Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2018 Solarflare Communications Inc.
   5 * Copyright 2019-2022 Xilinx Inc.
   6 *
   7 * This program is free software; you can redistribute it and/or modify it
   8 * under the terms of the GNU General Public License version 2 as published
   9 * by the Free Software Foundation, incorporated herein by reference.
  10 */
  11
  12#include "ef100_nic.h"
  13#include "efx_common.h"
  14#include "efx_channels.h"
  15#include "io.h"
  16#include "selftest.h"
  17#include "ef100_regs.h"
  18#include "mcdi.h"
  19#include "mcdi_pcol.h"
  20#include "mcdi_port_common.h"
  21#include "mcdi_functions.h"
  22#include "mcdi_filters.h"
  23#include "ef100_rx.h"
  24#include "ef100_tx.h"
  25#include "ef100_sriov.h"
  26#include "ef100_netdev.h"
  27#include "tc.h"
  28#include "mae.h"
  29#include "rx_common.h"
  30
  31#define EF100_MAX_VIS 4096
  32#define EF100_NUM_MCDI_BUFFERS	1
  33#define MCDI_BUF_LEN (8 + MCDI_CTL_SDU_LEN_MAX)
  34
  35#define EF100_RESET_PORT ((ETH_RESET_MAC | ETH_RESET_PHY) << ETH_RESET_SHARED_SHIFT)
  36
  37/*	MCDI
  38 */
  39static u8 *ef100_mcdi_buf(struct efx_nic *efx, u8 bufid, dma_addr_t *dma_addr)
  40{
  41	struct ef100_nic_data *nic_data = efx->nic_data;
  42
  43	if (dma_addr)
  44		*dma_addr = nic_data->mcdi_buf.dma_addr +
  45			    bufid * ALIGN(MCDI_BUF_LEN, 256);
  46	return nic_data->mcdi_buf.addr + bufid * ALIGN(MCDI_BUF_LEN, 256);
  47}
  48
  49static int ef100_get_warm_boot_count(struct efx_nic *efx)
  50{
  51	efx_dword_t reg;
  52
  53	efx_readd(efx, &reg, efx_reg(efx, ER_GZ_MC_SFT_STATUS));
  54
  55	if (EFX_DWORD_FIELD(reg, EFX_DWORD_0) == 0xffffffff) {
  56		netif_err(efx, hw, efx->net_dev, "Hardware unavailable\n");
  57		efx->state = STATE_DISABLED;
  58		return -ENETDOWN;
  59	} else {
  60		return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
  61			EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
  62	}
  63}
  64
  65static void ef100_mcdi_request(struct efx_nic *efx,
  66			       const efx_dword_t *hdr, size_t hdr_len,
  67			       const efx_dword_t *sdu, size_t sdu_len)
  68{
  69	dma_addr_t dma_addr;
  70	u8 *pdu = ef100_mcdi_buf(efx, 0, &dma_addr);
  71
  72	memcpy(pdu, hdr, hdr_len);
  73	memcpy(pdu + hdr_len, sdu, sdu_len);
  74	wmb();
  75
  76	/* The hardware provides 'low' and 'high' (doorbell) registers
  77	 * for passing the 64-bit address of an MCDI request to
  78	 * firmware.  However the dwords are swapped by firmware.  The
  79	 * least significant bits of the doorbell are then 0 for all
  80	 * MCDI requests due to alignment.
  81	 */
  82	_efx_writed(efx, cpu_to_le32((u64)dma_addr >> 32),  efx_reg(efx, ER_GZ_MC_DB_LWRD));
  83	_efx_writed(efx, cpu_to_le32((u32)dma_addr),  efx_reg(efx, ER_GZ_MC_DB_HWRD));
  84}
  85
  86static bool ef100_mcdi_poll_response(struct efx_nic *efx)
  87{
  88	const efx_dword_t hdr =
  89		*(const efx_dword_t *)(ef100_mcdi_buf(efx, 0, NULL));
  90
  91	rmb();
  92	return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
  93}
  94
  95static void ef100_mcdi_read_response(struct efx_nic *efx,
  96				     efx_dword_t *outbuf, size_t offset,
  97				     size_t outlen)
  98{
  99	const u8 *pdu = ef100_mcdi_buf(efx, 0, NULL);
 100
 101	memcpy(outbuf, pdu + offset, outlen);
 102}
 103
 104static int ef100_mcdi_poll_reboot(struct efx_nic *efx)
 105{
 106	struct ef100_nic_data *nic_data = efx->nic_data;
 107	int rc;
 108
 109	rc = ef100_get_warm_boot_count(efx);
 110	if (rc < 0) {
 111		/* The firmware is presumably in the process of
 112		 * rebooting.  However, we are supposed to report each
 113		 * reboot just once, so we must only do that once we
 114		 * can read and store the updated warm boot count.
 115		 */
 116		return 0;
 117	}
 118
 119	if (rc == nic_data->warm_boot_count)
 120		return 0;
 121
 122	nic_data->warm_boot_count = rc;
 123
 124	return -EIO;
 125}
 126
 127static void ef100_mcdi_reboot_detected(struct efx_nic *efx)
 128{
 129}
 130
 131/*	MCDI calls
 132 */
 133int ef100_get_mac_address(struct efx_nic *efx, u8 *mac_address,
 134			  int client_handle, bool empty_ok)
 135{
 136	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLIENT_MAC_ADDRESSES_OUT_LEN(1));
 137	MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_CLIENT_MAC_ADDRESSES_IN_LEN);
 138	size_t outlen;
 139	int rc;
 140
 141	BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
 142	MCDI_SET_DWORD(inbuf, GET_CLIENT_MAC_ADDRESSES_IN_CLIENT_HANDLE,
 143		       client_handle);
 144
 145	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLIENT_MAC_ADDRESSES, inbuf,
 146			  sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
 147	if (rc)
 148		return rc;
 
 
 149
 150	if (outlen >= MC_CMD_GET_CLIENT_MAC_ADDRESSES_OUT_LEN(1)) {
 151		ether_addr_copy(mac_address,
 152				MCDI_PTR(outbuf, GET_CLIENT_MAC_ADDRESSES_OUT_MAC_ADDRS));
 153	} else if (empty_ok) {
 154		pci_warn(efx->pci_dev,
 155			 "No MAC address provisioned for client ID %#x.\n",
 156			 client_handle);
 157		eth_zero_addr(mac_address);
 158	} else {
 159		return -ENOENT;
 160	}
 161	return 0;
 162}
 163
 164int efx_ef100_init_datapath_caps(struct efx_nic *efx)
 165{
 166	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V7_OUT_LEN);
 167	struct ef100_nic_data *nic_data = efx->nic_data;
 168	u8 vi_window_mode;
 169	size_t outlen;
 170	int rc;
 171
 172	BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
 173
 174	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
 175			  outbuf, sizeof(outbuf), &outlen);
 176	if (rc)
 177		return rc;
 178	if (outlen < MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
 179		netif_err(efx, drv, efx->net_dev,
 180			  "unable to read datapath firmware capabilities\n");
 181		return -EIO;
 182	}
 183
 184	nic_data->datapath_caps = MCDI_DWORD(outbuf,
 185					     GET_CAPABILITIES_OUT_FLAGS1);
 186	nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
 187					      GET_CAPABILITIES_V2_OUT_FLAGS2);
 188	if (outlen < MC_CMD_GET_CAPABILITIES_V7_OUT_LEN)
 189		nic_data->datapath_caps3 = 0;
 190	else
 191		nic_data->datapath_caps3 = MCDI_DWORD(outbuf,
 192						      GET_CAPABILITIES_V7_OUT_FLAGS3);
 193
 194	vi_window_mode = MCDI_BYTE(outbuf,
 195				   GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
 196	rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode);
 197	if (rc)
 198		return rc;
 199
 200	if (efx_ef100_has_cap(nic_data->datapath_caps2, TX_TSO_V3)) {
 201		struct net_device *net_dev = efx->net_dev;
 202		netdev_features_t tso = NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_PARTIAL |
 203					NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
 204					NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM;
 205
 206		net_dev->features |= tso;
 207		net_dev->hw_features |= tso;
 208		net_dev->hw_enc_features |= tso;
 209		/* EF100 HW can only offload outer checksums if they are UDP,
 210		 * so for GRE_CSUM we have to use GSO_PARTIAL.
 211		 */
 212		net_dev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
 213	}
 214	efx->num_mac_stats = MCDI_WORD(outbuf,
 215				       GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
 216	netif_dbg(efx, probe, efx->net_dev,
 217		  "firmware reports num_mac_stats = %u\n",
 218		  efx->num_mac_stats);
 219	return 0;
 220}
 221
 222/*	Event handling
 223 */
 224static int ef100_ev_probe(struct efx_channel *channel)
 225{
 226	/* Allocate an extra descriptor for the QMDA status completion entry */
 227	return efx_nic_alloc_buffer(channel->efx, &channel->eventq,
 228				    (channel->eventq_mask + 2) *
 229				    sizeof(efx_qword_t),
 230				    GFP_KERNEL);
 231}
 232
 233static int ef100_ev_init(struct efx_channel *channel)
 234{
 235	struct ef100_nic_data *nic_data = channel->efx->nic_data;
 236
 237	/* initial phase is 0 */
 238	clear_bit(channel->channel, nic_data->evq_phases);
 239
 240	return efx_mcdi_ev_init(channel, false, false);
 241}
 242
 243static void ef100_ev_read_ack(struct efx_channel *channel)
 244{
 245	efx_dword_t evq_prime;
 246
 247	EFX_POPULATE_DWORD_2(evq_prime,
 248			     ERF_GZ_EVQ_ID, channel->channel,
 249			     ERF_GZ_IDX, channel->eventq_read_ptr &
 250					 channel->eventq_mask);
 251
 252	efx_writed(channel->efx, &evq_prime,
 253		   efx_reg(channel->efx, ER_GZ_EVQ_INT_PRIME));
 254}
 255
 256#define EFX_NAPI_MAX_TX 512
 257
 258static int ef100_ev_process(struct efx_channel *channel, int quota)
 259{
 260	struct efx_nic *efx = channel->efx;
 261	struct ef100_nic_data *nic_data;
 262	bool evq_phase, old_evq_phase;
 263	unsigned int read_ptr;
 264	efx_qword_t *p_event;
 265	int spent_tx = 0;
 266	int spent = 0;
 267	bool ev_phase;
 268	int ev_type;
 269
 270	if (unlikely(!channel->enabled))
 271		return 0;
 272
 273	nic_data = efx->nic_data;
 274	evq_phase = test_bit(channel->channel, nic_data->evq_phases);
 275	old_evq_phase = evq_phase;
 276	read_ptr = channel->eventq_read_ptr;
 277	BUILD_BUG_ON(ESF_GZ_EV_RXPKTS_PHASE_LBN != ESF_GZ_EV_TXCMPL_PHASE_LBN);
 278
 279	while (spent < quota) {
 280		p_event = efx_event(channel, read_ptr);
 281
 282		ev_phase = !!EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_RXPKTS_PHASE);
 283		if (ev_phase != evq_phase)
 284			break;
 285
 286		netif_vdbg(efx, drv, efx->net_dev,
 287			   "processing event on %d " EFX_QWORD_FMT "\n",
 288			   channel->channel, EFX_QWORD_VAL(*p_event));
 289
 290		ev_type = EFX_QWORD_FIELD(*p_event, ESF_GZ_E_TYPE);
 291
 292		switch (ev_type) {
 293		case ESE_GZ_EF100_EV_RX_PKTS:
 294			efx_ef100_ev_rx(channel, p_event);
 295			++spent;
 296			break;
 297		case ESE_GZ_EF100_EV_MCDI:
 298			efx_mcdi_process_event(channel, p_event);
 299			break;
 300		case ESE_GZ_EF100_EV_TX_COMPLETION:
 301			spent_tx += ef100_ev_tx(channel, p_event);
 302			if (spent_tx >= EFX_NAPI_MAX_TX)
 303				spent = quota;
 304			break;
 305		case ESE_GZ_EF100_EV_DRIVER:
 306			netif_info(efx, drv, efx->net_dev,
 307				   "Driver initiated event " EFX_QWORD_FMT "\n",
 308				   EFX_QWORD_VAL(*p_event));
 309			break;
 310		default:
 311			netif_info(efx, drv, efx->net_dev,
 312				   "Unhandled event " EFX_QWORD_FMT "\n",
 313				   EFX_QWORD_VAL(*p_event));
 314		}
 315
 316		++read_ptr;
 317		if ((read_ptr & channel->eventq_mask) == 0)
 318			evq_phase = !evq_phase;
 319	}
 320
 321	channel->eventq_read_ptr = read_ptr;
 322	if (evq_phase != old_evq_phase)
 323		change_bit(channel->channel, nic_data->evq_phases);
 324
 325	return spent;
 326}
 327
 328static irqreturn_t ef100_msi_interrupt(int irq, void *dev_id)
 329{
 330	struct efx_msi_context *context = dev_id;
 331	struct efx_nic *efx = context->efx;
 332
 333	netif_vdbg(efx, intr, efx->net_dev,
 334		   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
 335
 336	if (likely(READ_ONCE(efx->irq_soft_enabled))) {
 337		/* Note test interrupts */
 338		if (context->index == efx->irq_level)
 339			efx->last_irq_cpu = raw_smp_processor_id();
 340
 341		/* Schedule processing of the channel */
 342		efx_schedule_channel_irq(efx->channel[context->index]);
 343	}
 344
 345	return IRQ_HANDLED;
 346}
 347
 348int ef100_phy_probe(struct efx_nic *efx)
 349{
 350	struct efx_mcdi_phy_data *phy_data;
 351	int rc;
 352
 353	/* Probe for the PHY */
 354	efx->phy_data = kzalloc(sizeof(struct efx_mcdi_phy_data), GFP_KERNEL);
 355	if (!efx->phy_data)
 356		return -ENOMEM;
 357
 358	rc = efx_mcdi_get_phy_cfg(efx, efx->phy_data);
 359	if (rc)
 360		return rc;
 361
 362	/* Populate driver and ethtool settings */
 363	phy_data = efx->phy_data;
 364	mcdi_to_ethtool_linkset(phy_data->media, phy_data->supported_cap,
 365				efx->link_advertising);
 366	efx->fec_config = mcdi_fec_caps_to_ethtool(phy_data->supported_cap,
 367						   false);
 368
 369	/* Default to Autonegotiated flow control if the PHY supports it */
 370	efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
 371	if (phy_data->supported_cap & (1 << MC_CMD_PHY_CAP_AN_LBN))
 372		efx->wanted_fc |= EFX_FC_AUTO;
 373	efx_link_set_wanted_fc(efx, efx->wanted_fc);
 374
 375	/* Push settings to the PHY. Failure is not fatal, the user can try to
 376	 * fix it using ethtool.
 377	 */
 378	rc = efx_mcdi_port_reconfigure(efx);
 379	if (rc && rc != -EPERM)
 380		netif_warn(efx, drv, efx->net_dev,
 381			   "could not initialise PHY settings\n");
 382
 383	return 0;
 384}
 385
 386int ef100_filter_table_probe(struct efx_nic *efx)
 387{
 388	return efx_mcdi_filter_table_probe(efx, true);
 389}
 390
 391static int ef100_filter_table_up(struct efx_nic *efx)
 392{
 393	int rc;
 394
 395	down_write(&efx->filter_sem);
 396	rc = efx_mcdi_filter_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
 397	if (rc)
 398		goto fail_unspec;
 
