Loading...
1// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2/* QLogic qed NIC Driver
3 * Copyright (c) 2015-2017 QLogic Corporation
4 * Copyright (c) 2019-2021 Marvell International Ltd.
5 */
6
7#include <linux/types.h>
8#include <linux/crc8.h>
9#include <linux/delay.h>
10#include <linux/kernel.h>
11#include <linux/slab.h>
12#include <linux/string.h>
13#include "qed_hsi.h"
14#include "qed_hw.h"
15#include "qed_init_ops.h"
16#include "qed_iro_hsi.h"
17#include "qed_reg_addr.h"
18
19#define CDU_VALIDATION_DEFAULT_CFG CDU_CONTEXT_VALIDATION_DEFAULT_CFG
20
21static u16 con_region_offsets[3][NUM_OF_CONNECTION_TYPES] = {
22 {400, 336, 352, 368, 304, 384, 416, 352}, /* region 3 offsets */
23 {528, 496, 416, 512, 448, 512, 544, 480}, /* region 4 offsets */
24 {608, 544, 496, 576, 576, 592, 624, 560} /* region 5 offsets */
25};
26
27static u16 task_region_offsets[1][NUM_OF_CONNECTION_TYPES] = {
28 {240, 240, 112, 0, 0, 0, 0, 96} /* region 1 offsets */
29};
30
31/* General constants */
32#define QM_PQ_MEM_4KB(pq_size) (pq_size ? DIV_ROUND_UP((pq_size + 1) * \
33 QM_PQ_ELEMENT_SIZE, \
34 0x1000) : 0)
35#define QM_PQ_SIZE_256B(pq_size) (pq_size ? DIV_ROUND_UP(pq_size, \
36 0x100) - 1 : 0)
37#define QM_INVALID_PQ_ID 0xffff
38
39/* Max link speed (in Mbps) */
40#define QM_MAX_LINK_SPEED 100000
41
42/* Feature enable */
43#define QM_BYPASS_EN 1
44#define QM_BYTE_CRD_EN 1
45
46/* Initial VOQ byte credit */
47#define QM_INITIAL_VOQ_BYTE_CRD 98304
48/* Other PQ constants */
49#define QM_OTHER_PQS_PER_PF 4
50
51/* VOQ constants */
52#define MAX_NUM_VOQS (MAX_NUM_PORTS_K2 * NUM_TCS_4PORT_K2)
53#define VOQS_BIT_MASK (BIT(MAX_NUM_VOQS) - 1)
54
55/* WFQ constants */
56
57/* PF WFQ increment value, 0x9000 = 4*9*1024 */
58#define QM_PF_WFQ_INC_VAL(weight) ((weight) * 0x9000)
59
60/* PF WFQ Upper bound, in MB, 10 * burst size of 1ms in 50Gbps */
61#define QM_PF_WFQ_UPPER_BOUND 62500000
62
63/* PF WFQ max increment value, 0.7 * upper bound */
64#define QM_PF_WFQ_MAX_INC_VAL ((QM_PF_WFQ_UPPER_BOUND * 7) / 10)
65
66/* Number of VOQs in E5 PF WFQ credit register (QmWfqCrd) */
67#define QM_PF_WFQ_CRD_E5_NUM_VOQS 16
68
69/* VP WFQ increment value */
70#define QM_VP_WFQ_INC_VAL(weight) ((weight) * QM_VP_WFQ_MIN_INC_VAL)
71
72/* VP WFQ min increment value */
73#define QM_VP_WFQ_MIN_INC_VAL 10800
74
75/* VP WFQ max increment value, 2^30 */
76#define QM_VP_WFQ_MAX_INC_VAL 0x40000000
77
78/* VP WFQ bypass threshold */
79#define QM_VP_WFQ_BYPASS_THRESH (QM_VP_WFQ_MIN_INC_VAL - 100)
80
81/* VP RL credit task cost */
82#define QM_VP_RL_CRD_TASK_COST 9700
83
84/* Bit of VOQ in VP WFQ PQ map */
85#define QM_VP_WFQ_PQ_VOQ_SHIFT 0
86
87/* Bit of PF in VP WFQ PQ map */
88#define QM_VP_WFQ_PQ_PF_SHIFT 5
89
90/* RL constants */
91
92/* Period in us */
93#define QM_RL_PERIOD 5
94
95/* Period in 25MHz cycles */
96#define QM_RL_PERIOD_CLK_25M (25 * QM_RL_PERIOD)
97
98/* RL increment value - rate is specified in mbps */
99#define QM_RL_INC_VAL(rate) ({ \
100 typeof(rate) __rate = (rate); \
101 max_t(u32, \
102 (u32)(((__rate ? __rate : \
103 100000) * \
104 QM_RL_PERIOD * \
105 101) / (8 * 100)), 1); })
106
107/* PF RL Upper bound is set to 10 * burst size of 1ms in 50Gbps */
108#define QM_PF_RL_UPPER_BOUND 62500000
109
110/* Max PF RL increment value is 0.7 * upper bound */
111#define QM_PF_RL_MAX_INC_VAL ((QM_PF_RL_UPPER_BOUND * 7) / 10)
112
113/* QCN RL Upper bound, speed is in Mpbs */
114#define QM_GLOBAL_RL_UPPER_BOUND(speed) ((u32)max_t( \
115 u32, \
116 (u32)(((speed) * \
117 QM_RL_PERIOD * 101) / (8 * 100)), \
118 QM_VP_RL_CRD_TASK_COST \
119 + 1000))
120
121/* AFullOprtnstcCrdMask constants */
122#define QM_OPPOR_LINE_VOQ_DEF 1
123#define QM_OPPOR_FW_STOP_DEF 0
124#define QM_OPPOR_PQ_EMPTY_DEF 1
125
126/* Command Queue constants */
127
128/* Pure LB CmdQ lines (+spare) */
129#define PBF_CMDQ_PURE_LB_LINES 150
130
131#define PBF_CMDQ_LINES_RT_OFFSET(ext_voq) \
132 (PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET + \
133 (ext_voq) * (PBF_REG_YCMD_QS_NUM_LINES_VOQ1_RT_OFFSET - \
134 PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET))
135
136#define PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq) \
137 (PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET + \
138 (ext_voq) * (PBF_REG_BTB_GUARANTEED_VOQ1_RT_OFFSET - \
139 PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET))
140
141/* Returns the VOQ line credit for the specified number of PBF command lines.
142 * PBF lines are specified in 256b units.
143 */
144#define QM_VOQ_LINE_CRD(pbf_cmd_lines) \
145 ((((pbf_cmd_lines) - 4) * 2) | QM_LINE_CRD_REG_SIGN_BIT)
146
147/* BTB: blocks constants (block size = 256B) */
148
149/* 256B blocks in 9700B packet */
150#define BTB_JUMBO_PKT_BLOCKS 38
151
152/* Headroom per-port */
153#define BTB_HEADROOM_BLOCKS BTB_JUMBO_PKT_BLOCKS
154#define BTB_PURE_LB_FACTOR 10
155
156/* Factored (hence really 0.7) */
157#define BTB_PURE_LB_RATIO 7
158
159/* QM stop command constants */
160#define QM_STOP_PQ_MASK_WIDTH 32
161#define QM_STOP_CMD_ADDR 2
162#define QM_STOP_CMD_STRUCT_SIZE 2
163#define QM_STOP_CMD_PAUSE_MASK_OFFSET 0
164#define QM_STOP_CMD_PAUSE_MASK_SHIFT 0
165#define QM_STOP_CMD_PAUSE_MASK_MASK -1
166#define QM_STOP_CMD_GROUP_ID_OFFSET 1
167#define QM_STOP_CMD_GROUP_ID_SHIFT 16
168#define QM_STOP_CMD_GROUP_ID_MASK 15
169#define QM_STOP_CMD_PQ_TYPE_OFFSET 1
170#define QM_STOP_CMD_PQ_TYPE_SHIFT 24
171#define QM_STOP_CMD_PQ_TYPE_MASK 1
172#define QM_STOP_CMD_MAX_POLL_COUNT 100
173#define QM_STOP_CMD_POLL_PERIOD_US 500
174
175/* QM command macros */
176#define QM_CMD_STRUCT_SIZE(cmd) cmd ## _STRUCT_SIZE
177#define QM_CMD_SET_FIELD(var, cmd, field, value) \
178 SET_FIELD(var[cmd ## _ ## field ## _OFFSET], \
179 cmd ## _ ## field, \
180 value)
181
182#define QM_INIT_TX_PQ_MAP(p_hwfn, map, pq_id, vp_pq_id, rl_valid, \
183 rl_id, ext_voq, wrr) \
184 do { \
185 u32 __reg = 0; \
186 \
187 BUILD_BUG_ON(sizeof((map).reg) != sizeof(__reg)); \
188 memset(&(map), 0, sizeof(map)); \
189 SET_FIELD(__reg, QM_RF_PQ_MAP_PQ_VALID, 1); \
190 SET_FIELD(__reg, QM_RF_PQ_MAP_RL_VALID, \
191 !!(rl_valid)); \
192 SET_FIELD(__reg, QM_RF_PQ_MAP_VP_PQ_ID, (vp_pq_id)); \
193 SET_FIELD(__reg, QM_RF_PQ_MAP_RL_ID, (rl_id)); \
194 SET_FIELD(__reg, QM_RF_PQ_MAP_VOQ, (ext_voq)); \
195 SET_FIELD(__reg, QM_RF_PQ_MAP_WRR_WEIGHT_GROUP, \
196 (wrr)); \
197 \
198 STORE_RT_REG((p_hwfn), QM_REG_TXPQMAP_RT_OFFSET + (pq_id), \
199 __reg); \
200 (map).reg = cpu_to_le32(__reg); \
201 } while (0)
202
203#define WRITE_PQ_INFO_TO_RAM 1
204#define PQ_INFO_ELEMENT(vp, pf, tc, port, rl_valid, rl) \
205 (((vp) << 0) | ((pf) << 12) | ((tc) << 16) | ((port) << 20) | \
206 ((rl_valid ? 1 : 0) << 22) | (((rl) & 255) << 24) | \
207 (((rl) >> 8) << 9))
208
209#define PQ_INFO_RAM_GRC_ADDRESS(pq_id) \
210 (XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + \
211 XSTORM_PQ_INFO_OFFSET(pq_id))
212
213static const char * const s_protocol_types[] = {
214 "PROTOCOLID_ISCSI", "PROTOCOLID_FCOE", "PROTOCOLID_ROCE",
215 "PROTOCOLID_CORE", "PROTOCOLID_ETH", "PROTOCOLID_IWARP",
216 "PROTOCOLID_TOE", "PROTOCOLID_PREROCE", "PROTOCOLID_COMMON",
217 "PROTOCOLID_TCP", "PROTOCOLID_RDMA", "PROTOCOLID_SCSI",
218};
219
220static const char *s_ramrod_cmd_ids[][28] = {
221 {
222 "ISCSI_RAMROD_CMD_ID_UNUSED", "ISCSI_RAMROD_CMD_ID_INIT_FUNC",
223 "ISCSI_RAMROD_CMD_ID_DESTROY_FUNC",
224 "ISCSI_RAMROD_CMD_ID_OFFLOAD_CONN",
225 "ISCSI_RAMROD_CMD_ID_UPDATE_CONN",
226 "ISCSI_RAMROD_CMD_ID_TERMINATION_CONN",
227 "ISCSI_RAMROD_CMD_ID_CLEAR_SQ", "ISCSI_RAMROD_CMD_ID_MAC_UPDATE",
228 "ISCSI_RAMROD_CMD_ID_CONN_STATS", },
229 { "FCOE_RAMROD_CMD_ID_INIT_FUNC", "FCOE_RAMROD_CMD_ID_DESTROY_FUNC",
230 "FCOE_RAMROD_CMD_ID_STAT_FUNC",
231 "FCOE_RAMROD_CMD_ID_OFFLOAD_CONN",
232 "FCOE_RAMROD_CMD_ID_TERMINATE_CONN", },
233 { "RDMA_RAMROD_UNUSED", "RDMA_RAMROD_FUNC_INIT",
234 "RDMA_RAMROD_FUNC_CLOSE", "RDMA_RAMROD_REGISTER_MR",
235 "RDMA_RAMROD_DEREGISTER_MR", "RDMA_RAMROD_CREATE_CQ",
236 "RDMA_RAMROD_RESIZE_CQ", "RDMA_RAMROD_DESTROY_CQ",
237 "RDMA_RAMROD_CREATE_SRQ", "RDMA_RAMROD_MODIFY_SRQ",
