Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2005-2013 Solarflare Communications Inc.
6 */
7
8#include <linux/module.h>
9#include <linux/pci.h>
10#include <linux/netdevice.h>
11#include <linux/etherdevice.h>
12#include <linux/delay.h>
13#include <linux/notifier.h>
14#include <linux/ip.h>
15#include <linux/tcp.h>
16#include <linux/in.h>
17#include <linux/ethtool.h>
18#include <linux/topology.h>
19#include <linux/gfp.h>
20#include <linux/interrupt.h>
21#include "net_driver.h"
22#include "efx.h"
23#include "nic.h"
24#include "selftest.h"
25
26#include "workarounds.h"
27
28/**************************************************************************
29 *
30 * Type name strings
31 *
32 **************************************************************************
33 */
34
35/* Loopback mode names (see LOOPBACK_MODE()) */
36const unsigned int ef4_loopback_mode_max = LOOPBACK_MAX;
37const char *const ef4_loopback_mode_names[] = {
38 [LOOPBACK_NONE] = "NONE",
39 [LOOPBACK_DATA] = "DATAPATH",
40 [LOOPBACK_GMAC] = "GMAC",
41 [LOOPBACK_XGMII] = "XGMII",
42 [LOOPBACK_XGXS] = "XGXS",
43 [LOOPBACK_XAUI] = "XAUI",
44 [LOOPBACK_GMII] = "GMII",
45 [LOOPBACK_SGMII] = "SGMII",
46 [LOOPBACK_XGBR] = "XGBR",
47 [LOOPBACK_XFI] = "XFI",
48 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
49 [LOOPBACK_GMII_FAR] = "GMII_FAR",
50 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
51 [LOOPBACK_XFI_FAR] = "XFI_FAR",
52 [LOOPBACK_GPHY] = "GPHY",
53 [LOOPBACK_PHYXS] = "PHYXS",
54 [LOOPBACK_PCS] = "PCS",
55 [LOOPBACK_PMAPMD] = "PMA/PMD",
56 [LOOPBACK_XPORT] = "XPORT",
57 [LOOPBACK_XGMII_WS] = "XGMII_WS",
58 [LOOPBACK_XAUI_WS] = "XAUI_WS",
59 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
60 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
61 [LOOPBACK_GMII_WS] = "GMII_WS",
62 [LOOPBACK_XFI_WS] = "XFI_WS",
63 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
64 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
65};
66
67const unsigned int ef4_reset_type_max = RESET_TYPE_MAX;
68const char *const ef4_reset_type_names[] = {
69 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
70 [RESET_TYPE_ALL] = "ALL",
71 [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL",
72 [RESET_TYPE_WORLD] = "WORLD",
73 [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
74 [RESET_TYPE_DATAPATH] = "DATAPATH",
75 [RESET_TYPE_DISABLE] = "DISABLE",
76 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
77 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
78 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
79 [RESET_TYPE_DMA_ERROR] = "DMA_ERROR",
80 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
81};
82
83/* Reset workqueue. If any NIC has a hardware failure then a reset will be
84 * queued onto this work queue. This is not a per-nic work queue, because
85 * ef4_reset_work() acquires the rtnl lock, so resets are naturally serialised.
86 */
87static struct workqueue_struct *reset_workqueue;
88
89/* How often and how many times to poll for a reset while waiting for a
90 * BIST that another function started to complete.
91 */
92#define BIST_WAIT_DELAY_MS 100
93#define BIST_WAIT_DELAY_COUNT 100
94
95/**************************************************************************
96 *
97 * Configurable values
98 *
99 *************************************************************************/
100
101/*
102 * Use separate channels for TX and RX events
103 *
104 * Set this to 1 to use separate channels for TX and RX. It allows us
105 * to control interrupt affinity separately for TX and RX.
106 *
107 * This is only used in MSI-X interrupt mode
108 */
109bool ef4_separate_tx_channels;
110module_param(ef4_separate_tx_channels, bool, 0444);
111MODULE_PARM_DESC(ef4_separate_tx_channels,
112 "Use separate channels for TX and RX");
113
114/* This is the time (in jiffies) between invocations of the hardware
115 * monitor.
116 * On Falcon-based NICs, this will:
117 * - Check the on-board hardware monitor;
118 * - Poll the link state and reconfigure the hardware as necessary.
119 * On Siena-based NICs for power systems with EEH support, this will give EEH a
120 * chance to start.
121 */
122static unsigned int ef4_monitor_interval = 1 * HZ;
123
124/* Initial interrupt moderation settings. They can be modified after
125 * module load with ethtool.
126 *
127 * The default for RX should strike a balance between increasing the
128 * round-trip latency and reducing overhead.
129 */
130static unsigned int rx_irq_mod_usec = 60;
131
132/* Initial interrupt moderation settings. They can be modified after
133 * module load with ethtool.
134 *
135 * This default is chosen to ensure that a 10G link does not go idle
136 * while a TX queue is stopped after it has become full. A queue is
137 * restarted when it drops below half full. The time this takes (assuming
138 * worst case 3 descriptors per packet and 1024 descriptors) is
139 * 512 / 3 * 1.2 = 205 usec.
140 */
141static unsigned int tx_irq_mod_usec = 150;
142
143/* This is the first interrupt mode to try out of:
144 * 0 => MSI-X
145 * 1 => MSI
146 * 2 => legacy
147 */
148static unsigned int interrupt_mode;
149
150/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
151 * i.e. the number of CPUs among which we may distribute simultaneous
152 * interrupt handling.
153 *
154 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
155 * The default (0) means to assign an interrupt to each core.
156 */
157static unsigned int rss_cpus;
158module_param(rss_cpus, uint, 0444);
159MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
160
161static bool phy_flash_cfg;
162module_param(phy_flash_cfg, bool, 0644);
163MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
164
165static unsigned irq_adapt_low_thresh = 8000;
166module_param(irq_adapt_low_thresh, uint, 0644);
167MODULE_PARM_DESC(irq_adapt_low_thresh,
168 "Threshold score for reducing IRQ moderation");
169
170static unsigned irq_adapt_high_thresh = 16000;
171module_param(irq_adapt_high_thresh, uint, 0644);
172MODULE_PARM_DESC(irq_adapt_high_thresh,
173 "Threshold score for increasing IRQ moderation");
174
175static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
176 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
177 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
178 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
179module_param(debug, uint, 0);
180MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
181
182/**************************************************************************
183 *
184 * Utility functions and prototypes
185 *
186 *************************************************************************/
187
188static int ef4_soft_enable_interrupts(struct ef4_nic *efx);
189static void ef4_soft_disable_interrupts(struct ef4_nic *efx);
190static void ef4_remove_channel(struct ef4_channel *channel);
191static void ef4_remove_channels(struct ef4_nic *efx);
192static const struct ef4_channel_type ef4_default_channel_type;
193static void ef4_remove_port(struct ef4_nic *efx);
194static void ef4_init_napi_channel(struct ef4_channel *channel);
195static void ef4_fini_napi(struct ef4_nic *efx);
196static void ef4_fini_napi_channel(struct ef4_channel *channel);
197static void ef4_fini_struct(struct ef4_nic *efx);
198static void ef4_start_all(struct ef4_nic *efx);
199static void ef4_stop_all(struct ef4_nic *efx);
200
201#define EF4_ASSERT_RESET_SERIALISED(efx) \
202 do { \
203 if ((efx->state == STATE_READY) || \
204 (efx->state == STATE_RECOVERY) || \
205 (efx->state == STATE_DISABLED)) \
206 ASSERT_RTNL(); \
207 } while (0)
208
209static int ef4_check_disabled(struct ef4_nic *efx)
210{
211 if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
212 netif_err(efx, drv, efx->net_dev,
213 "device is disabled due to earlier errors\n");
214 return -EIO;
215 }
216 return 0;
217}
218
219/**************************************************************************
220 *
221 * Event queue processing
222 *
223 *************************************************************************/
224
225/* Process channel's event queue
226 *
227 * This function is responsible for processing the event queue of a
228 * single channel. The caller must guarantee that this function will
229 * never be concurrently called more than once on the same channel,
230 * though different channels may be being processed concurrently.
231 */
232static int ef4_process_channel(struct ef4_channel *channel, int budget)
233{
234 struct ef4_tx_queue *tx_queue;
235 int spent;
236
237 if (unlikely(!channel->enabled))
238 return 0;
239
240 ef4_for_each_channel_tx_queue(tx_queue, channel) {
241 tx_queue->pkts_compl = 0;
242 tx_queue->bytes_compl = 0;
243 }
244
245 spent = ef4_nic_process_eventq(channel, budget);
246 if (spent && ef4_channel_has_rx_queue(channel)) {
247 struct ef4_rx_queue *rx_queue =
248 ef4_channel_get_rx_queue(channel);
249
250 ef4_rx_flush_packet(channel);
251 ef4_fast_push_rx_descriptors(rx_queue, true);
252 }
253
254 /* Update BQL */
255 ef4_for_each_channel_tx_queue(tx_queue, channel) {
256 if (tx_queue->bytes_compl) {
257 netdev_tx_completed_queue(tx_queue->core_txq,
258 tx_queue->pkts_compl, tx_queue->bytes_compl);
259 }
260 }
261
262 return spent;
263}
264
265/* NAPI poll handler
266 *
267 * NAPI guarantees serialisation of polls of the same device, which
268 * provides the guarantee required by ef4_process_channel().
269 */
270static void ef4_update_irq_mod(struct ef4_nic *efx, struct ef4_channel *channel)
271{
272 int step = efx->irq_mod_step_us;
273
274 if (channel->irq_mod_score < irq_adapt_low_thresh) {
275 if (channel->irq_moderation_us > step) {
276 channel->irq_moderation_us -= step;
277 efx->type->push_irq_moderation(channel);
278 }
279 } else if (channel->irq_mod_score > irq_adapt_high_thresh) {
280 if (channel->irq_moderation_us <
281 efx->irq_rx_moderation_us) {
282 channel->irq_moderation_us += step;
283 efx->type->push_irq_moderation(channel);
284 }
285 }
286
287 channel->irq_count = 0;
288 channel->irq_mod_score = 0;
289}
290
291static int ef4_poll(struct napi_struct *napi, int budget)
292{
293 struct ef4_channel *channel =
294 container_of(napi, struct ef4_channel, napi_str);
295 struct ef4_nic *efx = channel->efx;
296 int spent;
297
298 netif_vdbg(efx, intr, efx->net_dev,
299 "channel %d NAPI poll executing on CPU %d\n",
300 channel->channel, raw_smp_processor_id());
301
302 spent = ef4_process_channel(channel, budget);
303
304 if (spent < budget) {
305 if (ef4_channel_has_rx_queue(channel) &&
306 efx->irq_rx_adaptive &&
307 unlikely(++channel->irq_count == 1000)) {
308 ef4_update_irq_mod(efx, channel);
309 }
310
311 ef4_filter_rfs_expire(channel);
312
313 /* There is no race here; although napi_disable() will
314 * only wait for napi_complete(), this isn't a problem
315 * since ef4_nic_eventq_read_ack() will have no effect if
316 * interrupts have already been disabled.
317 */
318 napi_complete_done(napi, spent);
319 ef4_nic_eventq_read_ack(channel);
320 }
321
322 return spent;
323}
324
325/* Create event queue
326 * Event queue memory allocations are done only once. If the channel
327 * is reset, the memory buffer will be reused; this guards against
328 * errors during channel reset and also simplifies interrupt handling.
329 */
330static int ef4_probe_eventq(struct ef4_channel *channel)
331{
332 struct ef4_nic *efx = channel->efx;
333 unsigned long entries;
334
335 netif_dbg(efx, probe, efx->net_dev,
336 "chan %d create event queue\n", channel->channel);
337
338 /* Build an event queue with room for one event per tx and rx buffer,
339 * plus some extra for link state events and MCDI completions. */
340 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
341 EF4_BUG_ON_PARANOID(entries > EF4_MAX_EVQ_SIZE);
342 channel->eventq_mask = max(entries, EF4_MIN_EVQ_SIZE) - 1;
343
344 return ef4_nic_probe_eventq(channel);
345}
346
347/* Prepare channel's event queue */
348static int ef4_init_eventq(struct ef4_channel *channel)
349{
350 struct ef4_nic *efx = channel->efx;
351 int rc;
352
353 EF4_WARN_ON_PARANOID(channel->eventq_init);
354
355 netif_dbg(efx, drv, efx->net_dev,
356 "chan %d init event queue\n", channel->channel);
357
358 rc = ef4_nic_init_eventq(channel);
359 if (rc == 0) {
360 efx->type->push_irq_moderation(channel);
361 channel->eventq_read_ptr = 0;
362 channel->eventq_init = true;
363 }
364 return rc;
365}
366
367/* Enable event queue processing and NAPI */
368void ef4_start_eventq(struct ef4_channel *channel)
369{
370 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
371 "chan %d start event queue\n", channel->channel);
372
373 /* Make sure the NAPI handler sees the enabled flag set */
374 channel->enabled = true;
375 smp_wmb();
376
377 napi_enable(&channel->napi_str);
378 ef4_nic_eventq_read_ack(channel);
379}
380
381/* Disable event queue processing and NAPI */
382void ef4_stop_eventq(struct ef4_channel *channel)
383{
384 if (!channel->enabled)
385 return;
386
387 napi_disable(&channel->napi_str);
388 channel->enabled = false;
389}
390
391static void ef4_fini_eventq(struct ef4_channel *channel)
392{
393 if (!channel->eventq_init)
394 return;
395
396 netif_dbg(channel->efx, drv, channel->efx->net_dev,
397 "chan %d fini event queue\n", channel->channel);
398
399 ef4_nic_fini_eventq(channel);
400 channel->eventq_init = false;
401}
402
403static void ef4_remove_eventq(struct ef4_channel *channel)
404{
405 netif_dbg(channel->efx, drv, channel->efx->net_dev,
406 "chan %d remove event queue\n", channel->channel);
407
408 ef4_nic_remove_eventq(channel);
409}
410
411/**************************************************************************
412 *
413 * Channel handling
414 *
415 *************************************************************************/
416
417/* Allocate and initialise a channel structure. */
418static struct ef4_channel *
419ef4_alloc_channel(struct ef4_nic *efx, int i, struct ef4_channel *old_channel)
420{
421 struct ef4_channel *channel;
422 struct ef4_rx_queue *rx_queue;
423 struct ef4_tx_queue *tx_queue;
424 int j;
425
426 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
427 if (!channel)
428 return NULL;
429
430 channel->efx = efx;
431 channel->channel = i;
432 channel->type = &ef4_default_channel_type;
433
434 for (j = 0; j < EF4_TXQ_TYPES; j++) {
435 tx_queue = &channel->tx_queue[j];
436 tx_queue->efx = efx;
437 tx_queue->queue = i * EF4_TXQ_TYPES + j;
438 tx_queue->channel = channel;
439 }
440
441 rx_queue = &channel->rx_queue;
442 rx_queue->efx = efx;
443 timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0);
444
445 return channel;
446}
447
448/* Allocate and initialise a channel structure, copying parameters
449 * (but not resources) from an old channel structure.
450 */
451static struct ef4_channel *
452ef4_copy_channel(const struct ef4_channel *old_channel)
453{
454 struct ef4_channel *channel;
455 struct ef4_rx_queue *rx_queue;
456 struct ef4_tx_queue *tx_queue;
457 int j;
458
459 channel = kmalloc(sizeof(*channel), GFP_KERNEL);
460 if (!channel)
461 return NULL;
462
463 *channel = *old_channel;
464
465 channel->napi_dev = NULL;
466 INIT_HLIST_NODE(&channel->napi_str.napi_hash_node);
467 channel->napi_str.napi_id = 0;
468 channel->napi_str.state = 0;
469 memset(&channel->eventq, 0, sizeof(channel->eventq));
470
471 for (j = 0; j < EF4_TXQ_TYPES; j++) {
472 tx_queue = &channel->tx_queue[j];
473 if (tx_queue->channel)
474 tx_queue->channel = channel;
475 tx_queue->buffer = NULL;
476 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
477 }
478
479 rx_queue = &channel->rx_queue;
480 rx_queue->buffer = NULL;
481 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
482 timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0);
483
484 return channel;
485}
486
487static int ef4_probe_channel(struct ef4_channel *channel)
488{
489 struct ef4_tx_queue *tx_queue;
490 struct ef4_rx_queue *rx_queue;
491 int rc;
492
493 netif_dbg(channel->efx, probe, channel->efx->net_dev,
494 "creating channel %d\n", channel->channel);
495
496 rc = channel->type->pre_probe(channel);
497 if (rc)
498 goto fail;
499
500 rc = ef4_probe_eventq(channel);
501 if (rc)
502 goto fail;
503
504 ef4_for_each_channel_tx_queue(tx_queue, channel) {
505 rc = ef4_probe_tx_queue(tx_queue);
506 if (rc)
507 goto fail;
508 }
509
510 ef4_for_each_channel_rx_queue(rx_queue, channel) {
511 rc = ef4_probe_rx_queue(rx_queue);
512 if (rc)
513 goto fail;
514 }
515
516 return 0;
517
518fail:
519 ef4_remove_channel(channel);
520 return rc;
521}
522
523static void
524ef4_get_channel_name(struct ef4_channel *channel, char *buf, size_t len)
525{
526 struct ef4_nic *efx = channel->efx;
527 const char *type;
528 int number;
529
530 number = channel->channel;
531 if (efx->tx_channel_offset == 0) {
532 type = "";
533 } else if (channel->channel < efx->tx_channel_offset) {
534 type = "-rx";
535 } else {
536 type = "-tx";
537 number -= efx->tx_channel_offset;
538 }
539 snprintf(buf, len, "%s%s-%d", efx->name, type, number);
540}
541
542static void ef4_set_channel_names(struct ef4_nic *efx)
543{
544 struct ef4_channel *channel;
545
546 ef4_for_each_channel(channel, efx)
547 channel->type->get_name(channel,
548 efx->msi_context[channel->channel].name,
549 sizeof(efx->msi_context[0].name));
550}
551
552static int ef4_probe_channels(struct ef4_nic *efx)
553{
554 struct ef4_channel *channel;
555 int rc;
556
557 /* Restart special buffer allocation */
558 efx->next_buffer_table = 0;
559
560 /* Probe channels in reverse, so that any 'extra' channels
561 * use the start of the buffer table. This allows the traffic
562 * channels to be resized without moving them or wasting the
563 * entries before them.
564 */
565 ef4_for_each_channel_rev(channel, efx) {
566 rc = ef4_probe_channel(channel);
567 if (rc) {
568 netif_err(efx, probe, efx->net_dev,
569 "failed to create channel %d\n",
570 channel->channel);
571 goto fail;
572 }
573 }
574 ef4_set_channel_names(efx);
575
576 return 0;
577
578fail:
579 ef4_remove_channels(efx);
580 return rc;
581}
582
583/* Channels are shutdown and reinitialised whilst the NIC is running
584 * to propagate configuration changes (mtu, checksum offload), or
585 * to clear hardware error conditions
586 */
587static void ef4_start_datapath(struct ef4_nic *efx)
588{
589 netdev_features_t old_features = efx->net_dev->features;
590 bool old_rx_scatter = efx->rx_scatter;
591 struct ef4_tx_queue *tx_queue;
592 struct ef4_rx_queue *rx_queue;
593 struct ef4_channel *channel;
594 size_t rx_buf_len;
595
596 /* Calculate the rx buffer allocation parameters required to
597 * support the current MTU, including padding for header
598 * alignment and overruns.
599 */
600 efx->rx_dma_len = (efx->rx_prefix_size +
601 EF4_MAX_FRAME_LEN(efx->net_dev->mtu) +
602 efx->type->rx_buffer_padding);
603 rx_buf_len = (sizeof(struct ef4_rx_page_state) +
604 efx->rx_ip_align + efx->rx_dma_len);
605 if (rx_buf_len <= PAGE_SIZE) {
606 efx->rx_scatter = efx->type->always_rx_scatter;
607 efx->rx_buffer_order = 0;
608 } else if (efx->type->can_rx_scatter) {
609 BUILD_BUG_ON(EF4_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
610 BUILD_BUG_ON(sizeof(struct ef4_rx_page_state) +
611 2 * ALIGN(NET_IP_ALIGN + EF4_RX_USR_BUF_SIZE,
612 EF4_RX_BUF_ALIGNMENT) >
613 PAGE_SIZE);
614 efx->rx_scatter = true;
615 efx->rx_dma_len = EF4_RX_USR_BUF_SIZE;
616 efx->rx_buffer_order = 0;
617 } else {
618 efx->rx_scatter = false;
619 efx->rx_buffer_order = get_order(rx_buf_len);
620 }
621
622 ef4_rx_config_page_split(efx);
623 if (efx->rx_buffer_order)
624 netif_dbg(efx, drv, efx->net_dev,
625 "RX buf len=%u; page order=%u batch=%u\n",
626 efx->rx_dma_len, efx->rx_buffer_order,
627 efx->rx_pages_per_batch);
628 else
629 netif_dbg(efx, drv, efx->net_dev,
630 "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
631 efx->rx_dma_len, efx->rx_page_buf_step,
632 efx->rx_bufs_per_page, efx->rx_pages_per_batch);
633
634 /* Restore previously fixed features in hw_features and remove
635 * features which are fixed now
636 */
637 efx->net_dev->hw_features |= efx->net_dev->features;
638 efx->net_dev->hw_features &= ~efx->fixed_features;
639 efx->net_dev->features |= efx->fixed_features;
640 if (efx->net_dev->features != old_features)
641 netdev_features_change(efx->net_dev);
642
643 /* RX filters may also have scatter-enabled flags */
644 if (efx->rx_scatter != old_rx_scatter)
645 efx->type->filter_update_rx_scatter(efx);
646
647 /* We must keep at least one descriptor in a TX ring empty.
648 * We could avoid this when the queue size does not exactly
649 * match the hardware ring size, but it's not that important.
650 * Therefore we stop the queue when one more skb might fill
651 * the ring completely. We wake it when half way back to
652 * empty.
653 */
654 efx->txq_stop_thresh = efx->txq_entries - ef4_tx_max_skb_descs(efx);
655 efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
656
657 /* Initialise the channels */
658 ef4_for_each_channel(channel, efx) {
659 ef4_for_each_channel_tx_queue(tx_queue, channel) {
660 ef4_init_tx_queue(tx_queue);
661 atomic_inc(&efx->active_queues);
662 }
663
664 ef4_for_each_channel_rx_queue(rx_queue, channel) {
665 ef4_init_rx_queue(rx_queue);
666 atomic_inc(&efx->active_queues);
667 ef4_stop_eventq(channel);
668 ef4_fast_push_rx_descriptors(rx_queue, false);
669 ef4_start_eventq(channel);
670 }
671
672 WARN_ON(channel->rx_pkt_n_frags);
673 }
674
675 if (netif_device_present(efx->net_dev))
676 netif_tx_wake_all_queues(efx->net_dev);
677}
678
679static void ef4_stop_datapath(struct ef4_nic *efx)
680{
681 struct ef4_channel *channel;
682 struct ef4_tx_queue *tx_queue;
683 struct ef4_rx_queue *rx_queue;
684 int rc;
685
686 EF4_ASSERT_RESET_SERIALISED(efx);
687 BUG_ON(efx->port_enabled);
688
689 /* Stop RX refill */
690 ef4_for_each_channel(channel, efx) {
691 ef4_for_each_channel_rx_queue(rx_queue, channel)
692 rx_queue->refill_enabled = false;
693 }
694
695 ef4_for_each_channel(channel, efx) {
696 /* RX packet processing is pipelined, so wait for the
697 * NAPI handler to complete. At least event queue 0
698 * might be kept active by non-data events, so don't
699 * use napi_synchronize() but actually disable NAPI
700 * temporarily.
701 */
702 if (ef4_channel_has_rx_queue(channel)) {
703 ef4_stop_eventq(channel);
704 ef4_start_eventq(channel);
705 }
706 }
707
708 rc = efx->type->fini_dmaq(efx);
709 if (rc && EF4_WORKAROUND_7803(efx)) {
710 /* Schedule a reset to recover from the flush failure. The
711 * descriptor caches reference memory we're about to free,
712 * but falcon_reconfigure_mac_wrapper() won't reconnect
713 * the MACs because of the pending reset.
714 */
715 netif_err(efx, drv, efx->net_dev,
716 "Resetting to recover from flush failure\n");
717 ef4_schedule_reset(efx, RESET_TYPE_ALL);
718 } else if (rc) {
719 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
720 } else {
721 netif_dbg(efx, drv, efx->net_dev,
722 "successfully flushed all queues\n");
723 }
724
725 ef4_for_each_channel(channel, efx) {
726 ef4_for_each_channel_rx_queue(rx_queue, channel)
727 ef4_fini_rx_queue(rx_queue);
728 ef4_for_each_possible_channel_tx_queue(tx_queue, channel)
729 ef4_fini_tx_queue(tx_queue);
730 }
731}
732
733static void ef4_remove_channel(struct ef4_channel *channel)
734{
735 struct ef4_tx_queue *tx_queue;
736 struct ef4_rx_queue *rx_queue;
737
738 netif_dbg(channel->efx, drv, channel->efx->net_dev,
739 "destroy chan %d\n", channel->channel);
740
741 ef4_for_each_channel_rx_queue(rx_queue, channel)
742 ef4_remove_rx_queue(rx_queue);
743 ef4_for_each_possible_channel_tx_queue(tx_queue, channel)
744 ef4_remove_tx_queue(tx_queue);
745 ef4_remove_eventq(channel);
746 channel->type->post_remove(channel);
747}
748
749static void ef4_remove_channels(struct ef4_nic *efx)
750{
751 struct ef4_channel *channel;
752
753 ef4_for_each_channel(channel, efx)
754 ef4_remove_channel(channel);
755}
756
757int
758ef4_realloc_channels(struct ef4_nic *efx, u32 rxq_entries, u32 txq_entries)
759{
760 struct ef4_channel *other_channel[EF4_MAX_CHANNELS], *channel;
761 u32 old_rxq_entries, old_txq_entries;
762 unsigned i, next_buffer_table = 0;
763 int rc, rc2;
764
765 rc = ef4_check_disabled(efx);
766 if (rc)
767 return rc;
768
769 /* Not all channels should be reallocated. We must avoid
770 * reallocating their buffer table entries.