 
 399
 400	rc = efx_mcdi_filter_add_vlan(efx, 0);
 401	if (rc)
 402		goto fail_vlan0;
 403	/* Drop the lock: we've finished altering table existence, and
 404	 * filter insertion will need to take the lock for read.
 405	 */
 406	up_write(&efx->filter_sem);
 407	if (IS_ENABLED(CONFIG_SFC_SRIOV))
 408		rc = efx_tc_insert_rep_filters(efx);
 409
 410	/* Rep filter failure is nonfatal */
 411	if (rc)
 412		netif_warn(efx, drv, efx->net_dev,
 413			   "Failed to insert representor filters, rc %d\n",
 414			   rc);
 415	return 0;
 416
 417fail_vlan0:
 418	efx_mcdi_filter_del_vlan(efx, EFX_FILTER_VID_UNSPEC);
 419fail_unspec:
 420	efx_mcdi_filter_table_down(efx);
 421	up_write(&efx->filter_sem);
 422	return rc;
 423}
 424
 425static void ef100_filter_table_down(struct efx_nic *efx)
 426{
 427	if (IS_ENABLED(CONFIG_SFC_SRIOV))
 428		efx_tc_remove_rep_filters(efx);
 429	down_write(&efx->filter_sem);
 430	efx_mcdi_filter_del_vlan(efx, 0);
 431	efx_mcdi_filter_del_vlan(efx, EFX_FILTER_VID_UNSPEC);
 432	efx_mcdi_filter_table_down(efx);
 433	up_write(&efx->filter_sem);
 434}
 435
 436/*	Other
 437 */
 438static int ef100_reconfigure_mac(struct efx_nic *efx, bool mtu_only)
 439{
 440	WARN_ON(!mutex_is_locked(&efx->mac_lock));
 441
 442	efx_mcdi_filter_sync_rx_mode(efx);
 443
 444	if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED))
 445		return efx_mcdi_set_mtu(efx);
 446	return efx_mcdi_set_mac(efx);
 447}
 448
 449static enum reset_type ef100_map_reset_reason(enum reset_type reason)
 450{
 451	if (reason == RESET_TYPE_TX_WATCHDOG)
 452		return reason;
 453	return RESET_TYPE_DISABLE;
 454}
 455
 456static int ef100_map_reset_flags(u32 *flags)
 457{
 458	/* Only perform a RESET_TYPE_ALL because we don't support MC_REBOOTs */
 459	if ((*flags & EF100_RESET_PORT)) {
 460		*flags &= ~EF100_RESET_PORT;
 461		return RESET_TYPE_ALL;
 462	}
 463	if (*flags & ETH_RESET_MGMT) {
 464		*flags &= ~ETH_RESET_MGMT;
 465		return RESET_TYPE_DISABLE;
 466	}
 467
 468	return -EINVAL;
 469}
 470
 471static int ef100_reset(struct efx_nic *efx, enum reset_type reset_type)
 472{
 473	int rc;
 474
 475	dev_close(efx->net_dev);
 476
 477	if (reset_type == RESET_TYPE_TX_WATCHDOG) {
 478		netif_device_attach(efx->net_dev);
 479		__clear_bit(reset_type, &efx->reset_pending);
 480		rc = dev_open(efx->net_dev, NULL);
 481	} else if (reset_type == RESET_TYPE_ALL) {
 
 
 
 
 
 
 482		rc = efx_mcdi_reset(efx, reset_type);
 483		if (rc)
 484			return rc;
 485
 486		netif_device_attach(efx->net_dev);
 487
 
 
 
 
 
 
 488		rc = dev_open(efx->net_dev, NULL);
 489	} else {
 490		rc = 1;	/* Leave the device closed */
 491	}
 492	return rc;
 493}
 494
 495static void ef100_common_stat_mask(unsigned long *mask)
 496{
 497	__set_bit(EF100_STAT_port_rx_packets, mask);
 498	__set_bit(EF100_STAT_port_tx_packets, mask);
 499	__set_bit(EF100_STAT_port_rx_bytes, mask);
 500	__set_bit(EF100_STAT_port_tx_bytes, mask);
 501	__set_bit(EF100_STAT_port_rx_multicast, mask);
 502	__set_bit(EF100_STAT_port_rx_bad, mask);
 503	__set_bit(EF100_STAT_port_rx_align_error, mask);
 504	__set_bit(EF100_STAT_port_rx_overflow, mask);
 505}
 506
 507static void ef100_ethtool_stat_mask(unsigned long *mask)
 508{
 509	__set_bit(EF100_STAT_port_tx_pause, mask);
 510	__set_bit(EF100_STAT_port_tx_unicast, mask);
 511	__set_bit(EF100_STAT_port_tx_multicast, mask);
 512	__set_bit(EF100_STAT_port_tx_broadcast, mask);
 513	__set_bit(EF100_STAT_port_tx_lt64, mask);
 514	__set_bit(EF100_STAT_port_tx_64, mask);
 515	__set_bit(EF100_STAT_port_tx_65_to_127, mask);
 516	__set_bit(EF100_STAT_port_tx_128_to_255, mask);
 517	__set_bit(EF100_STAT_port_tx_256_to_511, mask);
 518	__set_bit(EF100_STAT_port_tx_512_to_1023, mask);
 519	__set_bit(EF100_STAT_port_tx_1024_to_15xx, mask);
 520	__set_bit(EF100_STAT_port_tx_15xx_to_jumbo, mask);
 521	__set_bit(EF100_STAT_port_rx_good, mask);
 522	__set_bit(EF100_STAT_port_rx_pause, mask);
 523	__set_bit(EF100_STAT_port_rx_unicast, mask);
 524	__set_bit(EF100_STAT_port_rx_broadcast, mask);
 525	__set_bit(EF100_STAT_port_rx_lt64, mask);
 526	__set_bit(EF100_STAT_port_rx_64, mask);
 527	__set_bit(EF100_STAT_port_rx_65_to_127, mask);
 528	__set_bit(EF100_STAT_port_rx_128_to_255, mask);
 529	__set_bit(EF100_STAT_port_rx_256_to_511, mask);
 530	__set_bit(EF100_STAT_port_rx_512_to_1023, mask);
 531	__set_bit(EF100_STAT_port_rx_1024_to_15xx, mask);
 532	__set_bit(EF100_STAT_port_rx_15xx_to_jumbo, mask);
 533	__set_bit(EF100_STAT_port_rx_gtjumbo, mask);
 534	__set_bit(EF100_STAT_port_rx_bad_gtjumbo, mask);
 535	__set_bit(EF100_STAT_port_rx_length_error, mask);
 536	__set_bit(EF100_STAT_port_rx_nodesc_drops, mask);
 537	__set_bit(GENERIC_STAT_rx_nodesc_trunc, mask);
 538	__set_bit(GENERIC_STAT_rx_noskb_drops, mask);
 539}
 540
 541#define EF100_DMA_STAT(ext_name, mcdi_name)			\
 542	[EF100_STAT_ ## ext_name] =				\
 543	{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
 544
 545static const struct efx_hw_stat_desc ef100_stat_desc[EF100_STAT_COUNT] = {
 546	EF100_DMA_STAT(port_tx_bytes, TX_BYTES),
 547	EF100_DMA_STAT(port_tx_packets, TX_PKTS),
 548	EF100_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
 549	EF100_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
 550	EF100_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
 551	EF100_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
 552	EF100_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
 553	EF100_DMA_STAT(port_tx_64, TX_64_PKTS),
 554	EF100_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
 555	EF100_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
 556	EF100_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
 557	EF100_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
 558	EF100_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
 559	EF100_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
 560	EF100_DMA_STAT(port_rx_bytes, RX_BYTES),
 561	EF100_DMA_STAT(port_rx_packets, RX_PKTS),
 562	EF100_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
 563	EF100_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
 564	EF100_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
 565	EF100_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
 566	EF100_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
 567	EF100_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
 568	EF100_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
 569	EF100_DMA_STAT(port_rx_64, RX_64_PKTS),
 570	EF100_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
 571	EF100_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
 572	EF100_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
 573	EF100_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
 574	EF100_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
 575	EF100_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
 576	EF100_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
 577	EF100_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
 578	EF100_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
 579	EF100_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
 580	EF100_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
 581	EF100_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
 582	EFX_GENERIC_SW_STAT(rx_nodesc_trunc),
 583	EFX_GENERIC_SW_STAT(rx_noskb_drops),
 584};
 585
 586static size_t ef100_describe_stats(struct efx_nic *efx, u8 **names)
 587{
 588	DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {};
 589
 590	ef100_ethtool_stat_mask(mask);
 591	return efx_nic_describe_stats(ef100_stat_desc, EF100_STAT_COUNT,
 592				      mask, names);
 593}
 594
 595static size_t ef100_update_stats_common(struct efx_nic *efx, u64 *full_stats,
 596					struct rtnl_link_stats64 *core_stats)
 597{
 598	struct ef100_nic_data *nic_data = efx->nic_data;
 599	DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {};
 600	size_t stats_count = 0, index;
 601	u64 *stats = nic_data->stats;
 602
 603	ef100_ethtool_stat_mask(mask);
 604
 605	if (full_stats) {
 606		for_each_set_bit(index, mask, EF100_STAT_COUNT) {
 607			if (ef100_stat_desc[index].name) {
 608				*full_stats++ = stats[index];
 609				++stats_count;
 610			}
 611		}
 612	}
 613
 614	if (!core_stats)
 615		return stats_count;
 616
 617	core_stats->rx_packets = stats[EF100_STAT_port_rx_packets];
 618	core_stats->tx_packets = stats[EF100_STAT_port_tx_packets];
 619	core_stats->rx_bytes = stats[EF100_STAT_port_rx_bytes];
 620	core_stats->tx_bytes = stats[EF100_STAT_port_tx_bytes];
 621	core_stats->rx_dropped = stats[EF100_STAT_port_rx_nodesc_drops] +
 622				 stats[GENERIC_STAT_rx_nodesc_trunc] +
 623				 stats[GENERIC_STAT_rx_noskb_drops];
 624	core_stats->multicast = stats[EF100_STAT_port_rx_multicast];
 625	core_stats->rx_length_errors =
 626			stats[EF100_STAT_port_rx_gtjumbo] +
 627			stats[EF100_STAT_port_rx_length_error];
 628	core_stats->rx_crc_errors = stats[EF100_STAT_port_rx_bad];
 629	core_stats->rx_frame_errors =
 630			stats[EF100_STAT_port_rx_align_error];
 631	core_stats->rx_fifo_errors = stats[EF100_STAT_port_rx_overflow];
 632	core_stats->rx_errors = (core_stats->rx_length_errors +
 633				 core_stats->rx_crc_errors +
 634				 core_stats->rx_frame_errors);
 635
 636	return stats_count;
 637}
 638
 639static size_t ef100_update_stats(struct efx_nic *efx,
 640				 u64 *full_stats,
 641				 struct rtnl_link_stats64 *core_stats)
 642{
 643	__le64 *mc_stats = kmalloc(array_size(efx->num_mac_stats, sizeof(__le64)), GFP_ATOMIC);
 644	struct ef100_nic_data *nic_data = efx->nic_data;
 645	DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {};
 646	u64 *stats = nic_data->stats;
 647
 648	ef100_common_stat_mask(mask);
 649	ef100_ethtool_stat_mask(mask);
 650
 651	if (!mc_stats)
 652		return 0;
 653
 654	efx_nic_copy_stats(efx, mc_stats);
 655	efx_nic_update_stats(ef100_stat_desc, EF100_STAT_COUNT, mask,
 656			     stats, mc_stats, false);
 657
 658	kfree(mc_stats);
 659
 660	return ef100_update_stats_common(efx, full_stats, core_stats);
 661}
 662
 663static int efx_ef100_get_phys_port_id(struct efx_nic *efx,
 664				      struct netdev_phys_item_id *ppid)
 665{
 666	struct ef100_nic_data *nic_data = efx->nic_data;
 667
 668	if (!is_valid_ether_addr(nic_data->port_id))
 669		return -EOPNOTSUPP;
 670
 671	ppid->id_len = ETH_ALEN;
 672	memcpy(ppid->id, nic_data->port_id, ppid->id_len);
 673
 674	return 0;
 675}
 676
 677static int efx_ef100_irq_test_generate(struct efx_nic *efx)
 678{
 679	MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
 680
 681	BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
 682
 683	MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
 684	return efx_mcdi_rpc_quiet(efx, MC_CMD_TRIGGER_INTERRUPT,
 685				  inbuf, sizeof(inbuf), NULL, 0, NULL);
 686}
 687
 688#define EFX_EF100_TEST 1
 689
 690static void efx_ef100_ev_test_generate(struct efx_channel *channel)
 691{
 692	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
 693	struct efx_nic *efx = channel->efx;
 694	efx_qword_t event;
 695	int rc;
 696
 697	EFX_POPULATE_QWORD_2(event,
 698			     ESF_GZ_E_TYPE, ESE_GZ_EF100_EV_DRIVER,
 699			     ESF_GZ_DRIVER_DATA, EFX_EF100_TEST);
 700
 701	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
 702
 703	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
 704	 * already swapped the data to little-endian order.
 705	 */
 706	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
 707	       sizeof(efx_qword_t));
 708
 709	rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
 710			  NULL, 0, NULL);
 711	if (rc && (rc != -ENETDOWN))
 712		goto fail;
 713
 714	return;
 715
 716fail:
 717	WARN_ON(true);
 718	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
 719}
 720
 721static unsigned int ef100_check_caps(const struct efx_nic *efx,
 722				     u8 flag, u32 offset)
 723{
 724	const struct ef100_nic_data *nic_data = efx->nic_data;
 725
 726	switch (offset) {
 727	case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS1_OFST:
 728		return nic_data->datapath_caps & BIT_ULL(flag);
 729	case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS2_OFST:
 730		return nic_data->datapath_caps2 & BIT_ULL(flag);
 731	case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS3_OFST:
 732		return nic_data->datapath_caps3 & BIT_ULL(flag);
 733	default:
 734		return 0;
 735	}
 736}
 737
 738static unsigned int efx_ef100_recycle_ring_size(const struct efx_nic *efx)
 739{
 740	/* Maximum link speed for Riverhead is 100G */
 741	return 10 * EFX_RECYCLE_RING_SIZE_10G;
 742}
 
