Linux Audio

Check our new training course

Loading...
v6.13.7
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2005-2006 Fen Systems Ltd.
   5 * Copyright 2005-2013 Solarflare Communications Inc.
   6 */
   7
   8/* Common definitions for all Efx net driver code */
   9
  10#ifndef EFX_NET_DRIVER_H
  11#define EFX_NET_DRIVER_H
  12
  13#include <linux/netdevice.h>
  14#include <linux/etherdevice.h>
  15#include <linux/ethtool.h>
  16#include <linux/if_vlan.h>
  17#include <linux/timer.h>
  18#include <linux/mdio.h>
  19#include <linux/list.h>
  20#include <linux/pci.h>
  21#include <linux/device.h>
  22#include <linux/highmem.h>
  23#include <linux/workqueue.h>
  24#include <linux/mutex.h>
  25#include <linux/rwsem.h>
  26#include <linux/vmalloc.h>
  27#include <linux/mtd/mtd.h>
  28#include <net/busy_poll.h>
  29#include <net/xdp.h>
  30#include <net/netevent.h>
  31
  32#include "enum.h"
  33#include "bitfield.h"
  34#include "filter.h"
  35
  36/**************************************************************************
  37 *
  38 * Build definitions
  39 *
  40 **************************************************************************/
  41
 
 
  42#ifdef DEBUG
  43#define EFX_WARN_ON_ONCE_PARANOID(x) WARN_ON_ONCE(x)
  44#define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
  45#else
  46#define EFX_WARN_ON_ONCE_PARANOID(x) do {} while (0)
  47#define EFX_WARN_ON_PARANOID(x) do {} while (0)
  48#endif
  49
  50/**************************************************************************
  51 *
  52 * Efx data structures
  53 *
  54 **************************************************************************/
  55
  56#define EFX_MAX_CHANNELS 32U
  57#define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
  58#define EFX_EXTRA_CHANNEL_IOV	0
  59#define EFX_EXTRA_CHANNEL_PTP	1
  60#define EFX_EXTRA_CHANNEL_TC	2
  61#define EFX_MAX_EXTRA_CHANNELS	3U
  62
  63/* Checksum generation is a per-queue option in hardware, so each
  64 * queue visible to the networking core is backed by two hardware TX
  65 * queues. */
  66#define EFX_MAX_TX_TC		2
  67#define EFX_MAX_CORE_TX_QUEUES	(EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
  68#define EFX_TXQ_TYPE_OUTER_CSUM	1	/* Outer checksum offload */
  69#define EFX_TXQ_TYPE_INNER_CSUM	2	/* Inner checksum offload */
  70#define EFX_TXQ_TYPES		4
  71#define EFX_MAX_TXQ_PER_CHANNEL	4
  72#define EFX_MAX_TX_QUEUES	(EFX_MAX_TXQ_PER_CHANNEL * EFX_MAX_CHANNELS)
  73
  74/* Maximum possible MTU the driver supports */
  75#define EFX_MAX_MTU (9 * 1024)
  76
  77/* Minimum MTU, from RFC791 (IP) */
  78#define EFX_MIN_MTU 68
  79
  80/* Maximum total header length for TSOv2 */
  81#define EFX_TSO2_MAX_HDRLEN	208
  82
  83/* Size of an RX scatter buffer.  Small enough to pack 2 into a 4K page,
  84 * and should be a multiple of the cache line size.
  85 */
  86#define EFX_RX_USR_BUF_SIZE	(2048 - 256)
  87
  88/* If possible, we should ensure cache line alignment at start and end
  89 * of every buffer.  Otherwise, we just need to ensure 4-byte
  90 * alignment of the network header.
  91 */
  92#if NET_IP_ALIGN == 0
  93#define EFX_RX_BUF_ALIGNMENT	L1_CACHE_BYTES
  94#else
  95#define EFX_RX_BUF_ALIGNMENT	4
  96#endif
  97
  98/* Non-standard XDP_PACKET_HEADROOM and tailroom to satisfy XDP_REDIRECT and
  99 * still fit two standard MTU size packets into a single 4K page.
 100 */
 101#define EFX_XDP_HEADROOM	128
 102#define EFX_XDP_TAILROOM	SKB_DATA_ALIGN(sizeof(struct skb_shared_info))
 103
 104/* Forward declare Precision Time Protocol (PTP) support structure. */
 105struct efx_ptp_data;
 106struct hwtstamp_config;
 107
 108struct efx_self_tests;
 109
 110/**
 111 * struct efx_buffer - A general-purpose DMA buffer
 112 * @addr: host base address of the buffer
 113 * @dma_addr: DMA base address of the buffer
 114 * @len: Buffer length, in bytes
 115 *
 116 * The NIC uses these buffers for its interrupt status registers and
 117 * MAC stats dumps.
 118 */
 119struct efx_buffer {
 120	void *addr;
 121	dma_addr_t dma_addr;
 122	unsigned int len;
 123};
 124
 125/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 126 * struct efx_tx_buffer - buffer state for a TX descriptor
 127 * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
 128 *	freed when descriptor completes
 129 * @xdpf: When @flags & %EFX_TX_BUF_XDP, the XDP frame information; its @data
 130 *	member is the associated buffer to drop a page reference on.
 131 * @option: When @flags & %EFX_TX_BUF_OPTION, an EF10-specific option
 132 *	descriptor.
 133 * @dma_addr: DMA address of the fragment.
 134 * @flags: Flags for allocation and DMA mapping type
 135 * @len: Length of this fragment.
 136 *	This field is zero when the queue slot is empty.
 137 * @unmap_len: Length of this fragment to unmap
 138 * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
 139 * Only valid if @unmap_len != 0.
 140 */
 141struct efx_tx_buffer {
 142	union {
 143		const struct sk_buff *skb;
 144		struct xdp_frame *xdpf;
 145	};
 146	union {
 147		efx_qword_t option;    /* EF10 */
 148		dma_addr_t dma_addr;
 149	};
 150	unsigned short flags;
 151	unsigned short len;
 152	unsigned short unmap_len;
 153	unsigned short dma_offset;
 154};
 155#define EFX_TX_BUF_CONT		1	/* not last descriptor of packet */
 156#define EFX_TX_BUF_SKB		2	/* buffer is last part of skb */
 157#define EFX_TX_BUF_MAP_SINGLE	8	/* buffer was mapped with dma_map_single() */
 158#define EFX_TX_BUF_OPTION	0x10	/* empty buffer for option descriptor */
 159#define EFX_TX_BUF_XDP		0x20	/* buffer was sent with XDP */
 160#define EFX_TX_BUF_TSO_V3	0x40	/* empty buffer for a TSO_V3 descriptor */
 161#define EFX_TX_BUF_EFV		0x100	/* buffer was sent from representor */
 162
 163/**
 164 * struct efx_tx_queue - An Efx TX queue
 165 *
 166 * This is a ring buffer of TX fragments.
 167 * Since the TX completion path always executes on the same
 168 * CPU and the xmit path can operate on different CPUs,
 169 * performance is increased by ensuring that the completion
 170 * path and the xmit path operate on different cache lines.
 171 * This is particularly important if the xmit path is always
 172 * executing on one CPU which is different from the completion
 173 * path.  There is also a cache line for members which are
 174 * read but not written on the fast path.
 175 *
 176 * @efx: The associated Efx NIC
 177 * @queue: DMA queue number
 178 * @label: Label for TX completion events.
 179 *	Is our index within @channel->tx_queue array.
 180 * @type: configuration type of this TX queue.  A bitmask of %EFX_TXQ_TYPE_* flags.
 181 * @tso_version: Version of TSO in use for this queue.
 182 * @tso_encap: Is encapsulated TSO supported? Supported in TSOv2 on 8000 series.
 183 * @channel: The associated channel
 184 * @core_txq: The networking core TX queue structure
 185 * @buffer: The software buffer ring
 186 * @cb_page: Array of pages of copy buffers.  Carved up according to
 187 *	%EFX_TX_CB_ORDER into %EFX_TX_CB_SIZE-sized chunks.
 188 * @txd: The hardware descriptor ring
 189 * @ptr_mask: The size of the ring minus 1.
 190 * @piobuf: PIO buffer region for this TX queue (shared with its partner).
 191 *	Size of the region is efx_piobuf_size.
 192 * @piobuf_offset: Buffer offset to be specified in PIO descriptors
 193 * @initialised: Has hardware queue been initialised?
 194 * @timestamping: Is timestamping enabled for this channel?
 195 * @xdp_tx: Is this an XDP tx queue?
 196 * @old_complete_packets: Value of @complete_packets as of last
 197 *	efx_init_tx_queue()
 198 * @old_complete_bytes: Value of @complete_bytes as of last
 199 *	efx_init_tx_queue()
 200 * @old_tso_bursts: Value of @tso_bursts as of last efx_init_tx_queue()
 201 * @old_tso_packets: Value of @tso_packets as of last efx_init_tx_queue()
 202 * @read_count: Current read pointer.
 203 *	This is the number of buffers that have been removed from both rings.
 204 * @old_write_count: The value of @write_count when last checked.
 205 *	This is here for performance reasons.  The xmit path will
 206 *	only get the up-to-date value of @write_count if this
 207 *	variable indicates that the queue is empty.  This is to
 208 *	avoid cache-line ping-pong between the xmit path and the
 209 *	completion path.
 210 * @merge_events: Number of TX merged completion events
 211 * @bytes_compl: Number of bytes completed during this NAPI poll
 212 *	(efx_process_channel()).  For BQL.
 213 * @pkts_compl: Number of packets completed during this NAPI poll.
 214 * @complete_packets: Number of packets completed since this struct was
 215 *	created.  Only counts SKB packets, not XDP TX (it accumulates
 216 *	the same values that are reported to BQL).
 217 * @complete_bytes: Number of bytes completed since this struct was
 218 *	created.  For TSO, counts the superframe size, not the sizes of
 219 *	generated frames on the wire (i.e. the headers are only counted
 220 *	once)
 221 * @complete_xdp_packets: Number of XDP TX packets completed since this
 222 *	struct was created.
 223 * @complete_xdp_bytes: Number of XDP TX bytes completed since this
 224 *	struct was created.
 225 * @completed_timestamp_major: Top part of the most recent tx timestamp.
 226 * @completed_timestamp_minor: Low part of the most recent tx timestamp.
 227 * @insert_count: Current insert pointer
 228 *	This is the number of buffers that have been added to the
 229 *	software ring.
 230 * @write_count: Current write pointer
 231 *	This is the number of buffers that have been added to the
 232 *	hardware ring.
 233 * @packet_write_count: Completable write pointer
 234 *	This is the write pointer of the last packet written.
 235 *	Normally this will equal @write_count, but as option descriptors
 236 *	don't produce completion events, they won't update this.
 237 *	Filled in iff @efx->type->option_descriptors; only used for PIO.
 238 *	Thus, this is only written and used on EF10.
 239 * @old_read_count: The value of read_count when last checked.
 240 *	This is here for performance reasons.  The xmit path will
 241 *	only get the up-to-date value of read_count if this
 242 *	variable indicates that the queue is full.  This is to
 243 *	avoid cache-line ping-pong between the xmit path and the
 244 *	completion path.
 245 * @tso_bursts: Number of times TSO xmit invoked by kernel
 246 * @tso_long_headers: Number of packets with headers too long for standard
 247 *	blocks
 248 * @tso_packets: Number of packets via the TSO xmit path
 249 * @tso_fallbacks: Number of times TSO fallback used
 250 * @pushes: Number of times the TX push feature has been used
 251 * @pio_packets: Number of times the TX PIO feature has been used
 252 * @xmit_pending: Are any packets waiting to be pushed to the NIC
 253 * @cb_packets: Number of times the TX copybreak feature has been used
 254 * @notify_count: Count of notified descriptors to the NIC
 255 * @tx_packets: Number of packets sent since this struct was created
 256 * @empty_read_count: If the completion path has seen the queue as empty
 257 *	and the transmission path has not yet checked this, the value of
 258 *	@read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
 259 */
 260struct efx_tx_queue {
 261	/* Members which don't change on the fast path */
 262	struct efx_nic *efx ____cacheline_aligned_in_smp;
 263	unsigned int queue;
 264	unsigned int label;
 265	unsigned int type;
 266	unsigned int tso_version;
 267	bool tso_encap;
 268	struct efx_channel *channel;
 269	struct netdev_queue *core_txq;
 270	struct efx_tx_buffer *buffer;
 271	struct efx_buffer *cb_page;
 272	struct efx_buffer txd;
 273	unsigned int ptr_mask;
 274	void __iomem *piobuf;
 275	unsigned int piobuf_offset;
 276	bool initialised;
 277	bool timestamping;
 278	bool xdp_tx;
 279	unsigned long old_complete_packets;
 280	unsigned long old_complete_bytes;
 281	unsigned int old_tso_bursts;
 282	unsigned int old_tso_packets;
 283
 284	/* Members used mainly on the completion path */
 285	unsigned int read_count ____cacheline_aligned_in_smp;
 286	unsigned int old_write_count;
 287	unsigned int merge_events;
 288	unsigned int bytes_compl;
 289	unsigned int pkts_compl;
 290	unsigned long complete_packets;
 291	unsigned long complete_bytes;
 292	unsigned long complete_xdp_packets;
 293	unsigned long complete_xdp_bytes;
 294	u32 completed_timestamp_major;
 295	u32 completed_timestamp_minor;
 296
 297	/* Members used only on the xmit path */
 298	unsigned int insert_count ____cacheline_aligned_in_smp;
 299	unsigned int write_count;
 300	unsigned int packet_write_count;
 301	unsigned int old_read_count;
 302	unsigned int tso_bursts;
 303	unsigned int tso_long_headers;
 304	unsigned int tso_packets;
 305	unsigned int tso_fallbacks;
 306	unsigned int pushes;
 307	unsigned int pio_packets;
 308	bool xmit_pending;
 309	unsigned int cb_packets;
 310	unsigned int notify_count;
 311	/* Statistics to supplement MAC stats */
 312	unsigned long tx_packets;
 313
 314	/* Members shared between paths and sometimes updated */
 315	unsigned int empty_read_count ____cacheline_aligned_in_smp;
 316#define EFX_EMPTY_COUNT_VALID 0x80000000
 317	atomic_t flush_outstanding;
 318};
 319
 320#define EFX_TX_CB_ORDER	7
 321#define EFX_TX_CB_SIZE	(1 << EFX_TX_CB_ORDER) - NET_IP_ALIGN
 322
 323/**
 324 * struct efx_rx_buffer - An Efx RX data buffer
 325 * @dma_addr: DMA base address of the buffer
 326 * @page: The associated page buffer.
 327 *	Will be %NULL if the buffer slot is currently free.
 328 * @page_offset: If pending: offset in @page of DMA base address.
 329 *	If completed: offset in @page of Ethernet header.
 330 * @len: If pending: length for DMA descriptor.
 331 *	If completed: received length, excluding hash prefix.
 332 * @flags: Flags for buffer and packet state.  These are only set on the
 333 *	first buffer of a scattered packet.
 334 */
 335struct efx_rx_buffer {
 336	dma_addr_t dma_addr;
 337	struct page *page;
 338	u16 page_offset;
 339	u16 len;
 340	u16 flags;
 341};
 342#define EFX_RX_BUF_LAST_IN_PAGE	0x0001
 343#define EFX_RX_PKT_CSUMMED	0x0002
 344#define EFX_RX_PKT_DISCARD	0x0004
 345#define EFX_RX_PKT_TCP		0x0040
 346#define EFX_RX_PKT_PREFIX_LEN	0x0080	/* length is in prefix only */
 347#define EFX_RX_PKT_CSUM_LEVEL	0x0200
 348
 349/**
 350 * struct efx_rx_page_state - Page-based rx buffer state
 351 *
 352 * Inserted at the start of every page allocated for receive buffers.
 353 * Used to facilitate sharing dma mappings between recycled rx buffers
 354 * and those passed up to the kernel.
 355 *
 356 * @dma_addr: The dma address of this page.
 357 */
 358struct efx_rx_page_state {
 359	dma_addr_t dma_addr;
 360
 361	unsigned int __pad[] ____cacheline_aligned;
 362};
 363
 364/**
 365 * struct efx_rx_queue - An Efx RX queue
 366 * @efx: The associated Efx NIC
 367 * @core_index:  Index of network core RX queue.  Will be >= 0 iff this
 368 *	is associated with a real RX queue.
 369 * @buffer: The software buffer ring
 370 * @rxd: The hardware descriptor ring
 371 * @ptr_mask: The size of the ring minus 1.
 372 * @refill_enabled: Enable refill whenever fill level is low
 373 * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
 374 *	@rxq_flush_pending.
 375 * @grant_credits: Posted RX descriptors need to be granted to the MAE with
 376 *	%MC_CMD_MAE_COUNTERS_STREAM_GIVE_CREDITS.  For %EFX_EXTRA_CHANNEL_TC,
 377 *	and only supported on EF100.
 378 * @added_count: Number of buffers added to the receive queue.
 379 * @notified_count: Number of buffers given to NIC (<= @added_count).
 380 * @granted_count: Number of buffers granted to the MAE (<= @notified_count).
 381 * @removed_count: Number of buffers removed from the receive queue.
 382 * @scatter_n: Used by NIC specific receive code.
 383 * @scatter_len: Used by NIC specific receive code.
 384 * @page_ring: The ring to store DMA mapped pages for reuse.
 385 * @page_add: Counter to calculate the write pointer for the recycle ring.
 386 * @page_remove: Counter to calculate the read pointer for the recycle ring.
 387 * @page_recycle_count: The number of pages that have been recycled.
 388 * @page_recycle_failed: The number of pages that couldn't be recycled because
 389 *      the kernel still held a reference to them.
 390 * @page_recycle_full: The number of pages that were released because the
 391 *      recycle ring was full.
 392 * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
 393 * @max_fill: RX descriptor maximum fill level (<= ring size)
 394 * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
 395 *	(<= @max_fill)
 396 * @min_fill: RX descriptor minimum non-zero fill level.
 397 *	This records the minimum fill level observed when a ring
 398 *	refill was triggered.
 399 * @recycle_count: RX buffer recycle counter.
 400 * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
 401 * @grant_work: workitem used to grant credits to the MAE if @grant_credits
 402 * @rx_packets: Number of packets received since this struct was created
 403 * @rx_bytes: Number of bytes received since this struct was created
 404 * @old_rx_packets: Value of @rx_packets as of last efx_init_rx_queue()
 405 * @old_rx_bytes: Value of @rx_bytes as of last efx_init_rx_queue()
 406 * @xdp_rxq_info: XDP specific RX queue information.
 407 * @xdp_rxq_info_valid: Is xdp_rxq_info valid data?.
 408 */
 409struct efx_rx_queue {
 410	struct efx_nic *efx;
 411	int core_index;
 412	struct efx_rx_buffer *buffer;
 413	struct efx_buffer rxd;
 414	unsigned int ptr_mask;
 415	bool refill_enabled;
 416	bool flush_pending;
 417	bool grant_credits;
 418
 419	unsigned int added_count;
 420	unsigned int notified_count;
 421	unsigned int granted_count;
 422	unsigned int removed_count;
 423	unsigned int scatter_n;
 424	unsigned int scatter_len;
 425	struct page **page_ring;
 426	unsigned int page_add;
 427	unsigned int page_remove;
 428	unsigned int page_recycle_count;
 429	unsigned int page_recycle_failed;
 430	unsigned int page_recycle_full;
 431	unsigned int page_ptr_mask;
 432	unsigned int max_fill;
 433	unsigned int fast_fill_trigger;
 434	unsigned int min_fill;
 435	unsigned int min_overfill;
 436	unsigned int recycle_count;
 437	struct timer_list slow_fill;
 438	unsigned int slow_fill_count;
 439	struct work_struct grant_work;
 440	/* Statistics to supplement MAC stats */
 441	unsigned long rx_packets;
 442	unsigned long rx_bytes;
 443	unsigned long old_rx_packets;
 444	unsigned long old_rx_bytes;
 445	struct xdp_rxq_info xdp_rxq_info;
 446	bool xdp_rxq_info_valid;
 447};
 448
 449enum efx_sync_events_state {
 450	SYNC_EVENTS_DISABLED = 0,
 451	SYNC_EVENTS_QUIESCENT,
 452	SYNC_EVENTS_REQUESTED,
 453	SYNC_EVENTS_VALID,
 454};
 455
 456/**
 457 * struct efx_channel - An Efx channel
 458 *
 459 * A channel comprises an event queue, at least one TX queue, at least
 460 * one RX queue, and an associated tasklet for processing the event
 461 * queue.
 462 *
 463 * @efx: Associated Efx NIC
 464 * @channel: Channel instance number
 465 * @type: Channel type definition
 466 * @eventq_init: Event queue initialised flag
 467 * @enabled: Channel enabled indicator
 468 * @irq: IRQ number (MSI and MSI-X only)
 469 * @irq_moderation_us: IRQ moderation value (in microseconds)
 470 * @napi_dev: Net device used with NAPI
 471 * @napi_str: NAPI control structure
 472 * @state: state for NAPI vs busy polling
 473 * @state_lock: lock protecting @state
 474 * @eventq: Event queue buffer
 475 * @eventq_mask: Event queue pointer mask
 476 * @eventq_read_ptr: Event queue read pointer
 477 * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
 478 * @irq_count: Number of IRQs since last adaptive moderation decision
 479 * @irq_mod_score: IRQ moderation score
 480 * @rfs_filter_count: number of accelerated RFS filters currently in place;
 481 *	equals the count of @rps_flow_id slots filled
 482 * @rfs_last_expiry: value of jiffies last time some accelerated RFS filters
 483 *	were checked for expiry
 484 * @rfs_expire_index: next accelerated RFS filter ID to check for expiry
 485 * @n_rfs_succeeded: number of successful accelerated RFS filter insertions
 486 * @n_rfs_failed: number of failed accelerated RFS filter insertions
 487 * @filter_work: Work item for efx_filter_rfs_expire()
 488 * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
 489 *      indexed by filter ID
 
