Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/****************************************************************************
  3 * Driver for Solarflare network controllers and boards
  4 * Copyright 2018 Solarflare Communications Inc.
  5 *
  6 * This program is free software; you can redistribute it and/or modify it
  7 * under the terms of the GNU General Public License version 2 as published
  8 * by the Free Software Foundation, incorporated herein by reference.
  9 */
 10
 11#include "net_driver.h"
 12#include "efx.h"
 13#include "nic_common.h"
 14#include "tx_common.h"
 15#include <net/gso.h>
 16
 17static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue)
 18{
 19	return DIV_ROUND_UP(tx_queue->ptr_mask + 1,
 20			    PAGE_SIZE >> EFX_TX_CB_ORDER);
 21}
 22
 23int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
 24{
 25	struct efx_nic *efx = tx_queue->efx;
 26	unsigned int entries;
 27	int rc;
 28
 29	/* Create the smallest power-of-two aligned ring */
 30	entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
 31	EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
 32	tx_queue->ptr_mask = entries - 1;
 33
 34	netif_dbg(efx, probe, efx->net_dev,
 35		  "creating TX queue %d size %#x mask %#x\n",
 36		  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
 37
 38	/* Allocate software ring */
 39	tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
 40				   GFP_KERNEL);
 41	if (!tx_queue->buffer)
 42		return -ENOMEM;
 43
 44	tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue),
 45				    sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
 46	if (!tx_queue->cb_page) {
 47		rc = -ENOMEM;
 48		goto fail1;
 49	}
 50
 51	/* Allocate hardware ring, determine TXQ type */
 52	rc = efx_nic_probe_tx(tx_queue);
 53	if (rc)
 54		goto fail2;
 55
 56	tx_queue->channel->tx_queue_by_type[tx_queue->type] = tx_queue;
 57	return 0;
 58
 59fail2:
 60	kfree(tx_queue->cb_page);
 61	tx_queue->cb_page = NULL;
 62fail1:
 63	kfree(tx_queue->buffer);
 64	tx_queue->buffer = NULL;
 65	return rc;
 66}
 67
 68void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
 69{
 70	struct efx_nic *efx = tx_queue->efx;
 71
 72	netif_dbg(efx, drv, efx->net_dev,
 73		  "initialising TX queue %d\n", tx_queue->queue);
 74
 75	tx_queue->insert_count = 0;
 76	tx_queue->notify_count = 0;
 77	tx_queue->write_count = 0;
 78	tx_queue->packet_write_count = 0;
 79	tx_queue->old_write_count = 0;
 80	tx_queue->read_count = 0;
 81	tx_queue->old_read_count = 0;
 82	tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
 83	tx_queue->xmit_pending = false;
 84	tx_queue->timestamping = (efx_ptp_use_mac_tx_timestamps(efx) &&
 85				  tx_queue->channel == efx_ptp_channel(efx));
 86	tx_queue->completed_timestamp_major = 0;
 87	tx_queue->completed_timestamp_minor = 0;
 88
 89	tx_queue->old_complete_packets = tx_queue->complete_packets;
 90	tx_queue->old_complete_bytes = tx_queue->complete_bytes;
 91	tx_queue->old_tso_bursts = tx_queue->tso_bursts;
 92	tx_queue->old_tso_packets = tx_queue->tso_packets;
 93
 94	tx_queue->xdp_tx = efx_channel_is_xdp_tx(tx_queue->channel);
 95	tx_queue->tso_version = 0;
 
 
 
