right, 1,
878 cur->bc_ops->buf_ops);
879 rval++;
880 }
881
882 return rval;
883}
884
885STATIC int
886xfs_btree_readahead_sblock(
887 struct xfs_btree_cur *cur,
888 int lr,
889 struct xfs_btree_block *block)
890{
891 int rval = 0;
892 xfs_agblock_t left = be32_to_cpu(block->bb_u.s.bb_leftsib);
893 xfs_agblock_t right = be32_to_cpu(block->bb_u.s.bb_rightsib);
894
895
896 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
897 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.agno,
898 left, 1, cur->bc_ops->buf_ops);
899 rval++;
900 }
901
902 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
903 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.agno,
904 right, 1, cur->bc_ops->buf_ops);
905 rval++;
906 }
907
908 return rval;
909}
910
911/*
912 * Read-ahead btree blocks, at the given level.
913 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
914 */
915STATIC int
916xfs_btree_readahead(
917 struct xfs_btree_cur *cur, /* btree cursor */
918 int lev, /* level in btree */
919 int lr) /* left/right bits */
920{
921 struct xfs_btree_block *block;
922
923 /*
924 * No readahead needed if we are at the root level and the
925 * btree root is stored in the inode.
926 */
927 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
928 (lev == cur->bc_nlevels - 1))
929 return 0;
930
931 if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
932 return 0;
933
934 cur->bc_ra[lev] |= lr;
935 block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
936
937 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
938 return xfs_btree_readahead_lblock(cur, lr, block);
939 return xfs_btree_readahead_sblock(cur, lr, block);
940}
941
942STATIC int
943xfs_btree_ptr_to_daddr(
944 struct xfs_btree_cur *cur,
945 union xfs_btree_ptr *ptr,
946 xfs_daddr_t *daddr)
947{
948 xfs_fsblock_t fsbno;
949 xfs_agblock_t agbno;
950 int error;
951
952 error = xfs_btree_check_ptr(cur, ptr, 0, 1);
953 if (error)
954 return error;
955
956 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
957 fsbno = be64_to_cpu(ptr->l);
958 *daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno);
959 } else {
960 agbno = be32_to_cpu(ptr->s);
961 *daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_ag.agno,
962 agbno);
963 }
964
965 return 0;
966}
967
968/*
969 * Readahead @count btree blocks at the given @ptr location.
970 *
971 * We don't need to care about long or short form btrees here as we have a
972 * method of converting the ptr directly to a daddr available to us.
973 */
974STATIC void
975xfs_btree_readahead_ptr(
976 struct xfs_btree_cur *cur,
977 union xfs_btree_ptr *ptr,
978 xfs_extlen_t count)
979{
980 xfs_daddr_t daddr;
981
982 if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
983 return;
984 xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr,
985 cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
986}
987
988/*
989 * Set the buffer for level "lev" in the cursor to bp, releasing
990 * any previous buffer.
991 */
992STATIC void
993xfs_btree_setbuf(
994 xfs_btree_cur_t *cur, /* btree cursor */
995 int lev, /* level in btree */
996 xfs_buf_t *bp) /* new buffer to set */
997{
998 struct xfs_btree_block *b; /* btree block */
999
1000 if (cur->bc_bufs[lev])
1001 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
1002 cur->bc_bufs[lev] = bp;
1003 cur->bc_ra[lev] = 0;
1004
1005 b = XFS_BUF_TO_BLOCK(bp);
1006 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1007 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1008 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1009 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1010 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1011 } else {
1012 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1013 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1014 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1015 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1016 }
1017}
1018
1019bool
1020xfs_btree_ptr_is_null(
1021 struct xfs_btree_cur *cur,
1022 union xfs_btree_ptr *ptr)
1023{
1024 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1025 return ptr->l == cpu_to_be64(NULLFSBLOCK);
1026 else
1027 return ptr->s == cpu_to_be32(NULLAGBLOCK);
1028}
1029
1030void
1031xfs_btree_set_ptr_null(
1032 struct xfs_btree_cur *cur,
1033 union xfs_btree_ptr *ptr)
1034{
1035 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1036 ptr->l = cpu_to_be64(NULLFSBLOCK);
1037 else
1038 ptr->s = cpu_to_be32(NULLAGBLOCK);
1039}
1040
1041/*
1042 * Get/set/init sibling pointers
1043 */
1044void
1045xfs_btree_get_sibling(
1046 struct xfs_btree_cur *cur,
1047 struct xfs_btree_block *block,
1048 union xfs_btree_ptr *ptr,
1049 int lr)
1050{
1051 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1052
1053 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1054 if (lr == XFS_BB_RIGHTSIB)
1055 ptr->l = block->bb_u.l.bb_rightsib;
1056 else
1057 ptr->l = block->bb_u.l.bb_leftsib;
1058 } else {
1059 if (lr == XFS_BB_RIGHTSIB)
1060 ptr->s = block->bb_u.s.bb_rightsib;
1061 else
1062 ptr->s = block->bb_u.s.bb_leftsib;
1063 }
1064}
1065
1066void
1067xfs_btree_set_sibling(
1068 struct xfs_btree_cur *cur,
1069 struct xfs_btree_block *block,
1070 union xfs_btree_ptr *ptr,
1071 int lr)
1072{
1073 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1074
1075 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1076 if (lr == XFS_BB_RIGHTSIB)
1077 block->bb_u.l.bb_rightsib = ptr->l;
1078 else
1079 block->bb_u.l.bb_leftsib = ptr->l;
1080 } else {
1081 if (lr == XFS_BB_RIGHTSIB)
1082 block->bb_u.s.bb_rightsib = ptr->s;
1083 else
1084 block->bb_u.s.bb_leftsib = ptr->s;
1085 }
1086}
1087
1088void
1089xfs_btree_init_block_int(
1090 struct xfs_mount *mp,
1091 struct xfs_btree_block *buf,
1092 xfs_daddr_t blkno,
1093 xfs_btnum_t btnum,
1094 __u16 level,
1095 __u16 numrecs,
1096 __u64 owner,
1097 unsigned int flags)
1098{
1099 int crc = xfs_sb_version_hascrc(&mp->m_sb);
1100 __u32 magic = xfs_btree_magic(crc, btnum);
1101
1102 buf->bb_magic = cpu_to_be32(magic);
1103 buf->bb_level = cpu_to_be16(level);
1104 buf->bb_numrecs = cpu_to_be16(numrecs);
1105
1106 if (flags & XFS_BTREE_LONG_PTRS) {
1107 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1108 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1109 if (crc) {
1110 buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1111 buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1112 uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1113 buf->bb_u.l.bb_pad = 0;
1114 buf->bb_u.l.bb_lsn = 0;
1115 }
1116 } else {
1117 /* owner is a 32 bit value on short blocks */
1118 __u32 __owner = (__u32)owner;
1119
1120 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1121 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1122 if (crc) {
1123 buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1124 buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1125 uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1126 buf->bb_u.s.bb_lsn = 0;
1127 }
1128 }
1129}
1130
1131void
1132xfs_btree_init_block(
1133 struct xfs_mount *mp,
1134 struct xfs_buf *bp,
1135 xfs_btnum_t btnum,
1136 __u16 level,
1137 __u16 numrecs,
1138 __u64 owner)
1139{
1140 xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1141 btnum, level, numrecs, owner, 0);
1142}
1143
1144void
1145xfs_btree_init_block_cur(
1146 struct xfs_btree_cur *cur,
1147 struct xfs_buf *bp,
1148 int level,
1149 int numrecs)
1150{
1151 __u64 owner;
1152
1153 /*
1154 * we can pull the owner from the cursor right now as the different
1155 * owners align directly with the pointer size of the btree. This may
1156 * change in future, but is safe for current users of the generic btree
1157 * code.
1158 */
1159 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1160 owner = cur->bc_ino.ip->i_ino;
1161 else
1162 owner = cur->bc_ag.agno;
1163
1164 xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1165 cur->bc_btnum, level, numrecs,
1166 owner, cur->bc_flags);
1167}
1168
1169/*
1170 * Return true if ptr is the last record in the btree and
1171 * we need to track updates to this record. The decision
1172 * will be further refined in the update_lastrec method.
1173 */
1174STATIC int
1175xfs_btree_is_lastrec(
1176 struct xfs_btree_cur *cur,
1177 struct xfs_btree_block *block,
1178 int level)
1179{
1180 union xfs_btree_ptr ptr;
1181
1182 if (level > 0)
1183 return 0;
1184 if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1185 return 0;
1186
1187 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1188 if (!xfs_btree_ptr_is_null(cur, &ptr))
1189 return 0;
1190 return 1;
1191}
1192
1193STATIC void
1194xfs_btree_buf_to_ptr(
1195 struct xfs_btree_cur *cur,
1196 struct xfs_buf *bp,
1197 union xfs_btree_ptr *ptr)
1198{
1199 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1200 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1201 XFS_BUF_ADDR(bp)));
1202 else {
1203 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1204 XFS_BUF_ADDR(bp)));
1205 }
1206}
1207
1208STATIC void
1209xfs_btree_set_refs(
1210 struct xfs_btree_cur *cur,
1211 struct xfs_buf *bp)
1212{
1213 switch (cur->bc_btnum) {
1214 case XFS_BTNUM_BNO:
1215 case XFS_BTNUM_CNT:
1216 xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1217 break;
1218 case XFS_BTNUM_INO:
1219 case XFS_BTNUM_FINO:
1220 xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1221 break;
1222 case XFS_BTNUM_BMAP:
1223 xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1224 break;
1225 case XFS_BTNUM_RMAP:
1226 xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1227 break;
1228 case XFS_BTNUM_REFC:
1229 xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1230 break;
1231 default:
1232 ASSERT(0);
1233 }
1234}
1235
1236int
1237xfs_btree_get_buf_block(
1238 struct xfs_btree_cur *cur,
1239 union xfs_btree_ptr *ptr,
1240 struct xfs_btree_block **block,
1241 struct xfs_buf **bpp)
1242{
1243 struct xfs_mount *mp = cur->bc_mp;
1244 xfs_daddr_t d;
1245 int error;
1246
1247 error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1248 if (error)
1249 return error;
1250 error = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d, mp->m_bsize,
1251 0, bpp);
1252 if (error)
1253 return error;
1254
1255 (*bpp)->b_ops = cur->bc_ops->buf_ops;
1256 *block = XFS_BUF_TO_BLOCK(*bpp);
1257 return 0;
1258}
1259
1260/*
1261 * Read in the buffer at the given ptr and return the buffer and
1262 * the block pointer within the buffer.
1263 */
1264STATIC int
1265xfs_btree_read_buf_block(
1266 struct xfs_btree_cur *cur,
1267 union xfs_btree_ptr *ptr,
1268 int flags,
1269 struct xfs_btree_block **block,
1270 struct xfs_buf **bpp)
1271{
1272 struct xfs_mount *mp = cur->bc_mp;
1273 xfs_daddr_t d;
1274 int error;
1275
1276 /* need to sort out how callers deal with failures first */
1277 ASSERT(!(flags & XBF_TRYLOCK));
1278
1279 error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1280 if (error)
1281 return error;
1282 error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1283 mp->m_bsize, flags, bpp,
1284 cur->bc_ops->buf_ops);
1285 if (error)
1286 return error;
1287
1288 xfs_btree_set_refs(cur, *bpp);
1289 *block = XFS_BUF_TO_BLOCK(*bpp);
1290 return 0;
1291}
1292
1293/*
1294 * Copy keys from one btree block to another.
1295 */
1296void
1297xfs_btree_copy_keys(
1298 struct xfs_btree_cur *cur,
1299 union xfs_btree_key *dst_key,
1300 union xfs_btree_key *src_key,
1301 int numkeys)
1302{
1303 ASSERT(numkeys >= 0);
1304 memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1305}
1306
1307/*
1308 * Copy records from one btree block to another.
1309 */
1310STATIC void
1311xfs_btree_copy_recs(
1312 struct xfs_btree_cur *cur,
1313 union xfs_btree_rec *dst_rec,
1314 union xfs_btree_rec *src_rec,
1315 int numrecs)
1316{
1317 ASSERT(numrecs >= 0);
1318 memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1319}
1320
1321/*
1322 * Copy block pointers from one btree block to another.
1323 */
1324void
1325xfs_btree_copy_ptrs(
1326 struct xfs_btree_cur *cur,
1327 union xfs_btree_ptr *dst_ptr,
1328 const union xfs_btree_ptr *src_ptr,
1329 int numptrs)
1330{
1331 ASSERT(numptrs >= 0);
1332 memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1333}
1334
1335/*
1336 * Shift keys one index left/right inside a single btree block.
1337 */
1338STATIC void
1339xfs_btree_shift_keys(
1340 struct xfs_btree_cur *cur,
1341 union xfs_btree_key *key,
1342 int dir,
1343 int numkeys)
1344{
1345 char *dst_key;
1346
1347 ASSERT(numkeys >= 0);
1348 ASSERT(dir == 1 || dir == -1);
1349
1350 dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1351 memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1352}
1353
1354/*
1355 * Shift records one index left/right inside a single btree block.
1356 */
1357STATIC void
1358xfs_btree_shift_recs(
1359 struct xfs_btree_cur *cur,
1360 union xfs_btree_rec *rec,
1361 int dir,
1362 int numrecs)
1363{
1364 char *dst_rec;
1365
1366 ASSERT(numrecs >= 0);
1367 ASSERT(dir == 1 || dir == -1);
1368
1369 dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1370 memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1371}
1372
1373/*
1374 * Shift block pointers one index left/right inside a single btree block.
1375 */
1376STATIC void
1377xfs_btree_shift_ptrs(
1378 struct xfs_btree_cur *cur,
1379 union xfs_btree_ptr *ptr,
1380 int dir,
1381 int numptrs)
1382{
1383 char *dst_ptr;
1384
1385 ASSERT(numptrs >= 0);
1386 ASSERT(dir == 1 || dir == -1);
1387
1388 dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1389 memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1390}
1391
1392/*
1393 * Log key values from the btree block.
1394 */
1395STATIC void
1396xfs_btree_log_keys(
1397 struct xfs_btree_cur *cur,
1398 struct xfs_buf *bp,
1399 int first,
1400 int last)
1401{
1402
1403 if (bp) {
1404 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1405 xfs_trans_log_buf(cur->bc_tp, bp,
1406 xfs_btree_key_offset(cur, first),
1407 xfs_btree_key_offset(cur, last + 1) - 1);
1408 } else {
1409 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1410 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1411 }
1412}
1413
1414/*
1415 * Log record values from the btree block.
1416 */
1417void
1418xfs_btree_log_recs(
1419 struct xfs_btree_cur *cur,
1420 struct xfs_buf *bp,
1421 int first,
1422 int last)
1423{
1424
1425 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1426 xfs_trans_log_buf(cur->bc_tp, bp,
1427 xfs_btree_rec_offset(cur, first),
1428 xfs_btree_rec_offset(cur, last + 1) - 1);
1429
1430}
1431
1432/*
1433 * Log block pointer fields from a btree block (nonleaf).