 490 * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
 491 * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
 
 492 * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
 493 * @n_rx_overlength: Count of RX_OVERLENGTH errors
 494 * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
 495 * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
 496 *	lack of descriptors
 497 * @n_rx_merge_events: Number of RX merged completion events
 498 * @n_rx_merge_packets: Number of RX packets completed by merged events
 499 * @n_rx_xdp_drops: Count of RX packets intentionally dropped due to XDP
 500 * @n_rx_xdp_bad_drops: Count of RX packets dropped due to XDP errors
 501 * @n_rx_xdp_tx: Count of RX packets retransmitted due to XDP
 502 * @n_rx_xdp_redirect: Count of RX packets redirected to a different NIC by XDP
 503 * @n_rx_mport_bad: Count of RX packets dropped because their ingress mport was
 504 *	not recognised
 505 * @old_n_rx_hw_drops: Count of all RX packets dropped for any reason as of last
 506 *	efx_start_channels()
 507 * @old_n_rx_hw_drop_overruns: Value of @n_rx_nodesc_trunc as of last
 508 *	efx_start_channels()
 509 * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
 510 *	__efx_rx_packet(), or zero if there is none
 511 * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
 512 *	by __efx_rx_packet(), if @rx_pkt_n_frags != 0
 513 * @rx_list: list of SKBs from current RX, awaiting processing
 514 * @rx_queue: RX queue for this channel
 515 * @tx_queue: TX queues for this channel
 516 * @tx_queue_by_type: pointers into @tx_queue, or %NULL, indexed by txq type
 517 * @sync_events_state: Current state of sync events on this channel
 518 * @sync_timestamp_major: Major part of the last ptp sync event
 519 * @sync_timestamp_minor: Minor part of the last ptp sync event
 520 */
 521struct efx_channel {
 522	struct efx_nic *efx;
 523	int channel;
 524	const struct efx_channel_type *type;
 525	bool eventq_init;
 526	bool enabled;
 527	int irq;
 528	unsigned int irq_moderation_us;
 529	struct net_device *napi_dev;
 530	struct napi_struct napi_str;
 531#ifdef CONFIG_NET_RX_BUSY_POLL
 532	unsigned long busy_poll_state;
 533#endif
 534	struct efx_buffer eventq;
 535	unsigned int eventq_mask;
 536	unsigned int eventq_read_ptr;
 537	int event_test_cpu;
 538
 539	unsigned int irq_count;
 540	unsigned int irq_mod_score;
 541#ifdef CONFIG_RFS_ACCEL
 542	unsigned int rfs_filter_count;
 543	unsigned int rfs_last_expiry;
 544	unsigned int rfs_expire_index;
 545	unsigned int n_rfs_succeeded;
 546	unsigned int n_rfs_failed;
 547	struct delayed_work filter_work;
 548#define RPS_FLOW_ID_INVALID 0xFFFFFFFF
 549	u32 *rps_flow_id;
 550#endif
 551
 
 552	unsigned int n_rx_ip_hdr_chksum_err;
 553	unsigned int n_rx_tcp_udp_chksum_err;
 554	unsigned int n_rx_outer_ip_hdr_chksum_err;
 555	unsigned int n_rx_outer_tcp_udp_chksum_err;
 556	unsigned int n_rx_inner_ip_hdr_chksum_err;
 557	unsigned int n_rx_inner_tcp_udp_chksum_err;
 558	unsigned int n_rx_eth_crc_err;
 
 559	unsigned int n_rx_frm_trunc;
 560	unsigned int n_rx_overlength;
 561	unsigned int n_skbuff_leaks;
 562	unsigned int n_rx_nodesc_trunc;
 563	unsigned int n_rx_merge_events;
 564	unsigned int n_rx_merge_packets;
 565	unsigned int n_rx_xdp_drops;
 566	unsigned int n_rx_xdp_bad_drops;
 567	unsigned int n_rx_xdp_tx;
 568	unsigned int n_rx_xdp_redirect;
 569	unsigned int n_rx_mport_bad;
 570
 571	unsigned int old_n_rx_hw_drops;
 572	unsigned int old_n_rx_hw_drop_overruns;
 573
 574	unsigned int rx_pkt_n_frags;
 575	unsigned int rx_pkt_index;
 576
 577	struct list_head *rx_list;
 578
 579	struct efx_rx_queue rx_queue;
 580	struct efx_tx_queue tx_queue[EFX_MAX_TXQ_PER_CHANNEL];
 581	struct efx_tx_queue *tx_queue_by_type[EFX_TXQ_TYPES];
 582
 583	enum efx_sync_events_state sync_events_state;
 584	u32 sync_timestamp_major;
 585	u32 sync_timestamp_minor;
 586};
 587
 588/**
 589 * struct efx_msi_context - Context for each MSI
 590 * @efx: The associated NIC
 591 * @index: Index of the channel/IRQ
 592 * @name: Name of the channel/IRQ
 593 *
 594 * Unlike &struct efx_channel, this is never reallocated and is always
 595 * safe for the IRQ handler to access.
 596 */
 597struct efx_msi_context {
 598	struct efx_nic *efx;
 599	unsigned int index;
 600	char name[IFNAMSIZ + 6];
 601};
 602
 603/**
 604 * struct efx_channel_type - distinguishes traffic and extra channels
 605 * @handle_no_channel: Handle failure to allocate an extra channel
 606 * @pre_probe: Set up extra state prior to initialisation
 607 * @start: called early in efx_start_channels()
 608 * @stop: called early in efx_stop_channels()
 609 * @post_remove: Tear down extra state after finalisation, if allocated.
 610 *	May be called on channels that have not been probed.
 611 * @get_name: Generate the channel's name (used for its IRQ handler)
 612 * @copy: Copy the channel state prior to reallocation.  May be %NULL if
 613 *	reallocation is not supported.
 614 * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
 615 * @receive_raw: Handle an RX buffer ready to be passed to __efx_rx_packet()
 616 * @want_txqs: Determine whether this channel should have TX queues
 617 *	created.  If %NULL, TX queues are not created.
 618 * @keep_eventq: Flag for whether event queue should be kept initialised
 619 *	while the device is stopped
 620 * @want_pio: Flag for whether PIO buffers should be linked to this
 621 *	channel's TX queues.
 622 */
 623struct efx_channel_type {
 624	void (*handle_no_channel)(struct efx_nic *);
 625	int (*pre_probe)(struct efx_channel *);
 626	int (*start)(struct efx_channel *);
 627	void (*stop)(struct efx_channel *);
 628	void (*post_remove)(struct efx_channel *);
 629	void (*get_name)(struct efx_channel *, char *buf, size_t len);
 630	struct efx_channel *(*copy)(const struct efx_channel *);
 631	bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
 632	bool (*receive_raw)(struct efx_rx_queue *, u32);
 633	bool (*want_txqs)(struct efx_channel *);
 634	bool keep_eventq;
 635	bool want_pio;
 636};
 637
 638enum efx_led_mode {
 639	EFX_LED_OFF	= 0,
 640	EFX_LED_ON	= 1,
 641	EFX_LED_DEFAULT	= 2
 642};
 643
 644#define STRING_TABLE_LOOKUP(val, member) \
 645	((val) < member ## _max) ? member ## _names[val] : "(invalid)"
 646
 647extern const char *const efx_loopback_mode_names[];
 648extern const unsigned int efx_loopback_mode_max;
 649#define LOOPBACK_MODE(efx) \
 650	STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
 651
 
 
 
 
 
 652enum efx_int_mode {
 653	/* Be careful if altering to correct macro below */
 654	EFX_INT_MODE_MSIX = 0,
 655	EFX_INT_MODE_MSI = 1,
 656	EFX_INT_MODE_LEGACY = 2,
 657	EFX_INT_MODE_MAX	/* Insert any new items before this */
 658};
 659#define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
 660
 661enum nic_state {
 662	STATE_UNINIT = 0,	/* device being probed/removed */
 663	STATE_PROBED,		/* hardware probed */
 664	STATE_NET_DOWN,		/* netdev registered */
 665	STATE_NET_UP,		/* ready for traffic */
 666	STATE_DISABLED,		/* device disabled due to hardware errors */
 667
 668	STATE_RECOVERY = 0x100,/* recovering from PCI error */
 669	STATE_FROZEN = 0x200,	/* frozen by power management */
 670};
 671
 672static inline bool efx_net_active(enum nic_state state)
 673{
 674	return state == STATE_NET_DOWN || state == STATE_NET_UP;
 675}
 676
 677static inline bool efx_frozen(enum nic_state state)
 678{
 679	return state & STATE_FROZEN;
 680}
 681
 682static inline bool efx_recovering(enum nic_state state)
 683{
 684	return state & STATE_RECOVERY;
 685}
 686
 687static inline enum nic_state efx_freeze(enum nic_state state)
 688{
 689	WARN_ON(!efx_net_active(state));
 690	return state | STATE_FROZEN;
 691}
 692
 693static inline enum nic_state efx_thaw(enum nic_state state)
 694{
 695	WARN_ON(!efx_frozen(state));
 696	return state & ~STATE_FROZEN;
 697}
 698
 699static inline enum nic_state efx_recover(enum nic_state state)
 700{
 701	WARN_ON(!efx_net_active(state));
 702	return state | STATE_RECOVERY;
 703}
 704
 705static inline enum nic_state efx_recovered(enum nic_state state)
 706{
 707	WARN_ON(!efx_recovering(state));
 708	return state & ~STATE_RECOVERY;
 709}
 710
 711/* Forward declaration */
 712struct efx_nic;
 713
 714/* Pseudo bit-mask flow control field */
 715#define EFX_FC_RX	FLOW_CTRL_RX
 716#define EFX_FC_TX	FLOW_CTRL_TX
 717#define EFX_FC_AUTO	4
 718
 719/**
 720 * struct efx_link_state - Current state of the link
 721 * @up: Link is up
 722 * @fd: Link is full-duplex
 723 * @fc: Actual flow control flags
 724 * @speed: Link speed (Mbps)
 725 */
 726struct efx_link_state {
 727	bool up;
 728	bool fd;
 729	u8 fc;
 730	unsigned int speed;
 731};
 732
 733static inline bool efx_link_state_equal(const struct efx_link_state *left,
 734					const struct efx_link_state *right)
 735{
 736	return left->up == right->up && left->fd == right->fd &&
 737		left->fc == right->fc && left->speed == right->speed;
 738}
 739
 740/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 741 * enum efx_phy_mode - PHY operating mode flags
 742 * @PHY_MODE_NORMAL: on and should pass traffic
 743 * @PHY_MODE_TX_DISABLED: on with TX disabled
 744 * @PHY_MODE_LOW_POWER: set to low power through MDIO
 745 * @PHY_MODE_OFF: switched off through external control
 746 * @PHY_MODE_SPECIAL: on but will not pass traffic
 747 */
 748enum efx_phy_mode {
 749	PHY_MODE_NORMAL		= 0,
 750	PHY_MODE_TX_DISABLED	= 1,
 751	PHY_MODE_LOW_POWER	= 2,
 752	PHY_MODE_OFF		= 4,
 753	PHY_MODE_SPECIAL	= 8,
 754};
 755
 756static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
 757{
 758	return !!(mode & ~PHY_MODE_TX_DISABLED);
 759}
 760
 761/**
 762 * struct efx_hw_stat_desc - Description of a hardware statistic
 763 * @name: Name of the statistic as visible through ethtool, or %NULL if
 764 *	it should not be exposed
 765 * @dma_width: Width in bits (0 for non-DMA statistics)
 766 * @offset: Offset within stats (ignored for non-DMA statistics)
 767 */
 768struct efx_hw_stat_desc {
 769	const char *name;
 770	u16 dma_width;
 771	u16 offset;
 772};
 773
 
 
 
 
 
 
 
 
 
 
 
 
 774struct vfdi_status;
 775
 776/* The reserved RSS context value */
 777#define EFX_MCDI_RSS_CONTEXT_INVALID	0xffffffff
 778/**
 779 * struct efx_rss_context_priv - driver private data for an RSS context
 
 780 * @context_id: the RSS_CONTEXT_ID returned by MC firmware, or
 781 *	%EFX_MCDI_RSS_CONTEXT_INVALID if this context is not present on the NIC.
 
 
 782 * @rx_hash_udp_4tuple: UDP 4-tuple hashing enabled
 783 */
 784struct efx_rss_context_priv {
 785	u32 context_id;
 786	bool rx_hash_udp_4tuple;
 787};
 788
 789/**
 790 * struct efx_rss_context - an RSS context
 791 * @priv: hardware-specific state
 792 * @rx_hash_key: Toeplitz hash key for this RSS context
 793 * @indir_table: Indirection table for this RSS context
 794 */
 795struct efx_rss_context {
 796	struct efx_rss_context_priv priv;
 
 
 
 797	u8 rx_hash_key[40];
 798	u32 rx_indir_table[128];
 799};
 800
 801#ifdef CONFIG_RFS_ACCEL
 802/* Order of these is important, since filter_id >= %EFX_ARFS_FILTER_ID_PENDING
 803 * is used to test if filter does or will exist.
 804 */
 805#define EFX_ARFS_FILTER_ID_PENDING	-1
 806#define EFX_ARFS_FILTER_ID_ERROR	-2
 807#define EFX_ARFS_FILTER_ID_REMOVING	-3
 808/**
 809 * struct efx_arfs_rule - record of an ARFS filter and its IDs
 810 * @node: linkage into hash table
 811 * @spec: details of the filter (used as key for hash table).  Use efx->type to
 812 *	determine which member to use.
 813 * @rxq_index: channel to which the filter will steer traffic.
 814 * @arfs_id: filter ID which was returned to ARFS
 815 * @filter_id: index in software filter table.  May be
 816 *	%EFX_ARFS_FILTER_ID_PENDING if filter was not inserted yet,
 817 *	%EFX_ARFS_FILTER_ID_ERROR if filter insertion failed, or
 818 *	%EFX_ARFS_FILTER_ID_REMOVING if expiry is currently removing the filter.
 819 */
 820struct efx_arfs_rule {
 821	struct hlist_node node;
 822	struct efx_filter_spec spec;
 823	u16 rxq_index;
 824	u16 arfs_id;
 825	s32 filter_id;
 826};
 827
 828/* Size chosen so that the table is one page (4kB) */
 829#define EFX_ARFS_HASH_TABLE_SIZE	512
 830
 831/**
 832 * struct efx_async_filter_insertion - Request to asynchronously insert a filter
 833 * @net_dev: Reference to the netdevice
 834 * @spec: The filter to insert
 835 * @work: Workitem for this request
 836 * @rxq_index: Identifies the channel for which this request was made
 837 * @flow_id: Identifies the kernel-side flow for which this request was made
 838 */
 839struct efx_async_filter_insertion {
 840	struct net_device *net_dev;
 841	struct efx_filter_spec spec;
 842	struct work_struct work;
 843	u16 rxq_index;
 844	u32 flow_id;
 845};
 846
 847/* Maximum number of ARFS workitems that may be in flight on an efx_nic */
 848#define EFX_RPS_MAX_IN_FLIGHT	8
 849#endif /* CONFIG_RFS_ACCEL */
 850
 851enum efx_xdp_tx_queues_mode {
 852	EFX_XDP_TX_QUEUES_DEDICATED,	/* one queue per core, locking not needed */
 853	EFX_XDP_TX_QUEUES_SHARED,	/* each queue used by more than 1 core */
 854	EFX_XDP_TX_QUEUES_BORROWED	/* queues borrowed from net stack */
 855};
 856
 857struct efx_mae;
 858
 859/**
 860 * struct efx_nic - an Efx NIC
 861 * @name: Device name (net device name or bus id before net device registered)
 862 * @pci_dev: The PCI device
 863 * @node: List node for maintaning primary/secondary function lists
 864 * @primary: &struct efx_nic instance for the primary function of this
 865 *	controller.  May be the same structure, and may be %NULL if no
 866 *	primary function is bound.  Serialised by rtnl_lock.
 867 * @secondary_list: List of &struct efx_nic instances for the secondary PCI
 868 *	functions of the controller, if this is for the primary function.
 869 *	Serialised by rtnl_lock.
 870 * @type: Controller type attributes
 871 * @legacy_irq: IRQ number
 872 * @workqueue: Workqueue for port reconfigures and the HW monitor.
 873 *	Work items do not hold and must not acquire RTNL.
 874 * @workqueue_name: Name of workqueue
 875 * @reset_work: Scheduled reset workitem
 876 * @membase_phys: Memory BAR value as physical address
 877 * @membase: Memory BAR value
 878 * @vi_stride: step between per-VI registers / memory regions
 879 * @interrupt_mode: Interrupt mode
 880 * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
 881 * @timer_max_ns: Interrupt timer maximum value, in nanoseconds
 882 * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
 883 * @irqs_hooked: Channel interrupts are hooked
 884 * @irq_rx_mod_step_us: Step size for IRQ moderation for RX event queues
 885 * @irq_rx_moderation_us: IRQ moderation time for RX event queues
 886 * @msg_enable: Log message enable flags
 887 * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
 888 * @reset_pending: Bitmask for pending resets
 889 * @tx_queue: TX DMA queues
 890 * @rx_queue: RX DMA queues
 891 * @channel: Channels
 892 * @msi_context: Context for each MSI
 893 * @extra_channel_types: Types of extra (non-traffic) channels that
 894 *	should be allocated for this NIC
 895 * @mae: Details of the Match Action Engine
 896 * @xdp_tx_queue_count: Number of entries in %xdp_tx_queues.
 897 * @xdp_tx_queues: Array of pointers to tx queues used for XDP transmit.
 898 * @xdp_txq_queues_mode: XDP TX queues sharing strategy.
 899 * @rxq_entries: Size of receive queues requested by user.
 900 * @txq_entries: Size of transmit queues requested by user.
 901 * @txq_stop_thresh: TX queue fill level at or above which we stop it.
 902 * @txq_wake_thresh: TX queue fill level at or below which we wake it.
 903 * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
 904 * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
 905 * @sram_lim_qw: Qword address limit of SRAM
 
 906 * @n_channels: Number of channels in use
 907 * @n_rx_channels: Number of channels used for RX (= number of RX queues)
 908 * @n_tx_channels: Number of channels used for TX
 909 * @n_extra_tx_channels: Number of extra channels with TX queues
 910 * @tx_queues_per_channel: number of TX queues probed on each channel
 911 * @n_xdp_channels: Number of channels used for XDP TX
 912 * @xdp_channel_offset: Offset of zeroth channel used for XPD TX.
 913 * @xdp_tx_per_channel: Max number of TX queues on an XDP TX channel.
 914 * @rx_ip_align: RX DMA address offset to have IP header aligned in
 915 *	in accordance with NET_IP_ALIGN
 916 * @rx_dma_len: Current maximum RX DMA length
 917 * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
 918 * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
 919 *	for use in sk_buff::truesize
 920 * @rx_prefix_size: Size of RX prefix before packet data
 921 * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
 922 *	(valid only if @rx_prefix_size != 0; always negative)
 923 * @rx_packet_len_offset: Offset of RX packet length from start of packet data
 924 *	(valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
 925 * @rx_packet_ts_offset: Offset of timestamp from start of packet data
 926 *	(valid only if channel->sync_timestamps_enabled; always negative)
 927 * @rx_scatter: Scatter mode enabled for receives
 928 * @rss_context: Main RSS context.
 