 
 96
 97	/* Set up TX descriptor ring */
 98	efx_nic_init_tx(tx_queue);
 99
100	tx_queue->initialised = true;
101}
102
103void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
104{
105	struct efx_tx_buffer *buffer;
106
107	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
108		  "shutting down TX queue %d\n", tx_queue->queue);
109
110	tx_queue->initialised = false;
111
112	if (!tx_queue->buffer)
113		return;
114
115	/* Free any buffers left in the ring */
116	while (tx_queue->read_count != tx_queue->write_count) {
117		unsigned int xdp_pkts_compl = 0, xdp_bytes_compl = 0;
118		unsigned int pkts_compl = 0, bytes_compl = 0;
119		unsigned int efv_pkts_compl = 0;
120
121		buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
122		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl,
123				   &efv_pkts_compl, &xdp_pkts_compl,
124				   &xdp_bytes_compl);
125
126		++tx_queue->read_count;
127	}
128	tx_queue->xmit_pending = false;
129	netdev_tx_reset_queue(tx_queue->core_txq);
130}
131
132void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
133{
134	int i;
135
136	if (!tx_queue->buffer)
137		return;
138
139	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
140		  "destroying TX queue %d\n", tx_queue->queue);
141	efx_nic_remove_tx(tx_queue);
142
143	if (tx_queue->cb_page) {
144		for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++)
145			efx_nic_free_buffer(tx_queue->efx,
146					    &tx_queue->cb_page[i]);
147		kfree(tx_queue->cb_page);
148		tx_queue->cb_page = NULL;
149	}
150
151	kfree(tx_queue->buffer);
152	tx_queue->buffer = NULL;
153	tx_queue->channel->tx_queue_by_type[tx_queue->type] = NULL;
154}
155
156void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
157			struct efx_tx_buffer *buffer,
158			unsigned int *pkts_compl,
159			unsigned int *bytes_compl,
160			unsigned int *efv_pkts_compl,
161			unsigned int *xdp_pkts,
162			unsigned int *xdp_bytes)
163{
164	if (buffer->unmap_len) {
165		struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
166		dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
167
168		if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
169			dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
170					 DMA_TO_DEVICE);
171		else
172			dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
173				       DMA_TO_DEVICE);
174		buffer->unmap_len = 0;
175	}
176
177	if (buffer->flags & EFX_TX_BUF_SKB) {
178		struct sk_buff *skb = (struct sk_buff *)buffer->skb;
179
180		if (unlikely(buffer->flags & EFX_TX_BUF_EFV)) {
181			EFX_WARN_ON_PARANOID(!efv_pkts_compl);
182			(*efv_pkts_compl)++;
183		} else {
184			EFX_WARN_ON_PARANOID(!pkts_compl || !bytes_compl);
185			(*pkts_compl)++;
186			(*bytes_compl) += skb->len;
187		}
188
189		if (tx_queue->timestamping &&
190		    (tx_queue->completed_timestamp_major ||
191		     tx_queue->completed_timestamp_minor)) {
192			struct skb_shared_hwtstamps hwtstamp;
193
194			hwtstamp.hwtstamp =
195				efx_ptp_nic_to_kernel_time(tx_queue);
196			skb_tstamp_tx(skb, &hwtstamp);
197
198			tx_queue->completed_timestamp_major = 0;
199			tx_queue->completed_timestamp_minor = 0;
200		}
201		dev_consume_skb_any((struct sk_buff *)buffer->skb);
202		netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
203			   "TX queue %d transmission id %x complete\n",
204			   tx_queue->queue, tx_queue->read_count);
205	} else if (buffer->flags & EFX_TX_BUF_XDP) {
206		xdp_return_frame_rx_napi(buffer->xdpf);
207		if (xdp_pkts)
208			(*xdp_pkts)++;
209		if (xdp_bytes)
210			(*xdp_bytes) += buffer->xdpf->len;
211	}
212
213	buffer->len = 0;
214	buffer->flags = 0;
215}
216
217/* Remove packets from the TX queue
218 *
219 * This removes packets from the TX queue, up to and including the
220 * specified index.
221 */
222static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
223				unsigned int index,
224				unsigned int *pkts_compl,
225				unsigned int *bytes_compl,
226				unsigned int *efv_pkts_compl,
227				unsigned int *xdp_pkts,
228				unsigned int *xdp_bytes)
229{
230	struct efx_nic *efx = tx_queue->efx;
231	unsigned int stop_index, read_ptr;
232
233	stop_index = (index + 1) & tx_queue->ptr_mask;
234	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
235
236	while (read_ptr != stop_index) {
237		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
238
239		if (!efx_tx_buffer_in_use(buffer)) {
240			netif_err(efx, tx_err, efx->net_dev,
241				  "TX queue %d spurious TX completion id %d\n",
242				  tx_queue->queue, read_ptr);
243			efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
244			return;
245		}
246
247		efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl,
248				   efv_pkts_compl, xdp_pkts, xdp_bytes);
249
250		++tx_queue->read_count;
251		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
252	}
253}
254
255void efx_xmit_done_check_empty(struct efx_tx_queue *tx_queue)
256{
257	if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
258		tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
259		if (tx_queue->read_count == tx_queue->old_write_count) {
260			/* Ensure that read_count is flushed. */
261			smp_mb();
262			tx_queue->empty_read_count =
263				tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
264		}
265	}
266}
267
268int efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
269{
270	unsigned int fill_level, pkts_compl = 0, bytes_compl = 0;
271	unsigned int xdp_pkts_compl = 0, xdp_bytes_compl = 0;
272	unsigned int efv_pkts_compl = 0;
273	struct efx_nic *efx = tx_queue->efx;
 