1434 */
1435STATIC void
1436xfs_btree_log_ptrs(
1437 struct xfs_btree_cur *cur, /* btree cursor */
1438 struct xfs_buf *bp, /* buffer containing btree block */
1439 int first, /* index of first pointer to log */
1440 int last) /* index of last pointer to log */
1441{
1442
1443 if (bp) {
1444 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
1445 int level = xfs_btree_get_level(block);
1446
1447 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1448 xfs_trans_log_buf(cur->bc_tp, bp,
1449 xfs_btree_ptr_offset(cur, first, level),
1450 xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1451 } else {
1452 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1453 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1454 }
1455
1456}
1457
1458/*
1459 * Log fields from a btree block header.
1460 */
1461void
1462xfs_btree_log_block(
1463 struct xfs_btree_cur *cur, /* btree cursor */
1464 struct xfs_buf *bp, /* buffer containing btree block */
1465 int fields) /* mask of fields: XFS_BB_... */
1466{
1467 int first; /* first byte offset logged */
1468 int last; /* last byte offset logged */
1469 static const short soffsets[] = { /* table of offsets (short) */
1470 offsetof(struct xfs_btree_block, bb_magic),
1471 offsetof(struct xfs_btree_block, bb_level),
1472 offsetof(struct xfs_btree_block, bb_numrecs),
1473 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1474 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1475 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1476 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1477 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1478 offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1479 offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1480 XFS_BTREE_SBLOCK_CRC_LEN
1481 };
1482 static const short loffsets[] = { /* table of offsets (long) */
1483 offsetof(struct xfs_btree_block, bb_magic),
1484 offsetof(struct xfs_btree_block, bb_level),
1485 offsetof(struct xfs_btree_block, bb_numrecs),
1486 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1487 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1488 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1489 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1490 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1491 offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1492 offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1493 offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1494 XFS_BTREE_LBLOCK_CRC_LEN
1495 };
1496
1497 if (bp) {
1498 int nbits;
1499
1500 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1501 /*
1502 * We don't log the CRC when updating a btree
1503 * block but instead recreate it during log
1504 * recovery. As the log buffers have checksums
1505 * of their own this is safe and avoids logging a crc
1506 * update in a lot of places.
1507 */
1508 if (fields == XFS_BB_ALL_BITS)
1509 fields = XFS_BB_ALL_BITS_CRC;
1510 nbits = XFS_BB_NUM_BITS_CRC;
1511 } else {
1512 nbits = XFS_BB_NUM_BITS;
1513 }
1514 xfs_btree_offsets(fields,
1515 (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1516 loffsets : soffsets,
1517 nbits, &first, &last);
1518 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1519 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1520 } else {
1521 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1522 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1523 }
1524}
1525
1526/*
1527 * Increment cursor by one record at the level.
1528 * For nonzero levels the leaf-ward information is untouched.
1529 */
1530int /* error */
1531xfs_btree_increment(
1532 struct xfs_btree_cur *cur,
1533 int level,
1534 int *stat) /* success/failure */
1535{
1536 struct xfs_btree_block *block;
1537 union xfs_btree_ptr ptr;
1538 struct xfs_buf *bp;
1539 int error; /* error return value */
1540 int lev;
1541
1542 ASSERT(level < cur->bc_nlevels);
1543
1544 /* Read-ahead to the right at this level. */
1545 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1546
1547 /* Get a pointer to the btree block. */
1548 block = xfs_btree_get_block(cur, level, &bp);
1549
1550#ifdef DEBUG
1551 error = xfs_btree_check_block(cur, block, level, bp);
1552 if (error)
1553 goto error0;
1554#endif
1555
1556 /* We're done if we remain in the block after the increment. */
1557 if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1558 goto out1;
1559
1560 /* Fail if we just went off the right edge of the tree. */
1561 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1562 if (xfs_btree_ptr_is_null(cur, &ptr))
1563 goto out0;
1564
1565 XFS_BTREE_STATS_INC(cur, increment);
1566
1567 /*
1568 * March up the tree incrementing pointers.
1569 * Stop when we don't go off the right edge of a block.
1570 */
1571 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1572 block = xfs_btree_get_block(cur, lev, &bp);
1573
1574#ifdef DEBUG
1575 error = xfs_btree_check_block(cur, block, lev, bp);
1576 if (error)
1577 goto error0;
1578#endif
1579
1580 if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1581 break;
1582
1583 /* Read-ahead the right block for the next loop. */
1584 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1585 }
1586
1587 /*
1588 * If we went off the root then we are either seriously
1589 * confused or have the tree root in an inode.
1590 */
1591 if (lev == cur->bc_nlevels) {
1592 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1593 goto out0;
1594 ASSERT(0);
1595 error = -EFSCORRUPTED;
1596 goto error0;
1597 }
1598 ASSERT(lev < cur->bc_nlevels);
1599
1600 /*
1601 * Now walk back down the tree, fixing up the cursor's buffer
1602 * pointers and key numbers.
1603 */
1604 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1605 union xfs_btree_ptr *ptrp;
1606
1607 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1608 --lev;
1609 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1610 if (error)
1611 goto error0;
1612
1613 xfs_btree_setbuf(cur, lev, bp);
1614 cur->bc_ptrs[lev] = 1;
1615 }
1616out1:
1617 *stat = 1;
1618 return 0;
1619
1620out0:
1621 *stat = 0;
1622 return 0;
1623
1624error0:
1625 return error;
1626}
1627
1628/*
1629 * Decrement cursor by one record at the level.
1630 * For nonzero levels the leaf-ward information is untouched.
1631 */
1632int /* error */
1633xfs_btree_decrement(
1634 struct xfs_btree_cur *cur,
1635 int level,
1636 int *stat) /* success/failure */
1637{
1638 struct xfs_btree_block *block;
1639 xfs_buf_t *bp;
1640 int error; /* error return value */
1641 int lev;
1642 union xfs_btree_ptr ptr;
1643
1644 ASSERT(level < cur->bc_nlevels);
1645
1646 /* Read-ahead to the left at this level. */
1647 xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1648
1649 /* We're done if we remain in the block after the decrement. */
1650 if (--cur->bc_ptrs[level] > 0)
1651 goto out1;
1652
1653 /* Get a pointer to the btree block. */
1654 block = xfs_btree_get_block(cur, level, &bp);
1655
1656#ifdef DEBUG
1657 error = xfs_btree_check_block(cur, block, level, bp);
1658 if (error)
1659 goto error0;
1660#endif
1661
1662 /* Fail if we just went off the left edge of the tree. */
1663 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1664 if (xfs_btree_ptr_is_null(cur, &ptr))
1665 goto out0;
1666
1667 XFS_BTREE_STATS_INC(cur, decrement);
1668
1669 /*
1670 * March up the tree decrementing pointers.
1671 * Stop when we don't go off the left edge of a block.
1672 */
1673 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1674 if (--cur->bc_ptrs[lev] > 0)
1675 break;
1676 /* Read-ahead the left block for the next loop. */
1677 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1678 }
1679
1680 /*
1681 * If we went off the root then we are seriously confused.
1682 * or the root of the tree is in an inode.
1683 */
1684 if (lev == cur->bc_nlevels) {
1685 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1686 goto out0;
1687 ASSERT(0);
1688 error = -EFSCORRUPTED;
1689 goto error0;
1690 }
1691 ASSERT(lev < cur->bc_nlevels);
1692
1693 /*
1694 * Now walk back down the tree, fixing up the cursor's buffer
1695 * pointers and key numbers.
1696 */
1697 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1698 union xfs_btree_ptr *ptrp;
1699
1700 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1701 --lev;
1702 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1703 if (error)
1704 goto error0;
1705 xfs_btree_setbuf(cur, lev, bp);
1706 cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1707 }
1708out1:
1709 *stat = 1;
1710 return 0;
1711
1712out0:
1713 *stat = 0;
1714 return 0;
1715
1716error0:
1717 return error;
1718}
1719
1720int
1721xfs_btree_lookup_get_block(
1722 struct xfs_btree_cur *cur, /* btree cursor */
1723 int level, /* level in the btree */
1724 union xfs_btree_ptr *pp, /* ptr to btree block */
1725 struct xfs_btree_block **blkp) /* return btree block */
1726{
1727 struct xfs_buf *bp; /* buffer pointer for btree block */
1728 xfs_daddr_t daddr;
1729 int error = 0;
1730
1731 /* special case the root block if in an inode */
1732 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1733 (level == cur->bc_nlevels - 1)) {
1734 *blkp = xfs_btree_get_iroot(cur);
1735 return 0;
1736 }
1737
1738 /*
1739 * If the old buffer at this level for the disk address we are
1740 * looking for re-use it.
1741 *
1742 * Otherwise throw it away and get a new one.
1743 */
1744 bp = cur->bc_bufs[level];
1745 error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1746 if (error)
1747 return error;
1748 if (bp && XFS_BUF_ADDR(bp) == daddr) {
1749 *blkp = XFS_BUF_TO_BLOCK(bp);
1750 return 0;
1751 }
1752
1753 error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1754 if (error)
1755 return error;
1756
1757 /* Check the inode owner since the verifiers don't. */
1758 if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) &&
1759 !(cur->bc_ino.flags & XFS_BTCUR_BMBT_INVALID_OWNER) &&
1760 (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1761 be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1762 cur->bc_ino.ip->i_ino)
1763 goto out_bad;
1764
1765 /* Did we get the level we were looking for? */
1766 if (be16_to_cpu((*blkp)->bb_level) != level)
1767 goto out_bad;
1768
1769 /* Check that internal nodes have at least one record. */
1770 if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1771 goto out_bad;
1772
1773 xfs_btree_setbuf(cur, level, bp);
1774 return 0;
1775
1776out_bad:
1777 *blkp = NULL;
1778 xfs_buf_mark_corrupt(bp);
1779 xfs_trans_brelse(cur->bc_tp, bp);
1780 return -EFSCORRUPTED;
1781}
1782
1783/*
1784 * Get current search key. For level 0 we don't actually have a key
1785 * structure so we make one up from the record. For all other levels
1786 * we just return the right key.
1787 */
1788STATIC union xfs_btree_key *
1789xfs_lookup_get_search_key(
1790 struct xfs_btree_cur *cur,
1791 int level,
1792 int keyno,
1793 struct xfs_btree_block *block,
1794 union xfs_btree_key *kp)
1795{
1796 if (level == 0) {
1797 cur->bc_ops->init_key_from_rec(kp,
1798 xfs_btree_rec_addr(cur, keyno, block));
1799 return kp;
1800 }
1801
1802 return xfs_btree_key_addr(cur, keyno, block);
1803}
1804
1805/*
1806 * Lookup the record. The cursor is made to point to it, based on dir.
1807 * stat is set to 0 if can't find any such record, 1 for success.
1808 */
1809int /* error */
1810xfs_btree_lookup(
1811 struct xfs_btree_cur *cur, /* btree cursor */
1812 xfs_lookup_t dir, /* <=, ==, or >= */
1813 int *stat) /* success/failure */
1814{
1815 struct xfs_btree_block *block; /* current btree block */
1816 int64_t diff; /* difference for the current key */
1817 int error; /* error return value */
1818 int keyno; /* current key number */
1819 int level; /* level in the btree */
1820 union xfs_btree_ptr *pp; /* ptr to btree block */
1821 union xfs_btree_ptr ptr; /* ptr to btree block */
1822
1823 XFS_BTREE_STATS_INC(cur, lookup);
1824
1825 /* No such thing as a zero-level tree. */
1826 if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0))
1827 return -EFSCORRUPTED;
1828
1829 block = NULL;
1830 keyno = 0;
1831
1832 /* initialise start pointer from cursor */
1833 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1834 pp = &ptr;
1835
1836 /*
1837 * Iterate over each level in the btree, starting at the root.
1838 * For each level above the leaves, find the key we need, based
1839 * on the lookup record, then follow the corresponding block
1840 * pointer down to the next level.
1841 */
1842 for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1843 /* Get the block we need to do the lookup on. */
1844 error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1845 if (error)
1846 goto error0;
1847
1848 if (diff == 0) {
1849 /*
1850 * If we already had a key match at a higher level, we
1851 * know we need to use the first entry in this block.
1852 */
1853 keyno = 1;
1854 } else {
1855 /* Otherwise search this block. Do a binary search. */
1856
1857 int high; /* high entry number */
1858 int low; /* low entry number */
1859
1860 /* Set low and high entry numbers, 1-based. */
1861 low = 1;
1862 high = xfs_btree_get_numrecs(block);
1863 if (!high) {
1864 /* Block is empty, must be an empty leaf. */
1865 if (level != 0 || cur->bc_nlevels != 1) {
1866 XFS_CORRUPTION_ERROR(__func__,
1867 XFS_ERRLEVEL_LOW,
1868 cur->bc_mp, block,
1869 sizeof(*block));
1870 return -EFSCORRUPTED;
1871 }
1872
1873 cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1874 *stat = 0;
1875 return 0;
1876 }
1877
1878 /* Binary search the block. */
1879 while (low <= high) {
1880 union xfs_btree_key key;
1881 union xfs_btree_key *kp;
1882
1883 XFS_BTREE_STATS_INC(cur, compare);
1884
1885 /* keyno is average of low and high. */
1886 keyno = (low + high) >> 1;
1887
1888 /* Get current search key */
1889 kp = xfs_lookup_get_search_key(cur, level,
1890 keyno, block, &key);
1891
1892 /*
1893 * Compute difference to get next direction:
1894 * - less than, move right
1895 * - greater than, move left
1896 * - equal, we're done
1897 */
1898 diff = cur->bc_ops->key_diff(cur, kp);
1899 if (diff < 0)
1900 low = keyno + 1;
1901 else if (diff > 0)
1902 high = keyno - 1;
1903 else
1904 break;
1905 }
1906 }
1907
1908 /*
1909 * If there are more levels, set up for the next level
1910 * by getting the block number and filling in the cursor.
1911 */
1912 if (level > 0) {
1913 /*
1914 * If we moved left, need the previous key number,
1915 * unless there isn't one.
1916 */
1917 if (diff > 0 && --keyno < 1)
1918 keyno = 1;
1919 pp = xfs_btree_ptr_addr(cur, keyno, block);
1920
1921 error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
1922 if (error)
1923 goto error0;
1924
1925 cur->bc_ptrs[level] = keyno;
1926 }
1927 }
1928
1929 /* Done with the search. See if we need to adjust the results. */
1930 if (dir != XFS_LOOKUP_LE && diff < 0) {
1931 keyno++;
1932 /*
1933 * If ge search and we went off the end of the block, but it's
1934 * not the last block, we're in the wrong block.