 
 929 * @vport_id: The function's vport ID, only relevant for PFs
 930 * @int_error_count: Number of internal errors seen recently
 931 * @int_error_expire: Time at which error count will be expired
 932 * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot
 933 * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
 934 *	acknowledge but do nothing else.
 935 * @irq_status: Interrupt status buffer
 936 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
 937 * @irq_level: IRQ level/index for IRQs not triggered by an event queue
 938 * @selftest_work: Work item for asynchronous self-test
 939 * @mtd_list: List of MTDs attached to the NIC
 940 * @nic_data: Hardware dependent state
 941 * @mcdi: Management-Controller-to-Driver Interface state
 942 * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
 943 *	efx_monitor() and efx_reconfigure_port()
 944 * @port_enabled: Port enabled indicator.
 945 *	Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
 946 *	efx_mac_work() with kernel interfaces. Safe to read under any
 947 *	one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
 948 *	be held to modify it.
 949 * @port_initialized: Port initialized?
 950 * @net_dev: Operating system network device. Consider holding the rtnl lock
 951 * @fixed_features: Features which cannot be turned off
 952 * @num_mac_stats: Number of MAC stats reported by firmware (MAC_STATS_NUM_STATS
 953 *	field of %MC_CMD_GET_CAPABILITIES_V4 response, or %MC_CMD_MAC_NSTATS)
 954 * @stats_buffer: DMA buffer for statistics
 955 * @phy_type: PHY type
 
 956 * @phy_data: PHY private data (including PHY-specific stats)
 957 * @mdio: PHY MDIO interface
 958 * @mdio_bus: PHY MDIO bus ID (only used by Siena)
 959 * @phy_mode: PHY operating mode. Serialised by @mac_lock.
 960 * @link_advertising: Autonegotiation advertising flags
 961 * @fec_config: Forward Error Correction configuration flags.  For bit positions
 962 *	see &enum ethtool_fec_config_bits.
 963 * @link_state: Current state of the link
 964 * @n_link_state_changes: Number of times the link has changed state
 
 
 
 
 965 * @wanted_fc: Wanted flow control flags
 966 * @fc_disable: When non-zero flow control is disabled. Typically used to
 967 *	ensure that network back pressure doesn't delay dma queue flushes.
 968 *	Serialised by the rtnl lock.
 969 * @mac_work: Work item for changing MAC promiscuity and multicast hash
 970 * @loopback_mode: Loopback status
 971 * @loopback_modes: Supported loopback mode bitmask
 972 * @loopback_selftest: Offline self-test private state
 973 * @xdp_prog: Current XDP programme for this interface
 974 * @filter_sem: Filter table rw_semaphore, protects existence of @filter_state
 975 * @filter_state: Architecture-dependent filter table state
 976 * @rps_mutex: Protects RPS state of all channels
 977 * @rps_slot_map: bitmap of in-flight entries in @rps_slot
 978 * @rps_slot: array of ARFS insertion requests for efx_filter_rfs_work()
 979 * @rps_hash_lock: Protects ARFS filter mapping state (@rps_hash_table and
 980 *	@rps_next_id).
 981 * @rps_hash_table: Mapping between ARFS filters and their various IDs
 982 * @rps_next_id: next arfs_id for an ARFS filter
 983 * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
 984 * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
 985 *	Decremented when the efx_flush_rx_queue() is called.
 986 * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
 987 *	completed (either success or failure). Not used when MCDI is used to
 988 *	flush receive queues.
 989 * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
 990 * @vf_count: Number of VFs intended to be enabled.
 991 * @vf_init_count: Number of VFs that have been fully initialised.
 992 * @vi_scale: log2 number of vnics per VF.
 993 * @vf_reps_lock: Protects vf_reps list
 994 * @vf_reps: local VF reps
 995 * @ptp_data: PTP state data
 996 * @ptp_warned: has this NIC seen and warned about unexpected PTP events?
 997 * @vpd_sn: Serial number read from VPD
 998 * @xdp_rxq_info_failed: Have any of the rx queues failed to initialise their
 999 *      xdp_rxq_info structures?
1000 * @netdev_notifier: Netdevice notifier.
1001 * @netevent_notifier: Netevent notifier (for neighbour updates).
1002 * @tc: state for TC offload (EF100).
1003 * @devlink: reference to devlink structure owned by this device
1004 * @dl_port: devlink port associated with the PF
1005 * @mem_bar: The BAR that is mapped into membase.
1006 * @reg_base: Offset from the start of the bar to the function control window.
1007 * @monitor_work: Hardware monitor workitem
1008 * @biu_lock: BIU (bus interface unit) lock
1009 * @last_irq_cpu: Last CPU to handle a possible test interrupt.  This
1010 *	field is used by efx_test_interrupts() to verify that an
1011 *	interrupt has occurred.
1012 * @stats_lock: Statistics update lock. Must be held when calling
1013 *	efx_nic_type::{update,start,stop}_stats.
1014 * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb
1015 *
1016 * This is stored in the private area of the &struct net_device.
1017 */
1018struct efx_nic {
1019	/* The following fields should be written very rarely */
1020
1021	char name[IFNAMSIZ];
1022	struct list_head node;
1023	struct efx_nic *primary;
1024	struct list_head secondary_list;
1025	struct pci_dev *pci_dev;
1026	unsigned int port_num;
1027	const struct efx_nic_type *type;
1028	int legacy_irq;
1029	bool eeh_disabled_legacy_irq;
1030	struct workqueue_struct *workqueue;
1031	char workqueue_name[16];
1032	struct work_struct reset_work;
1033	resource_size_t membase_phys;
1034	void __iomem *membase;
1035
1036	unsigned int vi_stride;
1037
1038	enum efx_int_mode interrupt_mode;
1039	unsigned int timer_quantum_ns;
1040	unsigned int timer_max_ns;
1041	bool irq_rx_adaptive;
1042	bool irqs_hooked;
1043	unsigned int irq_mod_step_us;
1044	unsigned int irq_rx_moderation_us;
1045	u32 msg_enable;
1046
1047	enum nic_state state;
1048	unsigned long reset_pending;
1049
1050	struct efx_channel *channel[EFX_MAX_CHANNELS];
1051	struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
1052	const struct efx_channel_type *
1053	extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
1054	struct efx_mae *mae;
1055
1056	unsigned int xdp_tx_queue_count;
1057	struct efx_tx_queue **xdp_tx_queues;
1058	enum efx_xdp_tx_queues_mode xdp_txq_queues_mode;
1059
1060	unsigned rxq_entries;
1061	unsigned txq_entries;
1062	unsigned int txq_stop_thresh;
1063	unsigned int txq_wake_thresh;
1064
1065	unsigned tx_dc_base;
1066	unsigned rx_dc_base;
1067	unsigned sram_lim_qw;
 
1068
1069	unsigned int max_channels;
1070	unsigned int max_vis;
1071	unsigned int max_tx_channels;
1072	unsigned n_channels;
1073	unsigned n_rx_channels;
1074	unsigned rss_spread;
1075	unsigned tx_channel_offset;
1076	unsigned n_tx_channels;
1077	unsigned n_extra_tx_channels;
1078	unsigned int tx_queues_per_channel;
1079	unsigned int n_xdp_channels;
1080	unsigned int xdp_channel_offset;
1081	unsigned int xdp_tx_per_channel;
1082	unsigned int rx_ip_align;
1083	unsigned int rx_dma_len;
1084	unsigned int rx_buffer_order;
1085	unsigned int rx_buffer_truesize;
1086	unsigned int rx_page_buf_step;
1087	unsigned int rx_bufs_per_page;
1088	unsigned int rx_pages_per_batch;
1089	unsigned int rx_prefix_size;
1090	int rx_packet_hash_offset;
1091	int rx_packet_len_offset;
1092	int rx_packet_ts_offset;
1093	bool rx_scatter;
1094	struct efx_rss_context rss_context;
 
1095	u32 vport_id;
1096
1097	unsigned int_error_count;
1098	unsigned long int_error_expire;
1099
1100	bool must_realloc_vis;
1101	bool irq_soft_enabled;
1102	struct efx_buffer irq_status;
1103	unsigned irq_zero_count;
1104	unsigned irq_level;
1105	struct delayed_work selftest_work;
1106
1107#ifdef CONFIG_SFC_MTD
1108	struct list_head mtd_list;
1109#endif
1110
1111	void *nic_data;
1112	struct efx_mcdi_data *mcdi;
1113
1114	struct mutex mac_lock;
1115	struct work_struct mac_work;
1116	bool port_enabled;
1117
1118	bool mc_bist_for_other_fn;
1119	bool port_initialized;
1120	struct net_device *net_dev;
1121
1122	netdev_features_t fixed_features;
1123
1124	u16 num_mac_stats;
1125	struct efx_buffer stats_buffer;
1126	u64 rx_nodesc_drops_total;
1127	u64 rx_nodesc_drops_while_down;
1128	bool rx_nodesc_drops_prev_state;
1129
1130	unsigned int phy_type;
 
1131	void *phy_data;
1132	struct mdio_if_info mdio;
1133	unsigned int mdio_bus;
1134	enum efx_phy_mode phy_mode;
1135
1136	__ETHTOOL_DECLARE_LINK_MODE_MASK(link_advertising);
1137	u32 fec_config;
1138	struct efx_link_state link_state;
1139	unsigned int n_link_state_changes;
1140
 
 
1141	u8 wanted_fc;
1142	unsigned fc_disable;
1143
1144	atomic_t rx_reset;
1145	enum efx_loopback_mode loopback_mode;
1146	u64 loopback_modes;
1147
1148	void *loopback_selftest;
1149	/* We access loopback_selftest immediately before running XDP,
1150	 * so we want them next to each other.
1151	 */
1152	struct bpf_prog __rcu *xdp_prog;
1153
1154	struct rw_semaphore filter_sem;
1155	void *filter_state;
1156#ifdef CONFIG_RFS_ACCEL
1157	struct mutex rps_mutex;
1158	unsigned long rps_slot_map;
1159	struct efx_async_filter_insertion rps_slot[EFX_RPS_MAX_IN_FLIGHT];
1160	spinlock_t rps_hash_lock;
1161	struct hlist_head *rps_hash_table;
1162	u32 rps_next_id;
1163#endif
1164
1165	atomic_t active_queues;
1166	atomic_t rxq_flush_pending;
1167	atomic_t rxq_flush_outstanding;
1168	wait_queue_head_t flush_wq;
1169
1170#ifdef CONFIG_SFC_SRIOV
1171	unsigned vf_count;
1172	unsigned vf_init_count;
1173	unsigned vi_scale;
1174#endif
1175	spinlock_t vf_reps_lock;
1176	struct list_head vf_reps;
1177
1178	struct efx_ptp_data *ptp_data;
1179	bool ptp_warned;
1180
1181	char *vpd_sn;
1182	bool xdp_rxq_info_failed;
1183
1184	struct notifier_block netdev_notifier;
1185	struct notifier_block netevent_notifier;
1186	struct efx_tc_state *tc;
1187
1188	struct devlink *devlink;
1189	struct devlink_port *dl_port;
1190	unsigned int mem_bar;
1191	u32 reg_base;
1192
1193	/* The following fields may be written more often */
1194
1195	struct delayed_work monitor_work ____cacheline_aligned_in_smp;
1196	spinlock_t biu_lock;
1197	int last_irq_cpu;
1198	spinlock_t stats_lock;
1199	atomic_t n_rx_noskb_drops;
1200};
1201
1202/**
1203 * struct efx_probe_data - State after hardware probe
1204 * @pci_dev: The PCI device
1205 * @efx: Efx NIC details
1206 */
1207struct efx_probe_data {
1208	struct pci_dev *pci_dev;
1209	struct efx_nic efx;
1210};
1211
1212static inline struct efx_nic *efx_netdev_priv(struct net_device *dev)
1213{
1214	struct efx_probe_data **probe_ptr = netdev_priv(dev);
1215	struct efx_probe_data *probe_data = *probe_ptr;
1216
1217	return &probe_data->efx;
1218}
1219
1220static inline int efx_dev_registered(struct efx_nic *efx)
1221{
1222	return efx->net_dev->reg_state == NETREG_REGISTERED;
1223}
1224
1225static inline unsigned int efx_port_num(struct efx_nic *efx)
1226{
1227	return efx->port_num;
1228}
1229
1230struct efx_mtd_partition {
1231	struct list_head node;
1232	struct mtd_info mtd;
1233	const char *dev_type_name;
1234	const char *type_name;
1235	char name[IFNAMSIZ + 20];
1236};
1237
1238struct efx_udp_tunnel {
1239#define TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID	0xffff
1240	u16 type; /* TUNNEL_ENCAP_UDP_PORT_ENTRY_foo, see mcdi_pcol.h */
1241	__be16 port;
1242};
1243
1244/**
1245 * struct efx_nic_type - Efx device type definition
1246 * @mem_bar: Get the memory BAR
1247 * @mem_map_size: Get memory BAR mapped size
1248 * @probe: Probe the controller
1249 * @remove: Free resources allocated by probe()
1250 * @init: Initialise the controller
1251 * @dimension_resources: Dimension controller resources (buffer table,
1252 *	and VIs once the available interrupt resources are clear)
1253 * @fini: Shut down the controller
1254 * @monitor: Periodic function for polling link state and hardware monitor
1255 * @map_reset_reason: Map ethtool reset reason to a reset method
1256 * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
1257 * @reset: Reset the controller hardware and possibly the PHY.  This will
1258 *	be called while the controller is uninitialised.
1259 * @probe_port: Probe the MAC and PHY
1260 * @remove_port: Free resources allocated by probe_port()
1261 * @handle_global_event: Handle a "global" event (may be %NULL)
1262 * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
 
 
 
 
1263 * @prepare_flr: Prepare for an FLR
1264 * @finish_flr: Clean up after an FLR
1265 * @describe_stats: Describe statistics for ethtool
1266 * @update_stats: Update statistics not provided by event handling.
1267 *	Either argument may be %NULL.
1268 * @update_stats_atomic: Update statistics while in atomic context, if that
1269 *	is more limiting than @update_stats.  Otherwise, leave %NULL and
1270 *	driver core will call @update_stats.
1271 * @start_stats: Start the regular fetching of statistics
1272 * @pull_stats: Pull stats from the NIC and wait until they arrive.
1273 * @stop_stats: Stop the regular fetching of statistics
 