 743
 744static int efx_ef100_get_base_mport(struct efx_nic *efx)
 745{
 746	struct ef100_nic_data *nic_data = efx->nic_data;
 747	u32 selector, id;
 748	int rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 749
 750	/* Construct mport selector for "physical network port" */
 751	efx_mae_mport_wire(efx, &selector);
 752	/* Look up actual mport ID */
 753	rc = efx_mae_fw_lookup_mport(efx, selector, &id);
 754	if (rc)
 755		return rc;
 756	/* The ID should always fit in 16 bits, because that's how wide the
 757	 * corresponding fields in the RX prefix & TX override descriptor are
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 758	 */
 759	if (id >> 16)
 760		netif_warn(efx, probe, efx->net_dev, "Bad base m-port id %#x\n",
 761			   id);
 762	nic_data->base_mport = id;
 763	nic_data->have_mport = true;
 764
 765	/* Construct mport selector for "calling PF" */
 766	efx_mae_mport_uplink(efx, &selector);
 767	/* Look up actual mport ID */
 768	rc = efx_mae_fw_lookup_mport(efx, selector, &id);
 769	if (rc)
 770		return rc;
 771	if (id >> 16)
 772		netif_warn(efx, probe, efx->net_dev, "Bad own m-port id %#x\n",
 773			   id);
 774	nic_data->own_mport = id;
 775	nic_data->have_own_mport = true;
 776
 777	return 0;
 778}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 779
 780static int compare_versions(const char *a, const char *b)
 781{
 782	int a_major, a_minor, a_point, a_patch;
 783	int b_major, b_minor, b_point, b_patch;
 784	int a_matched, b_matched;
 785
 786	a_matched = sscanf(a, "%d.%d.%d.%d", &a_major, &a_minor, &a_point, &a_patch);
 787	b_matched = sscanf(b, "%d.%d.%d.%d", &b_major, &b_minor, &b_point, &b_patch);
 788
 789	if (a_matched == 4 && b_matched != 4)
 790		return +1;
 791
 792	if (a_matched != 4 && b_matched == 4)
 793		return -1;
 794
 795	if (a_matched != 4 && b_matched != 4)
 796		return 0;
 797
 798	if (a_major != b_major)
 799		return a_major - b_major;
 800
 801	if (a_minor != b_minor)
 802		return a_minor - b_minor;
 803
 804	if (a_point != b_point)
 805		return a_point - b_point;
 806
 807	return a_patch - b_patch;
 808}
 809
 810enum ef100_tlv_state_machine {
 811	EF100_TLV_TYPE,
 812	EF100_TLV_TYPE_CONT,
 813	EF100_TLV_LENGTH,
 814	EF100_TLV_VALUE
 815};
 816
 817struct ef100_tlv_state {
 818	enum ef100_tlv_state_machine state;
 819	u64 value;
 820	u32 value_offset;
 821	u16 type;
 822	u8 len;
 823};
 824
 825static int ef100_tlv_feed(struct ef100_tlv_state *state, u8 byte)
 826{
 827	switch (state->state) {
 828	case EF100_TLV_TYPE:
 829		state->type = byte & 0x7f;
 830		state->state = (byte & 0x80) ? EF100_TLV_TYPE_CONT
 831					     : EF100_TLV_LENGTH;
 832		/* Clear ready to read in a new entry */
 833		state->value = 0;
 834		state->value_offset = 0;
 835		return 0;
 836	case EF100_TLV_TYPE_CONT:
 837		state->type |= byte << 7;
 838		state->state = EF100_TLV_LENGTH;
 839		return 0;
 840	case EF100_TLV_LENGTH:
 841		state->len = byte;
 842		/* We only handle TLVs that fit in a u64 */
 843		if (state->len > sizeof(state->value))
 844			return -EOPNOTSUPP;
 845		/* len may be zero, implying a value of zero */
 846		state->state = state->len ? EF100_TLV_VALUE : EF100_TLV_TYPE;
 847		return 0;
 848	case EF100_TLV_VALUE:
 849		state->value |= ((u64)byte) << (state->value_offset * 8);
 850		state->value_offset++;
 851		if (state->value_offset >= state->len)
 852			state->state = EF100_TLV_TYPE;
 853		return 0;
 854	default: /* state machine error, can't happen */
 855		WARN_ON_ONCE(1);
 856		return -EIO;
 857	}
 858}
 859
 860static int ef100_process_design_param(struct efx_nic *efx,
 861				      const struct ef100_tlv_state *reader)
 862{
 863	struct ef100_nic_data *nic_data = efx->nic_data;
 864
 865	switch (reader->type) {
 866	case ESE_EF100_DP_GZ_PAD: /* padding, skip it */
 867		return 0;
 868	case ESE_EF100_DP_GZ_PARTIAL_TSTAMP_SUB_NANO_BITS:
 869		/* Driver doesn't support timestamping yet, so we don't care */
 870		return 0;
 871	case ESE_EF100_DP_GZ_EVQ_UNSOL_CREDIT_SEQ_BITS:
 872		/* Driver doesn't support unsolicited-event credits yet, so
 873		 * we don't care
 874		 */
 875		return 0;
 876	case ESE_EF100_DP_GZ_NMMU_GROUP_SIZE:
 877		/* Driver doesn't manage the NMMU (so we don't care) */
 878		return 0;
 879	case ESE_EF100_DP_GZ_RX_L4_CSUM_PROTOCOLS:
 880		/* Driver uses CHECKSUM_COMPLETE, so we don't care about
 881		 * protocol checksum validation
 882		 */
 883		return 0;
 884	case ESE_EF100_DP_GZ_TSO_MAX_HDR_LEN:
 885		nic_data->tso_max_hdr_len = min_t(u64, reader->value, 0xffff);
 886		return 0;
 887	case ESE_EF100_DP_GZ_TSO_MAX_HDR_NUM_SEGS:
 888		/* We always put HDR_NUM_SEGS=1 in our TSO descriptors */
 889		if (!reader->value) {
 890			netif_err(efx, probe, efx->net_dev,
 891				  "TSO_MAX_HDR_NUM_SEGS < 1\n");
 892			return -EOPNOTSUPP;
 893		}
 894		return 0;
 895	case ESE_EF100_DP_GZ_RXQ_SIZE_GRANULARITY:
 896	case ESE_EF100_DP_GZ_TXQ_SIZE_GRANULARITY:
 897		/* Our TXQ and RXQ sizes are always power-of-two and thus divisible by
 898		 * EFX_MIN_DMAQ_SIZE, so we just need to check that
 899		 * EFX_MIN_DMAQ_SIZE is divisible by GRANULARITY.
 900		 * This is very unlikely to fail.
 901		 */
 902		if (!reader->value || reader->value > EFX_MIN_DMAQ_SIZE ||
 903		    EFX_MIN_DMAQ_SIZE % (u32)reader->value) {
 904			netif_err(efx, probe, efx->net_dev,
 905				  "%s size granularity is %llu, can't guarantee safety\n",
 906				  reader->type == ESE_EF100_DP_GZ_RXQ_SIZE_GRANULARITY ? "RXQ" : "TXQ",
 907				  reader->value);
 908			return -EOPNOTSUPP;
 909		}
 910		return 0;
 911	case ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_LEN:
 912		nic_data->tso_max_payload_len = min_t(u64, reader->value,
 913						      GSO_LEGACY_MAX_SIZE);
 914		netif_set_tso_max_size(efx->net_dev,
 915				       nic_data->tso_max_payload_len);
 916		return 0;
 917	case ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_NUM_SEGS:
 918		nic_data->tso_max_payload_num_segs = min_t(u64, reader->value, 0xffff);
 919		netif_set_tso_max_segs(efx->net_dev,
 920				       nic_data->tso_max_payload_num_segs);
 921		return 0;
 922	case ESE_EF100_DP_GZ_TSO_MAX_NUM_FRAMES:
 923		nic_data->tso_max_frames = min_t(u64, reader->value, 0xffff);
 924		return 0;
 925	case ESE_EF100_DP_GZ_COMPAT:
 926		if (reader->value) {
 927			netif_err(efx, probe, efx->net_dev,
 928				  "DP_COMPAT has unknown bits %#llx, driver not compatible with this hw\n",
 929				  reader->value);
 930			return -EOPNOTSUPP;
 931		}
 932		return 0;
 933	case ESE_EF100_DP_GZ_MEM2MEM_MAX_LEN:
 934		/* Driver doesn't use mem2mem transfers */
 935		return 0;
 936	case ESE_EF100_DP_GZ_EVQ_TIMER_TICK_NANOS:
 937		/* Driver doesn't currently use EVQ_TIMER */
 938		return 0;
 939	case ESE_EF100_DP_GZ_NMMU_PAGE_SIZES:
 940		/* Driver doesn't manage the NMMU (so we don't care) */
 941		return 0;
 942	case ESE_EF100_DP_GZ_VI_STRIDES:
 943		/* We never try to set the VI stride, and we don't rely on
 944		 * being able to find VIs past VI 0 until after we've learned
 945		 * the current stride from MC_CMD_GET_CAPABILITIES.
 946		 * So the value of this shouldn't matter.
 947		 */
 948		if (reader->value != ESE_EF100_DP_GZ_VI_STRIDES_DEFAULT)
 949			netif_dbg(efx, probe, efx->net_dev,
 950				  "NIC has other than default VI_STRIDES (mask "
 951				  "%#llx), early probing might use wrong one\n",
 952				  reader->value);
 953		return 0;
 954	case ESE_EF100_DP_GZ_RX_MAX_RUNT:
 955		/* Driver doesn't look at L2_STATUS:LEN_ERR bit, so we don't
 956		 * care whether it indicates runt or overlength for any given
 957		 * packet, so we don't care about this parameter.
 958		 */
 959		return 0;
 960	default:
 961		/* Host interface says "Drivers should ignore design parameters
 962		 * that they do not recognise."
 963		 */
 964		netif_dbg(efx, probe, efx->net_dev,
 965			  "Ignoring unrecognised design parameter %u\n",
 966			  reader->type);
 967		return 0;
 968	}
 969}
 970
 971static int ef100_check_design_params(struct efx_nic *efx)
 972{
 973	struct ef100_tlv_state reader = {};
 974	u32 total_len, offset = 0;
 975	efx_dword_t reg;
 976	int rc = 0, i;
 977	u32 data;
 978
 979	efx_readd(efx, &reg, ER_GZ_PARAMS_TLV_LEN);
 980	total_len = EFX_DWORD_FIELD(reg, EFX_DWORD_0);
 981	pci_dbg(efx->pci_dev, "%u bytes of design parameters\n", total_len);
 
 982	while (offset < total_len) {
 983		efx_readd(efx, &reg, ER_GZ_PARAMS_TLV + offset);
 984		data = EFX_DWORD_FIELD(reg, EFX_DWORD_0);
 985		for (i = 0; i < sizeof(data); i++) {
 986			rc = ef100_tlv_feed(&reader, data);
 987			/* Got a complete value? */
 988			if (!rc && reader.state == EF100_TLV_TYPE)
 989				rc = ef100_process_design_param(efx, &reader);
 990			if (rc)
 991				goto out;
 992			data >>= 8;
 993			offset++;
 994		}
 995	}
 996	/* Check we didn't end halfway through a TLV entry, which could either
 997	 * mean that the TLV stream is truncated or just that it's corrupted
 998	 * and our state machine is out of sync.
 999	 */
1000	if (reader.state != EF100_TLV_TYPE) {
1001		if (reader.state == EF100_TLV_TYPE_CONT)
1002			netif_err(efx, probe, efx->net_dev,
1003				  "truncated design parameter (incomplete type %u)\n",
1004				  reader.type);
1005		else
1006			netif_err(efx, probe, efx->net_dev,
1007				  "truncated design parameter %u\n",
1008				  reader.type);
1009		rc = -EIO;
1010	}
1011out:
1012	return rc;
1013}
1014
1015/*	NIC probe and remove
1016 */
1017static int ef100_probe_main(struct efx_nic *efx)
1018{
1019	unsigned int bar_size = resource_size(&efx->pci_dev->resource[efx->mem_bar]);
 
1020	struct ef100_nic_data *nic_data;
1021	char fw_version[32];
1022	u32 priv_mask = 0;
1023	int i, rc;
1024
1025	if (WARN_ON(bar_size == 0))
1026		return -EIO;
1027
1028	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
1029	if (!nic_data)
1030		return -ENOMEM;
1031	efx->nic_data = nic_data;
1032	nic_data->efx = efx;
1033	efx->max_vis = EF100_MAX_VIS;
 