1935 */
1936 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1937 if (dir == XFS_LOOKUP_GE &&
1938 keyno > xfs_btree_get_numrecs(block) &&
1939 !xfs_btree_ptr_is_null(cur, &ptr)) {
1940 int i;
1941
1942 cur->bc_ptrs[0] = keyno;
1943 error = xfs_btree_increment(cur, 0, &i);
1944 if (error)
1945 goto error0;
1946 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1947 return -EFSCORRUPTED;
1948 *stat = 1;
1949 return 0;
1950 }
1951 } else if (dir == XFS_LOOKUP_LE && diff > 0)
1952 keyno--;
1953 cur->bc_ptrs[0] = keyno;
1954
1955 /* Return if we succeeded or not. */
1956 if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
1957 *stat = 0;
1958 else if (dir != XFS_LOOKUP_EQ || diff == 0)
1959 *stat = 1;
1960 else
1961 *stat = 0;
1962 return 0;
1963
1964error0:
1965 return error;
1966}
1967
1968/* Find the high key storage area from a regular key. */
1969union xfs_btree_key *
1970xfs_btree_high_key_from_key(
1971 struct xfs_btree_cur *cur,
1972 union xfs_btree_key *key)
1973{
1974 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
1975 return (union xfs_btree_key *)((char *)key +
1976 (cur->bc_ops->key_len / 2));
1977}
1978
1979/* Determine the low (and high if overlapped) keys of a leaf block */
1980STATIC void
1981xfs_btree_get_leaf_keys(
1982 struct xfs_btree_cur *cur,
1983 struct xfs_btree_block *block,
1984 union xfs_btree_key *key)
1985{
1986 union xfs_btree_key max_hkey;
1987 union xfs_btree_key hkey;
1988 union xfs_btree_rec *rec;
1989 union xfs_btree_key *high;
1990 int n;
1991
1992 rec = xfs_btree_rec_addr(cur, 1, block);
1993 cur->bc_ops->init_key_from_rec(key, rec);
1994
1995 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
1996
1997 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
1998 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
1999 rec = xfs_btree_rec_addr(cur, n, block);
2000 cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2001 if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
2002 > 0)
2003 max_hkey = hkey;
2004 }
2005
2006 high = xfs_btree_high_key_from_key(cur, key);
2007 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2008 }
2009}
2010
2011/* Determine the low (and high if overlapped) keys of a node block */
2012STATIC void
2013xfs_btree_get_node_keys(
2014 struct xfs_btree_cur *cur,
2015 struct xfs_btree_block *block,
2016 union xfs_btree_key *key)
2017{
2018 union xfs_btree_key *hkey;
2019 union xfs_btree_key *max_hkey;
2020 union xfs_btree_key *high;
2021 int n;
2022
2023 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2024 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2025 cur->bc_ops->key_len / 2);
2026
2027 max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2028 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2029 hkey = xfs_btree_high_key_addr(cur, n, block);
2030 if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2031 max_hkey = hkey;
2032 }
2033
2034 high = xfs_btree_high_key_from_key(cur, key);
2035 memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2036 } else {
2037 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2038 cur->bc_ops->key_len);
2039 }
2040}
2041
2042/* Derive the keys for any btree block. */
2043void
2044xfs_btree_get_keys(
2045 struct xfs_btree_cur *cur,
2046 struct xfs_btree_block *block,
2047 union xfs_btree_key *key)
2048{
2049 if (be16_to_cpu(block->bb_level) == 0)
2050 xfs_btree_get_leaf_keys(cur, block, key);
2051 else
2052 xfs_btree_get_node_keys(cur, block, key);
2053}
2054
2055/*
2056 * Decide if we need to update the parent keys of a btree block. For
2057 * a standard btree this is only necessary if we're updating the first
2058 * record/key. For an overlapping btree, we must always update the
2059 * keys because the highest key can be in any of the records or keys
2060 * in the block.
2061 */
2062static inline bool
2063xfs_btree_needs_key_update(
2064 struct xfs_btree_cur *cur,
2065 int ptr)
2066{
2067 return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2068}
2069
2070/*
2071 * Update the low and high parent keys of the given level, progressing
2072 * towards the root. If force_all is false, stop if the keys for a given
2073 * level do not need updating.
2074 */
2075STATIC int
2076__xfs_btree_updkeys(
2077 struct xfs_btree_cur *cur,
2078 int level,
2079 struct xfs_btree_block *block,
2080 struct xfs_buf *bp0,
2081 bool force_all)
2082{
2083 union xfs_btree_key key; /* keys from current level */
2084 union xfs_btree_key *lkey; /* keys from the next level up */
2085 union xfs_btree_key *hkey;
2086 union xfs_btree_key *nlkey; /* keys from the next level up */
2087 union xfs_btree_key *nhkey;
2088 struct xfs_buf *bp;
2089 int ptr;
2090
2091 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2092
2093 /* Exit if there aren't any parent levels to update. */
2094 if (level + 1 >= cur->bc_nlevels)
2095 return 0;
2096
2097 trace_xfs_btree_updkeys(cur, level, bp0);
2098
2099 lkey = &key;
2100 hkey = xfs_btree_high_key_from_key(cur, lkey);
2101 xfs_btree_get_keys(cur, block, lkey);
2102 for (level++; level < cur->bc_nlevels; level++) {
2103#ifdef DEBUG
2104 int error;
2105#endif
2106 block = xfs_btree_get_block(cur, level, &bp);
2107 trace_xfs_btree_updkeys(cur, level, bp);
2108#ifdef DEBUG
2109 error = xfs_btree_check_block(cur, block, level, bp);
2110 if (error)
2111 return error;
2112#endif
2113 ptr = cur->bc_ptrs[level];
2114 nlkey = xfs_btree_key_addr(cur, ptr, block);
2115 nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2116 if (!force_all &&
2117 !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2118 cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2119 break;
2120 xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2121 xfs_btree_log_keys(cur, bp, ptr, ptr);
2122 if (level + 1 >= cur->bc_nlevels)
2123 break;
2124 xfs_btree_get_node_keys(cur, block, lkey);
2125 }
2126
2127 return 0;
2128}
2129
2130/* Update all the keys from some level in cursor back to the root. */
2131STATIC int
2132xfs_btree_updkeys_force(
2133 struct xfs_btree_cur *cur,
2134 int level)
2135{
2136 struct xfs_buf *bp;
2137 struct xfs_btree_block *block;
2138
2139 block = xfs_btree_get_block(cur, level, &bp);
2140 return __xfs_btree_updkeys(cur, level, block, bp, true);
2141}
2142
2143/*
2144 * Update the parent keys of the given level, progressing towards the root.
2145 */
2146STATIC int
2147xfs_btree_update_keys(
2148 struct xfs_btree_cur *cur,
2149 int level)
2150{
2151 struct xfs_btree_block *block;
2152 struct xfs_buf *bp;
2153 union xfs_btree_key *kp;
2154 union xfs_btree_key key;
2155 int ptr;
2156
2157 ASSERT(level >= 0);
2158
2159 block = xfs_btree_get_block(cur, level, &bp);
2160 if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2161 return __xfs_btree_updkeys(cur, level, block, bp, false);
2162
2163 /*
2164 * Go up the tree from this level toward the root.
2165 * At each level, update the key value to the value input.
2166 * Stop when we reach a level where the cursor isn't pointing
2167 * at the first entry in the block.
2168 */
2169 xfs_btree_get_keys(cur, block, &key);
2170 for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2171#ifdef DEBUG
2172 int error;
2173#endif
2174 block = xfs_btree_get_block(cur, level, &bp);
2175#ifdef DEBUG
2176 error = xfs_btree_check_block(cur, block, level, bp);
2177 if (error)
2178 return error;
2179#endif
2180 ptr = cur->bc_ptrs[level];
2181 kp = xfs_btree_key_addr(cur, ptr, block);
2182 xfs_btree_copy_keys(cur, kp, &key, 1);
2183 xfs_btree_log_keys(cur, bp, ptr, ptr);
2184 }
2185
2186 return 0;
2187}
2188
2189/*
2190 * Update the record referred to by cur to the value in the
2191 * given record. This either works (return 0) or gets an
2192 * EFSCORRUPTED error.
2193 */
2194int
2195xfs_btree_update(
2196 struct xfs_btree_cur *cur,
2197 union xfs_btree_rec *rec)
2198{
2199 struct xfs_btree_block *block;
2200 struct xfs_buf *bp;
2201 int error;
2202 int ptr;
2203 union xfs_btree_rec *rp;
2204
2205 /* Pick up the current block. */
2206 block = xfs_btree_get_block(cur, 0, &bp);
2207
2208#ifdef DEBUG
2209 error = xfs_btree_check_block(cur, block, 0, bp);
2210 if (error)
2211 goto error0;
2212#endif
2213 /* Get the address of the rec to be updated. */
2214 ptr = cur->bc_ptrs[0];
2215 rp = xfs_btree_rec_addr(cur, ptr, block);
2216
2217 /* Fill in the new contents and log them. */
2218 xfs_btree_copy_recs(cur, rp, rec, 1);
2219 xfs_btree_log_recs(cur, bp, ptr, ptr);
2220
2221 /*
2222 * If we are tracking the last record in the tree and
2223 * we are at the far right edge of the tree, update it.
2224 */
2225 if (xfs_btree_is_lastrec(cur, block, 0)) {
2226 cur->bc_ops->update_lastrec(cur, block, rec,
2227 ptr, LASTREC_UPDATE);
2228 }
2229
2230 /* Pass new key value up to our parent. */
2231 if (xfs_btree_needs_key_update(cur, ptr)) {
2232 error = xfs_btree_update_keys(cur, 0);
2233 if (error)
2234 goto error0;
2235 }
2236
2237 return 0;
2238
2239error0:
2240 return error;
2241}
2242
2243/*
2244 * Move 1 record left from cur/level if possible.
2245 * Update cur to reflect the new path.
2246 */
2247STATIC int /* error */
2248xfs_btree_lshift(
2249 struct xfs_btree_cur *cur,
2250 int level,
2251 int *stat) /* success/failure */
2252{
2253 struct xfs_buf *lbp; /* left buffer pointer */
2254 struct xfs_btree_block *left; /* left btree block */
2255 int lrecs; /* left record count */
2256 struct xfs_buf *rbp; /* right buffer pointer */
2257 struct xfs_btree_block *right; /* right btree block */
2258 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2259 int rrecs; /* right record count */
2260 union xfs_btree_ptr lptr; /* left btree pointer */
2261 union xfs_btree_key *rkp = NULL; /* right btree key */
2262 union xfs_btree_ptr *rpp = NULL; /* right address pointer */
2263 union xfs_btree_rec *rrp = NULL; /* right record pointer */
2264 int error; /* error return value */
2265 int i;
2266
2267 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2268 level == cur->bc_nlevels - 1)
2269 goto out0;
2270
2271 /* Set up variables for this block as "right". */
2272 right = xfs_btree_get_block(cur, level, &rbp);
2273
2274#ifdef DEBUG
2275 error = xfs_btree_check_block(cur, right, level, rbp);
2276 if (error)
2277 goto error0;
2278#endif
2279
2280 /* If we've got no left sibling then we can't shift an entry left. */
2281 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2282 if (xfs_btree_ptr_is_null(cur, &lptr))
2283 goto out0;
2284
2285 /*
2286 * If the cursor entry is the one that would be moved, don't
2287 * do it... it's too complicated.
2288 */
2289 if (cur->bc_ptrs[level] <= 1)
2290 goto out0;
2291
2292 /* Set up the left neighbor as "left". */
2293 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2294 if (error)
2295 goto error0;
2296
2297 /* If it's full, it can't take another entry. */
2298 lrecs = xfs_btree_get_numrecs(left);
2299 if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2300 goto out0;
2301
2302 rrecs = xfs_btree_get_numrecs(right);
2303
2304 /*
2305 * We add one entry to the left side and remove one for the right side.
2306 * Account for it here, the changes will be updated on disk and logged
2307 * later.
2308 */
2309 lrecs++;
2310 rrecs--;
2311
2312 XFS_BTREE_STATS_INC(cur, lshift);
2313 XFS_BTREE_STATS_ADD(cur, moves, 1);
2314
2315 /*
2316 * If non-leaf, copy a key and a ptr to the left block.
2317 * Log the changes to the left block.
2318 */
2319 if (level > 0) {
2320 /* It's a non-leaf. Move keys and pointers. */
2321 union xfs_btree_key *lkp; /* left btree key */
2322 union xfs_btree_ptr *lpp; /* left address pointer */
2323
2324 lkp = xfs_btree_key_addr(cur, lrecs, left);
2325 rkp = xfs_btree_key_addr(cur, 1, right);
2326
2327 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2328 rpp = xfs_btree_ptr_addr(cur, 1, right);
2329
2330 error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2331 if (error)
2332 goto error0;
2333
2334 xfs_btree_copy_keys(cur, lkp, rkp, 1);
2335 xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2336
2337 xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2338 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2339
2340 ASSERT(cur->bc_ops->keys_inorder(cur,
2341 xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2342 } else {
2343 /* It's a leaf. Move records. */
2344 union xfs_btree_rec *lrp; /* left record pointer */
2345
2346 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2347 rrp = xfs_btree_rec_addr(cur, 1, right);
2348
2349 xfs_btree_copy_recs(cur, lrp, rrp, 1);
2350 xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2351
2352 ASSERT(cur->bc_ops->recs_inorder(cur,
2353 xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2354 }
2355
2356 xfs_btree_set_numrecs(left, lrecs);
2357 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2358
2359 xfs_btree_set_numrecs(right, rrecs);
2360 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2361
2362 /*
2363 * Slide the contents of right down one entry.
2364 */
2365 XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2366 if (level > 0) {
2367 /* It's a nonleaf. operate on keys and ptrs */
2368 for (i = 0; i < rrecs; i++) {
2369 error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2370 if (error)
2371 goto error0;
2372 }
2373
2374 xfs_btree_shift_keys(cur,
2375 xfs_btree_key_addr(cur, 2, right),
2376 -1, rrecs);
2377 xfs_btree_shift_ptrs(cur,
2378 xfs_btree_ptr_addr(cur, 2, right),
2379 -1, rrecs);
2380
2381 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2382 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2383 } else {
2384 /* It's a leaf. operate on records */
2385 xfs_btree_shift_recs(cur,
2386 xfs_btree_rec_addr(cur, 2, right),
2387 -1, rrecs);
2388 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2389 }
2390
2391 /*
2392 * Using a temporary cursor, update the parent key values of the
2393 * block on the left.
2394 */
2395 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2396 error = xfs_btree_dup_cursor(cur, &tcur);
2397 if (error)
2398 goto error0;
2399 i = xfs_btree_firstrec(tcur, level);
2400 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2401 error = -EFSCORRUPTED;
2402 goto error0;
2403 }
2404
2405 error = xfs_btree_decrement(tcur, level, &i);
2406 if (error)
2407 goto error1;
2408
2409 /* Update the parent high keys of the left block, if needed. */
2410 error = xfs_btree_update_keys(tcur, level);
2411 if (error)
2412 goto error1;
2413
2414 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2415 }
2416
2417 /* Update the parent keys of the right block. */
2418 error = xfs_btree_update_keys(cur, level);
2419 if (error)
2420 goto error0;
2421
2422 /* Slide the cursor value left one. */
2423 cur->bc_ptrs[level]--;
2424
2425 *stat = 1;
2426 return 0;
2427
2428out0:
2429 *stat = 0;
2430 return 0;
2431
2432error0:
2433 return error;
2434
2435error1:
2436 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2437 return error;
2438}
2439
2440/*
2441 * Move 1 record right from cur/level if possible.
