Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Common code for Intel Running Average Power Limit (RAPL) support.
   4 * Copyright (c) 2019, Intel Corporation.
   5 */
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include <linux/bitmap.h>
   9#include <linux/cleanup.h>
  10#include <linux/cpu.h>
  11#include <linux/delay.h>
  12#include <linux/device.h>
  13#include <linux/intel_rapl.h>
  14#include <linux/kernel.h>
 
  15#include <linux/list.h>
 
 
 
  16#include <linux/log2.h>
  17#include <linux/module.h>
  18#include <linux/nospec.h>
  19#include <linux/perf_event.h>
  20#include <linux/platform_device.h>
  21#include <linux/powercap.h>
  22#include <linux/processor.h>
  23#include <linux/slab.h>
  24#include <linux/suspend.h>
  25#include <linux/sysfs.h>
  26#include <linux/types.h>
 
  27
 
  28#include <asm/cpu_device_id.h>
  29#include <asm/intel-family.h>
  30#include <asm/iosf_mbi.h>
  31
  32/* bitmasks for RAPL MSRs, used by primitive access functions */
  33#define ENERGY_STATUS_MASK      0xffffffff
  34
  35#define POWER_LIMIT1_MASK       0x7FFF
  36#define POWER_LIMIT1_ENABLE     BIT(15)
  37#define POWER_LIMIT1_CLAMP      BIT(16)
  38
  39#define POWER_LIMIT2_MASK       (0x7FFFULL<<32)
  40#define POWER_LIMIT2_ENABLE     BIT_ULL(47)
  41#define POWER_LIMIT2_CLAMP      BIT_ULL(48)
  42#define POWER_HIGH_LOCK         BIT_ULL(63)
  43#define POWER_LOW_LOCK          BIT(31)
  44
  45#define POWER_LIMIT4_MASK		0x1FFF
  46
  47#define TIME_WINDOW1_MASK       (0x7FULL<<17)
  48#define TIME_WINDOW2_MASK       (0x7FULL<<49)
  49
  50#define POWER_UNIT_OFFSET	0
  51#define POWER_UNIT_MASK		0x0F
  52
  53#define ENERGY_UNIT_OFFSET	0x08
  54#define ENERGY_UNIT_MASK	0x1F00
  55
  56#define TIME_UNIT_OFFSET	0x10
  57#define TIME_UNIT_MASK		0xF0000
  58
  59#define POWER_INFO_MAX_MASK     (0x7fffULL<<32)
  60#define POWER_INFO_MIN_MASK     (0x7fffULL<<16)
  61#define POWER_INFO_MAX_TIME_WIN_MASK     (0x3fULL<<48)
  62#define POWER_INFO_THERMAL_SPEC_MASK     0x7fff
  63
  64#define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
  65#define PP_POLICY_MASK         0x1F
  66
  67/*
  68 * SPR has different layout for Psys Domain PowerLimit registers.
  69 * There are 17 bits of PL1 and PL2 instead of 15 bits.
  70 * The Enable bits and TimeWindow bits are also shifted as a result.
  71 */
  72#define PSYS_POWER_LIMIT1_MASK       0x1FFFF
  73#define PSYS_POWER_LIMIT1_ENABLE     BIT(17)
  74
  75#define PSYS_POWER_LIMIT2_MASK       (0x1FFFFULL<<32)
  76#define PSYS_POWER_LIMIT2_ENABLE     BIT_ULL(49)
  77
  78#define PSYS_TIME_WINDOW1_MASK       (0x7FULL<<19)
  79#define PSYS_TIME_WINDOW2_MASK       (0x7FULL<<51)
  80
  81/* bitmasks for RAPL TPMI, used by primitive access functions */
  82#define TPMI_POWER_LIMIT_MASK	0x3FFFF
  83#define TPMI_POWER_LIMIT_ENABLE	BIT_ULL(62)
  84#define TPMI_TIME_WINDOW_MASK	(0x7FULL<<18)
  85#define TPMI_INFO_SPEC_MASK	0x3FFFF
  86#define TPMI_INFO_MIN_MASK	(0x3FFFFULL << 18)
  87#define TPMI_INFO_MAX_MASK	(0x3FFFFULL << 36)
  88#define TPMI_INFO_MAX_TIME_WIN_MASK	(0x7FULL << 54)
  89
  90/* Non HW constants */
  91#define RAPL_PRIMITIVE_DERIVED       BIT(1)	/* not from raw data */
  92#define RAPL_PRIMITIVE_DUMMY         BIT(2)
  93
  94#define TIME_WINDOW_MAX_MSEC 40000
  95#define TIME_WINDOW_MIN_MSEC 250
  96#define ENERGY_UNIT_SCALE    1000	/* scale from driver unit to powercap unit */
  97enum unit_type {
  98	ARBITRARY_UNIT,		/* no translation */
  99	POWER_UNIT,
 100	ENERGY_UNIT,
 101	TIME_UNIT,
 102};
 103
 104/* per domain data, some are optional */
 105#define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
 106
 107#define	DOMAIN_STATE_INACTIVE           BIT(0)
 108#define	DOMAIN_STATE_POWER_LIMIT_SET    BIT(1)
 
 109
 110static const char *pl_names[NR_POWER_LIMITS] = {
 111	[POWER_LIMIT1] = "long_term",
 112	[POWER_LIMIT2] = "short_term",
 113	[POWER_LIMIT4] = "peak_power",
 114};
 115
 116enum pl_prims {
 117	PL_ENABLE,
 118	PL_CLAMP,
 119	PL_LIMIT,
 120	PL_TIME_WINDOW,
 121	PL_MAX_POWER,
 122	PL_LOCK,
 123};
 124
 125static bool is_pl_valid(struct rapl_domain *rd, int pl)
 126{
 127	if (pl < POWER_LIMIT1 || pl > POWER_LIMIT4)
 128		return false;
 129	return rd->rpl[pl].name ? true : false;
 130}
 131
 132static int get_pl_lock_prim(struct rapl_domain *rd, int pl)
 133{
 134	if (rd->rp->priv->type == RAPL_IF_TPMI) {
 135		if (pl == POWER_LIMIT1)
 136			return PL1_LOCK;
 137		if (pl == POWER_LIMIT2)
 138			return PL2_LOCK;
 139		if (pl == POWER_LIMIT4)
 140			return PL4_LOCK;
 141	}
 142
 143	/* MSR/MMIO Interface doesn't have Lock bit for PL4 */
 144	if (pl == POWER_LIMIT4)
 145		return -EINVAL;
 146
 147	/*
 148	 * Power Limit register that supports two power limits has a different
 149	 * bit position for the Lock bit.
 150	 */
 151	if (rd->rp->priv->limits[rd->id] & BIT(POWER_LIMIT2))
 152		return FW_HIGH_LOCK;
 153	return FW_LOCK;
 154}
 155
 156static int get_pl_prim(struct rapl_domain *rd, int pl, enum pl_prims prim)
 157{
 158	switch (pl) {
 159	case POWER_LIMIT1:
 160		if (prim == PL_ENABLE)
 161			return PL1_ENABLE;
 162		if (prim == PL_CLAMP && rd->rp->priv->type != RAPL_IF_TPMI)
 163			return PL1_CLAMP;
 164		if (prim == PL_LIMIT)
 165			return POWER_LIMIT1;
 166		if (prim == PL_TIME_WINDOW)
 167			return TIME_WINDOW1;
 168		if (prim == PL_MAX_POWER)
 169			return THERMAL_SPEC_POWER;
 170		if (prim == PL_LOCK)
 171			return get_pl_lock_prim(rd, pl);
 172		return -EINVAL;
 173	case POWER_LIMIT2:
 174		if (prim == PL_ENABLE)
 175			return PL2_ENABLE;
 176		if (prim == PL_CLAMP && rd->rp->priv->type != RAPL_IF_TPMI)
 177			return PL2_CLAMP;
 178		if (prim == PL_LIMIT)
 179			return POWER_LIMIT2;
 180		if (prim == PL_TIME_WINDOW)
 181			return TIME_WINDOW2;
 182		if (prim == PL_MAX_POWER)
 183			return MAX_POWER;
 184		if (prim == PL_LOCK)
 185			return get_pl_lock_prim(rd, pl);
 186		return -EINVAL;
 187	case POWER_LIMIT4:
 188		if (prim == PL_LIMIT)
 189			return POWER_LIMIT4;
 190		if (prim == PL_ENABLE)
 191			return PL4_ENABLE;
 192		/* PL4 would be around two times PL2, use same prim as PL2. */
 193		if (prim == PL_MAX_POWER)
 194			return MAX_POWER;
 195		if (prim == PL_LOCK)
 196			return get_pl_lock_prim(rd, pl);
 197		return -EINVAL;
 198	default:
 199		return -EINVAL;
 200	}
 201}
 202
 203#define power_zone_to_rapl_domain(_zone) \
 204	container_of(_zone, struct rapl_domain, power_zone)
 205
 206struct rapl_defaults {
 207	u8 floor_freq_reg_addr;
 208	int (*check_unit)(struct rapl_domain *rd);
 209	void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
 210	u64 (*compute_time_window)(struct rapl_domain *rd, u64 val,
 211				    bool to_raw);
 212	unsigned int dram_domain_energy_unit;
 213	unsigned int psys_domain_energy_unit;
 214	bool spr_psys_bits;
 215};
 216static struct rapl_defaults *defaults_msr;
 217static const struct rapl_defaults defaults_tpmi;
 218
 219static struct rapl_defaults *get_defaults(struct rapl_package *rp)
 220{
 221	return rp->priv->defaults;
 222}
 223
 224/* Sideband MBI registers */
 225#define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
 226#define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
 227
 228#define PACKAGE_PLN_INT_SAVED   BIT(0)
 229#define MAX_PRIM_NAME (32)
 230
 231/* per domain data. used to describe individual knobs such that access function
 232 * can be consolidated into one instead of many inline functions.
 233 */
 234struct rapl_primitive_info {
 235	const char *name;
 236	u64 mask;
 237	int shift;
 238	enum rapl_domain_reg_id id;
 239	enum unit_type unit;
 240	u32 flag;
 241};
 242
 243#define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) {	\
 244		.name = #p,			\
 245		.mask = m,			\
 246		.shift = s,			\
 247		.id = i,			\
 248		.unit = u,			\
 249		.flag = f			\
 250	}
 251
 252static void rapl_init_domains(struct rapl_package *rp);
 253static int rapl_read_data_raw(struct rapl_domain *rd,
 254			      enum rapl_primitives prim,
 255			      bool xlate, u64 *data);
 256static int rapl_write_data_raw(struct rapl_domain *rd,
 257			       enum rapl_primitives prim,
 258			       unsigned long long value);
 259static int rapl_read_pl_data(struct rapl_domain *rd, int pl,
 260			      enum pl_prims pl_prim,
 261			      bool xlate, u64 *data);
 262static int rapl_write_pl_data(struct rapl_domain *rd, int pl,
 263			       enum pl_prims pl_prim,
 264			       unsigned long long value);
 265static u64 rapl_unit_xlate(struct rapl_domain *rd,
 266			   enum unit_type type, u64 value, int to_raw);
 267static void package_power_limit_irq_save(struct rapl_package *rp);
 268
 269static LIST_HEAD(rapl_packages);	/* guarded by CPU hotplug lock */
 270
 271static const char *const rapl_domain_names[] = {
 272	"package",
 273	"core",
 274	"uncore",
 275	"dram",
 276	"psys",
 277};
 278
 279static int get_energy_counter(struct powercap_zone *power_zone,
 280			      u64 *energy_raw)
 281{
 282	struct rapl_domain *rd;
 283	u64 energy_now;
 284
 285	/* prevent CPU hotplug, make sure the RAPL domain does not go
 286	 * away while reading the counter.
 287	 */
 288	cpus_read_lock();
 289	rd = power_zone_to_rapl_domain(power_zone);
 290
 291	if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) {
 292		*energy_raw = energy_now;
 293		cpus_read_unlock();
 294
 295		return 0;
 296	}
 297	cpus_read_unlock();
 298
 299	return -EIO;
 300}
 301
 302static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
 303{
 304	struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
 305
 306	*energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
 307	return 0;
 308}
 309
 310static int release_zone(struct powercap_zone *power_zone)
 311{
 312	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
 313	struct rapl_package *rp = rd->rp;
 314
 315	/* package zone is the last zone of a package, we can free
 316	 * memory here since all children has been unregistered.
 317	 */
 318	if (rd->id == RAPL_DOMAIN_PACKAGE) {
 319		kfree(rd);
 320		rp->domains = NULL;
 321	}
 322
 323	return 0;
 324
 325}
 326
 327static int find_nr_power_limit(struct rapl_domain *rd)
 328{
 329	int i, nr_pl = 0;
 330
 331	for (i = 0; i < NR_POWER_LIMITS; i++) {
 332		if (is_pl_valid(rd, i))
 333			nr_pl++;
 334	}
 335
 336	return nr_pl;
 337}
 338
 339static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
 340{
 341	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
 342	struct rapl_defaults *defaults = get_defaults(rd->rp);
 343	int ret;
 344
 345	cpus_read_lock();
 346	ret = rapl_write_pl_data(rd, POWER_LIMIT1, PL_ENABLE, mode);
 347	if (!ret && defaults->set_floor_freq)
 348		defaults->set_floor_freq(rd, mode);
 349	cpus_read_unlock();
 
 
 
 350
 351	return ret;
 352}
 353
 354static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
 355{
 356	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
 357	u64 val;
 358	int ret;
 359
 360	if (rd->rpl[POWER_LIMIT1].locked) {
 361		*mode = false;
 362		return 0;
 363	}
 364	cpus_read_lock();
 365	ret = rapl_read_pl_data(rd, POWER_LIMIT1, PL_ENABLE, true, &val);
 366	if (!ret)
 367		*mode = val;
 368	cpus_read_unlock();
 
 
 369
 370	return ret;
 371}
 372
 373/* per RAPL domain ops, in the order of rapl_domain_type */
 374static const struct powercap_zone_ops zone_ops[] = {
 375	/* RAPL_DOMAIN_PACKAGE */
 376	{
 377	 .get_energy_uj = get_energy_counter,
 378	 .get_max_energy_range_uj = get_max_energy_counter,
 379	 .release = release_zone,
 380	 .set_enable = set_domain_enable,
 381	 .get_enable = get_domain_enable,
 382	 },
 383	/* RAPL_DOMAIN_PP0 */
 384	{
 385	 .get_energy_uj = get_energy_counter,
 386	 .get_max_energy_range_uj = get_max_energy_counter,
 387	 .release = release_zone,
 388	 .set_enable = set_domain_enable,
 389	 .get_enable = get_domain_enable,
 390	 },
 391	/* RAPL_DOMAIN_PP1 */
 392	{
 393	 .get_energy_uj = get_energy_counter,
 394	 .get_max_energy_range_uj = get_max_energy_counter,
 395	 .release = release_zone,
 396	 .set_enable = set_domain_enable,
 397	 .get_enable = get_domain_enable,
 398	 },
 399	/* RAPL_DOMAIN_DRAM */
 400	{
 401	 .get_energy_uj = get_energy_counter,
 402	 .get_max_energy_range_uj = get_max_energy_counter,
 403	 .release = release_zone,
 404	 .set_enable = set_domain_enable,
 405	 .get_enable = get_domain_enable,
 406	 },
 407	/* RAPL_DOMAIN_PLATFORM */
 408	{
 409	 .get_energy_uj = get_energy_counter,
 410	 .get_max_energy_range_uj = get_max_energy_counter,
 411	 .release = release_zone,
 412	 .set_enable = set_domain_enable,
 413	 .get_enable = get_domain_enable,
 414	 },
 415};
 416
 417/*
 418 * Constraint index used by powercap can be different than power limit (PL)
 419 * index in that some  PLs maybe missing due to non-existent MSRs. So we
 420 * need to convert here by finding the valid PLs only (name populated).
 421 */
 422static int contraint_to_pl(struct rapl_domain *rd, int cid)
 423{
 424	int i, j;
 425
 426	for (i = POWER_LIMIT1, j = 0; i < NR_POWER_LIMITS; i++) {
 427		if (is_pl_valid(rd, i) && j++ == cid) {
 428			pr_debug("%s: index %d\n", __func__, i);
 429			return i;
 430		}
 431	}
 432	pr_err("Cannot find matching power limit for constraint %d\n", cid);
 433
 434	return -EINVAL;
 435}
 436
 437static int set_power_limit(struct powercap_zone *power_zone, int cid,
 438			   u64 power_limit)
 439{
 440	struct rapl_domain *rd;
 441	struct rapl_package *rp;
 442	int ret = 0;
 443	int id;
 444
 445	cpus_read_lock();
 446	rd = power_zone_to_rapl_domain(power_zone);
 447	id = contraint_to_pl(rd, cid);
 
 
 
 
 
 448	rp = rd->rp;
 449
 450	ret = rapl_write_pl_data(rd, id, PL_LIMIT, power_limit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 451	if (!ret)
 452		package_power_limit_irq_save(rp);
 453	cpus_read_unlock();
 
 454	return ret;
 455}
 456
 457static int get_current_power_limit(struct powercap_zone *power_zone, int cid,
 458				   u64 *data)
 459{
 460	struct rapl_domain *rd;
 461	u64 val;
 
 462	int ret = 0;
 463	int id;
 464
 465	cpus_read_lock();
 466	rd = power_zone_to_rapl_domain(power_zone);
 467	id = contraint_to_pl(rd, cid);
 
 
 
 
 468
 469	ret = rapl_read_pl_data(rd, id, PL_LIMIT, true, &val);
 470	if (!ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 471		*data = val;
 472
 473	cpus_read_unlock();
 
 474
 475	return ret;
 476}
 477
 478static int set_time_window(struct powercap_zone *power_zone, int cid,
 479			   u64 window)
 480{
 481	struct rapl_domain *rd;
 482	int ret = 0;
 483	int id;
 484
 485	cpus_read_lock();
 486	rd = power_zone_to_rapl_domain(power_zone);
 487	id = contraint_to_pl(rd, cid);
 
 
 
 
 488
 489	ret = rapl_write_pl_data(rd, id, PL_TIME_WINDOW, window);
 
 
 
 
 
 
 
 
 
 490
 491	cpus_read_unlock();
 