274
275	EFX_WARN_ON_ONCE_PARANOID(index > tx_queue->ptr_mask);
276
277	efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl,
278			    &efv_pkts_compl, &xdp_pkts_compl, &xdp_bytes_compl);
279	tx_queue->pkts_compl += pkts_compl;
280	tx_queue->bytes_compl += bytes_compl;
281	tx_queue->complete_xdp_packets += xdp_pkts_compl;
282	tx_queue->complete_xdp_bytes += xdp_bytes_compl;
283
284	if (pkts_compl + efv_pkts_compl > 1)
285		++tx_queue->merge_events;
286
287	/* See if we need to restart the netif queue.  This memory
288	 * barrier ensures that we write read_count (inside
289	 * efx_dequeue_buffers()) before reading the queue status.
290	 */
291	smp_mb();
292	if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
293	    likely(efx->port_enabled) &&
294	    likely(netif_device_present(efx->net_dev))) {
295		fill_level = efx_channel_tx_fill_level(tx_queue->channel);
 
 
296		if (fill_level <= efx->txq_wake_thresh)
297			netif_tx_wake_queue(tx_queue->core_txq);
298	}
299
300	efx_xmit_done_check_empty(tx_queue);
301
302	return pkts_compl + efv_pkts_compl;
303}
304
305/* Remove buffers put into a tx_queue for the current packet.
306 * None of the buffers must have an skb attached.
307 */
308void efx_enqueue_unwind(struct efx_tx_queue *tx_queue,
309			unsigned int insert_count)
310{
311	unsigned int xdp_bytes_compl = 0;
312	unsigned int xdp_pkts_compl = 0;
313	unsigned int efv_pkts_compl = 0;
314	struct efx_tx_buffer *buffer;
315	unsigned int bytes_compl = 0;
316	unsigned int pkts_compl = 0;
317
318	/* Work backwards until we hit the original insert pointer value */
319	while (tx_queue->insert_count != insert_count) {
320		--tx_queue->insert_count;
321		buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
322		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl,
323				   &efv_pkts_compl, &xdp_pkts_compl,
324				   &xdp_bytes_compl);
325	}
326}
327
328struct efx_tx_buffer *efx_tx_map_chunk(struct efx_tx_queue *tx_queue,
329				       dma_addr_t dma_addr, size_t len)
330{
331	const struct efx_nic_type *nic_type = tx_queue->efx->type;
332	struct efx_tx_buffer *buffer;
333	unsigned int dma_len;
334
335	/* Map the fragment taking account of NIC-dependent DMA limits. */
336	do {
337		buffer = efx_tx_queue_get_insert_buffer(tx_queue);
338
339		if (nic_type->tx_limit_len)
340			dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
341		else
342			dma_len = len;
343
344		buffer->len = dma_len;
345		buffer->dma_addr = dma_addr;
346		buffer->flags = EFX_TX_BUF_CONT;
347		len -= dma_len;
348		dma_addr += dma_len;
349		++tx_queue->insert_count;
350	} while (len);
351
352	return buffer;
353}
354
355int efx_tx_tso_header_length(struct sk_buff *skb)
356{
357	size_t header_len;
358
359	if (skb->encapsulation)
360		header_len = skb_inner_transport_offset(skb) +
 