1034
1035	/* Populate design-parameter defaults */
1036	nic_data->tso_max_hdr_len = ESE_EF100_DP_GZ_TSO_MAX_HDR_LEN_DEFAULT;
1037	nic_data->tso_max_frames = ESE_EF100_DP_GZ_TSO_MAX_NUM_FRAMES_DEFAULT;
1038	nic_data->tso_max_payload_num_segs = ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_NUM_SEGS_DEFAULT;
1039	nic_data->tso_max_payload_len = ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_LEN_DEFAULT;
1040
1041	/* Read design parameters */
1042	rc = ef100_check_design_params(efx);
1043	if (rc) {
1044		pci_err(efx->pci_dev, "Unsupported design parameters\n");
 
1045		goto fail;
1046	}
1047
1048	/* we assume later that we can copy from this buffer in dwords */
1049	BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
1050
1051	/* MCDI buffers must be 256 byte aligned. */
1052	rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf, MCDI_BUF_LEN,
1053				  GFP_KERNEL);
1054	if (rc)
1055		goto fail;
1056
1057	/* Get the MC's warm boot count.  In case it's rebooting right
1058	 * now, be prepared to retry.
1059	 */
1060	i = 0;
1061	for (;;) {
1062		rc = ef100_get_warm_boot_count(efx);
1063		if (rc >= 0)
1064			break;
1065		if (++i == 5)
1066			goto fail;
1067		ssleep(1);
1068	}
1069	nic_data->warm_boot_count = rc;
1070
1071	/* In case we're recovering from a crash (kexec), we want to
1072	 * cancel any outstanding request by the previous user of this
1073	 * function.  We send a special message using the least
1074	 * significant bits of the 'high' (doorbell) register.
1075	 */
1076	_efx_writed(efx, cpu_to_le32(1), efx_reg(efx, ER_GZ_MC_DB_HWRD));
1077
1078	/* Post-IO section. */
1079
1080	rc = efx_mcdi_init(efx);
 
 
 
 
 
 
1081	if (rc)
1082		goto fail;
1083	/* Reset (most) configuration for this function */
1084	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
1085	if (rc)
1086		goto fail;
1087	/* Enable event logging */
1088	rc = efx_mcdi_log_ctrl(efx, true, false, 0);
1089	if (rc)
1090		goto fail;
1091
1092	rc = efx_get_pf_index(efx, &nic_data->pf_index);
1093	if (rc)
1094		goto fail;
1095
 
 
 
 
 
 
1096	rc = efx_mcdi_port_get_number(efx);
1097	if (rc < 0)
1098		goto fail;
1099	efx->port_num = rc;
1100
1101	efx_mcdi_print_fwver(efx, fw_version, sizeof(fw_version));
1102	pci_dbg(efx->pci_dev, "Firmware version %s\n", fw_version);
1103
1104	rc = efx_mcdi_get_privilege_mask(efx, &priv_mask);
1105	if (rc) /* non-fatal, and priv_mask will still be 0 */
1106		pci_info(efx->pci_dev,
1107			 "Failed to get privilege mask from FW, rc %d\n", rc);
1108	nic_data->grp_mae = !!(priv_mask & MC_CMD_PRIVILEGE_MASK_IN_GRP_MAE);
1109
1110	if (compare_versions(fw_version, "1.1.0.1000") < 0) {
1111		pci_info(efx->pci_dev, "Firmware uses old event descriptors\n");
1112		rc = -EINVAL;
1113		goto fail;
1114	}
1115
1116	if (efx_has_cap(efx, UNSOL_EV_CREDIT_SUPPORTED)) {
1117		pci_info(efx->pci_dev, "Firmware uses unsolicited-event credits\n");
1118		rc = -EINVAL;
1119		goto fail;
1120	}
1121
1122	return 0;
1123fail:
1124	return rc;
1125}
1126
1127/* MCDI commands are related to the same device issuing them. This function
1128 * allows to do an MCDI command on behalf of another device, mainly PFs setting
1129 * things for VFs.
1130 */
1131int efx_ef100_lookup_client_id(struct efx_nic *efx, efx_qword_t pciefn, u32 *id)
1132{
1133	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLIENT_HANDLE_OUT_LEN);
1134	MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_CLIENT_HANDLE_IN_LEN);
1135	u64 pciefn_flat = le64_to_cpu(pciefn.u64[0]);
1136	size_t outlen;
1137	int rc;
1138
1139	MCDI_SET_DWORD(inbuf, GET_CLIENT_HANDLE_IN_TYPE,
1140		       MC_CMD_GET_CLIENT_HANDLE_IN_TYPE_FUNC);
1141	MCDI_SET_QWORD(inbuf, GET_CLIENT_HANDLE_IN_FUNC,
1142		       pciefn_flat);
 
1143
1144	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLIENT_HANDLE, inbuf, sizeof(inbuf),
1145			  outbuf, sizeof(outbuf), &outlen);
 
 
 
 
 
1146	if (rc)
1147		return rc;
1148	if (outlen < sizeof(outbuf))
1149		return -EIO;
1150	*id = MCDI_DWORD(outbuf, GET_CLIENT_HANDLE_OUT_HANDLE);
1151	return 0;
 
 
1152}
1153
1154int ef100_probe_netdev_pf(struct efx_nic *efx)
1155{
1156	struct ef100_nic_data *nic_data = efx->nic_data;
1157	struct net_device *net_dev = efx->net_dev;
1158	int rc;
1159
1160	if (!IS_ENABLED(CONFIG_SFC_SRIOV) || !nic_data->grp_mae)
1161		return 0;
1162
1163	rc = efx_init_struct_tc(efx);
1164	if (rc)
1165		return rc;
1166
1167	rc = efx_ef100_get_base_mport(efx);
1168	if (rc) {
1169		netif_warn(efx, probe, net_dev,
1170			   "Failed to probe base mport rc %d; representors will not function\n",
1171			   rc);
1172	}
1173
1174	rc = efx_init_mae(efx);
 
1175	if (rc)
1176		netif_warn(efx, probe, net_dev,
1177			   "Failed to init MAE rc %d; representors will not function\n",
1178			   rc);
1179	else
1180		efx_ef100_init_reps(efx);
1181
1182	rc = efx_init_tc(efx);
1183	if (rc) {
1184		/* Either we don't have an MAE at all (i.e. legacy v-switching),
1185		 * or we do but we failed to probe it.  In the latter case, we
1186		 * may not have set up default rules, in which case we won't be
1187		 * able to pass any traffic.  However, we don't fail the probe,
1188		 * because the user might need to use the netdevice to apply
1189		 * configuration changes to fix whatever's wrong with the MAE.
1190		 */
1191		netif_warn(efx, probe, net_dev, "Failed to probe MAE rc %d\n",
1192			   rc);
1193	} else {
1194		net_dev->features |= NETIF_F_HW_TC;
1195		efx->fixed_features |= NETIF_F_HW_TC;
1196	}
1197	return 0;
 
 
 
1198}
1199
1200int ef100_probe_vf(struct efx_nic *efx)
1201{
1202	return ef100_probe_main(efx);
1203}
1204
1205void ef100_remove(struct efx_nic *efx)
1206{
1207	struct ef100_nic_data *nic_data = efx->nic_data;
1208
1209	if (IS_ENABLED(CONFIG_SFC_SRIOV) && efx->mae) {
1210		efx_ef100_fini_reps(efx);
1211		efx_fini_mae(efx);
1212	}
1213
 
 
 
 
 
 
1214	efx_mcdi_detach(efx);
1215	efx_mcdi_fini(efx);
1216	if (nic_data)
1217		efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
1218	kfree(nic_data);
1219	efx->nic_data = NULL;
1220}
1221
1222/*	NIC level access functions
1223 */
1224#define EF100_OFFLOAD_FEATURES	(NETIF_F_HW_CSUM | NETIF_F_RXCSUM |	\
1225	NETIF_F_HIGHDMA | NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_NTUPLE | \
1226	NETIF_F_RXHASH | NETIF_F_RXFCS | NETIF_F_TSO_ECN | NETIF_F_RXALL | \
1227	NETIF_F_HW_VLAN_CTAG_TX)
1228
1229const struct efx_nic_type ef100_pf_nic_type = {
1230	.revision = EFX_REV_EF100,
1231	.is_vf = false,
1232	.probe = ef100_probe_main,
1233	.offload_features = EF100_OFFLOAD_FEATURES,
1234	.mcdi_max_ver = 2,
1235	.mcdi_request = ef100_mcdi_request,
1236	.mcdi_poll_response = ef100_mcdi_poll_response,
1237	.mcdi_read_response = ef100_mcdi_read_response,
1238	.mcdi_poll_reboot = ef100_mcdi_poll_reboot,
1239	.mcdi_reboot_detected = ef100_mcdi_reboot_detected,
1240	.irq_enable_master = efx_port_dummy_op_void,
1241	.irq_test_generate = efx_ef100_irq_test_generate,
1242	.irq_disable_non_ev = efx_port_dummy_op_void,
1243	.push_irq_moderation = efx_channel_dummy_op_void,
1244	.min_interrupt_mode = EFX_INT_MODE_MSIX,
1245	.map_reset_reason = ef100_map_reset_reason,
1246	.map_reset_flags = ef100_map_reset_flags,
1247	.reset = ef100_reset,
1248
1249	.check_caps = ef100_check_caps,
1250
1251	.ev_probe = ef100_ev_probe,
1252	.ev_init = ef100_ev_init,
1253	.ev_fini = efx_mcdi_ev_fini,
1254	.ev_remove = efx_mcdi_ev_remove,
1255	.irq_handle_msi = ef100_msi_interrupt,
1256	.ev_process = ef100_ev_process,
1257	.ev_read_ack = ef100_ev_read_ack,
1258	.ev_test_generate = efx_ef100_ev_test_generate,
1259	.tx_probe = ef100_tx_probe,
1260	.tx_init = ef100_tx_init,
1261	.tx_write = ef100_tx_write,
1262	.tx_enqueue = ef100_enqueue_skb,
1263	.rx_probe = efx_mcdi_rx_probe,
1264	.rx_init = efx_mcdi_rx_init,
1265	.rx_remove = efx_mcdi_rx_remove,
1266	.rx_write = ef100_rx_write,
1267	.rx_packet = __ef100_rx_packet,
1268	.rx_buf_hash_valid = ef100_rx_buf_hash_valid,
1269	.fini_dmaq = efx_fini_dmaq,
1270	.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
1271	.filter_table_probe = ef100_filter_table_up,
1272	.filter_table_restore = efx_mcdi_filter_table_restore,
1273	.filter_table_remove = ef100_filter_table_down,
1274	.filter_insert = efx_mcdi_filter_insert,
1275	.filter_remove_safe = efx_mcdi_filter_remove_safe,
1276	.filter_get_safe = efx_mcdi_filter_get_safe,
1277	.filter_clear_rx = efx_mcdi_filter_clear_rx,
1278	.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
1279	.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
1280	.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
1281#ifdef CONFIG_RFS_ACCEL
1282	.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
1283#endif
1284
1285	.get_phys_port_id = efx_ef100_get_phys_port_id,
1286
1287	.rx_prefix_size = ESE_GZ_RX_PKT_PREFIX_LEN,
1288	.rx_hash_offset = ESF_GZ_RX_PREFIX_RSS_HASH_LBN / 8,
1289	.rx_ts_offset = ESF_GZ_RX_PREFIX_PARTIAL_TSTAMP_LBN / 8,
1290	.rx_hash_key_size = 40,
1291	.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
1292	.rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
1293	.rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config,
1294	.rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config,
1295	.rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
1296	.rx_recycle_ring_size = efx_ef100_recycle_ring_size,
1297
1298	.reconfigure_mac = ef100_reconfigure_mac,
1299	.reconfigure_port = efx_mcdi_port_reconfigure,
1300	.test_nvram = efx_new_mcdi_nvram_test_all,
1301	.describe_stats = ef100_describe_stats,
1302	.start_stats = efx_mcdi_mac_start_stats,
1303	.update_stats = ef100_update_stats,
1304	.pull_stats = efx_mcdi_mac_pull_stats,
1305	.stop_stats = efx_mcdi_mac_stop_stats,
1306	.sriov_configure = IS_ENABLED(CONFIG_SFC_SRIOV) ?
1307		efx_ef100_sriov_configure : NULL,
1308
1309	/* Per-type bar/size configuration not used on ef100. Location of
1310	 * registers is defined by extended capabilities.
1311	 */
1312	.mem_bar = NULL,
1313	.mem_map_size = NULL,
1314
1315};
1316
1317const struct efx_nic_type ef100_vf_nic_type = {
1318	.revision = EFX_REV_EF100,
1319	.is_vf = true,
1320	.probe = ef100_probe_vf,
1321	.offload_features = EF100_OFFLOAD_FEATURES,
1322	.mcdi_max_ver = 2,
1323	.mcdi_request = ef100_mcdi_request,
1324	.mcdi_poll_response = ef100_mcdi_poll_response,
1325	.mcdi_read_response = ef100_mcdi_read_response,
1326	.mcdi_poll_reboot = ef100_mcdi_poll_reboot,
1327	.mcdi_reboot_detected = ef100_mcdi_reboot_detected,
1328	.irq_enable_master = efx_port_dummy_op_void,
1329	.irq_test_generate = efx_ef100_irq_test_generate,
1330	.irq_disable_non_ev = efx_port_dummy_op_void,
1331	.push_irq_moderation = efx_channel_dummy_op_void,
1332	.min_interrupt_mode = EFX_INT_MODE_MSIX,
1333	.map_reset_reason = ef100_map_reset_reason,
1334	.map_reset_flags = ef100_map_reset_flags,
1335	.reset = ef100_reset,
1336	.check_caps = ef100_check_caps,
1337	.ev_probe = ef100_ev_probe,
1338	.ev_init = ef100_ev_init,
1339	.ev_fini = efx_mcdi_ev_fini,
1340	.ev_remove = efx_mcdi_ev_remove,
1341	.irq_handle_msi = ef100_msi_interrupt,
1342	.ev_process = ef100_ev_process,
1343	.ev_read_ack = ef100_ev_read_ack,
1344	.ev_test_generate = efx_ef100_ev_test_generate,
1345	.tx_probe = ef100_tx_probe,
1346	.tx_init = ef100_tx_init,
1347	.tx_write = ef100_tx_write,
1348	.tx_enqueue = ef100_enqueue_skb,
1349	.rx_probe = efx_mcdi_rx_probe,
1350	.rx_init = efx_mcdi_rx_init,
1351	.rx_remove = efx_mcdi_rx_remove,
1352	.rx_write = ef100_rx_write,
1353	.rx_packet = __ef100_rx_packet,
1354	.rx_buf_hash_valid = ef100_rx_buf_hash_valid,
1355	.fini_dmaq = efx_fini_dmaq,
1356	.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
1357	.filter_table_probe = ef100_filter_table_up,
1358	.filter_table_restore = efx_mcdi_filter_table_restore,
1359	.filter_table_remove = ef100_filter_table_down,
1360	.filter_insert = efx_mcdi_filter_insert,
1361	.filter_remove_safe = efx_mcdi_filter_remove_safe,
1362	.filter_get_safe = efx_mcdi_filter_get_safe,
1363	.filter_clear_rx = efx_mcdi_filter_clear_rx,
1364	.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
1365	.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
1366	.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
1367#ifdef CONFIG_RFS_ACCEL
1368	.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
1369#endif
1370
1371	.rx_prefix_size = ESE_GZ_RX_PKT_PREFIX_LEN,
1372	.rx_hash_offset = ESF_GZ_RX_PREFIX_RSS_HASH_LBN / 8,
1373	.rx_ts_offset = ESF_GZ_RX_PREFIX_PARTIAL_TSTAMP_LBN / 8,
1374	.rx_hash_key_size = 40,
1375	.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
1376	.rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
1377	.rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
1378	.rx_recycle_ring_size = efx_ef100_recycle_ring_size,
1379
1380	.reconfigure_mac = ef100_reconfigure_mac,
1381	.test_nvram = efx_new_mcdi_nvram_test_all,
1382	.describe_stats = ef100_describe_stats,
1383	.start_stats = efx_mcdi_mac_start_stats,
1384	.update_stats = ef100_update_stats,
1385	.pull_stats = efx_mcdi_mac_pull_stats,
1386	.stop_stats = efx_mcdi_mac_stop_stats,
1387
1388	.mem_bar = NULL,
1389	.mem_map_size = NULL,
1390
1391};
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2018 Solarflare Communications Inc.
   5 * Copyright 2019-2020 Xilinx Inc.
   6 *
   7 * This program is free software; you can redistribute it and/or modify it
   8 * under the terms of the GNU General Public License version 2 as published
   9 * by the Free Software Foundation, incorporated herein by reference.
  10 */
  11
  12#include "ef100_nic.h"
  13#include "efx_common.h"
  14#include "efx_channels.h"
  15#include "io.h"
  16#include "selftest.h"
  17#include "ef100_regs.h"
  18#include "mcdi.h"
  19#include "mcdi_pcol.h"
  20#include "mcdi_port_common.h"
  21#include "mcdi_functions.h"
  22#include "mcdi_filters.h"
  23#include "ef100_rx.h"
  24#include "ef100_tx.h"
 