771 */
772 ef4_for_each_channel(channel, efx) {
773 struct ef4_rx_queue *rx_queue;
774 struct ef4_tx_queue *tx_queue;
775
776 if (channel->type->copy)
777 continue;
778 next_buffer_table = max(next_buffer_table,
779 channel->eventq.index +
780 channel->eventq.entries);
781 ef4_for_each_channel_rx_queue(rx_queue, channel)
782 next_buffer_table = max(next_buffer_table,
783 rx_queue->rxd.index +
784 rx_queue->rxd.entries);
785 ef4_for_each_channel_tx_queue(tx_queue, channel)
786 next_buffer_table = max(next_buffer_table,
787 tx_queue->txd.index +
788 tx_queue->txd.entries);
789 }
790
791 ef4_device_detach_sync(efx);
792 ef4_stop_all(efx);
793 ef4_soft_disable_interrupts(efx);
794
795 /* Clone channels (where possible) */
796 memset(other_channel, 0, sizeof(other_channel));
797 for (i = 0; i < efx->n_channels; i++) {
798 channel = efx->channel[i];
799 if (channel->type->copy)
800 channel = channel->type->copy(channel);
801 if (!channel) {
802 rc = -ENOMEM;
803 goto out;
804 }
805 other_channel[i] = channel;
806 }
807
808 /* Swap entry counts and channel pointers */
809 old_rxq_entries = efx->rxq_entries;
810 old_txq_entries = efx->txq_entries;
811 efx->rxq_entries = rxq_entries;
812 efx->txq_entries = txq_entries;
813 for (i = 0; i < efx->n_channels; i++) {
814 swap(efx->channel[i], other_channel[i]);
815 }
816
817 /* Restart buffer table allocation */
818 efx->next_buffer_table = next_buffer_table;
819
820 for (i = 0; i < efx->n_channels; i++) {
821 channel = efx->channel[i];
822 if (!channel->type->copy)
823 continue;
824 rc = ef4_probe_channel(channel);
825 if (rc)
826 goto rollback;
827 ef4_init_napi_channel(efx->channel[i]);
828 }
829
830out:
831 /* Destroy unused channel structures */
832 for (i = 0; i < efx->n_channels; i++) {
833 channel = other_channel[i];
834 if (channel && channel->type->copy) {
835 ef4_fini_napi_channel(channel);
836 ef4_remove_channel(channel);
837 kfree(channel);
838 }
839 }
840
841 rc2 = ef4_soft_enable_interrupts(efx);
842 if (rc2) {
843 rc = rc ? rc : rc2;
844 netif_err(efx, drv, efx->net_dev,
845 "unable to restart interrupts on channel reallocation\n");
846 ef4_schedule_reset(efx, RESET_TYPE_DISABLE);
847 } else {
848 ef4_start_all(efx);
849 netif_device_attach(efx->net_dev);
850 }
851 return rc;
852
853rollback:
854 /* Swap back */
855 efx->rxq_entries = old_rxq_entries;
856 efx->txq_entries = old_txq_entries;
857 for (i = 0; i < efx->n_channels; i++) {
858 swap(efx->channel[i], other_channel[i]);
859 }
860 goto out;
861}
862
863void ef4_schedule_slow_fill(struct ef4_rx_queue *rx_queue)
864{
865 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
866}
867
868static const struct ef4_channel_type ef4_default_channel_type = {
869 .pre_probe = ef4_channel_dummy_op_int,
870 .post_remove = ef4_channel_dummy_op_void,
871 .get_name = ef4_get_channel_name,
872 .copy = ef4_copy_channel,
873 .keep_eventq = false,
874};
875
876int ef4_channel_dummy_op_int(struct ef4_channel *channel)
877{
878 return 0;
879}
880
881void ef4_channel_dummy_op_void(struct ef4_channel *channel)
882{
883}
884
885/**************************************************************************
886 *
887 * Port handling
888 *
889 **************************************************************************/
890
891/* This ensures that the kernel is kept informed (via
892 * netif_carrier_on/off) of the link status, and also maintains the
893 * link status's stop on the port's TX queue.
894 */
895void ef4_link_status_changed(struct ef4_nic *efx)
896{
897 struct ef4_link_state *link_state = &efx->link_state;
898
899 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
900 * that no events are triggered between unregister_netdev() and the
901 * driver unloading. A more general condition is that NETDEV_CHANGE
902 * can only be generated between NETDEV_UP and NETDEV_DOWN */
903 if (!netif_running(efx->net_dev))
904 return;
905
906 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
907 efx->n_link_state_changes++;
908
909 if (link_state->up)
910 netif_carrier_on(efx->net_dev);
911 else
912 netif_carrier_off(efx->net_dev);
913 }
914
915 /* Status message for kernel log */
916 if (link_state->up)
917 netif_info(efx, link, efx->net_dev,
918 "link up at %uMbps %s-duplex (MTU %d)\n",
919 link_state->speed, link_state->fd ? "full" : "half",
920 efx->net_dev->mtu);
921 else
922 netif_info(efx, link, efx->net_dev, "link down\n");
923}
924
925void ef4_link_set_advertising(struct ef4_nic *efx, u32 advertising)
926{
927 efx->link_advertising = advertising;
928 if (advertising) {
929 if (advertising & ADVERTISED_Pause)
930 efx->wanted_fc |= (EF4_FC_TX | EF4_FC_RX);
931 else
932 efx->wanted_fc &= ~(EF4_FC_TX | EF4_FC_RX);
933 if (advertising & ADVERTISED_Asym_Pause)
934 efx->wanted_fc ^= EF4_FC_TX;
935 }
936}
937
938void ef4_link_set_wanted_fc(struct ef4_nic *efx, u8 wanted_fc)
939{
940 efx->wanted_fc = wanted_fc;
941 if (efx->link_advertising) {
942 if (wanted_fc & EF4_FC_RX)
943 efx->link_advertising |= (ADVERTISED_Pause |
944 ADVERTISED_Asym_Pause);
945 else
946 efx->link_advertising &= ~(ADVERTISED_Pause |
947 ADVERTISED_Asym_Pause);
948 if (wanted_fc & EF4_FC_TX)
949 efx->link_advertising ^= ADVERTISED_Asym_Pause;
950 }
951}
952
953static void ef4_fini_port(struct ef4_nic *efx);
954
955/* We assume that efx->type->reconfigure_mac will always try to sync RX
956 * filters and therefore needs to read-lock the filter table against freeing
957 */
958void ef4_mac_reconfigure(struct ef4_nic *efx)
959{
960 down_read(&efx->filter_sem);
961 efx->type->reconfigure_mac(efx);
962 up_read(&efx->filter_sem);
963}
964
965/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
966 * the MAC appropriately. All other PHY configuration changes are pushed
967 * through phy_op->set_link_ksettings(), and pushed asynchronously to the MAC
968 * through ef4_monitor().
969 *
970 * Callers must hold the mac_lock
971 */
972int __ef4_reconfigure_port(struct ef4_nic *efx)
973{
974 enum ef4_phy_mode phy_mode;
975 int rc;
976
977 WARN_ON(!mutex_is_locked(&efx->mac_lock));
978
979 /* Disable PHY transmit in mac level loopbacks */
980 phy_mode = efx->phy_mode;
981 if (LOOPBACK_INTERNAL(efx))
982 efx->phy_mode |= PHY_MODE_TX_DISABLED;
983 else
984 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
985
986 rc = efx->type->reconfigure_port(efx);
987
988 if (rc)
989 efx->phy_mode = phy_mode;
990
991 return rc;
992}
993
994/* Reinitialise the MAC to pick up new PHY settings, even if the port is
995 * disabled. */
996int ef4_reconfigure_port(struct ef4_nic *efx)
997{
998 int rc;
999
1000 EF4_ASSERT_RESET_SERIALISED(efx);
1001
1002 mutex_lock(&efx->mac_lock);
1003 rc = __ef4_reconfigure_port(efx);
1004 mutex_unlock(&efx->mac_lock);
1005
1006 return rc;
1007}
1008
1009/* Asynchronous work item for changing MAC promiscuity and multicast
1010 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
1011 * MAC directly. */
1012static void ef4_mac_work(struct work_struct *data)
1013{
1014 struct ef4_nic *efx = container_of(data, struct ef4_nic, mac_work);
1015
1016 mutex_lock(&efx->mac_lock);
1017 if (efx->port_enabled)
1018 ef4_mac_reconfigure(efx);
1019 mutex_unlock(&efx->mac_lock);
1020}
1021
1022static int ef4_probe_port(struct ef4_nic *efx)
1023{
1024 int rc;
1025
1026 netif_dbg(efx, probe, efx->net_dev, "create port\n");
1027
1028 if (phy_flash_cfg)
1029 efx->phy_mode = PHY_MODE_SPECIAL;
1030
1031 /* Connect up MAC/PHY operations table */
1032 rc = efx->type->probe_port(efx);
1033 if (rc)
1034 return rc;
1035
1036 /* Initialise MAC address to permanent address */
1037 eth_hw_addr_set(efx->net_dev, efx->net_dev->perm_addr);
1038
1039 return 0;
1040}
1041
1042static int ef4_init_port(struct ef4_nic *efx)
1043{
1044 int rc;
1045
1046 netif_dbg(efx, drv, efx->net_dev, "init port\n");
1047
1048 mutex_lock(&efx->mac_lock);
1049
1050 rc = efx->phy_op->init(efx);
1051 if (rc)
1052 goto fail1;
1053
1054 efx->port_initialized = true;
1055
1056 /* Reconfigure the MAC before creating dma queues (required for
1057 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1058 ef4_mac_reconfigure(efx);
1059
1060 /* Ensure the PHY advertises the correct flow control settings */
1061 rc = efx->phy_op->reconfigure(efx);
1062 if (rc && rc != -EPERM)
1063 goto fail2;
1064
1065 mutex_unlock(&efx->mac_lock);
1066 return 0;
1067
1068fail2:
1069 efx->phy_op->fini(efx);
1070fail1:
1071 mutex_unlock(&efx->mac_lock);
1072 return rc;
1073}
1074
1075static void ef4_start_port(struct ef4_nic *efx)
1076{
1077 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1078 BUG_ON(efx->port_enabled);
1079
1080 mutex_lock(&efx->mac_lock);
1081 efx->port_enabled = true;
1082
1083 /* Ensure MAC ingress/egress is enabled */
1084 ef4_mac_reconfigure(efx);
1085
1086 mutex_unlock(&efx->mac_lock);
1087}
1088
1089/* Cancel work for MAC reconfiguration, periodic hardware monitoring
1090 * and the async self-test, wait for them to finish and prevent them
1091 * being scheduled again. This doesn't cover online resets, which
1092 * should only be cancelled when removing the device.
1093 */
1094static void ef4_stop_port(struct ef4_nic *efx)
1095{
1096 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1097
1098 EF4_ASSERT_RESET_SERIALISED(efx);
1099
1100 mutex_lock(&efx->mac_lock);
1101 efx->port_enabled = false;
1102 mutex_unlock(&efx->mac_lock);
1103
1104 /* Serialise against ef4_set_multicast_list() */
1105 netif_addr_lock_bh(efx->net_dev);
1106 netif_addr_unlock_bh(efx->net_dev);
1107
1108 cancel_delayed_work_sync(&efx->monitor_work);
1109 ef4_selftest_async_cancel(efx);
1110 cancel_work_sync(&efx->mac_work);
1111}
1112
1113static void ef4_fini_port(struct ef4_nic *efx)
1114{
1115 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1116
1117 if (!efx->port_initialized)
1118 return;
1119
1120 efx->phy_op->fini(efx);
1121 efx->port_initialized = false;
1122
1123 efx->link_state.up = false;
1124 ef4_link_status_changed(efx);
1125}
1126
1127static void ef4_remove_port(struct ef4_nic *efx)
1128{
1129 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1130
1131 efx->type->remove_port(efx);
1132}
1133
1134/**************************************************************************
1135 *
1136 * NIC handling
1137 *
1138 **************************************************************************/
1139
1140static LIST_HEAD(ef4_primary_list);
1141static LIST_HEAD(ef4_unassociated_list);
1142
1143static bool ef4_same_controller(struct ef4_nic *left, struct ef4_nic *right)
1144{
1145 return left->type == right->type &&
1146 left->vpd_sn && right->vpd_sn &&
1147 !strcmp(left->vpd_sn, right->vpd_sn);
1148}
1149
1150static void ef4_associate(struct ef4_nic *efx)
1151{
1152 struct ef4_nic *other, *next;
1153
1154 if (efx->primary == efx) {
1155 /* Adding primary function; look for secondaries */
1156
1157 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1158 list_add_tail(&efx->node, &ef4_primary_list);
1159
1160 list_for_each_entry_safe(other, next, &ef4_unassociated_list,
1161 node) {
1162 if (ef4_same_controller(efx, other)) {
1163 list_del(&other->node);
1164 netif_dbg(other, probe, other->net_dev,
1165 "moving to secondary list of %s %s\n",
1166 pci_name(efx->pci_dev),
1167 efx->net_dev->name);
1168 list_add_tail(&other->node,
1169 &efx->secondary_list);
1170 other->primary = efx;
1171 }
1172 }
1173 } else {
1174 /* Adding secondary function; look for primary */
1175
1176 list_for_each_entry(other, &ef4_primary_list, node) {
1177 if (ef4_same_controller(efx, other)) {
1178 netif_dbg(efx, probe, efx->net_dev,
1179 "adding to secondary list of %s %s\n",
1180 pci_name(other->pci_dev),
1181 other->net_dev->name);
1182 list_add_tail(&efx->node,
1183 &other->secondary_list);
1184 efx->primary = other;
1185 return;
1186 }
1187 }
1188
1189 netif_dbg(efx, probe, efx->net_dev,
1190 "adding to unassociated list\n");
1191 list_add_tail(&efx->node, &ef4_unassociated_list);
1192 }
1193}
1194
1195static void ef4_dissociate(struct ef4_nic *efx)
1196{
1197 struct ef4_nic *other, *next;
1198
1199 list_del(&efx->node);
1200 efx->primary = NULL;
1201
1202 list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1203 list_del(&other->node);
1204 netif_dbg(other, probe, other->net_dev,
1205 "moving to unassociated list\n");
1206 list_add_tail(&other->node, &ef4_unassociated_list);
1207 other->primary = NULL;
1208 }
1209}
1210
1211/* This configures the PCI device to enable I/O and DMA. */
1212static int ef4_init_io(struct ef4_nic *efx)
1213{
1214 struct pci_dev *pci_dev = efx->pci_dev;
1215 dma_addr_t dma_mask = efx->type->max_dma_mask;
1216 unsigned int mem_map_size = efx->type->mem_map_size(efx);
1217 int rc, bar;
1218
1219 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1220
1221 bar = efx->type->mem_bar;
1222
1223 rc = pci_enable_device(pci_dev);
1224 if (rc) {
1225 netif_err(efx, probe, efx->net_dev,
1226 "failed to enable PCI device\n");
1227 goto fail1;
1228 }
1229
1230 pci_set_master(pci_dev);
1231
1232 /* Set the PCI DMA mask. Try all possibilities from our genuine mask
1233 * down to 32 bits, because some architectures will allow 40 bit
1234 * masks event though they reject 46 bit masks.
1235 */
1236 while (dma_mask > 0x7fffffffUL) {
1237 rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1238 if (rc == 0)
1239 break;
1240 dma_mask >>= 1;
1241 }
1242 if (rc) {
1243 netif_err(efx, probe, efx->net_dev,
1244 "could not find a suitable DMA mask\n");
1245 goto fail2;
1246 }
1247 netif_dbg(efx, probe, efx->net_dev,
1248 "using DMA mask %llx\n", (unsigned long long) dma_mask);
1249
1250 efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1251 rc = pci_request_region(pci_dev, bar, "sfc");
1252 if (rc) {
1253 netif_err(efx, probe, efx->net_dev,
1254 "request for memory BAR failed\n");
1255 rc = -EIO;
1256 goto fail3;
1257 }
1258 efx->membase = ioremap(efx->membase_phys, mem_map_size);
1259 if (!efx->membase) {
1260 netif_err(efx, probe, efx->net_dev,
1261 "could not map memory BAR at %llx+%x\n",
1262 (unsigned long long)efx->membase_phys, mem_map_size);
1263 rc = -ENOMEM;
1264 goto fail4;
1265 }
1266 netif_dbg(efx, probe, efx->net_dev,
1267 "memory BAR at %llx+%x (virtual %p)\n",
1268 (unsigned long long)efx->membase_phys, mem_map_size,
1269 efx->membase);
1270
1271 return 0;
1272
1273 fail4:
1274 pci_release_region(efx->pci_dev, bar);
1275 fail3:
1276 efx->membase_phys = 0;
1277 fail2:
1278 pci_disable_device(efx->pci_dev);
1279 fail1:
1280 return rc;
1281}
1282
1283static void ef4_fini_io(struct ef4_nic *efx)
1284{
1285 int bar;
1286
1287 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1288
1289 if (efx->membase) {
1290 iounmap(efx->membase);
1291 efx->membase = NULL;
1292 }
1293
1294 if (efx->membase_phys) {
1295 bar = efx->type->mem_bar;
1296 pci_release_region(efx->pci_dev, bar);
1297 efx->membase_phys = 0;
1298 }
1299
1300 /* Don't disable bus-mastering if VFs are assigned */
1301 if (!pci_vfs_assigned(efx->pci_dev))
1302 pci_disable_device(efx->pci_dev);
1303}
1304
1305void ef4_set_default_rx_indir_table(struct ef4_nic *efx)
1306{
1307 size_t i;
1308
1309 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1310 efx->rx_indir_table[i] =
1311 ethtool_rxfh_indir_default(i, efx->rss_spread);
1312}
1313
1314static unsigned int ef4_wanted_parallelism(struct ef4_nic *efx)
1315{
1316 cpumask_var_t thread_mask;
1317 unsigned int count;
1318 int cpu;
1319
1320 if (rss_cpus) {
1321 count = rss_cpus;
1322 } else {
1323 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1324 netif_warn(efx, probe, efx->net_dev,
1325 "RSS disabled due to allocation failure\n");
1326 return 1;
1327 }
1328
1329 count = 0;
1330 for_each_online_cpu(cpu) {
1331 if (!cpumask_test_cpu(cpu, thread_mask)) {
1332 ++count;
1333 cpumask_or(thread_mask, thread_mask,
1334 topology_sibling_cpumask(cpu));
1335 }
1336 }
1337
1338 free_cpumask_var(thread_mask);
1339 }
1340
1341 if (count > EF4_MAX_RX_QUEUES) {
1342 netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn,
1343 "Reducing number of rx queues from %u to %u.\n",
1344 count, EF4_MAX_RX_QUEUES);
1345 count = EF4_MAX_RX_QUEUES;
1346 }
1347
1348 return count;
1349}
1350
1351/* Probe the number and type of interrupts we are able to obtain, and
1352 * the resulting numbers of channels and RX queues.
1353 */
1354static int ef4_probe_interrupts(struct ef4_nic *efx)
1355{
1356 unsigned int extra_channels = 0;
1357 unsigned int i, j;
1358 int rc;
1359
1360 for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++)
1361 if (efx->extra_channel_type[i])
1362 ++extra_channels;
1363
1364 if (efx->interrupt_mode == EF4_INT_MODE_MSIX) {
1365 struct msix_entry xentries[EF4_MAX_CHANNELS];
1366 unsigned int n_channels;
1367
1368 n_channels = ef4_wanted_parallelism(efx);
1369 if (ef4_separate_tx_channels)
1370 n_channels *= 2;
1371 n_channels += extra_channels;
1372 n_channels = min(n_channels, efx->max_channels);
1373
1374 for (i = 0; i < n_channels; i++)
1375 xentries[i].entry = i;
1376 rc = pci_enable_msix_range(efx->pci_dev,
1377 xentries, 1, n_channels);
1378 if (rc < 0) {
1379 /* Fall back to single channel MSI */
1380 efx->interrupt_mode = EF4_INT_MODE_MSI;
1381 netif_err(efx, drv, efx->net_dev,
1382 "could not enable MSI-X\n");
1383 } else if (rc < n_channels) {
1384 netif_err(efx, drv, efx->net_dev,
1385 "WARNING: Insufficient MSI-X vectors"
1386 " available (%d < %u).\n", rc, n_channels);
1387 netif_err(efx, drv, efx->net_dev,
1388 "WARNING: Performance may be reduced.\n");
1389 n_channels = rc;
1390 }
1391
1392 if (rc > 0) {
1393 efx->n_channels = n_channels;
1394 if (n_channels > extra_channels)
1395 n_channels -= extra_channels;
1396 if (ef4_separate_tx_channels) {
1397 efx->n_tx_channels = min(max(n_channels / 2,
1398 1U),
1399 efx->max_tx_channels);
1400 efx->n_rx_channels = max(n_channels -
1401 efx->n_tx_channels,
1402 1U);
1403 } else {
1404 efx->n_tx_channels = min(n_channels,
1405 efx->max_tx_channels);
1406 efx->n_rx_channels = n_channels;
1407 }
1408 for (i = 0; i < efx->n_channels; i++)
1409 ef4_get_channel(efx, i)->irq =
1410 xentries[i].vector;
1411 }
1412 }
1413
1414 /* Try single interrupt MSI */
1415 if (efx->interrupt_mode == EF4_INT_MODE_MSI) {
1416 efx->n_channels = 1;
1417 efx->n_rx_channels = 1;
1418 efx->n_tx_channels = 1;
1419 rc = pci_enable_msi(efx->pci_dev);
1420 if (rc == 0) {
1421 ef4_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1422 } else {
1423 netif_err(efx, drv, efx->net_dev,
1424 "could not enable MSI\n");
1425 efx->interrupt_mode = EF4_INT_MODE_LEGACY;
1426 }
1427 }
1428
1429 /* Assume legacy interrupts */
1430 if (efx->interrupt_mode == EF4_INT_MODE_LEGACY) {
1431 efx->n_channels = 1 + (ef4_separate_tx_channels ? 1 : 0);
1432 efx->n_rx_channels = 1;
1433 efx->n_tx_channels = 1;
1434 efx->legacy_irq = efx->pci_dev->irq;
1435 }
1436
1437 /* Assign extra channels if possible */
1438 j = efx->n_channels;
1439 for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++) {
1440 if (!efx->extra_channel_type[i])
1441 continue;
1442 if (efx->interrupt_mode != EF4_INT_MODE_MSIX ||
1443 efx->n_channels <= extra_channels) {
1444 efx->extra_channel_type[i]->handle_no_channel(efx);
1445 } else {
1446 --j;
1447 ef4_get_channel(efx, j)->type =
1448 efx->extra_channel_type[i];
1449 }
1450 }
1451
1452 efx->rss_spread = efx->n_rx_channels;
1453
1454 return 0;
1455}
1456
1457static int ef4_soft_enable_interrupts(struct ef4_nic *efx)
1458{
1459 struct ef4_channel *channel, *end_channel;
1460 int rc;
1461
1462 BUG_ON(efx->state == STATE_DISABLED);
1463
1464 efx->irq_soft_enabled = true;
1465 smp_wmb();
1466
1467 ef4_for_each_channel(channel, efx) {
1468 if (!channel->type->keep_eventq) {
1469 rc = ef4_init_eventq(channel);
1470 if (rc)
1471 goto fail;
1472 }
1473 ef4_start_eventq(channel);
1474 }
1475
1476 return 0;
1477fail:
1478 end_channel = channel;
1479 ef4_for_each_channel(channel, efx) {
1480 if (channel == end_channel)
1481 break;
1482 ef4_stop_eventq(channel);
1483 if (!channel->type->keep_eventq)
1484 ef4_fini_eventq(channel);
1485 }
1486
1487 return rc;
1488}
1489
1490static void ef4_soft_disable_interrupts(struct ef4_nic *efx)
1491{
1492 struct ef4_channel *channel;
1493
1494 if (efx->state == STATE_DISABLED)
1495 return;
1496
1497 efx->irq_soft_enabled = false;
1498 smp_wmb();
1499
1500 if (efx->legacy_irq)
1501 synchronize_irq(efx->legacy_irq);
1502
1503 ef4_for_each_channel(channel, efx) {
1504 if (channel->irq)
1505 synchronize_irq(channel->irq);
1506
1507 ef4_stop_eventq(channel);
1508 if (!channel->type->keep_eventq)
1509 ef4_fini_eventq(channel);
1510 }
1511}
1512
1513static int ef4_enable_interrupts(struct ef4_nic *efx)
1514{
1515 struct ef4_channel *channel, *end_channel;
1516 int rc;
1517
1518 BUG_ON(efx->state == STATE_DISABLED);
1519
1520 if (efx->eeh_disabled_legacy_irq) {
1521 enable_irq(efx->legacy_irq);
1522 efx->eeh_disabled_legacy_irq = false;
1523 }
1524
1525 efx->type->irq_enable_master(efx);
1526
1527 ef4_for_each_channel(channel, efx) {
1528 if (channel->type->keep_eventq) {
1529 rc = ef4_init_eventq(channel);
1530 if (rc)
1531 goto fail;
1532 }
1533 }
1534
1535 rc = ef4_soft_enable_interrupts(efx);
1536 if (rc)
1537 goto fail;
1538
1539 return 0;
1540
1541fail:
1542 end_channel = channel;
1543 ef4_for_each_channel(channel, efx) {
1544 if (channel == end_channel)
1545 break;
1546 if (channel->type->keep_eventq)
1547 ef4_fini_eventq(channel);
1548 }
1549
1550 efx->type->irq_disable_non_ev(efx);
1551
1552 return rc;
1553}
1554
1555static void ef4_disable_interrupts(struct ef4_nic *efx)
1556{
1557 struct ef4_channel *channel;
1558
1559 ef4_soft_disable_interrupts(efx);
1560
1561 ef4_for_each_channel(channel, efx) {
1562 if (channel->type->keep_eventq)
1563 ef4_fini_eventq(channel);
1564 }
1565
1566 efx->type->irq_disable_non_ev(efx);
1567}
1568
1569static void ef4_remove_interrupts(struct ef4_nic *efx)
1570{
1571 struct ef4_channel *channel;
1572
1573 /* Remove MSI/MSI-X interrupts */
1574 ef4_for_each_channel(channel, efx)
1575 channel->irq = 0;
1576 pci_disable_msi(efx->pci_dev);
1577 pci_disable_msix(efx->pci_dev);
1578
1579 /* Remove legacy interrupt */
1580 efx->legacy_irq = 0;
1581}
1582
1583static void ef4_set_channels(struct ef4_nic *efx)
1584{
1585 struct ef4_channel *channel;
1586 struct ef4_tx_queue *tx_queue;
1587
1588 efx->tx_channel_offset =
1589 ef4_separate_tx_channels ?
1590 efx->n_channels - efx->n_tx_channels : 0;
1591
1592 /* We need to mark which channels really have RX and TX
1593 * queues, and adjust the TX queue numbers if we have separate
1594 * RX-only and TX-only channels.