361				(inner_tcp_hdr(skb)->doff << 2u);
362	else
363		header_len = skb_transport_offset(skb) +
364				(tcp_hdr(skb)->doff << 2u);
365	return header_len;
366}
367
368/* Map all data from an SKB for DMA and create descriptors on the queue. */
369int efx_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
370		    unsigned int segment_count)
371{
372	struct efx_nic *efx = tx_queue->efx;
373	struct device *dma_dev = &efx->pci_dev->dev;
374	unsigned int frag_index, nr_frags;
375	dma_addr_t dma_addr, unmap_addr;
376	unsigned short dma_flags;
377	size_t len, unmap_len;
378
379	nr_frags = skb_shinfo(skb)->nr_frags;
380	frag_index = 0;
381
382	/* Map header data. */
383	len = skb_headlen(skb);
384	dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
385	dma_flags = EFX_TX_BUF_MAP_SINGLE;
386	unmap_len = len;
387	unmap_addr = dma_addr;
388
389	if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
390		return -EIO;
391
392	if (segment_count) {
393		/* For TSO we need to put the header in to a separate
394		 * descriptor. Map this separately if necessary.
395		 */
396		size_t header_len = efx_tx_tso_header_length(skb);
397
398		if (header_len != len) {
399			tx_queue->tso_long_headers++;
400			efx_tx_map_chunk(tx_queue, dma_addr, header_len);
401			len -= header_len;
402			dma_addr += header_len;
403		}
404	}
405
406	/* Add descriptors for each fragment. */
407	do {
408		struct efx_tx_buffer *buffer;
409		skb_frag_t *fragment;
410
411		buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
412
413		/* The final descriptor for a fragment is responsible for
414		 * unmapping the whole fragment.
415		 */
416		buffer->flags = EFX_TX_BUF_CONT | dma_flags;
417		buffer->unmap_len = unmap_len;
418		buffer->dma_offset = buffer->dma_addr - unmap_addr;
419
420		if (frag_index >= nr_frags) {
421			/* Store SKB details with the final buffer for
422			 * the completion.
423			 */
424			buffer->skb = skb;
425			buffer->flags = EFX_TX_BUF_SKB | dma_flags;
426			return 0;
427		}
428
429		/* Move on to the next fragment. */
430		fragment = &skb_shinfo(skb)->frags[frag_index++];
431		len = skb_frag_size(fragment);
432		dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
433					    DMA_TO_DEVICE);
434		dma_flags = 0;
435		unmap_len = len;
436		unmap_addr = dma_addr;
437
438		if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
439			return -EIO;
440	} while (1);
441}
442
443unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
444{
445	/* Header and payload descriptor for each output segment, plus
446	 * one for every input fragment boundary within a segment
447	 */
448	unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
449
450	/* Possibly one more per segment for option descriptors */
451	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
452		max_descs += EFX_TSO_MAX_SEGS;
453
454	/* Possibly more for PCIe page boundaries within input fragments */
455	if (PAGE_SIZE > EFX_PAGE_SIZE)
456		max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
457				   DIV_ROUND_UP(GSO_LEGACY_MAX_SIZE,
458						EFX_PAGE_SIZE));
459
460	return max_descs;
461}
462
463/*
464 * Fallback to software TSO.
465 *
466 * This is used if we are unable to send a GSO packet through hardware TSO.
467 * This should only ever happen due to per-queue restrictions - unsupported
468 * packets should first be filtered by the feature flags.
469 *
470 * Returns 0 on success, error code otherwise.
471 */
472int efx_tx_tso_fallback(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
473{
474	struct sk_buff *segments, *next;
475
476	segments = skb_gso_segment(skb, 0);
477	if (IS_ERR(segments))
478		return PTR_ERR(segments);
479
480	dev_consume_skb_any(skb);
481
482	skb_list_walk_safe(segments, skb, next) {
483		skb_mark_not_on_list(skb);
484		efx_enqueue_skb(tx_queue, skb);
485	}
486
487	return 0;
488}
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/****************************************************************************
  3 * Driver for Solarflare network controllers and boards
  4 * Copyright 2018 Solarflare Communications Inc.
  5 *
  6 * This program is free software; you can redistribute it and/or modify it
  7 * under the terms of the GNU General Public License version 2 as published
  8 * by the Free Software Foundation, incorporated herein by reference.
  9 */
 10
 11#include "net_driver.h"
 12#include "efx.h"
 13#include "nic_common.h"
 14#include "tx_common.h"
 