  25#include "ef100_netdev.h"
 
 
 
  26
  27#define EF100_MAX_VIS 4096
  28#define EF100_NUM_MCDI_BUFFERS	1
  29#define MCDI_BUF_LEN (8 + MCDI_CTL_SDU_LEN_MAX)
  30
  31#define EF100_RESET_PORT ((ETH_RESET_MAC | ETH_RESET_PHY) << ETH_RESET_SHARED_SHIFT)
  32
  33/*	MCDI
  34 */
  35static u8 *ef100_mcdi_buf(struct efx_nic *efx, u8 bufid, dma_addr_t *dma_addr)
  36{
  37	struct ef100_nic_data *nic_data = efx->nic_data;
  38
  39	if (dma_addr)
  40		*dma_addr = nic_data->mcdi_buf.dma_addr +
  41			    bufid * ALIGN(MCDI_BUF_LEN, 256);
  42	return nic_data->mcdi_buf.addr + bufid * ALIGN(MCDI_BUF_LEN, 256);
  43}
  44
  45static int ef100_get_warm_boot_count(struct efx_nic *efx)
  46{
  47	efx_dword_t reg;
  48
  49	efx_readd(efx, &reg, efx_reg(efx, ER_GZ_MC_SFT_STATUS));
  50
  51	if (EFX_DWORD_FIELD(reg, EFX_DWORD_0) == 0xffffffff) {
  52		netif_err(efx, hw, efx->net_dev, "Hardware unavailable\n");
  53		efx->state = STATE_DISABLED;
  54		return -ENETDOWN;
  55	} else {
  56		return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
  57			EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
  58	}
  59}
  60
  61static void ef100_mcdi_request(struct efx_nic *efx,
  62			       const efx_dword_t *hdr, size_t hdr_len,
  63			       const efx_dword_t *sdu, size_t sdu_len)
  64{
  65	dma_addr_t dma_addr;
  66	u8 *pdu = ef100_mcdi_buf(efx, 0, &dma_addr);
  67
  68	memcpy(pdu, hdr, hdr_len);
  69	memcpy(pdu + hdr_len, sdu, sdu_len);
  70	wmb();
  71
  72	/* The hardware provides 'low' and 'high' (doorbell) registers
  73	 * for passing the 64-bit address of an MCDI request to
  74	 * firmware.  However the dwords are swapped by firmware.  The
  75	 * least significant bits of the doorbell are then 0 for all
  76	 * MCDI requests due to alignment.
  77	 */
  78	_efx_writed(efx, cpu_to_le32((u64)dma_addr >> 32),  efx_reg(efx, ER_GZ_MC_DB_LWRD));
  79	_efx_writed(efx, cpu_to_le32((u32)dma_addr),  efx_reg(efx, ER_GZ_MC_DB_HWRD));
  80}
  81
  82static bool ef100_mcdi_poll_response(struct efx_nic *efx)
  83{
  84	const efx_dword_t hdr =
  85		*(const efx_dword_t *)(ef100_mcdi_buf(efx, 0, NULL));
  86
  87	rmb();
  88	return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
  89}
  90
  91static void ef100_mcdi_read_response(struct efx_nic *efx,
  92				     efx_dword_t *outbuf, size_t offset,
  93				     size_t outlen)
  94{
  95	const u8 *pdu = ef100_mcdi_buf(efx, 0, NULL);
  96
  97	memcpy(outbuf, pdu + offset, outlen);
  98}
  99
 100static int ef100_mcdi_poll_reboot(struct efx_nic *efx)
 101{
 102	struct ef100_nic_data *nic_data = efx->nic_data;
 103	int rc;
 104
 105	rc = ef100_get_warm_boot_count(efx);
 106	if (rc < 0) {
 107		/* The firmware is presumably in the process of
 108		 * rebooting.  However, we are supposed to report each
 109		 * reboot just once, so we must only do that once we
 110		 * can read and store the updated warm boot count.
 111		 */
 112		return 0;
 113	}
 114
 115	if (rc == nic_data->warm_boot_count)
 116		return 0;
 117
 118	nic_data->warm_boot_count = rc;
 119
 120	return -EIO;
 121}
 122
 123static void ef100_mcdi_reboot_detected(struct efx_nic *efx)
 124{
 125}
 126
 127/*	MCDI calls
 128 */
 129static int ef100_get_mac_address(struct efx_nic *efx, u8 *mac_address)
 
 130{
 131	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
 
 132	size_t outlen;
 133	int rc;
 134
 135	BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
 
 
 136
 137	rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
 138			  outbuf, sizeof(outbuf), &outlen);
 139	if (rc)
 140		return rc;
 141	if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
 142		return -EIO;
 143
 144	ether_addr_copy(mac_address,
 145			MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
 
 
 
 
 
 
 
 
 
 146	return 0;
 147}
 148
 149static int efx_ef100_init_datapath_caps(struct efx_nic *efx)
 150{
 151	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V7_OUT_LEN);
 152	struct ef100_nic_data *nic_data = efx->nic_data;
 153	u8 vi_window_mode;
 154	size_t outlen;
 155	int rc;
 156
 157	BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
 158
 159	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
 160			  outbuf, sizeof(outbuf), &outlen);
 161	if (rc)
 162		return rc;
 163	if (outlen < MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
 164		netif_err(efx, drv, efx->net_dev,
 165			  "unable to read datapath firmware capabilities\n");
 166		return -EIO;
 167	}
 168
 169	nic_data->datapath_caps = MCDI_DWORD(outbuf,
 170					     GET_CAPABILITIES_OUT_FLAGS1);
 171	nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
 172					      GET_CAPABILITIES_V2_OUT_FLAGS2);
 173	if (outlen < MC_CMD_GET_CAPABILITIES_V7_OUT_LEN)
 174		nic_data->datapath_caps3 = 0;
 175	else
 176		nic_data->datapath_caps3 = MCDI_DWORD(outbuf,
 177						      GET_CAPABILITIES_V7_OUT_FLAGS3);
 178
 179	vi_window_mode = MCDI_BYTE(outbuf,
 180				   GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
 181	rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode);
 182	if (rc)
 183		return rc;
 184
 185	if (efx_ef100_has_cap(nic_data->datapath_caps2, TX_TSO_V3))
 186		efx->net_dev->features |= NETIF_F_TSO | NETIF_F_TSO6;
 
 
 
 
 
 
 
 
 
 
 
 
 187	efx->num_mac_stats = MCDI_WORD(outbuf,
 188				       GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
 189	netif_dbg(efx, probe, efx->net_dev,
 190		  "firmware reports num_mac_stats = %u\n",
 191		  efx->num_mac_stats);
 192	return 0;
 193}
 194
 195/*	Event handling
 196 */
 197static int ef100_ev_probe(struct efx_channel *channel)
 198{
 199	/* Allocate an extra descriptor for the QMDA status completion entry */
 200	return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
 201				    (channel->eventq_mask + 2) *
 202				    sizeof(efx_qword_t),
 203				    GFP_KERNEL);
 204}
 205
 206static int ef100_ev_init(struct efx_channel *channel)
 207{
 208	struct ef100_nic_data *nic_data = channel->efx->nic_data;
 209
 210	/* initial phase is 0 */
 211	clear_bit(channel->channel, nic_data->evq_phases);
 212
 213	return efx_mcdi_ev_init(channel, false, false);
 214}
 215
 216static void ef100_ev_read_ack(struct efx_channel *channel)
 217{
 218	efx_dword_t evq_prime;
 219
 220	EFX_POPULATE_DWORD_2(evq_prime,
 221			     ERF_GZ_EVQ_ID, channel->channel,
 222			     ERF_GZ_IDX, channel->eventq_read_ptr &
 223					 channel->eventq_mask);
 224
 225	efx_writed(channel->efx, &evq_prime,
 226		   efx_reg(channel->efx, ER_GZ_EVQ_INT_PRIME));
 227}
 228
 
 
 229static int ef100_ev_process(struct efx_channel *channel, int quota)
 230{
 231	struct efx_nic *efx = channel->efx;
 232	struct ef100_nic_data *nic_data;
 233	bool evq_phase, old_evq_phase;
 234	unsigned int read_ptr;
 235	efx_qword_t *p_event;
 
 236	int spent = 0;
 237	bool ev_phase;
 238	int ev_type;
 239
 240	if (unlikely(!channel->enabled))
 241		return 0;
 242
 243	nic_data = efx->nic_data;
 244	evq_phase = test_bit(channel->channel, nic_data->evq_phases);
 245	old_evq_phase = evq_phase;
 246	read_ptr = channel->eventq_read_ptr;
 247	BUILD_BUG_ON(ESF_GZ_EV_RXPKTS_PHASE_LBN != ESF_GZ_EV_TXCMPL_PHASE_LBN);
 248
 249	while (spent < quota) {
 250		p_event = efx_event(channel, read_ptr);
 251
 252		ev_phase = !!EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_RXPKTS_PHASE);
 253		if (ev_phase != evq_phase)
 254			break;
 255
 256		netif_vdbg(efx, drv, efx->net_dev,
 257			   "processing event on %d " EFX_QWORD_FMT "\n",
 258			   channel->channel, EFX_QWORD_VAL(*p_event));
 259
 260		ev_type = EFX_QWORD_FIELD(*p_event, ESF_GZ_E_TYPE);
 261
 262		switch (ev_type) {
 263		case ESE_GZ_EF100_EV_RX_PKTS:
 264			efx_ef100_ev_rx(channel, p_event);
 265			++spent;
 266			break;
 267		case ESE_GZ_EF100_EV_MCDI:
 268			efx_mcdi_process_event(channel, p_event);
 269			break;
 270		case ESE_GZ_EF100_EV_TX_COMPLETION:
 271			ef100_ev_tx(channel, p_event);
 