1595 */
1596 ef4_for_each_channel(channel, efx) {
1597 if (channel->channel < efx->n_rx_channels)
1598 channel->rx_queue.core_index = channel->channel;
1599 else
1600 channel->rx_queue.core_index = -1;
1601
1602 ef4_for_each_channel_tx_queue(tx_queue, channel)
1603 tx_queue->queue -= (efx->tx_channel_offset *
1604 EF4_TXQ_TYPES);
1605 }
1606}
1607
1608static int ef4_probe_nic(struct ef4_nic *efx)
1609{
1610 int rc;
1611
1612 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1613
1614 /* Carry out hardware-type specific initialisation */
1615 rc = efx->type->probe(efx);
1616 if (rc)
1617 return rc;
1618
1619 do {
1620 if (!efx->max_channels || !efx->max_tx_channels) {
1621 netif_err(efx, drv, efx->net_dev,
1622 "Insufficient resources to allocate"
1623 " any channels\n");
1624 rc = -ENOSPC;
1625 goto fail1;
1626 }
1627
1628 /* Determine the number of channels and queues by trying
1629 * to hook in MSI-X interrupts.
1630 */
1631 rc = ef4_probe_interrupts(efx);
1632 if (rc)
1633 goto fail1;
1634
1635 ef4_set_channels(efx);
1636
1637 /* dimension_resources can fail with EAGAIN */
1638 rc = efx->type->dimension_resources(efx);
1639 if (rc != 0 && rc != -EAGAIN)
1640 goto fail2;
1641
1642 if (rc == -EAGAIN)
1643 /* try again with new max_channels */
1644 ef4_remove_interrupts(efx);
1645
1646 } while (rc == -EAGAIN);
1647
1648 if (efx->n_channels > 1)
1649 netdev_rss_key_fill(&efx->rx_hash_key,
1650 sizeof(efx->rx_hash_key));
1651 ef4_set_default_rx_indir_table(efx);
1652
1653 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1654 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1655
1656 /* Initialise the interrupt moderation settings */
1657 efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
1658 ef4_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1659 true);
1660
1661 return 0;
1662
1663fail2:
1664 ef4_remove_interrupts(efx);
1665fail1:
1666 efx->type->remove(efx);
1667 return rc;
1668}
1669
1670static void ef4_remove_nic(struct ef4_nic *efx)
1671{
1672 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1673
1674 ef4_remove_interrupts(efx);
1675 efx->type->remove(efx);
1676}
1677
1678static int ef4_probe_filters(struct ef4_nic *efx)
1679{
1680 int rc;
1681
1682 spin_lock_init(&efx->filter_lock);
1683 init_rwsem(&efx->filter_sem);
1684 mutex_lock(&efx->mac_lock);
1685 down_write(&efx->filter_sem);
1686 rc = efx->type->filter_table_probe(efx);
1687 if (rc)
1688 goto out_unlock;
1689
1690#ifdef CONFIG_RFS_ACCEL
1691 if (efx->type->offload_features & NETIF_F_NTUPLE) {
1692 struct ef4_channel *channel;
1693 int i, success = 1;
1694
1695 ef4_for_each_channel(channel, efx) {
1696 channel->rps_flow_id =
1697 kcalloc(efx->type->max_rx_ip_filters,
1698 sizeof(*channel->rps_flow_id),
1699 GFP_KERNEL);
1700 if (!channel->rps_flow_id)
1701 success = 0;
1702 else
1703 for (i = 0;
1704 i < efx->type->max_rx_ip_filters;
1705 ++i)
1706 channel->rps_flow_id[i] =
1707 RPS_FLOW_ID_INVALID;
1708 }
1709
1710 if (!success) {
1711 ef4_for_each_channel(channel, efx)
1712 kfree(channel->rps_flow_id);
1713 efx->type->filter_table_remove(efx);
1714 rc = -ENOMEM;
1715 goto out_unlock;
1716 }
1717
1718 efx->rps_expire_index = efx->rps_expire_channel = 0;
1719 }
1720#endif
1721out_unlock:
1722 up_write(&efx->filter_sem);
1723 mutex_unlock(&efx->mac_lock);
1724 return rc;
1725}
1726
1727static void ef4_remove_filters(struct ef4_nic *efx)
1728{
1729#ifdef CONFIG_RFS_ACCEL
1730 struct ef4_channel *channel;
1731
1732 ef4_for_each_channel(channel, efx)
1733 kfree(channel->rps_flow_id);
1734#endif
1735 down_write(&efx->filter_sem);
1736 efx->type->filter_table_remove(efx);
1737 up_write(&efx->filter_sem);
1738}
1739
1740static void ef4_restore_filters(struct ef4_nic *efx)
1741{
1742 down_read(&efx->filter_sem);
1743 efx->type->filter_table_restore(efx);
1744 up_read(&efx->filter_sem);
1745}
1746
1747/**************************************************************************
1748 *
1749 * NIC startup/shutdown
1750 *
1751 *************************************************************************/
1752
1753static int ef4_probe_all(struct ef4_nic *efx)
1754{
1755 int rc;
1756
1757 rc = ef4_probe_nic(efx);
1758 if (rc) {
1759 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1760 goto fail1;
1761 }
1762
1763 rc = ef4_probe_port(efx);
1764 if (rc) {
1765 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1766 goto fail2;
1767 }
1768
1769 BUILD_BUG_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_RXQ_MIN_ENT);
1770 if (WARN_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_TXQ_MIN_ENT(efx))) {
1771 rc = -EINVAL;
1772 goto fail3;
1773 }
1774 efx->rxq_entries = efx->txq_entries = EF4_DEFAULT_DMAQ_SIZE;
1775
1776 rc = ef4_probe_filters(efx);
1777 if (rc) {
1778 netif_err(efx, probe, efx->net_dev,
1779 "failed to create filter tables\n");
1780 goto fail4;
1781 }
1782
1783 rc = ef4_probe_channels(efx);
1784 if (rc)
1785 goto fail5;
1786
1787 return 0;
1788
1789 fail5:
1790 ef4_remove_filters(efx);
1791 fail4:
1792 fail3:
1793 ef4_remove_port(efx);
1794 fail2:
1795 ef4_remove_nic(efx);
1796 fail1:
1797 return rc;
1798}
1799
1800/* If the interface is supposed to be running but is not, start
1801 * the hardware and software data path, regular activity for the port
1802 * (MAC statistics, link polling, etc.) and schedule the port to be
1803 * reconfigured. Interrupts must already be enabled. This function
1804 * is safe to call multiple times, so long as the NIC is not disabled.
1805 * Requires the RTNL lock.
1806 */
1807static void ef4_start_all(struct ef4_nic *efx)
1808{
1809 EF4_ASSERT_RESET_SERIALISED(efx);
1810 BUG_ON(efx->state == STATE_DISABLED);
1811
1812 /* Check that it is appropriate to restart the interface. All
1813 * of these flags are safe to read under just the rtnl lock */
1814 if (efx->port_enabled || !netif_running(efx->net_dev) ||
1815 efx->reset_pending)
1816 return;
1817
1818 ef4_start_port(efx);
1819 ef4_start_datapath(efx);
1820
1821 /* Start the hardware monitor if there is one */
1822 if (efx->type->monitor != NULL)
1823 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1824 ef4_monitor_interval);
1825
1826 efx->type->start_stats(efx);
1827 efx->type->pull_stats(efx);
1828 spin_lock_bh(&efx->stats_lock);
1829 efx->type->update_stats(efx, NULL, NULL);
1830 spin_unlock_bh(&efx->stats_lock);
1831}
1832
1833/* Quiesce the hardware and software data path, and regular activity
1834 * for the port without bringing the link down. Safe to call multiple
1835 * times with the NIC in almost any state, but interrupts should be
1836 * enabled. Requires the RTNL lock.
1837 */
1838static void ef4_stop_all(struct ef4_nic *efx)
1839{
1840 EF4_ASSERT_RESET_SERIALISED(efx);
1841
1842 /* port_enabled can be read safely under the rtnl lock */
1843 if (!efx->port_enabled)
1844 return;
1845
1846 /* update stats before we go down so we can accurately count
1847 * rx_nodesc_drops
1848 */
1849 efx->type->pull_stats(efx);
1850 spin_lock_bh(&efx->stats_lock);
1851 efx->type->update_stats(efx, NULL, NULL);
1852 spin_unlock_bh(&efx->stats_lock);
1853 efx->type->stop_stats(efx);
1854 ef4_stop_port(efx);
1855
1856 /* Stop the kernel transmit interface. This is only valid if
1857 * the device is stopped or detached; otherwise the watchdog
1858 * may fire immediately.
1859 */
1860 WARN_ON(netif_running(efx->net_dev) &&
1861 netif_device_present(efx->net_dev));
1862 netif_tx_disable(efx->net_dev);
1863
1864 ef4_stop_datapath(efx);
1865}
1866
1867static void ef4_remove_all(struct ef4_nic *efx)
1868{
1869 ef4_remove_channels(efx);
1870 ef4_remove_filters(efx);
1871 ef4_remove_port(efx);
1872 ef4_remove_nic(efx);
1873}
1874
1875/**************************************************************************
1876 *
1877 * Interrupt moderation
1878 *
1879 **************************************************************************/
1880unsigned int ef4_usecs_to_ticks(struct ef4_nic *efx, unsigned int usecs)
1881{
1882 if (usecs == 0)
1883 return 0;
1884 if (usecs * 1000 < efx->timer_quantum_ns)
1885 return 1; /* never round down to 0 */
1886 return usecs * 1000 / efx->timer_quantum_ns;
1887}
1888
1889/* Set interrupt moderation parameters */
1890int ef4_init_irq_moderation(struct ef4_nic *efx, unsigned int tx_usecs,
1891 unsigned int rx_usecs, bool rx_adaptive,
1892 bool rx_may_override_tx)
1893{
1894 struct ef4_channel *channel;
1895 unsigned int timer_max_us;
1896
1897 EF4_ASSERT_RESET_SERIALISED(efx);
1898
1899 timer_max_us = efx->timer_max_ns / 1000;
1900
1901 if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
1902 return -EINVAL;
1903
1904 if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
1905 !rx_may_override_tx) {
1906 netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1907 "RX and TX IRQ moderation must be equal\n");
1908 return -EINVAL;
1909 }
1910
1911 efx->irq_rx_adaptive = rx_adaptive;
1912 efx->irq_rx_moderation_us = rx_usecs;
1913 ef4_for_each_channel(channel, efx) {
1914 if (ef4_channel_has_rx_queue(channel))
1915 channel->irq_moderation_us = rx_usecs;
1916 else if (ef4_channel_has_tx_queues(channel))
1917 channel->irq_moderation_us = tx_usecs;
1918 }
1919
1920 return 0;
1921}
1922
1923void ef4_get_irq_moderation(struct ef4_nic *efx, unsigned int *tx_usecs,
1924 unsigned int *rx_usecs, bool *rx_adaptive)
1925{
1926 *rx_adaptive = efx->irq_rx_adaptive;
1927 *rx_usecs = efx->irq_rx_moderation_us;
1928
1929 /* If channels are shared between RX and TX, so is IRQ
1930 * moderation. Otherwise, IRQ moderation is the same for all
1931 * TX channels and is not adaptive.
1932 */
1933 if (efx->tx_channel_offset == 0) {
1934 *tx_usecs = *rx_usecs;
1935 } else {
1936 struct ef4_channel *tx_channel;
1937
1938 tx_channel = efx->channel[efx->tx_channel_offset];
1939 *tx_usecs = tx_channel->irq_moderation_us;
1940 }
1941}
1942
1943/**************************************************************************
1944 *
1945 * Hardware monitor
1946 *
1947 **************************************************************************/
1948
1949/* Run periodically off the general workqueue */
1950static void ef4_monitor(struct work_struct *data)
1951{
1952 struct ef4_nic *efx = container_of(data, struct ef4_nic,
1953 monitor_work.work);
1954
1955 netif_vdbg(efx, timer, efx->net_dev,
1956 "hardware monitor executing on CPU %d\n",
1957 raw_smp_processor_id());
1958 BUG_ON(efx->type->monitor == NULL);
1959
1960 /* If the mac_lock is already held then it is likely a port
1961 * reconfiguration is already in place, which will likely do
1962 * most of the work of monitor() anyway. */
1963 if (mutex_trylock(&efx->mac_lock)) {
1964 if (efx->port_enabled)
1965 efx->type->monitor(efx);
1966 mutex_unlock(&efx->mac_lock);
1967 }
1968
1969 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1970 ef4_monitor_interval);
1971}
1972
1973/**************************************************************************
1974 *
1975 * ioctls
1976 *
1977 *************************************************************************/
1978
1979/* Net device ioctl
1980 * Context: process, rtnl_lock() held.
1981 */
1982static int ef4_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1983{
1984 struct ef4_nic *efx = netdev_priv(net_dev);
1985 struct mii_ioctl_data *data = if_mii(ifr);
1986
1987 /* Convert phy_id from older PRTAD/DEVAD format */
1988 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1989 (data->phy_id & 0xfc00) == 0x0400)
1990 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1991
1992 return mdio_mii_ioctl(&efx->mdio, data, cmd);
1993}
1994
1995/**************************************************************************
1996 *
1997 * NAPI interface
1998 *
1999 **************************************************************************/
2000
2001static void ef4_init_napi_channel(struct ef4_channel *channel)
2002{
2003 struct ef4_nic *efx = channel->efx;
2004
2005 channel->napi_dev = efx->net_dev;
2006 netif_napi_add(channel->napi_dev, &channel->napi_str, ef4_poll);
2007}
2008
2009static void ef4_init_napi(struct ef4_nic *efx)
2010{
2011 struct ef4_channel *channel;
2012
2013 ef4_for_each_channel(channel, efx)
2014 ef4_init_napi_channel(channel);
2015}
2016
2017static void ef4_fini_napi_channel(struct ef4_channel *channel)
2018{
2019 if (channel->napi_dev)
2020 netif_napi_del(&channel->napi_str);
2021
2022 channel->napi_dev = NULL;
2023}
2024
2025static void ef4_fini_napi(struct ef4_nic *efx)
2026{
2027 struct ef4_channel *channel;
2028
2029 ef4_for_each_channel(channel, efx)
2030 ef4_fini_napi_channel(channel);
2031}
2032
2033/**************************************************************************
2034 *
2035 * Kernel net device interface
2036 *
2037 *************************************************************************/
2038
2039/* Context: process, rtnl_lock() held. */
2040int ef4_net_open(struct net_device *net_dev)
2041{
2042 struct ef4_nic *efx = netdev_priv(net_dev);
2043 int rc;
2044
2045 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2046 raw_smp_processor_id());
2047
2048 rc = ef4_check_disabled(efx);
2049 if (rc)
2050 return rc;
2051 if (efx->phy_mode & PHY_MODE_SPECIAL)
2052 return -EBUSY;
2053
2054 /* Notify the kernel of the link state polled during driver load,
2055 * before the monitor starts running */
2056 ef4_link_status_changed(efx);
2057
2058 ef4_start_all(efx);
2059 ef4_selftest_async_start(efx);
2060 return 0;
2061}
2062
2063/* Context: process, rtnl_lock() held.
2064 * Note that the kernel will ignore our return code; this method
2065 * should really be a void.
2066 */
2067int ef4_net_stop(struct net_device *net_dev)
2068{
2069 struct ef4_nic *efx = netdev_priv(net_dev);
2070
2071 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2072 raw_smp_processor_id());
2073
2074 /* Stop the device and flush all the channels */
2075 ef4_stop_all(efx);
2076
2077 return 0;
2078}
2079
2080/* Context: process, rcu_read_lock or RTNL held, non-blocking. */
2081static void ef4_net_stats(struct net_device *net_dev,
2082 struct rtnl_link_stats64 *stats)
2083{
2084 struct ef4_nic *efx = netdev_priv(net_dev);
2085
2086 spin_lock_bh(&efx->stats_lock);
2087 efx->type->update_stats(efx, NULL, stats);
2088 spin_unlock_bh(&efx->stats_lock);
2089}
2090
2091/* Context: netif_tx_lock held, BHs disabled. */
2092static void ef4_watchdog(struct net_device *net_dev, unsigned int txqueue)
2093{
2094 struct ef4_nic *efx = netdev_priv(net_dev);
2095
2096 netif_err(efx, tx_err, efx->net_dev,
2097 "TX stuck with port_enabled=%d: resetting channels\n",
2098 efx->port_enabled);
2099
2100 ef4_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2101}
2102
2103
2104/* Context: process, rtnl_lock() held. */
2105static int ef4_change_mtu(struct net_device *net_dev, int new_mtu)
2106{
2107 struct ef4_nic *efx = netdev_priv(net_dev);
2108 int rc;
2109
2110 rc = ef4_check_disabled(efx);
2111 if (rc)
2112 return rc;
2113
2114 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2115
2116 ef4_device_detach_sync(efx);
2117 ef4_stop_all(efx);
2118
2119 mutex_lock(&efx->mac_lock);
2120 WRITE_ONCE(net_dev->mtu, new_mtu);
2121 ef4_mac_reconfigure(efx);
2122 mutex_unlock(&efx->mac_lock);
2123
2124 ef4_start_all(efx);
2125 netif_device_attach(efx->net_dev);
2126 return 0;
2127}
2128
2129static int ef4_set_mac_address(struct net_device *net_dev, void *data)
2130{
2131 struct ef4_nic *efx = netdev_priv(net_dev);
2132 struct sockaddr *addr = data;
2133 u8 *new_addr = addr->sa_data;
2134 u8 old_addr[6];
2135 int rc;
2136
2137 if (!is_valid_ether_addr(new_addr)) {
2138 netif_err(efx, drv, efx->net_dev,
2139 "invalid ethernet MAC address requested: %pM\n",
2140 new_addr);
2141 return -EADDRNOTAVAIL;
2142 }
2143
2144 /* save old address */
2145 ether_addr_copy(old_addr, net_dev->dev_addr);
2146 eth_hw_addr_set(net_dev, new_addr);
2147 if (efx->type->set_mac_address) {
2148 rc = efx->type->set_mac_address(efx);
2149 if (rc) {
2150 eth_hw_addr_set(net_dev, old_addr);
2151 return rc;
2152 }
2153 }
2154
2155 /* Reconfigure the MAC */
2156 mutex_lock(&efx->mac_lock);
2157 ef4_mac_reconfigure(efx);
2158 mutex_unlock(&efx->mac_lock);
2159
2160 return 0;
2161}
2162
2163/* Context: netif_addr_lock held, BHs disabled. */
2164static void ef4_set_rx_mode(struct net_device *net_dev)
2165{
2166 struct ef4_nic *efx = netdev_priv(net_dev);
2167
2168 if (efx->port_enabled)
2169 queue_work(efx->workqueue, &efx->mac_work);
2170 /* Otherwise ef4_start_port() will do this */
2171}
2172
2173static int ef4_set_features(struct net_device *net_dev, netdev_features_t data)
2174{
2175 struct ef4_nic *efx = netdev_priv(net_dev);
2176 int rc;
2177
2178 /* If disabling RX n-tuple filtering, clear existing filters */
2179 if (net_dev->features & ~data & NETIF_F_NTUPLE) {
2180 rc = efx->type->filter_clear_rx(efx, EF4_FILTER_PRI_MANUAL);
2181 if (rc)
2182 return rc;
2183 }
2184
2185 /* If Rx VLAN filter is changed, update filters via mac_reconfigure */
2186 if ((net_dev->features ^ data) & NETIF_F_HW_VLAN_CTAG_FILTER) {
2187 /* ef4_set_rx_mode() will schedule MAC work to update filters
2188 * when a new features are finally set in net_dev.
2189 */
2190 ef4_set_rx_mode(net_dev);
2191 }
2192
2193 return 0;
2194}
2195
2196static const struct net_device_ops ef4_netdev_ops = {
2197 .ndo_open = ef4_net_open,
2198 .ndo_stop = ef4_net_stop,
2199 .ndo_get_stats64 = ef4_net_stats,
2200 .ndo_tx_timeout = ef4_watchdog,
2201 .ndo_start_xmit = ef4_hard_start_xmit,
2202 .ndo_validate_addr = eth_validate_addr,
2203 .ndo_eth_ioctl = ef4_ioctl,
2204 .ndo_change_mtu = ef4_change_mtu,
2205 .ndo_set_mac_address = ef4_set_mac_address,
2206 .ndo_set_rx_mode = ef4_set_rx_mode,
2207 .ndo_set_features = ef4_set_features,
2208 .ndo_setup_tc = ef4_setup_tc,
2209#ifdef CONFIG_RFS_ACCEL
2210 .ndo_rx_flow_steer = ef4_filter_rfs,
2211#endif
2212};
2213
2214static void ef4_update_name(struct ef4_nic *efx)
2215{
2216 strcpy(efx->name, efx->net_dev->name);
2217 ef4_mtd_rename(efx);
2218 ef4_set_channel_names(efx);
2219}
2220
2221static int ef4_netdev_event(struct notifier_block *this,
2222 unsigned long event, void *ptr)
2223{
2224 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2225
2226 if ((net_dev->netdev_ops == &ef4_netdev_ops) &&
2227 event == NETDEV_CHANGENAME)
2228 ef4_update_name(netdev_priv(net_dev));
2229
2230 return NOTIFY_DONE;
2231}
2232
2233static struct notifier_block ef4_netdev_notifier = {
2234 .notifier_call = ef4_netdev_event,
2235};
2236
2237static ssize_t
2238phy_type_show(struct device *dev, struct device_attribute *attr, char *buf)
2239{
2240 struct ef4_nic *efx = dev_get_drvdata(dev);
2241 return sprintf(buf, "%d\n", efx->phy_type);
2242}
2243static DEVICE_ATTR_RO(phy_type);
2244
2245static int ef4_register_netdev(struct ef4_nic *efx)
2246{
2247 struct net_device *net_dev = efx->net_dev;
2248 struct ef4_channel *channel;
2249 int rc;
2250
2251 net_dev->watchdog_timeo = 5 * HZ;
2252 net_dev->irq = efx->pci_dev->irq;
2253 net_dev->netdev_ops = &ef4_netdev_ops;
2254 net_dev->ethtool_ops = &ef4_ethtool_ops;
2255 netif_set_tso_max_segs(net_dev, EF4_TSO_MAX_SEGS);
2256 net_dev->min_mtu = EF4_MIN_MTU;
2257 net_dev->max_mtu = EF4_MAX_MTU;
2258
2259 rtnl_lock();
2260
2261 /* Enable resets to be scheduled and check whether any were
2262 * already requested. If so, the NIC is probably hosed so we
2263 * abort.
2264 */
2265 efx->state = STATE_READY;
2266 smp_mb(); /* ensure we change state before checking reset_pending */
2267 if (efx->reset_pending) {
2268 netif_err(efx, probe, efx->net_dev,
2269 "aborting probe due to scheduled reset\n");
2270 rc = -EIO;
2271 goto fail_locked;
2272 }
2273
2274 rc = dev_alloc_name(net_dev, net_dev->name);
2275 if (rc < 0)
2276 goto fail_locked;
2277 ef4_update_name(efx);
2278
2279 /* Always start with carrier off; PHY events will detect the link */
2280 netif_carrier_off(net_dev);
2281
2282 rc = register_netdevice(net_dev);
2283 if (rc)
2284 goto fail_locked;
2285
2286 ef4_for_each_channel(channel, efx) {
2287 struct ef4_tx_queue *tx_queue;
2288 ef4_for_each_channel_tx_queue(tx_queue, channel)
2289 ef4_init_tx_queue_core_txq(tx_queue);
2290 }
2291
2292 ef4_associate(efx);
2293
2294 rtnl_unlock();
2295
2296 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2297 if (rc) {
2298 netif_err(efx, drv, efx->net_dev,
2299 "failed to init net dev attributes\n");
2300 goto fail_registered;
2301 }
2302 return 0;
2303
2304fail_registered:
2305 rtnl_lock();
2306 ef4_dissociate(efx);
2307 unregister_netdevice(net_dev);
2308fail_locked:
2309 efx->state = STATE_UNINIT;
2310 rtnl_unlock();
2311 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2312 return rc;
2313}
2314
2315static void ef4_unregister_netdev(struct ef4_nic *efx)
2316{
2317 if (!efx->net_dev)
2318 return;
2319
2320 BUG_ON(netdev_priv(efx->net_dev) != efx);
2321
2322 if (ef4_dev_registered(efx)) {
2323 strscpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2324 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2325 unregister_netdev(efx->net_dev);
2326 }
2327}
2328
2329/**************************************************************************
2330 *
2331 * Device reset and suspend
2332 *
2333 **************************************************************************/
2334
2335/* Tears down the entire software state and most of the hardware state
2336 * before reset. */
2337void ef4_reset_down(struct ef4_nic *efx, enum reset_type method)
2338{
2339 EF4_ASSERT_RESET_SERIALISED(efx);
2340
2341 ef4_stop_all(efx);
2342 ef4_disable_interrupts(efx);
2343
2344 mutex_lock(&efx->mac_lock);
2345 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2346 method != RESET_TYPE_DATAPATH)
2347 efx->phy_op->fini(efx);
2348 efx->type->fini(efx);
2349}
2350
2351/* This function will always ensure that the locks acquired in
2352 * ef4_reset_down() are released. A failure return code indicates
2353 * that we were unable to reinitialise the hardware, and the
2354 * driver should be disabled. If ok is false, then the rx and tx
2355 * engines are not restarted, pending a RESET_DISABLE. */
2356int ef4_reset_up(struct ef4_nic *efx, enum reset_type method, bool ok)
2357{
2358 int rc;
2359
2360 EF4_ASSERT_RESET_SERIALISED(efx);
2361
2362 /* Ensure that SRAM is initialised even if we're disabling the device */
2363 rc = efx->type->init(efx);
2364 if (rc) {
2365 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2366 goto fail;
2367 }
2368
2369 if (!ok)
2370 goto fail;
2371
2372 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2373 method != RESET_TYPE_DATAPATH) {
2374 rc = efx->phy_op->init(efx);
2375 if (rc)
2376 goto fail;
2377 rc = efx->phy_op->reconfigure(efx);
2378 if (rc && rc != -EPERM)
2379 netif_err(efx, drv, efx->net_dev,
2380 "could not restore PHY settings\n");
2381 }
2382
2383 rc = ef4_enable_interrupts(efx);
2384 if (rc)
2385 goto fail;
2386
2387 down_read(&efx->filter_sem);
2388 ef4_restore_filters(efx);
2389 up_read(&efx->filter_sem);
2390
2391 mutex_unlock(&efx->mac_lock);
2392
2393 ef4_start_all(efx);
2394
2395 return 0;
2396
2397fail:
2398 efx->port_initialized = false;
2399
2400 mutex_unlock(&efx->mac_lock);
2401
2402 return rc;
2403}
2404
2405/* Reset the NIC using the specified method. Note that the reset may
2406 * fail, in which case the card will be left in an unusable state.
2407 *
2408 * Caller must hold the rtnl_lock.