2442 * Update cur to reflect the new path.
2443 */
2444STATIC int /* error */
2445xfs_btree_rshift(
2446 struct xfs_btree_cur *cur,
2447 int level,
2448 int *stat) /* success/failure */
2449{
2450 struct xfs_buf *lbp; /* left buffer pointer */
2451 struct xfs_btree_block *left; /* left btree block */
2452 struct xfs_buf *rbp; /* right buffer pointer */
2453 struct xfs_btree_block *right; /* right btree block */
2454 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2455 union xfs_btree_ptr rptr; /* right block pointer */
2456 union xfs_btree_key *rkp; /* right btree key */
2457 int rrecs; /* right record count */
2458 int lrecs; /* left record count */
2459 int error; /* error return value */
2460 int i; /* loop counter */
2461
2462 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2463 (level == cur->bc_nlevels - 1))
2464 goto out0;
2465
2466 /* Set up variables for this block as "left". */
2467 left = xfs_btree_get_block(cur, level, &lbp);
2468
2469#ifdef DEBUG
2470 error = xfs_btree_check_block(cur, left, level, lbp);
2471 if (error)
2472 goto error0;
2473#endif
2474
2475 /* If we've got no right sibling then we can't shift an entry right. */
2476 xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2477 if (xfs_btree_ptr_is_null(cur, &rptr))
2478 goto out0;
2479
2480 /*
2481 * If the cursor entry is the one that would be moved, don't
2482 * do it... it's too complicated.
2483 */
2484 lrecs = xfs_btree_get_numrecs(left);
2485 if (cur->bc_ptrs[level] >= lrecs)
2486 goto out0;
2487
2488 /* Set up the right neighbor as "right". */
2489 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2490 if (error)
2491 goto error0;
2492
2493 /* If it's full, it can't take another entry. */
2494 rrecs = xfs_btree_get_numrecs(right);
2495 if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2496 goto out0;
2497
2498 XFS_BTREE_STATS_INC(cur, rshift);
2499 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2500
2501 /*
2502 * Make a hole at the start of the right neighbor block, then
2503 * copy the last left block entry to the hole.
2504 */
2505 if (level > 0) {
2506 /* It's a nonleaf. make a hole in the keys and ptrs */
2507 union xfs_btree_key *lkp;
2508 union xfs_btree_ptr *lpp;
2509 union xfs_btree_ptr *rpp;
2510
2511 lkp = xfs_btree_key_addr(cur, lrecs, left);
2512 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2513 rkp = xfs_btree_key_addr(cur, 1, right);
2514 rpp = xfs_btree_ptr_addr(cur, 1, right);
2515
2516 for (i = rrecs - 1; i >= 0; i--) {
2517 error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2518 if (error)
2519 goto error0;
2520 }
2521
2522 xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2523 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2524
2525 error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2526 if (error)
2527 goto error0;
2528
2529 /* Now put the new data in, and log it. */
2530 xfs_btree_copy_keys(cur, rkp, lkp, 1);
2531 xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2532
2533 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2534 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2535
2536 ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2537 xfs_btree_key_addr(cur, 2, right)));
2538 } else {
2539 /* It's a leaf. make a hole in the records */
2540 union xfs_btree_rec *lrp;
2541 union xfs_btree_rec *rrp;
2542
2543 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2544 rrp = xfs_btree_rec_addr(cur, 1, right);
2545
2546 xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2547
2548 /* Now put the new data in, and log it. */
2549 xfs_btree_copy_recs(cur, rrp, lrp, 1);
2550 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2551 }
2552
2553 /*
2554 * Decrement and log left's numrecs, bump and log right's numrecs.
2555 */
2556 xfs_btree_set_numrecs(left, --lrecs);
2557 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2558
2559 xfs_btree_set_numrecs(right, ++rrecs);
2560 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2561
2562 /*
2563 * Using a temporary cursor, update the parent key values of the
2564 * block on the right.
2565 */
2566 error = xfs_btree_dup_cursor(cur, &tcur);
2567 if (error)
2568 goto error0;
2569 i = xfs_btree_lastrec(tcur, level);
2570 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2571 error = -EFSCORRUPTED;
2572 goto error0;
2573 }
2574
2575 error = xfs_btree_increment(tcur, level, &i);
2576 if (error)
2577 goto error1;
2578
2579 /* Update the parent high keys of the left block, if needed. */
2580 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2581 error = xfs_btree_update_keys(cur, level);
2582 if (error)
2583 goto error1;
2584 }
2585
2586 /* Update the parent keys of the right block. */
2587 error = xfs_btree_update_keys(tcur, level);
2588 if (error)
2589 goto error1;
2590
2591 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2592
2593 *stat = 1;
2594 return 0;
2595
2596out0:
2597 *stat = 0;
2598 return 0;
2599
2600error0:
2601 return error;
2602
2603error1:
2604 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2605 return error;
2606}
2607
2608/*
2609 * Split cur/level block in half.
2610 * Return new block number and the key to its first
2611 * record (to be inserted into parent).
2612 */
2613STATIC int /* error */
2614__xfs_btree_split(
2615 struct xfs_btree_cur *cur,
2616 int level,
2617 union xfs_btree_ptr *ptrp,
2618 union xfs_btree_key *key,
2619 struct xfs_btree_cur **curp,
2620 int *stat) /* success/failure */
2621{
2622 union xfs_btree_ptr lptr; /* left sibling block ptr */
2623 struct xfs_buf *lbp; /* left buffer pointer */
2624 struct xfs_btree_block *left; /* left btree block */
2625 union xfs_btree_ptr rptr; /* right sibling block ptr */
2626 struct xfs_buf *rbp; /* right buffer pointer */
2627 struct xfs_btree_block *right; /* right btree block */
2628 union xfs_btree_ptr rrptr; /* right-right sibling ptr */
2629 struct xfs_buf *rrbp; /* right-right buffer pointer */
2630 struct xfs_btree_block *rrblock; /* right-right btree block */
2631 int lrecs;
2632 int rrecs;
2633 int src_index;
2634 int error; /* error return value */
2635 int i;
2636
2637 XFS_BTREE_STATS_INC(cur, split);
2638
2639 /* Set up left block (current one). */
2640 left = xfs_btree_get_block(cur, level, &lbp);
2641
2642#ifdef DEBUG
2643 error = xfs_btree_check_block(cur, left, level, lbp);
2644 if (error)
2645 goto error0;
2646#endif
2647
2648 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2649
2650 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2651 error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2652 if (error)
2653 goto error0;
2654 if (*stat == 0)
2655 goto out0;
2656 XFS_BTREE_STATS_INC(cur, alloc);
2657
2658 /* Set up the new block as "right". */
2659 error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2660 if (error)
2661 goto error0;
2662
2663 /* Fill in the btree header for the new right block. */
2664 xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2665
2666 /*
2667 * Split the entries between the old and the new block evenly.
2668 * Make sure that if there's an odd number of entries now, that
2669 * each new block will have the same number of entries.
2670 */
2671 lrecs = xfs_btree_get_numrecs(left);
2672 rrecs = lrecs / 2;
2673 if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2674 rrecs++;
2675 src_index = (lrecs - rrecs + 1);
2676
2677 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2678
2679 /* Adjust numrecs for the later get_*_keys() calls. */
2680 lrecs -= rrecs;
2681 xfs_btree_set_numrecs(left, lrecs);
2682 xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2683
2684 /*
2685 * Copy btree block entries from the left block over to the
2686 * new block, the right. Update the right block and log the
2687 * changes.
2688 */
2689 if (level > 0) {
2690 /* It's a non-leaf. Move keys and pointers. */
2691 union xfs_btree_key *lkp; /* left btree key */
2692 union xfs_btree_ptr *lpp; /* left address pointer */
2693 union xfs_btree_key *rkp; /* right btree key */
2694 union xfs_btree_ptr *rpp; /* right address pointer */
2695
2696 lkp = xfs_btree_key_addr(cur, src_index, left);
2697 lpp = xfs_btree_ptr_addr(cur, src_index, left);
2698 rkp = xfs_btree_key_addr(cur, 1, right);
2699 rpp = xfs_btree_ptr_addr(cur, 1, right);
2700
2701 for (i = src_index; i < rrecs; i++) {
2702 error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2703 if (error)
2704 goto error0;
2705 }
2706
2707 /* Copy the keys & pointers to the new block. */
2708 xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2709 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2710
2711 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2712 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2713
2714 /* Stash the keys of the new block for later insertion. */
2715 xfs_btree_get_node_keys(cur, right, key);
2716 } else {
2717 /* It's a leaf. Move records. */
2718 union xfs_btree_rec *lrp; /* left record pointer */
2719 union xfs_btree_rec *rrp; /* right record pointer */
2720
2721 lrp = xfs_btree_rec_addr(cur, src_index, left);
2722 rrp = xfs_btree_rec_addr(cur, 1, right);
2723
2724 /* Copy records to the new block. */
2725 xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2726 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2727
2728 /* Stash the keys of the new block for later insertion. */
2729 xfs_btree_get_leaf_keys(cur, right, key);
2730 }
2731
2732 /*
2733 * Find the left block number by looking in the buffer.
2734 * Adjust sibling pointers.
2735 */
2736 xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2737 xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2738 xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2739 xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2740
2741 xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2742 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2743
2744 /*
2745 * If there's a block to the new block's right, make that block
2746 * point back to right instead of to left.
2747 */
2748 if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2749 error = xfs_btree_read_buf_block(cur, &rrptr,
2750 0, &rrblock, &rrbp);
2751 if (error)
2752 goto error0;
2753 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2754 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2755 }
2756
2757 /* Update the parent high keys of the left block, if needed. */
2758 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2759 error = xfs_btree_update_keys(cur, level);
2760 if (error)
2761 goto error0;
2762 }
2763
2764 /*
2765 * If the cursor is really in the right block, move it there.
2766 * If it's just pointing past the last entry in left, then we'll
2767 * insert there, so don't change anything in that case.
2768 */
2769 if (cur->bc_ptrs[level] > lrecs + 1) {
2770 xfs_btree_setbuf(cur, level, rbp);
2771 cur->bc_ptrs[level] -= lrecs;
2772 }
2773 /*
2774 * If there are more levels, we'll need another cursor which refers
2775 * the right block, no matter where this cursor was.
2776 */
2777 if (level + 1 < cur->bc_nlevels) {
2778 error = xfs_btree_dup_cursor(cur, curp);
2779 if (error)
2780 goto error0;
2781 (*curp)->bc_ptrs[level + 1]++;
2782 }
2783 *ptrp = rptr;
2784 *stat = 1;
2785 return 0;
2786out0:
2787 *stat = 0;
2788 return 0;
2789
2790error0:
2791 return error;
2792}
2793
2794struct xfs_btree_split_args {
2795 struct xfs_btree_cur *cur;
2796 int level;
2797 union xfs_btree_ptr *ptrp;
2798 union xfs_btree_key *key;
2799 struct xfs_btree_cur **curp;
2800 int *stat; /* success/failure */
2801 int result;
2802 bool kswapd; /* allocation in kswapd context */
2803 struct completion *done;
2804 struct work_struct work;
2805};
2806
2807/*
2808 * Stack switching interfaces for allocation
2809 */
2810static void
2811xfs_btree_split_worker(
2812 struct work_struct *work)
2813{
2814 struct xfs_btree_split_args *args = container_of(work,
2815 struct xfs_btree_split_args, work);
2816 unsigned long pflags;
2817 unsigned long new_pflags = PF_MEMALLOC_NOFS;
2818
2819 /*
2820 * we are in a transaction context here, but may also be doing work
2821 * in kswapd context, and hence we may need to inherit that state
2822 * temporarily to ensure that we don't block waiting for memory reclaim
2823 * in any way.
2824 */
2825 if (args->kswapd)
2826 new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2827
2828 current_set_flags_nested(&pflags, new_pflags);
2829
2830 args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2831 args->key, args->curp, args->stat);
2832 complete(args->done);
2833
2834 current_restore_flags_nested(&pflags, new_pflags);
2835}
2836
2837/*
2838 * BMBT split requests often come in with little stack to work on. Push
2839 * them off to a worker thread so there is lots of stack to use. For the other
2840 * btree types, just call directly to avoid the context switch overhead here.
2841 */
2842STATIC int /* error */
2843xfs_btree_split(
2844 struct xfs_btree_cur *cur,
2845 int level,
2846 union xfs_btree_ptr *ptrp,
2847 union xfs_btree_key *key,
2848 struct xfs_btree_cur **curp,
2849 int *stat) /* success/failure */
2850{
2851 struct xfs_btree_split_args args;
2852 DECLARE_COMPLETION_ONSTACK(done);
2853
2854 if (cur->bc_btnum != XFS_BTNUM_BMAP)
2855 return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2856
2857 args.cur = cur;
2858 args.level = level;
2859 args.ptrp = ptrp;
2860 args.key = key;
2861 args.curp = curp;
2862 args.stat = stat;
2863 args.done = &done;
2864 args.kswapd = current_is_kswapd();
2865 INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2866 queue_work(xfs_alloc_wq, &args.work);
2867 wait_for_completion(&done);
2868 destroy_work_on_stack(&args.work);
2869 return args.result;
2870}
2871
2872
2873/*
2874 * Copy the old inode root contents into a real block and make the
2875 * broot point to it.
2876 */
2877int /* error */
2878xfs_btree_new_iroot(
2879 struct xfs_btree_cur *cur, /* btree cursor */
2880 int *logflags, /* logging flags for inode */
2881 int *stat) /* return status - 0 fail */
2882{
2883 struct xfs_buf *cbp; /* buffer for cblock */
2884 struct xfs_btree_block *block; /* btree block */
2885 struct xfs_btree_block *cblock; /* child btree block */
2886 union xfs_btree_key *ckp; /* child key pointer */
2887 union xfs_btree_ptr *cpp; /* child ptr pointer */
2888 union xfs_btree_key *kp; /* pointer to btree key */
2889 union xfs_btree_ptr *pp; /* pointer to block addr */
2890 union xfs_btree_ptr nptr; /* new block addr */
2891 int level; /* btree level */
2892 int error; /* error return code */
2893 int i; /* loop counter */
2894
2895 XFS_BTREE_STATS_INC(cur, newroot);
2896
2897 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2898
2899 level = cur->bc_nlevels - 1;
2900
2901 block = xfs_btree_get_iroot(cur);
2902 pp = xfs_btree_ptr_addr(cur, 1, block);
2903
2904 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2905 error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2906 if (error)
2907 goto error0;
2908 if (*stat == 0)
2909 return 0;
2910
2911 XFS_BTREE_STATS_INC(cur, alloc);
2912
2913 /* Copy the root into a real block. */
2914 error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
2915 if (error)
2916 goto error0;
2917
2918 /*
2919 * we can't just memcpy() the root in for CRC enabled btree blocks.