 492	return ret;
 493}
 494
 495static int get_time_window(struct powercap_zone *power_zone, int cid,
 496			   u64 *data)
 497{
 498	struct rapl_domain *rd;
 499	u64 val;
 500	int ret = 0;
 501	int id;
 502
 503	cpus_read_lock();
 504	rd = power_zone_to_rapl_domain(power_zone);
 505	id = contraint_to_pl(rd, cid);
 
 
 
 
 506
 507	ret = rapl_read_pl_data(rd, id, PL_TIME_WINDOW, true, &val);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 508	if (!ret)
 509		*data = val;
 510
 511	cpus_read_unlock();
 
 512
 513	return ret;
 514}
 515
 516static const char *get_constraint_name(struct powercap_zone *power_zone,
 517				       int cid)
 518{
 519	struct rapl_domain *rd;
 520	int id;
 521
 522	rd = power_zone_to_rapl_domain(power_zone);
 523	id = contraint_to_pl(rd, cid);
 524	if (id >= 0)
 525		return rd->rpl[id].name;
 526
 527	return NULL;
 528}
 529
 530static int get_max_power(struct powercap_zone *power_zone, int cid, u64 *data)
 531{
 532	struct rapl_domain *rd;
 533	u64 val;
 
 534	int ret = 0;
 535	int id;
 536
 537	cpus_read_lock();
 538	rd = power_zone_to_rapl_domain(power_zone);
 539	id = contraint_to_pl(rd, cid);
 540
 541	ret = rapl_read_pl_data(rd, id, PL_MAX_POWER, true, &val);
 542	if (!ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 543		*data = val;
 544
 545	/* As a generalization rule, PL4 would be around two times PL2. */
 546	if (id == POWER_LIMIT4)
 547		*data = *data * 2;
 548
 549	cpus_read_unlock();
 550
 551	return ret;
 552}
 553
 554static const struct powercap_zone_constraint_ops constraint_ops = {
 555	.set_power_limit_uw = set_power_limit,
 556	.get_power_limit_uw = get_current_power_limit,
 557	.set_time_window_us = set_time_window,
 558	.get_time_window_us = get_time_window,
 559	.get_max_power_uw = get_max_power,
 560	.get_name = get_constraint_name,
 561};
 562
 563/* Return the id used for read_raw/write_raw callback */
 564static int get_rid(struct rapl_package *rp)
 565{
 566	return rp->lead_cpu >= 0 ? rp->lead_cpu : rp->id;
 567}
 568
 569/* called after domain detection and package level data are set */
 570static void rapl_init_domains(struct rapl_package *rp)
 571{
 572	enum rapl_domain_type i;
 573	enum rapl_domain_reg_id j;
 574	struct rapl_domain *rd = rp->domains;
 575
 576	for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
 577		unsigned int mask = rp->domain_map & (1 << i);
 578		int t;
 579
 580		if (!mask)
 581			continue;
 582
 583		rd->rp = rp;
 584
 585		if (i == RAPL_DOMAIN_PLATFORM && rp->id > 0) {
 586			snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "psys-%d",
 587				rp->lead_cpu >= 0 ? topology_physical_package_id(rp->lead_cpu) :
 588				rp->id);
 589		} else {
 590			snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "%s",
 591				rapl_domain_names[i]);
 592		}
 593
 594		rd->id = i;
 
 
 595
 596		/* PL1 is supported by default */
 597		rp->priv->limits[i] |= BIT(POWER_LIMIT1);
 
 
 
 
 
 
 598
 599		for (t = POWER_LIMIT1; t < NR_POWER_LIMITS; t++) {
 600			if (rp->priv->limits[i] & BIT(t))
 601				rd->rpl[t].name = pl_names[t];
 
 602		}
 603
 604		for (j = 0; j < RAPL_DOMAIN_REG_MAX; j++)
 605			rd->regs[j] = rp->priv->regs[i][j];
 606
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 607		rd++;
 608	}
 609}
 610
 611static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
 612			   u64 value, int to_raw)
 613{
 614	u64 units = 1;
 615	struct rapl_defaults *defaults = get_defaults(rd->rp);
 616	u64 scale = 1;
 617
 618	switch (type) {
 619	case POWER_UNIT:
 620		units = rd->power_unit;
 621		break;
 622	case ENERGY_UNIT:
 623		scale = ENERGY_UNIT_SCALE;
 624		units = rd->energy_unit;
 
 
 
 
 625		break;
 626	case TIME_UNIT:
 627		return defaults->compute_time_window(rd, value, to_raw);
 628	case ARBITRARY_UNIT:
 629	default:
 630		return value;
 631	}
 632
 633	if (to_raw)
 634		return div64_u64(value, units) * scale;
 635
 636	value *= units;
 637
 638	return div64_u64(value, scale);
 639}
 640
 641/* RAPL primitives for MSR and MMIO I/F */
 642static struct rapl_primitive_info rpi_msr[NR_RAPL_PRIMITIVES] = {
 643	/* name, mask, shift, msr index, unit divisor */
 644	[POWER_LIMIT1] = PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
 
 
 645			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
 646	[POWER_LIMIT2] = PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
 647			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
 648	[POWER_LIMIT4] = PRIMITIVE_INFO_INIT(POWER_LIMIT4, POWER_LIMIT4_MASK, 0,
 649				RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
 650	[ENERGY_COUNTER] = PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
 651			    RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
 652	[FW_LOCK] = PRIMITIVE_INFO_INIT(FW_LOCK, POWER_LOW_LOCK, 31,
 653			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 654	[FW_HIGH_LOCK] = PRIMITIVE_INFO_INIT(FW_LOCK, POWER_HIGH_LOCK, 63,
 655			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 656	[PL1_ENABLE] = PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
 657			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 658	[PL1_CLAMP] = PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
 659			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 660	[PL2_ENABLE] = PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
 661			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 662	[PL2_CLAMP] = PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
 663			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 664	[TIME_WINDOW1] = PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
 
 
 665			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
 666	[TIME_WINDOW2] = PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
 667			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
 668	[THERMAL_SPEC_POWER] = PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
 669			    0, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
 670	[MAX_POWER] = PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
 671			    RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
 672	[MIN_POWER] = PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
 673			    RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
 674	[MAX_TIME_WINDOW] = PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
 675			    RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
 676	[THROTTLED_TIME] = PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
 677			    RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
 678	[PRIORITY_LEVEL] = PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
 679			    RAPL_DOMAIN_REG_POLICY, ARBITRARY_UNIT, 0),
 680	[PSYS_POWER_LIMIT1] = PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT1, PSYS_POWER_LIMIT1_MASK, 0,
 681			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
 682	[PSYS_POWER_LIMIT2] = PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT2, PSYS_POWER_LIMIT2_MASK, 32,
 683			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
 684	[PSYS_PL1_ENABLE] = PRIMITIVE_INFO_INIT(PSYS_PL1_ENABLE, PSYS_POWER_LIMIT1_ENABLE, 17,
 685			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 686	[PSYS_PL2_ENABLE] = PRIMITIVE_INFO_INIT(PSYS_PL2_ENABLE, PSYS_POWER_LIMIT2_ENABLE, 49,
 687			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 688	[PSYS_TIME_WINDOW1] = PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW1, PSYS_TIME_WINDOW1_MASK, 19,
 689			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
 690	[PSYS_TIME_WINDOW2] = PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW2, PSYS_TIME_WINDOW2_MASK, 51,
 691			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
 692	/* non-hardware */
 693	[AVERAGE_POWER] = PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
 694			    RAPL_PRIMITIVE_DERIVED),
 
 695};
 696
 697/* RAPL primitives for TPMI I/F */
 698static struct rapl_primitive_info rpi_tpmi[NR_RAPL_PRIMITIVES] = {
 699	/* name, mask, shift, msr index, unit divisor */
 700	[POWER_LIMIT1] = PRIMITIVE_INFO_INIT(POWER_LIMIT1, TPMI_POWER_LIMIT_MASK, 0,
 701		RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
 702	[POWER_LIMIT2] = PRIMITIVE_INFO_INIT(POWER_LIMIT2, TPMI_POWER_LIMIT_MASK, 0,
 703		RAPL_DOMAIN_REG_PL2, POWER_UNIT, 0),
 704	[POWER_LIMIT4] = PRIMITIVE_INFO_INIT(POWER_LIMIT4, TPMI_POWER_LIMIT_MASK, 0,
 705		RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
 706	[ENERGY_COUNTER] = PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
 707		RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
 708	[PL1_LOCK] = PRIMITIVE_INFO_INIT(PL1_LOCK, POWER_HIGH_LOCK, 63,
 709		RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 710	[PL2_LOCK] = PRIMITIVE_INFO_INIT(PL2_LOCK, POWER_HIGH_LOCK, 63,
 711		RAPL_DOMAIN_REG_PL2, ARBITRARY_UNIT, 0),
 712	[PL4_LOCK] = PRIMITIVE_INFO_INIT(PL4_LOCK, POWER_HIGH_LOCK, 63,
 713		RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
 714	[PL1_ENABLE] = PRIMITIVE_INFO_INIT(PL1_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
 715		RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 716	[PL2_ENABLE] = PRIMITIVE_INFO_INIT(PL2_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
 717		RAPL_DOMAIN_REG_PL2, ARBITRARY_UNIT, 0),
 718	[PL4_ENABLE] = PRIMITIVE_INFO_INIT(PL4_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
 719		RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
 720	[TIME_WINDOW1] = PRIMITIVE_INFO_INIT(TIME_WINDOW1, TPMI_TIME_WINDOW_MASK, 18,
 721		RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
 722	[TIME_WINDOW2] = PRIMITIVE_INFO_INIT(TIME_WINDOW2, TPMI_TIME_WINDOW_MASK, 18,
 723		RAPL_DOMAIN_REG_PL2, TIME_UNIT, 0),
 724	[THERMAL_SPEC_POWER] = PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, TPMI_INFO_SPEC_MASK, 0,
 725		RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
 726	[MAX_POWER] = PRIMITIVE_INFO_INIT(MAX_POWER, TPMI_INFO_MAX_MASK, 36,
 727		RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
 728	[MIN_POWER] = PRIMITIVE_INFO_INIT(MIN_POWER, TPMI_INFO_MIN_MASK, 18,
 729		RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
 730	[MAX_TIME_WINDOW] = PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, TPMI_INFO_MAX_TIME_WIN_MASK, 54,
 731		RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
 732	[THROTTLED_TIME] = PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
 733		RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
 734	/* non-hardware */
 735	[AVERAGE_POWER] = PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0,
 736		POWER_UNIT, RAPL_PRIMITIVE_DERIVED),
 737};
 738
 739static struct rapl_primitive_info *get_rpi(struct rapl_package *rp, int prim)
 740{
 741	struct rapl_primitive_info *rpi = rp->priv->rpi;
 742
 743	if (prim < 0 || prim >= NR_RAPL_PRIMITIVES || !rpi)
 744		return NULL;
 745
 746	return &rpi[prim];
 747}
 748
 749static int rapl_config(struct rapl_package *rp)
 750{
 751	switch (rp->priv->type) {
 752	/* MMIO I/F shares the same register layout as MSR registers */
 753	case RAPL_IF_MMIO:
 754	case RAPL_IF_MSR:
 755		rp->priv->defaults = (void *)defaults_msr;
 756		rp->priv->rpi = (void *)rpi_msr;
 757		break;
 758	case RAPL_IF_TPMI:
 759		rp->priv->defaults = (void *)&defaults_tpmi;
 760		rp->priv->rpi = (void *)rpi_tpmi;
 761		break;
 762	default:
 763		return -EINVAL;
 764	}
 765
 766	/* defaults_msr can be NULL on unsupported platforms */
 767	if (!rp->priv->defaults || !rp->priv->rpi)
 768		return -ENODEV;
 769
 770	return 0;
 771}
 772
 773static enum rapl_primitives
 774prim_fixups(struct rapl_domain *rd, enum rapl_primitives prim)
 775{
 776	struct rapl_defaults *defaults = get_defaults(rd->rp);
 777
 778	if (!defaults->spr_psys_bits)
 779		return prim;
 780
 781	if (rd->id != RAPL_DOMAIN_PLATFORM)
 782		return prim;
 783
 784	switch (prim) {
 785	case POWER_LIMIT1:
 786		return PSYS_POWER_LIMIT1;
 787	case POWER_LIMIT2:
 788		return PSYS_POWER_LIMIT2;
 789	case PL1_ENABLE:
 790		return PSYS_PL1_ENABLE;
 791	case PL2_ENABLE:
 792		return PSYS_PL2_ENABLE;
 793	case TIME_WINDOW1:
 794		return PSYS_TIME_WINDOW1;
 795	case TIME_WINDOW2:
 796		return PSYS_TIME_WINDOW2;
 797	default:
 798		return prim;
 799	}
 800}
 801
 802/* Read primitive data based on its related struct rapl_primitive_info.
 803 * if xlate flag is set, return translated data based on data units, i.e.
 804 * time, energy, and power.
 805 * RAPL MSRs are non-architectual and are laid out not consistently across
 806 * domains. Here we use primitive info to allow writing consolidated access
 807 * functions.
 808 * For a given primitive, it is processed by MSR mask and shift. Unit conversion
 809 * is pre-assigned based on RAPL unit MSRs read at init time.
 810 * 63-------------------------- 31--------------------------- 0
 811 * |                           xxxxx (mask)                   |
 812 * |                                |<- shift ----------------|
 813 * 63-------------------------- 31--------------------------- 0
 814 */
 815static int rapl_read_data_raw(struct rapl_domain *rd,
 816			      enum rapl_primitives prim, bool xlate, u64 *data)
 817{
 818	u64 value;
 819	enum rapl_primitives prim_fixed = prim_fixups(rd, prim);
 820	struct rapl_primitive_info *rpi = get_rpi(rd->rp, prim_fixed);
 821	struct reg_action ra;
 
 822
 823	if (!rpi || !rpi->name || rpi->flag & RAPL_PRIMITIVE_DUMMY)
 824		return -EINVAL;
 825
 826	ra.reg = rd->regs[rpi->id];
 827	if (!ra.reg.val)
 828		return -EINVAL;
 829
 
 
 
 
 
 
 
 830	/* non-hardware data are collected by the polling thread */
 831	if (rpi->flag & RAPL_PRIMITIVE_DERIVED) {
 832		*data = rd->rdd.primitives[prim];
 833		return 0;
 834	}
 835
 836	ra.mask = rpi->mask;
 837
 838	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
 839		pr_debug("failed to read reg 0x%llx for %s:%s\n", ra.reg.val, rd->rp->name, rd->name);
 840		return -EIO;
 841	}
 842
 843	value = ra.value >> rpi->shift;
 844
 845	if (xlate)
 846		*data = rapl_unit_xlate(rd, rpi->unit, value, 0);
 847	else
 848		*data = value;
 849
 850	return 0;
 851}
 852
 853/* Similar use of primitive info in the read counterpart */
 854static int rapl_write_data_raw(struct rapl_domain *rd,
 855			       enum rapl_primitives prim,
 856			       unsigned long long value)
 857{
 858	enum rapl_primitives prim_fixed = prim_fixups(rd, prim);
 859	struct rapl_primitive_info *rpi = get_rpi(rd->rp, prim_fixed);
 860	u64 bits;
 861	struct reg_action ra;
 862	int ret;
 863
 864	if (!rpi || !rpi->name || rpi->flag & RAPL_PRIMITIVE_DUMMY)
 865		return -EINVAL;
 866
 867	bits = rapl_unit_xlate(rd, rpi->unit, value, 1);
 868	bits <<= rpi->shift;
 869	bits &= rpi->mask;
 870
 871	memset(&ra, 0, sizeof(ra));
 872
 873	ra.reg = rd->regs[rpi->id];
 874	ra.mask = rpi->mask;
 875	ra.value = bits;
 876
 877	ret = rd->rp->priv->write_raw(get_rid(rd->rp), &ra);
 878
 879	return ret;
 880}
 881
 882static int rapl_read_pl_data(struct rapl_domain *rd, int pl,
 883			      enum pl_prims pl_prim, bool xlate, u64 *data)
 884{
 885	enum rapl_primitives prim = get_pl_prim(rd, pl, pl_prim);
 886
 887	if (!is_pl_valid(rd, pl))
 888		return -EINVAL;
 889
 890	return rapl_read_data_raw(rd, prim, xlate, data);
 891}
 892
 893static int rapl_write_pl_data(struct rapl_domain *rd, int pl,
 894			       enum pl_prims pl_prim,
 895			       unsigned long long value)
 896{
 897	enum rapl_primitives prim = get_pl_prim(rd, pl, pl_prim);
 898
 899	if (!is_pl_valid(rd, pl))
 900		return -EINVAL;
 901
 902	if (rd->rpl[pl].locked) {
 903		pr_debug("%s:%s:%s locked by BIOS\n", rd->rp->name, rd->name, pl_names[pl]);
 904		return -EACCES;
 905	}
 906
 907	return rapl_write_data_raw(rd, prim, value);
 908}
 909/*
 910 * Raw RAPL data stored in MSRs are in certain scales. We need to
 911 * convert them into standard units based on the units reported in
 912 * the RAPL unit MSRs. This is specific to CPUs as the method to
 913 * calculate units differ on different CPUs.
 914 * We convert the units to below format based on CPUs.
 915 * i.e.
 916 * energy unit: picoJoules  : Represented in picoJoules by default
 917 * power unit : microWatts  : Represented in milliWatts by default
 918 * time unit  : microseconds: Represented in seconds by default
 919 */
 920static int rapl_check_unit_core(struct rapl_domain *rd)
 921{
 922	struct reg_action ra;
 923	u32 value;
 924
 925	ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
 926	ra.mask = ~0;
 927	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
 928		pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
 929			ra.reg.val, rd->rp->name, rd->name);
 930		return -ENODEV;
 931	}
 932
 933	value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
 934	rd->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
 935
 936	value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
 937	rd->power_unit = 1000000 / (1 << value);
 938
 939	value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
 940	rd->time_unit = 1000000 / (1 << value);
 941
 942	pr_debug("Core CPU %s:%s energy=%dpJ, time=%dus, power=%duW\n",
 943		 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
 944
 945	return 0;
 946}
 947
 948static int rapl_check_unit_atom(struct rapl_domain *rd)
 949{
 950	struct reg_action ra;
 951	u32 value;
 952
 953	ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
 954	ra.mask = ~0;
 955	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
 956		pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
 957			ra.reg.val, rd->rp->name, rd->name);
 958		return -ENODEV;
 959	}
 960
 961	value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
 962	rd->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
 963
 964	value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
 965	rd->power_unit = (1 << value) * 1000;
 966
 967	value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
 968	rd->time_unit = 1000000 / (1 << value);
 969
 970	pr_debug("Atom %s:%s energy=%dpJ, time=%dus, power=%duW\n",
 971		 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
 972
 973	return 0;
 974}
 975
 976static void power_limit_irq_save_cpu(void *info)
 977{
 978	u32 l, h = 0;
 979	struct rapl_package *rp = (struct rapl_package *)info;
 980
 981	/* save the state of PLN irq mask bit before disabling it */
 982	rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
 983	if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
 984		rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
 985		rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
 986	}
 987	l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
 988	wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
 989}
 990
 991/* REVISIT:
 992 * When package power limit is set artificially low by RAPL, LVT
 993 * thermal interrupt for package power limit should be ignored
 994 * since we are not really exceeding the real limit. The intention
 995 * is to avoid excessive interrupts while we are trying to save power.
 996 * A useful feature might be routing the package_power_limit interrupt
 997 * to userspace via eventfd. once we have a usecase, this is simple
 998 * to do by adding an atomic notifier.
 999 */
1000
1001static void package_power_limit_irq_save(struct rapl_package *rp)
1002{
1003	if (rp->lead_cpu < 0)
1004		return;
1005
1006	if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
1007		return;
1008
1009	smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
1010}
1011
1012/*
1013 * Restore per package power limit interrupt enable state. Called from cpu
1014 * hotplug code on package removal.
1015 */
1016static void package_power_limit_irq_restore(struct rapl_package *rp)
1017{
1018	u32 l, h;
1019
1020	if (rp->lead_cpu < 0)
1021		return;
1022
1023	if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
1024		return;
1025
1026	/* irq enable state not saved, nothing to restore */
1027	if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
1028		return;
1029
1030	rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
1031
1032	if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
1033		l |= PACKAGE_THERM_INT_PLN_ENABLE;
1034	else
1035		l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
1036
1037	wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
1038}
1039
1040static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
1041{
1042	int i;
1043
1044	/* always enable clamp such that p-state can go below OS requested
1045	 * range. power capping priority over guranteed frequency.
1046	 */
1047	rapl_write_pl_data(rd, POWER_LIMIT1, PL_CLAMP, mode);
1048
1049	for (i = POWER_LIMIT2; i < NR_POWER_LIMITS; i++) {
1050		rapl_write_pl_data(rd, i, PL_ENABLE, mode);
1051		rapl_write_pl_data(rd, i, PL_CLAMP, mode);
 