 15
 16static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue)
 17{
 18	return DIV_ROUND_UP(tx_queue->ptr_mask + 1,
 19			    PAGE_SIZE >> EFX_TX_CB_ORDER);
 20}
 21
 22int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
 23{
 24	struct efx_nic *efx = tx_queue->efx;
 25	unsigned int entries;
 26	int rc;
 27
 28	/* Create the smallest power-of-two aligned ring */
 29	entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
 30	EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
 31	tx_queue->ptr_mask = entries - 1;
 32
 33	netif_dbg(efx, probe, efx->net_dev,
 34		  "creating TX queue %d size %#x mask %#x\n",
 35		  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
 36
 37	/* Allocate software ring */
 38	tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
 39				   GFP_KERNEL);
 40	if (!tx_queue->buffer)
 41		return -ENOMEM;
 42
 43	tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue),
 44				    sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
 45	if (!tx_queue->cb_page) {
 46		rc = -ENOMEM;
 47		goto fail1;
 48	}
 49
 50	/* Allocate hardware ring */
 51	rc = efx_nic_probe_tx(tx_queue);
 52	if (rc)
 53		goto fail2;
 54
 
 55	return 0;
 56
 57fail2:
 58	kfree(tx_queue->cb_page);
 59	tx_queue->cb_page = NULL;
 60fail1:
 61	kfree(tx_queue->buffer);
 62	tx_queue->buffer = NULL;
 63	return rc;
 64}
 65
 66void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
 67{
 68	struct efx_nic *efx = tx_queue->efx;
 69
 70	netif_dbg(efx, drv, efx->net_dev,
 71		  "initialising TX queue %d\n", tx_queue->queue);
 72
 73	tx_queue->insert_count = 0;
 74	tx_queue->notify_count = 0;
 75	tx_queue->write_count = 0;
 76	tx_queue->packet_write_count = 0;
 77	tx_queue->old_write_count = 0;
 78	tx_queue->read_count = 0;
 79	tx_queue->old_read_count = 0;
 80	tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
 81	tx_queue->xmit_more_available = false;
 82	tx_queue->timestamping = (efx_ptp_use_mac_tx_timestamps(efx) &&
 83				  tx_queue->channel == efx_ptp_channel(efx));
 84	tx_queue->completed_timestamp_major = 0;
 85	tx_queue->completed_timestamp_minor = 0;
 86
 
 
 
 
 