2920 * In that case have to also ensure the blkno remains correct
2921 */
2922 memcpy(cblock, block, xfs_btree_block_len(cur));
2923 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
2924 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
2925 cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
2926 else
2927 cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
2928 }
2929
2930 be16_add_cpu(&block->bb_level, 1);
2931 xfs_btree_set_numrecs(block, 1);
2932 cur->bc_nlevels++;
2933 cur->bc_ptrs[level + 1] = 1;
2934
2935 kp = xfs_btree_key_addr(cur, 1, block);
2936 ckp = xfs_btree_key_addr(cur, 1, cblock);
2937 xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
2938
2939 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
2940 for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
2941 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
2942 if (error)
2943 goto error0;
2944 }
2945
2946 xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
2947
2948 error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
2949 if (error)
2950 goto error0;
2951
2952 xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
2953
2954 xfs_iroot_realloc(cur->bc_ino.ip,
2955 1 - xfs_btree_get_numrecs(cblock),
2956 cur->bc_ino.whichfork);
2957
2958 xfs_btree_setbuf(cur, level, cbp);
2959
2960 /*
2961 * Do all this logging at the end so that
2962 * the root is at the right level.
2963 */
2964 xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
2965 xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
2966 xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
2967
2968 *logflags |=
2969 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork);
2970 *stat = 1;
2971 return 0;
2972error0:
2973 return error;
2974}
2975
2976/*
2977 * Allocate a new root block, fill it in.
2978 */
2979STATIC int /* error */
2980xfs_btree_new_root(
2981 struct xfs_btree_cur *cur, /* btree cursor */
2982 int *stat) /* success/failure */
2983{
2984 struct xfs_btree_block *block; /* one half of the old root block */
2985 struct xfs_buf *bp; /* buffer containing block */
2986 int error; /* error return value */
2987 struct xfs_buf *lbp; /* left buffer pointer */
2988 struct xfs_btree_block *left; /* left btree block */
2989 struct xfs_buf *nbp; /* new (root) buffer */
2990 struct xfs_btree_block *new; /* new (root) btree block */
2991 int nptr; /* new value for key index, 1 or 2 */
2992 struct xfs_buf *rbp; /* right buffer pointer */
2993 struct xfs_btree_block *right; /* right btree block */
2994 union xfs_btree_ptr rptr;
2995 union xfs_btree_ptr lptr;
2996
2997 XFS_BTREE_STATS_INC(cur, newroot);
2998
2999 /* initialise our start point from the cursor */
3000 cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3001
3002 /* Allocate the new block. If we can't do it, we're toast. Give up. */
3003 error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3004 if (error)
3005 goto error0;
3006 if (*stat == 0)
3007 goto out0;
3008 XFS_BTREE_STATS_INC(cur, alloc);
3009
3010 /* Set up the new block. */
3011 error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3012 if (error)
3013 goto error0;
3014
3015 /* Set the root in the holding structure increasing the level by 1. */
3016 cur->bc_ops->set_root(cur, &lptr, 1);
3017
3018 /*
3019 * At the previous root level there are now two blocks: the old root,
3020 * and the new block generated when it was split. We don't know which
3021 * one the cursor is pointing at, so we set up variables "left" and
3022 * "right" for each case.
3023 */
3024 block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3025
3026#ifdef DEBUG
3027 error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3028 if (error)
3029 goto error0;
3030#endif
3031
3032 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3033 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3034 /* Our block is left, pick up the right block. */
3035 lbp = bp;
3036 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3037 left = block;
3038 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3039 if (error)
3040 goto error0;
3041 bp = rbp;
3042 nptr = 1;
3043 } else {
3044 /* Our block is right, pick up the left block. */
3045 rbp = bp;
3046 xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3047 right = block;
3048 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3049 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3050 if (error)
3051 goto error0;
3052 bp = lbp;
3053 nptr = 2;
3054 }
3055
3056 /* Fill in the new block's btree header and log it. */
3057 xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3058 xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3059 ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3060 !xfs_btree_ptr_is_null(cur, &rptr));
3061
3062 /* Fill in the key data in the new root. */
3063 if (xfs_btree_get_level(left) > 0) {
3064 /*
3065 * Get the keys for the left block's keys and put them directly
3066 * in the parent block. Do the same for the right block.
3067 */
3068 xfs_btree_get_node_keys(cur, left,
3069 xfs_btree_key_addr(cur, 1, new));
3070 xfs_btree_get_node_keys(cur, right,
3071 xfs_btree_key_addr(cur, 2, new));
3072 } else {
3073 /*
3074 * Get the keys for the left block's records and put them
3075 * directly in the parent block. Do the same for the right
3076 * block.
3077 */
3078 xfs_btree_get_leaf_keys(cur, left,
3079 xfs_btree_key_addr(cur, 1, new));
3080 xfs_btree_get_leaf_keys(cur, right,
3081 xfs_btree_key_addr(cur, 2, new));
3082 }
3083 xfs_btree_log_keys(cur, nbp, 1, 2);
3084
3085 /* Fill in the pointer data in the new root. */
3086 xfs_btree_copy_ptrs(cur,
3087 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3088 xfs_btree_copy_ptrs(cur,
3089 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3090 xfs_btree_log_ptrs(cur, nbp, 1, 2);
3091
3092 /* Fix up the cursor. */
3093 xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3094 cur->bc_ptrs[cur->bc_nlevels] = nptr;
3095 cur->bc_nlevels++;
3096 *stat = 1;
3097 return 0;
3098error0:
3099 return error;
3100out0:
3101 *stat = 0;
3102 return 0;
3103}
3104
3105STATIC int
3106xfs_btree_make_block_unfull(
3107 struct xfs_btree_cur *cur, /* btree cursor */
3108 int level, /* btree level */
3109 int numrecs,/* # of recs in block */
3110 int *oindex,/* old tree index */
3111 int *index, /* new tree index */
3112 union xfs_btree_ptr *nptr, /* new btree ptr */
3113 struct xfs_btree_cur **ncur, /* new btree cursor */
3114 union xfs_btree_key *key, /* key of new block */
3115 int *stat)
3116{
3117 int error = 0;
3118
3119 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3120 level == cur->bc_nlevels - 1) {
3121 struct xfs_inode *ip = cur->bc_ino.ip;
3122
3123 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3124 /* A root block that can be made bigger. */
3125 xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork);
3126 *stat = 1;
3127 } else {
3128 /* A root block that needs replacing */
3129 int logflags = 0;
3130
3131 error = xfs_btree_new_iroot(cur, &logflags, stat);
3132 if (error || *stat == 0)
3133 return error;
3134
3135 xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3136 }
3137
3138 return 0;
3139 }
3140
3141 /* First, try shifting an entry to the right neighbor. */
3142 error = xfs_btree_rshift(cur, level, stat);
3143 if (error || *stat)
3144 return error;
3145
3146 /* Next, try shifting an entry to the left neighbor. */
3147 error = xfs_btree_lshift(cur, level, stat);
3148 if (error)
3149 return error;
3150
3151 if (*stat) {
3152 *oindex = *index = cur->bc_ptrs[level];
3153 return 0;
3154 }
3155
3156 /*
3157 * Next, try splitting the current block in half.
3158 *
3159 * If this works we have to re-set our variables because we
3160 * could be in a different block now.
3161 */
3162 error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3163 if (error || *stat == 0)
3164 return error;
3165
3166
3167 *index = cur->bc_ptrs[level];
3168 return 0;
3169}
3170
3171/*
3172 * Insert one record/level. Return information to the caller
3173 * allowing the next level up to proceed if necessary.
3174 */
3175STATIC int
3176xfs_btree_insrec(
3177 struct xfs_btree_cur *cur, /* btree cursor */
3178 int level, /* level to insert record at */
3179 union xfs_btree_ptr *ptrp, /* i/o: block number inserted */
3180 union xfs_btree_rec *rec, /* record to insert */
3181 union xfs_btree_key *key, /* i/o: block key for ptrp */
3182 struct xfs_btree_cur **curp, /* output: new cursor replacing cur */
3183 int *stat) /* success/failure */
3184{
3185 struct xfs_btree_block *block; /* btree block */
3186 struct xfs_buf *bp; /* buffer for block */
3187 union xfs_btree_ptr nptr; /* new block ptr */
3188 struct xfs_btree_cur *ncur; /* new btree cursor */
3189 union xfs_btree_key nkey; /* new block key */
3190 union xfs_btree_key *lkey;
3191 int optr; /* old key/record index */
3192 int ptr; /* key/record index */
3193 int numrecs;/* number of records */
3194 int error; /* error return value */
3195 int i;
3196 xfs_daddr_t old_bn;
3197
3198 ncur = NULL;
3199 lkey = &nkey;
3200
3201 /*
3202 * If we have an external root pointer, and we've made it to the
3203 * root level, allocate a new root block and we're done.
3204 */
3205 if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3206 (level >= cur->bc_nlevels)) {
3207 error = xfs_btree_new_root(cur, stat);
3208 xfs_btree_set_ptr_null(cur, ptrp);
3209
3210 return error;
3211 }
3212
3213 /* If we're off the left edge, return failure. */
3214 ptr = cur->bc_ptrs[level];
3215 if (ptr == 0) {
3216 *stat = 0;
3217 return 0;
3218 }
3219
3220 optr = ptr;
3221
3222 XFS_BTREE_STATS_INC(cur, insrec);
3223
3224 /* Get pointers to the btree buffer and block. */
3225 block = xfs_btree_get_block(cur, level, &bp);
3226 old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
3227 numrecs = xfs_btree_get_numrecs(block);
3228
3229#ifdef DEBUG
3230 error = xfs_btree_check_block(cur, block, level, bp);
3231 if (error)
3232 goto error0;
3233
3234 /* Check that the new entry is being inserted in the right place. */
3235 if (ptr <= numrecs) {
3236 if (level == 0) {
3237 ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3238 xfs_btree_rec_addr(cur, ptr, block)));
3239 } else {
3240 ASSERT(cur->bc_ops->keys_inorder(cur, key,
3241 xfs_btree_key_addr(cur, ptr, block)));
3242 }
3243 }
3244#endif
3245
3246 /*
3247 * If the block is full, we can't insert the new entry until we
3248 * make the block un-full.
3249 */
3250 xfs_btree_set_ptr_null(cur, &nptr);
3251 if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3252 error = xfs_btree_make_block_unfull(cur, level, numrecs,
3253 &optr, &ptr, &nptr, &ncur, lkey, stat);
3254 if (error || *stat == 0)
3255 goto error0;
3256 }
3257
3258 /*
3259 * The current block may have changed if the block was
3260 * previously full and we have just made space in it.
3261 */
3262 block = xfs_btree_get_block(cur, level, &bp);
3263 numrecs = xfs_btree_get_numrecs(block);
3264
3265#ifdef DEBUG
3266 error = xfs_btree_check_block(cur, block, level, bp);
3267 if (error)
3268 return error;
3269#endif
3270
3271 /*
3272 * At this point we know there's room for our new entry in the block
3273 * we're pointing at.
3274 */
3275 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3276
3277 if (level > 0) {
3278 /* It's a nonleaf. make a hole in the keys and ptrs */
3279 union xfs_btree_key *kp;
3280 union xfs_btree_ptr *pp;
3281
3282 kp = xfs_btree_key_addr(cur, ptr, block);
3283 pp = xfs_btree_ptr_addr(cur, ptr, block);
3284
3285 for (i = numrecs - ptr; i >= 0; i--) {
3286 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3287 if (error)
3288 return error;
3289 }
3290
3291 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3292 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3293
3294 error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3295 if (error)
3296 goto error0;
3297
3298 /* Now put the new data in, bump numrecs and log it. */
3299 xfs_btree_copy_keys(cur, kp, key, 1);
3300 xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3301 numrecs++;
3302 xfs_btree_set_numrecs(block, numrecs);
3303 xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3304 xfs_btree_log_keys(cur, bp, ptr, numrecs);
3305#ifdef DEBUG
3306 if (ptr < numrecs) {
3307 ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3308 xfs_btree_key_addr(cur, ptr + 1, block)));
3309 }
3310#endif
3311 } else {
3312 /* It's a leaf. make a hole in the records */
3313 union xfs_btree_rec *rp;
3314
3315 rp = xfs_btree_rec_addr(cur, ptr, block);
3316
3317 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3318
3319 /* Now put the new data in, bump numrecs and log it. */
3320 xfs_btree_copy_recs(cur, rp, rec, 1);
3321 xfs_btree_set_numrecs(block, ++numrecs);
3322 xfs_btree_log_recs(cur, bp, ptr, numrecs);
3323#ifdef DEBUG
3324 if (ptr < numrecs) {
3325 ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3326 xfs_btree_rec_addr(cur, ptr + 1, block)));
3327 }
3328#endif
3329 }
3330
3331 /* Log the new number of records in the btree header. */
3332 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3333
3334 /*
3335 * If we just inserted into a new tree block, we have to
3336 * recalculate nkey here because nkey is out of date.
3337 *
3338 * Otherwise we're just updating an existing block (having shoved
3339 * some records into the new tree block), so use the regular key
3340 * update mechanism.
3341 */
3342 if (bp && bp->b_bn != old_bn) {
3343 xfs_btree_get_keys(cur, block, lkey);
3344 } else if (xfs_btree_needs_key_update(cur, optr)) {
3345 error = xfs_btree_update_keys(cur, level);
3346 if (error)
3347 goto error0;
3348 }
3349
3350 /*
3351 * If we are tracking the last record in the tree and
3352 * we are at the far right edge of the tree, update it.
3353 */
3354 if (xfs_btree_is_lastrec(cur, block, level)) {
3355 cur->bc_ops->update_lastrec(cur, block, rec,
3356 ptr, LASTREC_INSREC);
3357 }
3358
3359 /*
3360 * Return the new block number, if any.
3361 * If there is one, give back a record value and a cursor too.
3362 */
3363 *ptrp = nptr;
3364 if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3365 xfs_btree_copy_keys(cur, key, lkey, 1);
3366 *curp = ncur;
3367 }
3368
3369 *stat = 1;
3370 return 0;
3371
3372error0:
3373 return error;
3374}
3375
3376/*
3377 * Insert the record at the point referenced by cur.
3378 *
3379 * A multi-level split of the tree on insert will invalidate the original
3380 * cursor. All callers of this function should assume that the cursor is
3381 * no longer valid and revalidate it.
3382 */
3383int
3384xfs_btree_insert(
3385 struct xfs_btree_cur *cur,
3386 int *stat)
3387{
3388 int error; /* error return value */
3389 int i; /* result value, 0 for failure */
3390 int level; /* current level number in btree */
3391 union xfs_btree_ptr nptr; /* new block number (split result) */
3392 struct xfs_btree_cur *ncur; /* new cursor (split result) */
3393 struct xfs_btree_cur *pcur; /* previous level's cursor */
3394 union xfs_btree_key bkey; /* key of block to insert */
3395 union xfs_btree_key *key;
3396 union xfs_btree_rec rec; /* record to insert */
3397
3398 level = 0;
3399 ncur = NULL;
3400 pcur = cur;
3401 key = &bkey;
3402
3403 xfs_btree_set_ptr_null(cur, &nptr);
3404
3405 /* Make a key out of the record data to be inserted, and save it. */
3406 cur->bc_ops->init_rec_from_cur(cur, &rec);
3407 cur->bc_ops->init_key_from_rec(key, &rec);
3408
3409 /*
3410 * Loop going up the tree, starting at the leaf level.