238 "RDMA_RAMROD_DESTROY_SRQ", "RDMA_RAMROD_START_NS_TRACKING",
239 "RDMA_RAMROD_STOP_NS_TRACKING", "ROCE_RAMROD_CREATE_QP",
240 "ROCE_RAMROD_MODIFY_QP", "ROCE_RAMROD_QUERY_QP",
241 "ROCE_RAMROD_DESTROY_QP", "ROCE_RAMROD_CREATE_UD_QP",
242 "ROCE_RAMROD_DESTROY_UD_QP", "ROCE_RAMROD_FUNC_UPDATE",
243 "ROCE_RAMROD_SUSPEND_QP", "ROCE_RAMROD_QUERY_SUSPENDED_QP",
244 "ROCE_RAMROD_CREATE_SUSPENDED_QP", "ROCE_RAMROD_RESUME_QP",
245 "ROCE_RAMROD_SUSPEND_UD_QP", "ROCE_RAMROD_RESUME_UD_QP",
246 "ROCE_RAMROD_CREATE_SUSPENDED_UD_QP", "ROCE_RAMROD_FLUSH_DPT_QP", },
247 { "CORE_RAMROD_UNUSED", "CORE_RAMROD_RX_QUEUE_START",
248 "CORE_RAMROD_TX_QUEUE_START", "CORE_RAMROD_RX_QUEUE_STOP",
249 "CORE_RAMROD_TX_QUEUE_STOP",
250 "CORE_RAMROD_RX_QUEUE_FLUSH",
251 "CORE_RAMROD_TX_QUEUE_UPDATE", "CORE_RAMROD_QUEUE_STATS_QUERY", },
252 { "ETH_RAMROD_UNUSED", "ETH_RAMROD_VPORT_START",
253 "ETH_RAMROD_VPORT_UPDATE", "ETH_RAMROD_VPORT_STOP",
254 "ETH_RAMROD_RX_QUEUE_START", "ETH_RAMROD_RX_QUEUE_STOP",
255 "ETH_RAMROD_TX_QUEUE_START", "ETH_RAMROD_TX_QUEUE_STOP",
256 "ETH_RAMROD_FILTERS_UPDATE", "ETH_RAMROD_RX_QUEUE_UPDATE",
257 "ETH_RAMROD_RX_CREATE_OPENFLOW_ACTION",
258 "ETH_RAMROD_RX_ADD_OPENFLOW_FILTER",
259 "ETH_RAMROD_RX_DELETE_OPENFLOW_FILTER",
260 "ETH_RAMROD_RX_ADD_UDP_FILTER",
261 "ETH_RAMROD_RX_DELETE_UDP_FILTER",
262 "ETH_RAMROD_RX_CREATE_GFT_ACTION",
263 "ETH_RAMROD_RX_UPDATE_GFT_FILTER", "ETH_RAMROD_TX_QUEUE_UPDATE",
264 "ETH_RAMROD_RGFS_FILTER_ADD", "ETH_RAMROD_RGFS_FILTER_DEL",
265 "ETH_RAMROD_TGFS_FILTER_ADD", "ETH_RAMROD_TGFS_FILTER_DEL",
266 "ETH_RAMROD_GFS_COUNTERS_REPORT_REQUEST", },
267 { "RDMA_RAMROD_UNUSED", "RDMA_RAMROD_FUNC_INIT",
268 "RDMA_RAMROD_FUNC_CLOSE", "RDMA_RAMROD_REGISTER_MR",
269 "RDMA_RAMROD_DEREGISTER_MR", "RDMA_RAMROD_CREATE_CQ",
270 "RDMA_RAMROD_RESIZE_CQ", "RDMA_RAMROD_DESTROY_CQ",
271 "RDMA_RAMROD_CREATE_SRQ", "RDMA_RAMROD_MODIFY_SRQ",
272 "RDMA_RAMROD_DESTROY_SRQ", "RDMA_RAMROD_START_NS_TRACKING",
273 "RDMA_RAMROD_STOP_NS_TRACKING",
274 "IWARP_RAMROD_CMD_ID_TCP_OFFLOAD",
275 "IWARP_RAMROD_CMD_ID_MPA_OFFLOAD",
276 "IWARP_RAMROD_CMD_ID_MPA_OFFLOAD_SEND_RTR",
277 "IWARP_RAMROD_CMD_ID_CREATE_QP", "IWARP_RAMROD_CMD_ID_QUERY_QP",
278 "IWARP_RAMROD_CMD_ID_MODIFY_QP",
279 "IWARP_RAMROD_CMD_ID_DESTROY_QP",
280 "IWARP_RAMROD_CMD_ID_ABORT_TCP_OFFLOAD", },
281 { NULL }, /*TOE*/
282 { NULL }, /*PREROCE*/
283 { "COMMON_RAMROD_UNUSED", "COMMON_RAMROD_PF_START",
284 "COMMON_RAMROD_PF_STOP", "COMMON_RAMROD_VF_START",
285 "COMMON_RAMROD_VF_STOP", "COMMON_RAMROD_PF_UPDATE",
286 "COMMON_RAMROD_RL_UPDATE", "COMMON_RAMROD_EMPTY", }
287};
288
289/******************** INTERNAL IMPLEMENTATION *********************/
290
291/* Returns the external VOQ number */
292static u8 qed_get_ext_voq(struct qed_hwfn *p_hwfn,
293 u8 port_id, u8 tc, u8 max_phys_tcs_per_port)
294{
295 if (tc == PURE_LB_TC)
296 return NUM_OF_PHYS_TCS * MAX_NUM_PORTS_BB + port_id;
297 else
298 return port_id * max_phys_tcs_per_port + tc;
299}
300
301/* Prepare PF RL enable/disable runtime init values */
302static void qed_enable_pf_rl(struct qed_hwfn *p_hwfn, bool pf_rl_en)
303{
304 STORE_RT_REG(p_hwfn, QM_REG_RLPFENABLE_RT_OFFSET, pf_rl_en ? 1 : 0);
305 if (pf_rl_en) {
306 u8 num_ext_voqs = MAX_NUM_VOQS;
307 u64 voq_bit_mask = ((u64)1 << num_ext_voqs) - 1;
308
309 /* Enable RLs for all VOQs */
310 STORE_RT_REG(p_hwfn,
311 QM_REG_RLPFVOQENABLE_RT_OFFSET,
312 (u32)voq_bit_mask);
313
314 /* Write RL period */
315 STORE_RT_REG(p_hwfn,
316 QM_REG_RLPFPERIOD_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
317 STORE_RT_REG(p_hwfn,
318 QM_REG_RLPFPERIODTIMER_RT_OFFSET,
319 QM_RL_PERIOD_CLK_25M);
320
321 /* Set credit threshold for QM bypass flow */
322 if (QM_BYPASS_EN)
323 STORE_RT_REG(p_hwfn,
324 QM_REG_AFULLQMBYPTHRPFRL_RT_OFFSET,
325 QM_PF_RL_UPPER_BOUND);
326 }
327}
328
329/* Prepare PF WFQ enable/disable runtime init values */
330static void qed_enable_pf_wfq(struct qed_hwfn *p_hwfn, bool pf_wfq_en)
331{
332 STORE_RT_REG(p_hwfn, QM_REG_WFQPFENABLE_RT_OFFSET, pf_wfq_en ? 1 : 0);
333
334 /* Set credit threshold for QM bypass flow */
335 if (pf_wfq_en && QM_BYPASS_EN)
336 STORE_RT_REG(p_hwfn,
337 QM_REG_AFULLQMBYPTHRPFWFQ_RT_OFFSET,
338 QM_PF_WFQ_UPPER_BOUND);
339}
340
341/* Prepare global RL enable/disable runtime init values */
342static void qed_enable_global_rl(struct qed_hwfn *p_hwfn, bool global_rl_en)
343{
344 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLENABLE_RT_OFFSET,
345 global_rl_en ? 1 : 0);
346 if (global_rl_en) {
347 /* Write RL period (use timer 0 only) */
348 STORE_RT_REG(p_hwfn,
349 QM_REG_RLGLBLPERIOD_0_RT_OFFSET,
350 QM_RL_PERIOD_CLK_25M);
351 STORE_RT_REG(p_hwfn,
352 QM_REG_RLGLBLPERIODTIMER_0_RT_OFFSET,
353 QM_RL_PERIOD_CLK_25M);
354
355 /* Set credit threshold for QM bypass flow */
356 if (QM_BYPASS_EN)
357 STORE_RT_REG(p_hwfn,
358 QM_REG_AFULLQMBYPTHRGLBLRL_RT_OFFSET,
359 QM_GLOBAL_RL_UPPER_BOUND(10000) - 1);
360 }
361}
362
363/* Prepare VPORT WFQ enable/disable runtime init values */
364static void qed_enable_vport_wfq(struct qed_hwfn *p_hwfn, bool vport_wfq_en)
365{
366 STORE_RT_REG(p_hwfn, QM_REG_WFQVPENABLE_RT_OFFSET,
367 vport_wfq_en ? 1 : 0);
368
369 /* Set credit threshold for QM bypass flow */
370 if (vport_wfq_en && QM_BYPASS_EN)
371 STORE_RT_REG(p_hwfn,
372 QM_REG_AFULLQMBYPTHRVPWFQ_RT_OFFSET,
373 QM_VP_WFQ_BYPASS_THRESH);
374}
375
376/* Prepare runtime init values to allocate PBF command queue lines for
377 * the specified VOQ.
378 */
379static void qed_cmdq_lines_voq_rt_init(struct qed_hwfn *p_hwfn,
380 u8 ext_voq, u16 cmdq_lines)
381{
382 u32 qm_line_crd = QM_VOQ_LINE_CRD(cmdq_lines);
383
384 OVERWRITE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq),
385 (u32)cmdq_lines);
386 STORE_RT_REG(p_hwfn, QM_REG_VOQCRDLINE_RT_OFFSET + ext_voq,
387 qm_line_crd);
388 STORE_RT_REG(p_hwfn, QM_REG_VOQINITCRDLINE_RT_OFFSET + ext_voq,
389 qm_line_crd);
390}
391
392/* Prepare runtime init values to allocate PBF command queue lines. */
393static void
394qed_cmdq_lines_rt_init(struct qed_hwfn *p_hwfn,
395 u8 max_ports_per_engine,
396 u8 max_phys_tcs_per_port,
397 struct init_qm_port_params port_params[MAX_NUM_PORTS])
398{
399 u8 tc, ext_voq, port_id, num_tcs_in_port;
400 u8 num_ext_voqs = MAX_NUM_VOQS;
401
402 /* Clear PBF lines of all VOQs */
403 for (ext_voq = 0; ext_voq < num_ext_voqs; ext_voq++)
404 STORE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq), 0);
405
406 for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
407 u16 phys_lines, phys_lines_per_tc;
408
409 if (!port_params[port_id].active)
410 continue;
411
412 /* Find number of command queue lines to divide between the
413 * active physical TCs.
414 */
415 phys_lines = port_params[port_id].num_pbf_cmd_lines;
416 phys_lines -= PBF_CMDQ_PURE_LB_LINES;
417
418 /* Find #lines per active physical TC */
419 num_tcs_in_port = 0;
420 for (tc = 0; tc < max_phys_tcs_per_port; tc++)
421 if (((port_params[port_id].active_phys_tcs >>
422 tc) & 0x1) == 1)
423 num_tcs_in_port++;
424 phys_lines_per_tc = phys_lines / num_tcs_in_port;
425
426 /* Init registers per active TC */
427 for (tc = 0; tc < max_phys_tcs_per_port; tc++) {
428 ext_voq = qed_get_ext_voq(p_hwfn,
429 port_id,
430 tc, max_phys_tcs_per_port);
431 if (((port_params[port_id].active_phys_tcs >>
432 tc) & 0x1) == 1)
433 qed_cmdq_lines_voq_rt_init(p_hwfn,
434 ext_voq,
435 phys_lines_per_tc);
436 }
437
438 /* Init registers for pure LB TC */
439 ext_voq = qed_get_ext_voq(p_hwfn,
440 port_id,
441 PURE_LB_TC, max_phys_tcs_per_port);
442 qed_cmdq_lines_voq_rt_init(p_hwfn, ext_voq,
443 PBF_CMDQ_PURE_LB_LINES);
444 }
445}
446
447/* Prepare runtime init values to allocate guaranteed BTB blocks for the
448 * specified port. The guaranteed BTB space is divided between the TCs as
449 * follows (shared space Is currently not used):
450 * 1. Parameters:
451 * B - BTB blocks for this port
452 * C - Number of physical TCs for this port
453 * 2. Calculation:
454 * a. 38 blocks (9700B jumbo frame) are allocated for global per port
455 * headroom.