1274 * @push_irq_moderation: Apply interrupt moderation value
1275 * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
1276 * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
1277 * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
1278 *	to the hardware.  Serialised by the mac_lock.
1279 * @check_mac_fault: Check MAC fault state. True if fault present.
1280 * @get_wol: Get WoL configuration from driver state
1281 * @set_wol: Push WoL configuration to the NIC
1282 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
1283 * @get_fec_stats: Get standard FEC statistics.
1284 * @test_chip: Test registers. This is expected to reset the NIC.
1285 * @test_nvram: Test validity of NVRAM contents
1286 * @mcdi_request: Send an MCDI request with the given header and SDU.
1287 *	The SDU length may be any value from 0 up to the protocol-
1288 *	defined maximum, but its buffer will be padded to a multiple
1289 *	of 4 bytes.
1290 * @mcdi_poll_response: Test whether an MCDI response is available.
1291 * @mcdi_read_response: Read the MCDI response PDU.  The offset will
1292 *	be a multiple of 4.  The length may not be, but the buffer
1293 *	will be padded so it is safe to round up.
1294 * @mcdi_poll_reboot: Test whether the MCDI has rebooted.  If so,
1295 *	return an appropriate error code for aborting any current
1296 *	request; otherwise return 0.
1297 * @irq_enable_master: Enable IRQs on the NIC.  Each event queue must
1298 *	be separately enabled after this.
1299 * @irq_test_generate: Generate a test IRQ
1300 * @irq_disable_non_ev: Disable non-event IRQs on the NIC.  Each event
1301 *	queue must be separately disabled before this.
1302 * @irq_handle_msi: Handle MSI for a channel.  The @dev_id argument is
1303 *	a pointer to the &struct efx_msi_context for the channel.
1304 * @irq_handle_legacy: Handle legacy interrupt.  The @dev_id argument
1305 *	is a pointer to the &struct efx_nic.
1306 * @tx_probe: Allocate resources for TX queue (and select TXQ type)
1307 * @tx_init: Initialise TX queue on the NIC
1308 * @tx_remove: Free resources for TX queue
1309 * @tx_write: Write TX descriptors and doorbell
1310 * @tx_enqueue: Add an SKB to TX queue
1311 * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
1312 * @rx_pull_rss_config: Read RSS hash key and indirection table back from the NIC
1313 * @rx_push_rss_context_config: Write RSS hash key and indirection table for
1314 *	user RSS context to the NIC
1315 * @rx_pull_rss_context_config: Read RSS hash key and indirection table for user
1316 *	RSS context back from the NIC
1317 * @rx_probe: Allocate resources for RX queue
1318 * @rx_init: Initialise RX queue on the NIC
1319 * @rx_remove: Free resources for RX queue
1320 * @rx_write: Write RX descriptors and doorbell
1321 * @rx_defer_refill: Generate a refill reminder event
1322 * @rx_packet: Receive the queued RX buffer on a channel
1323 * @rx_buf_hash_valid: Determine whether the RX prefix contains a valid hash
1324 * @ev_probe: Allocate resources for event queue
1325 * @ev_init: Initialise event queue on the NIC
1326 * @ev_fini: Deinitialise event queue on the NIC
1327 * @ev_remove: Free resources for event queue
1328 * @ev_process: Process events for a queue, up to the given NAPI quota
1329 * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
1330 * @ev_test_generate: Generate a test event
1331 * @filter_table_probe: Probe filter capabilities and set up filter software state
1332 * @filter_table_restore: Restore filters removed from hardware
1333 * @filter_table_remove: Remove filters from hardware and tear down software state
1334 * @filter_update_rx_scatter: Update filters after change to rx scatter setting
1335 * @filter_insert: add or replace a filter
1336 * @filter_remove_safe: remove a filter by ID, carefully
1337 * @filter_get_safe: retrieve a filter by ID, carefully
1338 * @filter_clear_rx: Remove all RX filters whose priority is less than or
1339 *	equal to the given priority and is not %EFX_FILTER_PRI_AUTO
1340 * @filter_count_rx_used: Get the number of filters in use at a given priority
1341 * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1342 * @filter_get_rx_ids: Get list of RX filters at a given priority
1343 * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1344 *	This must check whether the specified table entry is used by RFS
1345 *	and that rps_may_expire_flow() returns true for it.
1346 * @mtd_probe: Probe and add MTD partitions associated with this net device,
1347 *	 using efx_mtd_add()
1348 * @mtd_rename: Set an MTD partition name using the net device name
1349 * @mtd_read: Read from an MTD partition
1350 * @mtd_erase: Erase part of an MTD partition
1351 * @mtd_write: Write to an MTD partition
1352 * @mtd_sync: Wait for write-back to complete on MTD partition.  This
1353 *	also notifies the driver that a writer has finished using this
1354 *	partition.
1355 * @ptp_write_host_time: Send host time to MC as part of sync protocol
1356 * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX
1357 *	timestamping, possibly only temporarily for the purposes of a reset.
1358 * @ptp_set_ts_config: Set hardware timestamp configuration.  The flags
1359 *	and tx_type will already have been validated but this operation
1360 *	must validate and update rx_filter.
1361 * @get_phys_port_id: Get the underlying physical port id.
1362 * @set_mac_address: Set the MAC address of the device
1363 * @tso_versions: Returns mask of firmware-assisted TSO versions supported.
1364 *	If %NULL, then device does not support any TSO version.
1365 * @udp_tnl_push_ports: Push the list of UDP tunnel ports to the NIC if required.
1366 * @udp_tnl_has_port: Check if a port has been added as UDP tunnel
1367 * @print_additional_fwver: Dump NIC-specific additional FW version info
1368 * @sensor_event: Handle a sensor event from MCDI
1369 * @rx_recycle_ring_size: Size of the RX recycle ring
1370 * @revision: Hardware architecture revision
1371 * @txd_ptr_tbl_base: TX descriptor ring base address
1372 * @rxd_ptr_tbl_base: RX descriptor ring base address
1373 * @buf_tbl_base: Buffer table base address
1374 * @evq_ptr_tbl_base: Event queue pointer table base address
1375 * @evq_rptr_tbl_base: Event queue read-pointer table base address
1376 * @max_dma_mask: Maximum possible DMA mask
1377 * @rx_prefix_size: Size of RX prefix before packet data
1378 * @rx_hash_offset: Offset of RX flow hash within prefix
1379 * @rx_ts_offset: Offset of timestamp within prefix
1380 * @rx_buffer_padding: Size of padding at end of RX packet
1381 * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1382 * @always_rx_scatter: NIC will always scatter packets to multiple buffers
1383 * @option_descriptors: NIC supports TX option descriptors
1384 * @min_interrupt_mode: Lowest capability interrupt mode supported
1385 *	from &enum efx_int_mode.
1386 * @timer_period_max: Maximum period of interrupt timer (in ticks)
1387 * @offload_features: net_device feature flags for protocol offload
1388 *	features implemented in hardware
1389 * @mcdi_max_ver: Maximum MCDI version supported
1390 * @hwtstamp_filters: Mask of hardware timestamp filter types supported
1391 */
1392struct efx_nic_type {
1393	bool is_vf;
1394	unsigned int (*mem_bar)(struct efx_nic *efx);
1395	unsigned int (*mem_map_size)(struct efx_nic *efx);
1396	int (*probe)(struct efx_nic *efx);
1397	void (*remove)(struct efx_nic *efx);
1398	int (*init)(struct efx_nic *efx);
1399	int (*dimension_resources)(struct efx_nic *efx);
1400	void (*fini)(struct efx_nic *efx);
1401	void (*monitor)(struct efx_nic *efx);
1402	enum reset_type (*map_reset_reason)(enum reset_type reason);
1403	int (*map_reset_flags)(u32 *flags);
1404	int (*reset)(struct efx_nic *efx, enum reset_type method);
1405	int (*probe_port)(struct efx_nic *efx);
1406	void (*remove_port)(struct efx_nic *efx);
1407	bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
1408	int (*fini_dmaq)(struct efx_nic *efx);
 
 
1409	void (*prepare_flr)(struct efx_nic *efx);
1410	void (*finish_flr)(struct efx_nic *efx);
1411	size_t (*describe_stats)(struct efx_nic *efx, u8 **names);
1412	size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
1413			       struct rtnl_link_stats64 *core_stats);
1414	size_t (*update_stats_atomic)(struct efx_nic *efx, u64 *full_stats,
1415				      struct rtnl_link_stats64 *core_stats);
1416	void (*start_stats)(struct efx_nic *efx);
1417	void (*pull_stats)(struct efx_nic *efx);
1418	void (*stop_stats)(struct efx_nic *efx);
 
1419	void (*push_irq_moderation)(struct efx_channel *channel);
1420	int (*reconfigure_port)(struct efx_nic *efx);
1421	void (*prepare_enable_fc_tx)(struct efx_nic *efx);
1422	int (*reconfigure_mac)(struct efx_nic *efx, bool mtu_only);
1423	bool (*check_mac_fault)(struct efx_nic *efx);
1424	void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
1425	int (*set_wol)(struct efx_nic *efx, u32 type);
1426	void (*resume_wol)(struct efx_nic *efx);
1427	void (*get_fec_stats)(struct efx_nic *efx,
1428			      struct ethtool_fec_stats *fec_stats);
1429	unsigned int (*check_caps)(const struct efx_nic *efx,
1430				   u8 flag,
1431				   u32 offset);
1432	int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
1433	int (*test_nvram)(struct efx_nic *efx);
1434	void (*mcdi_request)(struct efx_nic *efx,
1435			     const efx_dword_t *hdr, size_t hdr_len,
1436			     const efx_dword_t *sdu, size_t sdu_len);
1437	bool (*mcdi_poll_response)(struct efx_nic *efx);
1438	void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
1439				   size_t pdu_offset, size_t pdu_len);
1440	int (*mcdi_poll_reboot)(struct efx_nic *efx);
1441	void (*mcdi_reboot_detected)(struct efx_nic *efx);
1442	void (*irq_enable_master)(struct efx_nic *efx);
1443	int (*irq_test_generate)(struct efx_nic *efx);
1444	void (*irq_disable_non_ev)(struct efx_nic *efx);
1445	irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1446	irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1447	int (*tx_probe)(struct efx_tx_queue *tx_queue);
1448	void (*tx_init)(struct efx_tx_queue *tx_queue);
1449	void (*tx_remove)(struct efx_tx_queue *tx_queue);
1450	void (*tx_write)(struct efx_tx_queue *tx_queue);
1451	netdev_tx_t (*tx_enqueue)(struct efx_tx_queue *tx_queue, struct sk_buff *skb);
1452	unsigned int (*tx_limit_len)(struct efx_tx_queue *tx_queue,
1453				     dma_addr_t dma_addr, unsigned int len);
1454	int (*rx_push_rss_config)(struct efx_nic *efx, bool user,
1455				  const u32 *rx_indir_table, const u8 *key);
1456	int (*rx_pull_rss_config)(struct efx_nic *efx);
1457	int (*rx_push_rss_context_config)(struct efx_nic *efx,
1458					  struct efx_rss_context_priv *ctx,
1459					  const u32 *rx_indir_table,
1460					  const u8 *key, bool delete);
1461	int (*rx_pull_rss_context_config)(struct efx_nic *efx,
1462					  struct efx_rss_context *ctx);
1463	void (*rx_restore_rss_contexts)(struct efx_nic *efx);
1464	int (*rx_probe)(struct efx_rx_queue *rx_queue);
1465	void (*rx_init)(struct efx_rx_queue *rx_queue);
1466	void (*rx_remove)(struct efx_rx_queue *rx_queue);
1467	void (*rx_write)(struct efx_rx_queue *rx_queue);
1468	void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
1469	void (*rx_packet)(struct efx_channel *channel);
1470	bool (*rx_buf_hash_valid)(const u8 *prefix);
1471	int (*ev_probe)(struct efx_channel *channel);
1472	int (*ev_init)(struct efx_channel *channel);
1473	void (*ev_fini)(struct efx_channel *channel);
1474	void (*ev_remove)(struct efx_channel *channel);
1475	int (*ev_process)(struct efx_channel *channel, int quota);
1476	void (*ev_read_ack)(struct efx_channel *channel);
1477	void (*ev_test_generate)(struct efx_channel *channel);
1478	int (*filter_table_probe)(struct efx_nic *efx);
1479	void (*filter_table_restore)(struct efx_nic *efx);
1480	void (*filter_table_remove)(struct efx_nic *efx);
1481	void (*filter_update_rx_scatter)(struct efx_nic *efx);
1482	s32 (*filter_insert)(struct efx_nic *efx,
1483			     struct efx_filter_spec *spec, bool replace);
1484	int (*filter_remove_safe)(struct efx_nic *efx,
1485				  enum efx_filter_priority priority,
1486				  u32 filter_id);
1487	int (*filter_get_safe)(struct efx_nic *efx,
1488			       enum efx_filter_priority priority,
1489			       u32 filter_id, struct efx_filter_spec *);
1490	int (*filter_clear_rx)(struct efx_nic *efx,
1491			       enum efx_filter_priority priority);
1492	u32 (*filter_count_rx_used)(struct efx_nic *efx,
1493				    enum efx_filter_priority priority);
1494	u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
1495	s32 (*filter_get_rx_ids)(struct efx_nic *efx,
1496				 enum efx_filter_priority priority,
1497				 u32 *buf, u32 size);
1498#ifdef CONFIG_RFS_ACCEL
1499	bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
1500				      unsigned int index);
1501#endif
1502#ifdef CONFIG_SFC_MTD
1503	int (*mtd_probe)(struct efx_nic *efx);
1504	void (*mtd_rename)(struct efx_mtd_partition *part);
1505	int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1506			size_t *retlen, u8 *buffer);
1507	int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1508	int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1509			 size_t *retlen, const u8 *buffer);
1510	int (*mtd_sync)(struct mtd_info *mtd);
1511#endif
1512	void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
1513	int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp);
1514	int (*ptp_set_ts_config)(struct efx_nic *efx,
1515				 struct kernel_hwtstamp_config *init);
1516	int (*sriov_configure)(struct efx_nic *efx, int num_vfs);
1517	int (*vlan_rx_add_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1518	int (*vlan_rx_kill_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1519	int (*get_phys_port_id)(struct efx_nic *efx,
1520				struct netdev_phys_item_id *ppid);
1521	int (*sriov_init)(struct efx_nic *efx);
1522	void (*sriov_fini)(struct efx_nic *efx);
1523	bool (*sriov_wanted)(struct efx_nic *efx);
1524	int (*sriov_set_vf_mac)(struct efx_nic *efx, int vf_i, const u8 *mac);
 
 
1525	int (*sriov_set_vf_vlan)(struct efx_nic *efx, int vf_i, u16 vlan,
1526				 u8 qos);
1527	int (*sriov_set_vf_spoofchk)(struct efx_nic *efx, int vf_i,
1528				     bool spoofchk);
1529	int (*sriov_get_vf_config)(struct efx_nic *efx, int vf_i,
1530				   struct ifla_vf_info *ivi);
1531	int (*sriov_set_vf_link_state)(struct efx_nic *efx, int vf_i,
1532				       int link_state);
1533	int (*vswitching_probe)(struct efx_nic *efx);
1534	int (*vswitching_restore)(struct efx_nic *efx);
1535	void (*vswitching_remove)(struct efx_nic *efx);
1536	int (*get_mac_address)(struct efx_nic *efx, unsigned char *perm_addr);
1537	int (*set_mac_address)(struct efx_nic *efx);
1538	u32 (*tso_versions)(struct efx_nic *efx);
1539	int (*udp_tnl_push_ports)(struct efx_nic *efx);
1540	bool (*udp_tnl_has_port)(struct efx_nic *efx, __be16 port);
1541	size_t (*print_additional_fwver)(struct efx_nic *efx, char *buf,
1542					 size_t len);
1543	void (*sensor_event)(struct efx_nic *efx, efx_qword_t *ev);
1544	unsigned int (*rx_recycle_ring_size)(const struct efx_nic *efx);
1545
1546	int revision;
1547	unsigned int txd_ptr_tbl_base;
1548	unsigned int rxd_ptr_tbl_base;
1549	unsigned int buf_tbl_base;
1550	unsigned int evq_ptr_tbl_base;
1551	unsigned int evq_rptr_tbl_base;
1552	u64 max_dma_mask;
1553	unsigned int rx_prefix_size;
1554	unsigned int rx_hash_offset;
1555	unsigned int rx_ts_offset;
1556	unsigned int rx_buffer_padding;
1557	bool can_rx_scatter;
1558	bool always_rx_scatter;
1559	bool option_descriptors;
1560	unsigned int min_interrupt_mode;
1561	unsigned int timer_period_max;
1562	netdev_features_t offload_features;
1563	int mcdi_max_ver;
1564	unsigned int max_rx_ip_filters;
1565	u32 hwtstamp_filters;
1566	unsigned int rx_hash_key_size;
1567};
1568
1569/**************************************************************************
1570 *
1571 * Prototypes and inline functions
1572 *
1573 *************************************************************************/
1574
1575static inline struct efx_channel *
1576efx_get_channel(struct efx_nic *efx, unsigned index)
1577{
1578	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_channels);
1579	return efx->channel[index];
1580}
1581
1582/* Iterate over all used channels */
1583#define efx_for_each_channel(_channel, _efx)				\
1584	for (_channel = (_efx)->channel[0];				\
1585	     _channel;							\
1586	     _channel = (_channel->channel + 1 < (_efx)->n_channels) ?	\
1587		     (_efx)->channel[_channel->channel + 1] : NULL)
1588
1589/* Iterate over all used channels in reverse */
1590#define efx_for_each_channel_rev(_channel, _efx)			\
1591	for (_channel = (_efx)->channel[(_efx)->n_channels - 1];	\
1592	     _channel;							\
1593	     _channel = _channel->channel ?				\
1594		     (_efx)->channel[_channel->channel - 1] : NULL)
1595
1596static inline struct efx_channel *
1597efx_get_tx_channel(struct efx_nic *efx, unsigned int index)
1598{
1599	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_tx_channels);
1600	return efx->channel[efx->tx_channel_offset + index];
1601}
1602
 
 
 
 
 
 
 
 
1603static inline struct efx_channel *
1604efx_get_xdp_channel(struct efx_nic *efx, unsigned int index)
1605{
1606	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_xdp_channels);
1607	return efx->channel[efx->xdp_channel_offset + index];
1608}
1609
1610static inline bool efx_channel_is_xdp_tx(struct efx_channel *channel)
1611{
1612	return channel->channel - channel->efx->xdp_channel_offset <
1613	       channel->efx->n_xdp_channels;
1614}
1615
1616static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1617{
1618	return channel && channel->channel >= channel->efx->tx_channel_offset;
1619}
1620
1621static inline unsigned int efx_channel_num_tx_queues(struct efx_channel *channel)
1622{
1623	if (efx_channel_is_xdp_tx(channel))
1624		return channel->efx->xdp_tx_per_channel;
1625	return channel->efx->tx_queues_per_channel;
1626}
1627
1628static inline struct efx_tx_queue *
1629efx_channel_get_tx_queue(struct efx_channel *channel, unsigned int type)
1630{
1631	EFX_WARN_ON_ONCE_PARANOID(type >= EFX_TXQ_TYPES);
1632	return channel->tx_queue_by_type[type];
1633}
1634
1635static inline struct efx_tx_queue *
1636efx_get_tx_queue(struct efx_nic *efx, unsigned int index, unsigned int type)
1637{
1638	struct efx_channel *channel = efx_get_tx_channel(efx, index);
1639
1640	return efx_channel_get_tx_queue(channel, type);
1641}
1642
1643/* Iterate over all TX queues belonging to a channel */
1644#define efx_for_each_channel_tx_queue(_tx_queue, _channel)		\
1645	if (!efx_channel_has_tx_queues(_channel))			\
1646		;							\
1647	else								\
1648		for (_tx_queue = (_channel)->tx_queue;			\
1649		     _tx_queue < (_channel)->tx_queue +			\
1650				 efx_channel_num_tx_queues(_channel);		\
1651		     _tx_queue++)
1652
1653static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1654{
1655	return channel->rx_queue.core_index >= 0;
1656}
1657
1658static inline struct efx_rx_queue *
1659efx_channel_get_rx_queue(struct efx_channel *channel)
1660{
1661	EFX_WARN_ON_ONCE_PARANOID(!efx_channel_has_rx_queue(channel));
1662	return &channel->rx_queue;
1663}
1664
1665/* Iterate over all RX queues belonging to a channel */
1666#define efx_for_each_channel_rx_queue(_rx_queue, _channel)		\
1667	if (!efx_channel_has_rx_queue(_channel))			\
1668		;							\
1669	else								\
1670		for (_rx_queue = &(_channel)->rx_queue;			\
1671		     _rx_queue;						\
1672		     _rx_queue = NULL)
1673
1674static inline struct efx_channel *
1675efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1676{
1677	return container_of(rx_queue, struct efx_channel, rx_queue);
1678}
1679
1680static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1681{
1682	return efx_rx_queue_channel(rx_queue)->channel;
1683}
1684
1685/* Returns a pointer to the specified receive buffer in the RX
1686 * descriptor queue.
1687 */
1688static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1689						  unsigned int index)
1690{
1691	return &rx_queue->buffer[index];
1692}
1693
1694static inline struct efx_rx_buffer *
1695efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
1696{
1697	if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
1698		return efx_rx_buffer(rx_queue, 0);
1699	else
1700		return rx_buf + 1;
1701}
1702
1703/**
1704 * EFX_MAX_FRAME_LEN - calculate maximum frame length
1705 *
1706 * This calculates the maximum frame length that will be used for a
1707 * given MTU.  The frame length will be equal to the MTU plus a
1708 * constant amount of header space and padding.  This is the quantity
1709 * that the net driver will program into the MAC as the maximum frame
1710 * length.
1711 *
1712 * The 10G MAC requires 8-byte alignment on the frame
1713 * length, so we round up to the nearest 8.
1714 *
1715 * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1716 * XGMII cycle).  If the frame length reaches the maximum value in the
1717 * same cycle, the XMAC can miss the IPG altogether.  We work around
1718 * this by adding a further 16 bytes.
1719 */
1720#define EFX_FRAME_PAD	16
1721#define EFX_MAX_FRAME_LEN(mtu) \
1722	(ALIGN(((mtu) + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + EFX_FRAME_PAD), 8))
1723
1724static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
1725{
1726	return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
1727}
1728static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
1729{
1730	skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1731}
1732
1733/* Get the max fill level of the TX queues on this channel */
1734static inline unsigned int
1735efx_channel_tx_fill_level(struct efx_channel *channel)
1736{
1737	struct efx_tx_queue *tx_queue;
1738	unsigned int fill_level = 0;
1739
 
 
 