3411 * Stop when we don't get a split block, that must mean that
3412 * the insert is finished with this level.
3413 */
3414 do {
3415 /*
3416 * Insert nrec/nptr into this level of the tree.
3417 * Note if we fail, nptr will be null.
3418 */
3419 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3420 &ncur, &i);
3421 if (error) {
3422 if (pcur != cur)
3423 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3424 goto error0;
3425 }
3426
3427 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3428 error = -EFSCORRUPTED;
3429 goto error0;
3430 }
3431 level++;
3432
3433 /*
3434 * See if the cursor we just used is trash.
3435 * Can't trash the caller's cursor, but otherwise we should
3436 * if ncur is a new cursor or we're about to be done.
3437 */
3438 if (pcur != cur &&
3439 (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3440 /* Save the state from the cursor before we trash it */
3441 if (cur->bc_ops->update_cursor)
3442 cur->bc_ops->update_cursor(pcur, cur);
3443 cur->bc_nlevels = pcur->bc_nlevels;
3444 xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3445 }
3446 /* If we got a new cursor, switch to it. */
3447 if (ncur) {
3448 pcur = ncur;
3449 ncur = NULL;
3450 }
3451 } while (!xfs_btree_ptr_is_null(cur, &nptr));
3452
3453 *stat = i;
3454 return 0;
3455error0:
3456 return error;
3457}
3458
3459/*
3460 * Try to merge a non-leaf block back into the inode root.
3461 *
3462 * Note: the killroot names comes from the fact that we're effectively
3463 * killing the old root block. But because we can't just delete the
3464 * inode we have to copy the single block it was pointing to into the
3465 * inode.
3466 */
3467STATIC int
3468xfs_btree_kill_iroot(
3469 struct xfs_btree_cur *cur)
3470{
3471 int whichfork = cur->bc_ino.whichfork;
3472 struct xfs_inode *ip = cur->bc_ino.ip;
3473 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
3474 struct xfs_btree_block *block;
3475 struct xfs_btree_block *cblock;
3476 union xfs_btree_key *kp;
3477 union xfs_btree_key *ckp;
3478 union xfs_btree_ptr *pp;
3479 union xfs_btree_ptr *cpp;
3480 struct xfs_buf *cbp;
3481 int level;
3482 int index;
3483 int numrecs;
3484 int error;
3485#ifdef DEBUG
3486 union xfs_btree_ptr ptr;
3487#endif
3488 int i;
3489
3490 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3491 ASSERT(cur->bc_nlevels > 1);
3492
3493 /*
3494 * Don't deal with the root block needs to be a leaf case.
3495 * We're just going to turn the thing back into extents anyway.
3496 */
3497 level = cur->bc_nlevels - 1;
3498 if (level == 1)
3499 goto out0;
3500
3501 /*
3502 * Give up if the root has multiple children.
3503 */
3504 block = xfs_btree_get_iroot(cur);
3505 if (xfs_btree_get_numrecs(block) != 1)
3506 goto out0;
3507
3508 cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3509 numrecs = xfs_btree_get_numrecs(cblock);
3510
3511 /*
3512 * Only do this if the next level will fit.
3513 * Then the data must be copied up to the inode,
3514 * instead of freeing the root you free the next level.
3515 */
3516 if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3517 goto out0;
3518
3519 XFS_BTREE_STATS_INC(cur, killroot);
3520
3521#ifdef DEBUG
3522 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3523 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3524 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3525 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3526#endif
3527
3528 index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3529 if (index) {
3530 xfs_iroot_realloc(cur->bc_ino.ip, index,
3531 cur->bc_ino.whichfork);
3532 block = ifp->if_broot;
3533 }
3534
3535 be16_add_cpu(&block->bb_numrecs, index);
3536 ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3537
3538 kp = xfs_btree_key_addr(cur, 1, block);
3539 ckp = xfs_btree_key_addr(cur, 1, cblock);
3540 xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3541
3542 pp = xfs_btree_ptr_addr(cur, 1, block);
3543 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3544
3545 for (i = 0; i < numrecs; i++) {
3546 error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3547 if (error)
3548 return error;
3549 }
3550
3551 xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3552
3553 error = xfs_btree_free_block(cur, cbp);
3554 if (error)
3555 return error;
3556
3557 cur->bc_bufs[level - 1] = NULL;
3558 be16_add_cpu(&block->bb_level, -1);
3559 xfs_trans_log_inode(cur->bc_tp, ip,
3560 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork));
3561 cur->bc_nlevels--;
3562out0:
3563 return 0;
3564}
3565
3566/*
3567 * Kill the current root node, and replace it with it's only child node.
3568 */
3569STATIC int
3570xfs_btree_kill_root(
3571 struct xfs_btree_cur *cur,
3572 struct xfs_buf *bp,
3573 int level,
3574 union xfs_btree_ptr *newroot)
3575{
3576 int error;
3577
3578 XFS_BTREE_STATS_INC(cur, killroot);
3579
3580 /*
3581 * Update the root pointer, decreasing the level by 1 and then
3582 * free the old root.
3583 */
3584 cur->bc_ops->set_root(cur, newroot, -1);
3585
3586 error = xfs_btree_free_block(cur, bp);
3587 if (error)
3588 return error;
3589
3590 cur->bc_bufs[level] = NULL;
3591 cur->bc_ra[level] = 0;
3592 cur->bc_nlevels--;
3593
3594 return 0;
3595}
3596
3597STATIC int
3598xfs_btree_dec_cursor(
3599 struct xfs_btree_cur *cur,
3600 int level,
3601 int *stat)
3602{
3603 int error;
3604 int i;
3605
3606 if (level > 0) {
3607 error = xfs_btree_decrement(cur, level, &i);
3608 if (error)
3609 return error;
3610 }
3611
3612 *stat = 1;
3613 return 0;
3614}
3615
3616/*
3617 * Single level of the btree record deletion routine.
3618 * Delete record pointed to by cur/level.
3619 * Remove the record from its block then rebalance the tree.
3620 * Return 0 for error, 1 for done, 2 to go on to the next level.
3621 */
3622STATIC int /* error */
3623xfs_btree_delrec(
3624 struct xfs_btree_cur *cur, /* btree cursor */
3625 int level, /* level removing record from */
3626 int *stat) /* fail/done/go-on */
3627{
3628 struct xfs_btree_block *block; /* btree block */
3629 union xfs_btree_ptr cptr; /* current block ptr */
3630 struct xfs_buf *bp; /* buffer for block */
3631 int error; /* error return value */
3632 int i; /* loop counter */
3633 union xfs_btree_ptr lptr; /* left sibling block ptr */
3634 struct xfs_buf *lbp; /* left buffer pointer */
3635 struct xfs_btree_block *left; /* left btree block */
3636 int lrecs = 0; /* left record count */
3637 int ptr; /* key/record index */
3638 union xfs_btree_ptr rptr; /* right sibling block ptr */
3639 struct xfs_buf *rbp; /* right buffer pointer */
3640 struct xfs_btree_block *right; /* right btree block */
3641 struct xfs_btree_block *rrblock; /* right-right btree block */
3642 struct xfs_buf *rrbp; /* right-right buffer pointer */
3643 int rrecs = 0; /* right record count */
3644 struct xfs_btree_cur *tcur; /* temporary btree cursor */
3645 int numrecs; /* temporary numrec count */
3646
3647 tcur = NULL;
3648
3649 /* Get the index of the entry being deleted, check for nothing there. */
3650 ptr = cur->bc_ptrs[level];
3651 if (ptr == 0) {
3652 *stat = 0;
3653 return 0;
3654 }
3655
3656 /* Get the buffer & block containing the record or key/ptr. */
3657 block = xfs_btree_get_block(cur, level, &bp);
3658 numrecs = xfs_btree_get_numrecs(block);
3659
3660#ifdef DEBUG
3661 error = xfs_btree_check_block(cur, block, level, bp);
3662 if (error)
3663 goto error0;
3664#endif
3665
3666 /* Fail if we're off the end of the block. */
3667 if (ptr > numrecs) {
3668 *stat = 0;
3669 return 0;
3670 }
3671
3672 XFS_BTREE_STATS_INC(cur, delrec);
3673 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3674
3675 /* Excise the entries being deleted. */
3676 if (level > 0) {
3677 /* It's a nonleaf. operate on keys and ptrs */
3678 union xfs_btree_key *lkp;
3679 union xfs_btree_ptr *lpp;
3680
3681 lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3682 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3683
3684 for (i = 0; i < numrecs - ptr; i++) {
3685 error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3686 if (error)
3687 goto error0;
3688 }
3689
3690 if (ptr < numrecs) {
3691 xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3692 xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3693 xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3694 xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3695 }
3696 } else {
3697 /* It's a leaf. operate on records */
3698 if (ptr < numrecs) {
3699 xfs_btree_shift_recs(cur,
3700 xfs_btree_rec_addr(cur, ptr + 1, block),
3701 -1, numrecs - ptr);
3702 xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3703 }
3704 }
3705
3706 /*
3707 * Decrement and log the number of entries in the block.
3708 */
3709 xfs_btree_set_numrecs(block, --numrecs);
3710 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3711
3712 /*
3713 * If we are tracking the last record in the tree and
3714 * we are at the far right edge of the tree, update it.
3715 */
3716 if (xfs_btree_is_lastrec(cur, block, level)) {
3717 cur->bc_ops->update_lastrec(cur, block, NULL,
3718 ptr, LASTREC_DELREC);
3719 }
3720
3721 /*
3722 * We're at the root level. First, shrink the root block in-memory.
3723 * Try to get rid of the next level down. If we can't then there's
3724 * nothing left to do.
3725 */
3726 if (level == cur->bc_nlevels - 1) {
3727 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3728 xfs_iroot_realloc(cur->bc_ino.ip, -1,
3729 cur->bc_ino.whichfork);
3730
3731 error = xfs_btree_kill_iroot(cur);
3732 if (error)
3733 goto error0;
3734
3735 error = xfs_btree_dec_cursor(cur, level, stat);
3736 if (error)
3737 goto error0;
3738 *stat = 1;
3739 return 0;
3740 }
3741
3742 /*
3743 * If this is the root level, and there's only one entry left,
3744 * and it's NOT the leaf level, then we can get rid of this
3745 * level.
3746 */
3747 if (numrecs == 1 && level > 0) {
3748 union xfs_btree_ptr *pp;
3749 /*
3750 * pp is still set to the first pointer in the block.
3751 * Make it the new root of the btree.
3752 */
3753 pp = xfs_btree_ptr_addr(cur, 1, block);
3754 error = xfs_btree_kill_root(cur, bp, level, pp);
3755 if (error)
3756 goto error0;
3757 } else if (level > 0) {
3758 error = xfs_btree_dec_cursor(cur, level, stat);
3759 if (error)
3760 goto error0;
3761 }
3762 *stat = 1;
3763 return 0;
3764 }
3765
3766 /*
3767 * If we deleted the leftmost entry in the block, update the
3768 * key values above us in the tree.
3769 */
3770 if (xfs_btree_needs_key_update(cur, ptr)) {
3771 error = xfs_btree_update_keys(cur, level);
3772 if (error)
3773 goto error0;
3774 }
3775
3776 /*
3777 * If the number of records remaining in the block is at least
3778 * the minimum, we're done.
3779 */
3780 if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3781 error = xfs_btree_dec_cursor(cur, level, stat);
3782 if (error)
3783 goto error0;
3784 return 0;
3785 }
3786
3787 /*
3788 * Otherwise, we have to move some records around to keep the
3789 * tree balanced. Look at the left and right sibling blocks to
3790 * see if we can re-balance by moving only one record.
3791 */
3792 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3793 xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3794
3795 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3796 /*
3797 * One child of root, need to get a chance to copy its contents
3798 * into the root and delete it. Can't go up to next level,
3799 * there's nothing to delete there.
3800 */
3801 if (xfs_btree_ptr_is_null(cur, &rptr) &&
3802 xfs_btree_ptr_is_null(cur, &lptr) &&
3803 level == cur->bc_nlevels - 2) {
3804 error = xfs_btree_kill_iroot(cur);
3805 if (!error)
3806 error = xfs_btree_dec_cursor(cur, level, stat);
3807 if (error)
3808 goto error0;
3809 return 0;
3810 }
3811 }
3812
3813 ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3814 !xfs_btree_ptr_is_null(cur, &lptr));
3815
3816 /*
3817 * Duplicate the cursor so our btree manipulations here won't
3818 * disrupt the next level up.
3819 */
3820 error = xfs_btree_dup_cursor(cur, &tcur);
3821 if (error)
3822 goto error0;
3823
3824 /*
3825 * If there's a right sibling, see if it's ok to shift an entry
3826 * out of it.
3827 */
3828 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3829 /*
3830 * Move the temp cursor to the last entry in the next block.
3831 * Actually any entry but the first would suffice.
3832 */
3833 i = xfs_btree_lastrec(tcur, level);
3834 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3835 error = -EFSCORRUPTED;
3836 goto error0;
3837 }
3838
3839 error = xfs_btree_increment(tcur, level, &i);
3840 if (error)
3841 goto error0;
3842 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3843 error = -EFSCORRUPTED;
3844 goto error0;
3845 }
3846
3847 i = xfs_btree_lastrec(tcur, level);
3848 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3849 error = -EFSCORRUPTED;
3850 goto error0;
3851 }
3852
3853 /* Grab a pointer to the block. */
3854 right = xfs_btree_get_block(tcur, level, &rbp);
3855#ifdef DEBUG
3856 error = xfs_btree_check_block(tcur, right, level, rbp);
3857 if (error)
3858 goto error0;
3859#endif
3860 /* Grab the current block number, for future use. */
3861 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3862
3863 /*
3864 * If right block is full enough so that removing one entry
3865 * won't make it too empty, and left-shifting an entry out
3866 * of right to us works, we're done.
3867 */
3868 if (xfs_btree_get_numrecs(right) - 1 >=
3869 cur->bc_ops->get_minrecs(tcur, level)) {
3870 error = xfs_btree_lshift(tcur, level, &i);
3871 if (error)
3872 goto error0;
3873 if (i) {
3874 ASSERT(xfs_btree_get_numrecs(block) >=
3875 cur->bc_ops->get_minrecs(tcur, level));
3876
3877 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3878 tcur = NULL;
3879
3880 error = xfs_btree_dec_cursor(cur, level, stat);
3881 if (error)
3882 goto error0;
3883 return 0;
3884 }
3885 }
3886
3887 /*
3888 * Otherwise, grab the number of records in right for
3889 * future reference, and fix up the temp cursor to point
3890 * to our block again (last record).