2409 */
2410int ef4_reset(struct ef4_nic *efx, enum reset_type method)
2411{
2412 int rc, rc2;
2413 bool disabled;
2414
2415 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2416 RESET_TYPE(method));
2417
2418 ef4_device_detach_sync(efx);
2419 ef4_reset_down(efx, method);
2420
2421 rc = efx->type->reset(efx, method);
2422 if (rc) {
2423 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2424 goto out;
2425 }
2426
2427 /* Clear flags for the scopes we covered. We assume the NIC and
2428 * driver are now quiescent so that there is no race here.
2429 */
2430 if (method < RESET_TYPE_MAX_METHOD)
2431 efx->reset_pending &= -(1 << (method + 1));
2432 else /* it doesn't fit into the well-ordered scope hierarchy */
2433 __clear_bit(method, &efx->reset_pending);
2434
2435 /* Reinitialise bus-mastering, which may have been turned off before
2436 * the reset was scheduled. This is still appropriate, even in the
2437 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2438 * can respond to requests. */
2439 pci_set_master(efx->pci_dev);
2440
2441out:
2442 /* Leave device stopped if necessary */
2443 disabled = rc ||
2444 method == RESET_TYPE_DISABLE ||
2445 method == RESET_TYPE_RECOVER_OR_DISABLE;
2446 rc2 = ef4_reset_up(efx, method, !disabled);
2447 if (rc2) {
2448 disabled = true;
2449 if (!rc)
2450 rc = rc2;
2451 }
2452
2453 if (disabled) {
2454 dev_close(efx->net_dev);
2455 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2456 efx->state = STATE_DISABLED;
2457 } else {
2458 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2459 netif_device_attach(efx->net_dev);
2460 }
2461 return rc;
2462}
2463
2464/* Try recovery mechanisms.
2465 * For now only EEH is supported.
2466 * Returns 0 if the recovery mechanisms are unsuccessful.
2467 * Returns a non-zero value otherwise.
2468 */
2469int ef4_try_recovery(struct ef4_nic *efx)
2470{
2471#ifdef CONFIG_EEH
2472 /* A PCI error can occur and not be seen by EEH because nothing
2473 * happens on the PCI bus. In this case the driver may fail and
2474 * schedule a 'recover or reset', leading to this recovery handler.
2475 * Manually call the eeh failure check function.
2476 */
2477 struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2478 if (eeh_dev_check_failure(eehdev)) {
2479 /* The EEH mechanisms will handle the error and reset the
2480 * device if necessary.
2481 */
2482 return 1;
2483 }
2484#endif
2485 return 0;
2486}
2487
2488/* The worker thread exists so that code that cannot sleep can
2489 * schedule a reset for later.
2490 */
2491static void ef4_reset_work(struct work_struct *data)
2492{
2493 struct ef4_nic *efx = container_of(data, struct ef4_nic, reset_work);
2494 unsigned long pending;
2495 enum reset_type method;
2496
2497 pending = READ_ONCE(efx->reset_pending);
2498 method = fls(pending) - 1;
2499
2500 if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2501 method == RESET_TYPE_RECOVER_OR_ALL) &&
2502 ef4_try_recovery(efx))
2503 return;
2504
2505 if (!pending)
2506 return;
2507
2508 rtnl_lock();
2509
2510 /* We checked the state in ef4_schedule_reset() but it may
2511 * have changed by now. Now that we have the RTNL lock,
2512 * it cannot change again.
2513 */
2514 if (efx->state == STATE_READY)
2515 (void)ef4_reset(efx, method);
2516
2517 rtnl_unlock();
2518}
2519
2520void ef4_schedule_reset(struct ef4_nic *efx, enum reset_type type)
2521{
2522 enum reset_type method;
2523
2524 if (efx->state == STATE_RECOVERY) {
2525 netif_dbg(efx, drv, efx->net_dev,
2526 "recovering: skip scheduling %s reset\n",
2527 RESET_TYPE(type));
2528 return;
2529 }
2530
2531 switch (type) {
2532 case RESET_TYPE_INVISIBLE:
2533 case RESET_TYPE_ALL:
2534 case RESET_TYPE_RECOVER_OR_ALL:
2535 case RESET_TYPE_WORLD:
2536 case RESET_TYPE_DISABLE:
2537 case RESET_TYPE_RECOVER_OR_DISABLE:
2538 case RESET_TYPE_DATAPATH:
2539 method = type;
2540 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2541 RESET_TYPE(method));
2542 break;
2543 default:
2544 method = efx->type->map_reset_reason(type);
2545 netif_dbg(efx, drv, efx->net_dev,
2546 "scheduling %s reset for %s\n",
2547 RESET_TYPE(method), RESET_TYPE(type));
2548 break;
2549 }
2550
2551 set_bit(method, &efx->reset_pending);
2552 smp_mb(); /* ensure we change reset_pending before checking state */
2553
2554 /* If we're not READY then just leave the flags set as the cue
2555 * to abort probing or reschedule the reset later.
2556 */
2557 if (READ_ONCE(efx->state) != STATE_READY)
2558 return;
2559
2560 queue_work(reset_workqueue, &efx->reset_work);
2561}
2562
2563/**************************************************************************
2564 *
2565 * List of NICs we support
2566 *
2567 **************************************************************************/
2568
2569/* PCI device ID table */
2570static const struct pci_device_id ef4_pci_table[] = {
2571 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2572 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2573 .driver_data = (unsigned long) &falcon_a1_nic_type},
2574 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2575 PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2576 .driver_data = (unsigned long) &falcon_b0_nic_type},
2577 {0} /* end of list */
2578};
2579
2580/**************************************************************************
2581 *
2582 * Dummy PHY/MAC operations
2583 *
2584 * Can be used for some unimplemented operations
2585 * Needed so all function pointers are valid and do not have to be tested
2586 * before use
2587 *
2588 **************************************************************************/
2589int ef4_port_dummy_op_int(struct ef4_nic *efx)
2590{
2591 return 0;
2592}
2593void ef4_port_dummy_op_void(struct ef4_nic *efx) {}
2594
2595static bool ef4_port_dummy_op_poll(struct ef4_nic *efx)
2596{
2597 return false;
2598}
2599
2600static const struct ef4_phy_operations ef4_dummy_phy_operations = {
2601 .init = ef4_port_dummy_op_int,
2602 .reconfigure = ef4_port_dummy_op_int,
2603 .poll = ef4_port_dummy_op_poll,
2604 .fini = ef4_port_dummy_op_void,
2605};
2606
2607/**************************************************************************
2608 *
2609 * Data housekeeping
2610 *
2611 **************************************************************************/
2612
2613/* This zeroes out and then fills in the invariants in a struct
2614 * ef4_nic (including all sub-structures).
2615 */
2616static int ef4_init_struct(struct ef4_nic *efx,
2617 struct pci_dev *pci_dev, struct net_device *net_dev)
2618{
2619 int i;
2620
2621 /* Initialise common structures */
2622 INIT_LIST_HEAD(&efx->node);
2623 INIT_LIST_HEAD(&efx->secondary_list);
2624 spin_lock_init(&efx->biu_lock);
2625#ifdef CONFIG_SFC_FALCON_MTD
2626 INIT_LIST_HEAD(&efx->mtd_list);
2627#endif
2628 INIT_WORK(&efx->reset_work, ef4_reset_work);
2629 INIT_DELAYED_WORK(&efx->monitor_work, ef4_monitor);
2630 INIT_DELAYED_WORK(&efx->selftest_work, ef4_selftest_async_work);
2631 efx->pci_dev = pci_dev;
2632 efx->msg_enable = debug;
2633 efx->state = STATE_UNINIT;
2634 strscpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2635
2636 efx->net_dev = net_dev;
2637 efx->rx_prefix_size = efx->type->rx_prefix_size;
2638 efx->rx_ip_align =
2639 NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2640 efx->rx_packet_hash_offset =
2641 efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2642 efx->rx_packet_ts_offset =
2643 efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2644 spin_lock_init(&efx->stats_lock);
2645 mutex_init(&efx->mac_lock);
2646 efx->phy_op = &ef4_dummy_phy_operations;
2647 efx->mdio.dev = net_dev;
2648 INIT_WORK(&efx->mac_work, ef4_mac_work);
2649 init_waitqueue_head(&efx->flush_wq);
2650
2651 for (i = 0; i < EF4_MAX_CHANNELS; i++) {
2652 efx->channel[i] = ef4_alloc_channel(efx, i, NULL);
2653 if (!efx->channel[i])
2654 goto fail;
2655 efx->msi_context[i].efx = efx;
2656 efx->msi_context[i].index = i;
2657 }
2658
2659 /* Higher numbered interrupt modes are less capable! */
2660 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2661 interrupt_mode);
2662
2663 /* Would be good to use the net_dev name, but we're too early */
2664 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2665 pci_name(pci_dev));
2666 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2667 if (!efx->workqueue)
2668 goto fail;
2669
2670 return 0;
2671
2672fail:
2673 ef4_fini_struct(efx);
2674 return -ENOMEM;
2675}
2676
2677static void ef4_fini_struct(struct ef4_nic *efx)
2678{
2679 int i;
2680
2681 for (i = 0; i < EF4_MAX_CHANNELS; i++)
2682 kfree(efx->channel[i]);
2683
2684 kfree(efx->vpd_sn);
2685
2686 if (efx->workqueue) {
2687 destroy_workqueue(efx->workqueue);
2688 efx->workqueue = NULL;
2689 }
2690}
2691
2692void ef4_update_sw_stats(struct ef4_nic *efx, u64 *stats)
2693{
2694 u64 n_rx_nodesc_trunc = 0;
2695 struct ef4_channel *channel;
2696
2697 ef4_for_each_channel(channel, efx)
2698 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
2699 stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
2700 stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
2701}
2702
2703/**************************************************************************
2704 *
2705 * PCI interface
2706 *
2707 **************************************************************************/
2708
2709/* Main body of final NIC shutdown code
2710 * This is called only at module unload (or hotplug removal).
2711 */
2712static void ef4_pci_remove_main(struct ef4_nic *efx)
2713{
2714 /* Flush reset_work. It can no longer be scheduled since we
2715 * are not READY.
2716 */
2717 BUG_ON(efx->state == STATE_READY);
2718 cancel_work_sync(&efx->reset_work);
2719
2720 ef4_disable_interrupts(efx);
2721 ef4_nic_fini_interrupt(efx);
2722 ef4_fini_port(efx);
2723 efx->type->fini(efx);
2724 ef4_fini_napi(efx);
2725 ef4_remove_all(efx);
2726}
2727
2728/* Final NIC shutdown
2729 * This is called only at module unload (or hotplug removal). A PF can call
2730 * this on its VFs to ensure they are unbound first.
2731 */
2732static void ef4_pci_remove(struct pci_dev *pci_dev)
2733{
2734 struct ef4_nic *efx;
2735
2736 efx = pci_get_drvdata(pci_dev);
2737 if (!efx)
2738 return;
2739
2740 /* Mark the NIC as fini, then stop the interface */
2741 rtnl_lock();
2742 ef4_dissociate(efx);
2743 dev_close(efx->net_dev);
2744 ef4_disable_interrupts(efx);
2745 efx->state = STATE_UNINIT;
2746 rtnl_unlock();
2747
2748 ef4_unregister_netdev(efx);
2749
2750 ef4_mtd_remove(efx);
2751
2752 ef4_pci_remove_main(efx);
2753
2754 ef4_fini_io(efx);
2755 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2756
2757 ef4_fini_struct(efx);
2758 free_netdev(efx->net_dev);
2759};
2760
2761/* NIC VPD information
2762 * Called during probe to display the part number of the installed NIC.
2763 */
2764static void ef4_probe_vpd_strings(struct ef4_nic *efx)
2765{
2766 struct pci_dev *dev = efx->pci_dev;
2767 unsigned int vpd_size, kw_len;
2768 u8 *vpd_data;
2769 int start;
2770
2771 vpd_data = pci_vpd_alloc(dev, &vpd_size);
2772 if (IS_ERR(vpd_data)) {
2773 pci_warn(dev, "Unable to read VPD\n");
2774 return;
2775 }
2776
2777 start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
2778 PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
2779 if (start < 0)
2780 pci_warn(dev, "Part number not found or incomplete\n");
2781 else
2782 pci_info(dev, "Part Number : %.*s\n", kw_len, vpd_data + start);
2783
2784 start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
2785 PCI_VPD_RO_KEYWORD_SERIALNO, &kw_len);
2786 if (start < 0)
2787 pci_warn(dev, "Serial number not found or incomplete\n");
2788 else
2789 efx->vpd_sn = kmemdup_nul(vpd_data + start, kw_len, GFP_KERNEL);
2790
2791 kfree(vpd_data);
2792}
2793
2794
2795/* Main body of NIC initialisation
2796 * This is called at module load (or hotplug insertion, theoretically).
2797 */
2798static int ef4_pci_probe_main(struct ef4_nic *efx)
2799{
2800 int rc;
2801
2802 /* Do start-of-day initialisation */
2803 rc = ef4_probe_all(efx);
2804 if (rc)
2805 goto fail1;
2806
2807 ef4_init_napi(efx);
2808
2809 rc = efx->type->init(efx);
2810 if (rc) {
2811 netif_err(efx, probe, efx->net_dev,
2812 "failed to initialise NIC\n");
2813 goto fail3;
2814 }
2815
2816 rc = ef4_init_port(efx);
2817 if (rc) {
2818 netif_err(efx, probe, efx->net_dev,
2819 "failed to initialise port\n");
2820 goto fail4;
2821 }
2822
2823 rc = ef4_nic_init_interrupt(efx);
2824 if (rc)
2825 goto fail5;
2826 rc = ef4_enable_interrupts(efx);
2827 if (rc)
2828 goto fail6;
2829
2830 return 0;
2831
2832 fail6:
2833 ef4_nic_fini_interrupt(efx);
2834 fail5:
2835 ef4_fini_port(efx);
2836 fail4:
2837 efx->type->fini(efx);
2838 fail3:
2839 ef4_fini_napi(efx);
2840 ef4_remove_all(efx);
2841 fail1:
2842 return rc;
2843}
2844
2845/* NIC initialisation
2846 *
2847 * This is called at module load (or hotplug insertion,
2848 * theoretically). It sets up PCI mappings, resets the NIC,
2849 * sets up and registers the network devices with the kernel and hooks
2850 * the interrupt service routine. It does not prepare the device for
2851 * transmission; this is left to the first time one of the network
2852 * interfaces is brought up (i.e. ef4_net_open).
2853 */
2854static int ef4_pci_probe(struct pci_dev *pci_dev,
2855 const struct pci_device_id *entry)
2856{
2857 struct net_device *net_dev;
2858 struct ef4_nic *efx;
2859 int rc;
2860
2861 /* Allocate and initialise a struct net_device and struct ef4_nic */
2862 net_dev = alloc_etherdev_mqs(sizeof(*efx), EF4_MAX_CORE_TX_QUEUES,
2863 EF4_MAX_RX_QUEUES);
2864 if (!net_dev)
2865 return -ENOMEM;
2866 efx = netdev_priv(net_dev);
2867 efx->type = (const struct ef4_nic_type *) entry->driver_data;
2868 efx->fixed_features |= NETIF_F_HIGHDMA;
2869
2870 pci_set_drvdata(pci_dev, efx);
2871 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2872 rc = ef4_init_struct(efx, pci_dev, net_dev);
2873 if (rc)
2874 goto fail1;
2875
2876 netif_info(efx, probe, efx->net_dev,
2877 "Solarflare NIC detected\n");
2878
2879 ef4_probe_vpd_strings(efx);
2880
2881 /* Set up basic I/O (BAR mappings etc) */
2882 rc = ef4_init_io(efx);
2883 if (rc)
2884 goto fail2;
2885
2886 rc = ef4_pci_probe_main(efx);
2887 if (rc)
2888 goto fail3;
2889
2890 net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
2891 NETIF_F_RXCSUM);
2892 /* Mask for features that also apply to VLAN devices */
2893 net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
2894 NETIF_F_HIGHDMA | NETIF_F_RXCSUM);
2895
2896 net_dev->hw_features = net_dev->features & ~efx->fixed_features;
2897
2898 /* Disable VLAN filtering by default. It may be enforced if
2899 * the feature is fixed (i.e. VLAN filters are required to
2900 * receive VLAN tagged packets due to vPort restrictions).
2901 */
2902 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
2903 net_dev->features |= efx->fixed_features;
2904
2905 rc = ef4_register_netdev(efx);
2906 if (rc)
2907 goto fail4;
2908
2909 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2910
2911 /* Try to create MTDs, but allow this to fail */
2912 rtnl_lock();
2913 rc = ef4_mtd_probe(efx);
2914 rtnl_unlock();
2915 if (rc && rc != -EPERM)
2916 netif_warn(efx, probe, efx->net_dev,
2917 "failed to create MTDs (%d)\n", rc);
2918
2919 return 0;
2920
2921 fail4:
2922 ef4_pci_remove_main(efx);
2923 fail3:
2924 ef4_fini_io(efx);
2925 fail2:
2926 ef4_fini_struct(efx);
2927 fail1:
2928 WARN_ON(rc > 0);
2929 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2930 free_netdev(net_dev);
2931 return rc;
2932}
2933
2934static int ef4_pm_freeze(struct device *dev)
2935{
2936 struct ef4_nic *efx = dev_get_drvdata(dev);
2937
2938 rtnl_lock();
2939
2940 if (efx->state != STATE_DISABLED) {
2941 efx->state = STATE_UNINIT;
2942
2943 ef4_device_detach_sync(efx);
2944
2945 ef4_stop_all(efx);
2946 ef4_disable_interrupts(efx);
2947 }
2948
2949 rtnl_unlock();
2950
2951 return 0;
2952}
2953
2954static int ef4_pm_thaw(struct device *dev)
2955{
2956 int rc;
2957 struct ef4_nic *efx = dev_get_drvdata(dev);
2958
2959 rtnl_lock();
2960
2961 if (efx->state != STATE_DISABLED) {
2962 rc = ef4_enable_interrupts(efx);
2963 if (rc)
2964 goto fail;
2965
2966 mutex_lock(&efx->mac_lock);
2967 efx->phy_op->reconfigure(efx);
2968 mutex_unlock(&efx->mac_lock);
2969
2970 ef4_start_all(efx);
2971
2972 netif_device_attach(efx->net_dev);
2973
2974 efx->state = STATE_READY;
2975
2976 efx->type->resume_wol(efx);
2977 }
2978
2979 rtnl_unlock();
2980
2981 /* Reschedule any quenched resets scheduled during ef4_pm_freeze() */
2982 queue_work(reset_workqueue, &efx->reset_work);
2983
2984 return 0;
2985
2986fail:
2987 rtnl_unlock();
2988
2989 return rc;
2990}
2991
2992static int ef4_pm_poweroff(struct device *dev)
2993{
2994 struct pci_dev *pci_dev = to_pci_dev(dev);
2995 struct ef4_nic *efx = pci_get_drvdata(pci_dev);
2996
2997 efx->type->fini(efx);
2998
2999 efx->reset_pending = 0;
3000
3001 pci_save_state(pci_dev);
3002 return pci_set_power_state(pci_dev, PCI_D3hot);
3003}
3004
3005/* Used for both resume and restore */
3006static int ef4_pm_resume(struct device *dev)
3007{
3008 struct pci_dev *pci_dev = to_pci_dev(dev);
3009 struct ef4_nic *efx = pci_get_drvdata(pci_dev);
3010 int rc;
3011
3012 rc = pci_set_power_state(pci_dev, PCI_D0);
3013 if (rc)
3014 return rc;
3015 pci_restore_state(pci_dev);
3016 rc = pci_enable_device(pci_dev);
3017 if (rc)
3018 return rc;
3019 pci_set_master(efx->pci_dev);
3020 rc = efx->type->reset(efx, RESET_TYPE_ALL);
3021 if (rc)
3022 return rc;
3023 rc = efx->type->init(efx);
3024 if (rc)
3025 return rc;
3026 rc = ef4_pm_thaw(dev);
3027 return rc;
3028}
3029
3030static int ef4_pm_suspend(struct device *dev)
3031{
3032 int rc;
3033
3034 ef4_pm_freeze(dev);
3035 rc = ef4_pm_poweroff(dev);
3036 if (rc)
3037 ef4_pm_resume(dev);
3038 return rc;
3039}
3040
3041static const struct dev_pm_ops ef4_pm_ops = {
3042 .suspend = ef4_pm_suspend,
3043 .resume = ef4_pm_resume,
3044 .freeze = ef4_pm_freeze,
3045 .thaw = ef4_pm_thaw,
3046 .poweroff = ef4_pm_poweroff,
3047 .restore = ef4_pm_resume,
3048};
3049
3050/* A PCI error affecting this device was detected.
3051 * At this point MMIO and DMA may be disabled.
3052 * Stop the software path and request a slot reset.
3053 */
3054static pci_ers_result_t ef4_io_error_detected(struct pci_dev *pdev,
3055 pci_channel_state_t state)
3056{
3057 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3058 struct ef4_nic *efx = pci_get_drvdata(pdev);
3059
3060 if (state == pci_channel_io_perm_failure)
3061 return PCI_ERS_RESULT_DISCONNECT;
3062
3063 rtnl_lock();
3064
3065 if (efx->state != STATE_DISABLED) {
3066 efx->state = STATE_RECOVERY;
3067 efx->reset_pending = 0;
3068
3069 ef4_device_detach_sync(efx);
3070
3071 ef4_stop_all(efx);
3072 ef4_disable_interrupts(efx);
3073
3074 status = PCI_ERS_RESULT_NEED_RESET;
3075 } else {
3076 /* If the interface is disabled we don't want to do anything
3077 * with it.
3078 */
3079 status = PCI_ERS_RESULT_RECOVERED;
3080 }
3081
3082 rtnl_unlock();
3083
3084 pci_disable_device(pdev);
3085
3086 return status;
3087}
3088
3089/* Fake a successful reset, which will be performed later in ef4_io_resume. */
3090static pci_ers_result_t ef4_io_slot_reset(struct pci_dev *pdev)
3091{
3092 struct ef4_nic *efx = pci_get_drvdata(pdev);
3093 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3094
3095 if (pci_enable_device(pdev)) {
3096 netif_err(efx, hw, efx->net_dev,
3097 "Cannot re-enable PCI device after reset.\n");
3098 status = PCI_ERS_RESULT_DISCONNECT;
3099 }
3100
3101 return status;
3102}
3103
3104/* Perform the actual reset and resume I/O operations. */
3105static void ef4_io_resume(struct pci_dev *pdev)
3106{
3107 struct ef4_nic *efx = pci_get_drvdata(pdev);
3108 int rc;
3109
3110 rtnl_lock();
3111
3112 if (efx->state == STATE_DISABLED)
3113 goto out;
3114
3115 rc = ef4_reset(efx, RESET_TYPE_ALL);
3116 if (rc) {
3117 netif_err(efx, hw, efx->net_dev,
3118 "ef4_reset failed after PCI error (%d)\n", rc);
3119 } else {
3120 efx->state = STATE_READY;
3121 netif_dbg(efx, hw, efx->net_dev,
3122 "Done resetting and resuming IO after PCI error.\n");
3123 }
3124
3125out:
3126 rtnl_unlock();
3127}
3128
3129/* For simplicity and reliability, we always require a slot reset and try to
3130 * reset the hardware when a pci error affecting the device is detected.
3131 * We leave both the link_reset and mmio_enabled callback unimplemented:
3132 * with our request for slot reset the mmio_enabled callback will never be
3133 * called, and the link_reset callback is not used by AER or EEH mechanisms.
3134 */
3135static const struct pci_error_handlers ef4_err_handlers = {
3136 .error_detected = ef4_io_error_detected,
3137 .slot_reset = ef4_io_slot_reset,
3138 .resume = ef4_io_resume,
3139};
3140
3141static struct pci_driver ef4_pci_driver = {
3142 .name = KBUILD_MODNAME,
3143 .id_table = ef4_pci_table,
3144 .probe = ef4_pci_probe,
3145 .remove = ef4_pci_remove,
3146 .driver.pm = &ef4_pm_ops,
3147 .err_handler = &ef4_err_handlers,
3148};
3149
3150/**************************************************************************
3151 *
3152 * Kernel module interface
3153 *
3154 *************************************************************************/
3155
3156module_param(interrupt_mode, uint, 0444);
3157MODULE_PARM_DESC(interrupt_mode,
3158 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3159
3160static int __init ef4_init_module(void)
3161{
3162 int rc;
3163
3164 printk(KERN_INFO "Solarflare Falcon driver v" EF4_DRIVER_VERSION "\n");
3165
3166 rc = register_netdevice_notifier(&ef4_netdev_notifier);
3167 if (rc)
3168 goto err_notifier;
3169
3170 reset_workqueue = create_singlethread_workqueue("sfc_reset");
3171 if (!reset_workqueue) {
3172 rc = -ENOMEM;
3173 goto err_reset;
3174 }
3175
3176 rc = pci_register_driver(&ef4_pci_driver);
3177 if (rc < 0)
3178 goto err_pci;
3179
3180 return 0;
3181
3182 err_pci:
3183 destroy_workqueue(reset_workqueue);
3184 err_reset:
3185 unregister_netdevice_notifier(&ef4_netdev_notifier);
3186 err_notifier:
3187 return rc;
3188}
3189
3190static void __exit ef4_exit_module(void)
3191{
3192 printk(KERN_INFO "Solarflare Falcon driver unloading\n");
3193
3194 pci_unregister_driver(&ef4_pci_driver);
3195 destroy_workqueue(reset_workqueue);
3196 unregister_netdevice_notifier(&ef4_netdev_notifier);
3197
3198}
3199
3200module_init(ef4_init_module);
3201module_exit(ef4_exit_module);
3202
3203MODULE_AUTHOR("Solarflare Communications and "
3204 "Michael Brown <mbrown@fensystems.co.uk>");
3205MODULE_DESCRIPTION("Solarflare Falcon network driver");
3206MODULE_LICENSE("GPL");
3207MODULE_DEVICE_TABLE(pci, ef4_pci_table);
3208MODULE_VERSION(EF4_DRIVER_VERSION);
1// SPDX-License-Identifier: GPL-2.0-only
2/****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2005-2013 Solarflare Communications Inc.