456 * b. B = B - 38 (remainder after global headroom allocation).
457 * c. MAX(38,B/(C+0.7)) blocks are allocated for the pure LB VOQ.
458 * d. B = B - MAX(38, B/(C+0.7)) (remainder after pure LB allocation).
459 * e. B/C blocks are allocated for each physical TC.
460 * Assumptions:
461 * - MTU is up to 9700 bytes (38 blocks)
462 * - All TCs are considered symmetrical (same rate and packet size)
463 * - No optimization for lossy TC (all are considered lossless). Shared space
464 * is not enabled and allocated for each TC.
465 */
466static void
467qed_btb_blocks_rt_init(struct qed_hwfn *p_hwfn,
468 u8 max_ports_per_engine,
469 u8 max_phys_tcs_per_port,
470 struct init_qm_port_params port_params[MAX_NUM_PORTS])
471{
472 u32 usable_blocks, pure_lb_blocks, phys_blocks;
473 u8 tc, ext_voq, port_id, num_tcs_in_port;
474
475 for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
476 if (!port_params[port_id].active)
477 continue;
478
479 /* Subtract headroom blocks */
480 usable_blocks = port_params[port_id].num_btb_blocks -
481 BTB_HEADROOM_BLOCKS;
482
483 /* Find blocks per physical TC. Use factor to avoid floating
484 * arithmethic.
485 */
486 num_tcs_in_port = 0;
487 for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++)
488 if (((port_params[port_id].active_phys_tcs >>
489 tc) & 0x1) == 1)
490 num_tcs_in_port++;
491
492 pure_lb_blocks = (usable_blocks * BTB_PURE_LB_FACTOR) /
493 (num_tcs_in_port * BTB_PURE_LB_FACTOR +
494 BTB_PURE_LB_RATIO);
495 pure_lb_blocks = max_t(u32, BTB_JUMBO_PKT_BLOCKS,
496 pure_lb_blocks / BTB_PURE_LB_FACTOR);
497 phys_blocks = (usable_blocks - pure_lb_blocks) /
498 num_tcs_in_port;
499
500 /* Init physical TCs */
501 for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
502 if (((port_params[port_id].active_phys_tcs >>
503 tc) & 0x1) == 1) {
504 ext_voq =
505 qed_get_ext_voq(p_hwfn,
506 port_id,
507 tc,
508 max_phys_tcs_per_port);
509 STORE_RT_REG(p_hwfn,
510 PBF_BTB_GUARANTEED_RT_OFFSET
511 (ext_voq), phys_blocks);
512 }
513 }
514
515 /* Init pure LB TC */
516 ext_voq = qed_get_ext_voq(p_hwfn,
517 port_id,
518 PURE_LB_TC, max_phys_tcs_per_port);
519 STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq),
520 pure_lb_blocks);
521 }
522}
523
524/* Prepare runtime init values for the specified RL.
525 * Set max link speed (100Gbps) per rate limiter.
526 * Return -1 on error.
527 */
528static int qed_global_rl_rt_init(struct qed_hwfn *p_hwfn)
529{
530 u32 upper_bound = QM_GLOBAL_RL_UPPER_BOUND(QM_MAX_LINK_SPEED) |
531 (u32)QM_RL_CRD_REG_SIGN_BIT;
532 u32 inc_val;
533 u16 rl_id;
534
535 /* Go over all global RLs */
536 for (rl_id = 0; rl_id < MAX_QM_GLOBAL_RLS; rl_id++) {
537 inc_val = QM_RL_INC_VAL(QM_MAX_LINK_SPEED);
538
539 STORE_RT_REG(p_hwfn,
540 QM_REG_RLGLBLCRD_RT_OFFSET + rl_id,
541 (u32)QM_RL_CRD_REG_SIGN_BIT);
542 STORE_RT_REG(p_hwfn,
543 QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + rl_id,
544 upper_bound);
545 STORE_RT_REG(p_hwfn,
546 QM_REG_RLGLBLINCVAL_RT_OFFSET + rl_id, inc_val);
547 }
548
549 return 0;
550}
551
552/* Returns the upper bound for the specified Vport RL parameters.
553 * link_speed is in Mbps.
554 * Returns 0 in case of error.
555 */
556static u32 qed_get_vport_rl_upper_bound(enum init_qm_rl_type vport_rl_type,
557 u32 link_speed)
558{
559 switch (vport_rl_type) {
560 case QM_RL_TYPE_NORMAL:
561 return QM_INITIAL_VOQ_BYTE_CRD;
562 case QM_RL_TYPE_QCN:
563 return QM_GLOBAL_RL_UPPER_BOUND(link_speed);
564 default:
565 return 0;
566 }
567}
568
569/* Prepare VPORT RL runtime init values.
570 * Return -1 on error.
571 */
572static int qed_vport_rl_rt_init(struct qed_hwfn *p_hwfn,
573 u16 start_rl,
574 u16 num_rls,
575 u32 link_speed,
576 struct init_qm_rl_params *rl_params)
577{
578 u16 i, rl_id;
579
580 if (num_rls && start_rl + num_rls >= MAX_QM_GLOBAL_RLS) {
581 DP_NOTICE(p_hwfn, "Invalid rate limiter configuration\n");
582 return -1;
583 }
584
585 /* Go over all PF VPORTs */
586 for (i = 0, rl_id = start_rl; i < num_rls; i++, rl_id++) {
587 u32 upper_bound, inc_val;
588
589 upper_bound =
590 qed_get_vport_rl_upper_bound((enum init_qm_rl_type)
591 rl_params[i].vport_rl_type,
592 link_speed);
593
594 inc_val =
595 QM_RL_INC_VAL(rl_params[i].vport_rl ?
596 rl_params[i].vport_rl : link_speed);
597 if (inc_val > upper_bound) {
598 DP_NOTICE(p_hwfn,
599 "Invalid RL rate - limit configuration\n");
600 return -1;
601 }
602
603 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLCRD_RT_OFFSET + rl_id,
604 (u32)QM_RL_CRD_REG_SIGN_BIT);
605 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + rl_id,
606 upper_bound | (u32)QM_RL_CRD_REG_SIGN_BIT);
607 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLINCVAL_RT_OFFSET + rl_id,
608 inc_val);
609 }
610
611 return 0;
612}
613
614/* Prepare Tx PQ mapping runtime init values for the specified PF */
615static int qed_tx_pq_map_rt_init(struct qed_hwfn *p_hwfn,
616 struct qed_ptt *p_ptt,
617 struct qed_qm_pf_rt_init_params *p_params,
618 u32 base_mem_addr_4kb)
619{
620 u32 tx_pq_vf_mask[MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE] = { 0 };
621 struct init_qm_vport_params *vport_params = p_params->vport_params;
622 u32 num_tx_pq_vf_masks = MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE;
623 u16 num_pqs, first_pq_group, last_pq_group, i, j, pq_id, pq_group;
624 struct init_qm_pq_params *pq_params = p_params->pq_params;
625 u32 pq_mem_4kb, vport_pq_mem_4kb, mem_addr_4kb;
626
627 num_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
628
629 first_pq_group = p_params->start_pq / QM_PF_QUEUE_GROUP_SIZE;
630 last_pq_group = (p_params->start_pq + num_pqs - 1) /
631 QM_PF_QUEUE_GROUP_SIZE;
632
633 pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids);
634 vport_pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_vf_cids);
635 mem_addr_4kb = base_mem_addr_4kb;
636
637 /* Set mapping from PQ group to PF */
638 for (pq_group = first_pq_group; pq_group <= last_pq_group; pq_group++)
639 STORE_RT_REG(p_hwfn, QM_REG_PQTX2PF_0_RT_OFFSET + pq_group,
640 (u32)(p_params->pf_id));
641
642 /* Set PQ sizes */
643 STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_0_RT_OFFSET,
644 QM_PQ_SIZE_256B(p_params->num_pf_cids));
645 STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_1_RT_OFFSET,
646 QM_PQ_SIZE_256B(p_params->num_vf_cids));
647
648 /* Go over all Tx PQs */
649 for (i = 0, pq_id = p_params->start_pq; i < num_pqs; i++, pq_id++) {
650 u16 *p_first_tx_pq_id, vport_id_in_pf;
651 struct qm_rf_pq_map tx_pq_map;
652 u8 tc_id = pq_params[i].tc_id;
653 bool is_vf_pq;
654 u8 ext_voq;
655
656 ext_voq = qed_get_ext_voq(p_hwfn,
657 pq_params[i].port_id,
658 tc_id,
659 p_params->max_phys_tcs_per_port);
660 is_vf_pq = (i >= p_params->num_pf_pqs);
661
662 /* Update first Tx PQ of VPORT/TC */
663 vport_id_in_pf = pq_params[i].vport_id - p_params->start_vport;
664 p_first_tx_pq_id =
665 &vport_params[vport_id_in_pf].first_tx_pq_id[tc_id];
666 if (*p_first_tx_pq_id == QM_INVALID_PQ_ID) {
667 u32 map_val =
668 (ext_voq << QM_VP_WFQ_PQ_VOQ_SHIFT) |
669 (p_params->pf_id << QM_VP_WFQ_PQ_PF_SHIFT);
670
671 /* Create new VP PQ */
672 *p_first_tx_pq_id = pq_id;
673
674 /* Map VP PQ to VOQ and PF */
675 STORE_RT_REG(p_hwfn,
676 QM_REG_WFQVPMAP_RT_OFFSET +
677 *p_first_tx_pq_id,
678 map_val);
679 }
680
681 /* Prepare PQ map entry */
682 QM_INIT_TX_PQ_MAP(p_hwfn,
683 tx_pq_map,
684 pq_id,
685 *p_first_tx_pq_id,
686 pq_params[i].rl_valid,
687 pq_params[i].rl_id,
688 ext_voq, pq_params[i].wrr_group);
689
690 /* Set PQ base address */
691 STORE_RT_REG(p_hwfn,
692 QM_REG_BASEADDRTXPQ_RT_OFFSET + pq_id,
693 mem_addr_4kb);
694
695 /* Clear PQ pointer table entry (64 bit) */
696 if (p_params->is_pf_loading)
697 for (j = 0; j < 2; j++)
698 STORE_RT_REG(p_hwfn,
699 QM_REG_PTRTBLTX_RT_OFFSET +
700 (pq_id * 2) + j, 0);
701
702 /* Write PQ info to RAM */
703 if (WRITE_PQ_INFO_TO_RAM != 0) {
704 u32 pq_info = 0;
705
706 pq_info = PQ_INFO_ELEMENT(*p_first_tx_pq_id,
707 p_params->pf_id,
708 tc_id,
709 pq_params[i].port_id,
710 pq_params[i].rl_valid,
711 pq_params[i].rl_id);
712 qed_wr(p_hwfn, p_ptt, PQ_INFO_RAM_GRC_ADDRESS(pq_id),
713 pq_info);
714 }
715
716 /* If VF PQ, add indication to PQ VF mask */
717 if (is_vf_pq) {
718 tx_pq_vf_mask[pq_id /
719 QM_PF_QUEUE_GROUP_SIZE] |=
720 BIT((pq_id % QM_PF_QUEUE_GROUP_SIZE));
721 mem_addr_4kb += vport_pq_mem_4kb;
722 } else {
723 mem_addr_4kb += pq_mem_4kb;
724 }
725 }
726
727 /* Store Tx PQ VF mask to size select register */
728 for (i = 0; i < num_tx_pq_vf_masks; i++)
729 if (tx_pq_vf_mask[i])
730 STORE_RT_REG(p_hwfn,
731 QM_REG_MAXPQSIZETXSEL_0_RT_OFFSET + i,
732 tx_pq_vf_mask[i]);
733
734 return 0;
735}
736
737/* Prepare Other PQ mapping runtime init values for the specified PF */
738static void qed_other_pq_map_rt_init(struct qed_hwfn *p_hwfn,
739 u8 pf_id,
740 bool is_pf_loading,
741 u32 num_pf_cids,
742 u32 num_tids, u32 base_mem_addr_4kb)
743{
744 u32 pq_size, pq_mem_4kb, mem_addr_4kb;
745 u16 i, j, pq_id, pq_group;
746
747 /* A single other PQ group is used in each PF, where PQ group i is used
748 * in PF i.