3891 */
3892 rrecs = xfs_btree_get_numrecs(right);
3893 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3894 i = xfs_btree_firstrec(tcur, level);
3895 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3896 error = -EFSCORRUPTED;
3897 goto error0;
3898 }
3899
3900 error = xfs_btree_decrement(tcur, level, &i);
3901 if (error)
3902 goto error0;
3903 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3904 error = -EFSCORRUPTED;
3905 goto error0;
3906 }
3907 }
3908 }
3909
3910 /*
3911 * If there's a left sibling, see if it's ok to shift an entry
3912 * out of it.
3913 */
3914 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3915 /*
3916 * Move the temp cursor to the first entry in the
3917 * previous block.
3918 */
3919 i = xfs_btree_firstrec(tcur, level);
3920 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3921 error = -EFSCORRUPTED;
3922 goto error0;
3923 }
3924
3925 error = xfs_btree_decrement(tcur, level, &i);
3926 if (error)
3927 goto error0;
3928 i = xfs_btree_firstrec(tcur, level);
3929 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3930 error = -EFSCORRUPTED;
3931 goto error0;
3932 }
3933
3934 /* Grab a pointer to the block. */
3935 left = xfs_btree_get_block(tcur, level, &lbp);
3936#ifdef DEBUG
3937 error = xfs_btree_check_block(cur, left, level, lbp);
3938 if (error)
3939 goto error0;
3940#endif
3941 /* Grab the current block number, for future use. */
3942 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
3943
3944 /*
3945 * If left block is full enough so that removing one entry
3946 * won't make it too empty, and right-shifting an entry out
3947 * of left to us works, we're done.
3948 */
3949 if (xfs_btree_get_numrecs(left) - 1 >=
3950 cur->bc_ops->get_minrecs(tcur, level)) {
3951 error = xfs_btree_rshift(tcur, level, &i);
3952 if (error)
3953 goto error0;
3954 if (i) {
3955 ASSERT(xfs_btree_get_numrecs(block) >=
3956 cur->bc_ops->get_minrecs(tcur, level));
3957 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3958 tcur = NULL;
3959 if (level == 0)
3960 cur->bc_ptrs[0]++;
3961
3962 *stat = 1;
3963 return 0;
3964 }
3965 }
3966
3967 /*
3968 * Otherwise, grab the number of records in right for
3969 * future reference.
3970 */
3971 lrecs = xfs_btree_get_numrecs(left);
3972 }
3973
3974 /* Delete the temp cursor, we're done with it. */
3975 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3976 tcur = NULL;
3977
3978 /* If here, we need to do a join to keep the tree balanced. */
3979 ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
3980
3981 if (!xfs_btree_ptr_is_null(cur, &lptr) &&
3982 lrecs + xfs_btree_get_numrecs(block) <=
3983 cur->bc_ops->get_maxrecs(cur, level)) {
3984 /*
3985 * Set "right" to be the starting block,
3986 * "left" to be the left neighbor.
3987 */
3988 rptr = cptr;
3989 right = block;
3990 rbp = bp;
3991 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3992 if (error)
3993 goto error0;
3994
3995 /*
3996 * If that won't work, see if we can join with the right neighbor block.
3997 */
3998 } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
3999 rrecs + xfs_btree_get_numrecs(block) <=
4000 cur->bc_ops->get_maxrecs(cur, level)) {
4001 /*
4002 * Set "left" to be the starting block,
4003 * "right" to be the right neighbor.
4004 */
4005 lptr = cptr;
4006 left = block;
4007 lbp = bp;
4008 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4009 if (error)
4010 goto error0;
4011
4012 /*
4013 * Otherwise, we can't fix the imbalance.
4014 * Just return. This is probably a logic error, but it's not fatal.
4015 */
4016 } else {
4017 error = xfs_btree_dec_cursor(cur, level, stat);
4018 if (error)
4019 goto error0;
4020 return 0;
4021 }
4022
4023 rrecs = xfs_btree_get_numrecs(right);
4024 lrecs = xfs_btree_get_numrecs(left);
4025
4026 /*
4027 * We're now going to join "left" and "right" by moving all the stuff
4028 * in "right" to "left" and deleting "right".
4029 */
4030 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4031 if (level > 0) {
4032 /* It's a non-leaf. Move keys and pointers. */
4033 union xfs_btree_key *lkp; /* left btree key */
4034 union xfs_btree_ptr *lpp; /* left address pointer */
4035 union xfs_btree_key *rkp; /* right btree key */
4036 union xfs_btree_ptr *rpp; /* right address pointer */
4037
4038 lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4039 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4040 rkp = xfs_btree_key_addr(cur, 1, right);
4041 rpp = xfs_btree_ptr_addr(cur, 1, right);
4042
4043 for (i = 1; i < rrecs; i++) {
4044 error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4045 if (error)
4046 goto error0;
4047 }
4048
4049 xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4050 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4051
4052 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4053 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4054 } else {
4055 /* It's a leaf. Move records. */
4056 union xfs_btree_rec *lrp; /* left record pointer */
4057 union xfs_btree_rec *rrp; /* right record pointer */
4058
4059 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4060 rrp = xfs_btree_rec_addr(cur, 1, right);
4061
4062 xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4063 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4064 }
4065
4066 XFS_BTREE_STATS_INC(cur, join);
4067
4068 /*
4069 * Fix up the number of records and right block pointer in the
4070 * surviving block, and log it.
4071 */
4072 xfs_btree_set_numrecs(left, lrecs + rrecs);
4073 xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
4074 xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4075 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4076
4077 /* If there is a right sibling, point it to the remaining block. */
4078 xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4079 if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4080 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4081 if (error)
4082 goto error0;
4083 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4084 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4085 }
4086
4087 /* Free the deleted block. */
4088 error = xfs_btree_free_block(cur, rbp);
4089 if (error)
4090 goto error0;
4091
4092 /*
4093 * If we joined with the left neighbor, set the buffer in the
4094 * cursor to the left block, and fix up the index.
4095 */
4096 if (bp != lbp) {
4097 cur->bc_bufs[level] = lbp;
4098 cur->bc_ptrs[level] += lrecs;
4099 cur->bc_ra[level] = 0;
4100 }
4101 /*
4102 * If we joined with the right neighbor and there's a level above
4103 * us, increment the cursor at that level.
4104 */
4105 else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4106 (level + 1 < cur->bc_nlevels)) {
4107 error = xfs_btree_increment(cur, level + 1, &i);
4108 if (error)
4109 goto error0;
4110 }
4111
4112 /*
4113 * Readjust the ptr at this level if it's not a leaf, since it's
4114 * still pointing at the deletion point, which makes the cursor
4115 * inconsistent. If this makes the ptr 0, the caller fixes it up.
4116 * We can't use decrement because it would change the next level up.
4117 */
4118 if (level > 0)
4119 cur->bc_ptrs[level]--;
4120
4121 /*
4122 * We combined blocks, so we have to update the parent keys if the
4123 * btree supports overlapped intervals. However, bc_ptrs[level + 1]
4124 * points to the old block so that the caller knows which record to
4125 * delete. Therefore, the caller must be savvy enough to call updkeys
4126 * for us if we return stat == 2. The other exit points from this
4127 * function don't require deletions further up the tree, so they can
4128 * call updkeys directly.
4129 */
4130
4131 /* Return value means the next level up has something to do. */
4132 *stat = 2;
4133 return 0;
4134
4135error0:
4136 if (tcur)
4137 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4138 return error;
4139}
4140
4141/*
4142 * Delete the record pointed to by cur.
4143 * The cursor refers to the place where the record was (could be inserted)
4144 * when the operation returns.
4145 */
4146int /* error */
4147xfs_btree_delete(
4148 struct xfs_btree_cur *cur,
4149 int *stat) /* success/failure */
4150{
4151 int error; /* error return value */
4152 int level;
4153 int i;
4154 bool joined = false;
4155
4156 /*
4157 * Go up the tree, starting at leaf level.
4158 *
4159 * If 2 is returned then a join was done; go to the next level.
4160 * Otherwise we are done.
4161 */
4162 for (level = 0, i = 2; i == 2; level++) {
4163 error = xfs_btree_delrec(cur, level, &i);
4164 if (error)
4165 goto error0;
4166 if (i == 2)
4167 joined = true;
4168 }
4169
4170 /*
4171 * If we combined blocks as part of deleting the record, delrec won't
4172 * have updated the parent high keys so we have to do that here.
4173 */
4174 if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4175 error = xfs_btree_updkeys_force(cur, 0);
4176 if (error)
4177 goto error0;
4178 }
4179
4180 if (i == 0) {
4181 for (level = 1; level < cur->bc_nlevels; level++) {
4182 if (cur->bc_ptrs[level] == 0) {
4183 error = xfs_btree_decrement(cur, level, &i);
4184 if (error)
4185 goto error0;
4186 break;
4187 }
4188 }
4189 }
4190
4191 *stat = i;
4192 return 0;
4193error0:
4194 return error;
4195}
4196
4197/*
4198 * Get the data from the pointed-to record.
4199 */
4200int /* error */
4201xfs_btree_get_rec(
4202 struct xfs_btree_cur *cur, /* btree cursor */
4203 union xfs_btree_rec **recp, /* output: btree record */
4204 int *stat) /* output: success/failure */
4205{
4206 struct xfs_btree_block *block; /* btree block */
4207 struct xfs_buf *bp; /* buffer pointer */
4208 int ptr; /* record number */
4209#ifdef DEBUG
4210 int error; /* error return value */
4211#endif
4212
4213 ptr = cur->bc_ptrs[0];
4214 block = xfs_btree_get_block(cur, 0, &bp);
4215
4216#ifdef DEBUG
4217 error = xfs_btree_check_block(cur, block, 0, bp);
4218 if (error)
4219 return error;
4220#endif
4221
4222 /*
4223 * Off the right end or left end, return failure.
4224 */
4225 if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4226 *stat = 0;
4227 return 0;
4228 }
4229
4230 /*
4231 * Point to the record and extract its data.
4232 */
4233 *recp = xfs_btree_rec_addr(cur, ptr, block);
4234 *stat = 1;
4235 return 0;
4236}
4237
4238/* Visit a block in a btree. */
4239STATIC int
4240xfs_btree_visit_block(
4241 struct xfs_btree_cur *cur,
4242 int level,
4243 xfs_btree_visit_blocks_fn fn,
4244 void *data)
4245{
4246 struct xfs_btree_block *block;
4247 struct xfs_buf *bp;
4248 union xfs_btree_ptr rptr;
4249 int error;
4250
4251 /* do right sibling readahead */
4252 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4253 block = xfs_btree_get_block(cur, level, &bp);
4254
4255 /* process the block */
4256 error = fn(cur, level, data);
4257 if (error)
4258 return error;
4259
4260 /* now read rh sibling block for next iteration */
4261 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4262 if (xfs_btree_ptr_is_null(cur, &rptr))
4263 return -ENOENT;
4264
4265 return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4266}
4267
4268
4269/* Visit every block in a btree. */
4270int
4271xfs_btree_visit_blocks(
4272 struct xfs_btree_cur *cur,
4273 xfs_btree_visit_blocks_fn fn,
4274 unsigned int flags,
4275 void *data)
4276{
4277 union xfs_btree_ptr lptr;
4278 int level;
4279 struct xfs_btree_block *block = NULL;
4280 int error = 0;
4281
4282 cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4283
4284 /* for each level */
4285 for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4286 /* grab the left hand block */
4287 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4288 if (error)
4289 return error;
4290
4291 /* readahead the left most block for the next level down */
4292 if (level > 0) {
4293 union xfs_btree_ptr *ptr;
4294
4295 ptr = xfs_btree_ptr_addr(cur, 1, block);
4296 xfs_btree_readahead_ptr(cur, ptr, 1);
4297
4298 /* save for the next iteration of the loop */
4299 xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4300
4301 if (!(flags & XFS_BTREE_VISIT_LEAVES))
4302 continue;
4303 } else if (!(flags & XFS_BTREE_VISIT_RECORDS)) {
4304 continue;
4305 }
4306
4307 /* for each buffer in the level */
4308 do {
4309 error = xfs_btree_visit_block(cur, level, fn, data);
4310 } while (!error);
4311
4312 if (error != -ENOENT)
4313 return error;
4314 }
4315
4316 return 0;
4317}
4318
4319/*
4320 * Change the owner of a btree.
4321 *
4322 * The mechanism we use here is ordered buffer logging. Because we don't know
4323 * how many buffers were are going to need to modify, we don't really want to
4324 * have to make transaction reservations for the worst case of every buffer in a
4325 * full size btree as that may be more space that we can fit in the log....
4326 *
4327 * We do the btree walk in the most optimal manner possible - we have sibling
4328 * pointers so we can just walk all the blocks on each level from left to right
4329 * in a single pass, and then move to the next level and do the same. We can
4330 * also do readahead on the sibling pointers to get IO moving more quickly,
4331 * though for slow disks this is unlikely to make much difference to performance
4332 * as the amount of CPU work we have to do before moving to the next block is
4333 * relatively small.
4334 *
4335 * For each btree block that we load, modify the owner appropriately, set the
4336 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4337 * we mark the region we change dirty so that if the buffer is relogged in
4338 * a subsequent transaction the changes we make here as an ordered buffer are
4339 * correctly relogged in that transaction. If we are in recovery context, then
4340 * just queue the modified buffer as delayed write buffer so the transaction
4341 * recovery completion writes the changes to disk.
4342 */
4343struct xfs_btree_block_change_owner_info {
4344 uint64_t new_owner;
4345 struct list_head *buffer_list;
4346};
4347
4348static int
4349xfs_btree_block_change_owner(
4350 struct xfs_btree_cur *cur,
4351 int level,
4352 void *data)
4353{
4354 struct xfs_btree_block_change_owner_info *bbcoi = data;
4355 struct xfs_btree_block *block;
4356 struct xfs_buf *bp;
4357
4358 /* modify the owner */
4359 block = xfs_btree_get_block(cur, level, &bp);
4360 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4361 if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4362 return 0;
4363 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4364 } else {
4365 if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4366 return 0;
4367 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4368 }
4369
4370 /*
4371 * If the block is a root block hosted in an inode, we might not have a
4372 * buffer pointer here and we shouldn't attempt to log the change as the
4373 * information is already held in the inode and discarded when the root
4374 * block is formatted into the on-disk inode fork. We still change it,
4375 * though, so everything is consistent in memory.