 
 272			break;
 273		case ESE_GZ_EF100_EV_DRIVER:
 274			netif_info(efx, drv, efx->net_dev,
 275				   "Driver initiated event " EFX_QWORD_FMT "\n",
 276				   EFX_QWORD_VAL(*p_event));
 277			break;
 278		default:
 279			netif_info(efx, drv, efx->net_dev,
 280				   "Unhandled event " EFX_QWORD_FMT "\n",
 281				   EFX_QWORD_VAL(*p_event));
 282		}
 283
 284		++read_ptr;
 285		if ((read_ptr & channel->eventq_mask) == 0)
 286			evq_phase = !evq_phase;
 287	}
 288
 289	channel->eventq_read_ptr = read_ptr;
 290	if (evq_phase != old_evq_phase)
 291		change_bit(channel->channel, nic_data->evq_phases);
 292
 293	return spent;
 294}
 295
 296static irqreturn_t ef100_msi_interrupt(int irq, void *dev_id)
 297{
 298	struct efx_msi_context *context = dev_id;
 299	struct efx_nic *efx = context->efx;
 300
 301	netif_vdbg(efx, intr, efx->net_dev,
 302		   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
 303
 304	if (likely(READ_ONCE(efx->irq_soft_enabled))) {
 305		/* Note test interrupts */
 306		if (context->index == efx->irq_level)
 307			efx->last_irq_cpu = raw_smp_processor_id();
 308
 309		/* Schedule processing of the channel */
 310		efx_schedule_channel_irq(efx->channel[context->index]);
 311	}
 312
 313	return IRQ_HANDLED;
 314}
 315
 316static int ef100_phy_probe(struct efx_nic *efx)
 317{
 318	struct efx_mcdi_phy_data *phy_data;
 319	int rc;
 320
 321	/* Probe for the PHY */
 322	efx->phy_data = kzalloc(sizeof(struct efx_mcdi_phy_data), GFP_KERNEL);
 323	if (!efx->phy_data)
 324		return -ENOMEM;
 325
 326	rc = efx_mcdi_get_phy_cfg(efx, efx->phy_data);
 327	if (rc)
 328		return rc;
 329
 330	/* Populate driver and ethtool settings */
 331	phy_data = efx->phy_data;
 332	mcdi_to_ethtool_linkset(phy_data->media, phy_data->supported_cap,
 333				efx->link_advertising);
 334	efx->fec_config = mcdi_fec_caps_to_ethtool(phy_data->supported_cap,
 335						   false);
 336
 337	/* Default to Autonegotiated flow control if the PHY supports it */
 338	efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
 339	if (phy_data->supported_cap & (1 << MC_CMD_PHY_CAP_AN_LBN))
 340		efx->wanted_fc |= EFX_FC_AUTO;
 341	efx_link_set_wanted_fc(efx, efx->wanted_fc);
 342
 343	/* Push settings to the PHY. Failure is not fatal, the user can try to
 344	 * fix it using ethtool.
 345	 */
 346	rc = efx_mcdi_port_reconfigure(efx);
 347	if (rc && rc != -EPERM)
 348		netif_warn(efx, drv, efx->net_dev,
 349			   "could not initialise PHY settings\n");
 350
 351	return 0;
 352}
 353
 354static int ef100_filter_table_probe(struct efx_nic *efx)
 355{
 356	return efx_mcdi_filter_table_probe(efx, true);
 357}
 358
 359static int ef100_filter_table_up(struct efx_nic *efx)
 360{
 361	int rc;
 362
 
 363	rc = efx_mcdi_filter_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
 364	if (rc) {
 365		efx_mcdi_filter_table_down(efx);
 366		return rc;
 367	}
 368
 369	rc = efx_mcdi_filter_add_vlan(efx, 0);
 370	if (rc) {
 371		efx_mcdi_filter_del_vlan(efx, EFX_FILTER_VID_UNSPEC);
 372		efx_mcdi_filter_table_down(efx);
 373	}
 
 
 
 
 
 
 
 
 
 
 
 374
 
 
 
 
 
 375	return rc;
 376}
 377
 378static void ef100_filter_table_down(struct efx_nic *efx)
 379{
 
 
 
 380	efx_mcdi_filter_del_vlan(efx, 0);
 381	efx_mcdi_filter_del_vlan(efx, EFX_FILTER_VID_UNSPEC);
 382	efx_mcdi_filter_table_down(efx);
 
 383}
 384
 385/*	Other
 386 */
 387static int ef100_reconfigure_mac(struct efx_nic *efx, bool mtu_only)
 388{
 389	WARN_ON(!mutex_is_locked(&efx->mac_lock));
 390
 391	efx_mcdi_filter_sync_rx_mode(efx);
 392
 393	if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED))
 394		return efx_mcdi_set_mtu(efx);
 395	return efx_mcdi_set_mac(efx);
 396}
 397
 398static enum reset_type ef100_map_reset_reason(enum reset_type reason)
 399{
 400	if (reason == RESET_TYPE_TX_WATCHDOG)
 401		return reason;
 402	return RESET_TYPE_DISABLE;
 403}
 404
 405static int ef100_map_reset_flags(u32 *flags)
 406{
 407	/* Only perform a RESET_TYPE_ALL because we don't support MC_REBOOTs */
 408	if ((*flags & EF100_RESET_PORT)) {
 409		*flags &= ~EF100_RESET_PORT;
 410		return RESET_TYPE_ALL;
 411	}
 412	if (*flags & ETH_RESET_MGMT) {
 413		*flags &= ~ETH_RESET_MGMT;
 414		return RESET_TYPE_DISABLE;
 415	}
 416
 417	return -EINVAL;
 418}
 419
 420static int ef100_reset(struct efx_nic *efx, enum reset_type reset_type)
 421{
 422	int rc;
 423
 424	dev_close(efx->net_dev);
 425
 426	if (reset_type == RESET_TYPE_TX_WATCHDOG) {
 427		netif_device_attach(efx->net_dev);
 428		__clear_bit(reset_type, &efx->reset_pending);
 429		rc = dev_open(efx->net_dev, NULL);
 430	} else if (reset_type == RESET_TYPE_ALL) {
 431		/* A RESET_TYPE_ALL will cause filters to be removed, so we remove filters
 432		 * and reprobe after reset to avoid removing filters twice
 433		 */
 434		down_write(&efx->filter_sem);
 435		ef100_filter_table_down(efx);
 436		up_write(&efx->filter_sem);
 437		rc = efx_mcdi_reset(efx, reset_type);
 438		if (rc)
 439			return rc;
 440
 441		netif_device_attach(efx->net_dev);
 442
 443		down_write(&efx->filter_sem);
 444		rc = ef100_filter_table_up(efx);
 445		up_write(&efx->filter_sem);
 446		if (rc)
 447			return rc;
 448
 449		rc = dev_open(efx->net_dev, NULL);
 450	} else {
 451		rc = 1;	/* Leave the device closed */
 452	}
 453	return rc;
 454}
 455
 456static void ef100_common_stat_mask(unsigned long *mask)
 457{
 458	__set_bit(EF100_STAT_port_rx_packets, mask);
 459	__set_bit(EF100_STAT_port_tx_packets, mask);
 460	__set_bit(EF100_STAT_port_rx_bytes, mask);
 461	__set_bit(EF100_STAT_port_tx_bytes, mask);
 462	__set_bit(EF100_STAT_port_rx_multicast, mask);
 463	__set_bit(EF100_STAT_port_rx_bad, mask);
 464	__set_bit(EF100_STAT_port_rx_align_error, mask);
 465	__set_bit(EF100_STAT_port_rx_overflow, mask);
 466}
 467
 468static void ef100_ethtool_stat_mask(unsigned long *mask)
 469{
 470	__set_bit(EF100_STAT_port_tx_pause, mask);
 471	__set_bit(EF100_STAT_port_tx_unicast, mask);
 472	__set_bit(EF100_STAT_port_tx_multicast, mask);
 473	__set_bit(EF100_STAT_port_tx_broadcast, mask);
 474	__set_bit(EF100_STAT_port_tx_lt64, mask);
 475	__set_bit(EF100_STAT_port_tx_64, mask);
 476	__set_bit(EF100_STAT_port_tx_65_to_127, mask);
 477	__set_bit(EF100_STAT_port_tx_128_to_255, mask);
 478	__set_bit(EF100_STAT_port_tx_256_to_511, mask);
 479	__set_bit(EF100_STAT_port_tx_512_to_1023, mask);
 480	__set_bit(EF100_STAT_port_tx_1024_to_15xx, mask);
 481	__set_bit(EF100_STAT_port_tx_15xx_to_jumbo, mask);
 482	__set_bit(EF100_STAT_port_rx_good, mask);
 483	__set_bit(EF100_STAT_port_rx_pause, mask);
 484	__set_bit(EF100_STAT_port_rx_unicast, mask);
 485	__set_bit(EF100_STAT_port_rx_broadcast, mask);
 486	__set_bit(EF100_STAT_port_rx_lt64, mask);
 487	__set_bit(EF100_STAT_port_rx_64, mask);
 488	__set_bit(EF100_STAT_port_rx_65_to_127, mask);
 489	__set_bit(EF100_STAT_port_rx_128_to_255, mask);
 490	__set_bit(EF100_STAT_port_rx_256_to_511, mask);
 491	__set_bit(EF100_STAT_port_rx_512_to_1023, mask);
 492	__set_bit(EF100_STAT_port_rx_1024_to_15xx, mask);
 493	__set_bit(EF100_STAT_port_rx_15xx_to_jumbo, mask);
 494	__set_bit(EF100_STAT_port_rx_gtjumbo, mask);
 495	__set_bit(EF100_STAT_port_rx_bad_gtjumbo, mask);
 496	__set_bit(EF100_STAT_port_rx_length_error, mask);
 497	__set_bit(EF100_STAT_port_rx_nodesc_drops, mask);
 498	__set_bit(GENERIC_STAT_rx_nodesc_trunc, mask);
 499	__set_bit(GENERIC_STAT_rx_noskb_drops, mask);
 500}
 501
 502#define EF100_DMA_STAT(ext_name, mcdi_name)			\
 503	[EF100_STAT_ ## ext_name] =				\
 504	{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
 505
 506static const struct efx_hw_stat_desc ef100_stat_desc[EF100_STAT_COUNT] = {
 507	EF100_DMA_STAT(port_tx_bytes, TX_BYTES),
 508	EF100_DMA_STAT(port_tx_packets, TX_PKTS),
 509	EF100_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
 510	EF100_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
 511	EF100_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
 512	EF100_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
 513	EF100_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
 514	EF100_DMA_STAT(port_tx_64, TX_64_PKTS),
 515	EF100_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
 516	EF100_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
 517	EF100_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
 518	EF100_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
 519	EF100_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
 520	EF100_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
 521	EF100_DMA_STAT(port_rx_bytes, RX_BYTES),
 522	EF100_DMA_STAT(port_rx_packets, RX_PKTS),
 523	EF100_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
 524	EF100_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
 525	EF100_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
 526	EF100_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
 527	EF100_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
 528	EF100_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
 529	EF100_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
 530	EF100_DMA_STAT(port_rx_64, RX_64_PKTS),
 531	EF100_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
 532	EF100_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
 533	EF100_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
 534	EF100_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
 535	EF100_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
 536	EF100_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
 537	EF100_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
 538	EF100_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
 539	EF100_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
 540	EF100_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
 541	EF100_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
 542	EF100_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
 543	EFX_GENERIC_SW_STAT(rx_nodesc_trunc),
 544	EFX_GENERIC_SW_STAT(rx_noskb_drops),
 545};
 546
 547static size_t ef100_describe_stats(struct efx_nic *efx, u8 *names)
 548{
 549	DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {};
 550
 551	ef100_ethtool_stat_mask(mask);
 552	return efx_nic_describe_stats(ef100_stat_desc, EF100_STAT_COUNT,
 553				      mask, names);
 554}
 555
 556static size_t ef100_update_stats_common(struct efx_nic *efx, u64 *full_stats,
 557					struct rtnl_link_stats64 *core_stats)
 558{
 559	struct ef100_nic_data *nic_data = efx->nic_data;
 560	DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {};
 561	size_t stats_count = 0, index;
 562	u64 *stats = nic_data->stats;
 563
 564	ef100_ethtool_stat_mask(mask);
 565
 566	if (full_stats) {
 567		for_each_set_bit(index, mask, EF100_STAT_COUNT) {
 568			if (ef100_stat_desc[index].name) {
 569				*full_stats++ = stats[index];
 570				++stats_count;
 571			}
 572		}
 573	}
 574
 575	if (!core_stats)
 576		return stats_count;
 577
 578	core_stats->rx_packets = stats[EF100_STAT_port_rx_packets];
 579	core_stats->tx_packets = stats[EF100_STAT_port_tx_packets];
 580	core_stats->rx_bytes = stats[EF100_STAT_port_rx_bytes];
 581	core_stats->tx_bytes = stats[EF100_STAT_port_tx_bytes];
 582	core_stats->rx_dropped = stats[EF100_STAT_port_rx_nodesc_drops] +
 583				 stats[GENERIC_STAT_rx_nodesc_trunc] +
 584				 stats[GENERIC_STAT_rx_noskb_drops];
 585	core_stats->multicast = stats[EF100_STAT_port_rx_multicast];
 586	core_stats->rx_length_errors =
 587			stats[EF100_STAT_port_rx_gtjumbo] +
 588			stats[EF100_STAT_port_rx_length_error];
 589	core_stats->rx_crc_errors = stats[EF100_STAT_port_rx_bad];
 590	core_stats->rx_frame_errors =
 591			stats[EF100_STAT_port_rx_align_error];
 592	core_stats->rx_fifo_errors = stats[EF100_STAT_port_rx_overflow];
 593	core_stats->rx_errors = (core_stats->rx_length_errors +
 594				 core_stats->rx_crc_errors +
 595				 core_stats->rx_frame_errors);
 596
 597	return stats_count;
 598}
 599
 600static size_t ef100_update_stats(struct efx_nic *efx,
 601				 u64 *full_stats,
 602				 struct rtnl_link_stats64 *core_stats)
 603{
 604	__le64 *mc_stats = kmalloc(array_size(efx->num_mac_stats, sizeof(__le64)), GFP_ATOMIC);
 605	struct ef100_nic_data *nic_data = efx->nic_data;
 606	DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {};
 607	u64 *stats = nic_data->stats;
 608
 609	ef100_common_stat_mask(mask);
 610	ef100_ethtool_stat_mask(mask);
 611
 
 
 