749 */
750 pq_group = pf_id;
751 pq_size = num_pf_cids + num_tids;
752 pq_mem_4kb = QM_PQ_MEM_4KB(pq_size);
753 mem_addr_4kb = base_mem_addr_4kb;
754
755 /* Map PQ group to PF */
756 STORE_RT_REG(p_hwfn, QM_REG_PQOTHER2PF_0_RT_OFFSET + pq_group,
757 (u32)(pf_id));
758
759 /* Set PQ sizes */
760 STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_2_RT_OFFSET,
761 QM_PQ_SIZE_256B(pq_size));
762
763 for (i = 0, pq_id = pf_id * QM_PF_QUEUE_GROUP_SIZE;
764 i < QM_OTHER_PQS_PER_PF; i++, pq_id++) {
765 /* Set PQ base address */
766 STORE_RT_REG(p_hwfn,
767 QM_REG_BASEADDROTHERPQ_RT_OFFSET + pq_id,
768 mem_addr_4kb);
769
770 /* Clear PQ pointer table entry */
771 if (is_pf_loading)
772 for (j = 0; j < 2; j++)
773 STORE_RT_REG(p_hwfn,
774 QM_REG_PTRTBLOTHER_RT_OFFSET +
775 (pq_id * 2) + j, 0);
776
777 mem_addr_4kb += pq_mem_4kb;
778 }
779}
780
781/* Prepare PF WFQ runtime init values for the specified PF.
782 * Return -1 on error.
783 */
784static int qed_pf_wfq_rt_init(struct qed_hwfn *p_hwfn,
785 struct qed_qm_pf_rt_init_params *p_params)
786{
787 u16 num_tx_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
788 struct init_qm_pq_params *pq_params = p_params->pq_params;
789 u32 inc_val, crd_reg_offset;
790 u8 ext_voq;
791 u16 i;
792
793 inc_val = QM_PF_WFQ_INC_VAL(p_params->pf_wfq);
794 if (!inc_val || inc_val > QM_PF_WFQ_MAX_INC_VAL) {
795 DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n");
796 return -1;
797 }
798
799 for (i = 0; i < num_tx_pqs; i++) {
800 ext_voq = qed_get_ext_voq(p_hwfn,
801 pq_params[i].port_id,
802 pq_params[i].tc_id,
803 p_params->max_phys_tcs_per_port);
804 crd_reg_offset =
805 (p_params->pf_id < MAX_NUM_PFS_BB ?
806 QM_REG_WFQPFCRD_RT_OFFSET :
807 QM_REG_WFQPFCRD_MSB_RT_OFFSET) +
808 ext_voq * MAX_NUM_PFS_BB +
809 (p_params->pf_id % MAX_NUM_PFS_BB);
810 OVERWRITE_RT_REG(p_hwfn,
811 crd_reg_offset, (u32)QM_WFQ_CRD_REG_SIGN_BIT);
812 }
813
814 STORE_RT_REG(p_hwfn,
815 QM_REG_WFQPFUPPERBOUND_RT_OFFSET + p_params->pf_id,
816 QM_PF_WFQ_UPPER_BOUND | (u32)QM_WFQ_CRD_REG_SIGN_BIT);
817 STORE_RT_REG(p_hwfn, QM_REG_WFQPFWEIGHT_RT_OFFSET + p_params->pf_id,
818 inc_val);
819
820 return 0;
821}
822
823/* Prepare PF RL runtime init values for the specified PF.
824 * Return -1 on error.
825 */
826static int qed_pf_rl_rt_init(struct qed_hwfn *p_hwfn, u8 pf_id, u32 pf_rl)
827{
828 u32 inc_val = QM_RL_INC_VAL(pf_rl);
829
830 if (inc_val > QM_PF_RL_MAX_INC_VAL) {
831 DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n");
832 return -1;
833 }
834
835 STORE_RT_REG(p_hwfn,
836 QM_REG_RLPFCRD_RT_OFFSET + pf_id,
837 (u32)QM_RL_CRD_REG_SIGN_BIT);
838 STORE_RT_REG(p_hwfn,
839 QM_REG_RLPFUPPERBOUND_RT_OFFSET + pf_id,
840 QM_PF_RL_UPPER_BOUND | (u32)QM_RL_CRD_REG_SIGN_BIT);
841 STORE_RT_REG(p_hwfn, QM_REG_RLPFINCVAL_RT_OFFSET + pf_id, inc_val);
842
843 return 0;
844}
845
846/* Prepare VPORT WFQ runtime init values for the specified VPORTs.
847 * Return -1 on error.
848 */
849static int qed_vp_wfq_rt_init(struct qed_hwfn *p_hwfn,
850 u16 num_vports,
851 struct init_qm_vport_params *vport_params)
852{
853 u16 vport_pq_id, wfq, i;
854 u32 inc_val;
855 u8 tc;
856
857 /* Go over all PF VPORTs */
858 for (i = 0; i < num_vports; i++) {
859 /* Each VPORT can have several VPORT PQ IDs for various TCs */
860 for (tc = 0; tc < NUM_OF_TCS; tc++) {
861 /* Check if VPORT/TC is valid */
862 vport_pq_id = vport_params[i].first_tx_pq_id[tc];
863 if (vport_pq_id == QM_INVALID_PQ_ID)
864 continue;
865
866 /* Find WFQ weight (per VPORT or per VPORT+TC) */
867 wfq = vport_params[i].wfq;
868 wfq = wfq ? wfq : vport_params[i].tc_wfq[tc];
869 inc_val = QM_VP_WFQ_INC_VAL(wfq);
870 if (inc_val > QM_VP_WFQ_MAX_INC_VAL) {
871 DP_NOTICE(p_hwfn,
872 "Invalid VPORT WFQ weight configuration\n");
873 return -1;
874 }
875
876 /* Config registers */
877 STORE_RT_REG(p_hwfn, QM_REG_WFQVPCRD_RT_OFFSET +
878 vport_pq_id,
879 (u32)QM_WFQ_CRD_REG_SIGN_BIT);
880 STORE_RT_REG(p_hwfn, QM_REG_WFQVPUPPERBOUND_RT_OFFSET +
881 vport_pq_id,
882 inc_val | QM_WFQ_CRD_REG_SIGN_BIT);
883 STORE_RT_REG(p_hwfn, QM_REG_WFQVPWEIGHT_RT_OFFSET +
884 vport_pq_id, inc_val);
885 }
886 }
887
888 return 0;
889}
890
891static bool qed_poll_on_qm_cmd_ready(struct qed_hwfn *p_hwfn,
892 struct qed_ptt *p_ptt)
893{
894 u32 reg_val, i;
895
896 for (i = 0, reg_val = 0; i < QM_STOP_CMD_MAX_POLL_COUNT && !reg_val;
897 i++) {
898 udelay(QM_STOP_CMD_POLL_PERIOD_US);
899 reg_val = qed_rd(p_hwfn, p_ptt, QM_REG_SDMCMDREADY);
900 }
901
902 /* Check if timeout while waiting for SDM command ready */
903 if (i == QM_STOP_CMD_MAX_POLL_COUNT) {
904 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
905 "Timeout when waiting for QM SDM command ready signal\n");
906 return false;
907 }
908
909 return true;
910}
911
912static bool qed_send_qm_cmd(struct qed_hwfn *p_hwfn,
913 struct qed_ptt *p_ptt,
914 u32 cmd_addr, u32 cmd_data_lsb, u32 cmd_data_msb)
915{
916 if (!qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt))
917 return false;
918
919 qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDADDR, cmd_addr);
920 qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATALSB, cmd_data_lsb);
921 qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATAMSB, cmd_data_msb);
922 qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 1);
923 qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 0);
924
925 return qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt);
926}
927
928/******************** INTERFACE IMPLEMENTATION *********************/
929
930u32 qed_qm_pf_mem_size(u32 num_pf_cids,
931 u32 num_vf_cids,
932 u32 num_tids, u16 num_pf_pqs, u16 num_vf_pqs)
933{
934 return QM_PQ_MEM_4KB(num_pf_cids) * num_pf_pqs +
935 QM_PQ_MEM_4KB(num_vf_cids) * num_vf_pqs +
936 QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
937}
938
939int qed_qm_common_rt_init(struct qed_hwfn *p_hwfn,
940 struct qed_qm_common_rt_init_params *p_params)
941{
942 u32 mask = 0;
943
944 /* Init AFullOprtnstcCrdMask */
945 SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_LINEVOQ,
946 QM_OPPOR_LINE_VOQ_DEF);
947 SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_BYTEVOQ, QM_BYTE_CRD_EN);
948 SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_PFWFQ,
949 p_params->pf_wfq_en ? 1 : 0);
950 SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_VPWFQ,
951 p_params->vport_wfq_en ? 1 : 0);
952 SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_PFRL,
953 p_params->pf_rl_en ? 1 : 0);
954 SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_VPQCNRL,
955 p_params->global_rl_en ? 1 : 0);
956 SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_FWPAUSE, QM_OPPOR_FW_STOP_DEF);
957 SET_FIELD(mask,
958 QM_RF_OPPORTUNISTIC_MASK_QUEUEEMPTY, QM_OPPOR_PQ_EMPTY_DEF);
959 STORE_RT_REG(p_hwfn, QM_REG_AFULLOPRTNSTCCRDMASK_RT_OFFSET, mask);
960
961 /* Enable/disable PF RL */
962 qed_enable_pf_rl(p_hwfn, p_params->pf_rl_en);
963
964 /* Enable/disable PF WFQ */
965 qed_enable_pf_wfq(p_hwfn, p_params->pf_wfq_en);
966
967 /* Enable/disable global RL */
968 qed_enable_global_rl(p_hwfn, p_params->global_rl_en);
969
970 /* Enable/disable VPORT WFQ */
971 qed_enable_vport_wfq(p_hwfn, p_params->vport_wfq_en);
972
973 /* Init PBF CMDQ line credit */
974 qed_cmdq_lines_rt_init(p_hwfn,
975 p_params->max_ports_per_engine,
976 p_params->max_phys_tcs_per_port,
977 p_params->port_params);
978
979 /* Init BTB blocks in PBF */
980 qed_btb_blocks_rt_init(p_hwfn,
981 p_params->max_ports_per_engine,
982 p_params->max_phys_tcs_per_port,
983 p_params->port_params);
984
985 qed_global_rl_rt_init(p_hwfn);
986
987 return 0;
988}
989
990int qed_qm_pf_rt_init(struct qed_hwfn *p_hwfn,
991 struct qed_ptt *p_ptt,
992 struct qed_qm_pf_rt_init_params *p_params)
993{
994 struct init_qm_vport_params *vport_params = p_params->vport_params;
995 u32 other_mem_size_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids +
996 p_params->num_tids) *
997 QM_OTHER_PQS_PER_PF;
998 u16 i;
999 u8 tc;
1000
1001 /* Clear first Tx PQ ID array for each VPORT */
1002 for (i = 0; i < p_params->num_vports; i++)
1003 for (tc = 0; tc < NUM_OF_TCS; tc++)
1004 vport_params[i].first_tx_pq_id[tc] = QM_INVALID_PQ_ID;
1005
1006 /* Map Other PQs (if any) */
1007 qed_other_pq_map_rt_init(p_hwfn,
1008 p_params->pf_id,
1009 p_params->is_pf_loading, p_params->num_pf_cids,
1010 p_params->num_tids, 0);
1011
1012 /* Map Tx PQs */
1013 if (qed_tx_pq_map_rt_init(p_hwfn, p_ptt, p_params, other_mem_size_4kb))
1014 return -1;
1015
1016 /* Init PF WFQ */
1017 if (p_params->pf_wfq)
1018 if (qed_pf_wfq_rt_init(p_hwfn, p_params))
1019 return -1;
1020
1021 /* Init PF RL */
1022 if (qed_pf_rl_rt_init(p_hwfn, p_params->pf_id, p_params->pf_rl))
1023 return -1;
1024
1025 /* Init VPORT WFQ */
1026 if (qed_vp_wfq_rt_init(p_hwfn, p_params->num_vports, vport_params))
1027 return -1;
1028
1029 /* Set VPORT RL */
1030 if (qed_vport_rl_rt_init(p_hwfn, p_params->start_rl,
1031 p_params->num_rls, p_params->link_speed,
1032 p_params->rl_params))
1033 return -1;
1034
1035 return 0;
1036}
1037
1038int qed_init_pf_wfq(struct qed_hwfn *p_hwfn,
1039 struct qed_ptt *p_ptt, u8 pf_id, u16 pf_wfq)
1040{
1041 u32 inc_val = QM_PF_WFQ_INC_VAL(pf_wfq);
1042
1043 if (!inc_val || inc_val > QM_PF_WFQ_MAX_INC_VAL) {
1044 DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n");
1045 return -1;
1046 }
1047
1048 qed_wr(p_hwfn, p_ptt, QM_REG_WFQPFWEIGHT + pf_id * 4, inc_val);
1049
1050 return 0;
1051}
1052
1053int qed_init_pf_rl(struct qed_hwfn *p_hwfn,
1054 struct qed_ptt *p_ptt, u8 pf_id, u32 pf_rl)
1055{
1056 u32 inc_val = QM_RL_INC_VAL(pf_rl);
1057
1058 if (inc_val > QM_PF_RL_MAX_INC_VAL) {
1059 DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n");
1060 return -1;
1061 }
1062
1063 qed_wr(p_hwfn,
1064 p_ptt, QM_REG_RLPFCRD + pf_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
1065 qed_wr(p_hwfn, p_ptt, QM_REG_RLPFINCVAL + pf_id * 4, inc_val);
1066
1067 return 0;
1068}
1069
1070int qed_init_vport_wfq(struct qed_hwfn *p_hwfn,
1071 struct qed_ptt *p_ptt,
1072 u16 first_tx_pq_id[NUM_OF_TCS], u16 wfq)
1073{
1074 int result = 0;
1075 u16 vport_pq_id;
1076 u8 tc;
1077
1078 for (tc = 0; tc < NUM_OF_TCS && !result; tc++) {
1079 vport_pq_id = first_tx_pq_id[tc];
1080 if (vport_pq_id != QM_INVALID_PQ_ID)
1081 result = qed_init_vport_tc_wfq(p_hwfn, p_ptt,
1082 vport_pq_id, wfq);
1083 }
1084
1085 return result;
1086}
1087
1088int qed_init_vport_tc_wfq(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
1089 u16 first_tx_pq_id, u16 wfq)
1090{
1091 u32 inc_val;
1092
1093 if (first_tx_pq_id == QM_INVALID_PQ_ID)
1094 return -1;
1095
1096 inc_val = QM_VP_WFQ_INC_VAL(wfq);