 87	tx_queue->xdp_tx = efx_channel_is_xdp_tx(tx_queue->channel);
 88
 89	/* Set up default function pointers. These may get replaced by
 90	 * efx_nic_init_tx() based off NIC/queue capabilities.
 91	 */
 92	tx_queue->handle_tso = efx_enqueue_skb_tso;
 93
 94	/* Set up TX descriptor ring */
 95	efx_nic_init_tx(tx_queue);
 96
 97	tx_queue->initialised = true;
 98}
 99
100void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
101{
102	struct efx_tx_buffer *buffer;
103
104	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
105		  "shutting down TX queue %d\n", tx_queue->queue);
106
 
 
107	if (!tx_queue->buffer)
108		return;
109
110	/* Free any buffers left in the ring */
111	while (tx_queue->read_count != tx_queue->write_count) {
 
112		unsigned int pkts_compl = 0, bytes_compl = 0;
 
113
114		buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
115		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
 
 
116
117		++tx_queue->read_count;
118	}
119	tx_queue->xmit_more_available = false;
120	netdev_tx_reset_queue(tx_queue->core_txq);
121}
122
123void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
124{
125	int i;
126
127	if (!tx_queue->buffer)
128		return;
129
130	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
131		  "destroying TX queue %d\n", tx_queue->queue);
132	efx_nic_remove_tx(tx_queue);
133
134	if (tx_queue->cb_page) {
135		for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++)
136			efx_nic_free_buffer(tx_queue->efx,
137					    &tx_queue->cb_page[i]);
138		kfree(tx_queue->cb_page);
139		tx_queue->cb_page = NULL;
140	}
141
142	kfree(tx_queue->buffer);
143	tx_queue->buffer = NULL;
 
144}
145
146void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
147			struct efx_tx_buffer *buffer,
148			unsigned int *pkts_compl,
149			unsigned int *bytes_compl)
 
 
 
150{
151	if (buffer->unmap_len) {
152		struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
153		dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
154
155		if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
156			dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
157					 DMA_TO_DEVICE);
158		else
159			dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
160				       DMA_TO_DEVICE);
161		buffer->unmap_len = 0;
162	}
163
164	if (buffer->flags & EFX_TX_BUF_SKB) {
165		struct sk_buff *skb = (struct sk_buff *)buffer->skb;
166
167		EFX_WARN_ON_PARANOID(!pkts_compl || !bytes_compl);
168		(*pkts_compl)++;
169		(*bytes_compl) += skb->len;
 
 
 
 
 
 
170		if (tx_queue->timestamping &&
171		    (tx_queue->completed_timestamp_major ||
172		     tx_queue->completed_timestamp_minor)) {
173			struct skb_shared_hwtstamps hwtstamp;
174
175			hwtstamp.hwtstamp =
176				efx_ptp_nic_to_kernel_time(tx_queue);
177			skb_tstamp_tx(skb, &hwtstamp);
178
179			tx_queue->completed_timestamp_major = 0;
180			tx_queue->completed_timestamp_minor = 0;
181		}
182		dev_consume_skb_any((struct sk_buff *)buffer->skb);
183		netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
184			   "TX queue %d transmission id %x complete\n",
185			   tx_queue->queue, tx_queue->read_count);
186	} else if (buffer->flags & EFX_TX_BUF_XDP) {
187		xdp_return_frame_rx_napi(buffer->xdpf);
 
 
 
 
188	}
189
190	buffer->len = 0;
191	buffer->flags = 0;
192}
193
194/* Remove packets from the TX queue
195 *
196 * This removes packets from the TX queue, up to and including the
197 * specified index.
198 */
199static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
200				unsigned int index,
201				unsigned int *pkts_compl,
202				unsigned int *bytes_compl)
 
 
 