 
1740	efx_for_each_channel_tx_queue(tx_queue, channel)
1741		fill_level = max(fill_level,
1742				 tx_queue->insert_count - tx_queue->read_count);
1743
1744	return fill_level;
1745}
1746
1747/* Conservative approximation of efx_channel_tx_fill_level using cached value */
1748static inline unsigned int
1749efx_channel_tx_old_fill_level(struct efx_channel *channel)
1750{
1751	struct efx_tx_queue *tx_queue;
1752	unsigned int fill_level = 0;
1753
1754	efx_for_each_channel_tx_queue(tx_queue, channel)
1755		fill_level = max(fill_level,
1756				 tx_queue->insert_count - tx_queue->old_read_count);
1757
1758	return fill_level;
1759}
1760
1761/* Get all supported features.
1762 * If a feature is not fixed, it is present in hw_features.
1763 * If a feature is fixed, it does not present in hw_features, but
1764 * always in features.
1765 */
1766static inline netdev_features_t efx_supported_features(const struct efx_nic *efx)
1767{
1768	const struct net_device *net_dev = efx->net_dev;
1769
1770	return net_dev->features | net_dev->hw_features;
1771}
1772
1773/* Get the current TX queue insert index. */
1774static inline unsigned int
1775efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
1776{
1777	return tx_queue->insert_count & tx_queue->ptr_mask;
1778}
1779
1780/* Get a TX buffer. */
1781static inline struct efx_tx_buffer *
1782__efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1783{
1784	return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
1785}
1786
1787/* Get a TX buffer, checking it's not currently in use. */
1788static inline struct efx_tx_buffer *
1789efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1790{
1791	struct efx_tx_buffer *buffer =
1792		__efx_tx_queue_get_insert_buffer(tx_queue);
1793
1794	EFX_WARN_ON_ONCE_PARANOID(buffer->len);
1795	EFX_WARN_ON_ONCE_PARANOID(buffer->flags);
1796	EFX_WARN_ON_ONCE_PARANOID(buffer->unmap_len);
1797
1798	return buffer;
1799}
1800
1801#endif /* EFX_NET_DRIVER_H */
v5.9
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2005-2006 Fen Systems Ltd.
   5 * Copyright 2005-2013 Solarflare Communications Inc.
   6 */
   7
   8/* Common definitions for all Efx net driver code */
   9
  10#ifndef EFX_NET_DRIVER_H
  11#define EFX_NET_DRIVER_H
  12
  13#include <linux/netdevice.h>
  14#include <linux/etherdevice.h>
  15#include <linux/ethtool.h>
  16#include <linux/if_vlan.h>
  17#include <linux/timer.h>
  18#include <linux/mdio.h>
  19#include <linux/list.h>
  20#include <linux/pci.h>
  21#include <linux/device.h>
  22#include <linux/highmem.h>
  23#include <linux/workqueue.h>
  24#include <linux/mutex.h>
  25#include <linux/rwsem.h>
  26#include <linux/vmalloc.h>
  27#include <linux/mtd/mtd.h>
  28#include <net/busy_poll.h>
  29#include <net/xdp.h>
 
  30
  31#include "enum.h"
  32#include "bitfield.h"
  33#include "filter.h"
  34
  35/**************************************************************************
  36 *
  37 * Build definitions
  38 *
  39 **************************************************************************/
  40
  41#define EFX_DRIVER_VERSION	"4.1"
  42
  43#ifdef DEBUG
  44#define EFX_WARN_ON_ONCE_PARANOID(x) WARN_ON_ONCE(x)
  45#define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
  46#else
  47#define EFX_WARN_ON_ONCE_PARANOID(x) do {} while (0)
  48#define EFX_WARN_ON_PARANOID(x) do {} while (0)
  49#endif
  50
  51/**************************************************************************
  52 *
  53 * Efx data structures
  54 *
  55 **************************************************************************/
  56
  57#define EFX_MAX_CHANNELS 32U
  58#define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
  59#define EFX_EXTRA_CHANNEL_IOV	0
  60#define EFX_EXTRA_CHANNEL_PTP	1
  61#define EFX_MAX_EXTRA_CHANNELS	2U
 
  62
  63/* Checksum generation is a per-queue option in hardware, so each
  64 * queue visible to the networking core is backed by two hardware TX
  65 * queues. */
  66#define EFX_MAX_TX_TC		2
  67#define EFX_MAX_CORE_TX_QUEUES	(EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
  68#define EFX_TXQ_TYPE_OFFLOAD	1	/* flag */
  69#define EFX_TXQ_TYPE_HIGHPRI	2	/* flag */
  70#define EFX_TXQ_TYPES		4
  71#define EFX_MAX_TX_QUEUES	(EFX_TXQ_TYPES * EFX_MAX_CHANNELS)
 
  72
  73/* Maximum possible MTU the driver supports */
  74#define EFX_MAX_MTU (9 * 1024)
  75
  76/* Minimum MTU, from RFC791 (IP) */
  77#define EFX_MIN_MTU 68
  78
 
 
 
  79/* Size of an RX scatter buffer.  Small enough to pack 2 into a 4K page,
  80 * and should be a multiple of the cache line size.
  81 */
  82#define EFX_RX_USR_BUF_SIZE	(2048 - 256)
  83
  84/* If possible, we should ensure cache line alignment at start and end
  85 * of every buffer.  Otherwise, we just need to ensure 4-byte
  86 * alignment of the network header.
  87 */
  88#if NET_IP_ALIGN == 0
  89#define EFX_RX_BUF_ALIGNMENT	L1_CACHE_BYTES
  90#else
  91#define EFX_RX_BUF_ALIGNMENT	4
  92#endif
  93
  94/* Non-standard XDP_PACKET_HEADROOM and tailroom to satisfy XDP_REDIRECT and
  95 * still fit two standard MTU size packets into a single 4K page.
  96 */
  97#define EFX_XDP_HEADROOM	128
  98#define EFX_XDP_TAILROOM	SKB_DATA_ALIGN(sizeof(struct skb_shared_info))
  99
 100/* Forward declare Precision Time Protocol (PTP) support structure. */
 101struct efx_ptp_data;
 102struct hwtstamp_config;
 103
 104struct efx_self_tests;
 105
 106/**
 107 * struct efx_buffer - A general-purpose DMA buffer
 108 * @addr: host base address of the buffer
 109 * @dma_addr: DMA base address of the buffer
 110 * @len: Buffer length, in bytes
 111 *
 112 * The NIC uses these buffers for its interrupt status registers and
 113 * MAC stats dumps.
 114 */
 115struct efx_buffer {
 116	void *addr;
 117	dma_addr_t dma_addr;
 118	unsigned int len;
 119};
 120
 121/**
 122 * struct efx_special_buffer - DMA buffer entered into buffer table
 123 * @buf: Standard &struct efx_buffer
 124 * @index: Buffer index within controller;s buffer table
 125 * @entries: Number of buffer table entries
 126 *
 127 * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE.
 128 * Event and descriptor rings are addressed via one or more buffer
 129 * table entries (and so can be physically non-contiguous, although we
 130 * currently do not take advantage of that).  On Falcon and Siena we
 131 * have to take care of allocating and initialising the entries
 132 * ourselves.  On later hardware this is managed by the firmware and
 133 * @index and @entries are left as 0.
 134 */
 135struct efx_special_buffer {
 136	struct efx_buffer buf;
 137	unsigned int index;
 138	unsigned int entries;
 139};
 140
 141/**
 142 * struct efx_tx_buffer - buffer state for a TX descriptor
 143 * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
 144 *	freed when descriptor completes
 145 * @xdpf: When @flags & %EFX_TX_BUF_XDP, the XDP frame information; its @data
 146 *	member is the associated buffer to drop a page reference on.
 147 * @option: When @flags & %EFX_TX_BUF_OPTION, an EF10-specific option
 148 *	descriptor.
 149 * @dma_addr: DMA address of the fragment.
 150 * @flags: Flags for allocation and DMA mapping type
 151 * @len: Length of this fragment.
 152 *	This field is zero when the queue slot is empty.
 153 * @unmap_len: Length of this fragment to unmap
 154 * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
 155 * Only valid if @unmap_len != 0.
 156 */
 157struct efx_tx_buffer {
 158	union {
 159		const struct sk_buff *skb;
 160		struct xdp_frame *xdpf;
 161	};
 162	union {
 163		efx_qword_t option;    /* EF10 */
 164		dma_addr_t dma_addr;
 165	};
 166	unsigned short flags;
 167	unsigned short len;
 168	unsigned short unmap_len;
 169	unsigned short dma_offset;
 170};
 171#define EFX_TX_BUF_CONT		1	/* not last descriptor of packet */
 172#define EFX_TX_BUF_SKB		2	/* buffer is last part of skb */
 173#define EFX_TX_BUF_MAP_SINGLE	8	/* buffer was mapped with dma_map_single() */
 174#define EFX_TX_BUF_OPTION	0x10	/* empty buffer for option descriptor */
 175#define EFX_TX_BUF_XDP		0x20	/* buffer was sent with XDP */
 176#define EFX_TX_BUF_TSO_V3	0x40	/* empty buffer for a TSO_V3 descriptor */
 
 177
 178/**
 179 * struct efx_tx_queue - An Efx TX queue
 180 *
 181 * This is a ring buffer of TX fragments.
 182 * Since the TX completion path always executes on the same
 183 * CPU and the xmit path can operate on different CPUs,
 184 * performance is increased by ensuring that the completion
 185 * path and the xmit path operate on different cache lines.
 186 * This is particularly important if the xmit path is always
 187 * executing on one CPU which is different from the completion
 188 * path.  There is also a cache line for members which are
 189 * read but not written on the fast path.
 190 *
 191 * @efx: The associated Efx NIC
 192 * @queue: DMA queue number
 193 * @label: Label for TX completion events.
 194 *	Is our index within @channel->tx_queue array.
 
 195 * @tso_version: Version of TSO in use for this queue.
 
 196 * @channel: The associated channel
 197 * @core_txq: The networking core TX queue structure
 198 * @buffer: The software buffer ring
 199 * @cb_page: Array of pages of copy buffers.  Carved up according to
 200 *	%EFX_TX_CB_ORDER into %EFX_TX_CB_SIZE-sized chunks.
 201 * @txd: The hardware descriptor ring
 202 * @ptr_mask: The size of the ring minus 1.
 203 * @piobuf: PIO buffer region for this TX queue (shared with its partner).
 204 *	Size of the region is efx_piobuf_size.
 205 * @piobuf_offset: Buffer offset to be specified in PIO descriptors
 206 * @initialised: Has hardware queue been initialised?
 207 * @timestamping: Is timestamping enabled for this channel?
 208 * @xdp_tx: Is this an XDP tx queue?
 209 * @handle_tso: TSO xmit preparation handler.  Sets up the TSO metadata and
 210 *	may also map tx data, depending on the nature of the TSO implementation.
 
 
 
 
 211 * @read_count: Current read pointer.
 212 *	This is the number of buffers that have been removed from both rings.
 213 * @old_write_count: The value of @write_count when last checked.
 214 *	This is here for performance reasons.  The xmit path will
 215 *	only get the up-to-date value of @write_count if this
 216 *	variable indicates that the queue is empty.  This is to
 217 *	avoid cache-line ping-pong between the xmit path and the
 218 *	completion path.
 219 * @merge_events: Number of TX merged completion events
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 220 * @completed_timestamp_major: Top part of the most recent tx timestamp.
 221 * @completed_timestamp_minor: Low part of the most recent tx timestamp.
 222 * @insert_count: Current insert pointer
 223 *	This is the number of buffers that have been added to the
 224 *	software ring.
 225 * @write_count: Current write pointer
 226 *	This is the number of buffers that have been added to the
 227 *	hardware ring.
 228 * @packet_write_count: Completable write pointer
 229 *	This is the write pointer of the last packet written.
 230 *	Normally this will equal @write_count, but as option descriptors
 231 *	don't produce completion events, they won't update this.
 232 *	Filled in iff @efx->type->option_descriptors; only used for PIO.
 233 *	Thus, this is written and used on EF10, and neither on farch.
 234 * @old_read_count: The value of read_count when last checked.
 235 *	This is here for performance reasons.  The xmit path will
 236 *	only get the up-to-date value of read_count if this
 237 *	variable indicates that the queue is full.  This is to
 238 *	avoid cache-line ping-pong between the xmit path and the
 239 *	completion path.
 240 * @tso_bursts: Number of times TSO xmit invoked by kernel
 241 * @tso_long_headers: Number of packets with headers too long for standard
 242 *	blocks
 243 * @tso_packets: Number of packets via the TSO xmit path
 244 * @tso_fallbacks: Number of times TSO fallback used
 245 * @pushes: Number of times the TX push feature has been used
 246 * @pio_packets: Number of times the TX PIO feature has been used
 247 * @xmit_more_available: Are any packets waiting to be pushed to the NIC
 248 * @cb_packets: Number of times the TX copybreak feature has been used
 249 * @notify_count: Count of notified descriptors to the NIC
 
 250 * @empty_read_count: If the completion path has seen the queue as empty
 251 *	and the transmission path has not yet checked this, the value of
 252 *	@read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
 253 */
 254struct efx_tx_queue {
 255	/* Members which don't change on the fast path */
 256	struct efx_nic *efx ____cacheline_aligned_in_smp;
 257	unsigned int queue;
 258	unsigned int label;
 
 259	unsigned int tso_version;
 
 260	struct efx_channel *channel;
 261	struct netdev_queue *core_txq;
 262	struct efx_tx_buffer *buffer;
 263	struct efx_buffer *cb_page;
 264	struct efx_special_buffer txd;
 265	unsigned int ptr_mask;
 266	void __iomem *piobuf;
 267	unsigned int piobuf_offset;
 268	bool initialised;
 269	bool timestamping;
 270	bool xdp_tx;
 271
 272	/* Function pointers used in the fast path. */
 273	int (*handle_tso)(struct efx_tx_queue*, struct sk_buff*, bool *);
 
 274
 275	/* Members used mainly on the completion path */
 276	unsigned int read_count ____cacheline_aligned_in_smp;
 277	unsigned int old_write_count;
 278	unsigned int merge_events;
 279	unsigned int bytes_compl;
 280	unsigned int pkts_compl;
 
 
 
 
 281	u32 completed_timestamp_major;
 282	u32 completed_timestamp_minor;
 283
 284	/* Members used only on the xmit path */
 285	unsigned int insert_count ____cacheline_aligned_in_smp;
 286	unsigned int write_count;
 287	unsigned int packet_write_count;
 288	unsigned int old_read_count;
 289	unsigned int tso_bursts;
 290	unsigned int tso_long_headers;
 291	unsigned int tso_packets;
 292	unsigned int tso_fallbacks;
 293	unsigned int pushes;
 294	unsigned int pio_packets;
 295	bool xmit_more_available;
 296	unsigned int cb_packets;
 297	unsigned int notify_count;
 298	/* Statistics to supplement MAC stats */
 299	unsigned long tx_packets;
 300
 301	/* Members shared between paths and sometimes updated */
 302	unsigned int empty_read_count ____cacheline_aligned_in_smp;
 303#define EFX_EMPTY_COUNT_VALID 0x80000000
 304	atomic_t flush_outstanding;
 305};
 306
 307#define EFX_TX_CB_ORDER	7
 308#define EFX_TX_CB_SIZE	(1 << EFX_TX_CB_ORDER) - NET_IP_ALIGN
 309
 310/**
 311 * struct efx_rx_buffer - An Efx RX data buffer
 312 * @dma_addr: DMA base address of the buffer
 313 * @page: The associated page buffer.
 314 *	Will be %NULL if the buffer slot is currently free.
 315 * @page_offset: If pending: offset in @page of DMA base address.
 316 *	If completed: offset in @page of Ethernet header.
 317 * @len: If pending: length for DMA descriptor.
 318 *	If completed: received length, excluding hash prefix.
 319 * @flags: Flags for buffer and packet state.  These are only set on the
 320 *	first buffer of a scattered packet.
 321 */
 322struct efx_rx_buffer {
 323	dma_addr_t dma_addr;
 324	struct page *page;
 325	u16 page_offset;
 326	u16 len;
 327	u16 flags;
 328};
 329#define EFX_RX_BUF_LAST_IN_PAGE	0x0001
 330#define EFX_RX_PKT_CSUMMED	0x0002
 331#define EFX_RX_PKT_DISCARD	0x0004
 332#define EFX_RX_PKT_TCP		0x0040
 333#define EFX_RX_PKT_PREFIX_LEN	0x0080	/* length is in prefix only */
 334#define EFX_RX_PKT_CSUM_LEVEL	0x0200
 335
 336/**
 337 * struct efx_rx_page_state - Page-based rx buffer state
 338 *
 339 * Inserted at the start of every page allocated for receive buffers.
 340 * Used to facilitate sharing dma mappings between recycled rx buffers
 341 * and those passed up to the kernel.
 342 *
 343 * @dma_addr: The dma address of this page.
 344 */
 345struct efx_rx_page_state {
 346	dma_addr_t dma_addr;
 347
 348	unsigned int __pad[] ____cacheline_aligned;
 349};
 350
 351/**
 352 * struct efx_rx_queue - An Efx RX queue
 353 * @efx: The associated Efx NIC
 354 * @core_index:  Index of network core RX queue.  Will be >= 0 iff this
 355 *	is associated with a real RX queue.
 356 * @buffer: The software buffer ring
 357 * @rxd: The hardware descriptor ring
 358 * @ptr_mask: The size of the ring minus 1.
 359 * @refill_enabled: Enable refill whenever fill level is low
 360 * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
 361 *	@rxq_flush_pending.
 
 
 
 362 * @added_count: Number of buffers added to the receive queue.
 363 * @notified_count: Number of buffers given to NIC (<= @added_count).
 