1097 if (!inc_val || inc_val > QM_VP_WFQ_MAX_INC_VAL) {
1098 DP_NOTICE(p_hwfn, "Invalid VPORT WFQ configuration.\n");
1099 return -1;
1100 }
1101
1102 qed_wr(p_hwfn, p_ptt, QM_REG_WFQVPCRD + first_tx_pq_id * 4,
1103 (u32)QM_WFQ_CRD_REG_SIGN_BIT);
1104 qed_wr(p_hwfn, p_ptt, QM_REG_WFQVPUPPERBOUND + first_tx_pq_id * 4,
1105 inc_val | QM_WFQ_CRD_REG_SIGN_BIT);
1106 qed_wr(p_hwfn, p_ptt, QM_REG_WFQVPWEIGHT + first_tx_pq_id * 4,
1107 inc_val);
1108
1109 return 0;
1110}
1111
1112int qed_init_global_rl(struct qed_hwfn *p_hwfn,
1113 struct qed_ptt *p_ptt, u16 rl_id, u32 rate_limit,
1114 enum init_qm_rl_type vport_rl_type)
1115{
1116 u32 inc_val, upper_bound;
1117
1118 upper_bound =
1119 (vport_rl_type ==
1120 QM_RL_TYPE_QCN) ? QM_GLOBAL_RL_UPPER_BOUND(QM_MAX_LINK_SPEED) :
1121 QM_INITIAL_VOQ_BYTE_CRD;
1122 inc_val = QM_RL_INC_VAL(rate_limit);
1123 if (inc_val > upper_bound) {
1124 DP_NOTICE(p_hwfn, "Invalid VPORT rate limit configuration.\n");
1125 return -1;
1126 }
1127
1128 qed_wr(p_hwfn, p_ptt,
1129 QM_REG_RLGLBLCRD + rl_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
1130 qed_wr(p_hwfn,
1131 p_ptt,
1132 QM_REG_RLGLBLUPPERBOUND + rl_id * 4,
1133 upper_bound | (u32)QM_RL_CRD_REG_SIGN_BIT);
1134 qed_wr(p_hwfn, p_ptt, QM_REG_RLGLBLINCVAL + rl_id * 4, inc_val);
1135
1136 return 0;
1137}
1138
1139bool qed_send_qm_stop_cmd(struct qed_hwfn *p_hwfn,
1140 struct qed_ptt *p_ptt,
1141 bool is_release_cmd,
1142 bool is_tx_pq, u16 start_pq, u16 num_pqs)
1143{
1144 u32 cmd_arr[QM_CMD_STRUCT_SIZE(QM_STOP_CMD)] = { 0 };
1145 u32 pq_mask = 0, last_pq, pq_id;
1146
1147 last_pq = start_pq + num_pqs - 1;
1148
1149 /* Set command's PQ type */
1150 QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PQ_TYPE, is_tx_pq ? 0 : 1);
1151
1152 /* Go over requested PQs */
1153 for (pq_id = start_pq; pq_id <= last_pq; pq_id++) {
1154 /* Set PQ bit in mask (stop command only) */
1155 if (!is_release_cmd)
1156 pq_mask |= BIT((pq_id % QM_STOP_PQ_MASK_WIDTH));
1157
1158 /* If last PQ or end of PQ mask, write command */
1159 if ((pq_id == last_pq) ||
1160 (pq_id % QM_STOP_PQ_MASK_WIDTH ==
1161 (QM_STOP_PQ_MASK_WIDTH - 1))) {
1162 QM_CMD_SET_FIELD(cmd_arr,
1163 QM_STOP_CMD, PAUSE_MASK, pq_mask);
1164 QM_CMD_SET_FIELD(cmd_arr,
1165 QM_STOP_CMD,
1166 GROUP_ID,
1167 pq_id / QM_STOP_PQ_MASK_WIDTH);
1168 if (!qed_send_qm_cmd(p_hwfn, p_ptt, QM_STOP_CMD_ADDR,
1169 cmd_arr[0], cmd_arr[1]))
1170 return false;
1171 pq_mask = 0;
1172 }
1173 }
1174
1175 return true;
1176}
1177
1178#define SET_TUNNEL_TYPE_ENABLE_BIT(var, offset, enable) \
1179 do { \
1180 typeof(var) *__p_var = &(var); \
1181 typeof(offset) __offset = offset; \
1182 *__p_var = (*__p_var & ~BIT(__offset)) | \
1183 ((enable) ? BIT(__offset) : 0); \
1184 } while (0)
1185
1186#define PRS_ETH_TUNN_OUTPUT_FORMAT 0xF4DAB910
1187#define PRS_ETH_OUTPUT_FORMAT 0xFFFF4910
1188
1189#define ARR_REG_WR(dev, ptt, addr, arr, arr_size) \
1190 do { \
1191 u32 i; \
1192 \
1193 for (i = 0; i < (arr_size); i++) \
1194 qed_wr(dev, ptt, \
1195 ((addr) + (4 * i)), \
1196 ((u32 *)&(arr))[i]); \
1197 } while (0)
1198
1199/**
1200 * qed_dmae_to_grc() - Internal function for writing from host to
1201 * wide-bus registers (split registers are not supported yet).
1202 *
1203 * @p_hwfn: HW device data.
1204 * @p_ptt: PTT window used for writing the registers.
1205 * @p_data: Pointer to source data.
1206 * @addr: Destination register address.
1207 * @len_in_dwords: Data length in dwords (u32).
1208 *
1209 * Return: Length of the written data in dwords (u32) or -1 on invalid
1210 * input.
1211 */
1212static int qed_dmae_to_grc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
1213 __le32 *p_data, u32 addr, u32 len_in_dwords)
1214{
1215 struct qed_dmae_params params = { 0 };
1216 u32 *data_cpu;
1217 int rc;
1218
1219 if (!p_data)
1220 return -1;
1221
1222 /* Set DMAE params */
1223 SET_FIELD(params.flags, QED_DMAE_PARAMS_COMPLETION_DST, 1);
1224
1225 /* Execute DMAE command */
1226 rc = qed_dmae_host2grc(p_hwfn, p_ptt,
1227 (u64)(uintptr_t)(p_data),
1228 addr, len_in_dwords, ¶ms);
1229
1230 /* If not read using DMAE, read using GRC */
1231 if (rc) {
1232 DP_VERBOSE(p_hwfn,
1233 QED_MSG_DEBUG,
1234 "Failed writing to chip using DMAE, using GRC instead\n");
1235
1236 /* Swap to CPU byteorder and write to registers using GRC */
1237 data_cpu = (__force u32 *)p_data;
1238 le32_to_cpu_array(data_cpu, len_in_dwords);
1239
1240 ARR_REG_WR(p_hwfn, p_ptt, addr, data_cpu, len_in_dwords);
1241 cpu_to_le32_array(data_cpu, len_in_dwords);
1242 }
1243
1244 return len_in_dwords;
1245}
1246
1247void qed_set_vxlan_dest_port(struct qed_hwfn *p_hwfn,
1248 struct qed_ptt *p_ptt, u16 dest_port)
1249{
1250 /* Update PRS register */
1251 qed_wr(p_hwfn, p_ptt, PRS_REG_VXLAN_PORT, dest_port);
1252
1253 /* Update NIG register */
1254 qed_wr(p_hwfn, p_ptt, NIG_REG_VXLAN_CTRL, dest_port);
1255
1256 /* Update PBF register */
1257 qed_wr(p_hwfn, p_ptt, PBF_REG_VXLAN_PORT, dest_port);
1258}
1259
1260void qed_set_vxlan_enable(struct qed_hwfn *p_hwfn,
1261 struct qed_ptt *p_ptt, bool vxlan_enable)
1262{
1263 u32 reg_val;
1264 u8 shift;
1265
1266 /* Update PRS register */
1267 reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1268 SET_FIELD(reg_val,
1269 PRS_REG_ENCAPSULATION_TYPE_EN_VXLAN_ENABLE, vxlan_enable);
1270 qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1271 if (reg_val) {
1272 reg_val =
1273 qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0);
1274
1275 /* Update output only if tunnel blocks not included. */
1276 if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1277 qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
1278 (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1279 }
1280
1281 /* Update NIG register */
1282 reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1283 shift = NIG_REG_ENC_TYPE_ENABLE_VXLAN_ENABLE_SHIFT;
1284 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, vxlan_enable);
1285 qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1286
1287 /* Update DORQ register */
1288 qed_wr(p_hwfn,
1289 p_ptt, DORQ_REG_L2_EDPM_TUNNEL_VXLAN_EN, vxlan_enable ? 1 : 0);
1290}
1291
1292void qed_set_gre_enable(struct qed_hwfn *p_hwfn,
1293 struct qed_ptt *p_ptt,
1294 bool eth_gre_enable, bool ip_gre_enable)
1295{
1296 u32 reg_val;
1297 u8 shift;
1298
1299 /* Update PRS register */
1300 reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1301 SET_FIELD(reg_val,
1302 PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GRE_ENABLE,
1303 eth_gre_enable);
1304 SET_FIELD(reg_val,
1305 PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GRE_ENABLE,
1306 ip_gre_enable);
1307 qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1308 if (reg_val) {
1309 reg_val =
1310 qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0);
1311
1312 /* Update output only if tunnel blocks not included. */
1313 if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1314 qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
1315 (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1316 }
1317
1318 /* Update NIG register */
1319 reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1320 shift = NIG_REG_ENC_TYPE_ENABLE_ETH_OVER_GRE_ENABLE_SHIFT;
1321 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_gre_enable);
1322 shift = NIG_REG_ENC_TYPE_ENABLE_IP_OVER_GRE_ENABLE_SHIFT;
1323 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_gre_enable);
1324 qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1325
1326 /* Update DORQ registers */
1327 qed_wr(p_hwfn,
1328 p_ptt,
1329 DORQ_REG_L2_EDPM_TUNNEL_GRE_ETH_EN, eth_gre_enable ? 1 : 0);
1330 qed_wr(p_hwfn,
1331 p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_IP_EN, ip_gre_enable ? 1 : 0);
1332}
1333
1334void qed_set_geneve_dest_port(struct qed_hwfn *p_hwfn,
1335 struct qed_ptt *p_ptt, u16 dest_port)
1336{
1337 /* Update PRS register */
1338 qed_wr(p_hwfn, p_ptt, PRS_REG_NGE_PORT, dest_port);
1339
1340 /* Update NIG register */
1341 qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_PORT, dest_port);
1342
1343 /* Update PBF register */
1344 qed_wr(p_hwfn, p_ptt, PBF_REG_NGE_PORT, dest_port);
1345}
1346
1347void qed_set_geneve_enable(struct qed_hwfn *p_hwfn,
1348 struct qed_ptt *p_ptt,
1349 bool eth_geneve_enable, bool ip_geneve_enable)
1350{
1351 u32 reg_val;
1352
1353 /* Update PRS register */
1354 reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1355 SET_FIELD(reg_val,
1356 PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GENEVE_ENABLE,
1357 eth_geneve_enable);
1358 SET_FIELD(reg_val,
1359 PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GENEVE_ENABLE,
1360 ip_geneve_enable);
1361 qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1362 if (reg_val) {
1363 reg_val =
1364 qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0);
1365
1366 /* Update output only if tunnel blocks not included. */
1367 if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1368 qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
1369 (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1370 }
1371
1372 /* Update NIG register */
1373 qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_ETH_ENABLE,
1374 eth_geneve_enable ? 1 : 0);
1375 qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_IP_ENABLE, ip_geneve_enable ? 1 : 0);
1376
1377 /* EDPM with geneve tunnel not supported in BB */
1378 if (QED_IS_BB_B0(p_hwfn->cdev))
1379 return;
1380
1381 /* Update DORQ registers */
1382 qed_wr(p_hwfn,
1383 p_ptt,
1384 DORQ_REG_L2_EDPM_TUNNEL_NGE_ETH_EN_K2,
1385 eth_geneve_enable ? 1 : 0);
1386 qed_wr(p_hwfn,
1387 p_ptt,
1388 DORQ_REG_L2_EDPM_TUNNEL_NGE_IP_EN_K2,
1389 ip_geneve_enable ? 1 : 0);
1390}
1391
1392#define PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET 3
1393#define PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT 0xC8DAB910
1394
1395void qed_set_vxlan_no_l2_enable(struct qed_hwfn *p_hwfn,
1396 struct qed_ptt *p_ptt, bool enable)
1397{
1398 u32 reg_val, cfg_mask;
1399
1400 /* read PRS config register */
1401 reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_MSG_INFO);
1402
1403 /* set VXLAN_NO_L2_ENABLE mask */
1404 cfg_mask = BIT(PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET);
1405
1406 if (enable) {
1407 /* set VXLAN_NO_L2_ENABLE flag */
1408 reg_val |= cfg_mask;
1409
1410 /* update PRS FIC register */
1411 qed_wr(p_hwfn,
1412 p_ptt,
1413 PRS_REG_OUTPUT_FORMAT_4_0,
1414 (u32)PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT);
1415 } else {
1416 /* clear VXLAN_NO_L2_ENABLE flag */
1417 reg_val &= ~cfg_mask;
1418 }
1419
1420 /* write PRS config register */