 612	efx_nic_copy_stats(efx, mc_stats);
 613	efx_nic_update_stats(ef100_stat_desc, EF100_STAT_COUNT, mask,
 614			     stats, mc_stats, false);
 615
 616	kfree(mc_stats);
 617
 618	return ef100_update_stats_common(efx, full_stats, core_stats);
 619}
 620
 621static int efx_ef100_get_phys_port_id(struct efx_nic *efx,
 622				      struct netdev_phys_item_id *ppid)
 623{
 624	struct ef100_nic_data *nic_data = efx->nic_data;
 625
 626	if (!is_valid_ether_addr(nic_data->port_id))
 627		return -EOPNOTSUPP;
 628
 629	ppid->id_len = ETH_ALEN;
 630	memcpy(ppid->id, nic_data->port_id, ppid->id_len);
 631
 632	return 0;
 633}
 634
 635static int efx_ef100_irq_test_generate(struct efx_nic *efx)
 636{
 637	MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
 638
 639	BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
 640
 641	MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
 642	return efx_mcdi_rpc_quiet(efx, MC_CMD_TRIGGER_INTERRUPT,
 643				  inbuf, sizeof(inbuf), NULL, 0, NULL);
 644}
 645
 646#define EFX_EF100_TEST 1
 647
 648static void efx_ef100_ev_test_generate(struct efx_channel *channel)
 649{
 650	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
 651	struct efx_nic *efx = channel->efx;
 652	efx_qword_t event;
 653	int rc;
 654
 655	EFX_POPULATE_QWORD_2(event,
 656			     ESF_GZ_E_TYPE, ESE_GZ_EF100_EV_DRIVER,
 657			     ESF_GZ_DRIVER_DATA, EFX_EF100_TEST);
 658
 659	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
 660
 661	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
 662	 * already swapped the data to little-endian order.
 663	 */
 664	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
 665	       sizeof(efx_qword_t));
 666
 667	rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
 668			  NULL, 0, NULL);
 669	if (rc && (rc != -ENETDOWN))
 670		goto fail;
 671
 672	return;
 673
 674fail:
 675	WARN_ON(true);
 676	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
 677}
 678
 679static unsigned int ef100_check_caps(const struct efx_nic *efx,
 680				     u8 flag, u32 offset)
 681{
 682	const struct ef100_nic_data *nic_data = efx->nic_data;
 683
 684	switch (offset) {
 685	case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS1_OFST:
 686		return nic_data->datapath_caps & BIT_ULL(flag);
 687	case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS2_OFST:
 688		return nic_data->datapath_caps2 & BIT_ULL(flag);
 689	case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS3_OFST:
 690		return nic_data->datapath_caps3 & BIT_ULL(flag);
 691	default:
 692		return 0;
 693	}
 694}
 695
 696/*	NIC level access functions
 697 */
 698#define EF100_OFFLOAD_FEATURES	(NETIF_F_HW_CSUM | NETIF_F_RXCSUM |	\
 699	NETIF_F_HIGHDMA | NETIF_F_SG | NETIF_F_FRAGLIST |		\
 700	NETIF_F_RXHASH | NETIF_F_RXFCS | NETIF_F_TSO_ECN | NETIF_F_RXALL | \
 701	NETIF_F_TSO_MANGLEID | NETIF_F_HW_VLAN_CTAG_TX)
 702
 703const struct efx_nic_type ef100_pf_nic_type = {
 704	.revision = EFX_REV_EF100,
 705	.is_vf = false,
 706	.probe = ef100_probe_pf,
 707	.offload_features = EF100_OFFLOAD_FEATURES,
 708	.mcdi_max_ver = 2,
 709	.mcdi_request = ef100_mcdi_request,
 710	.mcdi_poll_response = ef100_mcdi_poll_response,
 711	.mcdi_read_response = ef100_mcdi_read_response,
 712	.mcdi_poll_reboot = ef100_mcdi_poll_reboot,
 713	.mcdi_reboot_detected = ef100_mcdi_reboot_detected,
 714	.irq_enable_master = efx_port_dummy_op_void,
 715	.irq_test_generate = efx_ef100_irq_test_generate,
 716	.irq_disable_non_ev = efx_port_dummy_op_void,
 717	.push_irq_moderation = efx_channel_dummy_op_void,
 718	.min_interrupt_mode = EFX_INT_MODE_MSIX,
 719	.map_reset_reason = ef100_map_reset_reason,
 720	.map_reset_flags = ef100_map_reset_flags,
 721	.reset = ef100_reset,
 722
 723	.check_caps = ef100_check_caps,
 724
 725	.ev_probe = ef100_ev_probe,
 726	.ev_init = ef100_ev_init,
 727	.ev_fini = efx_mcdi_ev_fini,
 728	.ev_remove = efx_mcdi_ev_remove,
 729	.irq_handle_msi = ef100_msi_interrupt,
 730	.ev_process = ef100_ev_process,
 731	.ev_read_ack = ef100_ev_read_ack,
 732	.ev_test_generate = efx_ef100_ev_test_generate,
 733	.tx_probe = ef100_tx_probe,
 734	.tx_init = ef100_tx_init,
 735	.tx_write = ef100_tx_write,
 736	.tx_enqueue = ef100_enqueue_skb,
 737	.rx_probe = efx_mcdi_rx_probe,
 738	.rx_init = efx_mcdi_rx_init,
 739	.rx_remove = efx_mcdi_rx_remove,
 740	.rx_write = ef100_rx_write,
 741	.rx_packet = __ef100_rx_packet,
 742	.rx_buf_hash_valid = ef100_rx_buf_hash_valid,
 743	.fini_dmaq = efx_fini_dmaq,
 744	.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
 745	.filter_table_probe = ef100_filter_table_up,
 746	.filter_table_restore = efx_mcdi_filter_table_restore,
 747	.filter_table_remove = ef100_filter_table_down,
 748	.filter_insert = efx_mcdi_filter_insert,
 749	.filter_remove_safe = efx_mcdi_filter_remove_safe,
 750	.filter_get_safe = efx_mcdi_filter_get_safe,
 751	.filter_clear_rx = efx_mcdi_filter_clear_rx,
 752	.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
 753	.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
 754	.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
 755#ifdef CONFIG_RFS_ACCEL
 756	.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
 757#endif
 758
 759	.get_phys_port_id = efx_ef100_get_phys_port_id,
 760
 761	.rx_prefix_size = ESE_GZ_RX_PKT_PREFIX_LEN,
 762	.rx_hash_offset = ESF_GZ_RX_PREFIX_RSS_HASH_LBN / 8,
 763	.rx_ts_offset = ESF_GZ_RX_PREFIX_PARTIAL_TSTAMP_LBN / 8,
 764	.rx_hash_key_size = 40,
 765	.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
 766	.rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
 767	.rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config,
 768	.rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config,
 769	.rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
 770
 771	.reconfigure_mac = ef100_reconfigure_mac,
 772	.test_nvram = efx_new_mcdi_nvram_test_all,
 773	.describe_stats = ef100_describe_stats,
 774	.start_stats = efx_mcdi_mac_start_stats,
 775	.update_stats = ef100_update_stats,
 776	.pull_stats = efx_mcdi_mac_pull_stats,
 777	.stop_stats = efx_mcdi_mac_stop_stats,
 778
 779	/* Per-type bar/size configuration not used on ef100. Location of
 780	 * registers is defined by extended capabilities.
 781	 */
 782	.mem_bar = NULL,
 783	.mem_map_size = NULL,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 784
 785};
 786
 787const struct efx_nic_type ef100_vf_nic_type = {
 788	.revision = EFX_REV_EF100,
 789	.is_vf = true,
 790	.probe = ef100_probe_vf,
 791	.offload_features = EF100_OFFLOAD_FEATURES,
 792	.mcdi_max_ver = 2,
 793	.mcdi_request = ef100_mcdi_request,
 794	.mcdi_poll_response = ef100_mcdi_poll_response,
 795	.mcdi_read_response = ef100_mcdi_read_response,
 796	.mcdi_poll_reboot = ef100_mcdi_poll_reboot,
 797	.mcdi_reboot_detected = ef100_mcdi_reboot_detected,
 798	.irq_enable_master = efx_port_dummy_op_void,
 799	.irq_test_generate = efx_ef100_irq_test_generate,
 800	.irq_disable_non_ev = efx_port_dummy_op_void,
 801	.push_irq_moderation = efx_channel_dummy_op_void,
 802	.min_interrupt_mode = EFX_INT_MODE_MSIX,
 803	.map_reset_reason = ef100_map_reset_reason,
 804	.map_reset_flags = ef100_map_reset_flags,
 805	.reset = ef100_reset,
 806	.check_caps = ef100_check_caps,
 807	.ev_probe = ef100_ev_probe,
 808	.ev_init = ef100_ev_init,
 809	.ev_fini = efx_mcdi_ev_fini,
 810	.ev_remove = efx_mcdi_ev_remove,
 811	.irq_handle_msi = ef100_msi_interrupt,
 812	.ev_process = ef100_ev_process,
 813	.ev_read_ack = ef100_ev_read_ack,
 814	.ev_test_generate = efx_ef100_ev_test_generate,
 815	.tx_probe = ef100_tx_probe,
 816	.tx_init = ef100_tx_init,
 817	.tx_write = ef100_tx_write,
 818	.tx_enqueue = ef100_enqueue_skb,
 819	.rx_probe = efx_mcdi_rx_probe,
 820	.rx_init = efx_mcdi_rx_init,
 821	.rx_remove = efx_mcdi_rx_remove,
 822	.rx_write = ef100_rx_write,
 823	.rx_packet = __ef100_rx_packet,
 824	.rx_buf_hash_valid = ef100_rx_buf_hash_valid,
 825	.fini_dmaq = efx_fini_dmaq,
 826	.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
 827	.filter_table_probe = ef100_filter_table_up,
 828	.filter_table_restore = efx_mcdi_filter_table_restore,
 829	.filter_table_remove = ef100_filter_table_down,
 830	.filter_insert = efx_mcdi_filter_insert,
 831	.filter_remove_safe = efx_mcdi_filter_remove_safe,
 832	.filter_get_safe = efx_mcdi_filter_get_safe,
 833	.filter_clear_rx = efx_mcdi_filter_clear_rx,
 834	.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
 835	.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
 836	.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
 837#ifdef CONFIG_RFS_ACCEL
 838	.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
 839#endif
 840
 841	.rx_prefix_size = ESE_GZ_RX_PKT_PREFIX_LEN,
 842	.rx_hash_offset = ESF_GZ_RX_PREFIX_RSS_HASH_LBN / 8,
 843	.rx_ts_offset = ESF_GZ_RX_PREFIX_PARTIAL_TSTAMP_LBN / 8,
 844	.rx_hash_key_size = 40,
 845	.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
 846	.rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
 847	.rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
 848
 849	.reconfigure_mac = ef100_reconfigure_mac,
 850	.test_nvram = efx_new_mcdi_nvram_test_all,
 851	.describe_stats = ef100_describe_stats,
 852	.start_stats = efx_mcdi_mac_start_stats,
 853	.update_stats = ef100_update_stats,
 854	.pull_stats = efx_mcdi_mac_pull_stats,
 855	.stop_stats = efx_mcdi_mac_stop_stats,
 856
 857	.mem_bar = NULL,
 858	.mem_map_size = NULL,
 859
 860};
 861
 862static int compare_versions(const char *a, const char *b)
 863{
 864	int a_major, a_minor, a_point, a_patch;
 865	int b_major, b_minor, b_point, b_patch;
 866	int a_matched, b_matched;
 867
 868	a_matched = sscanf(a, "%d.%d.%d.%d", &a_major, &a_minor, &a_point, &a_patch);
 869	b_matched = sscanf(b, "%d.%d.%d.%d", &b_major, &b_minor, &b_point, &b_patch);
 870
 871	if (a_matched == 4 && b_matched != 4)
 872		return +1;
 873
 874	if (a_matched != 4 && b_matched == 4)
 875		return -1;
 876
 877	if (a_matched != 4 && b_matched != 4)
 878		return 0;
 879
 880	if (a_major != b_major)
 881		return a_major - b_major;
 882
 883	if (a_minor != b_minor)
 884		return a_minor - b_minor;
 885
 886	if (a_point != b_point)
 887		return a_point - b_point;
 888
 889	return a_patch - b_patch;
 890}
 891
 892enum ef100_tlv_state_machine {
 893	EF100_TLV_TYPE,
 894	EF100_TLV_TYPE_CONT,
 895	EF100_TLV_LENGTH,
 896	EF100_TLV_VALUE
 897};
 898
 899struct ef100_tlv_state {
 900	enum ef100_tlv_state_machine state;
 901	u64 value;
 902	u32 value_offset;
 903	u16 type;
 904	u8 len;
 905};
 906
 907static int ef100_tlv_feed(struct ef100_tlv_state *state, u8 byte)
 908{
 909	switch (state->state) {
 910	case EF100_TLV_TYPE:
 911		state->type = byte & 0x7f;
 912		state->state = (byte & 0x80) ? EF100_TLV_TYPE_CONT
 913					     : EF100_TLV_LENGTH;
 914		/* Clear ready to read in a new entry */
 915		state->value = 0;
 916		state->value_offset = 0;
 917		return 0;
 918	case EF100_TLV_TYPE_CONT:
 919		state->type |= byte << 7;
 920		state->state = EF100_TLV_LENGTH;
 921		return 0;
 922	case EF100_TLV_LENGTH:
 923		state->len = byte;
 924		/* We only handle TLVs that fit in a u64 */
 925		if (state->len > sizeof(state->value))
 926			return -EOPNOTSUPP;
 927		/* len may be zero, implying a value of zero */
 928		state->state = state->len ? EF100_TLV_VALUE : EF100_TLV_TYPE;
 929		return 0;
 930	case EF100_TLV_VALUE:
 931		state->value |= ((u64)byte) << (state->value_offset * 8);
 932		state->value_offset++;
 933		if (state->value_offset >= state->len)
 934			state->state = EF100_TLV_TYPE;
 935		return 0;
 936	default: /* state machine error, can't happen */
 937		WARN_ON_ONCE(1);
 938		return -EIO;
 939	}
 940}
 941
 942static int ef100_process_design_param(struct efx_nic *efx,
 943				      const struct ef100_tlv_state *reader)
 944{
 945	struct ef100_nic_data *nic_data = efx->nic_data;
 946
 947	switch (reader->type) {
 948	case ESE_EF100_DP_GZ_PAD: /* padding, skip it */
 949		return 0;
 950	case ESE_EF100_DP_GZ_PARTIAL_TSTAMP_SUB_NANO_BITS:
 951		/* Driver doesn't support timestamping yet, so we don't care */
 952		return 0;
 953	case ESE_EF100_DP_GZ_EVQ_UNSOL_CREDIT_SEQ_BITS:
 954		/* Driver doesn't support unsolicited-event credits yet, so
 955		 * we don't care
 956		 */
 957		return 0;
 958	case ESE_EF100_DP_GZ_NMMU_GROUP_SIZE:
 959		/* Driver doesn't manage the NMMU (so we don't care) */
 960		return 0;
 961	case ESE_EF100_DP_GZ_RX_L4_CSUM_PROTOCOLS:
 962		/* Driver uses CHECKSUM_COMPLETE, so we don't care about
 963		 * protocol checksum validation
 964		 */
 965		return 0;
 966	case ESE_EF100_DP_GZ_TSO_MAX_HDR_LEN:
 967		nic_data->tso_max_hdr_len = min_t(u64, reader->value, 0xffff);
 968		return 0;
 969	case ESE_EF100_DP_GZ_TSO_MAX_HDR_NUM_SEGS:
 970		/* We always put HDR_NUM_SEGS=1 in our TSO descriptors */
 971		if (!reader->value) {
 972			netif_err(efx, probe, efx->net_dev,
 973				  "TSO_MAX_HDR_NUM_SEGS < 1\n");
 974			return -EOPNOTSUPP;
 975		}
 976		return 0;
 977	case ESE_EF100_DP_GZ_RXQ_SIZE_GRANULARITY:
 978	case ESE_EF100_DP_GZ_TXQ_SIZE_GRANULARITY:
 979		/* Our TXQ and RXQ sizes are always power-of-two and thus divisible by
 980		 * EFX_MIN_DMAQ_SIZE, so we just need to check that
 981		 * EFX_MIN_DMAQ_SIZE is divisible by GRANULARITY.
 982		 * This is very unlikely to fail.
 983		 */
 984		if (!reader->value || reader->value > EFX_MIN_DMAQ_SIZE ||
 985		    EFX_MIN_DMAQ_SIZE % (u32)reader->value) {
 986			netif_err(efx, probe, efx->net_dev,
 987				  "%s size granularity is %llu, can't guarantee safety\n",
 988				  reader->type == ESE_EF100_DP_GZ_RXQ_SIZE_GRANULARITY ? "RXQ" : "TXQ",
 989				  reader->value);
 990			return -EOPNOTSUPP;
 991		}
 992		return 0;
 993	case ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_LEN:
 994		nic_data->tso_max_payload_len = min_t(u64, reader->value, GSO_MAX_SIZE);
 995		efx->net_dev->gso_max_size = nic_data->tso_max_payload_len;
 