6 */
7
8#include <linux/module.h>
9#include <linux/pci.h>
10#include <linux/netdevice.h>
11#include <linux/etherdevice.h>
12#include <linux/delay.h>
13#include <linux/notifier.h>
14#include <linux/ip.h>
15#include <linux/tcp.h>
16#include <linux/in.h>
17#include <linux/ethtool.h>
18#include <linux/topology.h>
19#include <linux/gfp.h>
20#include <linux/aer.h>
21#include <linux/interrupt.h>
22#include "net_driver.h"
23#include "efx.h"
24#include "nic.h"
25#include "selftest.h"
26
27#include "workarounds.h"
28
29/**************************************************************************
30 *
31 * Type name strings
32 *
33 **************************************************************************
34 */
35
36/* Loopback mode names (see LOOPBACK_MODE()) */
37const unsigned int ef4_loopback_mode_max = LOOPBACK_MAX;
38const char *const ef4_loopback_mode_names[] = {
39 [LOOPBACK_NONE] = "NONE",
40 [LOOPBACK_DATA] = "DATAPATH",
41 [LOOPBACK_GMAC] = "GMAC",
42 [LOOPBACK_XGMII] = "XGMII",
43 [LOOPBACK_XGXS] = "XGXS",
44 [LOOPBACK_XAUI] = "XAUI",
45 [LOOPBACK_GMII] = "GMII",
46 [LOOPBACK_SGMII] = "SGMII",
47 [LOOPBACK_XGBR] = "XGBR",
48 [LOOPBACK_XFI] = "XFI",
49 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
50 [LOOPBACK_GMII_FAR] = "GMII_FAR",
51 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
52 [LOOPBACK_XFI_FAR] = "XFI_FAR",
53 [LOOPBACK_GPHY] = "GPHY",
54 [LOOPBACK_PHYXS] = "PHYXS",
55 [LOOPBACK_PCS] = "PCS",
56 [LOOPBACK_PMAPMD] = "PMA/PMD",
57 [LOOPBACK_XPORT] = "XPORT",
58 [LOOPBACK_XGMII_WS] = "XGMII_WS",
59 [LOOPBACK_XAUI_WS] = "XAUI_WS",
60 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
61 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
62 [LOOPBACK_GMII_WS] = "GMII_WS",
63 [LOOPBACK_XFI_WS] = "XFI_WS",
64 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
65 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
66};
67
68const unsigned int ef4_reset_type_max = RESET_TYPE_MAX;
69const char *const ef4_reset_type_names[] = {
70 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
71 [RESET_TYPE_ALL] = "ALL",
72 [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL",
73 [RESET_TYPE_WORLD] = "WORLD",
74 [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
75 [RESET_TYPE_DATAPATH] = "DATAPATH",
76 [RESET_TYPE_DISABLE] = "DISABLE",
77 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
78 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
79 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
80 [RESET_TYPE_DMA_ERROR] = "DMA_ERROR",
81 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
82};
83
84/* Reset workqueue. If any NIC has a hardware failure then a reset will be
85 * queued onto this work queue. This is not a per-nic work queue, because
86 * ef4_reset_work() acquires the rtnl lock, so resets are naturally serialised.
87 */
88static struct workqueue_struct *reset_workqueue;
89
90/* How often and how many times to poll for a reset while waiting for a
91 * BIST that another function started to complete.
92 */
93#define BIST_WAIT_DELAY_MS 100
94#define BIST_WAIT_DELAY_COUNT 100
95
96/**************************************************************************
97 *
98 * Configurable values
99 *
100 *************************************************************************/
101
102/*
103 * Use separate channels for TX and RX events
104 *
105 * Set this to 1 to use separate channels for TX and RX. It allows us
106 * to control interrupt affinity separately for TX and RX.
107 *
108 * This is only used in MSI-X interrupt mode
109 */
110bool ef4_separate_tx_channels;
111module_param(ef4_separate_tx_channels, bool, 0444);
112MODULE_PARM_DESC(ef4_separate_tx_channels,
113 "Use separate channels for TX and RX");
114
115/* This is the weight assigned to each of the (per-channel) virtual
116 * NAPI devices.
117 */
118static int napi_weight = 64;
119
120/* This is the time (in jiffies) between invocations of the hardware
121 * monitor.
122 * On Falcon-based NICs, this will:
123 * - Check the on-board hardware monitor;
124 * - Poll the link state and reconfigure the hardware as necessary.
125 * On Siena-based NICs for power systems with EEH support, this will give EEH a
126 * chance to start.
127 */
128static unsigned int ef4_monitor_interval = 1 * HZ;
129
130/* Initial interrupt moderation settings. They can be modified after
131 * module load with ethtool.
132 *
133 * The default for RX should strike a balance between increasing the
134 * round-trip latency and reducing overhead.
135 */
136static unsigned int rx_irq_mod_usec = 60;
137
138/* Initial interrupt moderation settings. They can be modified after
139 * module load with ethtool.
140 *
141 * This default is chosen to ensure that a 10G link does not go idle
142 * while a TX queue is stopped after it has become full. A queue is
143 * restarted when it drops below half full. The time this takes (assuming
144 * worst case 3 descriptors per packet and 1024 descriptors) is
145 * 512 / 3 * 1.2 = 205 usec.
146 */
147static unsigned int tx_irq_mod_usec = 150;
148
149/* This is the first interrupt mode to try out of:
150 * 0 => MSI-X
151 * 1 => MSI
152 * 2 => legacy
153 */
154static unsigned int interrupt_mode;
155
156/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
157 * i.e. the number of CPUs among which we may distribute simultaneous
158 * interrupt handling.
159 *
160 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
161 * The default (0) means to assign an interrupt to each core.
162 */
163static unsigned int rss_cpus;
164module_param(rss_cpus, uint, 0444);
165MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
166
167static bool phy_flash_cfg;
168module_param(phy_flash_cfg, bool, 0644);
169MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
170
171static unsigned irq_adapt_low_thresh = 8000;
172module_param(irq_adapt_low_thresh, uint, 0644);
173MODULE_PARM_DESC(irq_adapt_low_thresh,
174 "Threshold score for reducing IRQ moderation");
175
176static unsigned irq_adapt_high_thresh = 16000;
177module_param(irq_adapt_high_thresh, uint, 0644);
178MODULE_PARM_DESC(irq_adapt_high_thresh,
179 "Threshold score for increasing IRQ moderation");
180
181static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
182 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
183 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
184 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
185module_param(debug, uint, 0);
186MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
187
188/**************************************************************************
189 *
190 * Utility functions and prototypes
191 *
192 *************************************************************************/
193
194static int ef4_soft_enable_interrupts(struct ef4_nic *efx);
195static void ef4_soft_disable_interrupts(struct ef4_nic *efx);
196static void ef4_remove_channel(struct ef4_channel *channel);
197static void ef4_remove_channels(struct ef4_nic *efx);
198static const struct ef4_channel_type ef4_default_channel_type;
199static void ef4_remove_port(struct ef4_nic *efx);
200static void ef4_init_napi_channel(struct ef4_channel *channel);
201static void ef4_fini_napi(struct ef4_nic *efx);
202static void ef4_fini_napi_channel(struct ef4_channel *channel);
203static void ef4_fini_struct(struct ef4_nic *efx);
204static void ef4_start_all(struct ef4_nic *efx);
205static void ef4_stop_all(struct ef4_nic *efx);
206
207#define EF4_ASSERT_RESET_SERIALISED(efx) \
208 do { \
209 if ((efx->state == STATE_READY) || \
210 (efx->state == STATE_RECOVERY) || \
211 (efx->state == STATE_DISABLED)) \
212 ASSERT_RTNL(); \
213 } while (0)
214
215static int ef4_check_disabled(struct ef4_nic *efx)
216{
217 if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
218 netif_err(efx, drv, efx->net_dev,
219 "device is disabled due to earlier errors\n");
220 return -EIO;
221 }
222 return 0;
223}
224
225/**************************************************************************
226 *
227 * Event queue processing
228 *
229 *************************************************************************/
230
231/* Process channel's event queue
232 *
233 * This function is responsible for processing the event queue of a
234 * single channel. The caller must guarantee that this function will
235 * never be concurrently called more than once on the same channel,
236 * though different channels may be being processed concurrently.
237 */
238static int ef4_process_channel(struct ef4_channel *channel, int budget)
239{
240 struct ef4_tx_queue *tx_queue;
241 int spent;
242
243 if (unlikely(!channel->enabled))
244 return 0;
245
246 ef4_for_each_channel_tx_queue(tx_queue, channel) {
247 tx_queue->pkts_compl = 0;
248 tx_queue->bytes_compl = 0;
249 }
250
251 spent = ef4_nic_process_eventq(channel, budget);
252 if (spent && ef4_channel_has_rx_queue(channel)) {
253 struct ef4_rx_queue *rx_queue =
254 ef4_channel_get_rx_queue(channel);
255
256 ef4_rx_flush_packet(channel);
257 ef4_fast_push_rx_descriptors(rx_queue, true);
258 }
259
260 /* Update BQL */
261 ef4_for_each_channel_tx_queue(tx_queue, channel) {
262 if (tx_queue->bytes_compl) {
263 netdev_tx_completed_queue(tx_queue->core_txq,
264 tx_queue->pkts_compl, tx_queue->bytes_compl);
265 }
266 }
267
268 return spent;
269}
270
271/* NAPI poll handler
272 *
273 * NAPI guarantees serialisation of polls of the same device, which
274 * provides the guarantee required by ef4_process_channel().
275 */
276static void ef4_update_irq_mod(struct ef4_nic *efx, struct ef4_channel *channel)
277{
278 int step = efx->irq_mod_step_us;
279
280 if (channel->irq_mod_score < irq_adapt_low_thresh) {
281 if (channel->irq_moderation_us > step) {
282 channel->irq_moderation_us -= step;
283 efx->type->push_irq_moderation(channel);
284 }
285 } else if (channel->irq_mod_score > irq_adapt_high_thresh) {
286 if (channel->irq_moderation_us <
287 efx->irq_rx_moderation_us) {
288 channel->irq_moderation_us += step;
289 efx->type->push_irq_moderation(channel);
290 }
291 }
292
293 channel->irq_count = 0;
294 channel->irq_mod_score = 0;
295}
296
297static int ef4_poll(struct napi_struct *napi, int budget)
298{
299 struct ef4_channel *channel =
300 container_of(napi, struct ef4_channel, napi_str);
301 struct ef4_nic *efx = channel->efx;
302 int spent;
303
304 netif_vdbg(efx, intr, efx->net_dev,
305 "channel %d NAPI poll executing on CPU %d\n",
306 channel->channel, raw_smp_processor_id());
307
308 spent = ef4_process_channel(channel, budget);
309
310 if (spent < budget) {
311 if (ef4_channel_has_rx_queue(channel) &&
312 efx->irq_rx_adaptive &&
313 unlikely(++channel->irq_count == 1000)) {
314 ef4_update_irq_mod(efx, channel);
315 }
316
317 ef4_filter_rfs_expire(channel);
318
319 /* There is no race here; although napi_disable() will
320 * only wait for napi_complete(), this isn't a problem
321 * since ef4_nic_eventq_read_ack() will have no effect if
322 * interrupts have already been disabled.
323 */
324 napi_complete_done(napi, spent);
325 ef4_nic_eventq_read_ack(channel);
326 }
327
328 return spent;
329}
330
331/* Create event queue
332 * Event queue memory allocations are done only once. If the channel
333 * is reset, the memory buffer will be reused; this guards against
334 * errors during channel reset and also simplifies interrupt handling.
335 */
336static int ef4_probe_eventq(struct ef4_channel *channel)
337{
338 struct ef4_nic *efx = channel->efx;
339 unsigned long entries;
340
341 netif_dbg(efx, probe, efx->net_dev,
342 "chan %d create event queue\n", channel->channel);
343
344 /* Build an event queue with room for one event per tx and rx buffer,
345 * plus some extra for link state events and MCDI completions. */
346 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
347 EF4_BUG_ON_PARANOID(entries > EF4_MAX_EVQ_SIZE);
348 channel->eventq_mask = max(entries, EF4_MIN_EVQ_SIZE) - 1;
349
350 return ef4_nic_probe_eventq(channel);
351}
352
353/* Prepare channel's event queue */
354static int ef4_init_eventq(struct ef4_channel *channel)
355{
356 struct ef4_nic *efx = channel->efx;
357 int rc;
358
359 EF4_WARN_ON_PARANOID(channel->eventq_init);
360
361 netif_dbg(efx, drv, efx->net_dev,
362 "chan %d init event queue\n", channel->channel);
363
364 rc = ef4_nic_init_eventq(channel);
365 if (rc == 0) {
366 efx->type->push_irq_moderation(channel);
367 channel->eventq_read_ptr = 0;
368 channel->eventq_init = true;
369 }
370 return rc;
371}
372
373/* Enable event queue processing and NAPI */
374void ef4_start_eventq(struct ef4_channel *channel)
375{
376 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
377 "chan %d start event queue\n", channel->channel);
378
379 /* Make sure the NAPI handler sees the enabled flag set */
380 channel->enabled = true;
381 smp_wmb();
382
383 napi_enable(&channel->napi_str);
384 ef4_nic_eventq_read_ack(channel);
385}
386
387/* Disable event queue processing and NAPI */
388void ef4_stop_eventq(struct ef4_channel *channel)
389{
390 if (!channel->enabled)
391 return;
392
393 napi_disable(&channel->napi_str);
394 channel->enabled = false;
395}
396
397static void ef4_fini_eventq(struct ef4_channel *channel)
398{
399 if (!channel->eventq_init)
400 return;
401
402 netif_dbg(channel->efx, drv, channel->efx->net_dev,
403 "chan %d fini event queue\n", channel->channel);
404
405 ef4_nic_fini_eventq(channel);
406 channel->eventq_init = false;
407}
408
409static void ef4_remove_eventq(struct ef4_channel *channel)
410{
411 netif_dbg(channel->efx, drv, channel->efx->net_dev,
412 "chan %d remove event queue\n", channel->channel);
413
414 ef4_nic_remove_eventq(channel);
415}
416
417/**************************************************************************
418 *
419 * Channel handling
420 *
421 *************************************************************************/
422
423/* Allocate and initialise a channel structure. */
424static struct ef4_channel *
425ef4_alloc_channel(struct ef4_nic *efx, int i, struct ef4_channel *old_channel)
426{
427 struct ef4_channel *channel;
428 struct ef4_rx_queue *rx_queue;
429 struct ef4_tx_queue *tx_queue;
430 int j;
431
432 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
433 if (!channel)
434 return NULL;
435
436 channel->efx = efx;
437 channel->channel = i;
438 channel->type = &ef4_default_channel_type;
439
440 for (j = 0; j < EF4_TXQ_TYPES; j++) {
441 tx_queue = &channel->tx_queue[j];
442 tx_queue->efx = efx;
443 tx_queue->queue = i * EF4_TXQ_TYPES + j;
444 tx_queue->channel = channel;
445 }
446
447 rx_queue = &channel->rx_queue;
448 rx_queue->efx = efx;
449 timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0);
450
451 return channel;
452}
453
454/* Allocate and initialise a channel structure, copying parameters
455 * (but not resources) from an old channel structure.
456 */
457static struct ef4_channel *
458ef4_copy_channel(const struct ef4_channel *old_channel)
459{
460 struct ef4_channel *channel;
461 struct ef4_rx_queue *rx_queue;
462 struct ef4_tx_queue *tx_queue;
463 int j;
464
465 channel = kmalloc(sizeof(*channel), GFP_KERNEL);
466 if (!channel)
467 return NULL;
468
469 *channel = *old_channel;
470
471 channel->napi_dev = NULL;
472 INIT_HLIST_NODE(&channel->napi_str.napi_hash_node);
473 channel->napi_str.napi_id = 0;
474 channel->napi_str.state = 0;
475 memset(&channel->eventq, 0, sizeof(channel->eventq));
476
477 for (j = 0; j < EF4_TXQ_TYPES; j++) {
478 tx_queue = &channel->tx_queue[j];
479 if (tx_queue->channel)
480 tx_queue->channel = channel;
481 tx_queue->buffer = NULL;
482 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
483 }
484
485 rx_queue = &channel->rx_queue;
486 rx_queue->buffer = NULL;
487 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
488 timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0);
489
490 return channel;
491}
492
493static int ef4_probe_channel(struct ef4_channel *channel)
494{
495 struct ef4_tx_queue *tx_queue;
496 struct ef4_rx_queue *rx_queue;
497 int rc;
498
499 netif_dbg(channel->efx, probe, channel->efx->net_dev,
500 "creating channel %d\n", channel->channel);
501
502 rc = channel->type->pre_probe(channel);
503 if (rc)
504 goto fail;
505
506 rc = ef4_probe_eventq(channel);
507 if (rc)
508 goto fail;
509
510 ef4_for_each_channel_tx_queue(tx_queue, channel) {
511 rc = ef4_probe_tx_queue(tx_queue);
512 if (rc)
513 goto fail;
514 }
515
516 ef4_for_each_channel_rx_queue(rx_queue, channel) {
517 rc = ef4_probe_rx_queue(rx_queue);
518 if (rc)
519 goto fail;
520 }
521
522 return 0;
523
524fail:
525 ef4_remove_channel(channel);
526 return rc;
527}
528
529static void
530ef4_get_channel_name(struct ef4_channel *channel, char *buf, size_t len)
531{
532 struct ef4_nic *efx = channel->efx;
533 const char *type;
534 int number;
535
536 number = channel->channel;
537 if (efx->tx_channel_offset == 0) {
538 type = "";
539 } else if (channel->channel < efx->tx_channel_offset) {
540 type = "-rx";
541 } else {
542 type = "-tx";
543 number -= efx->tx_channel_offset;
544 }
545 snprintf(buf, len, "%s%s-%d", efx->name, type, number);
546}
547
548static void ef4_set_channel_names(struct ef4_nic *efx)
549{
550 struct ef4_channel *channel;
551
552 ef4_for_each_channel(channel, efx)
553 channel->type->get_name(channel,
554 efx->msi_context[channel->channel].name,
555 sizeof(efx->msi_context[0].name));
556}
557
558static int ef4_probe_channels(struct ef4_nic *efx)
559{
560 struct ef4_channel *channel;
561 int rc;
562
563 /* Restart special buffer allocation */
564 efx->next_buffer_table = 0;
565
566 /* Probe channels in reverse, so that any 'extra' channels
567 * use the start of the buffer table. This allows the traffic
568 * channels to be resized without moving them or wasting the
569 * entries before them.
570 */
571 ef4_for_each_channel_rev(channel, efx) {
572 rc = ef4_probe_channel(channel);
573 if (rc) {
574 netif_err(efx, probe, efx->net_dev,
575 "failed to create channel %d\n",
576 channel->channel);
577 goto fail;
578 }
579 }
580 ef4_set_channel_names(efx);
581
582 return 0;
583
584fail:
585 ef4_remove_channels(efx);
586 return rc;
587}
588
589/* Channels are shutdown and reinitialised whilst the NIC is running
590 * to propagate configuration changes (mtu, checksum offload), or
591 * to clear hardware error conditions
592 */
593static void ef4_start_datapath(struct ef4_nic *efx)
594{
595 netdev_features_t old_features = efx->net_dev->features;
596 bool old_rx_scatter = efx->rx_scatter;
597 struct ef4_tx_queue *tx_queue;
598 struct ef4_rx_queue *rx_queue;
599 struct ef4_channel *channel;
600 size_t rx_buf_len;
601
602 /* Calculate the rx buffer allocation parameters required to
603 * support the current MTU, including padding for header
604 * alignment and overruns.
605 */
606 efx->rx_dma_len = (efx->rx_prefix_size +
607 EF4_MAX_FRAME_LEN(efx->net_dev->mtu) +
608 efx->type->rx_buffer_padding);
609 rx_buf_len = (sizeof(struct ef4_rx_page_state) +
610 efx->rx_ip_align + efx->rx_dma_len);
611 if (rx_buf_len <= PAGE_SIZE) {
612 efx->rx_scatter = efx->type->always_rx_scatter;
613 efx->rx_buffer_order = 0;
614 } else if (efx->type->can_rx_scatter) {
615 BUILD_BUG_ON(EF4_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
616 BUILD_BUG_ON(sizeof(struct ef4_rx_page_state) +
617 2 * ALIGN(NET_IP_ALIGN + EF4_RX_USR_BUF_SIZE,
618 EF4_RX_BUF_ALIGNMENT) >
619 PAGE_SIZE);
620 efx->rx_scatter = true;
621 efx->rx_dma_len = EF4_RX_USR_BUF_SIZE;
622 efx->rx_buffer_order = 0;
623 } else {
624 efx->rx_scatter = false;
625 efx->rx_buffer_order = get_order(rx_buf_len);
626 }
627
628 ef4_rx_config_page_split(efx);
629 if (efx->rx_buffer_order)
630 netif_dbg(efx, drv, efx->net_dev,
631 "RX buf len=%u; page order=%u batch=%u\n",
632 efx->rx_dma_len, efx->rx_buffer_order,
633 efx->rx_pages_per_batch);
634 else
635 netif_dbg(efx, drv, efx->net_dev,
636 "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
637 efx->rx_dma_len, efx->rx_page_buf_step,
638 efx->rx_bufs_per_page, efx->rx_pages_per_batch);
639
640 /* Restore previously fixed features in hw_features and remove
641 * features which are fixed now
642 */
643 efx->net_dev->hw_features |= efx->net_dev->features;
644 efx->net_dev->hw_features &= ~efx->fixed_features;
645 efx->net_dev->features |= efx->fixed_features;
646 if (efx->net_dev->features != old_features)
647 netdev_features_change(efx->net_dev);
648
649 /* RX filters may also have scatter-enabled flags */
650 if (efx->rx_scatter != old_rx_scatter)
651 efx->type->filter_update_rx_scatter(efx);
652
653 /* We must keep at least one descriptor in a TX ring empty.
654 * We could avoid this when the queue size does not exactly
655 * match the hardware ring size, but it's not that important.
656 * Therefore we stop the queue when one more skb might fill
657 * the ring completely. We wake it when half way back to
658 * empty.
659 */
660 efx->txq_stop_thresh = efx->txq_entries - ef4_tx_max_skb_descs(efx);
661 efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
662
663 /* Initialise the channels */
664 ef4_for_each_channel(channel, efx) {
665 ef4_for_each_channel_tx_queue(tx_queue, channel) {
666 ef4_init_tx_queue(tx_queue);
667 atomic_inc(&efx->active_queues);
668 }
669
670 ef4_for_each_channel_rx_queue(rx_queue, channel) {
671 ef4_init_rx_queue(rx_queue);
672 atomic_inc(&efx->active_queues);
673 ef4_stop_eventq(channel);
674 ef4_fast_push_rx_descriptors(rx_queue, false);
675 ef4_start_eventq(channel);
676 }
677
678 WARN_ON(channel->rx_pkt_n_frags);
679 }
680
681 if (netif_device_present(efx->net_dev))
682 netif_tx_wake_all_queues(efx->net_dev);
683}
684
685static void ef4_stop_datapath(struct ef4_nic *efx)
686{
687 struct ef4_channel *channel;
688 struct ef4_tx_queue *tx_queue;
689 struct ef4_rx_queue *rx_queue;
690 int rc;
691
692 EF4_ASSERT_RESET_SERIALISED(efx);
693 BUG_ON(efx->port_enabled);
694
695 /* Stop RX refill */
696 ef4_for_each_channel(channel, efx) {
697 ef4_for_each_channel_rx_queue(rx_queue, channel)
698 rx_queue->refill_enabled = false;
699 }
700
701 ef4_for_each_channel(channel, efx) {
702 /* RX packet processing is pipelined, so wait for the
703 * NAPI handler to complete. At least event queue 0
704 * might be kept active by non-data events, so don't
705 * use napi_synchronize() but actually disable NAPI
706 * temporarily.
707 */
708 if (ef4_channel_has_rx_queue(channel)) {
709 ef4_stop_eventq(channel);
710 ef4_start_eventq(channel);
711 }
712 }
713
714 rc = efx->type->fini_dmaq(efx);
715 if (rc && EF4_WORKAROUND_7803(efx)) {
716 /* Schedule a reset to recover from the flush failure. The
717 * descriptor caches reference memory we're about to free,
718 * but falcon_reconfigure_mac_wrapper() won't reconnect
719 * the MACs because of the pending reset.
720 */
721 netif_err(efx, drv, efx->net_dev,
722 "Resetting to recover from flush failure\n");
723 ef4_schedule_reset(efx, RESET_TYPE_ALL);
724 } else if (rc) {
725 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
726 } else {
727 netif_dbg(efx, drv, efx->net_dev,
728 "successfully flushed all queues\n");
729 }
730
731 ef4_for_each_channel(channel, efx) {
732 ef4_for_each_channel_rx_queue(rx_queue, channel)
733 ef4_fini_rx_queue(rx_queue);
734 ef4_for_each_possible_channel_tx_queue(tx_queue, channel)
735 ef4_fini_tx_queue(tx_queue);
736 }
737}
738
739static void ef4_remove_channel(struct ef4_channel *channel)
740{
741 struct ef4_tx_queue *tx_queue;
742 struct ef4_rx_queue *rx_queue;
743
744 netif_dbg(channel->efx, drv, channel->efx->net_dev,
745 "destroy chan %d\n", channel->channel);
746
747 ef4_for_each_channel_rx_queue(rx_queue, channel)
748 ef4_remove_rx_queue(rx_queue);
749 ef4_for_each_possible_channel_tx_queue(tx_queue, channel)
750 ef4_remove_tx_queue(tx_queue);
751 ef4_remove_eventq(channel);
752 channel->type->post_remove(channel);
753}
754
755static void ef4_remove_channels(struct ef4_nic *efx)
756{
757 struct ef4_channel *channel;
758
759 ef4_for_each_channel(channel, efx)
760 ef4_remove_channel(channel);
761}
762
763int
764ef4_realloc_channels(struct ef4_nic *efx, u32 rxq_entries, u32 txq_entries)
765{
766 struct ef4_channel *other_channel[EF4_MAX_CHANNELS], *channel;
767 u32 old_rxq_entries, old_txq_entries;
768 unsigned i, next_buffer_table = 0;
769 int rc, rc2;
770
771 rc = ef4_check_disabled(efx);
772 if (rc)
773 return rc;
774
775 /* Not all channels should be reallocated. We must avoid
776 * reallocating their buffer table entries.