1421 qed_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, reg_val);
1422}
1423
1424#define T_ETH_PACKET_ACTION_GFT_EVENTID 23
1425#define PARSER_ETH_CONN_GFT_ACTION_CM_HDR 272
1426#define T_ETH_PACKET_MATCH_RFS_EVENTID 25
1427#define PARSER_ETH_CONN_CM_HDR 0
1428#define CAM_LINE_SIZE sizeof(u32)
1429#define RAM_LINE_SIZE sizeof(u64)
1430#define REG_SIZE sizeof(u32)
1431
1432void qed_gft_disable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 pf_id)
1433{
1434 struct regpair ram_line = { 0 };
1435
1436 /* Disable gft search for PF */
1437 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 0);
1438
1439 /* Clean ram & cam for next gft session */
1440
1441 /* Zero camline */
1442 qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id, 0);
1443
1444 /* Zero ramline */
1445 qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo,
1446 PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id,
1447 sizeof(ram_line) / REG_SIZE);
1448}
1449
1450void qed_gft_config(struct qed_hwfn *p_hwfn,
1451 struct qed_ptt *p_ptt,
1452 u16 pf_id,
1453 bool tcp,
1454 bool udp,
1455 bool ipv4, bool ipv6, enum gft_profile_type profile_type)
1456{
1457 struct regpair ram_line;
1458 u32 search_non_ip_as_gft;
1459 u32 reg_val, cam_line;
1460 u32 lo = 0, hi = 0;
1461
1462 if (!ipv6 && !ipv4)
1463 DP_NOTICE(p_hwfn,
1464 "gft_config: must accept at least on of - ipv4 or ipv6'\n");
1465 if (!tcp && !udp)
1466 DP_NOTICE(p_hwfn,
1467 "gft_config: must accept at least on of - udp or tcp\n");
1468 if (profile_type >= MAX_GFT_PROFILE_TYPE)
1469 DP_NOTICE(p_hwfn, "gft_config: unsupported gft_profile_type\n");
1470
1471 /* Set RFS event ID to be awakened i Tstorm By Prs */
1472 reg_val = T_ETH_PACKET_MATCH_RFS_EVENTID <<
1473 PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT;
1474 reg_val |= PARSER_ETH_CONN_CM_HDR << PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT;
1475 qed_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, reg_val);
1476
1477 /* Do not load context only cid in PRS on match. */
1478 qed_wr(p_hwfn, p_ptt, PRS_REG_LOAD_L2_FILTER, 0);
1479
1480 /* Do not use tenant ID exist bit for gft search */
1481 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TENANT_ID, 0);
1482
1483 /* Set Cam */
1484 cam_line = 0;
1485 SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_VALID, 1);
1486
1487 /* Filters are per PF!! */
1488 SET_FIELD(cam_line,
1489 GFT_CAM_LINE_MAPPED_PF_ID_MASK,
1490 GFT_CAM_LINE_MAPPED_PF_ID_MASK_MASK);
1491 SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_PF_ID, pf_id);
1492
1493 if (!(tcp && udp)) {
1494 SET_FIELD(cam_line,
1495 GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK,
1496 GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK_MASK);
1497 if (tcp)
1498 SET_FIELD(cam_line,
1499 GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
1500 GFT_PROFILE_TCP_PROTOCOL);
1501 else
1502 SET_FIELD(cam_line,
1503 GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
1504 GFT_PROFILE_UDP_PROTOCOL);
1505 }
1506
1507 if (!(ipv4 && ipv6)) {
1508 SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION_MASK, 1);
1509 if (ipv4)
1510 SET_FIELD(cam_line,
1511 GFT_CAM_LINE_MAPPED_IP_VERSION,
1512 GFT_PROFILE_IPV4);
1513 else
1514 SET_FIELD(cam_line,
1515 GFT_CAM_LINE_MAPPED_IP_VERSION,
1516 GFT_PROFILE_IPV6);
1517 }
1518
1519 /* Write characteristics to cam */
1520 qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id,
1521 cam_line);
1522 cam_line =
1523 qed_rd(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id);
1524
1525 /* Write line to RAM - compare to filter 4 tuple */
1526
1527 /* Search no IP as GFT */
1528 search_non_ip_as_gft = 0;
1529
1530 /* Tunnel type */
1531 SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_DST_PORT, 1);
1532 SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_OVER_IP_PROTOCOL, 1);
1533
1534 if (profile_type == GFT_PROFILE_TYPE_4_TUPLE) {
1535 SET_FIELD(hi, GFT_RAM_LINE_DST_IP, 1);
1536 SET_FIELD(hi, GFT_RAM_LINE_SRC_IP, 1);
1537 SET_FIELD(hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
1538 SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1539 SET_FIELD(lo, GFT_RAM_LINE_SRC_PORT, 1);
1540 SET_FIELD(lo, GFT_RAM_LINE_DST_PORT, 1);
1541 } else if (profile_type == GFT_PROFILE_TYPE_L4_DST_PORT) {
1542 SET_FIELD(hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
1543 SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1544 SET_FIELD(lo, GFT_RAM_LINE_DST_PORT, 1);
1545 } else if (profile_type == GFT_PROFILE_TYPE_IP_DST_ADDR) {
1546 SET_FIELD(hi, GFT_RAM_LINE_DST_IP, 1);
1547 SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1548 } else if (profile_type == GFT_PROFILE_TYPE_IP_SRC_ADDR) {
1549 SET_FIELD(hi, GFT_RAM_LINE_SRC_IP, 1);
1550 SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1551 } else if (profile_type == GFT_PROFILE_TYPE_TUNNEL_TYPE) {
1552 SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_ETHERTYPE, 1);
1553
1554 /* Allow tunneled traffic without inner IP */
1555 search_non_ip_as_gft = 1;
1556 }
1557
1558 ram_line.lo = cpu_to_le32(lo);
1559 ram_line.hi = cpu_to_le32(hi);
1560
1561 qed_wr(p_hwfn,
1562 p_ptt, PRS_REG_SEARCH_NON_IP_AS_GFT, search_non_ip_as_gft);
1563 qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo,
1564 PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id,
1565 sizeof(ram_line) / REG_SIZE);
1566
1567 /* Set default profile so that no filter match will happen */
1568 ram_line.lo = cpu_to_le32(0xffffffff);
1569 ram_line.hi = cpu_to_le32(0x3ff);
1570 qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo,
1571 PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE *
1572 PRS_GFT_CAM_LINES_NO_MATCH,
1573 sizeof(ram_line) / REG_SIZE);
1574
1575 /* Enable gft search */
1576 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 1);
1577}
1578
1579DECLARE_CRC8_TABLE(cdu_crc8_table);
1580
1581/* Calculate and return CDU validation byte per connection type/region/cid */
1582static u8 qed_calc_cdu_validation_byte(u8 conn_type, u8 region, u32 cid)
1583{
1584 const u8 validation_cfg = CDU_VALIDATION_DEFAULT_CFG;
1585 u8 crc, validation_byte = 0;
1586 static u8 crc8_table_valid; /* automatically initialized to 0 */
1587 u32 validation_string = 0;
1588 __be32 data_to_crc;
1589
1590 if (!crc8_table_valid) {
1591 crc8_populate_msb(cdu_crc8_table, 0x07);
1592 crc8_table_valid = 1;
1593 }
1594
1595 /* The CRC is calculated on the String-to-compress:
1596 * [31:8] = {CID[31:20],CID[11:0]}
1597 * [7:4] = Region
1598 * [3:0] = Type
1599 */
1600 if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_CID) & 1)
1601 validation_string |= (cid & 0xFFF00000) | ((cid & 0xFFF) << 8);
1602
1603 if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_REGION) & 1)
1604 validation_string |= ((region & 0xF) << 4);
1605
1606 if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_TYPE) & 1)
1607 validation_string |= (conn_type & 0xF);
1608
1609 /* Convert to big-endian and calculate CRC8 */
1610 data_to_crc = cpu_to_be32(validation_string);
1611 crc = crc8(cdu_crc8_table, (u8 *)&data_to_crc, sizeof(data_to_crc),
1612 CRC8_INIT_VALUE);
1613
1614 /* The validation byte [7:0] is composed:
1615 * for type A validation
1616 * [7] = active configuration bit
1617 * [6:0] = crc[6:0]
1618 *
1619 * for type B validation
1620 * [7] = active configuration bit
1621 * [6:3] = connection_type[3:0]
1622 * [2:0] = crc[2:0]
1623 */
1624 validation_byte |=
1625 ((validation_cfg >>
1626 CDU_CONTEXT_VALIDATION_CFG_USE_ACTIVE) & 1) << 7;
1627
1628 if ((validation_cfg >>
1629 CDU_CONTEXT_VALIDATION_CFG_VALIDATION_TYPE_SHIFT) & 1)
1630 validation_byte |= ((conn_type & 0xF) << 3) | (crc & 0x7);
1631 else
1632 validation_byte |= crc & 0x7F;
1633
1634 return validation_byte;
1635}
1636
1637/* Calcualte and set validation bytes for session context */
1638void qed_calc_session_ctx_validation(void *p_ctx_mem,
1639 u16 ctx_size, u8 ctx_type, u32 cid)
1640{
1641 u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
1642
1643 p_ctx = (u8 * const)p_ctx_mem;
1644 x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
1645 t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
1646 u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
1647
1648 memset(p_ctx, 0, ctx_size);
1649
1650 *x_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 3, cid);
1651 *t_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 4, cid);
1652 *u_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 5, cid);
1653}
1654
1655/* Calcualte and set validation bytes for task context */
1656void qed_calc_task_ctx_validation(void *p_ctx_mem,
1657 u16 ctx_size, u8 ctx_type, u32 tid)
1658{
1659 u8 *p_ctx, *region1_val_ptr;
1660
1661 p_ctx = (u8 * const)p_ctx_mem;
1662 region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
1663
1664 memset(p_ctx, 0, ctx_size);
1665
1666 *region1_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 1, tid);
1667}
1668
1669/* Memset session context to 0 while preserving validation bytes */
1670void qed_memset_session_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
1671{
1672 u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
1673 u8 x_val, t_val, u_val;
1674
1675 p_ctx = (u8 * const)p_ctx_mem;
1676 x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
1677 t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
1678 u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
1679
1680 x_val = *x_val_ptr;
1681 t_val = *t_val_ptr;
1682 u_val = *u_val_ptr;
1683
1684 memset(p_ctx, 0, ctx_size);
1685
1686 *x_val_ptr = x_val;
1687 *t_val_ptr = t_val;
1688 *u_val_ptr = u_val;
1689}
1690
1691/* Memset task context to 0 while preserving validation bytes */
1692void qed_memset_task_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
1693{
1694 u8 *p_ctx, *region1_val_ptr;
1695 u8 region1_val;
1696
1697 p_ctx = (u8 * const)p_ctx_mem;
1698 region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
1699
1700 region1_val = *region1_val_ptr;
1701
1702 memset(p_ctx, 0, ctx_size);
1703
1704 *region1_val_ptr = region1_val;
1705}
1706
1707/* Enable and configure context validation */
1708void qed_enable_context_validation(struct qed_hwfn *p_hwfn,
1709 struct qed_ptt *p_ptt)
1710{
1711 u32 ctx_validation;
1712
1713 /* Enable validation for connection region 3: CCFC_CTX_VALID0[31:24] */
1714 ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 24;
1715 qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID0, ctx_validation);
1716
1717 /* Enable validation for connection region 5: CCFC_CTX_VALID1[15:8] */
1718 ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
1719 qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID1, ctx_validation);