 
 996		return 0;
 997	case ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_NUM_SEGS:
 998		nic_data->tso_max_payload_num_segs = min_t(u64, reader->value, 0xffff);
 999		efx->net_dev->gso_max_segs = nic_data->tso_max_payload_num_segs;
 
1000		return 0;
1001	case ESE_EF100_DP_GZ_TSO_MAX_NUM_FRAMES:
1002		nic_data->tso_max_frames = min_t(u64, reader->value, 0xffff);
1003		return 0;
1004	case ESE_EF100_DP_GZ_COMPAT:
1005		if (reader->value) {
1006			netif_err(efx, probe, efx->net_dev,
1007				  "DP_COMPAT has unknown bits %#llx, driver not compatible with this hw\n",
1008				  reader->value);
1009			return -EOPNOTSUPP;
1010		}
1011		return 0;
1012	case ESE_EF100_DP_GZ_MEM2MEM_MAX_LEN:
1013		/* Driver doesn't use mem2mem transfers */
1014		return 0;
1015	case ESE_EF100_DP_GZ_EVQ_TIMER_TICK_NANOS:
1016		/* Driver doesn't currently use EVQ_TIMER */
1017		return 0;
1018	case ESE_EF100_DP_GZ_NMMU_PAGE_SIZES:
1019		/* Driver doesn't manage the NMMU (so we don't care) */
1020		return 0;
1021	case ESE_EF100_DP_GZ_VI_STRIDES:
1022		/* We never try to set the VI stride, and we don't rely on
1023		 * being able to find VIs past VI 0 until after we've learned
1024		 * the current stride from MC_CMD_GET_CAPABILITIES.
1025		 * So the value of this shouldn't matter.
1026		 */
1027		if (reader->value != ESE_EF100_DP_GZ_VI_STRIDES_DEFAULT)
1028			netif_dbg(efx, probe, efx->net_dev,
1029				  "NIC has other than default VI_STRIDES (mask "
1030				  "%#llx), early probing might use wrong one\n",
1031				  reader->value);
1032		return 0;
1033	case ESE_EF100_DP_GZ_RX_MAX_RUNT:
1034		/* Driver doesn't look at L2_STATUS:LEN_ERR bit, so we don't
1035		 * care whether it indicates runt or overlength for any given
1036		 * packet, so we don't care about this parameter.
1037		 */
1038		return 0;
1039	default:
1040		/* Host interface says "Drivers should ignore design parameters
1041		 * that they do not recognise."
1042		 */
1043		netif_dbg(efx, probe, efx->net_dev,
1044			  "Ignoring unrecognised design parameter %u\n",
1045			  reader->type);
1046		return 0;
1047	}
1048}
1049
1050static int ef100_check_design_params(struct efx_nic *efx)
1051{
1052	struct ef100_tlv_state reader = {};
1053	u32 total_len, offset = 0;
1054	efx_dword_t reg;
1055	int rc = 0, i;
1056	u32 data;
1057
1058	efx_readd(efx, &reg, ER_GZ_PARAMS_TLV_LEN);
1059	total_len = EFX_DWORD_FIELD(reg, EFX_DWORD_0);
1060	netif_dbg(efx, probe, efx->net_dev, "%u bytes of design parameters\n",
1061		  total_len);
1062	while (offset < total_len) {
1063		efx_readd(efx, &reg, ER_GZ_PARAMS_TLV + offset);
1064		data = EFX_DWORD_FIELD(reg, EFX_DWORD_0);
1065		for (i = 0; i < sizeof(data); i++) {
1066			rc = ef100_tlv_feed(&reader, data);
1067			/* Got a complete value? */
1068			if (!rc && reader.state == EF100_TLV_TYPE)
1069				rc = ef100_process_design_param(efx, &reader);
1070			if (rc)
1071				goto out;
1072			data >>= 8;
1073			offset++;
1074		}
1075	}
1076	/* Check we didn't end halfway through a TLV entry, which could either
1077	 * mean that the TLV stream is truncated or just that it's corrupted
1078	 * and our state machine is out of sync.
1079	 */
1080	if (reader.state != EF100_TLV_TYPE) {
1081		if (reader.state == EF100_TLV_TYPE_CONT)
1082			netif_err(efx, probe, efx->net_dev,
1083				  "truncated design parameter (incomplete type %u)\n",
1084				  reader.type);
1085		else
1086			netif_err(efx, probe, efx->net_dev,
1087				  "truncated design parameter %u\n",
1088				  reader.type);
1089		rc = -EIO;
1090	}
1091out:
1092	return rc;
1093}
1094
1095/*	NIC probe and remove
1096 */
1097static int ef100_probe_main(struct efx_nic *efx)
1098{
1099	unsigned int bar_size = resource_size(&efx->pci_dev->resource[efx->mem_bar]);
1100	struct net_device *net_dev = efx->net_dev;
1101	struct ef100_nic_data *nic_data;
1102	char fw_version[32];
 
1103	int i, rc;
1104
1105	if (WARN_ON(bar_size == 0))
1106		return -EIO;
1107
1108	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
1109	if (!nic_data)
1110		return -ENOMEM;
1111	efx->nic_data = nic_data;
1112	nic_data->efx = efx;
1113	net_dev->features |= efx->type->offload_features;
1114	net_dev->hw_features |= efx->type->offload_features;
1115
1116	/* Populate design-parameter defaults */
1117	nic_data->tso_max_hdr_len = ESE_EF100_DP_GZ_TSO_MAX_HDR_LEN_DEFAULT;
1118	nic_data->tso_max_frames = ESE_EF100_DP_GZ_TSO_MAX_NUM_FRAMES_DEFAULT;
1119	nic_data->tso_max_payload_num_segs = ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_NUM_SEGS_DEFAULT;
1120	nic_data->tso_max_payload_len = ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_LEN_DEFAULT;
1121	net_dev->gso_max_segs = ESE_EF100_DP_GZ_TSO_MAX_HDR_NUM_SEGS_DEFAULT;
1122	/* Read design parameters */
1123	rc = ef100_check_design_params(efx);
1124	if (rc) {
1125		netif_err(efx, probe, efx->net_dev,
1126			  "Unsupported design parameters\n");
1127		goto fail;
1128	}
1129
1130	/* we assume later that we can copy from this buffer in dwords */
1131	BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
1132
1133	/* MCDI buffers must be 256 byte aligned. */
1134	rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf, MCDI_BUF_LEN,
1135				  GFP_KERNEL);
1136	if (rc)
1137		goto fail;
1138
1139	/* Get the MC's warm boot count.  In case it's rebooting right
1140	 * now, be prepared to retry.
1141	 */
1142	i = 0;
1143	for (;;) {
1144		rc = ef100_get_warm_boot_count(efx);
1145		if (rc >= 0)
1146			break;
1147		if (++i == 5)
1148			goto fail;
1149		ssleep(1);
1150	}
1151	nic_data->warm_boot_count = rc;
1152
1153	/* In case we're recovering from a crash (kexec), we want to
1154	 * cancel any outstanding request by the previous user of this
1155	 * function.  We send a special message using the least
1156	 * significant bits of the 'high' (doorbell) register.
1157	 */
1158	_efx_writed(efx, cpu_to_le32(1), efx_reg(efx, ER_GZ_MC_DB_HWRD));
1159
1160	/* Post-IO section. */
1161
1162	rc = efx_mcdi_init(efx);
1163	if (!rc && efx->mcdi->fn_flags &
1164		   (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_NO_ACTIVE_PORT)) {
1165		netif_info(efx, probe, efx->net_dev,
1166			   "No network port on this PCI function");
1167		rc = -ENODEV;
1168	}
1169	if (rc)
1170		goto fail;
1171	/* Reset (most) configuration for this function */
1172	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
1173	if (rc)
1174		goto fail;
 
 
 
 
1175
1176	rc = efx_get_pf_index(efx, &nic_data->pf_index);
1177	if (rc)
1178		goto fail;
1179
1180	rc = efx_ef100_init_datapath_caps(efx);
1181	if (rc < 0)
1182		goto fail;
1183
1184	efx->max_vis = EF100_MAX_VIS;
1185
1186	rc = efx_mcdi_port_get_number(efx);
1187	if (rc < 0)
1188		goto fail;
1189	efx->port_num = rc;
1190
1191	efx_mcdi_print_fwver(efx, fw_version, sizeof(fw_version));
1192	netif_dbg(efx, drv, efx->net_dev, "Firmware version %s\n", fw_version);
 
 
 
 
 
 
1193
1194	if (compare_versions(fw_version, "1.1.0.1000") < 0) {
1195		netif_info(efx, drv, efx->net_dev, "Firmware uses old event descriptors\n");
1196		rc = -EINVAL;
1197		goto fail;
1198	}
1199
1200	if (efx_has_cap(efx, UNSOL_EV_CREDIT_SUPPORTED)) {
1201		netif_info(efx, drv, efx->net_dev, "Firmware uses unsolicited-event credits\n");
1202		rc = -EINVAL;
1203		goto fail;
1204	}
1205
1206	rc = ef100_phy_probe(efx);
1207	if (rc)
1208		goto fail;
 
1209
1210	rc = efx_init_channels(efx);
1211	if (rc)
1212		goto fail;
 
 
 
 
 
 
 
 
1213
1214	down_write(&efx->filter_sem);
1215	rc = ef100_filter_table_probe(efx);
1216	up_write(&efx->filter_sem);
1217	if (rc)
1218		goto fail;
1219
1220	netdev_rss_key_fill(efx->rss_context.rx_hash_key,
1221			    sizeof(efx->rss_context.rx_hash_key));
1222
1223	/* Don't fail init if RSS setup doesn't work. */
1224	efx_mcdi_push_default_indir_table(efx, efx->n_rx_channels);
1225
1226	rc = ef100_register_netdev(efx);
1227	if (rc)
1228		goto fail;
1229
 
 
1230	return 0;
1231fail:
1232	return rc;
1233}
1234
1235int ef100_probe_pf(struct efx_nic *efx)
1236{
 
1237	struct net_device *net_dev = efx->net_dev;
1238	struct ef100_nic_data *nic_data;
1239	int rc = ef100_probe_main(efx);
 
 
1240
 
1241	if (rc)
1242		goto fail;
 
 
 
 
 
 
 
1243
1244	nic_data = efx->nic_data;
1245	rc = ef100_get_mac_address(efx, net_dev->perm_addr);
1246	if (rc)
1247		goto fail;
1248	/* Assign MAC address */
1249	memcpy(net_dev->dev_addr, net_dev->perm_addr, ETH_ALEN);
1250	memcpy(nic_data->port_id, net_dev->perm_addr, ETH_ALEN);
 
1251
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1252	return 0;
1253
1254fail:
1255	return rc;
1256}
1257
1258int ef100_probe_vf(struct efx_nic *efx)
1259{
1260	return ef100_probe_main(efx);
1261}
1262
1263void ef100_remove(struct efx_nic *efx)
1264{
1265	struct ef100_nic_data *nic_data = efx->nic_data;
1266
1267	ef100_unregister_netdev(efx);
 
 
 
1268
1269	down_write(&efx->filter_sem);
1270	efx_mcdi_filter_table_remove(efx);
1271	up_write(&efx->filter_sem);
1272	efx_fini_channels(efx);
1273	kfree(efx->phy_data);
1274	efx->phy_data = NULL;
1275	efx_mcdi_detach(efx);
1276	efx_mcdi_fini(efx);
1277	if (nic_data)
1278		efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
1279	kfree(nic_data);
1280	efx->nic_data = NULL;
1281}