203{
204	struct efx_nic *efx = tx_queue->efx;
205	unsigned int stop_index, read_ptr;
206
207	stop_index = (index + 1) & tx_queue->ptr_mask;
208	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
209
210	while (read_ptr != stop_index) {
211		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
212
213		if (!efx_tx_buffer_in_use(buffer)) {
214			netif_err(efx, tx_err, efx->net_dev,
215				  "TX queue %d spurious TX completion id %d\n",
216				  tx_queue->queue, read_ptr);
217			efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
218			return;
219		}
220
221		efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
 
222
223		++tx_queue->read_count;
224		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
225	}
226}
227
228void efx_xmit_done_check_empty(struct efx_tx_queue *tx_queue)
229{
230	if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
231		tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
232		if (tx_queue->read_count == tx_queue->old_write_count) {
233			/* Ensure that read_count is flushed. */
234			smp_mb();
235			tx_queue->empty_read_count =
236				tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
237		}
238	}
239}
240
241void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
242{
243	unsigned int fill_level, pkts_compl = 0, bytes_compl = 0;
 
 
244	struct efx_nic *efx = tx_queue->efx;
245	struct efx_tx_queue *txq2;
246
247	EFX_WARN_ON_ONCE_PARANOID(index > tx_queue->ptr_mask);
248
249	efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
 
250	tx_queue->pkts_compl += pkts_compl;
251	tx_queue->bytes_compl += bytes_compl;
 
 
252
253	if (pkts_compl > 1)
254		++tx_queue->merge_events;
255
256	/* See if we need to restart the netif queue.  This memory
257	 * barrier ensures that we write read_count (inside
258	 * efx_dequeue_buffers()) before reading the queue status.
259	 */
260	smp_mb();
261	if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
262	    likely(efx->port_enabled) &&
263	    likely(netif_device_present(efx->net_dev))) {
264		txq2 = efx_tx_queue_partner(tx_queue);
265		fill_level = max(tx_queue->insert_count - tx_queue->read_count,
266				 txq2->insert_count - txq2->read_count);
267		if (fill_level <= efx->txq_wake_thresh)
268			netif_tx_wake_queue(tx_queue->core_txq);
269	}
270
271	efx_xmit_done_check_empty(tx_queue);
 
 
272}
273
274/* Remove buffers put into a tx_queue for the current packet.
275 * None of the buffers must have an skb attached.
276 */
277void efx_enqueue_unwind(struct efx_tx_queue *tx_queue,
278			unsigned int insert_count)
279{
 
 
 
280	struct efx_tx_buffer *buffer;
281	unsigned int bytes_compl = 0;
282	unsigned int pkts_compl = 0;
283
284	/* Work backwards until we hit the original insert pointer value */
285	while (tx_queue->insert_count != insert_count) {
286		--tx_queue->insert_count;
287		buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
288		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
 