1052	}
1053}
1054
1055static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
1056{
1057	static u32 power_ctrl_orig_val;
1058	struct rapl_defaults *defaults = get_defaults(rd->rp);
1059	u32 mdata;
1060
1061	if (!defaults->floor_freq_reg_addr) {
1062		pr_err("Invalid floor frequency config register\n");
1063		return;
1064	}
1065
1066	if (!power_ctrl_orig_val)
1067		iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
1068			      defaults->floor_freq_reg_addr,
1069			      &power_ctrl_orig_val);
1070	mdata = power_ctrl_orig_val;
1071	if (enable) {
1072		mdata &= ~(0x7f << 8);
1073		mdata |= 1 << 8;
1074	}
1075	iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
1076		       defaults->floor_freq_reg_addr, mdata);
1077}
1078
1079static u64 rapl_compute_time_window_core(struct rapl_domain *rd, u64 value,
1080					 bool to_raw)
1081{
1082	u64 f, y;		/* fraction and exp. used for time unit */
1083
1084	/*
1085	 * Special processing based on 2^Y*(1+F/4), refer
1086	 * to Intel Software Developer's manual Vol.3B: CH 14.9.3.
1087	 */
1088	if (!to_raw) {
1089		f = (value & 0x60) >> 5;
1090		y = value & 0x1f;
1091		value = (1 << y) * (4 + f) * rd->time_unit / 4;
1092	} else {
1093		if (value < rd->time_unit)
1094			return 0;
1095
1096		do_div(value, rd->time_unit);
1097		y = ilog2(value);
1098
1099		/*
1100		 * The target hardware field is 7 bits wide, so return all ones
1101		 * if the exponent is too large.
1102		 */
1103		if (y > 0x1f)
1104			return 0x7f;
1105
1106		f = div64_u64(4 * (value - (1ULL << y)), 1ULL << y);
1107		value = (y & 0x1f) | ((f & 0x3) << 5);
1108	}
1109	return value;
1110}
1111
1112static u64 rapl_compute_time_window_atom(struct rapl_domain *rd, u64 value,
1113					 bool to_raw)
1114{
1115	/*
1116	 * Atom time unit encoding is straight forward val * time_unit,
1117	 * where time_unit is default to 1 sec. Never 0.
1118	 */
1119	if (!to_raw)
1120		return (value) ? value * rd->time_unit : rd->time_unit;
1121
1122	value = div64_u64(value, rd->time_unit);
1123
1124	return value;
1125}
1126
1127/* TPMI Unit register has different layout */
1128#define TPMI_POWER_UNIT_OFFSET	POWER_UNIT_OFFSET
1129#define TPMI_POWER_UNIT_MASK	POWER_UNIT_MASK
1130#define TPMI_ENERGY_UNIT_OFFSET	0x06
1131#define TPMI_ENERGY_UNIT_MASK	0x7C0
1132#define TPMI_TIME_UNIT_OFFSET	0x0C
1133#define TPMI_TIME_UNIT_MASK	0xF000
1134
1135static int rapl_check_unit_tpmi(struct rapl_domain *rd)
1136{
1137	struct reg_action ra;
1138	u32 value;
1139
1140	ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
1141	ra.mask = ~0;
1142	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
1143		pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
1144			ra.reg.val, rd->rp->name, rd->name);
1145		return -ENODEV;
1146	}
1147
1148	value = (ra.value & TPMI_ENERGY_UNIT_MASK) >> TPMI_ENERGY_UNIT_OFFSET;
1149	rd->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
1150
1151	value = (ra.value & TPMI_POWER_UNIT_MASK) >> TPMI_POWER_UNIT_OFFSET;
1152	rd->power_unit = 1000000 / (1 << value);
1153
1154	value = (ra.value & TPMI_TIME_UNIT_MASK) >> TPMI_TIME_UNIT_OFFSET;
1155	rd->time_unit = 1000000 / (1 << value);
1156
1157	pr_debug("Core CPU %s:%s energy=%dpJ, time=%dus, power=%duW\n",
1158		 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
1159
1160	return 0;
1161}
1162
1163static const struct rapl_defaults defaults_tpmi = {
1164	.check_unit = rapl_check_unit_tpmi,
1165	/* Reuse existing logic, ignore the PL_CLAMP failures and enable all Power Limits */
1166	.set_floor_freq = set_floor_freq_default,
1167	.compute_time_window = rapl_compute_time_window_core,
1168};
1169
1170static const struct rapl_defaults rapl_defaults_core = {
1171	.floor_freq_reg_addr = 0,
1172	.check_unit = rapl_check_unit_core,
1173	.set_floor_freq = set_floor_freq_default,
1174	.compute_time_window = rapl_compute_time_window_core,
1175};
1176
1177static const struct rapl_defaults rapl_defaults_hsw_server = {
1178	.check_unit = rapl_check_unit_core,
1179	.set_floor_freq = set_floor_freq_default,
1180	.compute_time_window = rapl_compute_time_window_core,
1181	.dram_domain_energy_unit = 15300,
1182};
1183
1184static const struct rapl_defaults rapl_defaults_spr_server = {
1185	.check_unit = rapl_check_unit_core,
1186	.set_floor_freq = set_floor_freq_default,
1187	.compute_time_window = rapl_compute_time_window_core,
 
1188	.psys_domain_energy_unit = 1000000000,
1189	.spr_psys_bits = true,
1190};
1191
1192static const struct rapl_defaults rapl_defaults_byt = {
1193	.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
1194	.check_unit = rapl_check_unit_atom,
1195	.set_floor_freq = set_floor_freq_atom,
1196	.compute_time_window = rapl_compute_time_window_atom,
1197};
1198
1199static const struct rapl_defaults rapl_defaults_tng = {
1200	.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
1201	.check_unit = rapl_check_unit_atom,
1202	.set_floor_freq = set_floor_freq_atom,
1203	.compute_time_window = rapl_compute_time_window_atom,
1204};
1205
1206static const struct rapl_defaults rapl_defaults_ann = {
1207	.floor_freq_reg_addr = 0,
1208	.check_unit = rapl_check_unit_atom,
1209	.set_floor_freq = NULL,
1210	.compute_time_window = rapl_compute_time_window_atom,
1211};
1212
1213static const struct rapl_defaults rapl_defaults_cht = {
1214	.floor_freq_reg_addr = 0,
1215	.check_unit = rapl_check_unit_atom,
1216	.set_floor_freq = NULL,
1217	.compute_time_window = rapl_compute_time_window_atom,
1218};
1219
1220static const struct rapl_defaults rapl_defaults_amd = {
1221	.check_unit = rapl_check_unit_core,
1222};
1223
1224static const struct x86_cpu_id rapl_ids[] __initconst = {
1225	X86_MATCH_VFM(INTEL_SANDYBRIDGE,	&rapl_defaults_core),
1226	X86_MATCH_VFM(INTEL_SANDYBRIDGE_X,	&rapl_defaults_core),
1227
1228	X86_MATCH_VFM(INTEL_IVYBRIDGE,		&rapl_defaults_core),
1229	X86_MATCH_VFM(INTEL_IVYBRIDGE_X,	&rapl_defaults_core),
1230
1231	X86_MATCH_VFM(INTEL_HASWELL,		&rapl_defaults_core),
1232	X86_MATCH_VFM(INTEL_HASWELL_L,		&rapl_defaults_core),
1233	X86_MATCH_VFM(INTEL_HASWELL_G,		&rapl_defaults_core),
1234	X86_MATCH_VFM(INTEL_HASWELL_X,		&rapl_defaults_hsw_server),
1235
1236	X86_MATCH_VFM(INTEL_BROADWELL,		&rapl_defaults_core),
1237	X86_MATCH_VFM(INTEL_BROADWELL_G,	&rapl_defaults_core),
1238	X86_MATCH_VFM(INTEL_BROADWELL_D,	&rapl_defaults_core),
1239	X86_MATCH_VFM(INTEL_BROADWELL_X,	&rapl_defaults_hsw_server),
1240
1241	X86_MATCH_VFM(INTEL_SKYLAKE,		&rapl_defaults_core),
1242	X86_MATCH_VFM(INTEL_SKYLAKE_L,		&rapl_defaults_core),
1243	X86_MATCH_VFM(INTEL_SKYLAKE_X,		&rapl_defaults_hsw_server),
1244	X86_MATCH_VFM(INTEL_KABYLAKE_L,		&rapl_defaults_core),
1245	X86_MATCH_VFM(INTEL_KABYLAKE,		&rapl_defaults_core),
1246	X86_MATCH_VFM(INTEL_CANNONLAKE_L,	&rapl_defaults_core),
1247	X86_MATCH_VFM(INTEL_ICELAKE_L,		&rapl_defaults_core),
1248	X86_MATCH_VFM(INTEL_ICELAKE,		&rapl_defaults_core),
1249	X86_MATCH_VFM(INTEL_ICELAKE_NNPI,	&rapl_defaults_core),
1250	X86_MATCH_VFM(INTEL_ICELAKE_X,		&rapl_defaults_hsw_server),
1251	X86_MATCH_VFM(INTEL_ICELAKE_D,		&rapl_defaults_hsw_server),
1252	X86_MATCH_VFM(INTEL_COMETLAKE_L,	&rapl_defaults_core),
1253	X86_MATCH_VFM(INTEL_COMETLAKE,		&rapl_defaults_core),
1254	X86_MATCH_VFM(INTEL_TIGERLAKE_L,	&rapl_defaults_core),
1255	X86_MATCH_VFM(INTEL_TIGERLAKE,		&rapl_defaults_core),
1256	X86_MATCH_VFM(INTEL_ROCKETLAKE,		&rapl_defaults_core),
1257	X86_MATCH_VFM(INTEL_ALDERLAKE,		&rapl_defaults_core),
1258	X86_MATCH_VFM(INTEL_ALDERLAKE_L,	&rapl_defaults_core),
1259	X86_MATCH_VFM(INTEL_ATOM_GRACEMONT,	&rapl_defaults_core),
1260	X86_MATCH_VFM(INTEL_RAPTORLAKE,		&rapl_defaults_core),
1261	X86_MATCH_VFM(INTEL_RAPTORLAKE_P,        &rapl_defaults_core),
1262	X86_MATCH_VFM(INTEL_RAPTORLAKE_S,	&rapl_defaults_core),
1263	X86_MATCH_VFM(INTEL_METEORLAKE,		&rapl_defaults_core),
1264	X86_MATCH_VFM(INTEL_METEORLAKE_L,	&rapl_defaults_core),
1265	X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X,	&rapl_defaults_spr_server),
1266	X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X,	&rapl_defaults_spr_server),
1267	X86_MATCH_VFM(INTEL_LUNARLAKE_M,	&rapl_defaults_core),
1268	X86_MATCH_VFM(INTEL_ARROWLAKE_H,	&rapl_defaults_core),
1269	X86_MATCH_VFM(INTEL_ARROWLAKE,		&rapl_defaults_core),
1270	X86_MATCH_VFM(INTEL_ARROWLAKE_U,	&rapl_defaults_core),
1271	X86_MATCH_VFM(INTEL_LAKEFIELD,		&rapl_defaults_core),
1272
1273	X86_MATCH_VFM(INTEL_ATOM_SILVERMONT,	&rapl_defaults_byt),
1274	X86_MATCH_VFM(INTEL_ATOM_AIRMONT,	&rapl_defaults_cht),
1275	X86_MATCH_VFM(INTEL_ATOM_SILVERMONT_MID, &rapl_defaults_tng),
1276	X86_MATCH_VFM(INTEL_ATOM_AIRMONT_MID,	&rapl_defaults_ann),
1277	X86_MATCH_VFM(INTEL_ATOM_GOLDMONT,	&rapl_defaults_core),
1278	X86_MATCH_VFM(INTEL_ATOM_GOLDMONT_PLUS,	&rapl_defaults_core),
1279	X86_MATCH_VFM(INTEL_ATOM_GOLDMONT_D,	&rapl_defaults_core),
1280	X86_MATCH_VFM(INTEL_ATOM_TREMONT,	&rapl_defaults_core),
1281	X86_MATCH_VFM(INTEL_ATOM_TREMONT_D,	&rapl_defaults_core),
1282	X86_MATCH_VFM(INTEL_ATOM_TREMONT_L,	&rapl_defaults_core),
1283
1284	X86_MATCH_VFM(INTEL_XEON_PHI_KNL,	&rapl_defaults_hsw_server),
1285	X86_MATCH_VFM(INTEL_XEON_PHI_KNM,	&rapl_defaults_hsw_server),
1286
1287	X86_MATCH_VENDOR_FAM(AMD, 0x17, &rapl_defaults_amd),
1288	X86_MATCH_VENDOR_FAM(AMD, 0x19, &rapl_defaults_amd),
1289	X86_MATCH_VENDOR_FAM(AMD, 0x1A, &rapl_defaults_amd),
1290	X86_MATCH_VENDOR_FAM(HYGON, 0x18, &rapl_defaults_amd),
1291	{}
1292};
1293MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
1294
1295/* Read once for all raw primitive data for domains */
1296static void rapl_update_domain_data(struct rapl_package *rp)
1297{
1298	int dmn, prim;
1299	u64 val;
1300
1301	for (dmn = 0; dmn < rp->nr_domains; dmn++) {
1302		pr_debug("update %s domain %s data\n", rp->name,
1303			 rp->domains[dmn].name);
1304		/* exclude non-raw primitives */
1305		for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++) {
1306			struct rapl_primitive_info *rpi = get_rpi(rp, prim);
1307
1308			if (!rapl_read_data_raw(&rp->domains[dmn], prim,
1309						rpi->unit, &val))
1310				rp->domains[dmn].rdd.primitives[prim] = val;
1311		}
1312	}
1313
1314}
1315
1316static int rapl_package_register_powercap(struct rapl_package *rp)
1317{
1318	struct rapl_domain *rd;
1319	struct powercap_zone *power_zone = NULL;
1320	int nr_pl, ret;
1321
1322	/* Update the domain data of the new package */
1323	rapl_update_domain_data(rp);
1324
1325	/* first we register package domain as the parent zone */
1326	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1327		if (rd->id == RAPL_DOMAIN_PACKAGE) {
1328			nr_pl = find_nr_power_limit(rd);
1329			pr_debug("register package domain %s\n", rp->name);
1330			power_zone = powercap_register_zone(&rd->power_zone,
1331					    rp->priv->control_type, rp->name,
1332					    NULL, &zone_ops[rd->id], nr_pl,
1333					    &constraint_ops);
1334			if (IS_ERR(power_zone)) {
1335				pr_debug("failed to register power zone %s\n",
1336					 rp->name);
1337				return PTR_ERR(power_zone);
1338			}
1339			/* track parent zone in per package/socket data */
1340			rp->power_zone = power_zone;
1341			/* done, only one package domain per socket */
1342			break;
1343		}
1344	}
1345	if (!power_zone) {
1346		pr_err("no package domain found, unknown topology!\n");
1347		return -ENODEV;
1348	}
1349	/* now register domains as children of the socket/package */
1350	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1351		struct powercap_zone *parent = rp->power_zone;
1352
1353		if (rd->id == RAPL_DOMAIN_PACKAGE)
1354			continue;
1355		if (rd->id == RAPL_DOMAIN_PLATFORM)
1356			parent = NULL;
1357		/* number of power limits per domain varies */
1358		nr_pl = find_nr_power_limit(rd);
1359		power_zone = powercap_register_zone(&rd->power_zone,
1360						    rp->priv->control_type,
1361						    rd->name, parent,
1362						    &zone_ops[rd->id], nr_pl,
1363						    &constraint_ops);
1364
1365		if (IS_ERR(power_zone)) {
1366			pr_debug("failed to register power_zone, %s:%s\n",
1367				 rp->name, rd->name);
1368			ret = PTR_ERR(power_zone);
1369			goto err_cleanup;
1370		}
1371	}
1372	return 0;
1373
1374err_cleanup:
1375	/*
1376	 * Clean up previously initialized domains within the package if we
1377	 * failed after the first domain setup.
1378	 */
1379	while (--rd >= rp->domains) {
1380		pr_debug("unregister %s domain %s\n", rp->name, rd->name);
1381		powercap_unregister_zone(rp->priv->control_type,
1382					 &rd->power_zone);
1383	}
1384
1385	return ret;
1386}
1387
1388static int rapl_check_domain(int domain, struct rapl_package *rp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1389{
1390	struct reg_action ra;
1391
1392	switch (domain) {
1393	case RAPL_DOMAIN_PACKAGE:
1394	case RAPL_DOMAIN_PP0:
1395	case RAPL_DOMAIN_PP1:
1396	case RAPL_DOMAIN_DRAM:
1397	case RAPL_DOMAIN_PLATFORM:
1398		ra.reg = rp->priv->regs[domain][RAPL_DOMAIN_REG_STATUS];
1399		break;
 