 364 * @removed_count: Number of buffers removed from the receive queue.
 365 * @scatter_n: Used by NIC specific receive code.
 366 * @scatter_len: Used by NIC specific receive code.
 367 * @page_ring: The ring to store DMA mapped pages for reuse.
 368 * @page_add: Counter to calculate the write pointer for the recycle ring.
 369 * @page_remove: Counter to calculate the read pointer for the recycle ring.
 370 * @page_recycle_count: The number of pages that have been recycled.
 371 * @page_recycle_failed: The number of pages that couldn't be recycled because
 372 *      the kernel still held a reference to them.
 373 * @page_recycle_full: The number of pages that were released because the
 374 *      recycle ring was full.
 375 * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
 376 * @max_fill: RX descriptor maximum fill level (<= ring size)
 377 * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
 378 *	(<= @max_fill)
 379 * @min_fill: RX descriptor minimum non-zero fill level.
 380 *	This records the minimum fill level observed when a ring
 381 *	refill was triggered.
 382 * @recycle_count: RX buffer recycle counter.
 383 * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
 
 
 
 
 
 384 * @xdp_rxq_info: XDP specific RX queue information.
 385 * @xdp_rxq_info_valid: Is xdp_rxq_info valid data?.
 386 */
 387struct efx_rx_queue {
 388	struct efx_nic *efx;
 389	int core_index;
 390	struct efx_rx_buffer *buffer;
 391	struct efx_special_buffer rxd;
 392	unsigned int ptr_mask;
 393	bool refill_enabled;
 394	bool flush_pending;
 
 395
 396	unsigned int added_count;
 397	unsigned int notified_count;
 
 398	unsigned int removed_count;
 399	unsigned int scatter_n;
 400	unsigned int scatter_len;
 401	struct page **page_ring;
 402	unsigned int page_add;
 403	unsigned int page_remove;
 404	unsigned int page_recycle_count;
 405	unsigned int page_recycle_failed;
 406	unsigned int page_recycle_full;
 407	unsigned int page_ptr_mask;
 408	unsigned int max_fill;
 409	unsigned int fast_fill_trigger;
 410	unsigned int min_fill;
 411	unsigned int min_overfill;
 412	unsigned int recycle_count;
 413	struct timer_list slow_fill;
 414	unsigned int slow_fill_count;
 
 415	/* Statistics to supplement MAC stats */
 416	unsigned long rx_packets;
 
 
 
 417	struct xdp_rxq_info xdp_rxq_info;
 418	bool xdp_rxq_info_valid;
 419};
 420
 421enum efx_sync_events_state {
 422	SYNC_EVENTS_DISABLED = 0,
 423	SYNC_EVENTS_QUIESCENT,
 424	SYNC_EVENTS_REQUESTED,
 425	SYNC_EVENTS_VALID,
 426};
 427
 428/**
 429 * struct efx_channel - An Efx channel
 430 *
 431 * A channel comprises an event queue, at least one TX queue, at least
 432 * one RX queue, and an associated tasklet for processing the event
 433 * queue.
 434 *
 435 * @efx: Associated Efx NIC
 436 * @channel: Channel instance number
 437 * @type: Channel type definition
 438 * @eventq_init: Event queue initialised flag
 439 * @enabled: Channel enabled indicator
 440 * @irq: IRQ number (MSI and MSI-X only)
 441 * @irq_moderation_us: IRQ moderation value (in microseconds)
 442 * @napi_dev: Net device used with NAPI
 443 * @napi_str: NAPI control structure
 444 * @state: state for NAPI vs busy polling
 445 * @state_lock: lock protecting @state
 446 * @eventq: Event queue buffer
 447 * @eventq_mask: Event queue pointer mask
 448 * @eventq_read_ptr: Event queue read pointer
 449 * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
 450 * @irq_count: Number of IRQs since last adaptive moderation decision
 451 * @irq_mod_score: IRQ moderation score
 452 * @rfs_filter_count: number of accelerated RFS filters currently in place;
 453 *	equals the count of @rps_flow_id slots filled
 454 * @rfs_last_expiry: value of jiffies last time some accelerated RFS filters
 455 *	were checked for expiry
 456 * @rfs_expire_index: next accelerated RFS filter ID to check for expiry
 457 * @n_rfs_succeeded: number of successful accelerated RFS filter insertions
 458 * @n_rfs_failed; number of failed accelerated RFS filter insertions
 459 * @filter_work: Work item for efx_filter_rfs_expire()
 460 * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
 461 *      indexed by filter ID
 462 * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
 463 * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
 464 * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
 465 * @n_rx_mcast_mismatch: Count of unmatched multicast frames
 466 * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
 467 * @n_rx_overlength: Count of RX_OVERLENGTH errors
 468 * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
 469 * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
 470 *	lack of descriptors
 471 * @n_rx_merge_events: Number of RX merged completion events
 472 * @n_rx_merge_packets: Number of RX packets completed by merged events
 473 * @n_rx_xdp_drops: Count of RX packets intentionally dropped due to XDP
 474 * @n_rx_xdp_bad_drops: Count of RX packets dropped due to XDP errors
 475 * @n_rx_xdp_tx: Count of RX packets retransmitted due to XDP
 476 * @n_rx_xdp_redirect: Count of RX packets redirected to a different NIC by XDP
 
 
 
 
 
 
 477 * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
 478 *	__efx_rx_packet(), or zero if there is none
 479 * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
 480 *	by __efx_rx_packet(), if @rx_pkt_n_frags != 0
 481 * @rx_list: list of SKBs from current RX, awaiting processing
 482 * @rx_queue: RX queue for this channel
 483 * @tx_queue: TX queues for this channel
 
 484 * @sync_events_state: Current state of sync events on this channel
 485 * @sync_timestamp_major: Major part of the last ptp sync event
 486 * @sync_timestamp_minor: Minor part of the last ptp sync event
 487 */
 488struct efx_channel {
 489	struct efx_nic *efx;
 490	int channel;
 491	const struct efx_channel_type *type;
 492	bool eventq_init;
 493	bool enabled;
 494	int irq;
 495	unsigned int irq_moderation_us;
 496	struct net_device *napi_dev;
 497	struct napi_struct napi_str;
 498#ifdef CONFIG_NET_RX_BUSY_POLL
 499	unsigned long busy_poll_state;
 500#endif
 501	struct efx_special_buffer eventq;
 502	unsigned int eventq_mask;
 503	unsigned int eventq_read_ptr;
 504	int event_test_cpu;
 505
 506	unsigned int irq_count;
 507	unsigned int irq_mod_score;
 508#ifdef CONFIG_RFS_ACCEL
 509	unsigned int rfs_filter_count;
 510	unsigned int rfs_last_expiry;
 511	unsigned int rfs_expire_index;
 512	unsigned int n_rfs_succeeded;
 513	unsigned int n_rfs_failed;
 514	struct delayed_work filter_work;
 515#define RPS_FLOW_ID_INVALID 0xFFFFFFFF
 516	u32 *rps_flow_id;
 517#endif
 518
 519	unsigned int n_rx_tobe_disc;
 520	unsigned int n_rx_ip_hdr_chksum_err;
 521	unsigned int n_rx_tcp_udp_chksum_err;
 522	unsigned int n_rx_outer_ip_hdr_chksum_err;
 523	unsigned int n_rx_outer_tcp_udp_chksum_err;
 524	unsigned int n_rx_inner_ip_hdr_chksum_err;
 525	unsigned int n_rx_inner_tcp_udp_chksum_err;
 526	unsigned int n_rx_eth_crc_err;
 527	unsigned int n_rx_mcast_mismatch;
 528	unsigned int n_rx_frm_trunc;
 529	unsigned int n_rx_overlength;
 530	unsigned int n_skbuff_leaks;
 531	unsigned int n_rx_nodesc_trunc;
 532	unsigned int n_rx_merge_events;
 533	unsigned int n_rx_merge_packets;
 534	unsigned int n_rx_xdp_drops;
 535	unsigned int n_rx_xdp_bad_drops;
 536	unsigned int n_rx_xdp_tx;
 537	unsigned int n_rx_xdp_redirect;
 
 
 
 
 538
 539	unsigned int rx_pkt_n_frags;
 540	unsigned int rx_pkt_index;
 541
 542	struct list_head *rx_list;
 543
 544	struct efx_rx_queue rx_queue;
 545	struct efx_tx_queue tx_queue[EFX_TXQ_TYPES];
 
 546
 547	enum efx_sync_events_state sync_events_state;
 548	u32 sync_timestamp_major;
 549	u32 sync_timestamp_minor;
 550};
 551
 552/**
 553 * struct efx_msi_context - Context for each MSI
 554 * @efx: The associated NIC
 555 * @index: Index of the channel/IRQ
 556 * @name: Name of the channel/IRQ
 557 *
 558 * Unlike &struct efx_channel, this is never reallocated and is always
 559 * safe for the IRQ handler to access.
 560 */
 561struct efx_msi_context {
 562	struct efx_nic *efx;
 563	unsigned int index;
 564	char name[IFNAMSIZ + 6];
 565};
 566
 567/**
 568 * struct efx_channel_type - distinguishes traffic and extra channels
 569 * @handle_no_channel: Handle failure to allocate an extra channel
 570 * @pre_probe: Set up extra state prior to initialisation
 
 
 571 * @post_remove: Tear down extra state after finalisation, if allocated.
 572 *	May be called on channels that have not been probed.
 573 * @get_name: Generate the channel's name (used for its IRQ handler)
 574 * @copy: Copy the channel state prior to reallocation.  May be %NULL if
 575 *	reallocation is not supported.
 576 * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
 
 577 * @want_txqs: Determine whether this channel should have TX queues
 578 *	created.  If %NULL, TX queues are not created.
 579 * @keep_eventq: Flag for whether event queue should be kept initialised
 580 *	while the device is stopped
 581 * @want_pio: Flag for whether PIO buffers should be linked to this
 582 *	channel's TX queues.
 583 */
 584struct efx_channel_type {
 585	void (*handle_no_channel)(struct efx_nic *);
 586	int (*pre_probe)(struct efx_channel *);
 
 
 587	void (*post_remove)(struct efx_channel *);
 588	void (*get_name)(struct efx_channel *, char *buf, size_t len);
 589	struct efx_channel *(*copy)(const struct efx_channel *);
 590	bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
 
 591	bool (*want_txqs)(struct efx_channel *);
 592	bool keep_eventq;
 593	bool want_pio;
 594};
 595
 596enum efx_led_mode {
 597	EFX_LED_OFF	= 0,
 598	EFX_LED_ON	= 1,
 599	EFX_LED_DEFAULT	= 2
 600};
 601
 602#define STRING_TABLE_LOOKUP(val, member) \
 603	((val) < member ## _max) ? member ## _names[val] : "(invalid)"
 604
 605extern const char *const efx_loopback_mode_names[];
 606extern const unsigned int efx_loopback_mode_max;
 607#define LOOPBACK_MODE(efx) \
 608	STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
 609
 610extern const char *const efx_reset_type_names[];
 611extern const unsigned int efx_reset_type_max;
 612#define RESET_TYPE(type) \
 613	STRING_TABLE_LOOKUP(type, efx_reset_type)
 614
 615enum efx_int_mode {
 616	/* Be careful if altering to correct macro below */
 617	EFX_INT_MODE_MSIX = 0,
 618	EFX_INT_MODE_MSI = 1,
 619	EFX_INT_MODE_LEGACY = 2,
 620	EFX_INT_MODE_MAX	/* Insert any new items before this */
 621};
 622#define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
 623
 624enum nic_state {
 625	STATE_UNINIT = 0,	/* device being probed/removed or is frozen */
 626	STATE_READY = 1,	/* hardware ready and netdev registered */
 627	STATE_DISABLED = 2,	/* device disabled due to hardware errors */
 628	STATE_RECOVERY = 3,	/* device recovering from PCI error */
 
 
 
 
 629};
 630
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 631/* Forward declaration */
 632struct efx_nic;
 633
 634/* Pseudo bit-mask flow control field */
 635#define EFX_FC_RX	FLOW_CTRL_RX
 636#define EFX_FC_TX	FLOW_CTRL_TX
 637#define EFX_FC_AUTO	4
 638
 639/**
 640 * struct efx_link_state - Current state of the link
 641 * @up: Link is up
 642 * @fd: Link is full-duplex
 643 * @fc: Actual flow control flags
 644 * @speed: Link speed (Mbps)
 645 */
 646struct efx_link_state {
 647	bool up;
 648	bool fd;
 649	u8 fc;
 650	unsigned int speed;
 651};
 652
 653static inline bool efx_link_state_equal(const struct efx_link_state *left,
 654					const struct efx_link_state *right)
 655{
 656	return left->up == right->up && left->fd == right->fd &&
 657		left->fc == right->fc && left->speed == right->speed;
 658}
 659
 660/**
 661 * struct efx_phy_operations - Efx PHY operations table
 662 * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds,
 663 *	efx->loopback_modes.
 664 * @init: Initialise PHY
 665 * @fini: Shut down PHY
 666 * @reconfigure: Reconfigure PHY (e.g. for new link parameters)
 667 * @poll: Update @link_state and report whether it changed.
 668 *	Serialised by the mac_lock.
 669 * @get_link_ksettings: Get ethtool settings. Serialised by the mac_lock.
 670 * @set_link_ksettings: Set ethtool settings. Serialised by the mac_lock.
 671 * @get_fecparam: Get Forward Error Correction settings. Serialised by mac_lock.
 672 * @set_fecparam: Set Forward Error Correction settings. Serialised by mac_lock.
 673 * @set_npage_adv: Set abilities advertised in (Extended) Next Page
 674 *	(only needed where AN bit is set in mmds)
 675 * @test_alive: Test that PHY is 'alive' (online)
 676 * @test_name: Get the name of a PHY-specific test/result
 677 * @run_tests: Run tests and record results as appropriate (offline).
 678 *	Flags are the ethtool tests flags.
 679 */
 680struct efx_phy_operations {
 681	int (*probe) (struct efx_nic *efx);
 682	int (*init) (struct efx_nic *efx);
 683	void (*fini) (struct efx_nic *efx);
 684	void (*remove) (struct efx_nic *efx);
 685	int (*reconfigure) (struct efx_nic *efx);
 686	bool (*poll) (struct efx_nic *efx);
 687	void (*get_link_ksettings)(struct efx_nic *efx,
 688				   struct ethtool_link_ksettings *cmd);
 689	int (*set_link_ksettings)(struct efx_nic *efx,
 690				  const struct ethtool_link_ksettings *cmd);
 691	int (*get_fecparam)(struct efx_nic *efx, struct ethtool_fecparam *fec);
 692	int (*set_fecparam)(struct efx_nic *efx,
 693			    const struct ethtool_fecparam *fec);
 694	void (*set_npage_adv) (struct efx_nic *efx, u32);
 695	int (*test_alive) (struct efx_nic *efx);
 696	const char *(*test_name) (struct efx_nic *efx, unsigned int index);
 697	int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags);
 698	int (*get_module_eeprom) (struct efx_nic *efx,
 699			       struct ethtool_eeprom *ee,
 700			       u8 *data);
 701	int (*get_module_info) (struct efx_nic *efx,
 702				struct ethtool_modinfo *modinfo);
 703};
 704
 705/**
 706 * enum efx_phy_mode - PHY operating mode flags
 707 * @PHY_MODE_NORMAL: on and should pass traffic
 708 * @PHY_MODE_TX_DISABLED: on with TX disabled
 709 * @PHY_MODE_LOW_POWER: set to low power through MDIO
 710 * @PHY_MODE_OFF: switched off through external control
 711 * @PHY_MODE_SPECIAL: on but will not pass traffic
 712 */
 713enum efx_phy_mode {
 714	PHY_MODE_NORMAL		= 0,
 715	PHY_MODE_TX_DISABLED	= 1,
 716	PHY_MODE_LOW_POWER	= 2,
 717	PHY_MODE_OFF		= 4,
 718	PHY_MODE_SPECIAL	= 8,
 719};
 720
 721static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
 722{
 723	return !!(mode & ~PHY_MODE_TX_DISABLED);
 724}
 725
 726/**
 727 * struct efx_hw_stat_desc - Description of a hardware statistic
 728 * @name: Name of the statistic as visible through ethtool, or %NULL if
 729 *	it should not be exposed
 730 * @dma_width: Width in bits (0 for non-DMA statistics)
 731 * @offset: Offset within stats (ignored for non-DMA statistics)
 732 */
 733struct efx_hw_stat_desc {
 734	const char *name;
 735	u16 dma_width;
 736	u16 offset;
 737};
 738
 739/* Number of bits used in a multicast filter hash address */
 740#define EFX_MCAST_HASH_BITS 8
 741
 742/* Number of (single-bit) entries in a multicast filter hash */
 743#define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
 744
 745/* An Efx multicast filter hash */
 746union efx_multicast_hash {
 747	u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
 748	efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
 749};
 750
 751struct vfdi_status;
 752
 753/* The reserved RSS context value */
 754#define EFX_MCDI_RSS_CONTEXT_INVALID	0xffffffff
 755/**
 756 * struct efx_rss_context - A user-defined RSS context for filtering
 757 * @list: node of linked list on which this struct is stored
 758 * @context_id: the RSS_CONTEXT_ID returned by MC firmware, or
 759 *	%EFX_MCDI_RSS_CONTEXT_INVALID if this context is not present on the NIC.
 760 *	For Siena, 0 if RSS is active, else %EFX_MCDI_RSS_CONTEXT_INVALID.
 761 * @user_id: the rss_context ID exposed to userspace over ethtool.
 762 * @rx_hash_udp_4tuple: UDP 4-tuple hashing enabled
 
 
 
 
 
 
 
 
 
 763 * @rx_hash_key: Toeplitz hash key for this RSS context
 764 * @indir_table: Indirection table for this RSS context
 765 */
 766struct efx_rss_context {
 767	struct list_head list;
 768	u32 context_id;
 769	u32 user_id;
 770	bool rx_hash_udp_4tuple;
 771	u8 rx_hash_key[40];
 772	u32 rx_indir_table[128];
 773};
 774
 775#ifdef CONFIG_RFS_ACCEL
 776/* Order of these is important, since filter_id >= %EFX_ARFS_FILTER_ID_PENDING
 777 * is used to test if filter does or will exist.
 778 */
 779#define EFX_ARFS_FILTER_ID_PENDING	-1
 780#define EFX_ARFS_FILTER_ID_ERROR	-2
 781#define EFX_ARFS_FILTER_ID_REMOVING	-3
 782/**
 783 * struct efx_arfs_rule - record of an ARFS filter and its IDs
 784 * @node: linkage into hash table
 785 * @spec: details of the filter (used as key for hash table).  Use efx->type to
 786 *	determine which member to use.
 787 * @rxq_index: channel to which the filter will steer traffic.
 788 * @arfs_id: filter ID which was returned to ARFS
 789 * @filter_id: index in software filter table.  May be
 790 *	%EFX_ARFS_FILTER_ID_PENDING if filter was not inserted yet,
 791 *	%EFX_ARFS_FILTER_ID_ERROR if filter insertion failed, or
 792 *	%EFX_ARFS_FILTER_ID_REMOVING if expiry is currently removing the filter.
 793 */
 794struct efx_arfs_rule {
 795	struct hlist_node node;
 796	struct efx_filter_spec spec;
 797	u16 rxq_index;
 798	u16 arfs_id;
 799	s32 filter_id;
 800};
 801
 802/* Size chosen so that the table is one page (4kB) */
 803#define EFX_ARFS_HASH_TABLE_SIZE	512
 804
 805/**
 806 * struct efx_async_filter_insertion - Request to asynchronously insert a filter
 807 * @net_dev: Reference to the netdevice
 808 * @spec: The filter to insert
 809 * @work: Workitem for this request
 810 * @rxq_index: Identifies the channel for which this request was made
 811 * @flow_id: Identifies the kernel-side flow for which this request was made
 812 */
 813struct efx_async_filter_insertion {
 814	struct net_device *net_dev;
 815	struct efx_filter_spec spec;
 816	struct work_struct work;
 817	u16 rxq_index;
 818	u32 flow_id;
 819};
 820
 821/* Maximum number of ARFS workitems that may be in flight on an efx_nic */
 822#define EFX_RPS_MAX_IN_FLIGHT	8
 823#endif /* CONFIG_RFS_ACCEL */
 824
 
 
 
 
 
 
 
 
 825/**
 826 * struct efx_nic - an Efx NIC
 827 * @name: Device name (net device name or bus id before net device registered)
 828 * @pci_dev: The PCI device
 829 * @node: List node for maintaning primary/secondary function lists
 830 * @primary: &struct efx_nic instance for the primary function of this
 831 *	controller.  May be the same structure, and may be %NULL if no
 832 *	primary function is bound.  Serialised by rtnl_lock.
 833 * @secondary_list: List of &struct efx_nic instances for the secondary PCI
 834 *	functions of the controller, if this is for the primary function.
 835 *	Serialised by rtnl_lock.
 836 * @type: Controller type attributes
 837 * @legacy_irq: IRQ number
 838 * @workqueue: Workqueue for port reconfigures and the HW monitor.
 839 *	Work items do not hold and must not acquire RTNL.
 840 * @workqueue_name: Name of workqueue
 841 * @reset_work: Scheduled reset workitem
 842 * @membase_phys: Memory BAR value as physical address
 843 * @membase: Memory BAR value
 844 * @vi_stride: step between per-VI registers / memory regions
 845 * @interrupt_mode: Interrupt mode
 846 * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
 847 * @timer_max_ns: Interrupt timer maximum value, in nanoseconds
 848 * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
 849 * @irqs_hooked: Channel interrupts are hooked
 850 * @irq_rx_mod_step_us: Step size for IRQ moderation for RX event queues
 851 * @irq_rx_moderation_us: IRQ moderation time for RX event queues
 852 * @msg_enable: Log message enable flags
 853 * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
 854 * @reset_pending: Bitmask for pending resets
 855 * @tx_queue: TX DMA queues
 856 * @rx_queue: RX DMA queues
 857 * @channel: Channels
 858 * @msi_context: Context for each MSI
 859 * @extra_channel_types: Types of extra (non-traffic) channels that
 860 *	should be allocated for this NIC
 
 861 * @xdp_tx_queue_count: Number of entries in %xdp_tx_queues.
 862 * @xdp_tx_queues: Array of pointers to tx queues used for XDP transmit.
 