777 */
778 ef4_for_each_channel(channel, efx) {
779 struct ef4_rx_queue *rx_queue;
780 struct ef4_tx_queue *tx_queue;
781
782 if (channel->type->copy)
783 continue;
784 next_buffer_table = max(next_buffer_table,
785 channel->eventq.index +
786 channel->eventq.entries);
787 ef4_for_each_channel_rx_queue(rx_queue, channel)
788 next_buffer_table = max(next_buffer_table,
789 rx_queue->rxd.index +
790 rx_queue->rxd.entries);
791 ef4_for_each_channel_tx_queue(tx_queue, channel)
792 next_buffer_table = max(next_buffer_table,
793 tx_queue->txd.index +
794 tx_queue->txd.entries);
795 }
796
797 ef4_device_detach_sync(efx);
798 ef4_stop_all(efx);
799 ef4_soft_disable_interrupts(efx);
800
801 /* Clone channels (where possible) */
802 memset(other_channel, 0, sizeof(other_channel));
803 for (i = 0; i < efx->n_channels; i++) {
804 channel = efx->channel[i];
805 if (channel->type->copy)
806 channel = channel->type->copy(channel);
807 if (!channel) {
808 rc = -ENOMEM;
809 goto out;
810 }
811 other_channel[i] = channel;
812 }
813
814 /* Swap entry counts and channel pointers */
815 old_rxq_entries = efx->rxq_entries;
816 old_txq_entries = efx->txq_entries;
817 efx->rxq_entries = rxq_entries;
818 efx->txq_entries = txq_entries;
819 for (i = 0; i < efx->n_channels; i++) {
820 channel = efx->channel[i];
821 efx->channel[i] = other_channel[i];
822 other_channel[i] = channel;
823 }
824
825 /* Restart buffer table allocation */
826 efx->next_buffer_table = next_buffer_table;
827
828 for (i = 0; i < efx->n_channels; i++) {
829 channel = efx->channel[i];
830 if (!channel->type->copy)
831 continue;
832 rc = ef4_probe_channel(channel);
833 if (rc)
834 goto rollback;
835 ef4_init_napi_channel(efx->channel[i]);
836 }
837
838out:
839 /* Destroy unused channel structures */
840 for (i = 0; i < efx->n_channels; i++) {
841 channel = other_channel[i];
842 if (channel && channel->type->copy) {
843 ef4_fini_napi_channel(channel);
844 ef4_remove_channel(channel);
845 kfree(channel);
846 }
847 }
848
849 rc2 = ef4_soft_enable_interrupts(efx);
850 if (rc2) {
851 rc = rc ? rc : rc2;
852 netif_err(efx, drv, efx->net_dev,
853 "unable to restart interrupts on channel reallocation\n");
854 ef4_schedule_reset(efx, RESET_TYPE_DISABLE);
855 } else {
856 ef4_start_all(efx);
857 netif_device_attach(efx->net_dev);
858 }
859 return rc;
860
861rollback:
862 /* Swap back */
863 efx->rxq_entries = old_rxq_entries;
864 efx->txq_entries = old_txq_entries;
865 for (i = 0; i < efx->n_channels; i++) {
866 channel = efx->channel[i];
867 efx->channel[i] = other_channel[i];
868 other_channel[i] = channel;
869 }
870 goto out;
871}
872
873void ef4_schedule_slow_fill(struct ef4_rx_queue *rx_queue)
874{
875 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
876}
877
878static const struct ef4_channel_type ef4_default_channel_type = {
879 .pre_probe = ef4_channel_dummy_op_int,
880 .post_remove = ef4_channel_dummy_op_void,
881 .get_name = ef4_get_channel_name,
882 .copy = ef4_copy_channel,
883 .keep_eventq = false,
884};
885
886int ef4_channel_dummy_op_int(struct ef4_channel *channel)
887{
888 return 0;
889}
890
891void ef4_channel_dummy_op_void(struct ef4_channel *channel)
892{
893}
894
895/**************************************************************************
896 *
897 * Port handling
898 *
899 **************************************************************************/
900
901/* This ensures that the kernel is kept informed (via
902 * netif_carrier_on/off) of the link status, and also maintains the
903 * link status's stop on the port's TX queue.
904 */
905void ef4_link_status_changed(struct ef4_nic *efx)
906{
907 struct ef4_link_state *link_state = &efx->link_state;
908
909 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
910 * that no events are triggered between unregister_netdev() and the
911 * driver unloading. A more general condition is that NETDEV_CHANGE
912 * can only be generated between NETDEV_UP and NETDEV_DOWN */
913 if (!netif_running(efx->net_dev))
914 return;
915
916 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
917 efx->n_link_state_changes++;
918
919 if (link_state->up)
920 netif_carrier_on(efx->net_dev);
921 else
922 netif_carrier_off(efx->net_dev);
923 }
924
925 /* Status message for kernel log */
926 if (link_state->up)
927 netif_info(efx, link, efx->net_dev,
928 "link up at %uMbps %s-duplex (MTU %d)\n",
929 link_state->speed, link_state->fd ? "full" : "half",
930 efx->net_dev->mtu);
931 else
932 netif_info(efx, link, efx->net_dev, "link down\n");
933}
934
935void ef4_link_set_advertising(struct ef4_nic *efx, u32 advertising)
936{
937 efx->link_advertising = advertising;
938 if (advertising) {
939 if (advertising & ADVERTISED_Pause)
940 efx->wanted_fc |= (EF4_FC_TX | EF4_FC_RX);
941 else
942 efx->wanted_fc &= ~(EF4_FC_TX | EF4_FC_RX);
943 if (advertising & ADVERTISED_Asym_Pause)
944 efx->wanted_fc ^= EF4_FC_TX;
945 }
946}
947
948void ef4_link_set_wanted_fc(struct ef4_nic *efx, u8 wanted_fc)
949{
950 efx->wanted_fc = wanted_fc;
951 if (efx->link_advertising) {
952 if (wanted_fc & EF4_FC_RX)
953 efx->link_advertising |= (ADVERTISED_Pause |
954 ADVERTISED_Asym_Pause);
955 else
956 efx->link_advertising &= ~(ADVERTISED_Pause |
957 ADVERTISED_Asym_Pause);
958 if (wanted_fc & EF4_FC_TX)
959 efx->link_advertising ^= ADVERTISED_Asym_Pause;
960 }
961}
962
963static void ef4_fini_port(struct ef4_nic *efx);
964
965/* We assume that efx->type->reconfigure_mac will always try to sync RX
966 * filters and therefore needs to read-lock the filter table against freeing
967 */
968void ef4_mac_reconfigure(struct ef4_nic *efx)
969{
970 down_read(&efx->filter_sem);
971 efx->type->reconfigure_mac(efx);
972 up_read(&efx->filter_sem);
973}
974
975/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
976 * the MAC appropriately. All other PHY configuration changes are pushed
977 * through phy_op->set_link_ksettings(), and pushed asynchronously to the MAC
978 * through ef4_monitor().
979 *
980 * Callers must hold the mac_lock
981 */
982int __ef4_reconfigure_port(struct ef4_nic *efx)
983{
984 enum ef4_phy_mode phy_mode;
985 int rc;
986
987 WARN_ON(!mutex_is_locked(&efx->mac_lock));
988
989 /* Disable PHY transmit in mac level loopbacks */
990 phy_mode = efx->phy_mode;
991 if (LOOPBACK_INTERNAL(efx))
992 efx->phy_mode |= PHY_MODE_TX_DISABLED;
993 else
994 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
995
996 rc = efx->type->reconfigure_port(efx);
997
998 if (rc)
999 efx->phy_mode = phy_mode;
1000
1001 return rc;
1002}
1003
1004/* Reinitialise the MAC to pick up new PHY settings, even if the port is
1005 * disabled. */
1006int ef4_reconfigure_port(struct ef4_nic *efx)
1007{
1008 int rc;
1009
1010 EF4_ASSERT_RESET_SERIALISED(efx);
1011
1012 mutex_lock(&efx->mac_lock);
1013 rc = __ef4_reconfigure_port(efx);
1014 mutex_unlock(&efx->mac_lock);
1015
1016 return rc;
1017}
1018
1019/* Asynchronous work item for changing MAC promiscuity and multicast
1020 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
1021 * MAC directly. */
1022static void ef4_mac_work(struct work_struct *data)
1023{
1024 struct ef4_nic *efx = container_of(data, struct ef4_nic, mac_work);
1025
1026 mutex_lock(&efx->mac_lock);
1027 if (efx->port_enabled)
1028 ef4_mac_reconfigure(efx);
1029 mutex_unlock(&efx->mac_lock);
1030}
1031
1032static int ef4_probe_port(struct ef4_nic *efx)
1033{
1034 int rc;
1035
1036 netif_dbg(efx, probe, efx->net_dev, "create port\n");
1037
1038 if (phy_flash_cfg)
1039 efx->phy_mode = PHY_MODE_SPECIAL;
1040
1041 /* Connect up MAC/PHY operations table */
1042 rc = efx->type->probe_port(efx);
1043 if (rc)
1044 return rc;
1045
1046 /* Initialise MAC address to permanent address */
1047 ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1048
1049 return 0;
1050}
1051
1052static int ef4_init_port(struct ef4_nic *efx)
1053{
1054 int rc;
1055
1056 netif_dbg(efx, drv, efx->net_dev, "init port\n");
1057
1058 mutex_lock(&efx->mac_lock);
1059
1060 rc = efx->phy_op->init(efx);
1061 if (rc)
1062 goto fail1;
1063
1064 efx->port_initialized = true;
1065
1066 /* Reconfigure the MAC before creating dma queues (required for
1067 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1068 ef4_mac_reconfigure(efx);
1069
1070 /* Ensure the PHY advertises the correct flow control settings */
1071 rc = efx->phy_op->reconfigure(efx);
1072 if (rc && rc != -EPERM)
1073 goto fail2;
1074
1075 mutex_unlock(&efx->mac_lock);
1076 return 0;
1077
1078fail2:
1079 efx->phy_op->fini(efx);
1080fail1:
1081 mutex_unlock(&efx->mac_lock);
1082 return rc;
1083}
1084
1085static void ef4_start_port(struct ef4_nic *efx)
1086{
1087 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1088 BUG_ON(efx->port_enabled);
1089
1090 mutex_lock(&efx->mac_lock);
1091 efx->port_enabled = true;
1092
1093 /* Ensure MAC ingress/egress is enabled */
1094 ef4_mac_reconfigure(efx);
1095
1096 mutex_unlock(&efx->mac_lock);
1097}
1098
1099/* Cancel work for MAC reconfiguration, periodic hardware monitoring
1100 * and the async self-test, wait for them to finish and prevent them
1101 * being scheduled again. This doesn't cover online resets, which
1102 * should only be cancelled when removing the device.
1103 */
1104static void ef4_stop_port(struct ef4_nic *efx)
1105{
1106 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1107
1108 EF4_ASSERT_RESET_SERIALISED(efx);
1109
1110 mutex_lock(&efx->mac_lock);
1111 efx->port_enabled = false;
1112 mutex_unlock(&efx->mac_lock);
1113
1114 /* Serialise against ef4_set_multicast_list() */
1115 netif_addr_lock_bh(efx->net_dev);
1116 netif_addr_unlock_bh(efx->net_dev);
1117
1118 cancel_delayed_work_sync(&efx->monitor_work);
1119 ef4_selftest_async_cancel(efx);
1120 cancel_work_sync(&efx->mac_work);
1121}
1122
1123static void ef4_fini_port(struct ef4_nic *efx)
1124{
1125 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1126
1127 if (!efx->port_initialized)
1128 return;
1129
1130 efx->phy_op->fini(efx);
1131 efx->port_initialized = false;
1132
1133 efx->link_state.up = false;
1134 ef4_link_status_changed(efx);
1135}
1136
1137static void ef4_remove_port(struct ef4_nic *efx)
1138{
1139 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1140
1141 efx->type->remove_port(efx);
1142}
1143
1144/**************************************************************************
1145 *
1146 * NIC handling
1147 *
1148 **************************************************************************/
1149
1150static LIST_HEAD(ef4_primary_list);
1151static LIST_HEAD(ef4_unassociated_list);
1152
1153static bool ef4_same_controller(struct ef4_nic *left, struct ef4_nic *right)
1154{
1155 return left->type == right->type &&
1156 left->vpd_sn && right->vpd_sn &&
1157 !strcmp(left->vpd_sn, right->vpd_sn);
1158}
1159
1160static void ef4_associate(struct ef4_nic *efx)
1161{
1162 struct ef4_nic *other, *next;
1163
1164 if (efx->primary == efx) {
1165 /* Adding primary function; look for secondaries */
1166
1167 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1168 list_add_tail(&efx->node, &ef4_primary_list);
1169
1170 list_for_each_entry_safe(other, next, &ef4_unassociated_list,
1171 node) {
1172 if (ef4_same_controller(efx, other)) {
1173 list_del(&other->node);
1174 netif_dbg(other, probe, other->net_dev,
1175 "moving to secondary list of %s %s\n",
1176 pci_name(efx->pci_dev),
1177 efx->net_dev->name);
1178 list_add_tail(&other->node,
1179 &efx->secondary_list);
1180 other->primary = efx;
1181 }
1182 }
1183 } else {
1184 /* Adding secondary function; look for primary */
1185
1186 list_for_each_entry(other, &ef4_primary_list, node) {
1187 if (ef4_same_controller(efx, other)) {
1188 netif_dbg(efx, probe, efx->net_dev,
1189 "adding to secondary list of %s %s\n",
1190 pci_name(other->pci_dev),
1191 other->net_dev->name);
1192 list_add_tail(&efx->node,
1193 &other->secondary_list);
1194 efx->primary = other;
1195 return;
1196 }
1197 }
1198
1199 netif_dbg(efx, probe, efx->net_dev,
1200 "adding to unassociated list\n");
1201 list_add_tail(&efx->node, &ef4_unassociated_list);
1202 }
1203}
1204
1205static void ef4_dissociate(struct ef4_nic *efx)
1206{
1207 struct ef4_nic *other, *next;
1208
1209 list_del(&efx->node);
1210 efx->primary = NULL;
1211
1212 list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1213 list_del(&other->node);
1214 netif_dbg(other, probe, other->net_dev,
1215 "moving to unassociated list\n");
1216 list_add_tail(&other->node, &ef4_unassociated_list);
1217 other->primary = NULL;
1218 }
1219}
1220
1221/* This configures the PCI device to enable I/O and DMA. */
1222static int ef4_init_io(struct ef4_nic *efx)
1223{
1224 struct pci_dev *pci_dev = efx->pci_dev;
1225 dma_addr_t dma_mask = efx->type->max_dma_mask;
1226 unsigned int mem_map_size = efx->type->mem_map_size(efx);
1227 int rc, bar;
1228
1229 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1230
1231 bar = efx->type->mem_bar;
1232
1233 rc = pci_enable_device(pci_dev);
1234 if (rc) {
1235 netif_err(efx, probe, efx->net_dev,
1236 "failed to enable PCI device\n");
1237 goto fail1;
1238 }
1239
1240 pci_set_master(pci_dev);
1241
1242 /* Set the PCI DMA mask. Try all possibilities from our genuine mask
1243 * down to 32 bits, because some architectures will allow 40 bit
1244 * masks event though they reject 46 bit masks.
1245 */
1246 while (dma_mask > 0x7fffffffUL) {
1247 rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1248 if (rc == 0)
1249 break;
1250 dma_mask >>= 1;
1251 }
1252 if (rc) {
1253 netif_err(efx, probe, efx->net_dev,
1254 "could not find a suitable DMA mask\n");
1255 goto fail2;
1256 }
1257 netif_dbg(efx, probe, efx->net_dev,
1258 "using DMA mask %llx\n", (unsigned long long) dma_mask);
1259
1260 efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1261 rc = pci_request_region(pci_dev, bar, "sfc");
1262 if (rc) {
1263 netif_err(efx, probe, efx->net_dev,
1264 "request for memory BAR failed\n");
1265 rc = -EIO;
1266 goto fail3;
1267 }
1268 efx->membase = ioremap(efx->membase_phys, mem_map_size);
1269 if (!efx->membase) {
1270 netif_err(efx, probe, efx->net_dev,
1271 "could not map memory BAR at %llx+%x\n",
1272 (unsigned long long)efx->membase_phys, mem_map_size);
1273 rc = -ENOMEM;
1274 goto fail4;
1275 }
1276 netif_dbg(efx, probe, efx->net_dev,
1277 "memory BAR at %llx+%x (virtual %p)\n",
1278 (unsigned long long)efx->membase_phys, mem_map_size,
1279 efx->membase);
1280
1281 return 0;
1282
1283 fail4:
1284 pci_release_region(efx->pci_dev, bar);
1285 fail3:
1286 efx->membase_phys = 0;
1287 fail2:
1288 pci_disable_device(efx->pci_dev);
1289 fail1:
1290 return rc;
1291}
1292
1293static void ef4_fini_io(struct ef4_nic *efx)
1294{
1295 int bar;
1296
1297 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1298
1299 if (efx->membase) {
1300 iounmap(efx->membase);
1301 efx->membase = NULL;
1302 }
1303
1304 if (efx->membase_phys) {
1305 bar = efx->type->mem_bar;
1306 pci_release_region(efx->pci_dev, bar);
1307 efx->membase_phys = 0;
1308 }
1309
1310 /* Don't disable bus-mastering if VFs are assigned */
1311 if (!pci_vfs_assigned(efx->pci_dev))
1312 pci_disable_device(efx->pci_dev);
1313}
1314
1315void ef4_set_default_rx_indir_table(struct ef4_nic *efx)
1316{
1317 size_t i;
1318
1319 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1320 efx->rx_indir_table[i] =
1321 ethtool_rxfh_indir_default(i, efx->rss_spread);
1322}
1323
1324static unsigned int ef4_wanted_parallelism(struct ef4_nic *efx)
1325{
1326 cpumask_var_t thread_mask;
1327 unsigned int count;
1328 int cpu;
1329
1330 if (rss_cpus) {
1331 count = rss_cpus;
1332 } else {
1333 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1334 netif_warn(efx, probe, efx->net_dev,
1335 "RSS disabled due to allocation failure\n");
1336 return 1;
1337 }
1338
1339 count = 0;
1340 for_each_online_cpu(cpu) {
1341 if (!cpumask_test_cpu(cpu, thread_mask)) {
1342 ++count;
1343 cpumask_or(thread_mask, thread_mask,
1344 topology_sibling_cpumask(cpu));
1345 }
1346 }
1347
1348 free_cpumask_var(thread_mask);
1349 }
1350
1351 if (count > EF4_MAX_RX_QUEUES) {
1352 netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn,
1353 "Reducing number of rx queues from %u to %u.\n",
1354 count, EF4_MAX_RX_QUEUES);
1355 count = EF4_MAX_RX_QUEUES;
1356 }
1357
1358 return count;
1359}
1360
1361/* Probe the number and type of interrupts we are able to obtain, and
1362 * the resulting numbers of channels and RX queues.
1363 */
1364static int ef4_probe_interrupts(struct ef4_nic *efx)
1365{
1366 unsigned int extra_channels = 0;
1367 unsigned int i, j;
1368 int rc;
1369
1370 for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++)
1371 if (efx->extra_channel_type[i])
1372 ++extra_channels;
1373
1374 if (efx->interrupt_mode == EF4_INT_MODE_MSIX) {
1375 struct msix_entry xentries[EF4_MAX_CHANNELS];
1376 unsigned int n_channels;
1377
1378 n_channels = ef4_wanted_parallelism(efx);
1379 if (ef4_separate_tx_channels)
1380 n_channels *= 2;
1381 n_channels += extra_channels;
1382 n_channels = min(n_channels, efx->max_channels);
1383
1384 for (i = 0; i < n_channels; i++)
1385 xentries[i].entry = i;
1386 rc = pci_enable_msix_range(efx->pci_dev,
1387 xentries, 1, n_channels);
1388 if (rc < 0) {
1389 /* Fall back to single channel MSI */
1390 efx->interrupt_mode = EF4_INT_MODE_MSI;
1391 netif_err(efx, drv, efx->net_dev,
1392 "could not enable MSI-X\n");
1393 } else if (rc < n_channels) {
1394 netif_err(efx, drv, efx->net_dev,
1395 "WARNING: Insufficient MSI-X vectors"
1396 " available (%d < %u).\n", rc, n_channels);
1397 netif_err(efx, drv, efx->net_dev,
1398 "WARNING: Performance may be reduced.\n");
1399 n_channels = rc;
1400 }
1401
1402 if (rc > 0) {
1403 efx->n_channels = n_channels;
1404 if (n_channels > extra_channels)
1405 n_channels -= extra_channels;
1406 if (ef4_separate_tx_channels) {
1407 efx->n_tx_channels = min(max(n_channels / 2,
1408 1U),
1409 efx->max_tx_channels);
1410 efx->n_rx_channels = max(n_channels -
1411 efx->n_tx_channels,
1412 1U);
1413 } else {
1414 efx->n_tx_channels = min(n_channels,
1415 efx->max_tx_channels);
1416 efx->n_rx_channels = n_channels;
1417 }
1418 for (i = 0; i < efx->n_channels; i++)
1419 ef4_get_channel(efx, i)->irq =
1420 xentries[i].vector;
1421 }
1422 }
1423
1424 /* Try single interrupt MSI */
1425 if (efx->interrupt_mode == EF4_INT_MODE_MSI) {
1426 efx->n_channels = 1;
1427 efx->n_rx_channels = 1;
1428 efx->n_tx_channels = 1;
1429 rc = pci_enable_msi(efx->pci_dev);
1430 if (rc == 0) {
1431 ef4_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1432 } else {
1433 netif_err(efx, drv, efx->net_dev,
1434 "could not enable MSI\n");
1435 efx->interrupt_mode = EF4_INT_MODE_LEGACY;
1436 }
1437 }
1438
1439 /* Assume legacy interrupts */
1440 if (efx->interrupt_mode == EF4_INT_MODE_LEGACY) {
1441 efx->n_channels = 1 + (ef4_separate_tx_channels ? 1 : 0);
1442 efx->n_rx_channels = 1;
1443 efx->n_tx_channels = 1;
1444 efx->legacy_irq = efx->pci_dev->irq;
1445 }
1446
1447 /* Assign extra channels if possible */
1448 j = efx->n_channels;
1449 for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++) {
1450 if (!efx->extra_channel_type[i])
1451 continue;
1452 if (efx->interrupt_mode != EF4_INT_MODE_MSIX ||
1453 efx->n_channels <= extra_channels) {
1454 efx->extra_channel_type[i]->handle_no_channel(efx);
1455 } else {
1456 --j;
1457 ef4_get_channel(efx, j)->type =
1458 efx->extra_channel_type[i];
1459 }
1460 }
1461
1462 efx->rss_spread = efx->n_rx_channels;
1463
1464 return 0;
1465}
1466
1467static int ef4_soft_enable_interrupts(struct ef4_nic *efx)
1468{
1469 struct ef4_channel *channel, *end_channel;
1470 int rc;
1471
1472 BUG_ON(efx->state == STATE_DISABLED);
1473
1474 efx->irq_soft_enabled = true;
1475 smp_wmb();
1476
1477 ef4_for_each_channel(channel, efx) {
1478 if (!channel->type->keep_eventq) {
1479 rc = ef4_init_eventq(channel);
1480 if (rc)
1481 goto fail;
1482 }
1483 ef4_start_eventq(channel);
1484 }
1485
1486 return 0;
1487fail:
1488 end_channel = channel;
1489 ef4_for_each_channel(channel, efx) {
1490 if (channel == end_channel)
1491 break;
1492 ef4_stop_eventq(channel);
1493 if (!channel->type->keep_eventq)
1494 ef4_fini_eventq(channel);
1495 }
1496
1497 return rc;
1498}
1499
1500static void ef4_soft_disable_interrupts(struct ef4_nic *efx)
1501{
1502 struct ef4_channel *channel;
1503
1504 if (efx->state == STATE_DISABLED)
1505 return;
1506
1507 efx->irq_soft_enabled = false;
1508 smp_wmb();
1509
1510 if (efx->legacy_irq)
1511 synchronize_irq(efx->legacy_irq);
1512
1513 ef4_for_each_channel(channel, efx) {
1514 if (channel->irq)
1515 synchronize_irq(channel->irq);
1516
1517 ef4_stop_eventq(channel);
1518 if (!channel->type->keep_eventq)
1519 ef4_fini_eventq(channel);
1520 }
1521}
1522
1523static int ef4_enable_interrupts(struct ef4_nic *efx)
1524{
1525 struct ef4_channel *channel, *end_channel;
1526 int rc;
1527
1528 BUG_ON(efx->state == STATE_DISABLED);
1529
1530 if (efx->eeh_disabled_legacy_irq) {
1531 enable_irq(efx->legacy_irq);
1532 efx->eeh_disabled_legacy_irq = false;
1533 }
1534
1535 efx->type->irq_enable_master(efx);
1536
1537 ef4_for_each_channel(channel, efx) {
1538 if (channel->type->keep_eventq) {
1539 rc = ef4_init_eventq(channel);
1540 if (rc)
1541 goto fail;
1542 }
1543 }
1544
1545 rc = ef4_soft_enable_interrupts(efx);
1546 if (rc)
1547 goto fail;
1548
1549 return 0;
1550
1551fail:
1552 end_channel = channel;
1553 ef4_for_each_channel(channel, efx) {
1554 if (channel == end_channel)
1555 break;
1556 if (channel->type->keep_eventq)
1557 ef4_fini_eventq(channel);
1558 }
1559
1560 efx->type->irq_disable_non_ev(efx);
1561
1562 return rc;
1563}
1564
1565static void ef4_disable_interrupts(struct ef4_nic *efx)
1566{
1567 struct ef4_channel *channel;
1568
1569 ef4_soft_disable_interrupts(efx);
1570
1571 ef4_for_each_channel(channel, efx) {
1572 if (channel->type->keep_eventq)
1573 ef4_fini_eventq(channel);
1574 }
1575
1576 efx->type->irq_disable_non_ev(efx);
1577}
1578
1579static void ef4_remove_interrupts(struct ef4_nic *efx)
1580{
1581 struct ef4_channel *channel;
1582
1583 /* Remove MSI/MSI-X interrupts */
1584 ef4_for_each_channel(channel, efx)
1585 channel->irq = 0;
1586 pci_disable_msi(efx->pci_dev);
1587 pci_disable_msix(efx->pci_dev);
1588
1589 /* Remove legacy interrupt */
1590 efx->legacy_irq = 0;
1591}
1592
1593static void ef4_set_channels(struct ef4_nic *efx)
1594{
1595 struct ef4_channel *channel;
1596 struct ef4_tx_queue *tx_queue;
1597
1598 efx->tx_channel_offset =
1599 ef4_separate_tx_channels ?
1600 efx->n_channels - efx->n_tx_channels : 0;
1601
1602 /* We need to mark which channels really have RX and TX
1603 * queues, and adjust the TX queue numbers if we have separate
1604 * RX-only and TX-only channels.
1605 */
1606 ef4_for_each_channel(channel, efx) {
1607 if (channel->channel < efx->n_rx_channels)
1608 channel->rx_queue.core_index = channel->channel;
1609 else
1610 channel->rx_queue.core_index = -1;
1611
1612 ef4_for_each_channel_tx_queue(tx_queue, channel)
1613 tx_queue->queue -= (efx->tx_channel_offset *
1614 EF4_TXQ_TYPES);
1615 }
1616}
1617
1618static int ef4_probe_nic(struct ef4_nic *efx)
1619{
1620 int rc;
1621
1622 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1623
1624 /* Carry out hardware-type specific initialisation */
1625 rc = efx->type->probe(efx);
1626 if (rc)
1627 return rc;
1628
1629 do {
1630 if (!efx->max_channels || !efx->max_tx_channels) {
1631 netif_err(efx, drv, efx->net_dev,
1632 "Insufficient resources to allocate"
1633 " any channels\n");
1634 rc = -ENOSPC;
1635 goto fail1;
1636 }
1637
1638 /* Determine the number of channels and queues by trying
1639 * to hook in MSI-X interrupts.