 
289	}
290}
291
292struct efx_tx_buffer *efx_tx_map_chunk(struct efx_tx_queue *tx_queue,
293				       dma_addr_t dma_addr, size_t len)
294{
295	const struct efx_nic_type *nic_type = tx_queue->efx->type;
296	struct efx_tx_buffer *buffer;
297	unsigned int dma_len;
298
299	/* Map the fragment taking account of NIC-dependent DMA limits. */
300	do {
301		buffer = efx_tx_queue_get_insert_buffer(tx_queue);
302
303		if (nic_type->tx_limit_len)
304			dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
305		else
306			dma_len = len;
307
308		buffer->len = dma_len;
309		buffer->dma_addr = dma_addr;
310		buffer->flags = EFX_TX_BUF_CONT;
311		len -= dma_len;
312		dma_addr += dma_len;
313		++tx_queue->insert_count;
314	} while (len);
315
316	return buffer;
317}
318
319int efx_tx_tso_header_length(struct sk_buff *skb)
320{
321	size_t header_len;
322
323	if (skb->encapsulation)
324		header_len = skb_inner_transport_header(skb) -
325				skb->data +
326				(inner_tcp_hdr(skb)->doff << 2u);
327	else
328		header_len = skb_transport_header(skb) - skb->data +
329				(tcp_hdr(skb)->doff << 2u);
330	return header_len;
331}
332
333/* Map all data from an SKB for DMA and create descriptors on the queue. */
334int efx_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
335		    unsigned int segment_count)
336{
337	struct efx_nic *efx = tx_queue->efx;
338	struct device *dma_dev = &efx->pci_dev->dev;
339	unsigned int frag_index, nr_frags;
340	dma_addr_t dma_addr, unmap_addr;
341	unsigned short dma_flags;
342	size_t len, unmap_len;
343
344	nr_frags = skb_shinfo(skb)->nr_frags;
345	frag_index = 0;
346
347	/* Map header data. */
348	len = skb_headlen(skb);
349	dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
350	dma_flags = EFX_TX_BUF_MAP_SINGLE;
351	unmap_len = len;
352	unmap_addr = dma_addr;
353
354	if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
355		return -EIO;
356
357	if (segment_count) {
358		/* For TSO we need to put the header in to a separate
359		 * descriptor. Map this separately if necessary.
360		 */
361		size_t header_len = efx_tx_tso_header_length(skb);
362
363		if (header_len != len) {
364			tx_queue->tso_long_headers++;
365			efx_tx_map_chunk(tx_queue, dma_addr, header_len);
366			len -= header_len;
367			dma_addr += header_len;
368		}
369	}
370
371	/* Add descriptors for each fragment. */
372	do {
373		struct efx_tx_buffer *buffer;
374		skb_frag_t *fragment;
375
376		buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
377
378		/* The final descriptor for a fragment is responsible for
379		 * unmapping the whole fragment.
380		 */
381		buffer->flags = EFX_TX_BUF_CONT | dma_flags;
382		buffer->unmap_len = unmap_len;
383		buffer->dma_offset = buffer->dma_addr - unmap_addr;
384
385		if (frag_index >= nr_frags) {
386			/* Store SKB details with the final buffer for
387			 * the completion.
388			 */
389			buffer->skb = skb;
390			buffer->flags = EFX_TX_BUF_SKB | dma_flags;
391			return 0;
392		}
393
394		/* Move on to the next fragment. */
395		fragment = &skb_shinfo(skb)->frags[frag_index++];
396		len = skb_frag_size(fragment);
397		dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
398					    DMA_TO_DEVICE);
399		dma_flags = 0;
400		unmap_len = len;
401		unmap_addr = dma_addr;
402
403		if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
404			return -EIO;
405	} while (1);
406}
407
408unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
409{
410	/* Header and payload descriptor for each output segment, plus
411	 * one for every input fragment boundary within a segment
412	 */
413	unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
414
415	/* Possibly one more per segment for option descriptors */
416	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
417		max_descs += EFX_TSO_MAX_SEGS;
418
419	/* Possibly more for PCIe page boundaries within input fragments */
420	if (PAGE_SIZE > EFX_PAGE_SIZE)
421		max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
422				   DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
 
423
424	return max_descs;
425}
426
427/*
428 * Fallback to software TSO.
429 *
430 * This is used if we are unable to send a GSO packet through hardware TSO.
431 * This should only ever happen due to per-queue restrictions - unsupported
432 * packets should first be filtered by the feature flags.
433 *
434 * Returns 0 on success, error code otherwise.
435 */
436int efx_tx_tso_fallback(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
437{
438	struct sk_buff *segments, *next;
439
440	segments = skb_gso_segment(skb, 0);
441	if (IS_ERR(segments))
442		return PTR_ERR(segments);
443
444	dev_consume_skb_any(skb);
445
446	skb_list_walk_safe(segments, skb, next) {
447		skb_mark_not_on_list(skb);
448		efx_enqueue_skb(tx_queue, skb);
449	}
450
451	return 0;
452}