 
 
1400	default:
1401		pr_err("invalid domain id %d\n", domain);
1402		return -EINVAL;
1403	}
1404	/* make sure domain counters are available and contains non-zero
1405	 * values, otherwise skip it.
1406	 */
1407
1408	ra.mask = ENERGY_STATUS_MASK;
1409	if (rp->priv->read_raw(get_rid(rp), &ra) || !ra.value)
1410		return -ENODEV;
1411
1412	return 0;
1413}
1414
1415/*
1416 * Get per domain energy/power/time unit.
1417 * RAPL Interfaces without per domain unit register will use the package
1418 * scope unit register to set per domain units.
1419 */
1420static int rapl_get_domain_unit(struct rapl_domain *rd)
1421{
1422	struct rapl_defaults *defaults = get_defaults(rd->rp);
1423	int ret;
1424
1425	if (!rd->regs[RAPL_DOMAIN_REG_UNIT].val) {
1426		if (!rd->rp->priv->reg_unit.val) {
1427			pr_err("No valid Unit register found\n");
1428			return -ENODEV;
1429		}
1430		rd->regs[RAPL_DOMAIN_REG_UNIT] = rd->rp->priv->reg_unit;
1431	}
1432
1433	if (!defaults->check_unit) {
1434		pr_err("missing .check_unit() callback\n");
1435		return -ENODEV;
1436	}
1437
1438	ret = defaults->check_unit(rd);
1439	if (ret)
1440		return ret;
1441
1442	if (rd->id == RAPL_DOMAIN_DRAM && defaults->dram_domain_energy_unit)
1443		rd->energy_unit = defaults->dram_domain_energy_unit;
1444	if (rd->id == RAPL_DOMAIN_PLATFORM && defaults->psys_domain_energy_unit)
1445		rd->energy_unit = defaults->psys_domain_energy_unit;
1446	return 0;
1447}
1448
1449/*
1450 * Check if power limits are available. Two cases when they are not available:
1451 * 1. Locked by BIOS, in this case we still provide read-only access so that
1452 *    users can see what limit is set by the BIOS.
1453 * 2. Some CPUs make some domains monitoring only which means PLx MSRs may not
1454 *    exist at all. In this case, we do not show the constraints in powercap.
1455 *
1456 * Called after domains are detected and initialized.
1457 */
1458static void rapl_detect_powerlimit(struct rapl_domain *rd)
1459{
1460	u64 val64;
1461	int i;
1462
1463	for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
1464		if (!rapl_read_pl_data(rd, i, PL_LOCK, false, &val64)) {
1465			if (val64) {
1466				rd->rpl[i].locked = true;
1467				pr_info("%s:%s:%s locked by BIOS\n",
1468					rd->rp->name, rd->name, pl_names[i]);
1469			}
1470		}
 
 
 
 
1471
1472		if (rapl_read_pl_data(rd, i, PL_LIMIT, false, &val64))
1473			rd->rpl[i].name = NULL;
1474	}
1475}
1476
1477/* Detect active and valid domains for the given CPU, caller must
1478 * ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
1479 */
1480static int rapl_detect_domains(struct rapl_package *rp)
1481{
1482	struct rapl_domain *rd;
1483	int i;
1484
1485	for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
1486		/* use physical package id to read counters */
1487		if (!rapl_check_domain(i, rp)) {
1488			rp->domain_map |= 1 << i;
1489			pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
1490		}
1491	}
1492	rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX);
1493	if (!rp->nr_domains) {
1494		pr_debug("no valid rapl domains found in %s\n", rp->name);
1495		return -ENODEV;
1496	}
1497	pr_debug("found %d domains on %s\n", rp->nr_domains, rp->name);
1498
1499	rp->domains = kcalloc(rp->nr_domains, sizeof(struct rapl_domain),
1500			      GFP_KERNEL);
1501	if (!rp->domains)
1502		return -ENOMEM;
1503
1504	rapl_init_domains(rp);
1505
1506	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1507		rapl_get_domain_unit(rd);
1508		rapl_detect_powerlimit(rd);
1509	}
1510
1511	return 0;
1512}
1513
1514#ifdef CONFIG_PERF_EVENTS
1515
1516/*
1517 * Support for RAPL PMU
1518 *
1519 * Register a PMU if any of the registered RAPL Packages have the requirement
1520 * of exposing its energy counters via Perf PMU.
1521 *
1522 * PMU Name:
1523 *	power
1524 *
1525 * Events:
1526 *	Name		Event id	RAPL Domain
1527 *	energy_cores	0x01		RAPL_DOMAIN_PP0
1528 *	energy_pkg	0x02		RAPL_DOMAIN_PACKAGE
1529 *	energy_ram	0x03		RAPL_DOMAIN_DRAM
1530 *	energy_gpu	0x04		RAPL_DOMAIN_PP1
1531 *	energy_psys	0x05		RAPL_DOMAIN_PLATFORM
1532 *
1533 * Unit:
1534 *	Joules
1535 *
1536 * Scale:
1537 *	2.3283064365386962890625e-10
1538 *	The same RAPL domain in different RAPL Packages may have different
1539 *	energy units. Use 2.3283064365386962890625e-10 (2^-32) Joules as
1540 *	the fixed unit for all energy counters, and covert each hardware
1541 *	counter increase to N times of PMU event counter increases.
1542 *
1543 * This is fully compatible with the current MSR RAPL PMU. This means that
1544 * userspace programs like turbostat can use the same code to handle RAPL Perf
1545 * PMU, no matter what RAPL Interface driver (MSR/TPMI, etc) is running
1546 * underlying on the platform.
1547 *
1548 * Note that RAPL Packages can be probed/removed dynamically, and the events
1549 * supported by each TPMI RAPL device can be different. Thus the RAPL PMU
1550 * support is done on demand, which means
1551 * 1. PMU is registered only if it is needed by a RAPL Package. PMU events for
1552 *    unsupported counters are not exposed.
1553 * 2. PMU is unregistered and registered when a new RAPL Package is probed and
1554 *    supports new counters that are not supported by current PMU.
1555 * 3. PMU is unregistered when all registered RAPL Packages don't need PMU.
1556 */
1557
1558struct rapl_pmu {
1559	struct pmu pmu;			/* Perf PMU structure */
1560	u64 timer_ms;			/* Maximum expiration time to avoid counter overflow */
1561	unsigned long domain_map;	/* Events supported by current registered PMU */
1562	bool registered;		/* Whether the PMU has been registered or not */
1563};
1564
1565static struct rapl_pmu rapl_pmu;
1566
1567/* PMU helpers */
1568
1569static int get_pmu_cpu(struct rapl_package *rp)
1570{
1571	int cpu;
1572
1573	if (!rp->has_pmu)
1574		return nr_cpu_ids;
1575
1576	/* Only TPMI RAPL is supported for now */
1577	if (rp->priv->type != RAPL_IF_TPMI)
1578		return nr_cpu_ids;
1579
1580	/* TPMI RAPL uses any CPU in the package for PMU */
1581	for_each_online_cpu(cpu)
1582		if (topology_physical_package_id(cpu) == rp->id)
1583			return cpu;
1584
1585	return nr_cpu_ids;
1586}
1587
1588static bool is_rp_pmu_cpu(struct rapl_package *rp, int cpu)
1589{
1590	if (!rp->has_pmu)
1591		return false;
1592
1593	/* Only TPMI RAPL is supported for now */
1594	if (rp->priv->type != RAPL_IF_TPMI)
1595		return false;
1596
1597	/* TPMI RAPL uses any CPU in the package for PMU */
1598	return topology_physical_package_id(cpu) == rp->id;
1599}
1600
1601static struct rapl_package_pmu_data *event_to_pmu_data(struct perf_event *event)
1602{
1603	struct rapl_package *rp = event->pmu_private;
1604
1605	return &rp->pmu_data;
1606}
1607
1608/* PMU event callbacks */
1609
1610static u64 event_read_counter(struct perf_event *event)
1611{
1612	struct rapl_package *rp = event->pmu_private;
1613	u64 val;
1614	int ret;
1615
1616	/* Return 0 for unsupported events */
1617	if (event->hw.idx < 0)
1618		return 0;
1619
1620	ret = rapl_read_data_raw(&rp->domains[event->hw.idx], ENERGY_COUNTER, false, &val);
1621
1622	/* Return 0 for failed read */
1623	if (ret)
1624		return 0;
1625
1626	return val;
1627}
1628
1629static void __rapl_pmu_event_start(struct perf_event *event)
1630{
1631	struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1632
1633	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1634		return;
1635
1636	event->hw.state = 0;
1637
1638	list_add_tail(&event->active_entry, &data->active_list);
1639
1640	local64_set(&event->hw.prev_count, event_read_counter(event));
1641	if (++data->n_active == 1)
1642		hrtimer_start(&data->hrtimer, data->timer_interval,
1643			      HRTIMER_MODE_REL_PINNED);
1644}
1645
1646static void rapl_pmu_event_start(struct perf_event *event, int mode)
1647{
1648	struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1649	unsigned long flags;
1650
1651	raw_spin_lock_irqsave(&data->lock, flags);
1652	__rapl_pmu_event_start(event);
1653	raw_spin_unlock_irqrestore(&data->lock, flags);
1654}
1655
1656static u64 rapl_event_update(struct perf_event *event)
1657{
1658	struct hw_perf_event *hwc = &event->hw;
1659	struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1660	u64 prev_raw_count, new_raw_count;
1661	s64 delta, sdelta;
1662
1663	/*
1664	 * Follow the generic code to drain hwc->prev_count.
1665	 * The loop is not expected to run for multiple times.
1666	 */
1667	prev_raw_count = local64_read(&hwc->prev_count);
1668	do {
1669		new_raw_count = event_read_counter(event);
1670	} while (!local64_try_cmpxchg(&hwc->prev_count,
1671		&prev_raw_count, new_raw_count));
1672
1673
1674	/*
1675	 * Now we have the new raw value and have updated the prev
1676	 * timestamp already. We can now calculate the elapsed delta
1677	 * (event-)time and add that to the generic event.
1678	 */
1679	delta = new_raw_count - prev_raw_count;
1680
1681	/*
1682	 * Scale delta to smallest unit (2^-32)
1683	 * users must then scale back: count * 1/(1e9*2^32) to get Joules
1684	 * or use ldexp(count, -32).
1685	 * Watts = Joules/Time delta
1686	 */
1687	sdelta = delta * data->scale[event->hw.flags];
1688
1689	local64_add(sdelta, &event->count);
1690
1691	return new_raw_count;
1692}
1693
1694static void rapl_pmu_event_stop(struct perf_event *event, int mode)
1695{
1696	struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1697	struct hw_perf_event *hwc = &event->hw;
1698	unsigned long flags;
1699
1700	raw_spin_lock_irqsave(&data->lock, flags);
1701
1702	/* Mark event as deactivated and stopped */
1703	if (!(hwc->state & PERF_HES_STOPPED)) {
1704		WARN_ON_ONCE(data->n_active <= 0);
1705		if (--data->n_active == 0)
1706			hrtimer_cancel(&data->hrtimer);
1707
1708		list_del(&event->active_entry);
1709
1710		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1711		hwc->state |= PERF_HES_STOPPED;
1712	}
1713
1714	/* Check if update of sw counter is necessary */
1715	if ((mode & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1716		/*
1717		 * Drain the remaining delta count out of a event
1718		 * that we are disabling:
1719		 */
1720		rapl_event_update(event);
1721		hwc->state |= PERF_HES_UPTODATE;
1722	}
1723
1724	raw_spin_unlock_irqrestore(&data->lock, flags);
1725}
1726
1727static int rapl_pmu_event_add(struct perf_event *event, int mode)
1728{
1729	struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1730	struct hw_perf_event *hwc = &event->hw;
1731	unsigned long flags;
1732
1733	raw_spin_lock_irqsave(&data->lock, flags);
1734
1735	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1736
1737	if (mode & PERF_EF_START)
1738		__rapl_pmu_event_start(event);
1739
1740	raw_spin_unlock_irqrestore(&data->lock, flags);
1741
1742	return 0;
1743}
1744
1745static void rapl_pmu_event_del(struct perf_event *event, int flags)
1746{
1747	rapl_pmu_event_stop(event, PERF_EF_UPDATE);
1748}
1749
1750/* RAPL PMU event ids, same as shown in sysfs */
1751enum perf_rapl_events {
1752	PERF_RAPL_PP0 = 1,	/* all cores */
1753	PERF_RAPL_PKG,		/* entire package */
1754	PERF_RAPL_RAM,		/* DRAM */
1755	PERF_RAPL_PP1,		/* gpu */
1756	PERF_RAPL_PSYS,		/* psys */
1757	PERF_RAPL_MAX
1758};
1759#define RAPL_EVENT_MASK GENMASK(7, 0)
1760
1761static const int event_to_domain[PERF_RAPL_MAX] = {
1762	[PERF_RAPL_PP0]		= RAPL_DOMAIN_PP0,
1763	[PERF_RAPL_PKG]		= RAPL_DOMAIN_PACKAGE,
1764	[PERF_RAPL_RAM]		= RAPL_DOMAIN_DRAM,
1765	[PERF_RAPL_PP1]		= RAPL_DOMAIN_PP1,
1766	[PERF_RAPL_PSYS]	= RAPL_DOMAIN_PLATFORM,
1767};
1768
1769static int rapl_pmu_event_init(struct perf_event *event)
1770{
1771	struct rapl_package *pos, *rp = NULL;
1772	u64 cfg = event->attr.config & RAPL_EVENT_MASK;
1773	int domain, idx;
1774
1775	/* Only look at RAPL events */
1776	if (event->attr.type != event->pmu->type)
1777		return -ENOENT;
1778
1779	/* Check for supported events only */
1780	if (!cfg || cfg >= PERF_RAPL_MAX)
1781		return -EINVAL;
1782
1783	if (event->cpu < 0)
1784		return -EINVAL;
1785
1786	/* Find out which Package the event belongs to */
1787	list_for_each_entry(pos, &rapl_packages, plist) {
1788		if (is_rp_pmu_cpu(pos, event->cpu)) {
1789			rp = pos;
1790			break;
1791		}
1792	}
1793	if (!rp)
1794		return -ENODEV;
1795
1796	/* Find out which RAPL Domain the event belongs to */
1797	domain = event_to_domain[cfg];
1798
1799	event->event_caps |= PERF_EV_CAP_READ_ACTIVE_PKG;
1800	event->pmu_private = rp;	/* Which package */
1801	event->hw.flags = domain;	/* Which domain */
1802
1803	event->hw.idx = -1;
1804	/* Find out the index in rp->domains[] to get domain pointer */
1805	for (idx = 0; idx < rp->nr_domains; idx++) {
1806		if (rp->domains[idx].id == domain) {
1807			event->hw.idx = idx;
1808			break;
1809		}
1810	}
1811
1812	return 0;
1813}
1814
1815static void rapl_pmu_event_read(struct perf_event *event)
1816{
1817	rapl_event_update(event);
1818}
1819
1820static enum hrtimer_restart rapl_hrtimer_handle(struct hrtimer *hrtimer)
1821{
1822	struct rapl_package_pmu_data *data =
1823		container_of(hrtimer, struct rapl_package_pmu_data, hrtimer);
1824	struct perf_event *event;
1825	unsigned long flags;
1826
1827	if (!data->n_active)
1828		return HRTIMER_NORESTART;
1829
1830	raw_spin_lock_irqsave(&data->lock, flags);
1831
1832	list_for_each_entry(event, &data->active_list, active_entry)
1833		rapl_event_update(event);
1834
1835	raw_spin_unlock_irqrestore(&data->lock, flags);
1836
1837	hrtimer_forward_now(hrtimer, data->timer_interval);
1838
1839	return HRTIMER_RESTART;
1840}
1841
1842/* PMU sysfs attributes */
1843
1844/*
1845 * There are no default events, but we need to create "events" group (with
1846 * empty attrs) before updating it with detected events.
1847 */
1848static struct attribute *attrs_empty[] = {
1849	NULL,
1850};
1851
1852static struct attribute_group pmu_events_group = {
1853	.name = "events",
1854	.attrs = attrs_empty,
1855};
1856
1857static ssize_t cpumask_show(struct device *dev,
1858			    struct device_attribute *attr, char *buf)
1859{
1860	struct rapl_package *rp;
1861	cpumask_var_t cpu_mask;
1862	int cpu;
1863	int ret;
1864
1865	if (!alloc_cpumask_var(&cpu_mask, GFP_KERNEL))
1866		return -ENOMEM;
1867
1868	cpus_read_lock();
1869
1870	cpumask_clear(cpu_mask);
1871
1872	/* Choose a cpu for each RAPL Package */
1873	list_for_each_entry(rp, &rapl_packages, plist) {
1874		cpu = get_pmu_cpu(rp);
1875		if (cpu < nr_cpu_ids)
1876			cpumask_set_cpu(cpu, cpu_mask);
1877	}
1878	cpus_read_unlock();
1879
1880	ret = cpumap_print_to_pagebuf(true, buf, cpu_mask);
1881
1882	free_cpumask_var(cpu_mask);
1883
1884	return ret;
1885}
1886
1887static DEVICE_ATTR_RO(cpumask);
1888
1889static struct attribute *pmu_cpumask_attrs[] = {
1890	&dev_attr_cpumask.attr,
1891	NULL
1892};
1893
1894static struct attribute_group pmu_cpumask_group = {
1895	.attrs = pmu_cpumask_attrs,
1896};
1897
1898PMU_FORMAT_ATTR(event, "config:0-7");
1899static struct attribute *pmu_format_attr[] = {
1900	&format_attr_event.attr,
1901	NULL
1902};
1903
1904static struct attribute_group pmu_format_group = {
1905	.name = "format",
1906	.attrs = pmu_format_attr,
1907};
1908
1909static const struct attribute_group *pmu_attr_groups[] = {
1910	&pmu_events_group,
1911	&pmu_cpumask_group,
1912	&pmu_format_group,
1913	NULL
1914};
1915
1916#define RAPL_EVENT_ATTR_STR(_name, v, str)					\
1917static struct perf_pmu_events_attr event_attr_##v = {				\
1918	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL),	\
1919	.event_str	= str,							\
1920}
1921
1922RAPL_EVENT_ATTR_STR(energy-cores,	rapl_cores,	"event=0x01");
1923RAPL_EVENT_ATTR_STR(energy-pkg,		rapl_pkg,	"event=0x02");
1924RAPL_EVENT_ATTR_STR(energy-ram,		rapl_ram,	"event=0x03");
1925RAPL_EVENT_ATTR_STR(energy-gpu,		rapl_gpu,	"event=0x04");
1926RAPL_EVENT_ATTR_STR(energy-psys,	rapl_psys,	"event=0x05");
1927
1928RAPL_EVENT_ATTR_STR(energy-cores.unit,	rapl_unit_cores,	"Joules");
1929RAPL_EVENT_ATTR_STR(energy-pkg.unit,	rapl_unit_pkg,		"Joules");
1930RAPL_EVENT_ATTR_STR(energy-ram.unit,	rapl_unit_ram,		"Joules");
1931RAPL_EVENT_ATTR_STR(energy-gpu.unit,	rapl_unit_gpu,		"Joules");
1932RAPL_EVENT_ATTR_STR(energy-psys.unit,	rapl_unit_psys,		"Joules");
1933
1934RAPL_EVENT_ATTR_STR(energy-cores.scale,	rapl_scale_cores,	"2.3283064365386962890625e-10");
1935RAPL_EVENT_ATTR_STR(energy-pkg.scale,	rapl_scale_pkg,		"2.3283064365386962890625e-10");
1936RAPL_EVENT_ATTR_STR(energy-ram.scale,	rapl_scale_ram,		"2.3283064365386962890625e-10");
1937RAPL_EVENT_ATTR_STR(energy-gpu.scale,	rapl_scale_gpu,		"2.3283064365386962890625e-10");
1938RAPL_EVENT_ATTR_STR(energy-psys.scale,	rapl_scale_psys,	"2.3283064365386962890625e-10");
1939
1940#define RAPL_EVENT_GROUP(_name, domain)			\
1941static struct attribute *pmu_attr_##_name[] = {		\
1942	&event_attr_rapl_##_name.attr.attr,		\
1943	&event_attr_rapl_unit_##_name.attr.attr,	\
1944	&event_attr_rapl_scale_##_name.attr.attr,	\
1945	NULL						\
1946};							\
1947static umode_t is_visible_##_name(struct kobject *kobj, struct attribute *attr, int event)	\
1948{											\
1949	return rapl_pmu.domain_map & BIT(domain) ? attr->mode : 0;	\
1950}							\
1951static struct attribute_group pmu_group_##_name = {	\
1952	.name  = "events",				\
1953	.attrs = pmu_attr_##_name,			\
1954	.is_visible = is_visible_##_name,		\
1955}
1956
1957RAPL_EVENT_GROUP(cores,	RAPL_DOMAIN_PP0);
1958RAPL_EVENT_GROUP(pkg,	RAPL_DOMAIN_PACKAGE);
1959RAPL_EVENT_GROUP(ram,	RAPL_DOMAIN_DRAM);
1960RAPL_EVENT_GROUP(gpu,	RAPL_DOMAIN_PP1);
1961RAPL_EVENT_GROUP(psys,	RAPL_DOMAIN_PLATFORM);
1962
1963static const struct attribute_group *pmu_attr_update[] = {
1964	&pmu_group_cores,
1965	&pmu_group_pkg,
1966	&pmu_group_ram,
1967	&pmu_group_gpu,
1968	&pmu_group_psys,
1969	NULL
1970};
1971
1972static int rapl_pmu_update(struct rapl_package *rp)
1973{
1974	int ret = 0;
1975
1976	/* Return if PMU already covers all events supported by current RAPL Package */
1977	if (rapl_pmu.registered && !(rp->domain_map & (~rapl_pmu.domain_map)))
1978		goto end;
1979
1980	/* Unregister previous registered PMU */
1981	if (rapl_pmu.registered)
1982		perf_pmu_unregister(&rapl_pmu.pmu);
1983
1984	rapl_pmu.registered = false;
1985	rapl_pmu.domain_map |= rp->domain_map;
1986
1987	memset(&rapl_pmu.pmu, 0, sizeof(struct pmu));
1988	rapl_pmu.pmu.attr_groups = pmu_attr_groups;
1989	rapl_pmu.pmu.attr_update = pmu_attr_update;
1990	rapl_pmu.pmu.task_ctx_nr = perf_invalid_context;
1991	rapl_pmu.pmu.event_init = rapl_pmu_event_init;
1992	rapl_pmu.pmu.add = rapl_pmu_event_add;
1993	rapl_pmu.pmu.del = rapl_pmu_event_del;
1994	rapl_pmu.pmu.start = rapl_pmu_event_start;
1995	rapl_pmu.pmu.stop = rapl_pmu_event_stop;
1996	rapl_pmu.pmu.read = rapl_pmu_event_read;
1997	rapl_pmu.pmu.module = THIS_MODULE;
1998	rapl_pmu.pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE | PERF_PMU_CAP_NO_INTERRUPT;
1999	ret = perf_pmu_register(&rapl_pmu.pmu, "power", -1);
2000	if (ret) {
2001		pr_info("Failed to register PMU\n");
2002		return ret;
2003	}
2004
2005	rapl_pmu.registered = true;
2006end:
2007	rp->has_pmu = true;
2008	return ret;
2009}
2010
2011int rapl_package_add_pmu(struct rapl_package *rp)
2012{
2013	struct rapl_package_pmu_data *data = &rp->pmu_data;
2014	int idx;
2015
2016	if (rp->has_pmu)
2017		return -EEXIST;
2018
2019	guard(cpus_read_lock)();
2020
2021	for (idx = 0; idx < rp->nr_domains; idx++) {
2022		struct rapl_domain *rd = &rp->domains[idx];
2023		int domain = rd->id;
2024		u64 val;
2025
2026		if (!test_bit(domain, &rp->domain_map))
2027			continue;
2028
2029		/*
2030		 * The RAPL PMU granularity is 2^-32 Joules
2031		 * data->scale[]: times of 2^-32 Joules for each ENERGY COUNTER increase
2032		 */
2033		val = rd->energy_unit * (1ULL << 32);
2034		do_div(val, ENERGY_UNIT_SCALE * 1000000);
2035		data->scale[domain] = val;
2036
2037		if (!rapl_pmu.timer_ms) {
2038			struct rapl_primitive_info *rpi = get_rpi(rp, ENERGY_COUNTER);
2039
2040			/*
2041			 * Calculate the timer rate:
2042			 * Use reference of 200W for scaling the timeout to avoid counter
2043			 * overflows.
2044			 *
2045			 * max_count = rpi->mask >> rpi->shift + 1
2046			 * max_energy_pj = max_count * rd->energy_unit
2047			 * max_time_sec = (max_energy_pj / 1000000000) / 200w
2048			 *
2049			 * rapl_pmu.timer_ms = max_time_sec * 1000 / 2
2050			 */
2051			val = (rpi->mask >> rpi->shift) + 1;
2052			val *= rd->energy_unit;
2053			do_div(val, 1000000 * 200 * 2);
2054			rapl_pmu.timer_ms = val;
2055
2056			pr_debug("%llu ms overflow timer\n", rapl_pmu.timer_ms);
2057		}
2058
2059		pr_debug("Domain %s: hw unit %lld * 2^-32 Joules\n", rd->name, data->scale[domain]);
2060	}
2061
2062	/* Initialize per package PMU data */
2063	raw_spin_lock_init(&data->lock);
2064	INIT_LIST_HEAD(&data->active_list);
2065	data->timer_interval = ms_to_ktime(rapl_pmu.timer_ms);
2066	hrtimer_init(&data->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2067	data->hrtimer.function = rapl_hrtimer_handle;
2068
2069	return rapl_pmu_update(rp);
2070}
2071EXPORT_SYMBOL_GPL(rapl_package_add_pmu);
2072
2073void rapl_package_remove_pmu(struct rapl_package *rp)
2074{
2075	struct rapl_package *pos;
2076
2077	if (!rp->has_pmu)
2078		return;
2079
2080	guard(cpus_read_lock)();
2081
2082	list_for_each_entry(pos, &rapl_packages, plist) {
2083		/* PMU is still needed */
2084		if (pos->has_pmu && pos != rp)
2085			return;
2086	}
2087
2088	perf_pmu_unregister(&rapl_pmu.pmu);
2089	memset(&rapl_pmu, 0, sizeof(struct rapl_pmu));
2090}
2091EXPORT_SYMBOL_GPL(rapl_package_remove_pmu);
2092#endif
2093
2094/* called from CPU hotplug notifier, hotplug lock held */
2095void rapl_remove_package_cpuslocked(struct rapl_package *rp)
2096{
2097	struct rapl_domain *rd, *rd_package = NULL;
2098
2099	package_power_limit_irq_restore(rp);
2100
2101	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
2102		int i;
2103
2104		for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
2105			rapl_write_pl_data(rd, i, PL_ENABLE, 0);
2106			rapl_write_pl_data(rd, i, PL_CLAMP, 0);
 