1640 */
1641 rc = ef4_probe_interrupts(efx);
1642 if (rc)
1643 goto fail1;
1644
1645 ef4_set_channels(efx);
1646
1647 /* dimension_resources can fail with EAGAIN */
1648 rc = efx->type->dimension_resources(efx);
1649 if (rc != 0 && rc != -EAGAIN)
1650 goto fail2;
1651
1652 if (rc == -EAGAIN)
1653 /* try again with new max_channels */
1654 ef4_remove_interrupts(efx);
1655
1656 } while (rc == -EAGAIN);
1657
1658 if (efx->n_channels > 1)
1659 netdev_rss_key_fill(&efx->rx_hash_key,
1660 sizeof(efx->rx_hash_key));
1661 ef4_set_default_rx_indir_table(efx);
1662
1663 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1664 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1665
1666 /* Initialise the interrupt moderation settings */
1667 efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
1668 ef4_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1669 true);
1670
1671 return 0;
1672
1673fail2:
1674 ef4_remove_interrupts(efx);
1675fail1:
1676 efx->type->remove(efx);
1677 return rc;
1678}
1679
1680static void ef4_remove_nic(struct ef4_nic *efx)
1681{
1682 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1683
1684 ef4_remove_interrupts(efx);
1685 efx->type->remove(efx);
1686}
1687
1688static int ef4_probe_filters(struct ef4_nic *efx)
1689{
1690 int rc;
1691
1692 spin_lock_init(&efx->filter_lock);
1693 init_rwsem(&efx->filter_sem);
1694 mutex_lock(&efx->mac_lock);
1695 down_write(&efx->filter_sem);
1696 rc = efx->type->filter_table_probe(efx);
1697 if (rc)
1698 goto out_unlock;
1699
1700#ifdef CONFIG_RFS_ACCEL
1701 if (efx->type->offload_features & NETIF_F_NTUPLE) {
1702 struct ef4_channel *channel;
1703 int i, success = 1;
1704
1705 ef4_for_each_channel(channel, efx) {
1706 channel->rps_flow_id =
1707 kcalloc(efx->type->max_rx_ip_filters,
1708 sizeof(*channel->rps_flow_id),
1709 GFP_KERNEL);
1710 if (!channel->rps_flow_id)
1711 success = 0;
1712 else
1713 for (i = 0;
1714 i < efx->type->max_rx_ip_filters;
1715 ++i)
1716 channel->rps_flow_id[i] =
1717 RPS_FLOW_ID_INVALID;
1718 }
1719
1720 if (!success) {
1721 ef4_for_each_channel(channel, efx)
1722 kfree(channel->rps_flow_id);
1723 efx->type->filter_table_remove(efx);
1724 rc = -ENOMEM;
1725 goto out_unlock;
1726 }
1727
1728 efx->rps_expire_index = efx->rps_expire_channel = 0;
1729 }
1730#endif
1731out_unlock:
1732 up_write(&efx->filter_sem);
1733 mutex_unlock(&efx->mac_lock);
1734 return rc;
1735}
1736
1737static void ef4_remove_filters(struct ef4_nic *efx)
1738{
1739#ifdef CONFIG_RFS_ACCEL
1740 struct ef4_channel *channel;
1741
1742 ef4_for_each_channel(channel, efx)
1743 kfree(channel->rps_flow_id);
1744#endif
1745 down_write(&efx->filter_sem);
1746 efx->type->filter_table_remove(efx);
1747 up_write(&efx->filter_sem);
1748}
1749
1750static void ef4_restore_filters(struct ef4_nic *efx)
1751{
1752 down_read(&efx->filter_sem);
1753 efx->type->filter_table_restore(efx);
1754 up_read(&efx->filter_sem);
1755}
1756
1757/**************************************************************************
1758 *
1759 * NIC startup/shutdown
1760 *
1761 *************************************************************************/
1762
1763static int ef4_probe_all(struct ef4_nic *efx)
1764{
1765 int rc;
1766
1767 rc = ef4_probe_nic(efx);
1768 if (rc) {
1769 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1770 goto fail1;
1771 }
1772
1773 rc = ef4_probe_port(efx);
1774 if (rc) {
1775 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1776 goto fail2;
1777 }
1778
1779 BUILD_BUG_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_RXQ_MIN_ENT);
1780 if (WARN_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_TXQ_MIN_ENT(efx))) {
1781 rc = -EINVAL;
1782 goto fail3;
1783 }
1784 efx->rxq_entries = efx->txq_entries = EF4_DEFAULT_DMAQ_SIZE;
1785
1786 rc = ef4_probe_filters(efx);
1787 if (rc) {
1788 netif_err(efx, probe, efx->net_dev,
1789 "failed to create filter tables\n");
1790 goto fail4;
1791 }
1792
1793 rc = ef4_probe_channels(efx);
1794 if (rc)
1795 goto fail5;
1796
1797 return 0;
1798
1799 fail5:
1800 ef4_remove_filters(efx);
1801 fail4:
1802 fail3:
1803 ef4_remove_port(efx);
1804 fail2:
1805 ef4_remove_nic(efx);
1806 fail1:
1807 return rc;
1808}
1809
1810/* If the interface is supposed to be running but is not, start
1811 * the hardware and software data path, regular activity for the port
1812 * (MAC statistics, link polling, etc.) and schedule the port to be
1813 * reconfigured. Interrupts must already be enabled. This function
1814 * is safe to call multiple times, so long as the NIC is not disabled.
1815 * Requires the RTNL lock.
1816 */
1817static void ef4_start_all(struct ef4_nic *efx)
1818{
1819 EF4_ASSERT_RESET_SERIALISED(efx);
1820 BUG_ON(efx->state == STATE_DISABLED);
1821
1822 /* Check that it is appropriate to restart the interface. All
1823 * of these flags are safe to read under just the rtnl lock */
1824 if (efx->port_enabled || !netif_running(efx->net_dev) ||
1825 efx->reset_pending)
1826 return;
1827
1828 ef4_start_port(efx);
1829 ef4_start_datapath(efx);
1830
1831 /* Start the hardware monitor if there is one */
1832 if (efx->type->monitor != NULL)
1833 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1834 ef4_monitor_interval);
1835
1836 efx->type->start_stats(efx);
1837 efx->type->pull_stats(efx);
1838 spin_lock_bh(&efx->stats_lock);
1839 efx->type->update_stats(efx, NULL, NULL);
1840 spin_unlock_bh(&efx->stats_lock);
1841}
1842
1843/* Quiesce the hardware and software data path, and regular activity
1844 * for the port without bringing the link down. Safe to call multiple
1845 * times with the NIC in almost any state, but interrupts should be
1846 * enabled. Requires the RTNL lock.
1847 */
1848static void ef4_stop_all(struct ef4_nic *efx)
1849{
1850 EF4_ASSERT_RESET_SERIALISED(efx);
1851
1852 /* port_enabled can be read safely under the rtnl lock */
1853 if (!efx->port_enabled)
1854 return;
1855
1856 /* update stats before we go down so we can accurately count
1857 * rx_nodesc_drops
1858 */
1859 efx->type->pull_stats(efx);
1860 spin_lock_bh(&efx->stats_lock);
1861 efx->type->update_stats(efx, NULL, NULL);
1862 spin_unlock_bh(&efx->stats_lock);
1863 efx->type->stop_stats(efx);
1864 ef4_stop_port(efx);
1865
1866 /* Stop the kernel transmit interface. This is only valid if
1867 * the device is stopped or detached; otherwise the watchdog
1868 * may fire immediately.
1869 */
1870 WARN_ON(netif_running(efx->net_dev) &&
1871 netif_device_present(efx->net_dev));
1872 netif_tx_disable(efx->net_dev);
1873
1874 ef4_stop_datapath(efx);
1875}
1876
1877static void ef4_remove_all(struct ef4_nic *efx)
1878{
1879 ef4_remove_channels(efx);
1880 ef4_remove_filters(efx);
1881 ef4_remove_port(efx);
1882 ef4_remove_nic(efx);
1883}
1884
1885/**************************************************************************
1886 *
1887 * Interrupt moderation
1888 *
1889 **************************************************************************/
1890unsigned int ef4_usecs_to_ticks(struct ef4_nic *efx, unsigned int usecs)
1891{
1892 if (usecs == 0)
1893 return 0;
1894 if (usecs * 1000 < efx->timer_quantum_ns)
1895 return 1; /* never round down to 0 */
1896 return usecs * 1000 / efx->timer_quantum_ns;
1897}
1898
1899unsigned int ef4_ticks_to_usecs(struct ef4_nic *efx, unsigned int ticks)
1900{
1901 /* We must round up when converting ticks to microseconds
1902 * because we round down when converting the other way.
1903 */
1904 return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
1905}
1906
1907/* Set interrupt moderation parameters */
1908int ef4_init_irq_moderation(struct ef4_nic *efx, unsigned int tx_usecs,
1909 unsigned int rx_usecs, bool rx_adaptive,
1910 bool rx_may_override_tx)
1911{
1912 struct ef4_channel *channel;
1913 unsigned int timer_max_us;
1914
1915 EF4_ASSERT_RESET_SERIALISED(efx);
1916
1917 timer_max_us = efx->timer_max_ns / 1000;
1918
1919 if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
1920 return -EINVAL;
1921
1922 if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
1923 !rx_may_override_tx) {
1924 netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1925 "RX and TX IRQ moderation must be equal\n");
1926 return -EINVAL;
1927 }
1928
1929 efx->irq_rx_adaptive = rx_adaptive;
1930 efx->irq_rx_moderation_us = rx_usecs;
1931 ef4_for_each_channel(channel, efx) {
1932 if (ef4_channel_has_rx_queue(channel))
1933 channel->irq_moderation_us = rx_usecs;
1934 else if (ef4_channel_has_tx_queues(channel))
1935 channel->irq_moderation_us = tx_usecs;
1936 }
1937
1938 return 0;
1939}
1940
1941void ef4_get_irq_moderation(struct ef4_nic *efx, unsigned int *tx_usecs,
1942 unsigned int *rx_usecs, bool *rx_adaptive)
1943{
1944 *rx_adaptive = efx->irq_rx_adaptive;
1945 *rx_usecs = efx->irq_rx_moderation_us;
1946
1947 /* If channels are shared between RX and TX, so is IRQ
1948 * moderation. Otherwise, IRQ moderation is the same for all
1949 * TX channels and is not adaptive.
1950 */
1951 if (efx->tx_channel_offset == 0) {
1952 *tx_usecs = *rx_usecs;
1953 } else {
1954 struct ef4_channel *tx_channel;
1955
1956 tx_channel = efx->channel[efx->tx_channel_offset];
1957 *tx_usecs = tx_channel->irq_moderation_us;
1958 }
1959}
1960
1961/**************************************************************************
1962 *
1963 * Hardware monitor
1964 *
1965 **************************************************************************/
1966
1967/* Run periodically off the general workqueue */
1968static void ef4_monitor(struct work_struct *data)
1969{
1970 struct ef4_nic *efx = container_of(data, struct ef4_nic,
1971 monitor_work.work);
1972
1973 netif_vdbg(efx, timer, efx->net_dev,
1974 "hardware monitor executing on CPU %d\n",
1975 raw_smp_processor_id());
1976 BUG_ON(efx->type->monitor == NULL);
1977
1978 /* If the mac_lock is already held then it is likely a port
1979 * reconfiguration is already in place, which will likely do
1980 * most of the work of monitor() anyway. */
1981 if (mutex_trylock(&efx->mac_lock)) {
1982 if (efx->port_enabled)
1983 efx->type->monitor(efx);
1984 mutex_unlock(&efx->mac_lock);
1985 }
1986
1987 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1988 ef4_monitor_interval);
1989}
1990
1991/**************************************************************************
1992 *
1993 * ioctls
1994 *
1995 *************************************************************************/
1996
1997/* Net device ioctl
1998 * Context: process, rtnl_lock() held.
1999 */
2000static int ef4_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
2001{
2002 struct ef4_nic *efx = netdev_priv(net_dev);
2003 struct mii_ioctl_data *data = if_mii(ifr);
2004
2005 /* Convert phy_id from older PRTAD/DEVAD format */
2006 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
2007 (data->phy_id & 0xfc00) == 0x0400)
2008 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
2009
2010 return mdio_mii_ioctl(&efx->mdio, data, cmd);
2011}
2012
2013/**************************************************************************
2014 *
2015 * NAPI interface
2016 *
2017 **************************************************************************/
2018
2019static void ef4_init_napi_channel(struct ef4_channel *channel)
2020{
2021 struct ef4_nic *efx = channel->efx;
2022
2023 channel->napi_dev = efx->net_dev;
2024 netif_napi_add(channel->napi_dev, &channel->napi_str,
2025 ef4_poll, napi_weight);
2026}
2027
2028static void ef4_init_napi(struct ef4_nic *efx)
2029{
2030 struct ef4_channel *channel;
2031
2032 ef4_for_each_channel(channel, efx)
2033 ef4_init_napi_channel(channel);
2034}
2035
2036static void ef4_fini_napi_channel(struct ef4_channel *channel)
2037{
2038 if (channel->napi_dev)
2039 netif_napi_del(&channel->napi_str);
2040
2041 channel->napi_dev = NULL;
2042}
2043
2044static void ef4_fini_napi(struct ef4_nic *efx)
2045{
2046 struct ef4_channel *channel;
2047
2048 ef4_for_each_channel(channel, efx)
2049 ef4_fini_napi_channel(channel);
2050}
2051
2052/**************************************************************************
2053 *
2054 * Kernel net device interface
2055 *
2056 *************************************************************************/
2057
2058/* Context: process, rtnl_lock() held. */
2059int ef4_net_open(struct net_device *net_dev)
2060{
2061 struct ef4_nic *efx = netdev_priv(net_dev);
2062 int rc;
2063
2064 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2065 raw_smp_processor_id());
2066
2067 rc = ef4_check_disabled(efx);
2068 if (rc)
2069 return rc;
2070 if (efx->phy_mode & PHY_MODE_SPECIAL)
2071 return -EBUSY;
2072
2073 /* Notify the kernel of the link state polled during driver load,
2074 * before the monitor starts running */
2075 ef4_link_status_changed(efx);
2076
2077 ef4_start_all(efx);
2078 ef4_selftest_async_start(efx);
2079 return 0;
2080}
2081
2082/* Context: process, rtnl_lock() held.
2083 * Note that the kernel will ignore our return code; this method
2084 * should really be a void.
2085 */
2086int ef4_net_stop(struct net_device *net_dev)
2087{
2088 struct ef4_nic *efx = netdev_priv(net_dev);
2089
2090 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2091 raw_smp_processor_id());
2092
2093 /* Stop the device and flush all the channels */
2094 ef4_stop_all(efx);
2095
2096 return 0;
2097}
2098
2099/* Context: process, dev_base_lock or RTNL held, non-blocking. */
2100static void ef4_net_stats(struct net_device *net_dev,
2101 struct rtnl_link_stats64 *stats)
2102{
2103 struct ef4_nic *efx = netdev_priv(net_dev);
2104
2105 spin_lock_bh(&efx->stats_lock);
2106 efx->type->update_stats(efx, NULL, stats);
2107 spin_unlock_bh(&efx->stats_lock);
2108}
2109
2110/* Context: netif_tx_lock held, BHs disabled. */
2111static void ef4_watchdog(struct net_device *net_dev, unsigned int txqueue)
2112{
2113 struct ef4_nic *efx = netdev_priv(net_dev);
2114
2115 netif_err(efx, tx_err, efx->net_dev,
2116 "TX stuck with port_enabled=%d: resetting channels\n",
2117 efx->port_enabled);
2118
2119 ef4_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2120}
2121
2122
2123/* Context: process, rtnl_lock() held. */
2124static int ef4_change_mtu(struct net_device *net_dev, int new_mtu)
2125{
2126 struct ef4_nic *efx = netdev_priv(net_dev);
2127 int rc;
2128
2129 rc = ef4_check_disabled(efx);
2130 if (rc)
2131 return rc;
2132
2133 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2134
2135 ef4_device_detach_sync(efx);
2136 ef4_stop_all(efx);
2137
2138 mutex_lock(&efx->mac_lock);
2139 net_dev->mtu = new_mtu;
2140 ef4_mac_reconfigure(efx);
2141 mutex_unlock(&efx->mac_lock);
2142
2143 ef4_start_all(efx);
2144 netif_device_attach(efx->net_dev);
2145 return 0;
2146}
2147
2148static int ef4_set_mac_address(struct net_device *net_dev, void *data)
2149{
2150 struct ef4_nic *efx = netdev_priv(net_dev);
2151 struct sockaddr *addr = data;
2152 u8 *new_addr = addr->sa_data;
2153 u8 old_addr[6];
2154 int rc;
2155
2156 if (!is_valid_ether_addr(new_addr)) {
2157 netif_err(efx, drv, efx->net_dev,
2158 "invalid ethernet MAC address requested: %pM\n",
2159 new_addr);
2160 return -EADDRNOTAVAIL;
2161 }
2162
2163 /* save old address */
2164 ether_addr_copy(old_addr, net_dev->dev_addr);
2165 ether_addr_copy(net_dev->dev_addr, new_addr);
2166 if (efx->type->set_mac_address) {
2167 rc = efx->type->set_mac_address(efx);
2168 if (rc) {
2169 ether_addr_copy(net_dev->dev_addr, old_addr);
2170 return rc;
2171 }
2172 }
2173
2174 /* Reconfigure the MAC */
2175 mutex_lock(&efx->mac_lock);
2176 ef4_mac_reconfigure(efx);
2177 mutex_unlock(&efx->mac_lock);
2178
2179 return 0;
2180}
2181
2182/* Context: netif_addr_lock held, BHs disabled. */
2183static void ef4_set_rx_mode(struct net_device *net_dev)
2184{
2185 struct ef4_nic *efx = netdev_priv(net_dev);
2186
2187 if (efx->port_enabled)
2188 queue_work(efx->workqueue, &efx->mac_work);
2189 /* Otherwise ef4_start_port() will do this */
2190}
2191
2192static int ef4_set_features(struct net_device *net_dev, netdev_features_t data)
2193{
2194 struct ef4_nic *efx = netdev_priv(net_dev);
2195 int rc;
2196
2197 /* If disabling RX n-tuple filtering, clear existing filters */
2198 if (net_dev->features & ~data & NETIF_F_NTUPLE) {
2199 rc = efx->type->filter_clear_rx(efx, EF4_FILTER_PRI_MANUAL);
2200 if (rc)
2201 return rc;
2202 }
2203
2204 /* If Rx VLAN filter is changed, update filters via mac_reconfigure */
2205 if ((net_dev->features ^ data) & NETIF_F_HW_VLAN_CTAG_FILTER) {
2206 /* ef4_set_rx_mode() will schedule MAC work to update filters
2207 * when a new features are finally set in net_dev.
2208 */
2209 ef4_set_rx_mode(net_dev);
2210 }
2211
2212 return 0;
2213}
2214
2215static const struct net_device_ops ef4_netdev_ops = {
2216 .ndo_open = ef4_net_open,
2217 .ndo_stop = ef4_net_stop,
2218 .ndo_get_stats64 = ef4_net_stats,
2219 .ndo_tx_timeout = ef4_watchdog,
2220 .ndo_start_xmit = ef4_hard_start_xmit,
2221 .ndo_validate_addr = eth_validate_addr,
2222 .ndo_do_ioctl = ef4_ioctl,
2223 .ndo_change_mtu = ef4_change_mtu,
2224 .ndo_set_mac_address = ef4_set_mac_address,
2225 .ndo_set_rx_mode = ef4_set_rx_mode,
2226 .ndo_set_features = ef4_set_features,
2227 .ndo_setup_tc = ef4_setup_tc,
2228#ifdef CONFIG_RFS_ACCEL
2229 .ndo_rx_flow_steer = ef4_filter_rfs,
2230#endif
2231};
2232
2233static void ef4_update_name(struct ef4_nic *efx)
2234{
2235 strcpy(efx->name, efx->net_dev->name);
2236 ef4_mtd_rename(efx);
2237 ef4_set_channel_names(efx);
2238}
2239
2240static int ef4_netdev_event(struct notifier_block *this,
2241 unsigned long event, void *ptr)
2242{
2243 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2244
2245 if ((net_dev->netdev_ops == &ef4_netdev_ops) &&
2246 event == NETDEV_CHANGENAME)
2247 ef4_update_name(netdev_priv(net_dev));
2248
2249 return NOTIFY_DONE;
2250}
2251
2252static struct notifier_block ef4_netdev_notifier = {
2253 .notifier_call = ef4_netdev_event,
2254};
2255
2256static ssize_t
2257show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2258{
2259 struct ef4_nic *efx = dev_get_drvdata(dev);
2260 return sprintf(buf, "%d\n", efx->phy_type);
2261}
2262static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
2263
2264static int ef4_register_netdev(struct ef4_nic *efx)
2265{
2266 struct net_device *net_dev = efx->net_dev;
2267 struct ef4_channel *channel;
2268 int rc;
2269
2270 net_dev->watchdog_timeo = 5 * HZ;
2271 net_dev->irq = efx->pci_dev->irq;
2272 net_dev->netdev_ops = &ef4_netdev_ops;
2273 net_dev->ethtool_ops = &ef4_ethtool_ops;
2274 net_dev->gso_max_segs = EF4_TSO_MAX_SEGS;
2275 net_dev->min_mtu = EF4_MIN_MTU;
2276 net_dev->max_mtu = EF4_MAX_MTU;
2277
2278 rtnl_lock();
2279
2280 /* Enable resets to be scheduled and check whether any were
2281 * already requested. If so, the NIC is probably hosed so we
2282 * abort.
2283 */
2284 efx->state = STATE_READY;
2285 smp_mb(); /* ensure we change state before checking reset_pending */
2286 if (efx->reset_pending) {
2287 netif_err(efx, probe, efx->net_dev,
2288 "aborting probe due to scheduled reset\n");
2289 rc = -EIO;
2290 goto fail_locked;
2291 }
2292
2293 rc = dev_alloc_name(net_dev, net_dev->name);
2294 if (rc < 0)
2295 goto fail_locked;
2296 ef4_update_name(efx);
2297
2298 /* Always start with carrier off; PHY events will detect the link */
2299 netif_carrier_off(net_dev);
2300
2301 rc = register_netdevice(net_dev);
2302 if (rc)
2303 goto fail_locked;
2304
2305 ef4_for_each_channel(channel, efx) {
2306 struct ef4_tx_queue *tx_queue;
2307 ef4_for_each_channel_tx_queue(tx_queue, channel)
2308 ef4_init_tx_queue_core_txq(tx_queue);
2309 }
2310
2311 ef4_associate(efx);
2312
2313 rtnl_unlock();
2314
2315 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2316 if (rc) {
2317 netif_err(efx, drv, efx->net_dev,
2318 "failed to init net dev attributes\n");
2319 goto fail_registered;
2320 }
2321 return 0;
2322
2323fail_registered:
2324 rtnl_lock();
2325 ef4_dissociate(efx);
2326 unregister_netdevice(net_dev);
2327fail_locked:
2328 efx->state = STATE_UNINIT;
2329 rtnl_unlock();
2330 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2331 return rc;
2332}
2333
2334static void ef4_unregister_netdev(struct ef4_nic *efx)
2335{
2336 if (!efx->net_dev)
2337 return;
2338
2339 BUG_ON(netdev_priv(efx->net_dev) != efx);
2340
2341 if (ef4_dev_registered(efx)) {
2342 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2343 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2344 unregister_netdev(efx->net_dev);
2345 }
2346}
2347
2348/**************************************************************************
2349 *
2350 * Device reset and suspend
2351 *
2352 **************************************************************************/
2353
2354/* Tears down the entire software state and most of the hardware state
2355 * before reset. */
2356void ef4_reset_down(struct ef4_nic *efx, enum reset_type method)
2357{
2358 EF4_ASSERT_RESET_SERIALISED(efx);
2359
2360 ef4_stop_all(efx);
2361 ef4_disable_interrupts(efx);
2362
2363 mutex_lock(&efx->mac_lock);
2364 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2365 method != RESET_TYPE_DATAPATH)
2366 efx->phy_op->fini(efx);
2367 efx->type->fini(efx);
2368}
2369
2370/* This function will always ensure that the locks acquired in
2371 * ef4_reset_down() are released. A failure return code indicates
2372 * that we were unable to reinitialise the hardware, and the
2373 * driver should be disabled. If ok is false, then the rx and tx
2374 * engines are not restarted, pending a RESET_DISABLE. */
2375int ef4_reset_up(struct ef4_nic *efx, enum reset_type method, bool ok)
2376{
2377 int rc;
2378
2379 EF4_ASSERT_RESET_SERIALISED(efx);
2380
2381 /* Ensure that SRAM is initialised even if we're disabling the device */
2382 rc = efx->type->init(efx);
2383 if (rc) {
2384 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2385 goto fail;
2386 }
2387
2388 if (!ok)
2389 goto fail;
2390
2391 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2392 method != RESET_TYPE_DATAPATH) {
2393 rc = efx->phy_op->init(efx);
2394 if (rc)
2395 goto fail;
2396 rc = efx->phy_op->reconfigure(efx);
2397 if (rc && rc != -EPERM)
2398 netif_err(efx, drv, efx->net_dev,
2399 "could not restore PHY settings\n");
2400 }
2401
2402 rc = ef4_enable_interrupts(efx);
2403 if (rc)
2404 goto fail;
2405
2406 down_read(&efx->filter_sem);
2407 ef4_restore_filters(efx);
2408 up_read(&efx->filter_sem);
2409
2410 mutex_unlock(&efx->mac_lock);
2411
2412 ef4_start_all(efx);
2413
2414 return 0;
2415
2416fail:
2417 efx->port_initialized = false;
2418
2419 mutex_unlock(&efx->mac_lock);
2420
2421 return rc;
2422}
2423
2424/* Reset the NIC using the specified method. Note that the reset may
2425 * fail, in which case the card will be left in an unusable state.
2426 *
2427 * Caller must hold the rtnl_lock.
2428 */
2429int ef4_reset(struct ef4_nic *efx, enum reset_type method)
2430{
2431 int rc, rc2;
2432 bool disabled;
2433
2434 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2435 RESET_TYPE(method));
2436
2437 ef4_device_detach_sync(efx);
2438 ef4_reset_down(efx, method);
2439
2440 rc = efx->type->reset(efx, method);
2441 if (rc) {
2442 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2443 goto out;
2444 }
2445
2446 /* Clear flags for the scopes we covered. We assume the NIC and
2447 * driver are now quiescent so that there is no race here.