4376 */
4377 if (!bp) {
4378 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4379 ASSERT(level == cur->bc_nlevels - 1);
4380 return 0;
4381 }
4382
4383 if (cur->bc_tp) {
4384 if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4385 xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4386 return -EAGAIN;
4387 }
4388 } else {
4389 xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4390 }
4391
4392 return 0;
4393}
4394
4395int
4396xfs_btree_change_owner(
4397 struct xfs_btree_cur *cur,
4398 uint64_t new_owner,
4399 struct list_head *buffer_list)
4400{
4401 struct xfs_btree_block_change_owner_info bbcoi;
4402
4403 bbcoi.new_owner = new_owner;
4404 bbcoi.buffer_list = buffer_list;
4405
4406 return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4407 XFS_BTREE_VISIT_ALL, &bbcoi);
4408}
4409
4410/* Verify the v5 fields of a long-format btree block. */
4411xfs_failaddr_t
4412xfs_btree_lblock_v5hdr_verify(
4413 struct xfs_buf *bp,
4414 uint64_t owner)
4415{
4416 struct xfs_mount *mp = bp->b_mount;
4417 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4418
4419 if (!xfs_sb_version_hascrc(&mp->m_sb))
4420 return __this_address;
4421 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4422 return __this_address;
4423 if (block->bb_u.l.bb_blkno != cpu_to_be64(bp->b_bn))
4424 return __this_address;
4425 if (owner != XFS_RMAP_OWN_UNKNOWN &&
4426 be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4427 return __this_address;
4428 return NULL;
4429}
4430
4431/* Verify a long-format btree block. */
4432xfs_failaddr_t
4433xfs_btree_lblock_verify(
4434 struct xfs_buf *bp,
4435 unsigned int max_recs)
4436{
4437 struct xfs_mount *mp = bp->b_mount;
4438 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4439
4440 /* numrecs verification */
4441 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4442 return __this_address;
4443
4444 /* sibling pointer verification */
4445 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
4446 !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_leftsib)))
4447 return __this_address;
4448 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
4449 !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_rightsib)))
4450 return __this_address;
4451
4452 return NULL;
4453}
4454
4455/**
4456 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4457 * btree block
4458 *
4459 * @bp: buffer containing the btree block
4460 */
4461xfs_failaddr_t
4462xfs_btree_sblock_v5hdr_verify(
4463 struct xfs_buf *bp)
4464{
4465 struct xfs_mount *mp = bp->b_mount;
4466 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4467 struct xfs_perag *pag = bp->b_pag;
4468
4469 if (!xfs_sb_version_hascrc(&mp->m_sb))
4470 return __this_address;
4471 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4472 return __this_address;
4473 if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
4474 return __this_address;
4475 if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4476 return __this_address;
4477 return NULL;
4478}
4479
4480/**
4481 * xfs_btree_sblock_verify() -- verify a short-format btree block
4482 *
4483 * @bp: buffer containing the btree block
4484 * @max_recs: maximum records allowed in this btree node
4485 */
4486xfs_failaddr_t
4487xfs_btree_sblock_verify(
4488 struct xfs_buf *bp,
4489 unsigned int max_recs)
4490{
4491 struct xfs_mount *mp = bp->b_mount;
4492 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4493 xfs_agblock_t agno;
4494
4495 /* numrecs verification */
4496 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4497 return __this_address;
4498
4499 /* sibling pointer verification */
4500 agno = xfs_daddr_to_agno(mp, XFS_BUF_ADDR(bp));
4501 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
4502 !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_leftsib)))
4503 return __this_address;
4504 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
4505 !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_rightsib)))
4506 return __this_address;
4507
4508 return NULL;
4509}
4510
4511/*
4512 * Calculate the number of btree levels needed to store a given number of
4513 * records in a short-format btree.
4514 */
4515uint
4516xfs_btree_compute_maxlevels(
4517 uint *limits,
4518 unsigned long len)
4519{
4520 uint level;
4521 unsigned long maxblocks;
4522
4523 maxblocks = (len + limits[0] - 1) / limits[0];
4524 for (level = 1; maxblocks > 1; level++)
4525 maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4526 return level;
4527}
4528
4529/*
4530 * Query a regular btree for all records overlapping a given interval.
4531 * Start with a LE lookup of the key of low_rec and return all records
4532 * until we find a record with a key greater than the key of high_rec.
4533 */
4534STATIC int
4535xfs_btree_simple_query_range(
4536 struct xfs_btree_cur *cur,
4537 union xfs_btree_key *low_key,
4538 union xfs_btree_key *high_key,
4539 xfs_btree_query_range_fn fn,
4540 void *priv)
4541{
4542 union xfs_btree_rec *recp;
4543 union xfs_btree_key rec_key;
4544 int64_t diff;
4545 int stat;
4546 bool firstrec = true;
4547 int error;
4548
4549 ASSERT(cur->bc_ops->init_high_key_from_rec);
4550 ASSERT(cur->bc_ops->diff_two_keys);
4551
4552 /*
4553 * Find the leftmost record. The btree cursor must be set
4554 * to the low record used to generate low_key.
4555 */
4556 stat = 0;
4557 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4558 if (error)
4559 goto out;
4560
4561 /* Nothing? See if there's anything to the right. */
4562 if (!stat) {
4563 error = xfs_btree_increment(cur, 0, &stat);
4564 if (error)
4565 goto out;
4566 }
4567
4568 while (stat) {
4569 /* Find the record. */
4570 error = xfs_btree_get_rec(cur, &recp, &stat);
4571 if (error || !stat)
4572 break;
4573
4574 /* Skip if high_key(rec) < low_key. */
4575 if (firstrec) {
4576 cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4577 firstrec = false;
4578 diff = cur->bc_ops->diff_two_keys(cur, low_key,
4579 &rec_key);
4580 if (diff > 0)
4581 goto advloop;
4582 }
4583
4584 /* Stop if high_key < low_key(rec). */
4585 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4586 diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4587 if (diff > 0)
4588 break;
4589
4590 /* Callback */
4591 error = fn(cur, recp, priv);
4592 if (error)
4593 break;
4594
4595advloop:
4596 /* Move on to the next record. */
4597 error = xfs_btree_increment(cur, 0, &stat);
4598 if (error)
4599 break;
4600 }
4601
4602out:
4603 return error;
4604}
4605
4606/*
4607 * Query an overlapped interval btree for all records overlapping a given
4608 * interval. This function roughly follows the algorithm given in
4609 * "Interval Trees" of _Introduction to Algorithms_, which is section
4610 * 14.3 in the 2nd and 3rd editions.
4611 *
4612 * First, generate keys for the low and high records passed in.
4613 *
4614 * For any leaf node, generate the high and low keys for the record.
4615 * If the record keys overlap with the query low/high keys, pass the
4616 * record to the function iterator.
4617 *
4618 * For any internal node, compare the low and high keys of each
4619 * pointer against the query low/high keys. If there's an overlap,
4620 * follow the pointer.
4621 *
4622 * As an optimization, we stop scanning a block when we find a low key
4623 * that is greater than the query's high key.
4624 */
4625STATIC int
4626xfs_btree_overlapped_query_range(
4627 struct xfs_btree_cur *cur,
4628 union xfs_btree_key *low_key,
4629 union xfs_btree_key *high_key,
4630 xfs_btree_query_range_fn fn,
4631 void *priv)
4632{
4633 union xfs_btree_ptr ptr;
4634 union xfs_btree_ptr *pp;
4635 union xfs_btree_key rec_key;
4636 union xfs_btree_key rec_hkey;
4637 union xfs_btree_key *lkp;
4638 union xfs_btree_key *hkp;
4639 union xfs_btree_rec *recp;
4640 struct xfs_btree_block *block;
4641 int64_t ldiff;
4642 int64_t hdiff;
4643 int level;
4644 struct xfs_buf *bp;
4645 int i;
4646 int error;
4647
4648 /* Load the root of the btree. */
4649 level = cur->bc_nlevels - 1;
4650 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4651 error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4652 if (error)
4653 return error;
4654 xfs_btree_get_block(cur, level, &bp);
4655 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4656#ifdef DEBUG
4657 error = xfs_btree_check_block(cur, block, level, bp);
4658 if (error)
4659 goto out;
4660#endif
4661 cur->bc_ptrs[level] = 1;
4662
4663 while (level < cur->bc_nlevels) {
4664 block = xfs_btree_get_block(cur, level, &bp);
4665
4666 /* End of node, pop back towards the root. */
4667 if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4668pop_up:
4669 if (level < cur->bc_nlevels - 1)
4670 cur->bc_ptrs[level + 1]++;
4671 level++;
4672 continue;
4673 }
4674
4675 if (level == 0) {
4676 /* Handle a leaf node. */
4677 recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4678
4679 cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4680 ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4681 low_key);
4682
4683 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4684 hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4685 &rec_key);
4686
4687 /*
4688 * If (record's high key >= query's low key) and
4689 * (query's high key >= record's low key), then
4690 * this record overlaps the query range; callback.
4691 */
4692 if (ldiff >= 0 && hdiff >= 0) {
4693 error = fn(cur, recp, priv);
4694 if (error)
4695 break;
4696 } else if (hdiff < 0) {
4697 /* Record is larger than high key; pop. */
4698 goto pop_up;
4699 }
4700 cur->bc_ptrs[level]++;
4701 continue;
4702 }
4703
4704 /* Handle an internal node. */
4705 lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4706 hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4707 pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4708
4709 ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4710 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4711
4712 /*
4713 * If (pointer's high key >= query's low key) and
4714 * (query's high key >= pointer's low key), then
4715 * this record overlaps the query range; follow pointer.
4716 */
4717 if (ldiff >= 0 && hdiff >= 0) {
4718 level--;
4719 error = xfs_btree_lookup_get_block(cur, level, pp,
4720 &block);
4721 if (error)
4722 goto out;
4723 xfs_btree_get_block(cur, level, &bp);
4724 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4725#ifdef DEBUG
4726 error = xfs_btree_check_block(cur, block, level, bp);
4727 if (error)
4728 goto out;
4729#endif
4730 cur->bc_ptrs[level] = 1;
4731 continue;
4732 } else if (hdiff < 0) {
4733 /* The low key is larger than the upper range; pop. */
4734 goto pop_up;
4735 }
4736 cur->bc_ptrs[level]++;
4737 }
4738
4739out:
4740 /*
4741 * If we don't end this function with the cursor pointing at a record
4742 * block, a subsequent non-error cursor deletion will not release
4743 * node-level buffers, causing a buffer leak. This is quite possible
4744 * with a zero-results range query, so release the buffers if we
4745 * failed to return any results.
4746 */
4747 if (cur->bc_bufs[0] == NULL) {
4748 for (i = 0; i < cur->bc_nlevels; i++) {
4749 if (cur->bc_bufs[i]) {
4750 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4751 cur->bc_bufs[i] = NULL;
4752 cur->bc_ptrs[i] = 0;
4753 cur->bc_ra[i] = 0;
4754 }
4755 }
4756 }
4757
4758 return error;
4759}
4760
4761/*
4762 * Query a btree for all records overlapping a given interval of keys. The
4763 * supplied function will be called with each record found; return one of the
4764 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4765 * code. This function returns -ECANCELED, zero, or a negative error code.
4766 */
4767int
4768xfs_btree_query_range(
4769 struct xfs_btree_cur *cur,
4770 union xfs_btree_irec *low_rec,
4771 union xfs_btree_irec *high_rec,
4772 xfs_btree_query_range_fn fn,
4773 void *priv)
4774{
4775 union xfs_btree_rec rec;
4776 union xfs_btree_key low_key;
4777 union xfs_btree_key high_key;
4778
4779 /* Find the keys of both ends of the interval. */
4780 cur->bc_rec = *high_rec;
4781 cur->bc_ops->init_rec_from_cur(cur, &rec);
4782 cur->bc_ops->init_key_from_rec(&high_key, &rec);
4783
4784 cur->bc_rec = *low_rec;
4785 cur->bc_ops->init_rec_from_cur(cur, &rec);
4786 cur->bc_ops->init_key_from_rec(&low_key, &rec);
4787
4788 /* Enforce low key < high key. */
4789 if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4790 return -EINVAL;
4791
4792 if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4793 return xfs_btree_simple_query_range(cur, &low_key,
4794 &high_key, fn, priv);
4795 return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4796 fn, priv);
4797}
4798
4799/* Query a btree for all records. */
4800int
4801xfs_btree_query_all(
4802 struct xfs_btree_cur *cur,
4803 xfs_btree_query_range_fn fn,
4804 void *priv)
4805{
4806 union xfs_btree_key low_key;
4807 union xfs_btree_key high_key;
4808
4809 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4810 memset(&low_key, 0, sizeof(low_key));
4811 memset(&high_key, 0xFF, sizeof(high_key));
4812
4813 return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4814}
4815
4816/*
4817 * Calculate the number of blocks needed to store a given number of records
4818 * in a short-format (per-AG metadata) btree.
4819 */
4820unsigned long long
4821xfs_btree_calc_size(
4822 uint *limits,
4823 unsigned long long len)
4824{
4825 int level;
4826 int maxrecs;
4827 unsigned long long rval;
4828
4829 maxrecs = limits[0];
4830 for (level = 0, rval = 0; len > 1; level++) {
4831 len += maxrecs - 1;
4832 do_div(len, maxrecs);
4833 maxrecs = limits[1];
4834 rval += len;
4835 }
4836 return rval;
4837}
4838
4839static int
4840xfs_btree_count_blocks_helper(
4841 struct xfs_btree_cur *cur,
4842 int level,
4843 void *data)
4844{
4845 xfs_extlen_t *blocks = data;
4846 (*blocks)++;
4847
4848 return 0;
4849}
4850
4851/* Count the blocks in a btree and return the result in *blocks. */
4852int
4853xfs_btree_count_blocks(
4854 struct xfs_btree_cur *cur,
4855 xfs_extlen_t *blocks)
4856{
4857 *blocks = 0;
4858 return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4859 XFS_BTREE_VISIT_ALL, blocks);
4860}
4861
4862/* Compare two btree pointers. */
4863int64_t
4864xfs_btree_diff_two_ptrs(
4865 struct xfs_btree_cur *cur,
4866 const union xfs_btree_ptr *a,
4867 const union xfs_btree_ptr *b)
4868{
4869 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4870 return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
4871 return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
4872}
4873
4874/* If there's an extent, we're done. */
4875STATIC int
4876xfs_btree_has_record_helper(
4877 struct xfs_btree_cur *cur,
4878 union xfs_btree_rec *rec,
4879 void *priv)
4880{
4881 return -ECANCELED;
4882}
4883
4884/* Is there a record covering a given range of keys? */
4885int
4886xfs_btree_has_record(
4887 struct xfs_btree_cur *cur,
4888 union xfs_btree_irec *low,
4889 union xfs_btree_irec *high,
4890 bool *exists)
4891{
4892 int error;
4893
4894 error = xfs_btree_query_range(cur, low, high,
4895 &xfs_btree_has_record_helper, NULL);
4896 if (error == -ECANCELED) {
4897 *exists = true;
4898 return 0;
4899 }
4900 *exists = false;
4901 return error;
4902}
4903
4904/* Are there more records in this btree? */
4905bool
4906xfs_btree_has_more_records(
4907 struct xfs_btree_cur *cur)
4908{
4909 struct xfs_btree_block *block;
4910 struct xfs_buf *bp;
4911
4912 block = xfs_btree_get_block(cur, 0, &bp);
4913
4914 /* There are still records in this block. */
4915 if (cur->bc_ptrs[0] < xfs_btree_get_numrecs(block))
4916 return true;
4917
4918 /* There are more record blocks. */
4919 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4920 return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
4921 else
4922 return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
4923}