2107		}
2108
2109		if (rd->id == RAPL_DOMAIN_PACKAGE) {
2110			rd_package = rd;
2111			continue;
2112		}
2113		pr_debug("remove package, undo power limit on %s: %s\n",
2114			 rp->name, rd->name);
2115		powercap_unregister_zone(rp->priv->control_type,
2116					 &rd->power_zone);
2117	}
2118	/* do parent zone last */
2119	powercap_unregister_zone(rp->priv->control_type,
2120				 &rd_package->power_zone);
2121	list_del(&rp->plist);
2122	kfree(rp);
2123}
2124EXPORT_SYMBOL_GPL(rapl_remove_package_cpuslocked);
2125
2126void rapl_remove_package(struct rapl_package *rp)
2127{
2128	guard(cpus_read_lock)();
2129	rapl_remove_package_cpuslocked(rp);
2130}
2131EXPORT_SYMBOL_GPL(rapl_remove_package);
2132
2133/*
2134 * RAPL Package energy counter scope:
2135 * 1. AMD/HYGON platforms use per-PKG package energy counter
2136 * 2. For Intel platforms
2137 *	2.1 CLX-AP platform has per-DIE package energy counter
2138 *	2.2 Other platforms that uses MSR RAPL are single die systems so the
2139 *          package energy counter can be considered as per-PKG/per-DIE,
2140 *          here it is considered as per-DIE.
2141 *	2.3 New platforms that use TPMI RAPL doesn't care about the
2142 *	    scope because they are not MSR/CPU based.
2143 */
2144#define rapl_msrs_are_pkg_scope()				\
2145	(boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||	\
2146	 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
2147
2148/* caller to ensure CPU hotplug lock is held */
2149struct rapl_package *rapl_find_package_domain_cpuslocked(int id, struct rapl_if_priv *priv,
2150							 bool id_is_cpu)
2151{
 
2152	struct rapl_package *rp;
2153	int uid;
2154
2155	if (id_is_cpu) {
2156		uid = rapl_msrs_are_pkg_scope() ?
2157		      topology_physical_package_id(id) : topology_logical_die_id(id);
2158		if (uid < 0) {
2159			pr_err("topology_logical_(package/die)_id() returned a negative value");
2160			return NULL;
2161		}
2162	}
2163	else
2164		uid = id;
2165
2166	list_for_each_entry(rp, &rapl_packages, plist) {
2167		if (rp->id == uid
2168		    && rp->priv->control_type == priv->control_type)
2169			return rp;
2170	}
2171
2172	return NULL;
2173}
2174EXPORT_SYMBOL_GPL(rapl_find_package_domain_cpuslocked);
2175
2176struct rapl_package *rapl_find_package_domain(int id, struct rapl_if_priv *priv, bool id_is_cpu)
2177{
2178	guard(cpus_read_lock)();
2179	return rapl_find_package_domain_cpuslocked(id, priv, id_is_cpu);
2180}
2181EXPORT_SYMBOL_GPL(rapl_find_package_domain);
2182
2183/* called from CPU hotplug notifier, hotplug lock held */
2184struct rapl_package *rapl_add_package_cpuslocked(int id, struct rapl_if_priv *priv, bool id_is_cpu)
2185{
 
2186	struct rapl_package *rp;
 
2187	int ret;
2188
 
 
 
2189	rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
2190	if (!rp)
2191		return ERR_PTR(-ENOMEM);
2192
2193	if (id_is_cpu) {
2194		rp->id = rapl_msrs_are_pkg_scope() ?
2195			 topology_physical_package_id(id) : topology_logical_die_id(id);
2196		if ((int)(rp->id) < 0) {
2197			pr_err("topology_logical_(package/die)_id() returned a negative value");
2198			return ERR_PTR(-EINVAL);
2199		}
2200		rp->lead_cpu = id;
2201		if (!rapl_msrs_are_pkg_scope() && topology_max_dies_per_package() > 1)
2202			snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d-die-%d",
2203				 topology_physical_package_id(id), topology_die_id(id));
2204		else
2205			snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d",
2206				 topology_physical_package_id(id));
2207	} else {
2208		rp->id = id;
2209		rp->lead_cpu = -1;
2210		snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d", id);
2211	}
2212
2213	rp->priv = priv;
2214	ret = rapl_config(rp);
2215	if (ret)
2216		goto err_free_package;
 
 
 
 
2217
2218	/* check if the package contains valid domains */
2219	if (rapl_detect_domains(rp)) {
2220		ret = -ENODEV;
2221		goto err_free_package;
2222	}
2223	ret = rapl_package_register_powercap(rp);
2224	if (!ret) {
2225		INIT_LIST_HEAD(&rp->plist);
2226		list_add(&rp->plist, &rapl_packages);
2227		return rp;
2228	}
2229
2230err_free_package:
2231	kfree(rp->domains);
2232	kfree(rp);
2233	return ERR_PTR(ret);
2234}
2235EXPORT_SYMBOL_GPL(rapl_add_package_cpuslocked);
2236
2237struct rapl_package *rapl_add_package(int id, struct rapl_if_priv *priv, bool id_is_cpu)
2238{
2239	guard(cpus_read_lock)();
2240	return rapl_add_package_cpuslocked(id, priv, id_is_cpu);
2241}
2242EXPORT_SYMBOL_GPL(rapl_add_package);
2243
2244static void power_limit_state_save(void)
2245{
2246	struct rapl_package *rp;
2247	struct rapl_domain *rd;
2248	int ret, i;
2249
2250	cpus_read_lock();
2251	list_for_each_entry(rp, &rapl_packages, plist) {
2252		if (!rp->power_zone)
2253			continue;
2254		rd = power_zone_to_rapl_domain(rp->power_zone);
2255		for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
2256			ret = rapl_read_pl_data(rd, i, PL_LIMIT, true,
 
 
 
 
2257						 &rd->rpl[i].last_power_limit);
2258			if (ret)
2259				rd->rpl[i].last_power_limit = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2260		}
2261	}
2262	cpus_read_unlock();
2263}
2264
2265static void power_limit_state_restore(void)
2266{
2267	struct rapl_package *rp;
2268	struct rapl_domain *rd;
2269	int i;
2270
2271	cpus_read_lock();
2272	list_for_each_entry(rp, &rapl_packages, plist) {
2273		if (!rp->power_zone)
2274			continue;
2275		rd = power_zone_to_rapl_domain(rp->power_zone);
2276		for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++)
2277			if (rd->rpl[i].last_power_limit)
2278				rapl_write_pl_data(rd, i, PL_LIMIT,
2279					       rd->rpl[i].last_power_limit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2280	}
2281	cpus_read_unlock();
2282}
2283
2284static int rapl_pm_callback(struct notifier_block *nb,
2285			    unsigned long mode, void *_unused)
2286{
2287	switch (mode) {
2288	case PM_SUSPEND_PREPARE:
2289		power_limit_state_save();
2290		break;
2291	case PM_POST_SUSPEND:
2292		power_limit_state_restore();
2293		break;
2294	}
2295	return NOTIFY_OK;
2296}
2297
2298static struct notifier_block rapl_pm_notifier = {
2299	.notifier_call = rapl_pm_callback,
2300};
2301
2302static struct platform_device *rapl_msr_platdev;
2303
2304static int __init rapl_init(void)
2305{
2306	const struct x86_cpu_id *id;
2307	int ret;
2308
2309	id = x86_match_cpu(rapl_ids);
2310	if (id) {
2311		defaults_msr = (struct rapl_defaults *)id->driver_data;
 
2312
2313		rapl_msr_platdev = platform_device_alloc("intel_rapl_msr", 0);
2314		if (!rapl_msr_platdev)
2315			return -ENOMEM;
2316
2317		ret = platform_device_add(rapl_msr_platdev);
2318		if (ret) {
2319			platform_device_put(rapl_msr_platdev);
2320			return ret;
2321		}
2322	}
2323
 
 
2324	ret = register_pm_notifier(&rapl_pm_notifier);
2325	if (ret && rapl_msr_platdev) {
2326		platform_device_del(rapl_msr_platdev);
2327		platform_device_put(rapl_msr_platdev);
 