2448 */
2449 if (method < RESET_TYPE_MAX_METHOD)
2450 efx->reset_pending &= -(1 << (method + 1));
2451 else /* it doesn't fit into the well-ordered scope hierarchy */
2452 __clear_bit(method, &efx->reset_pending);
2453
2454 /* Reinitialise bus-mastering, which may have been turned off before
2455 * the reset was scheduled. This is still appropriate, even in the
2456 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2457 * can respond to requests. */
2458 pci_set_master(efx->pci_dev);
2459
2460out:
2461 /* Leave device stopped if necessary */
2462 disabled = rc ||
2463 method == RESET_TYPE_DISABLE ||
2464 method == RESET_TYPE_RECOVER_OR_DISABLE;
2465 rc2 = ef4_reset_up(efx, method, !disabled);
2466 if (rc2) {
2467 disabled = true;
2468 if (!rc)
2469 rc = rc2;
2470 }
2471
2472 if (disabled) {
2473 dev_close(efx->net_dev);
2474 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2475 efx->state = STATE_DISABLED;
2476 } else {
2477 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2478 netif_device_attach(efx->net_dev);
2479 }
2480 return rc;
2481}
2482
2483/* Try recovery mechanisms.
2484 * For now only EEH is supported.
2485 * Returns 0 if the recovery mechanisms are unsuccessful.
2486 * Returns a non-zero value otherwise.
2487 */
2488int ef4_try_recovery(struct ef4_nic *efx)
2489{
2490#ifdef CONFIG_EEH
2491 /* A PCI error can occur and not be seen by EEH because nothing
2492 * happens on the PCI bus. In this case the driver may fail and
2493 * schedule a 'recover or reset', leading to this recovery handler.
2494 * Manually call the eeh failure check function.
2495 */
2496 struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2497 if (eeh_dev_check_failure(eehdev)) {
2498 /* The EEH mechanisms will handle the error and reset the
2499 * device if necessary.
2500 */
2501 return 1;
2502 }
2503#endif
2504 return 0;
2505}
2506
2507/* The worker thread exists so that code that cannot sleep can
2508 * schedule a reset for later.
2509 */
2510static void ef4_reset_work(struct work_struct *data)
2511{
2512 struct ef4_nic *efx = container_of(data, struct ef4_nic, reset_work);
2513 unsigned long pending;
2514 enum reset_type method;
2515
2516 pending = READ_ONCE(efx->reset_pending);
2517 method = fls(pending) - 1;
2518
2519 if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2520 method == RESET_TYPE_RECOVER_OR_ALL) &&
2521 ef4_try_recovery(efx))
2522 return;
2523
2524 if (!pending)
2525 return;
2526
2527 rtnl_lock();
2528
2529 /* We checked the state in ef4_schedule_reset() but it may
2530 * have changed by now. Now that we have the RTNL lock,
2531 * it cannot change again.
2532 */
2533 if (efx->state == STATE_READY)
2534 (void)ef4_reset(efx, method);
2535
2536 rtnl_unlock();
2537}
2538
2539void ef4_schedule_reset(struct ef4_nic *efx, enum reset_type type)
2540{
2541 enum reset_type method;
2542
2543 if (efx->state == STATE_RECOVERY) {
2544 netif_dbg(efx, drv, efx->net_dev,
2545 "recovering: skip scheduling %s reset\n",
2546 RESET_TYPE(type));
2547 return;
2548 }
2549
2550 switch (type) {
2551 case RESET_TYPE_INVISIBLE:
2552 case RESET_TYPE_ALL:
2553 case RESET_TYPE_RECOVER_OR_ALL:
2554 case RESET_TYPE_WORLD:
2555 case RESET_TYPE_DISABLE:
2556 case RESET_TYPE_RECOVER_OR_DISABLE:
2557 case RESET_TYPE_DATAPATH:
2558 method = type;
2559 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2560 RESET_TYPE(method));
2561 break;
2562 default:
2563 method = efx->type->map_reset_reason(type);
2564 netif_dbg(efx, drv, efx->net_dev,
2565 "scheduling %s reset for %s\n",
2566 RESET_TYPE(method), RESET_TYPE(type));
2567 break;
2568 }
2569
2570 set_bit(method, &efx->reset_pending);
2571 smp_mb(); /* ensure we change reset_pending before checking state */
2572
2573 /* If we're not READY then just leave the flags set as the cue
2574 * to abort probing or reschedule the reset later.
2575 */
2576 if (READ_ONCE(efx->state) != STATE_READY)
2577 return;
2578
2579 queue_work(reset_workqueue, &efx->reset_work);
2580}
2581
2582/**************************************************************************
2583 *
2584 * List of NICs we support
2585 *
2586 **************************************************************************/
2587
2588/* PCI device ID table */
2589static const struct pci_device_id ef4_pci_table[] = {
2590 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2591 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2592 .driver_data = (unsigned long) &falcon_a1_nic_type},
2593 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2594 PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2595 .driver_data = (unsigned long) &falcon_b0_nic_type},
2596 {0} /* end of list */
2597};
2598
2599/**************************************************************************
2600 *
2601 * Dummy PHY/MAC operations
2602 *
2603 * Can be used for some unimplemented operations
2604 * Needed so all function pointers are valid and do not have to be tested
2605 * before use
2606 *
2607 **************************************************************************/
2608int ef4_port_dummy_op_int(struct ef4_nic *efx)
2609{
2610 return 0;
2611}
2612void ef4_port_dummy_op_void(struct ef4_nic *efx) {}
2613
2614static bool ef4_port_dummy_op_poll(struct ef4_nic *efx)
2615{
2616 return false;
2617}
2618
2619static const struct ef4_phy_operations ef4_dummy_phy_operations = {
2620 .init = ef4_port_dummy_op_int,
2621 .reconfigure = ef4_port_dummy_op_int,
2622 .poll = ef4_port_dummy_op_poll,
2623 .fini = ef4_port_dummy_op_void,
2624};
2625
2626/**************************************************************************
2627 *
2628 * Data housekeeping
2629 *
2630 **************************************************************************/
2631
2632/* This zeroes out and then fills in the invariants in a struct
2633 * ef4_nic (including all sub-structures).
2634 */
2635static int ef4_init_struct(struct ef4_nic *efx,
2636 struct pci_dev *pci_dev, struct net_device *net_dev)
2637{
2638 int i;
2639
2640 /* Initialise common structures */
2641 INIT_LIST_HEAD(&efx->node);
2642 INIT_LIST_HEAD(&efx->secondary_list);
2643 spin_lock_init(&efx->biu_lock);
2644#ifdef CONFIG_SFC_FALCON_MTD
2645 INIT_LIST_HEAD(&efx->mtd_list);
2646#endif
2647 INIT_WORK(&efx->reset_work, ef4_reset_work);
2648 INIT_DELAYED_WORK(&efx->monitor_work, ef4_monitor);
2649 INIT_DELAYED_WORK(&efx->selftest_work, ef4_selftest_async_work);
2650 efx->pci_dev = pci_dev;
2651 efx->msg_enable = debug;
2652 efx->state = STATE_UNINIT;
2653 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2654
2655 efx->net_dev = net_dev;
2656 efx->rx_prefix_size = efx->type->rx_prefix_size;
2657 efx->rx_ip_align =
2658 NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2659 efx->rx_packet_hash_offset =
2660 efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2661 efx->rx_packet_ts_offset =
2662 efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2663 spin_lock_init(&efx->stats_lock);
2664 mutex_init(&efx->mac_lock);
2665 efx->phy_op = &ef4_dummy_phy_operations;
2666 efx->mdio.dev = net_dev;
2667 INIT_WORK(&efx->mac_work, ef4_mac_work);
2668 init_waitqueue_head(&efx->flush_wq);
2669
2670 for (i = 0; i < EF4_MAX_CHANNELS; i++) {
2671 efx->channel[i] = ef4_alloc_channel(efx, i, NULL);
2672 if (!efx->channel[i])
2673 goto fail;
2674 efx->msi_context[i].efx = efx;
2675 efx->msi_context[i].index = i;
2676 }
2677
2678 /* Higher numbered interrupt modes are less capable! */
2679 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2680 interrupt_mode);
2681
2682 /* Would be good to use the net_dev name, but we're too early */
2683 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2684 pci_name(pci_dev));
2685 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2686 if (!efx->workqueue)
2687 goto fail;
2688
2689 return 0;
2690
2691fail:
2692 ef4_fini_struct(efx);
2693 return -ENOMEM;
2694}
2695
2696static void ef4_fini_struct(struct ef4_nic *efx)
2697{
2698 int i;
2699
2700 for (i = 0; i < EF4_MAX_CHANNELS; i++)
2701 kfree(efx->channel[i]);
2702
2703 kfree(efx->vpd_sn);
2704
2705 if (efx->workqueue) {
2706 destroy_workqueue(efx->workqueue);
2707 efx->workqueue = NULL;
2708 }
2709}
2710
2711void ef4_update_sw_stats(struct ef4_nic *efx, u64 *stats)
2712{
2713 u64 n_rx_nodesc_trunc = 0;
2714 struct ef4_channel *channel;
2715
2716 ef4_for_each_channel(channel, efx)
2717 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
2718 stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
2719 stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
2720}
2721
2722/**************************************************************************
2723 *
2724 * PCI interface
2725 *
2726 **************************************************************************/
2727
2728/* Main body of final NIC shutdown code
2729 * This is called only at module unload (or hotplug removal).
2730 */
2731static void ef4_pci_remove_main(struct ef4_nic *efx)
2732{
2733 /* Flush reset_work. It can no longer be scheduled since we
2734 * are not READY.
2735 */
2736 BUG_ON(efx->state == STATE_READY);
2737 cancel_work_sync(&efx->reset_work);
2738
2739 ef4_disable_interrupts(efx);
2740 ef4_nic_fini_interrupt(efx);
2741 ef4_fini_port(efx);
2742 efx->type->fini(efx);
2743 ef4_fini_napi(efx);
2744 ef4_remove_all(efx);
2745}
2746
2747/* Final NIC shutdown
2748 * This is called only at module unload (or hotplug removal). A PF can call
2749 * this on its VFs to ensure they are unbound first.
2750 */
2751static void ef4_pci_remove(struct pci_dev *pci_dev)
2752{
2753 struct ef4_nic *efx;
2754
2755 efx = pci_get_drvdata(pci_dev);
2756 if (!efx)
2757 return;
2758
2759 /* Mark the NIC as fini, then stop the interface */
2760 rtnl_lock();
2761 ef4_dissociate(efx);
2762 dev_close(efx->net_dev);
2763 ef4_disable_interrupts(efx);
2764 efx->state = STATE_UNINIT;
2765 rtnl_unlock();
2766
2767 ef4_unregister_netdev(efx);
2768
2769 ef4_mtd_remove(efx);
2770
2771 ef4_pci_remove_main(efx);
2772
2773 ef4_fini_io(efx);
2774 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2775
2776 ef4_fini_struct(efx);
2777 free_netdev(efx->net_dev);
2778
2779 pci_disable_pcie_error_reporting(pci_dev);
2780};
2781
2782/* NIC VPD information
2783 * Called during probe to display the part number of the
2784 * installed NIC. VPD is potentially very large but this should
2785 * always appear within the first 512 bytes.
2786 */
2787#define SFC_VPD_LEN 512
2788static void ef4_probe_vpd_strings(struct ef4_nic *efx)
2789{
2790 struct pci_dev *dev = efx->pci_dev;
2791 char vpd_data[SFC_VPD_LEN];
2792 ssize_t vpd_size;
2793 int ro_start, ro_size, i, j;
2794
2795 /* Get the vpd data from the device */
2796 vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
2797 if (vpd_size <= 0) {
2798 netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
2799 return;
2800 }
2801
2802 /* Get the Read only section */
2803 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
2804 if (ro_start < 0) {
2805 netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
2806 return;
2807 }
2808
2809 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
2810 j = ro_size;
2811 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2812 if (i + j > vpd_size)
2813 j = vpd_size - i;
2814
2815 /* Get the Part number */
2816 i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
2817 if (i < 0) {
2818 netif_err(efx, drv, efx->net_dev, "Part number not found\n");
2819 return;
2820 }
2821
2822 j = pci_vpd_info_field_size(&vpd_data[i]);
2823 i += PCI_VPD_INFO_FLD_HDR_SIZE;
2824 if (i + j > vpd_size) {
2825 netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
2826 return;
2827 }
2828
2829 netif_info(efx, drv, efx->net_dev,
2830 "Part Number : %.*s\n", j, &vpd_data[i]);
2831
2832 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2833 j = ro_size;
2834 i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
2835 if (i < 0) {
2836 netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
2837 return;
2838 }
2839
2840 j = pci_vpd_info_field_size(&vpd_data[i]);
2841 i += PCI_VPD_INFO_FLD_HDR_SIZE;
2842 if (i + j > vpd_size) {
2843 netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
2844 return;
2845 }
2846
2847 efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
2848 if (!efx->vpd_sn)
2849 return;
2850
2851 snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
2852}
2853
2854
2855/* Main body of NIC initialisation
2856 * This is called at module load (or hotplug insertion, theoretically).
2857 */
2858static int ef4_pci_probe_main(struct ef4_nic *efx)
2859{
2860 int rc;
2861
2862 /* Do start-of-day initialisation */
2863 rc = ef4_probe_all(efx);
2864 if (rc)
2865 goto fail1;
2866
2867 ef4_init_napi(efx);
2868
2869 rc = efx->type->init(efx);
2870 if (rc) {
2871 netif_err(efx, probe, efx->net_dev,
2872 "failed to initialise NIC\n");
2873 goto fail3;
2874 }
2875
2876 rc = ef4_init_port(efx);
2877 if (rc) {
2878 netif_err(efx, probe, efx->net_dev,
2879 "failed to initialise port\n");
2880 goto fail4;
2881 }
2882
2883 rc = ef4_nic_init_interrupt(efx);
2884 if (rc)
2885 goto fail5;
2886 rc = ef4_enable_interrupts(efx);
2887 if (rc)
2888 goto fail6;
2889
2890 return 0;
2891
2892 fail6:
2893 ef4_nic_fini_interrupt(efx);
2894 fail5:
2895 ef4_fini_port(efx);
2896 fail4:
2897 efx->type->fini(efx);
2898 fail3:
2899 ef4_fini_napi(efx);
2900 ef4_remove_all(efx);
2901 fail1:
2902 return rc;
2903}
2904
2905/* NIC initialisation
2906 *
2907 * This is called at module load (or hotplug insertion,
2908 * theoretically). It sets up PCI mappings, resets the NIC,
2909 * sets up and registers the network devices with the kernel and hooks
2910 * the interrupt service routine. It does not prepare the device for
2911 * transmission; this is left to the first time one of the network
2912 * interfaces is brought up (i.e. ef4_net_open).
2913 */
2914static int ef4_pci_probe(struct pci_dev *pci_dev,
2915 const struct pci_device_id *entry)
2916{
2917 struct net_device *net_dev;
2918 struct ef4_nic *efx;
2919 int rc;
2920
2921 /* Allocate and initialise a struct net_device and struct ef4_nic */
2922 net_dev = alloc_etherdev_mqs(sizeof(*efx), EF4_MAX_CORE_TX_QUEUES,
2923 EF4_MAX_RX_QUEUES);
2924 if (!net_dev)
2925 return -ENOMEM;
2926 efx = netdev_priv(net_dev);
2927 efx->type = (const struct ef4_nic_type *) entry->driver_data;
2928 efx->fixed_features |= NETIF_F_HIGHDMA;
2929
2930 pci_set_drvdata(pci_dev, efx);
2931 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2932 rc = ef4_init_struct(efx, pci_dev, net_dev);
2933 if (rc)
2934 goto fail1;
2935
2936 netif_info(efx, probe, efx->net_dev,
2937 "Solarflare NIC detected\n");
2938
2939 ef4_probe_vpd_strings(efx);
2940
2941 /* Set up basic I/O (BAR mappings etc) */
2942 rc = ef4_init_io(efx);
2943 if (rc)
2944 goto fail2;
2945
2946 rc = ef4_pci_probe_main(efx);
2947 if (rc)
2948 goto fail3;
2949
2950 net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
2951 NETIF_F_RXCSUM);
2952 /* Mask for features that also apply to VLAN devices */
2953 net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
2954 NETIF_F_HIGHDMA | NETIF_F_RXCSUM);
2955
2956 net_dev->hw_features = net_dev->features & ~efx->fixed_features;
2957
2958 /* Disable VLAN filtering by default. It may be enforced if
2959 * the feature is fixed (i.e. VLAN filters are required to
2960 * receive VLAN tagged packets due to vPort restrictions).
2961 */
2962 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
2963 net_dev->features |= efx->fixed_features;
2964
2965 rc = ef4_register_netdev(efx);
2966 if (rc)
2967 goto fail4;
2968
2969 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2970
2971 /* Try to create MTDs, but allow this to fail */
2972 rtnl_lock();
2973 rc = ef4_mtd_probe(efx);
2974 rtnl_unlock();
2975 if (rc && rc != -EPERM)
2976 netif_warn(efx, probe, efx->net_dev,
2977 "failed to create MTDs (%d)\n", rc);
2978
2979 rc = pci_enable_pcie_error_reporting(pci_dev);
2980 if (rc && rc != -EINVAL)
2981 netif_notice(efx, probe, efx->net_dev,
2982 "PCIE error reporting unavailable (%d).\n",
2983 rc);
2984
2985 return 0;
2986
2987 fail4:
2988 ef4_pci_remove_main(efx);
2989 fail3:
2990 ef4_fini_io(efx);
2991 fail2:
2992 ef4_fini_struct(efx);
2993 fail1:
2994 WARN_ON(rc > 0);
2995 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2996 free_netdev(net_dev);
2997 return rc;
2998}
2999
3000static int ef4_pm_freeze(struct device *dev)
3001{
3002 struct ef4_nic *efx = dev_get_drvdata(dev);
3003
3004 rtnl_lock();
3005
3006 if (efx->state != STATE_DISABLED) {
3007 efx->state = STATE_UNINIT;
3008
3009 ef4_device_detach_sync(efx);
3010
3011 ef4_stop_all(efx);
3012 ef4_disable_interrupts(efx);
3013 }
3014
3015 rtnl_unlock();
3016
3017 return 0;
3018}
3019
3020static int ef4_pm_thaw(struct device *dev)
3021{
3022 int rc;
3023 struct ef4_nic *efx = dev_get_drvdata(dev);
3024
3025 rtnl_lock();
3026
3027 if (efx->state != STATE_DISABLED) {
3028 rc = ef4_enable_interrupts(efx);
3029 if (rc)
3030 goto fail;
3031
3032 mutex_lock(&efx->mac_lock);
3033 efx->phy_op->reconfigure(efx);
3034 mutex_unlock(&efx->mac_lock);
3035
3036 ef4_start_all(efx);
3037
3038 netif_device_attach(efx->net_dev);
3039
3040 efx->state = STATE_READY;
3041
3042 efx->type->resume_wol(efx);
3043 }
3044
3045 rtnl_unlock();
3046
3047 /* Reschedule any quenched resets scheduled during ef4_pm_freeze() */
3048 queue_work(reset_workqueue, &efx->reset_work);
3049
3050 return 0;
3051
3052fail:
3053 rtnl_unlock();
3054
3055 return rc;
3056}
3057
3058static int ef4_pm_poweroff(struct device *dev)
3059{
3060 struct pci_dev *pci_dev = to_pci_dev(dev);
3061 struct ef4_nic *efx = pci_get_drvdata(pci_dev);
3062
3063 efx->type->fini(efx);
3064
3065 efx->reset_pending = 0;
3066
3067 pci_save_state(pci_dev);
3068 return pci_set_power_state(pci_dev, PCI_D3hot);
3069}
3070
3071/* Used for both resume and restore */
3072static int ef4_pm_resume(struct device *dev)
3073{
3074 struct pci_dev *pci_dev = to_pci_dev(dev);
3075 struct ef4_nic *efx = pci_get_drvdata(pci_dev);
3076 int rc;
3077
3078 rc = pci_set_power_state(pci_dev, PCI_D0);
3079 if (rc)
3080 return rc;
3081 pci_restore_state(pci_dev);
3082 rc = pci_enable_device(pci_dev);
3083 if (rc)
3084 return rc;
3085 pci_set_master(efx->pci_dev);
3086 rc = efx->type->reset(efx, RESET_TYPE_ALL);
3087 if (rc)
3088 return rc;
3089 rc = efx->type->init(efx);
3090 if (rc)
3091 return rc;
3092 rc = ef4_pm_thaw(dev);
3093 return rc;
3094}
3095
3096static int ef4_pm_suspend(struct device *dev)
3097{
3098 int rc;
3099
3100 ef4_pm_freeze(dev);
3101 rc = ef4_pm_poweroff(dev);
3102 if (rc)
3103 ef4_pm_resume(dev);
3104 return rc;
3105}
3106
3107static const struct dev_pm_ops ef4_pm_ops = {
3108 .suspend = ef4_pm_suspend,
3109 .resume = ef4_pm_resume,
3110 .freeze = ef4_pm_freeze,
3111 .thaw = ef4_pm_thaw,
3112 .poweroff = ef4_pm_poweroff,
3113 .restore = ef4_pm_resume,
3114};
3115
3116/* A PCI error affecting this device was detected.
3117 * At this point MMIO and DMA may be disabled.
3118 * Stop the software path and request a slot reset.
3119 */
3120static pci_ers_result_t ef4_io_error_detected(struct pci_dev *pdev,
3121 pci_channel_state_t state)
3122{
3123 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3124 struct ef4_nic *efx = pci_get_drvdata(pdev);
3125
3126 if (state == pci_channel_io_perm_failure)
3127 return PCI_ERS_RESULT_DISCONNECT;
3128
3129 rtnl_lock();
3130
3131 if (efx->state != STATE_DISABLED) {
3132 efx->state = STATE_RECOVERY;
3133 efx->reset_pending = 0;
3134
3135 ef4_device_detach_sync(efx);
3136
3137 ef4_stop_all(efx);
3138 ef4_disable_interrupts(efx);
3139
3140 status = PCI_ERS_RESULT_NEED_RESET;
3141 } else {
3142 /* If the interface is disabled we don't want to do anything
3143 * with it.
3144 */
3145 status = PCI_ERS_RESULT_RECOVERED;
3146 }
3147
3148 rtnl_unlock();
3149
3150 pci_disable_device(pdev);
3151
3152 return status;
3153}
3154
3155/* Fake a successful reset, which will be performed later in ef4_io_resume. */
3156static pci_ers_result_t ef4_io_slot_reset(struct pci_dev *pdev)
3157{
3158 struct ef4_nic *efx = pci_get_drvdata(pdev);
3159 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3160
3161 if (pci_enable_device(pdev)) {
3162 netif_err(efx, hw, efx->net_dev,
3163 "Cannot re-enable PCI device after reset.\n");
3164 status = PCI_ERS_RESULT_DISCONNECT;
3165 }
3166
3167 return status;
3168}
3169
3170/* Perform the actual reset and resume I/O operations. */
3171static void ef4_io_resume(struct pci_dev *pdev)
3172{
3173 struct ef4_nic *efx = pci_get_drvdata(pdev);
3174 int rc;
3175
3176 rtnl_lock();
3177
3178 if (efx->state == STATE_DISABLED)
3179 goto out;
3180
3181 rc = ef4_reset(efx, RESET_TYPE_ALL);
3182 if (rc) {
3183 netif_err(efx, hw, efx->net_dev,
3184 "ef4_reset failed after PCI error (%d)\n", rc);
3185 } else {
3186 efx->state = STATE_READY;
3187 netif_dbg(efx, hw, efx->net_dev,
3188 "Done resetting and resuming IO after PCI error.\n");
3189 }
3190
3191out:
3192 rtnl_unlock();
3193}
3194
3195/* For simplicity and reliability, we always require a slot reset and try to
3196 * reset the hardware when a pci error affecting the device is detected.
3197 * We leave both the link_reset and mmio_enabled callback unimplemented:
3198 * with our request for slot reset the mmio_enabled callback will never be
3199 * called, and the link_reset callback is not used by AER or EEH mechanisms.
3200 */
3201static const struct pci_error_handlers ef4_err_handlers = {
3202 .error_detected = ef4_io_error_detected,
3203 .slot_reset = ef4_io_slot_reset,
3204 .resume = ef4_io_resume,
3205};
3206
3207static struct pci_driver ef4_pci_driver = {
3208 .name = KBUILD_MODNAME,
3209 .id_table = ef4_pci_table,
3210 .probe = ef4_pci_probe,
3211 .remove = ef4_pci_remove,
3212 .driver.pm = &ef4_pm_ops,
3213 .err_handler = &ef4_err_handlers,
3214};
3215
3216/**************************************************************************
3217 *
3218 * Kernel module interface
3219 *
3220 *************************************************************************/
3221
3222module_param(interrupt_mode, uint, 0444);
3223MODULE_PARM_DESC(interrupt_mode,
3224 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3225
3226static int __init ef4_init_module(void)
3227{
3228 int rc;
3229
3230 printk(KERN_INFO "Solarflare Falcon driver v" EF4_DRIVER_VERSION "\n");
3231
3232 rc = register_netdevice_notifier(&ef4_netdev_notifier);
3233 if (rc)
3234 goto err_notifier;
3235
3236 reset_workqueue = create_singlethread_workqueue("sfc_reset");
3237 if (!reset_workqueue) {
3238 rc = -ENOMEM;
3239 goto err_reset;
3240 }
3241
3242 rc = pci_register_driver(&ef4_pci_driver);
3243 if (rc < 0)
3244 goto err_pci;
3245
3246 return 0;
3247
3248 err_pci:
3249 destroy_workqueue(reset_workqueue);
3250 err_reset:
3251 unregister_netdevice_notifier(&ef4_netdev_notifier);
3252 err_notifier:
3253 return rc;
3254}
3255
3256static void __exit ef4_exit_module(void)
3257{
3258 printk(KERN_INFO "Solarflare Falcon driver unloading\n");
3259
3260 pci_unregister_driver(&ef4_pci_driver);
3261 destroy_workqueue(reset_workqueue);
3262 unregister_netdevice_notifier(&ef4_netdev_notifier);
3263
3264}
3265
3266module_init(ef4_init_module);
3267module_exit(ef4_exit_module);
3268
3269MODULE_AUTHOR("Solarflare Communications and "
3270 "Michael Brown <mbrown@fensystems.co.uk>");
3271MODULE_DESCRIPTION("Solarflare Falcon network driver");
3272MODULE_LICENSE("GPL");
3273MODULE_DEVICE_TABLE(pci, ef4_pci_table);
3274MODULE_VERSION(EF4_DRIVER_VERSION);