1720
1721 /* Enable validation for connection region 1: TCFC_CTX_VALID0[15:8] */
1722 ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
1723 qed_wr(p_hwfn, p_ptt, CDU_REG_TCFC_CTX_VALID0, ctx_validation);
1724}
1725
1726const char *qed_get_protocol_type_str(u32 protocol_type)
1727{
1728 if (protocol_type >= ARRAY_SIZE(s_protocol_types))
1729 return "Invalid protocol type";
1730
1731 return s_protocol_types[protocol_type];
1732}
1733
1734const char *qed_get_ramrod_cmd_id_str(u32 protocol_type, u32 ramrod_cmd_id)
1735{
1736 const char *ramrod_cmd_id_str;
1737
1738 if (protocol_type >= ARRAY_SIZE(s_ramrod_cmd_ids))
1739 return "Invalid protocol type";
1740
1741 if (ramrod_cmd_id >= ARRAY_SIZE(s_ramrod_cmd_ids[0]))
1742 return "Invalid Ramrod command ID";
1743
1744 ramrod_cmd_id_str = s_ramrod_cmd_ids[protocol_type][ramrod_cmd_id];
1745
1746 if (!ramrod_cmd_id_str)
1747 return "Invalid Ramrod command ID";
1748
1749 return ramrod_cmd_id_str;
1750}
1751
1752static u32 qed_get_rdma_assert_ram_addr(struct qed_hwfn *p_hwfn, u8 storm_id)
1753{
1754 switch (storm_id) {
1755 case 0:
1756 return TSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1757 TSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1758 case 1:
1759 return MSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1760 MSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1761 case 2:
1762 return USEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1763 USTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1764 case 3:
1765 return XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1766 XSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1767 case 4:
1768 return YSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1769 YSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1770 case 5:
1771 return PSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1772 PSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1773
1774 default:
1775 return 0;
1776 }
1777}
1778
1779void qed_set_rdma_error_level(struct qed_hwfn *p_hwfn,
1780 struct qed_ptt *p_ptt,
1781 u8 assert_level[NUM_STORMS])
1782{
1783 u8 storm_id;
1784
1785 for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
1786 u32 ram_addr = qed_get_rdma_assert_ram_addr(p_hwfn, storm_id);
1787
1788 qed_wr(p_hwfn, p_ptt, ram_addr, assert_level[storm_id]);
1789 }
1790}
1791
1792#define PHYS_ADDR_DWORDS DIV_ROUND_UP(sizeof(dma_addr_t), 4)
1793#define OVERLAY_HDR_SIZE_DWORDS (sizeof(struct fw_overlay_buf_hdr) / 4)
1794
1795static u32 qed_get_overlay_addr_ram_addr(struct qed_hwfn *p_hwfn, u8 storm_id)
1796{
1797 switch (storm_id) {
1798 case 0:
1799 return TSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1800 TSTORM_OVERLAY_BUF_ADDR_OFFSET;
1801 case 1:
1802 return MSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1803 MSTORM_OVERLAY_BUF_ADDR_OFFSET;
1804 case 2:
1805 return USEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1806 USTORM_OVERLAY_BUF_ADDR_OFFSET;
1807 case 3:
1808 return XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1809 XSTORM_OVERLAY_BUF_ADDR_OFFSET;
1810 case 4:
1811 return YSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1812 YSTORM_OVERLAY_BUF_ADDR_OFFSET;
1813 case 5:
1814 return PSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1815 PSTORM_OVERLAY_BUF_ADDR_OFFSET;
1816
1817 default:
1818 return 0;
1819 }
1820}
1821
1822struct phys_mem_desc *qed_fw_overlay_mem_alloc(struct qed_hwfn *p_hwfn,
1823 const u32 * const
1824 fw_overlay_in_buf,
1825 u32 buf_size_in_bytes)
1826{
1827 u32 buf_size = buf_size_in_bytes / sizeof(u32), buf_offset = 0;
1828 struct phys_mem_desc *allocated_mem;
1829
1830 if (!buf_size)
1831 return NULL;
1832
1833 allocated_mem = kcalloc(NUM_STORMS, sizeof(struct phys_mem_desc),
1834 GFP_KERNEL);
1835 if (!allocated_mem)
1836 return NULL;
1837
1838 /* For each Storm, set physical address in RAM */
1839 while (buf_offset < buf_size) {
1840 struct phys_mem_desc *storm_mem_desc;
1841 struct fw_overlay_buf_hdr *hdr;
1842 u32 storm_buf_size;
1843 u8 storm_id;
1844
1845 hdr =
1846 (struct fw_overlay_buf_hdr *)&fw_overlay_in_buf[buf_offset];
1847 storm_buf_size = GET_FIELD(hdr->data,
1848 FW_OVERLAY_BUF_HDR_BUF_SIZE);
1849 storm_id = GET_FIELD(hdr->data, FW_OVERLAY_BUF_HDR_STORM_ID);
1850 if (storm_id >= NUM_STORMS)
1851 break;
1852 storm_mem_desc = allocated_mem + storm_id;
1853 storm_mem_desc->size = storm_buf_size * sizeof(u32);
1854
1855 /* Allocate physical memory for Storm's overlays buffer */
1856 storm_mem_desc->virt_addr =
1857 dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
1858 storm_mem_desc->size,
1859 &storm_mem_desc->phys_addr, GFP_KERNEL);
1860 if (!storm_mem_desc->virt_addr)
1861 break;
1862
1863 /* Skip overlays buffer header */
1864 buf_offset += OVERLAY_HDR_SIZE_DWORDS;
1865
1866 /* Copy Storm's overlays buffer to allocated memory */
1867 memcpy(storm_mem_desc->virt_addr,
1868 &fw_overlay_in_buf[buf_offset], storm_mem_desc->size);
1869
1870 /* Advance to next Storm */
1871 buf_offset += storm_buf_size;
1872 }
1873
1874 /* If memory allocation has failed, free all allocated memory */
1875 if (buf_offset < buf_size) {
1876 qed_fw_overlay_mem_free(p_hwfn, &allocated_mem);
1877 return NULL;
1878 }
1879
1880 return allocated_mem;
1881}
1882
1883void qed_fw_overlay_init_ram(struct qed_hwfn *p_hwfn,
1884 struct qed_ptt *p_ptt,
1885 struct phys_mem_desc *fw_overlay_mem)
1886{
1887 u8 storm_id;
1888
1889 for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
1890 struct phys_mem_desc *storm_mem_desc =
1891 (struct phys_mem_desc *)fw_overlay_mem + storm_id;
1892 u32 ram_addr, i;
1893
1894 /* Skip Storms with no FW overlays */
1895 if (!storm_mem_desc->virt_addr)
1896 continue;
1897
1898 /* Calculate overlay RAM GRC address of current PF */
1899 ram_addr = qed_get_overlay_addr_ram_addr(p_hwfn, storm_id) +
1900 sizeof(dma_addr_t) * p_hwfn->rel_pf_id;
1901
1902 /* Write Storm's overlay physical address to RAM */
1903 for (i = 0; i < PHYS_ADDR_DWORDS; i++, ram_addr += sizeof(u32))
1904 qed_wr(p_hwfn, p_ptt, ram_addr,
1905 ((u32 *)&storm_mem_desc->phys_addr)[i]);
1906 }
1907}
1908
1909void qed_fw_overlay_mem_free(struct qed_hwfn *p_hwfn,
1910 struct phys_mem_desc **fw_overlay_mem)
1911{
1912 u8 storm_id;
1913
1914 if (!fw_overlay_mem || !(*fw_overlay_mem))
1915 return;
1916
1917 for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
1918 struct phys_mem_desc *storm_mem_desc =
1919 (struct phys_mem_desc *)*fw_overlay_mem + storm_id;
1920
1921 /* Free Storm's physical memory */
1922 if (storm_mem_desc->virt_addr)
1923 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1924 storm_mem_desc->size,
1925 storm_mem_desc->virt_addr,
1926 storm_mem_desc->phys_addr);
1927 }
1928
1929 /* Free allocated virtual memory */
1930 kfree(*fw_overlay_mem);
1931 *fw_overlay_mem = NULL;
1932}
1// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2/* QLogic qed NIC Driver
3 * Copyright (c) 2015-2017 QLogic Corporation
4 * Copyright (c) 2019-2020 Marvell International Ltd.
5 */
6
7#include <linux/types.h>
8#include <linux/crc8.h>
9#include <linux/delay.h>
10#include <linux/kernel.h>
11#include <linux/slab.h>
12#include <linux/string.h>
13#include "qed_hsi.h"
14#include "qed_hw.h"
15#include "qed_init_ops.h"
16#include "qed_reg_addr.h"
17
18#define CDU_VALIDATION_DEFAULT_CFG 61
19
20static u16 con_region_offsets[3][NUM_OF_CONNECTION_TYPES_E4] = {
21 {400, 336, 352, 368, 304, 384, 416, 352}, /* region 3 offsets */
22 {528, 496, 416, 512, 448, 512, 544, 480}, /* region 4 offsets */
23 {608, 544, 496, 576, 576, 592, 624, 560} /* region 5 offsets */
24};
25
26static u16 task_region_offsets[1][NUM_OF_CONNECTION_TYPES_E4] = {
27 {240, 240, 112, 0, 0, 0, 0, 96} /* region 1 offsets */
28};
29
30/* General constants */
31#define QM_PQ_MEM_4KB(pq_size) (pq_size ? DIV_ROUND_UP((pq_size + 1) * \
32 QM_PQ_ELEMENT_SIZE, \
33 0x1000) : 0)
34#define QM_PQ_SIZE_256B(pq_size) (pq_size ? DIV_ROUND_UP(pq_size, \
35 0x100) - 1 : 0)
36#define QM_INVALID_PQ_ID 0xffff
37
38/* Max link speed (in Mbps) */
39#define QM_MAX_LINK_SPEED 100000
40
41/* Feature enable */
42#define QM_BYPASS_EN 1
43#define QM_BYTE_CRD_EN 1
44
45/* Other PQ constants */
46#define QM_OTHER_PQS_PER_PF 4
47
48/* WFQ constants */
49
50/* Upper bound in MB, 10 * burst size of 1ms in 50Gbps */
51#define QM_WFQ_UPPER_BOUND 62500000
52
53/* Bit of VOQ in WFQ VP PQ map */
54#define QM_WFQ_VP_PQ_VOQ_SHIFT 0
55
56/* Bit of PF in WFQ VP PQ map */
57#define QM_WFQ_VP_PQ_PF_E4_SHIFT 5
58
59/* 0x9000 = 4*9*1024 */
60#define QM_WFQ_INC_VAL(weight) ((weight) * 0x9000)
61
62/* Max WFQ increment value is 0.7 * upper bound */
63#define QM_WFQ_MAX_INC_VAL ((QM_WFQ_UPPER_BOUND * 7) / 10)
64
65/* RL constants */
66
67/* Period in us */
68#define QM_RL_PERIOD 5
69
70/* Period in 25MHz cycles */
71#define QM_RL_PERIOD_CLK_25M (25 * QM_RL_PERIOD)
72
73/* RL increment value - rate is specified in mbps */
74#define QM_RL_INC_VAL(rate) ({ \
75 typeof(rate) __rate = (rate); \
76 max_t(u32, \
77 (u32)(((__rate ? __rate : 1000000) * QM_RL_PERIOD * 101) / \
78 (8 * 100)), \
79 1); })
80
81/* PF RL Upper bound is set to 10 * burst size of 1ms in 50Gbps */
82#define QM_PF_RL_UPPER_BOUND 62500000
83
84/* Max PF RL increment value is 0.7 * upper bound */
85#define QM_PF_RL_MAX_INC_VAL ((QM_PF_RL_UPPER_BOUND * 7) / 10)
86
87/* Vport RL Upper bound, link speed is in Mpbs */
88#define QM_VP_RL_UPPER_BOUND(speed) ((u32)max_t(u32, \
89 QM_RL_INC_VAL(speed), \
90 9700 + 1000))
91
92/* Max Vport RL increment value is the Vport RL upper bound */
93#define QM_VP_RL_MAX_INC_VAL(speed) QM_VP_RL_UPPER_BOUND(speed)
94
95/* Vport RL credit threshold in case of QM bypass */
96#define QM_VP_RL_BYPASS_THRESH_SPEED (QM_VP_RL_UPPER_BOUND(10000) - 1)
97
98/* AFullOprtnstcCrdMask constants */
99#define QM_OPPOR_LINE_VOQ_DEF 1
100#define QM_OPPOR_FW_STOP_DEF 0
101#define QM_OPPOR_PQ_EMPTY_DEF 1
102
103/* Command Queue constants */
104
105/* Pure LB CmdQ lines (+spare) */
106#define PBF_CMDQ_PURE_LB_LINES 150
107
108#define PBF_CMDQ_LINES_RT_OFFSET(ext_voq) \
109 (PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET + \
110 (ext_voq) * (PBF_REG_YCMD_QS_NUM_LINES_VOQ1_RT_OFFSET - \
111 PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET))
112
113#define PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq) \
114 (PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET + \
115 (ext_voq) * (PBF_REG_BTB_GUARANTEED_VOQ1_RT_OFFSET - \
116 PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET))
117
118/* Returns the VOQ line credit for the specified number of PBF command lines.