 
 
 
2328	}
 
 
 
 
 
 
 
 
2329
2330	return ret;
2331}
2332
2333static void __exit rapl_exit(void)
2334{
2335	platform_device_unregister(rapl_msr_platdev);
2336	unregister_pm_notifier(&rapl_pm_notifier);
2337}
2338
2339fs_initcall(rapl_init);
2340module_exit(rapl_exit);
2341
2342MODULE_DESCRIPTION("Intel Runtime Average Power Limit (RAPL) common code");
2343MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>");
2344MODULE_LICENSE("GPL v2");
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Common code for Intel Running Average Power Limit (RAPL) support.
   4 * Copyright (c) 2019, Intel Corporation.
   5 */
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
 
 
 
 
 
 
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/list.h>
  11#include <linux/types.h>
  12#include <linux/device.h>
  13#include <linux/slab.h>
  14#include <linux/log2.h>
  15#include <linux/bitmap.h>
  16#include <linux/delay.h>
  17#include <linux/sysfs.h>
  18#include <linux/cpu.h>
  19#include <linux/powercap.h>
 
 
  20#include <linux/suspend.h>
  21#include <linux/intel_rapl.h>
  22#include <linux/processor.h>
  23#include <linux/platform_device.h>
  24
  25#include <asm/iosf_mbi.h>
  26#include <asm/cpu_device_id.h>
  27#include <asm/intel-family.h>
 
  28
  29/* bitmasks for RAPL MSRs, used by primitive access functions */
  30#define ENERGY_STATUS_MASK      0xffffffff
  31
  32#define POWER_LIMIT1_MASK       0x7FFF
  33#define POWER_LIMIT1_ENABLE     BIT(15)
  34#define POWER_LIMIT1_CLAMP      BIT(16)
  35
  36#define POWER_LIMIT2_MASK       (0x7FFFULL<<32)
  37#define POWER_LIMIT2_ENABLE     BIT_ULL(47)
  38#define POWER_LIMIT2_CLAMP      BIT_ULL(48)
  39#define POWER_HIGH_LOCK         BIT_ULL(63)
  40#define POWER_LOW_LOCK          BIT(31)
  41
  42#define POWER_LIMIT4_MASK		0x1FFF
  43
  44#define TIME_WINDOW1_MASK       (0x7FULL<<17)
  45#define TIME_WINDOW2_MASK       (0x7FULL<<49)
  46
  47#define POWER_UNIT_OFFSET	0
  48#define POWER_UNIT_MASK		0x0F
  49
  50#define ENERGY_UNIT_OFFSET	0x08
  51#define ENERGY_UNIT_MASK	0x1F00
  52
  53#define TIME_UNIT_OFFSET	0x10
  54#define TIME_UNIT_MASK		0xF0000
  55
  56#define POWER_INFO_MAX_MASK     (0x7fffULL<<32)
  57#define POWER_INFO_MIN_MASK     (0x7fffULL<<16)
  58#define POWER_INFO_MAX_TIME_WIN_MASK     (0x3fULL<<48)
  59#define POWER_INFO_THERMAL_SPEC_MASK     0x7fff
  60
  61#define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
  62#define PP_POLICY_MASK         0x1F
  63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  64/* Non HW constants */
  65#define RAPL_PRIMITIVE_DERIVED       BIT(1)	/* not from raw data */
  66#define RAPL_PRIMITIVE_DUMMY         BIT(2)
  67
  68#define TIME_WINDOW_MAX_MSEC 40000
  69#define TIME_WINDOW_MIN_MSEC 250
  70#define ENERGY_UNIT_SCALE    1000	/* scale from driver unit to powercap unit */
  71enum unit_type {
  72	ARBITRARY_UNIT,		/* no translation */
  73	POWER_UNIT,
  74	ENERGY_UNIT,
  75	TIME_UNIT,
  76};
  77
  78/* per domain data, some are optional */
  79#define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
  80
  81#define	DOMAIN_STATE_INACTIVE           BIT(0)
  82#define	DOMAIN_STATE_POWER_LIMIT_SET    BIT(1)
  83#define DOMAIN_STATE_BIOS_LOCKED        BIT(2)
  84
  85static const char pl1_name[] = "long_term";
  86static const char pl2_name[] = "short_term";
  87static const char pl4_name[] = "peak_power";
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  88
  89#define power_zone_to_rapl_domain(_zone) \
  90	container_of(_zone, struct rapl_domain, power_zone)
  91
  92struct rapl_defaults {
  93	u8 floor_freq_reg_addr;
  94	int (*check_unit)(struct rapl_package *rp, int cpu);
  95	void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
  96	u64 (*compute_time_window)(struct rapl_package *rp, u64 val,
  97				    bool to_raw);
  98	unsigned int dram_domain_energy_unit;
  99	unsigned int psys_domain_energy_unit;
 
 100};
 101static struct rapl_defaults *rapl_defaults;
 
 
 
 
 
 
 102
 103/* Sideband MBI registers */
 104#define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
 105#define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
 106
 107#define PACKAGE_PLN_INT_SAVED   BIT(0)
 108#define MAX_PRIM_NAME (32)
 109
 110/* per domain data. used to describe individual knobs such that access function
 111 * can be consolidated into one instead of many inline functions.
 112 */
 113struct rapl_primitive_info {
 114	const char *name;
 115	u64 mask;
 116	int shift;
 117	enum rapl_domain_reg_id id;
 118	enum unit_type unit;
 119	u32 flag;
 120};
 121
 122#define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) {	\
 123		.name = #p,			\
 124		.mask = m,			\
 125		.shift = s,			\
 126		.id = i,			\
 127		.unit = u,			\
 128		.flag = f			\
 129	}
 130
 131static void rapl_init_domains(struct rapl_package *rp);
 132static int rapl_read_data_raw(struct rapl_domain *rd,
 133			      enum rapl_primitives prim,
 134			      bool xlate, u64 *data);
 135static int rapl_write_data_raw(struct rapl_domain *rd,
 136			       enum rapl_primitives prim,
 137			       unsigned long long value);
 
 
 
 
 
 
 138static u64 rapl_unit_xlate(struct rapl_domain *rd,
 139			   enum unit_type type, u64 value, int to_raw);
 140static void package_power_limit_irq_save(struct rapl_package *rp);
 141
 142static LIST_HEAD(rapl_packages);	/* guarded by CPU hotplug lock */
 143
 144static const char *const rapl_domain_names[] = {
 145	"package",
 146	"core",
 147	"uncore",
 148	"dram",
 149	"psys",
 150};
 151
 152static int get_energy_counter(struct powercap_zone *power_zone,
 153			      u64 *energy_raw)
 154{
 155	struct rapl_domain *rd;
 156	u64 energy_now;
 157
 158	/* prevent CPU hotplug, make sure the RAPL domain does not go
 159	 * away while reading the counter.
 160	 */
 161	get_online_cpus();
 162	rd = power_zone_to_rapl_domain(power_zone);
 163
 164	if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) {
 165		*energy_raw = energy_now;
 166		put_online_cpus();
 167
 168		return 0;
 169	}
 170	put_online_cpus();
 171
 172	return -EIO;
 173}
 174
 175static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
 176{
 177	struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
 178
 179	*energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
 180	return 0;
 181}
 182
 183static int release_zone(struct powercap_zone *power_zone)
 184{
 185	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
 186	struct rapl_package *rp = rd->rp;
 187
 188	/* package zone is the last zone of a package, we can free
 189	 * memory here since all children has been unregistered.
 190	 */
 191	if (rd->id == RAPL_DOMAIN_PACKAGE) {
 192		kfree(rd);
 193		rp->domains = NULL;
 194	}
 195
 196	return 0;
 197
 198}
 199
 200static int find_nr_power_limit(struct rapl_domain *rd)
 201{
 202	int i, nr_pl = 0;
 203
 204	for (i = 0; i < NR_POWER_LIMITS; i++) {
 205		if (rd->rpl[i].name)
 206			nr_pl++;
 207	}
 208
 209	return nr_pl;
 210}
 211
 212static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
 213{
 214	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
 
 
 215
 216	if (rd->state & DOMAIN_STATE_BIOS_LOCKED)
 217		return -EACCES;
 218
 219	get_online_cpus();
 220	rapl_write_data_raw(rd, PL1_ENABLE, mode);
 221	if (rapl_defaults->set_floor_freq)
 222		rapl_defaults->set_floor_freq(rd, mode);
 223	put_online_cpus();
 224
 225	return 0;
 226}
 227
 228static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
 229{
 230	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
 231	u64 val;
 
 232
 233	if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
 234		*mode = false;
 235		return 0;
 236	}
 237	get_online_cpus();
 238	if (rapl_read_data_raw(rd, PL1_ENABLE, true, &val)) {
 239		put_online_cpus();
 240		return -EIO;
 241	}
 242	*mode = val;
 243	put_online_cpus();
 244
 245	return 0;
 246}
 247
 248/* per RAPL domain ops, in the order of rapl_domain_type */
 249static const struct powercap_zone_ops zone_ops[] = {
 250	/* RAPL_DOMAIN_PACKAGE */
 251	{
 252	 .get_energy_uj = get_energy_counter,
 253	 .get_max_energy_range_uj = get_max_energy_counter,
 254	 .release = release_zone,
 255	 .set_enable = set_domain_enable,
 256	 .get_enable = get_domain_enable,
 257	 },
 258	/* RAPL_DOMAIN_PP0 */
 259	{
 260	 .get_energy_uj = get_energy_counter,
 261	 .get_max_energy_range_uj = get_max_energy_counter,
 262	 .release = release_zone,
 263	 .set_enable = set_domain_enable,
 264	 .get_enable = get_domain_enable,
 265	 },
 266	/* RAPL_DOMAIN_PP1 */
 267	{
 268	 .get_energy_uj = get_energy_counter,
 269	 .get_max_energy_range_uj = get_max_energy_counter,
 270	 .release = release_zone,
 271	 .set_enable = set_domain_enable,
 272	 .get_enable = get_domain_enable,
 273	 },
 274	/* RAPL_DOMAIN_DRAM */
 275	{
 276	 .get_energy_uj = get_energy_counter,
 277	 .get_max_energy_range_uj = get_max_energy_counter,
 278	 .release = release_zone,
 279	 .set_enable = set_domain_enable,
 280	 .get_enable = get_domain_enable,
 281	 },
 282	/* RAPL_DOMAIN_PLATFORM */
 283	{
 284	 .get_energy_uj = get_energy_counter,
 285	 .get_max_energy_range_uj = get_max_energy_counter,
 286	 .release = release_zone,
 287	 .set_enable = set_domain_enable,
 288	 .get_enable = get_domain_enable,
 289	 },
 290};
 291
 292/*
 293 * Constraint index used by powercap can be different than power limit (PL)
 294 * index in that some  PLs maybe missing due to non-existent MSRs. So we
 295 * need to convert here by finding the valid PLs only (name populated).
 296 */
 297static int contraint_to_pl(struct rapl_domain *rd, int cid)
 298{
 299	int i, j;
 300
 301	for (i = 0, j = 0; i < NR_POWER_LIMITS; i++) {
 302		if ((rd->rpl[i].name) && j++ == cid) {
 303			pr_debug("%s: index %d\n", __func__, i);
 304			return i;
 305		}
 306	}
 307	pr_err("Cannot find matching power limit for constraint %d\n", cid);
 308
 309	return -EINVAL;
 310}
 311
 312static int set_power_limit(struct powercap_zone *power_zone, int cid,
 313			   u64 power_limit)
 314{
 315	struct rapl_domain *rd;
 316	struct rapl_package *rp;
 317	int ret = 0;
 318	int id;
 319
 320	get_online_cpus();
 321	rd = power_zone_to_rapl_domain(power_zone);
 322	id = contraint_to_pl(rd, cid);
 323	if (id < 0) {
 324		ret = id;
 325		goto set_exit;
 326	}
 327
 328	rp = rd->rp;
 329
 330	if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
 331		dev_warn(&power_zone->dev,
 332			 "%s locked by BIOS, monitoring only\n", rd->name);
 333		ret = -EACCES;
 334		goto set_exit;
 335	}
 336
 337	switch (rd->rpl[id].prim_id) {
 338	case PL1_ENABLE:
 339		rapl_write_data_raw(rd, POWER_LIMIT1, power_limit);
 340		break;
 341	case PL2_ENABLE:
 342		rapl_write_data_raw(rd, POWER_LIMIT2, power_limit);
 343		break;
 344	case PL4_ENABLE:
 345		rapl_write_data_raw(rd, POWER_LIMIT4, power_limit);
 346		break;
 347	default:
 348		ret = -EINVAL;
 349	}
 350	if (!ret)
 351		package_power_limit_irq_save(rp);
 352set_exit:
 353	put_online_cpus();
 354	return ret;
 355}
 356
 357static int get_current_power_limit(struct powercap_zone *power_zone, int cid,
 358				   u64 *data)
 359{
 360	struct rapl_domain *rd;
 361	u64 val;
 362	int prim;
 363	int ret = 0;
 364	int id;
 365
 366	get_online_cpus();
 367	rd = power_zone_to_rapl_domain(power_zone);
 368	id = contraint_to_pl(rd, cid);
 369	if (id < 0) {
 370		ret = id;
 371		goto get_exit;
 372	}
 373
 374	switch (rd->rpl[id].prim_id) {
 375	case PL1_ENABLE:
 376		prim = POWER_LIMIT1;
 377		break;
 378	case PL2_ENABLE:
 379		prim = POWER_LIMIT2;
 380		break;
 381	case PL4_ENABLE:
 382		prim = POWER_LIMIT4;
 383		break;
 384	default:
 385		put_online_cpus();
 386		return -EINVAL;
 387	}
 388	if (rapl_read_data_raw(rd, prim, true, &val))
 389		ret = -EIO;
 390	else
 391		*data = val;
 392
 393get_exit:
 394	put_online_cpus();
 395
 396	return ret;
 397}
 398
 399static int set_time_window(struct powercap_zone *power_zone, int cid,
 400			   u64 window)
 401{
 402	struct rapl_domain *rd;
 403	int ret = 0;
 404	int id;
 405
 406	get_online_cpus();
 407	rd = power_zone_to_rapl_domain(power_zone);
 408	id = contraint_to_pl(rd, cid);
 409	if (id < 0) {
 410		ret = id;
 411		goto set_time_exit;
 412	}
 413
 414	switch (rd->rpl[id].prim_id) {
 415	case PL1_ENABLE:
 416		rapl_write_data_raw(rd, TIME_WINDOW1, window);
 417		break;
 418	case PL2_ENABLE:
 419		rapl_write_data_raw(rd, TIME_WINDOW2, window);
 420		break;
 421	default:
 422		ret = -EINVAL;
 423	}
 424
 425set_time_exit:
 426	put_online_cpus();
 427	return ret;
 428}
 429
 430static int get_time_window(struct powercap_zone *power_zone, int cid,
 431			   u64 *data)
 432{
 433	struct rapl_domain *rd;
 434	u64 val;
 435	int ret = 0;
 436	int id;
 437
 438	get_online_cpus();
 439	rd = power_zone_to_rapl_domain(power_zone);
 440	id = contraint_to_pl(rd, cid);
 441	if (id < 0) {
 442		ret = id;
 443		goto get_time_exit;
 444	}
 445
 446	switch (rd->rpl[id].prim_id) {
 447	case PL1_ENABLE:
 448		ret = rapl_read_data_raw(rd, TIME_WINDOW1, true, &val);
 449		break;
 450	case PL2_ENABLE:
 451		ret = rapl_read_data_raw(rd, TIME_WINDOW2, true, &val);
 452		break;
 453	case PL4_ENABLE:
 454		/*
 455		 * Time window parameter is not applicable for PL4 entry
 456		 * so assigining '0' as default value.
 457		 */
 458		val = 0;
 459		break;
 460	default:
 461		put_online_cpus();
 462		return -EINVAL;
 463	}
 464	if (!ret)
 465		*data = val;
 466
 467get_time_exit:
 468	put_online_cpus();
 469
 470	return ret;
 471}
 472
 473static const char *get_constraint_name(struct powercap_zone *power_zone,
 474				       int cid)
 475{
 476	struct rapl_domain *rd;
 477	int id;
 478
 479	rd = power_zone_to_rapl_domain(power_zone);
 480	id = contraint_to_pl(rd, cid);
 481	if (id >= 0)
 482		return rd->rpl[id].name;
 483
 484	return NULL;
 485}
 486
 487static int get_max_power(struct powercap_zone *power_zone, int id, u64 *data)
 488{
 489	struct rapl_domain *rd;
 490	u64 val;
 491	int prim;
 492	int ret = 0;
 
 493
 494	get_online_cpus();
 495	rd = power_zone_to_rapl_domain(power_zone);
 496	switch (rd->rpl[id].prim_id) {
 497	case PL1_ENABLE:
 498		prim = THERMAL_SPEC_POWER;
 499		break;
 500	case PL2_ENABLE:
 501		prim = MAX_POWER;
 502		break;
 503	case PL4_ENABLE:
 504		prim = MAX_POWER;
 505		break;
 506	default:
 507		put_online_cpus();
 508		return -EINVAL;
 509	}
 510	if (rapl_read_data_raw(rd, prim, true, &val))
 511		ret = -EIO;
 512	else
 513		*data = val;
 514
 515	/* As a generalization rule, PL4 would be around two times PL2. */
 516	if (rd->rpl[id].prim_id == PL4_ENABLE)
 517		*data = *data * 2;
 518
 519	put_online_cpus();
 520
 521	return ret;
 522}
 523
 524static const struct powercap_zone_constraint_ops constraint_ops = {
 525	.set_power_limit_uw = set_power_limit,
 526	.get_power_limit_uw = get_current_power_limit,
 527	.set_time_window_us = set_time_window,
 528	.get_time_window_us = get_time_window,
 529	.get_max_power_uw = get_max_power,
 530	.get_name = get_constraint_name,
 531};
 532
 
 
 
 
 
 
 533/* called after domain detection and package level data are set */
 534static void rapl_init_domains(struct rapl_package *rp)
 535{
 536	enum rapl_domain_type i;
 537	enum rapl_domain_reg_id j;
 538	struct rapl_domain *rd = rp->domains;
 539
 540	for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
 541		unsigned int mask = rp->domain_map & (1 << i);
 