 863 * @rxq_entries: Size of receive queues requested by user.
 864 * @txq_entries: Size of transmit queues requested by user.
 865 * @txq_stop_thresh: TX queue fill level at or above which we stop it.
 866 * @txq_wake_thresh: TX queue fill level at or below which we wake it.
 867 * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
 868 * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
 869 * @sram_lim_qw: Qword address limit of SRAM
 870 * @next_buffer_table: First available buffer table id
 871 * @n_channels: Number of channels in use
 872 * @n_rx_channels: Number of channels used for RX (= number of RX queues)
 873 * @n_tx_channels: Number of channels used for TX
 874 * @n_extra_tx_channels: Number of extra channels with TX queues
 875 * @tx_queues_per_channel: number of TX queues probed on each channel
 876 * @n_xdp_channels: Number of channels used for XDP TX
 877 * @xdp_channel_offset: Offset of zeroth channel used for XPD TX.
 878 * @xdp_tx_per_channel: Max number of TX queues on an XDP TX channel.
 879 * @rx_ip_align: RX DMA address offset to have IP header aligned in
 880 *	in accordance with NET_IP_ALIGN
 881 * @rx_dma_len: Current maximum RX DMA length
 882 * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
 883 * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
 884 *	for use in sk_buff::truesize
 885 * @rx_prefix_size: Size of RX prefix before packet data
 886 * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
 887 *	(valid only if @rx_prefix_size != 0; always negative)
 888 * @rx_packet_len_offset: Offset of RX packet length from start of packet data
 889 *	(valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
 890 * @rx_packet_ts_offset: Offset of timestamp from start of packet data
 891 *	(valid only if channel->sync_timestamps_enabled; always negative)
 892 * @rx_scatter: Scatter mode enabled for receives
 893 * @rss_context: Main RSS context.  Its @list member is the head of the list of
 894 *	RSS contexts created by user requests
 895 * @rss_lock: Protects custom RSS context software state in @rss_context.list
 896 * @vport_id: The function's vport ID, only relevant for PFs
 897 * @int_error_count: Number of internal errors seen recently
 898 * @int_error_expire: Time at which error count will be expired
 899 * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot
 900 * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
 901 *	acknowledge but do nothing else.
 902 * @irq_status: Interrupt status buffer
 903 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
 904 * @irq_level: IRQ level/index for IRQs not triggered by an event queue
 905 * @selftest_work: Work item for asynchronous self-test
 906 * @mtd_list: List of MTDs attached to the NIC
 907 * @nic_data: Hardware dependent state
 908 * @mcdi: Management-Controller-to-Driver Interface state
 909 * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
 910 *	efx_monitor() and efx_reconfigure_port()
 911 * @port_enabled: Port enabled indicator.
 912 *	Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
 913 *	efx_mac_work() with kernel interfaces. Safe to read under any
 914 *	one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
 915 *	be held to modify it.
 916 * @port_initialized: Port initialized?
 917 * @net_dev: Operating system network device. Consider holding the rtnl lock
 918 * @fixed_features: Features which cannot be turned off
 919 * @num_mac_stats: Number of MAC stats reported by firmware (MAC_STATS_NUM_STATS
 920 *	field of %MC_CMD_GET_CAPABILITIES_V4 response, or %MC_CMD_MAC_NSTATS)
 921 * @stats_buffer: DMA buffer for statistics
 922 * @phy_type: PHY type
 923 * @phy_op: PHY interface
 924 * @phy_data: PHY private data (including PHY-specific stats)
 925 * @mdio: PHY MDIO interface
 926 * @mdio_bus: PHY MDIO bus ID (only used by Siena)
 927 * @phy_mode: PHY operating mode. Serialised by @mac_lock.
 928 * @link_advertising: Autonegotiation advertising flags
 929 * @fec_config: Forward Error Correction configuration flags.  For bit positions
 930 *	see &enum ethtool_fec_config_bits.
 931 * @link_state: Current state of the link
 932 * @n_link_state_changes: Number of times the link has changed state
 933 * @unicast_filter: Flag for Falcon-arch simple unicast filter.
 934 *	Protected by @mac_lock.
 935 * @multicast_hash: Multicast hash table for Falcon-arch.
 936 *	Protected by @mac_lock.
 937 * @wanted_fc: Wanted flow control flags
 938 * @fc_disable: When non-zero flow control is disabled. Typically used to
 939 *	ensure that network back pressure doesn't delay dma queue flushes.
 940 *	Serialised by the rtnl lock.
 941 * @mac_work: Work item for changing MAC promiscuity and multicast hash
 942 * @loopback_mode: Loopback status
 943 * @loopback_modes: Supported loopback mode bitmask
 944 * @loopback_selftest: Offline self-test private state
 945 * @xdp_prog: Current XDP programme for this interface
 946 * @filter_sem: Filter table rw_semaphore, protects existence of @filter_state
 947 * @filter_state: Architecture-dependent filter table state
 948 * @rps_mutex: Protects RPS state of all channels
 949 * @rps_slot_map: bitmap of in-flight entries in @rps_slot
 950 * @rps_slot: array of ARFS insertion requests for efx_filter_rfs_work()
 951 * @rps_hash_lock: Protects ARFS filter mapping state (@rps_hash_table and
 952 *	@rps_next_id).
 953 * @rps_hash_table: Mapping between ARFS filters and their various IDs
 954 * @rps_next_id: next arfs_id for an ARFS filter
 955 * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
 956 * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
 957 *	Decremented when the efx_flush_rx_queue() is called.
 958 * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
 959 *	completed (either success or failure). Not used when MCDI is used to
 960 *	flush receive queues.
 961 * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
 962 * @vf_count: Number of VFs intended to be enabled.
 963 * @vf_init_count: Number of VFs that have been fully initialised.
 964 * @vi_scale: log2 number of vnics per VF.
 
 
 965 * @ptp_data: PTP state data
 966 * @ptp_warned: has this NIC seen and warned about unexpected PTP events?
 967 * @vpd_sn: Serial number read from VPD
 968 * @xdp_rxq_info_failed: Have any of the rx queues failed to initialise their
 969 *      xdp_rxq_info structures?
 970 * @netdev_notifier: Netdevice notifier.
 
 
 
 
 971 * @mem_bar: The BAR that is mapped into membase.
 972 * @reg_base: Offset from the start of the bar to the function control window.
 973 * @monitor_work: Hardware monitor workitem
 974 * @biu_lock: BIU (bus interface unit) lock
 975 * @last_irq_cpu: Last CPU to handle a possible test interrupt.  This
 976 *	field is used by efx_test_interrupts() to verify that an
 977 *	interrupt has occurred.
 978 * @stats_lock: Statistics update lock. Must be held when calling
 979 *	efx_nic_type::{update,start,stop}_stats.
 980 * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb
 981 *
 982 * This is stored in the private area of the &struct net_device.
 983 */
 984struct efx_nic {
 985	/* The following fields should be written very rarely */
 986
 987	char name[IFNAMSIZ];
 988	struct list_head node;
 989	struct efx_nic *primary;
 990	struct list_head secondary_list;
 991	struct pci_dev *pci_dev;
 992	unsigned int port_num;
 993	const struct efx_nic_type *type;
 994	int legacy_irq;
 995	bool eeh_disabled_legacy_irq;
 996	struct workqueue_struct *workqueue;
 997	char workqueue_name[16];
 998	struct work_struct reset_work;
 999	resource_size_t membase_phys;
1000	void __iomem *membase;
1001
1002	unsigned int vi_stride;
1003
1004	enum efx_int_mode interrupt_mode;
1005	unsigned int timer_quantum_ns;
1006	unsigned int timer_max_ns;
1007	bool irq_rx_adaptive;
1008	bool irqs_hooked;
1009	unsigned int irq_mod_step_us;
1010	unsigned int irq_rx_moderation_us;
1011	u32 msg_enable;
1012
1013	enum nic_state state;
1014	unsigned long reset_pending;
1015
1016	struct efx_channel *channel[EFX_MAX_CHANNELS];
1017	struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
1018	const struct efx_channel_type *
1019	extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
 
1020
1021	unsigned int xdp_tx_queue_count;
1022	struct efx_tx_queue **xdp_tx_queues;
 
1023
1024	unsigned rxq_entries;
1025	unsigned txq_entries;
1026	unsigned int txq_stop_thresh;
1027	unsigned int txq_wake_thresh;
1028
1029	unsigned tx_dc_base;
1030	unsigned rx_dc_base;
1031	unsigned sram_lim_qw;
1032	unsigned next_buffer_table;
1033
1034	unsigned int max_channels;
1035	unsigned int max_vis;
1036	unsigned int max_tx_channels;
1037	unsigned n_channels;
1038	unsigned n_rx_channels;
1039	unsigned rss_spread;
1040	unsigned tx_channel_offset;
1041	unsigned n_tx_channels;
1042	unsigned n_extra_tx_channels;
1043	unsigned int tx_queues_per_channel;
1044	unsigned int n_xdp_channels;
1045	unsigned int xdp_channel_offset;
1046	unsigned int xdp_tx_per_channel;
1047	unsigned int rx_ip_align;
1048	unsigned int rx_dma_len;
1049	unsigned int rx_buffer_order;
1050	unsigned int rx_buffer_truesize;
1051	unsigned int rx_page_buf_step;
1052	unsigned int rx_bufs_per_page;
1053	unsigned int rx_pages_per_batch;
1054	unsigned int rx_prefix_size;
1055	int rx_packet_hash_offset;
1056	int rx_packet_len_offset;
1057	int rx_packet_ts_offset;
1058	bool rx_scatter;
1059	struct efx_rss_context rss_context;
1060	struct mutex rss_lock;
1061	u32 vport_id;
1062
1063	unsigned int_error_count;
1064	unsigned long int_error_expire;
1065
1066	bool must_realloc_vis;
1067	bool irq_soft_enabled;
1068	struct efx_buffer irq_status;
1069	unsigned irq_zero_count;
1070	unsigned irq_level;
1071	struct delayed_work selftest_work;
1072
1073#ifdef CONFIG_SFC_MTD
1074	struct list_head mtd_list;
1075#endif
1076
1077	void *nic_data;
1078	struct efx_mcdi_data *mcdi;
1079
1080	struct mutex mac_lock;
1081	struct work_struct mac_work;
1082	bool port_enabled;
1083
1084	bool mc_bist_for_other_fn;
1085	bool port_initialized;
1086	struct net_device *net_dev;
1087
1088	netdev_features_t fixed_features;
1089
1090	u16 num_mac_stats;
1091	struct efx_buffer stats_buffer;
1092	u64 rx_nodesc_drops_total;
1093	u64 rx_nodesc_drops_while_down;
1094	bool rx_nodesc_drops_prev_state;
1095
1096	unsigned int phy_type;
1097	const struct efx_phy_operations *phy_op;
1098	void *phy_data;
1099	struct mdio_if_info mdio;
1100	unsigned int mdio_bus;
1101	enum efx_phy_mode phy_mode;
1102
1103	__ETHTOOL_DECLARE_LINK_MODE_MASK(link_advertising);
1104	u32 fec_config;
1105	struct efx_link_state link_state;
1106	unsigned int n_link_state_changes;
1107
1108	bool unicast_filter;
1109	union efx_multicast_hash multicast_hash;
1110	u8 wanted_fc;
1111	unsigned fc_disable;
1112
1113	atomic_t rx_reset;
1114	enum efx_loopback_mode loopback_mode;
1115	u64 loopback_modes;
1116
1117	void *loopback_selftest;
1118	/* We access loopback_selftest immediately before running XDP,
1119	 * so we want them next to each other.
1120	 */
1121	struct bpf_prog __rcu *xdp_prog;
1122
1123	struct rw_semaphore filter_sem;
1124	void *filter_state;
1125#ifdef CONFIG_RFS_ACCEL
1126	struct mutex rps_mutex;
1127	unsigned long rps_slot_map;
1128	struct efx_async_filter_insertion rps_slot[EFX_RPS_MAX_IN_FLIGHT];
1129	spinlock_t rps_hash_lock;
1130	struct hlist_head *rps_hash_table;
1131	u32 rps_next_id;
1132#endif
1133
1134	atomic_t active_queues;
1135	atomic_t rxq_flush_pending;
1136	atomic_t rxq_flush_outstanding;
1137	wait_queue_head_t flush_wq;
1138
1139#ifdef CONFIG_SFC_SRIOV
1140	unsigned vf_count;
1141	unsigned vf_init_count;
1142	unsigned vi_scale;
1143#endif
 
 
1144
1145	struct efx_ptp_data *ptp_data;
1146	bool ptp_warned;
1147
1148	char *vpd_sn;
1149	bool xdp_rxq_info_failed;
1150
1151	struct notifier_block netdev_notifier;
 
 
1152
 
 
1153	unsigned int mem_bar;
1154	u32 reg_base;
1155
1156	/* The following fields may be written more often */
1157
1158	struct delayed_work monitor_work ____cacheline_aligned_in_smp;
1159	spinlock_t biu_lock;
1160	int last_irq_cpu;
1161	spinlock_t stats_lock;
1162	atomic_t n_rx_noskb_drops;
1163};
1164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1165static inline int efx_dev_registered(struct efx_nic *efx)
1166{
1167	return efx->net_dev->reg_state == NETREG_REGISTERED;
1168}
1169
1170static inline unsigned int efx_port_num(struct efx_nic *efx)
1171{
1172	return efx->port_num;
1173}
1174
1175struct efx_mtd_partition {
1176	struct list_head node;
1177	struct mtd_info mtd;
1178	const char *dev_type_name;
1179	const char *type_name;
1180	char name[IFNAMSIZ + 20];
1181};
1182
1183struct efx_udp_tunnel {
1184#define TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID	0xffff
1185	u16 type; /* TUNNEL_ENCAP_UDP_PORT_ENTRY_foo, see mcdi_pcol.h */
1186	__be16 port;
1187};
1188
1189/**
1190 * struct efx_nic_type - Efx device type definition
1191 * @mem_bar: Get the memory BAR
1192 * @mem_map_size: Get memory BAR mapped size
1193 * @probe: Probe the controller
1194 * @remove: Free resources allocated by probe()
1195 * @init: Initialise the controller
1196 * @dimension_resources: Dimension controller resources (buffer table,
1197 *	and VIs once the available interrupt resources are clear)
1198 * @fini: Shut down the controller
1199 * @monitor: Periodic function for polling link state and hardware monitor
1200 * @map_reset_reason: Map ethtool reset reason to a reset method
1201 * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
1202 * @reset: Reset the controller hardware and possibly the PHY.  This will
1203 *	be called while the controller is uninitialised.
1204 * @probe_port: Probe the MAC and PHY
1205 * @remove_port: Free resources allocated by probe_port()
1206 * @handle_global_event: Handle a "global" event (may be %NULL)
1207 * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
1208 * @prepare_flush: Prepare the hardware for flushing the DMA queues
1209 *	(for Falcon architecture)
1210 * @finish_flush: Clean up after flushing the DMA queues (for Falcon
1211 *	architecture)
1212 * @prepare_flr: Prepare for an FLR
1213 * @finish_flr: Clean up after an FLR
1214 * @describe_stats: Describe statistics for ethtool
1215 * @update_stats: Update statistics not provided by event handling.
1216 *	Either argument may be %NULL.
 
 
 
1217 * @start_stats: Start the regular fetching of statistics
1218 * @pull_stats: Pull stats from the NIC and wait until they arrive.
1219 * @stop_stats: Stop the regular fetching of statistics
1220 * @set_id_led: Set state of identifying LED or revert to automatic function
1221 * @push_irq_moderation: Apply interrupt moderation value
1222 * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
1223 * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
1224 * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
1225 *	to the hardware.  Serialised by the mac_lock.
1226 * @check_mac_fault: Check MAC fault state. True if fault present.
1227 * @get_wol: Get WoL configuration from driver state
1228 * @set_wol: Push WoL configuration to the NIC
1229 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
1230 * @test_chip: Test registers.  May use efx_farch_test_registers(), and is
1231 *	expected to reset the NIC.
1232 * @test_nvram: Test validity of NVRAM contents
1233 * @mcdi_request: Send an MCDI request with the given header and SDU.
1234 *	The SDU length may be any value from 0 up to the protocol-
1235 *	defined maximum, but its buffer will be padded to a multiple
1236 *	of 4 bytes.
1237 * @mcdi_poll_response: Test whether an MCDI response is available.
1238 * @mcdi_read_response: Read the MCDI response PDU.  The offset will
1239 *	be a multiple of 4.  The length may not be, but the buffer
1240 *	will be padded so it is safe to round up.
1241 * @mcdi_poll_reboot: Test whether the MCDI has rebooted.  If so,
1242 *	return an appropriate error code for aborting any current
1243 *	request; otherwise return 0.
1244 * @irq_enable_master: Enable IRQs on the NIC.  Each event queue must
1245 *	be separately enabled after this.
1246 * @irq_test_generate: Generate a test IRQ
1247 * @irq_disable_non_ev: Disable non-event IRQs on the NIC.  Each event
1248 *	queue must be separately disabled before this.
1249 * @irq_handle_msi: Handle MSI for a channel.  The @dev_id argument is
1250 *	a pointer to the &struct efx_msi_context for the channel.
1251 * @irq_handle_legacy: Handle legacy interrupt.  The @dev_id argument
1252 *	is a pointer to the &struct efx_nic.
1253 * @tx_probe: Allocate resources for TX queue
1254 * @tx_init: Initialise TX queue on the NIC
1255 * @tx_remove: Free resources for TX queue
1256 * @tx_write: Write TX descriptors and doorbell
1257 * @tx_enqueue: Add an SKB to TX queue
1258 * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
1259 * @rx_pull_rss_config: Read RSS hash key and indirection table back from the NIC
1260 * @rx_push_rss_context_config: Write RSS hash key and indirection table for
1261 *	user RSS context to the NIC
1262 * @rx_pull_rss_context_config: Read RSS hash key and indirection table for user
1263 *	RSS context back from the NIC
1264 * @rx_probe: Allocate resources for RX queue
1265 * @rx_init: Initialise RX queue on the NIC
1266 * @rx_remove: Free resources for RX queue
1267 * @rx_write: Write RX descriptors and doorbell
1268 * @rx_defer_refill: Generate a refill reminder event
1269 * @rx_packet: Receive the queued RX buffer on a channel
1270 * @rx_buf_hash_valid: Determine whether the RX prefix contains a valid hash
1271 * @ev_probe: Allocate resources for event queue
1272 * @ev_init: Initialise event queue on the NIC
1273 * @ev_fini: Deinitialise event queue on the NIC
1274 * @ev_remove: Free resources for event queue
1275 * @ev_process: Process events for a queue, up to the given NAPI quota
1276 * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
1277 * @ev_test_generate: Generate a test event
1278 * @filter_table_probe: Probe filter capabilities and set up filter software state
1279 * @filter_table_restore: Restore filters removed from hardware
1280 * @filter_table_remove: Remove filters from hardware and tear down software state
1281 * @filter_update_rx_scatter: Update filters after change to rx scatter setting
1282 * @filter_insert: add or replace a filter
1283 * @filter_remove_safe: remove a filter by ID, carefully
1284 * @filter_get_safe: retrieve a filter by ID, carefully
1285 * @filter_clear_rx: Remove all RX filters whose priority is less than or
1286 *	equal to the given priority and is not %EFX_FILTER_PRI_AUTO
1287 * @filter_count_rx_used: Get the number of filters in use at a given priority
1288 * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1289 * @filter_get_rx_ids: Get list of RX filters at a given priority
1290 * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1291 *	This must check whether the specified table entry is used by RFS
1292 *	and that rps_may_expire_flow() returns true for it.
1293 * @mtd_probe: Probe and add MTD partitions associated with this net device,
1294 *	 using efx_mtd_add()
1295 * @mtd_rename: Set an MTD partition name using the net device name
1296 * @mtd_read: Read from an MTD partition
1297 * @mtd_erase: Erase part of an MTD partition
1298 * @mtd_write: Write to an MTD partition
1299 * @mtd_sync: Wait for write-back to complete on MTD partition.  This
1300 *	also notifies the driver that a writer has finished using this
1301 *	partition.
1302 * @ptp_write_host_time: Send host time to MC as part of sync protocol
1303 * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX
1304 *	timestamping, possibly only temporarily for the purposes of a reset.
1305 * @ptp_set_ts_config: Set hardware timestamp configuration.  The flags
1306 *	and tx_type will already have been validated but this operation
1307 *	must validate and update rx_filter.
1308 * @get_phys_port_id: Get the underlying physical port id.
1309 * @set_mac_address: Set the MAC address of the device
1310 * @tso_versions: Returns mask of firmware-assisted TSO versions supported.
1311 *	If %NULL, then device does not support any TSO version.
1312 * @udp_tnl_push_ports: Push the list of UDP tunnel ports to the NIC if required.
1313 * @udp_tnl_has_port: Check if a port has been added as UDP tunnel
1314 * @print_additional_fwver: Dump NIC-specific additional FW version info
1315 * @sensor_event: Handle a sensor event from MCDI
 