 542
 543		if (!mask)
 544			continue;
 545
 546		rd->rp = rp;
 547		rd->name = rapl_domain_names[i];
 
 
 
 
 
 
 
 
 
 548		rd->id = i;
 549		rd->rpl[0].prim_id = PL1_ENABLE;
 550		rd->rpl[0].name = pl1_name;
 551
 552		/*
 553		 * The PL2 power domain is applicable for limits two
 554		 * and limits three
 555		 */
 556		if (rp->priv->limits[i] >= 2) {
 557			rd->rpl[1].prim_id = PL2_ENABLE;
 558			rd->rpl[1].name = pl2_name;
 559		}
 560
 561		/* Enable PL4 domain if the total power limits are three */
 562		if (rp->priv->limits[i] == 3) {
 563			rd->rpl[2].prim_id = PL4_ENABLE;
 564			rd->rpl[2].name = pl4_name;
 565		}
 566
 567		for (j = 0; j < RAPL_DOMAIN_REG_MAX; j++)
 568			rd->regs[j] = rp->priv->regs[i][j];
 569
 570		switch (i) {
 571		case RAPL_DOMAIN_DRAM:
 572			rd->domain_energy_unit =
 573			    rapl_defaults->dram_domain_energy_unit;
 574			if (rd->domain_energy_unit)
 575				pr_info("DRAM domain energy unit %dpj\n",
 576					rd->domain_energy_unit);
 577			break;
 578		case RAPL_DOMAIN_PLATFORM:
 579			rd->domain_energy_unit =
 580			    rapl_defaults->psys_domain_energy_unit;
 581			if (rd->domain_energy_unit)
 582				pr_info("Platform domain energy unit %dpj\n",
 583					rd->domain_energy_unit);
 584			break;
 585		default:
 586			break;
 587		}
 588		rd++;
 589	}
 590}
 591
 592static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
 593			   u64 value, int to_raw)
 594{
 595	u64 units = 1;
 596	struct rapl_package *rp = rd->rp;
 597	u64 scale = 1;
 598
 599	switch (type) {
 600	case POWER_UNIT:
 601		units = rp->power_unit;
 602		break;
 603	case ENERGY_UNIT:
 604		scale = ENERGY_UNIT_SCALE;
 605		/* per domain unit takes precedence */
 606		if (rd->domain_energy_unit)
 607			units = rd->domain_energy_unit;
 608		else
 609			units = rp->energy_unit;
 610		break;
 611	case TIME_UNIT:
 612		return rapl_defaults->compute_time_window(rp, value, to_raw);
 613	case ARBITRARY_UNIT:
 614	default:
 615		return value;
 616	};
 617
 618	if (to_raw)
 619		return div64_u64(value, units) * scale;
 620
 621	value *= units;
 622
 623	return div64_u64(value, scale);
 624}
 625
 626/* in the order of enum rapl_primitives */
 627static struct rapl_primitive_info rpi[] = {
 628	/* name, mask, shift, msr index, unit divisor */
 629	PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
 630			    RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
 631	PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
 632			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
 633	PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
 634			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
 635	PRIMITIVE_INFO_INIT(POWER_LIMIT4, POWER_LIMIT4_MASK, 0,
 636				RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
 637	PRIMITIVE_INFO_INIT(FW_LOCK, POWER_LOW_LOCK, 31,
 
 
 
 
 638			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 639	PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
 640			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 641	PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
 642			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 643	PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
 644			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 645	PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
 646			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 647	PRIMITIVE_INFO_INIT(PL4_ENABLE, POWER_LIMIT4_MASK, 0,
 648				RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
 649	PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
 650			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
 651	PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
 652			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
 653	PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
 654			    0, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
 655	PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
 656			    RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
 657	PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
 658			    RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
 659	PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
 660			    RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
 661	PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
 662			    RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
 663	PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
 664			    RAPL_DOMAIN_REG_POLICY, ARBITRARY_UNIT, 0),
 
 
 
 
 
 
 
 
 
 
 
 
 665	/* non-hardware */
 666	PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
 667			    RAPL_PRIMITIVE_DERIVED),
 668	{NULL, 0, 0, 0},
 669};
 670
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 671/* Read primitive data based on its related struct rapl_primitive_info.
 672 * if xlate flag is set, return translated data based on data units, i.e.
 673 * time, energy, and power.
 674 * RAPL MSRs are non-architectual and are laid out not consistently across
 675 * domains. Here we use primitive info to allow writing consolidated access
 676 * functions.
 677 * For a given primitive, it is processed by MSR mask and shift. Unit conversion
 678 * is pre-assigned based on RAPL unit MSRs read at init time.
 679 * 63-------------------------- 31--------------------------- 0
 680 * |                           xxxxx (mask)                   |
 681 * |                                |<- shift ----------------|
 682 * 63-------------------------- 31--------------------------- 0
 683 */
 684static int rapl_read_data_raw(struct rapl_domain *rd,
 685			      enum rapl_primitives prim, bool xlate, u64 *data)
 686{
 687	u64 value;
 688	struct rapl_primitive_info *rp = &rpi[prim];
 
 689	struct reg_action ra;
 690	int cpu;
 691
 692	if (!rp->name || rp->flag & RAPL_PRIMITIVE_DUMMY)
 693		return -EINVAL;
 694
 695	ra.reg = rd->regs[rp->id];
 696	if (!ra.reg)
 697		return -EINVAL;
 698
 699	cpu = rd->rp->lead_cpu;
 700
 701	/* domain with 2 limits has different bit */
 702	if (prim == FW_LOCK && rd->rp->priv->limits[rd->id] == 2) {
 703		rp->mask = POWER_HIGH_LOCK;
 704		rp->shift = 63;
 705	}
 706	/* non-hardware data are collected by the polling thread */
 707	if (rp->flag & RAPL_PRIMITIVE_DERIVED) {
 708		*data = rd->rdd.primitives[prim];
 709		return 0;
 710	}
 711
 712	ra.mask = rp->mask;
 713
 714	if (rd->rp->priv->read_raw(cpu, &ra)) {
 715		pr_debug("failed to read reg 0x%llx on cpu %d\n", ra.reg, cpu);
 716		return -EIO;
 717	}
 718
 719	value = ra.value >> rp->shift;
 720
 721	if (xlate)
 722		*data = rapl_unit_xlate(rd, rp->unit, value, 0);
 723	else
 724		*data = value;
 725
 726	return 0;
 727}
 728
 729/* Similar use of primitive info in the read counterpart */
 730static int rapl_write_data_raw(struct rapl_domain *rd,
 731			       enum rapl_primitives prim,
 732			       unsigned long long value)
 733{
 734	struct rapl_primitive_info *rp = &rpi[prim];
 735	int cpu;
 736	u64 bits;
 737	struct reg_action ra;
 738	int ret;
 739
 740	cpu = rd->rp->lead_cpu;
 741	bits = rapl_unit_xlate(rd, rp->unit, value, 1);
 742	bits <<= rp->shift;
 743	bits &= rp->mask;
 
 
 744
 745	memset(&ra, 0, sizeof(ra));
 746
 747	ra.reg = rd->regs[rp->id];
 748	ra.mask = rp->mask;
 749	ra.value = bits;
 750
 751	ret = rd->rp->priv->write_raw(cpu, &ra);
 752
 753	return ret;
 754}
 755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 756/*
 757 * Raw RAPL data stored in MSRs are in certain scales. We need to
 758 * convert them into standard units based on the units reported in
 759 * the RAPL unit MSRs. This is specific to CPUs as the method to
 760 * calculate units differ on different CPUs.
 761 * We convert the units to below format based on CPUs.
 762 * i.e.
 763 * energy unit: picoJoules  : Represented in picoJoules by default
 764 * power unit : microWatts  : Represented in milliWatts by default
 765 * time unit  : microseconds: Represented in seconds by default
 766 */
 767static int rapl_check_unit_core(struct rapl_package *rp, int cpu)
 768{
 769	struct reg_action ra;
 770	u32 value;
 771
 772	ra.reg = rp->priv->reg_unit;
 773	ra.mask = ~0;
 774	if (rp->priv->read_raw(cpu, &ra)) {
 775		pr_err("Failed to read power unit REG 0x%llx on CPU %d, exit.\n",
 776		       rp->priv->reg_unit, cpu);
 777		return -ENODEV;
 778	}
 779
 780	value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
 781	rp->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
 782
 783	value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
 784	rp->power_unit = 1000000 / (1 << value);
 785
 786	value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
 787	rp->time_unit = 1000000 / (1 << value);
 788
 789	pr_debug("Core CPU %s energy=%dpJ, time=%dus, power=%duW\n",
 790		 rp->name, rp->energy_unit, rp->time_unit, rp->power_unit);
 791
 792	return 0;
 793}
 794
 795static int rapl_check_unit_atom(struct rapl_package *rp, int cpu)
 796{
 797	struct reg_action ra;
 798	u32 value;
 799
 800	ra.reg = rp->priv->reg_unit;
 801	ra.mask = ~0;
 802	if (rp->priv->read_raw(cpu, &ra)) {
 803		pr_err("Failed to read power unit REG 0x%llx on CPU %d, exit.\n",
 804		       rp->priv->reg_unit, cpu);
 805		return -ENODEV;
 806	}
 807
 808	value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
 809	rp->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
 810
 811	value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
 812	rp->power_unit = (1 << value) * 1000;
 813
 814	value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
 815	rp->time_unit = 1000000 / (1 << value);
 816
 817	pr_debug("Atom %s energy=%dpJ, time=%dus, power=%duW\n",
 818		 rp->name, rp->energy_unit, rp->time_unit, rp->power_unit);
 819
 820	return 0;
 821}
 822
 823static void power_limit_irq_save_cpu(void *info)
 824{
 825	u32 l, h = 0;
 826	struct rapl_package *rp = (struct rapl_package *)info;
 827
 828	/* save the state of PLN irq mask bit before disabling it */
 829	rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
 830	if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
 831		rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
 832		rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
 833	}
 834	l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
 835	wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
 836}
 837
 838/* REVISIT:
 839 * When package power limit is set artificially low by RAPL, LVT
 840 * thermal interrupt for package power limit should be ignored
 841 * since we are not really exceeding the real limit. The intention
 842 * is to avoid excessive interrupts while we are trying to save power.
 843 * A useful feature might be routing the package_power_limit interrupt
 844 * to userspace via eventfd. once we have a usecase, this is simple
 845 * to do by adding an atomic notifier.
 846 */
 847
 848static void package_power_limit_irq_save(struct rapl_package *rp)
 849{
 
 
 
 850	if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
 851		return;
 852
 853	smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
 854}
 855
 856/*
 857 * Restore per package power limit interrupt enable state. Called from cpu
 858 * hotplug code on package removal.
 859 */
 860static void package_power_limit_irq_restore(struct rapl_package *rp)
 861{
 862	u32 l, h;
 863
 
 
 
 864	if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
 865		return;
 866
 867	/* irq enable state not saved, nothing to restore */
 868	if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
 869		return;
 870
 871	rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
 872
 873	if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
 874		l |= PACKAGE_THERM_INT_PLN_ENABLE;
 875	else
 876		l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
 877
 878	wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
 879}
 880
 881static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
 882{
 883	int nr_powerlimit = find_nr_power_limit(rd);
 884
 885	/* always enable clamp such that p-state can go below OS requested
 886	 * range. power capping priority over guranteed frequency.
 887	 */
 888	rapl_write_data_raw(rd, PL1_CLAMP, mode);
 889
 890	/* some domains have pl2 */
 891	if (nr_powerlimit > 1) {
 892		rapl_write_data_raw(rd, PL2_ENABLE, mode);
 893		rapl_write_data_raw(rd, PL2_CLAMP, mode);
 894	}
 895}
 896
 897static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
 898{
 899	static u32 power_ctrl_orig_val;
 
 900	u32 mdata;
 901
 902	if (!rapl_defaults->floor_freq_reg_addr) {
 903		pr_err("Invalid floor frequency config register\n");
 904		return;
 905	}
 906
 907	if (!power_ctrl_orig_val)
 908		iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
 909			      rapl_defaults->floor_freq_reg_addr,
 910			      &power_ctrl_orig_val);
 911	mdata = power_ctrl_orig_val;
 912	if (enable) {
 913		mdata &= ~(0x7f << 8);
 914		mdata |= 1 << 8;
 915	}
 916	iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
 917		       rapl_defaults->floor_freq_reg_addr, mdata);
 918}
 919
 920static u64 rapl_compute_time_window_core(struct rapl_package *rp, u64 value,
 921					 bool to_raw)
 922{
 923	u64 f, y;		/* fraction and exp. used for time unit */
 924
 925	/*
 926	 * Special processing based on 2^Y*(1+F/4), refer
 927	 * to Intel Software Developer's manual Vol.3B: CH 14.9.3.
 928	 */
 929	if (!to_raw) {
 930		f = (value & 0x60) >> 5;
 931		y = value & 0x1f;
 932		value = (1 << y) * (4 + f) * rp->time_unit / 4;
 933	} else {
 934		do_div(value, rp->time_unit);
 
 
 
 935		y = ilog2(value);
 936		f = div64_u64(4 * (value - (1 << y)), 1 << y);
 
 
 
 
 
 
 
 
 937		value = (y & 0x1f) | ((f & 0x3) << 5);
 938	}
 939	return value;
 940}
 941
 942static u64 rapl_compute_time_window_atom(struct rapl_package *rp, u64 value,
 943					 bool to_raw)
 944{
 945	/*
 946	 * Atom time unit encoding is straight forward val * time_unit,
 947	 * where time_unit is default to 1 sec. Never 0.
 948	 */
 949	if (!to_raw)
 950		return (value) ? value *= rp->time_unit : rp->time_unit;
 951
 952	value = div64_u64(value, rp->time_unit);
 953
 954	return value;
 955}
 956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 957static const struct rapl_defaults rapl_defaults_core = {
 958	.floor_freq_reg_addr = 0,
 959	.check_unit = rapl_check_unit_core,
 960	.set_floor_freq = set_floor_freq_default,
 961	.compute_time_window = rapl_compute_time_window_core,
 962};
 963
 964static const struct rapl_defaults rapl_defaults_hsw_server = {
 965	.check_unit = rapl_check_unit_core,
 966	.set_floor_freq = set_floor_freq_default,
 967	.compute_time_window = rapl_compute_time_window_core,
 968	.dram_domain_energy_unit = 15300,
 969};
 970
 971static const struct rapl_defaults rapl_defaults_spr_server = {
 972	.check_unit = rapl_check_unit_core,
 973	.set_floor_freq = set_floor_freq_default,
 974	.compute_time_window = rapl_compute_time_window_core,
 975	.dram_domain_energy_unit = 15300,
 976	.psys_domain_energy_unit = 1000000000,
 
 977};
 978
 979static const struct rapl_defaults rapl_defaults_byt = {
 980	.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
 981	.check_unit = rapl_check_unit_atom,
 982	.set_floor_freq = set_floor_freq_atom,
 983	.compute_time_window = rapl_compute_time_window_atom,
 984};
 985
 986static const struct rapl_defaults rapl_defaults_tng = {
 987	.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
 988	.check_unit = rapl_check_unit_atom,
 989	.set_floor_freq = set_floor_freq_atom,
 990	.compute_time_window = rapl_compute_time_window_atom,
 991};
 992
 993static const struct rapl_defaults rapl_defaults_ann = {
 994	.floor_freq_reg_addr = 0,
 995	.check_unit = rapl_check_unit_atom,
 996	.set_floor_freq = NULL,
 997	.compute_time_window = rapl_compute_time_window_atom,
 998};
 999
1000static const struct rapl_defaults rapl_defaults_cht = {
1001	.floor_freq_reg_addr = 0,
1002	.check_unit = rapl_check_unit_atom,
1003	.set_floor_freq = NULL,
1004	.compute_time_window = rapl_compute_time_window_atom,
1005};
1006
 
 
 
 
1007static const struct x86_cpu_id rapl_ids[] __initconst = {
1008	X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE,		&rapl_defaults_core),
1009	X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X,	&rapl_defaults_core),
1010
1011	X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE,		&rapl_defaults_core),
1012	X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X,		&rapl_defaults_core),
1013
1014	X86_MATCH_INTEL_FAM6_MODEL(HASWELL,		&rapl_defaults_core),
1015	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_L,		&rapl_defaults_core),
1016	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_G,		&rapl_defaults_core),
1017	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X,		&rapl_defaults_hsw_server),
1018
1019	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL,		&rapl_defaults_core),
1020	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_G,		&rapl_defaults_core),
1021	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D,		&rapl_defaults_core),
1022	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X,		&rapl_defaults_hsw_server),
1023
1024	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE,		&rapl_defaults_core),
1025	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_L,		&rapl_defaults_core),
1026	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X,		&rapl_defaults_hsw_server),
1027	X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE_L,		&rapl_defaults_core),
1028	X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE,		&rapl_defaults_core),
1029	X86_MATCH_INTEL_FAM6_MODEL(CANNONLAKE_L,	&rapl_defaults_core),
1030	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L,		&rapl_defaults_core),
1031	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE,		&rapl_defaults_core),
1032	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_NNPI,	&rapl_defaults_core),
1033	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X,		&rapl_defaults_hsw_server),
1034	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D,		&rapl_defaults_hsw_server),
1035	X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE_L,		&rapl_defaults_core),
1036	X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE,		&rapl_defaults_core),
1037	X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L,		&rapl_defaults_core),
1038	X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE,		&rapl_defaults_core),
1039	X86_MATCH_INTEL_FAM6_MODEL(ROCKETLAKE,		&rapl_defaults_core),
1040	X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE,		&rapl_defaults_core),
1041	X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X,	&rapl_defaults_spr_server),
1042	X86_MATCH_INTEL_FAM6_MODEL(LAKEFIELD,		&rapl_defaults_core),
1043
1044	X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT,	&rapl_defaults_byt),
1045	X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT,	&rapl_defaults_cht),
1046	X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT_MID,	&rapl_defaults_tng),
1047	X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT_MID,	&rapl_defaults_ann),
1048	X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT,	&rapl_defaults_core),
1049	X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_PLUS,	&rapl_defaults_core),
1050	X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_D,	&rapl_defaults_core),
1051	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT,	&rapl_defaults_core),
1052	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D,	&rapl_defaults_core),
1053	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L,	&rapl_defaults_core),
1054
1055	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL,	&rapl_defaults_hsw_server),
1056	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM,	&rapl_defaults_hsw_server),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1057	{}
1058};
1059MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
1060
1061/* Read once for all raw primitive data for domains */
1062static void rapl_update_domain_data(struct rapl_package *rp)
1063{
1064	int dmn, prim;
1065	u64 val;
1066
1067	for (dmn = 0; dmn < rp->nr_domains; dmn++) {
1068		pr_debug("update %s domain %s data\n", rp->name,
1069			 rp->domains[dmn].name);
1070		/* exclude non-raw primitives */
1071		for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++) {
 