1316 * @revision: Hardware architecture revision
1317 * @txd_ptr_tbl_base: TX descriptor ring base address
1318 * @rxd_ptr_tbl_base: RX descriptor ring base address
1319 * @buf_tbl_base: Buffer table base address
1320 * @evq_ptr_tbl_base: Event queue pointer table base address
1321 * @evq_rptr_tbl_base: Event queue read-pointer table base address
1322 * @max_dma_mask: Maximum possible DMA mask
1323 * @rx_prefix_size: Size of RX prefix before packet data
1324 * @rx_hash_offset: Offset of RX flow hash within prefix
1325 * @rx_ts_offset: Offset of timestamp within prefix
1326 * @rx_buffer_padding: Size of padding at end of RX packet
1327 * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1328 * @always_rx_scatter: NIC will always scatter packets to multiple buffers
1329 * @option_descriptors: NIC supports TX option descriptors
1330 * @min_interrupt_mode: Lowest capability interrupt mode supported
1331 *	from &enum efx_int_mode.
1332 * @timer_period_max: Maximum period of interrupt timer (in ticks)
1333 * @offload_features: net_device feature flags for protocol offload
1334 *	features implemented in hardware
1335 * @mcdi_max_ver: Maximum MCDI version supported
1336 * @hwtstamp_filters: Mask of hardware timestamp filter types supported
1337 */
1338struct efx_nic_type {
1339	bool is_vf;
1340	unsigned int (*mem_bar)(struct efx_nic *efx);
1341	unsigned int (*mem_map_size)(struct efx_nic *efx);
1342	int (*probe)(struct efx_nic *efx);
1343	void (*remove)(struct efx_nic *efx);
1344	int (*init)(struct efx_nic *efx);
1345	int (*dimension_resources)(struct efx_nic *efx);
1346	void (*fini)(struct efx_nic *efx);
1347	void (*monitor)(struct efx_nic *efx);
1348	enum reset_type (*map_reset_reason)(enum reset_type reason);
1349	int (*map_reset_flags)(u32 *flags);
1350	int (*reset)(struct efx_nic *efx, enum reset_type method);
1351	int (*probe_port)(struct efx_nic *efx);
1352	void (*remove_port)(struct efx_nic *efx);
1353	bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
1354	int (*fini_dmaq)(struct efx_nic *efx);
1355	void (*prepare_flush)(struct efx_nic *efx);
1356	void (*finish_flush)(struct efx_nic *efx);
1357	void (*prepare_flr)(struct efx_nic *efx);
1358	void (*finish_flr)(struct efx_nic *efx);
1359	size_t (*describe_stats)(struct efx_nic *efx, u8 *names);
1360	size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
1361			       struct rtnl_link_stats64 *core_stats);
 
 
1362	void (*start_stats)(struct efx_nic *efx);
1363	void (*pull_stats)(struct efx_nic *efx);
1364	void (*stop_stats)(struct efx_nic *efx);
1365	void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode);
1366	void (*push_irq_moderation)(struct efx_channel *channel);
1367	int (*reconfigure_port)(struct efx_nic *efx);
1368	void (*prepare_enable_fc_tx)(struct efx_nic *efx);
1369	int (*reconfigure_mac)(struct efx_nic *efx, bool mtu_only);
1370	bool (*check_mac_fault)(struct efx_nic *efx);
1371	void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
1372	int (*set_wol)(struct efx_nic *efx, u32 type);
1373	void (*resume_wol)(struct efx_nic *efx);
 
 
1374	unsigned int (*check_caps)(const struct efx_nic *efx,
1375				   u8 flag,
1376				   u32 offset);
1377	int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
1378	int (*test_nvram)(struct efx_nic *efx);
1379	void (*mcdi_request)(struct efx_nic *efx,
1380			     const efx_dword_t *hdr, size_t hdr_len,
1381			     const efx_dword_t *sdu, size_t sdu_len);
1382	bool (*mcdi_poll_response)(struct efx_nic *efx);
1383	void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
1384				   size_t pdu_offset, size_t pdu_len);
1385	int (*mcdi_poll_reboot)(struct efx_nic *efx);
1386	void (*mcdi_reboot_detected)(struct efx_nic *efx);
1387	void (*irq_enable_master)(struct efx_nic *efx);
1388	int (*irq_test_generate)(struct efx_nic *efx);
1389	void (*irq_disable_non_ev)(struct efx_nic *efx);
1390	irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1391	irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1392	int (*tx_probe)(struct efx_tx_queue *tx_queue);
1393	void (*tx_init)(struct efx_tx_queue *tx_queue);
1394	void (*tx_remove)(struct efx_tx_queue *tx_queue);
1395	void (*tx_write)(struct efx_tx_queue *tx_queue);
1396	netdev_tx_t (*tx_enqueue)(struct efx_tx_queue *tx_queue, struct sk_buff *skb);
1397	unsigned int (*tx_limit_len)(struct efx_tx_queue *tx_queue,
1398				     dma_addr_t dma_addr, unsigned int len);
1399	int (*rx_push_rss_config)(struct efx_nic *efx, bool user,
1400				  const u32 *rx_indir_table, const u8 *key);
1401	int (*rx_pull_rss_config)(struct efx_nic *efx);
1402	int (*rx_push_rss_context_config)(struct efx_nic *efx,
1403					  struct efx_rss_context *ctx,
1404					  const u32 *rx_indir_table,
1405					  const u8 *key);
1406	int (*rx_pull_rss_context_config)(struct efx_nic *efx,
1407					  struct efx_rss_context *ctx);
1408	void (*rx_restore_rss_contexts)(struct efx_nic *efx);
1409	int (*rx_probe)(struct efx_rx_queue *rx_queue);
1410	void (*rx_init)(struct efx_rx_queue *rx_queue);
1411	void (*rx_remove)(struct efx_rx_queue *rx_queue);
1412	void (*rx_write)(struct efx_rx_queue *rx_queue);
1413	void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
1414	void (*rx_packet)(struct efx_channel *channel);
1415	bool (*rx_buf_hash_valid)(const u8 *prefix);
1416	int (*ev_probe)(struct efx_channel *channel);
1417	int (*ev_init)(struct efx_channel *channel);
1418	void (*ev_fini)(struct efx_channel *channel);
1419	void (*ev_remove)(struct efx_channel *channel);
1420	int (*ev_process)(struct efx_channel *channel, int quota);
1421	void (*ev_read_ack)(struct efx_channel *channel);
1422	void (*ev_test_generate)(struct efx_channel *channel);
1423	int (*filter_table_probe)(struct efx_nic *efx);
1424	void (*filter_table_restore)(struct efx_nic *efx);
1425	void (*filter_table_remove)(struct efx_nic *efx);
1426	void (*filter_update_rx_scatter)(struct efx_nic *efx);
1427	s32 (*filter_insert)(struct efx_nic *efx,
1428			     struct efx_filter_spec *spec, bool replace);
1429	int (*filter_remove_safe)(struct efx_nic *efx,
1430				  enum efx_filter_priority priority,
1431				  u32 filter_id);
1432	int (*filter_get_safe)(struct efx_nic *efx,
1433			       enum efx_filter_priority priority,
1434			       u32 filter_id, struct efx_filter_spec *);
1435	int (*filter_clear_rx)(struct efx_nic *efx,
1436			       enum efx_filter_priority priority);
1437	u32 (*filter_count_rx_used)(struct efx_nic *efx,
1438				    enum efx_filter_priority priority);
1439	u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
1440	s32 (*filter_get_rx_ids)(struct efx_nic *efx,
1441				 enum efx_filter_priority priority,
1442				 u32 *buf, u32 size);
1443#ifdef CONFIG_RFS_ACCEL
1444	bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
1445				      unsigned int index);
1446#endif
1447#ifdef CONFIG_SFC_MTD
1448	int (*mtd_probe)(struct efx_nic *efx);
1449	void (*mtd_rename)(struct efx_mtd_partition *part);
1450	int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1451			size_t *retlen, u8 *buffer);
1452	int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1453	int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1454			 size_t *retlen, const u8 *buffer);
1455	int (*mtd_sync)(struct mtd_info *mtd);
1456#endif
1457	void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
1458	int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp);
1459	int (*ptp_set_ts_config)(struct efx_nic *efx,
1460				 struct hwtstamp_config *init);
1461	int (*sriov_configure)(struct efx_nic *efx, int num_vfs);
1462	int (*vlan_rx_add_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1463	int (*vlan_rx_kill_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1464	int (*get_phys_port_id)(struct efx_nic *efx,
1465				struct netdev_phys_item_id *ppid);
1466	int (*sriov_init)(struct efx_nic *efx);
1467	void (*sriov_fini)(struct efx_nic *efx);
1468	bool (*sriov_wanted)(struct efx_nic *efx);
1469	void (*sriov_reset)(struct efx_nic *efx);
1470	void (*sriov_flr)(struct efx_nic *efx, unsigned vf_i);
1471	int (*sriov_set_vf_mac)(struct efx_nic *efx, int vf_i, u8 *mac);
1472	int (*sriov_set_vf_vlan)(struct efx_nic *efx, int vf_i, u16 vlan,
1473				 u8 qos);
1474	int (*sriov_set_vf_spoofchk)(struct efx_nic *efx, int vf_i,
1475				     bool spoofchk);
1476	int (*sriov_get_vf_config)(struct efx_nic *efx, int vf_i,
1477				   struct ifla_vf_info *ivi);
1478	int (*sriov_set_vf_link_state)(struct efx_nic *efx, int vf_i,
1479				       int link_state);
1480	int (*vswitching_probe)(struct efx_nic *efx);
1481	int (*vswitching_restore)(struct efx_nic *efx);
1482	void (*vswitching_remove)(struct efx_nic *efx);
1483	int (*get_mac_address)(struct efx_nic *efx, unsigned char *perm_addr);
1484	int (*set_mac_address)(struct efx_nic *efx);
1485	u32 (*tso_versions)(struct efx_nic *efx);
1486	int (*udp_tnl_push_ports)(struct efx_nic *efx);
1487	bool (*udp_tnl_has_port)(struct efx_nic *efx, __be16 port);
1488	size_t (*print_additional_fwver)(struct efx_nic *efx, char *buf,
1489					 size_t len);
1490	void (*sensor_event)(struct efx_nic *efx, efx_qword_t *ev);
 
1491
1492	int revision;
1493	unsigned int txd_ptr_tbl_base;
1494	unsigned int rxd_ptr_tbl_base;
1495	unsigned int buf_tbl_base;
1496	unsigned int evq_ptr_tbl_base;
1497	unsigned int evq_rptr_tbl_base;
1498	u64 max_dma_mask;
1499	unsigned int rx_prefix_size;
1500	unsigned int rx_hash_offset;
1501	unsigned int rx_ts_offset;
1502	unsigned int rx_buffer_padding;
1503	bool can_rx_scatter;
1504	bool always_rx_scatter;
1505	bool option_descriptors;
1506	unsigned int min_interrupt_mode;
1507	unsigned int timer_period_max;
1508	netdev_features_t offload_features;
1509	int mcdi_max_ver;
1510	unsigned int max_rx_ip_filters;
1511	u32 hwtstamp_filters;
1512	unsigned int rx_hash_key_size;
1513};
1514
1515/**************************************************************************
1516 *
1517 * Prototypes and inline functions
1518 *
1519 *************************************************************************/
1520
1521static inline struct efx_channel *
1522efx_get_channel(struct efx_nic *efx, unsigned index)
1523{
1524	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_channels);
1525	return efx->channel[index];
1526}
1527
1528/* Iterate over all used channels */
1529#define efx_for_each_channel(_channel, _efx)				\
1530	for (_channel = (_efx)->channel[0];				\
1531	     _channel;							\
1532	     _channel = (_channel->channel + 1 < (_efx)->n_channels) ?	\
1533		     (_efx)->channel[_channel->channel + 1] : NULL)
1534
1535/* Iterate over all used channels in reverse */
1536#define efx_for_each_channel_rev(_channel, _efx)			\
1537	for (_channel = (_efx)->channel[(_efx)->n_channels - 1];	\
1538	     _channel;							\
1539	     _channel = _channel->channel ?				\
1540		     (_efx)->channel[_channel->channel - 1] : NULL)
1541
1542static inline struct efx_channel *
1543efx_get_tx_channel(struct efx_nic *efx, unsigned int index)
1544{
1545	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_tx_channels);
1546	return efx->channel[efx->tx_channel_offset + index];
1547}
1548
1549static inline struct efx_tx_queue *
1550efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type)
1551{
1552	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_tx_channels ||
1553				  type >= efx->tx_queues_per_channel);
1554	return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type];
1555}
1556
1557static inline struct efx_channel *
1558efx_get_xdp_channel(struct efx_nic *efx, unsigned int index)
1559{
1560	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_xdp_channels);
1561	return efx->channel[efx->xdp_channel_offset + index];
1562}
1563
1564static inline bool efx_channel_is_xdp_tx(struct efx_channel *channel)
1565{
1566	return channel->channel - channel->efx->xdp_channel_offset <
1567	       channel->efx->n_xdp_channels;
1568}
1569
1570static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1571{
1572	return true;
1573}
1574
1575static inline unsigned int efx_channel_num_tx_queues(struct efx_channel *channel)
1576{
1577	if (efx_channel_is_xdp_tx(channel))
1578		return channel->efx->xdp_tx_per_channel;
1579	return channel->efx->tx_queues_per_channel;
1580}
1581
1582static inline struct efx_tx_queue *
1583efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type)
 
 
 
 
 
 
 
1584{
1585	EFX_WARN_ON_ONCE_PARANOID(type >= efx_channel_num_tx_queues(channel));
1586	return &channel->tx_queue[type];
 
1587}
1588
1589/* Iterate over all TX queues belonging to a channel */
1590#define efx_for_each_channel_tx_queue(_tx_queue, _channel)		\
1591	if (!efx_channel_has_tx_queues(_channel))			\
1592		;							\
1593	else								\
1594		for (_tx_queue = (_channel)->tx_queue;			\
1595		     _tx_queue < (_channel)->tx_queue +			\
1596				 efx_channel_num_tx_queues(_channel);		\
1597		     _tx_queue++)
1598
1599static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1600{
1601	return channel->rx_queue.core_index >= 0;
1602}
1603
1604static inline struct efx_rx_queue *
1605efx_channel_get_rx_queue(struct efx_channel *channel)
1606{
1607	EFX_WARN_ON_ONCE_PARANOID(!efx_channel_has_rx_queue(channel));
1608	return &channel->rx_queue;
1609}
1610
1611/* Iterate over all RX queues belonging to a channel */
1612#define efx_for_each_channel_rx_queue(_rx_queue, _channel)		\
1613	if (!efx_channel_has_rx_queue(_channel))			\
1614		;							\
1615	else								\
1616		for (_rx_queue = &(_channel)->rx_queue;			\
1617		     _rx_queue;						\
1618		     _rx_queue = NULL)
1619
1620static inline struct efx_channel *
1621efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1622{
1623	return container_of(rx_queue, struct efx_channel, rx_queue);
1624}
1625
1626static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1627{
1628	return efx_rx_queue_channel(rx_queue)->channel;
1629}
1630
1631/* Returns a pointer to the specified receive buffer in the RX
1632 * descriptor queue.
1633 */
1634static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1635						  unsigned int index)
1636{
1637	return &rx_queue->buffer[index];
1638}
1639
1640static inline struct efx_rx_buffer *
1641efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
1642{
1643	if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
1644		return efx_rx_buffer(rx_queue, 0);
1645	else
1646		return rx_buf + 1;
1647}
1648
1649/**
1650 * EFX_MAX_FRAME_LEN - calculate maximum frame length
1651 *
1652 * This calculates the maximum frame length that will be used for a
1653 * given MTU.  The frame length will be equal to the MTU plus a
1654 * constant amount of header space and padding.  This is the quantity
1655 * that the net driver will program into the MAC as the maximum frame
1656 * length.
1657 *
1658 * The 10G MAC requires 8-byte alignment on the frame
1659 * length, so we round up to the nearest 8.
1660 *
1661 * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1662 * XGMII cycle).  If the frame length reaches the maximum value in the
1663 * same cycle, the XMAC can miss the IPG altogether.  We work around
1664 * this by adding a further 16 bytes.
1665 */
1666#define EFX_FRAME_PAD	16
1667#define EFX_MAX_FRAME_LEN(mtu) \
1668	(ALIGN(((mtu) + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + EFX_FRAME_PAD), 8))
1669
1670static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
1671{
1672	return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
1673}
1674static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
1675{
1676	skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1677}
1678
1679/* Get the max fill level of the TX queues on this channel */
1680static inline unsigned int
1681efx_channel_tx_fill_level(struct efx_channel *channel)
1682{
1683	struct efx_tx_queue *tx_queue;
1684	unsigned int fill_level = 0;
1685
1686	/* This function is currently only used by EF100, which maybe
1687	 * could do something simpler and just compute the fill level
1688	 * of the single TXQ that's really in use.
1689	 */
1690	efx_for_each_channel_tx_queue(tx_queue, channel)
1691		fill_level = max(fill_level,
1692				 tx_queue->insert_count - tx_queue->read_count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1693
1694	return fill_level;
1695}
1696
1697/* Get all supported features.
1698 * If a feature is not fixed, it is present in hw_features.
1699 * If a feature is fixed, it does not present in hw_features, but
1700 * always in features.
1701 */
1702static inline netdev_features_t efx_supported_features(const struct efx_nic *efx)
1703{
1704	const struct net_device *net_dev = efx->net_dev;
1705
1706	return net_dev->features | net_dev->hw_features;
1707}
1708
1709/* Get the current TX queue insert index. */
1710static inline unsigned int
1711efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
1712{
1713	return tx_queue->insert_count & tx_queue->ptr_mask;
1714}
1715
1716/* Get a TX buffer. */
1717static inline struct efx_tx_buffer *
1718__efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1719{
1720	return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
1721}
1722
1723/* Get a TX buffer, checking it's not currently in use. */
1724static inline struct efx_tx_buffer *
1725efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1726{
1727	struct efx_tx_buffer *buffer =
1728		__efx_tx_queue_get_insert_buffer(tx_queue);
1729
1730	EFX_WARN_ON_ONCE_PARANOID(buffer->len);
1731	EFX_WARN_ON_ONCE_PARANOID(buffer->flags);
1732	EFX_WARN_ON_ONCE_PARANOID(buffer->unmap_len);
1733
1734	return buffer;
1735}
1736
1737#endif /* EFX_NET_DRIVER_H */