 
1072			if (!rapl_read_data_raw(&rp->domains[dmn], prim,
1073						rpi[prim].unit, &val))
1074				rp->domains[dmn].rdd.primitives[prim] = val;
1075		}
1076	}
1077
1078}
1079
1080static int rapl_package_register_powercap(struct rapl_package *rp)
1081{
1082	struct rapl_domain *rd;
1083	struct powercap_zone *power_zone = NULL;
1084	int nr_pl, ret;
1085
1086	/* Update the domain data of the new package */
1087	rapl_update_domain_data(rp);
1088
1089	/* first we register package domain as the parent zone */
1090	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1091		if (rd->id == RAPL_DOMAIN_PACKAGE) {
1092			nr_pl = find_nr_power_limit(rd);
1093			pr_debug("register package domain %s\n", rp->name);
1094			power_zone = powercap_register_zone(&rd->power_zone,
1095					    rp->priv->control_type, rp->name,
1096					    NULL, &zone_ops[rd->id], nr_pl,
1097					    &constraint_ops);
1098			if (IS_ERR(power_zone)) {
1099				pr_debug("failed to register power zone %s\n",
1100					 rp->name);
1101				return PTR_ERR(power_zone);
1102			}
1103			/* track parent zone in per package/socket data */
1104			rp->power_zone = power_zone;
1105			/* done, only one package domain per socket */
1106			break;
1107		}
1108	}
1109	if (!power_zone) {
1110		pr_err("no package domain found, unknown topology!\n");
1111		return -ENODEV;
1112	}
1113	/* now register domains as children of the socket/package */
1114	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
 
 
1115		if (rd->id == RAPL_DOMAIN_PACKAGE)
1116			continue;
 
 
1117		/* number of power limits per domain varies */
1118		nr_pl = find_nr_power_limit(rd);
1119		power_zone = powercap_register_zone(&rd->power_zone,
1120						    rp->priv->control_type,
1121						    rd->name, rp->power_zone,
1122						    &zone_ops[rd->id], nr_pl,
1123						    &constraint_ops);
1124
1125		if (IS_ERR(power_zone)) {
1126			pr_debug("failed to register power_zone, %s:%s\n",
1127				 rp->name, rd->name);
1128			ret = PTR_ERR(power_zone);
1129			goto err_cleanup;
1130		}
1131	}
1132	return 0;
1133
1134err_cleanup:
1135	/*
1136	 * Clean up previously initialized domains within the package if we
1137	 * failed after the first domain setup.
1138	 */
1139	while (--rd >= rp->domains) {
1140		pr_debug("unregister %s domain %s\n", rp->name, rd->name);
1141		powercap_unregister_zone(rp->priv->control_type,
1142					 &rd->power_zone);
1143	}
1144
1145	return ret;
1146}
1147
1148int rapl_add_platform_domain(struct rapl_if_priv *priv)
1149{
1150	struct rapl_domain *rd;
1151	struct powercap_zone *power_zone;
1152	struct reg_action ra;
1153	int ret;
1154
1155	ra.reg = priv->regs[RAPL_DOMAIN_PLATFORM][RAPL_DOMAIN_REG_STATUS];
1156	ra.mask = ~0;
1157	ret = priv->read_raw(0, &ra);
1158	if (ret || !ra.value)
1159		return -ENODEV;
1160
1161	ra.reg = priv->regs[RAPL_DOMAIN_PLATFORM][RAPL_DOMAIN_REG_LIMIT];
1162	ra.mask = ~0;
1163	ret = priv->read_raw(0, &ra);
1164	if (ret || !ra.value)
1165		return -ENODEV;
1166
1167	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
1168	if (!rd)
1169		return -ENOMEM;
1170
1171	rd->name = rapl_domain_names[RAPL_DOMAIN_PLATFORM];
1172	rd->id = RAPL_DOMAIN_PLATFORM;
1173	rd->regs[RAPL_DOMAIN_REG_LIMIT] =
1174	    priv->regs[RAPL_DOMAIN_PLATFORM][RAPL_DOMAIN_REG_LIMIT];
1175	rd->regs[RAPL_DOMAIN_REG_STATUS] =
1176	    priv->regs[RAPL_DOMAIN_PLATFORM][RAPL_DOMAIN_REG_STATUS];
1177	rd->rpl[0].prim_id = PL1_ENABLE;
1178	rd->rpl[0].name = pl1_name;
1179	rd->rpl[1].prim_id = PL2_ENABLE;
1180	rd->rpl[1].name = pl2_name;
1181	rd->rp = rapl_find_package_domain(0, priv);
1182
1183	power_zone = powercap_register_zone(&rd->power_zone, priv->control_type,
1184					    "psys", NULL,
1185					    &zone_ops[RAPL_DOMAIN_PLATFORM],
1186					    2, &constraint_ops);
1187
1188	if (IS_ERR(power_zone)) {
1189		kfree(rd);
1190		return PTR_ERR(power_zone);
1191	}
1192
1193	priv->platform_rapl_domain = rd;
1194
1195	return 0;
1196}
1197EXPORT_SYMBOL_GPL(rapl_add_platform_domain);
1198
1199void rapl_remove_platform_domain(struct rapl_if_priv *priv)
1200{
1201	if (priv->platform_rapl_domain) {
1202		powercap_unregister_zone(priv->control_type,
1203				 &priv->platform_rapl_domain->power_zone);
1204		kfree(priv->platform_rapl_domain);
1205	}
1206}
1207EXPORT_SYMBOL_GPL(rapl_remove_platform_domain);
1208
1209static int rapl_check_domain(int cpu, int domain, struct rapl_package *rp)
1210{
1211	struct reg_action ra;
1212
1213	switch (domain) {
1214	case RAPL_DOMAIN_PACKAGE:
1215	case RAPL_DOMAIN_PP0:
1216	case RAPL_DOMAIN_PP1:
1217	case RAPL_DOMAIN_DRAM:
 
1218		ra.reg = rp->priv->regs[domain][RAPL_DOMAIN_REG_STATUS];
1219		break;
1220	case RAPL_DOMAIN_PLATFORM:
1221		/* PSYS(PLATFORM) is not a CPU domain, so avoid printng error */
1222		return -EINVAL;
1223	default:
1224		pr_err("invalid domain id %d\n", domain);
1225		return -EINVAL;
1226	}
1227	/* make sure domain counters are available and contains non-zero
1228	 * values, otherwise skip it.
1229	 */
1230
1231	ra.mask = ~0;
1232	if (rp->priv->read_raw(cpu, &ra) || !ra.value)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1233		return -ENODEV;
 
1234
 
 
 
 
 
 
 
 
1235	return 0;
1236}
1237
1238/*
1239 * Check if power limits are available. Two cases when they are not available:
1240 * 1. Locked by BIOS, in this case we still provide read-only access so that
1241 *    users can see what limit is set by the BIOS.
1242 * 2. Some CPUs make some domains monitoring only which means PLx MSRs may not
1243 *    exist at all. In this case, we do not show the constraints in powercap.
1244 *
1245 * Called after domains are detected and initialized.
1246 */
1247static void rapl_detect_powerlimit(struct rapl_domain *rd)
1248{
1249	u64 val64;
1250	int i;
1251
1252	/* check if the domain is locked by BIOS, ignore if MSR doesn't exist */
1253	if (!rapl_read_data_raw(rd, FW_LOCK, false, &val64)) {
1254		if (val64) {
1255			pr_info("RAPL %s domain %s locked by BIOS\n",
1256				rd->rp->name, rd->name);
1257			rd->state |= DOMAIN_STATE_BIOS_LOCKED;
 
1258		}
1259	}
1260	/* check if power limit MSR exists, otherwise domain is monitoring only */
1261	for (i = 0; i < NR_POWER_LIMITS; i++) {
1262		int prim = rd->rpl[i].prim_id;
1263
1264		if (rapl_read_data_raw(rd, prim, false, &val64))
1265			rd->rpl[i].name = NULL;
1266	}
1267}
1268
1269/* Detect active and valid domains for the given CPU, caller must
1270 * ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
1271 */
1272static int rapl_detect_domains(struct rapl_package *rp, int cpu)
1273{
1274	struct rapl_domain *rd;
1275	int i;
1276
1277	for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
1278		/* use physical package id to read counters */
1279		if (!rapl_check_domain(cpu, i, rp)) {
1280			rp->domain_map |= 1 << i;
1281			pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
1282		}
1283	}
1284	rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX);
1285	if (!rp->nr_domains) {
1286		pr_debug("no valid rapl domains found in %s\n", rp->name);
1287		return -ENODEV;
1288	}
1289	pr_debug("found %d domains on %s\n", rp->nr_domains, rp->name);
1290
1291	rp->domains = kcalloc(rp->nr_domains + 1, sizeof(struct rapl_domain),
1292			      GFP_KERNEL);
1293	if (!rp->domains)
1294		return -ENOMEM;
1295
1296	rapl_init_domains(rp);
1297
1298	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++)
 
1299		rapl_detect_powerlimit(rd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1300
1301	return 0;
1302}
1303
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1304/* called from CPU hotplug notifier, hotplug lock held */
1305void rapl_remove_package(struct rapl_package *rp)
1306{
1307	struct rapl_domain *rd, *rd_package = NULL;
1308
1309	package_power_limit_irq_restore(rp);
1310
1311	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1312		rapl_write_data_raw(rd, PL1_ENABLE, 0);
1313		rapl_write_data_raw(rd, PL1_CLAMP, 0);
1314		if (find_nr_power_limit(rd) > 1) {
1315			rapl_write_data_raw(rd, PL2_ENABLE, 0);
1316			rapl_write_data_raw(rd, PL2_CLAMP, 0);
1317			rapl_write_data_raw(rd, PL4_ENABLE, 0);
1318		}
 
1319		if (rd->id == RAPL_DOMAIN_PACKAGE) {
1320			rd_package = rd;
1321			continue;
1322		}
1323		pr_debug("remove package, undo power limit on %s: %s\n",
1324			 rp->name, rd->name);
1325		powercap_unregister_zone(rp->priv->control_type,
1326					 &rd->power_zone);
1327	}
1328	/* do parent zone last */
1329	powercap_unregister_zone(rp->priv->control_type,
1330				 &rd_package->power_zone);
1331	list_del(&rp->plist);
1332	kfree(rp);
1333}
 
 
 
 
 
 
 
1334EXPORT_SYMBOL_GPL(rapl_remove_package);
1335
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1336/* caller to ensure CPU hotplug lock is held */
1337struct rapl_package *rapl_find_package_domain(int cpu, struct rapl_if_priv *priv)
 
1338{
1339	int id = topology_logical_die_id(cpu);
1340	struct rapl_package *rp;
 
 
 
 
 
 
 
 
 
 
 
 
1341
1342	list_for_each_entry(rp, &rapl_packages, plist) {
1343		if (rp->id == id
1344		    && rp->priv->control_type == priv->control_type)
1345			return rp;
1346	}
1347
1348	return NULL;
1349}
 
 
 
 
 
 
 
1350EXPORT_SYMBOL_GPL(rapl_find_package_domain);
1351
1352/* called from CPU hotplug notifier, hotplug lock held */
1353struct rapl_package *rapl_add_package(int cpu, struct rapl_if_priv *priv)
1354{
1355	int id = topology_logical_die_id(cpu);
1356	struct rapl_package *rp;
1357	struct cpuinfo_x86 *c = &cpu_data(cpu);
1358	int ret;
1359
1360	if (!rapl_defaults)
1361		return ERR_PTR(-ENODEV);
1362
1363	rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
1364	if (!rp)
1365		return ERR_PTR(-ENOMEM);
1366
1367	/* add the new package to the list */
1368	rp->id = id;
1369	rp->lead_cpu = cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1370	rp->priv = priv;
1371
1372	if (topology_max_die_per_package() > 1)
1373		snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH,
1374			 "package-%d-die-%d", c->phys_proc_id, c->cpu_die_id);
1375	else
1376		snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d",
1377			 c->phys_proc_id);
1378
1379	/* check if the package contains valid domains */
1380	if (rapl_detect_domains(rp, cpu) || rapl_defaults->check_unit(rp, cpu)) {
1381		ret = -ENODEV;
1382		goto err_free_package;
1383	}
1384	ret = rapl_package_register_powercap(rp);
1385	if (!ret) {
1386		INIT_LIST_HEAD(&rp->plist);
1387		list_add(&rp->plist, &rapl_packages);
1388		return rp;
1389	}
1390
1391err_free_package:
1392	kfree(rp->domains);
1393	kfree(rp);
1394	return ERR_PTR(ret);
1395}
 
 
 
 
 
 
 
1396EXPORT_SYMBOL_GPL(rapl_add_package);
1397
1398static void power_limit_state_save(void)
1399{
1400	struct rapl_package *rp;
1401	struct rapl_domain *rd;
1402	int nr_pl, ret, i;
1403
1404	get_online_cpus();
1405	list_for_each_entry(rp, &rapl_packages, plist) {
1406		if (!rp->power_zone)
1407			continue;
1408		rd = power_zone_to_rapl_domain(rp->power_zone);
1409		nr_pl = find_nr_power_limit(rd);
1410		for (i = 0; i < nr_pl; i++) {
1411			switch (rd->rpl[i].prim_id) {
1412			case PL1_ENABLE:
1413				ret = rapl_read_data_raw(rd,
1414						 POWER_LIMIT1, true,
1415						 &rd->rpl[i].last_power_limit);
1416				if (ret)
1417					rd->rpl[i].last_power_limit = 0;
1418				break;
1419			case PL2_ENABLE:
1420				ret = rapl_read_data_raw(rd,
1421						 POWER_LIMIT2, true,
1422						 &rd->rpl[i].last_power_limit);
1423				if (ret)
1424					rd->rpl[i].last_power_limit = 0;
1425				break;
1426			case PL4_ENABLE:
1427				ret = rapl_read_data_raw(rd,
1428						 POWER_LIMIT4, true,
1429						 &rd->rpl[i].last_power_limit);
1430				if (ret)
1431					rd->rpl[i].last_power_limit = 0;
1432				break;
1433			}
1434		}
1435	}
1436	put_online_cpus();
1437}
1438
1439static void power_limit_state_restore(void)
1440{
1441	struct rapl_package *rp;
1442	struct rapl_domain *rd;
1443	int nr_pl, i;
1444
1445	get_online_cpus();
1446	list_for_each_entry(rp, &rapl_packages, plist) {
1447		if (!rp->power_zone)
1448			continue;
1449		rd = power_zone_to_rapl_domain(rp->power_zone);
1450		nr_pl = find_nr_power_limit(rd);
1451		for (i = 0; i < nr_pl; i++) {
1452			switch (rd->rpl[i].prim_id) {
1453			case PL1_ENABLE:
1454				if (rd->rpl[i].last_power_limit)
1455					rapl_write_data_raw(rd, POWER_LIMIT1,
1456					    rd->rpl[i].last_power_limit);
1457				break;
1458			case PL2_ENABLE:
1459				if (rd->rpl[i].last_power_limit)
1460					rapl_write_data_raw(rd, POWER_LIMIT2,
1461					    rd->rpl[i].last_power_limit);
1462				break;
1463			case PL4_ENABLE:
1464				if (rd->rpl[i].last_power_limit)
1465					rapl_write_data_raw(rd, POWER_LIMIT4,
1466					    rd->rpl[i].last_power_limit);
1467				break;
1468			}
1469		}
1470	}
1471	put_online_cpus();
1472}
1473
1474static int rapl_pm_callback(struct notifier_block *nb,
1475			    unsigned long mode, void *_unused)
1476{
1477	switch (mode) {
1478	case PM_SUSPEND_PREPARE:
1479		power_limit_state_save();
1480		break;
1481	case PM_POST_SUSPEND:
1482		power_limit_state_restore();
1483		break;
1484	}
1485	return NOTIFY_OK;
1486}
1487
1488static struct notifier_block rapl_pm_notifier = {
1489	.notifier_call = rapl_pm_callback,
1490};
1491
1492static struct platform_device *rapl_msr_platdev;
1493
1494static int __init rapl_init(void)
1495{
1496	const struct x86_cpu_id *id;
1497	int ret;
1498
1499	id = x86_match_cpu(rapl_ids);
1500	if (!id) {
1501		pr_err("driver does not support CPU family %d model %d\n",
1502		       boot_cpu_data.x86, boot_cpu_data.x86_model);
1503
1504		return -ENODEV;
 
 
 
 
 
 
 
 
1505	}
1506
1507	rapl_defaults = (struct rapl_defaults *)id->driver_data;
1508
1509	ret = register_pm_notifier(&rapl_pm_notifier);
1510	if (ret)
1511		return ret;
1512
1513	rapl_msr_platdev = platform_device_alloc("intel_rapl_msr", 0);
1514	if (!rapl_msr_platdev) {
1515		ret = -ENOMEM;
1516		goto end;
1517	}
1518
1519	ret = platform_device_add(rapl_msr_platdev);
1520	if (ret)
1521		platform_device_put(rapl_msr_platdev);
1522
1523end:
1524	if (ret)
1525		unregister_pm_notifier(&rapl_pm_notifier);
1526
1527	return ret;
1528}
1529
1530static void __exit rapl_exit(void)
1531{
1532	platform_device_unregister(rapl_msr_platdev);
1533	unregister_pm_notifier(&rapl_pm_notifier);
1534}
1535
1536fs_initcall(rapl_init);
1537module_exit(rapl_exit);
1538
1539MODULE_DESCRIPTION("Intel Runtime Average Power Limit (RAPL) common code");
1540MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>");
1541MODULE_LICENSE("GPL v2");