119 * PBF lines are specified in 256b units.
120 */
121#define QM_VOQ_LINE_CRD(pbf_cmd_lines) \
122 ((((pbf_cmd_lines) - 4) * 2) | QM_LINE_CRD_REG_SIGN_BIT)
123
124/* BTB: blocks constants (block size = 256B) */
125
126/* 256B blocks in 9700B packet */
127#define BTB_JUMBO_PKT_BLOCKS 38
128
129/* Headroom per-port */
130#define BTB_HEADROOM_BLOCKS BTB_JUMBO_PKT_BLOCKS
131#define BTB_PURE_LB_FACTOR 10
132
133/* Factored (hence really 0.7) */
134#define BTB_PURE_LB_RATIO 7
135
136/* QM stop command constants */
137#define QM_STOP_PQ_MASK_WIDTH 32
138#define QM_STOP_CMD_ADDR 2
139#define QM_STOP_CMD_STRUCT_SIZE 2
140#define QM_STOP_CMD_PAUSE_MASK_OFFSET 0
141#define QM_STOP_CMD_PAUSE_MASK_SHIFT 0
142#define QM_STOP_CMD_PAUSE_MASK_MASK -1
143#define QM_STOP_CMD_GROUP_ID_OFFSET 1
144#define QM_STOP_CMD_GROUP_ID_SHIFT 16
145#define QM_STOP_CMD_GROUP_ID_MASK 15
146#define QM_STOP_CMD_PQ_TYPE_OFFSET 1
147#define QM_STOP_CMD_PQ_TYPE_SHIFT 24
148#define QM_STOP_CMD_PQ_TYPE_MASK 1
149#define QM_STOP_CMD_MAX_POLL_COUNT 100
150#define QM_STOP_CMD_POLL_PERIOD_US 500
151
152/* QM command macros */
153#define QM_CMD_STRUCT_SIZE(cmd) cmd ## _STRUCT_SIZE
154#define QM_CMD_SET_FIELD(var, cmd, field, value) \
155 SET_FIELD(var[cmd ## _ ## field ## _OFFSET], \
156 cmd ## _ ## field, \
157 value)
158
159#define QM_INIT_TX_PQ_MAP(p_hwfn, map, chip, pq_id, vp_pq_id, rl_valid, \
160 rl_id, ext_voq, wrr) \
161 do { \
162 u32 __reg = 0; \
163 \
164 BUILD_BUG_ON(sizeof((map).reg) != sizeof(__reg)); \
165 \
166 SET_FIELD(__reg, QM_RF_PQ_MAP_##chip##_PQ_VALID, 1); \
167 SET_FIELD(__reg, QM_RF_PQ_MAP_##chip##_RL_VALID, \
168 !!(rl_valid)); \
169 SET_FIELD(__reg, QM_RF_PQ_MAP_##chip##_VP_PQ_ID, (vp_pq_id)); \
170 SET_FIELD(__reg, QM_RF_PQ_MAP_##chip##_RL_ID, (rl_id)); \
171 SET_FIELD(__reg, QM_RF_PQ_MAP_##chip##_VOQ, (ext_voq)); \
172 SET_FIELD(__reg, QM_RF_PQ_MAP_##chip##_WRR_WEIGHT_GROUP, \
173 (wrr)); \
174 \
175 STORE_RT_REG((p_hwfn), QM_REG_TXPQMAP_RT_OFFSET + (pq_id), \
176 __reg); \
177 (map).reg = cpu_to_le32(__reg); \
178 } while (0)
179
180#define WRITE_PQ_INFO_TO_RAM 1
181#define PQ_INFO_ELEMENT(vp, pf, tc, port, rl_valid, rl) \
182 (((vp) << 0) | ((pf) << 12) | ((tc) << 16) | ((port) << 20) | \
183 ((rl_valid ? 1 : 0) << 22) | (((rl) & 255) << 24) | \
184 (((rl) >> 8) << 9))
185
186#define PQ_INFO_RAM_GRC_ADDRESS(pq_id) \
187 XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + \
188 XSTORM_PQ_INFO_OFFSET(pq_id)
189
190/******************** INTERNAL IMPLEMENTATION *********************/
191
192/* Returns the external VOQ number */
193static u8 qed_get_ext_voq(struct qed_hwfn *p_hwfn,
194 u8 port_id, u8 tc, u8 max_phys_tcs_per_port)
195{
196 if (tc == PURE_LB_TC)
197 return NUM_OF_PHYS_TCS * MAX_NUM_PORTS_BB + port_id;
198 else
199 return port_id * max_phys_tcs_per_port + tc;
200}
201
202/* Prepare PF RL enable/disable runtime init values */
203static void qed_enable_pf_rl(struct qed_hwfn *p_hwfn, bool pf_rl_en)
204{
205 STORE_RT_REG(p_hwfn, QM_REG_RLPFENABLE_RT_OFFSET, pf_rl_en ? 1 : 0);
206 if (pf_rl_en) {
207 u8 num_ext_voqs = MAX_NUM_VOQS_E4;
208 u64 voq_bit_mask = ((u64)1 << num_ext_voqs) - 1;
209
210 /* Enable RLs for all VOQs */
211 STORE_RT_REG(p_hwfn,
212 QM_REG_RLPFVOQENABLE_RT_OFFSET,
213 (u32)voq_bit_mask);
214
215 /* Write RL period */
216 STORE_RT_REG(p_hwfn,
217 QM_REG_RLPFPERIOD_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
218 STORE_RT_REG(p_hwfn,
219 QM_REG_RLPFPERIODTIMER_RT_OFFSET,
220 QM_RL_PERIOD_CLK_25M);
221
222 /* Set credit threshold for QM bypass flow */
223 if (QM_BYPASS_EN)
224 STORE_RT_REG(p_hwfn,
225 QM_REG_AFULLQMBYPTHRPFRL_RT_OFFSET,
226 QM_PF_RL_UPPER_BOUND);
227 }
228}
229
230/* Prepare PF WFQ enable/disable runtime init values */
231static void qed_enable_pf_wfq(struct qed_hwfn *p_hwfn, bool pf_wfq_en)
232{
233 STORE_RT_REG(p_hwfn, QM_REG_WFQPFENABLE_RT_OFFSET, pf_wfq_en ? 1 : 0);
234
235 /* Set credit threshold for QM bypass flow */
236 if (pf_wfq_en && QM_BYPASS_EN)
237 STORE_RT_REG(p_hwfn,
238 QM_REG_AFULLQMBYPTHRPFWFQ_RT_OFFSET,
239 QM_WFQ_UPPER_BOUND);
240}
241
242/* Prepare global RL enable/disable runtime init values */
243static void qed_enable_global_rl(struct qed_hwfn *p_hwfn, bool global_rl_en)
244{
245 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLENABLE_RT_OFFSET,
246 global_rl_en ? 1 : 0);
247 if (global_rl_en) {
248 /* Write RL period (use timer 0 only) */
249 STORE_RT_REG(p_hwfn,
250 QM_REG_RLGLBLPERIOD_0_RT_OFFSET,
251 QM_RL_PERIOD_CLK_25M);
252 STORE_RT_REG(p_hwfn,
253 QM_REG_RLGLBLPERIODTIMER_0_RT_OFFSET,
254 QM_RL_PERIOD_CLK_25M);
255
256 /* Set credit threshold for QM bypass flow */
257 if (QM_BYPASS_EN)
258 STORE_RT_REG(p_hwfn,
259 QM_REG_AFULLQMBYPTHRGLBLRL_RT_OFFSET,
260 QM_VP_RL_BYPASS_THRESH_SPEED);
261 }
262}
263
264/* Prepare VPORT WFQ enable/disable runtime init values */
265static void qed_enable_vport_wfq(struct qed_hwfn *p_hwfn, bool vport_wfq_en)
266{
267 STORE_RT_REG(p_hwfn, QM_REG_WFQVPENABLE_RT_OFFSET,
268 vport_wfq_en ? 1 : 0);
269
270 /* Set credit threshold for QM bypass flow */
271 if (vport_wfq_en && QM_BYPASS_EN)
272 STORE_RT_REG(p_hwfn,
273 QM_REG_AFULLQMBYPTHRVPWFQ_RT_OFFSET,
274 QM_WFQ_UPPER_BOUND);
275}
276
277/* Prepare runtime init values to allocate PBF command queue lines for
278 * the specified VOQ.
279 */
280static void qed_cmdq_lines_voq_rt_init(struct qed_hwfn *p_hwfn,
281 u8 ext_voq, u16 cmdq_lines)
282{
283 u32 qm_line_crd = QM_VOQ_LINE_CRD(cmdq_lines);
284
285 OVERWRITE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq),
286 (u32)cmdq_lines);
287 STORE_RT_REG(p_hwfn, QM_REG_VOQCRDLINE_RT_OFFSET + ext_voq,
288 qm_line_crd);
289 STORE_RT_REG(p_hwfn, QM_REG_VOQINITCRDLINE_RT_OFFSET + ext_voq,
290 qm_line_crd);
291}
292
293/* Prepare runtime init values to allocate PBF command queue lines. */
294static void qed_cmdq_lines_rt_init(
295 struct qed_hwfn *p_hwfn,
296 u8 max_ports_per_engine,
297 u8 max_phys_tcs_per_port,
298 struct init_qm_port_params port_params[MAX_NUM_PORTS])
299{
300 u8 tc, ext_voq, port_id, num_tcs_in_port;
301 u8 num_ext_voqs = MAX_NUM_VOQS_E4;
302
303 /* Clear PBF lines of all VOQs */
304 for (ext_voq = 0; ext_voq < num_ext_voqs; ext_voq++)
305 STORE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq), 0);
306
307 for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
308 u16 phys_lines, phys_lines_per_tc;
309
310 if (!port_params[port_id].active)
311 continue;
312
313 /* Find number of command queue lines to divide between the
314 * active physical TCs.
315 */
316 phys_lines = port_params[port_id].num_pbf_cmd_lines;
317 phys_lines -= PBF_CMDQ_PURE_LB_LINES;
318
319 /* Find #lines per active physical TC */
320 num_tcs_in_port = 0;
321 for (tc = 0; tc < max_phys_tcs_per_port; tc++)
322 if (((port_params[port_id].active_phys_tcs >>
323 tc) & 0x1) == 1)
324 num_tcs_in_port++;
325 phys_lines_per_tc = phys_lines / num_tcs_in_port;
326
327 /* Init registers per active TC */
328 for (tc = 0; tc < max_phys_tcs_per_port; tc++) {
329 ext_voq = qed_get_ext_voq(p_hwfn,
330 port_id,
331 tc, max_phys_tcs_per_port);
332 if (((port_params[port_id].active_phys_tcs >>
333 tc) & 0x1) == 1)
334 qed_cmdq_lines_voq_rt_init(p_hwfn,
335 ext_voq,
336 phys_lines_per_tc);
337 }
338
339 /* Init registers for pure LB TC */
340 ext_voq = qed_get_ext_voq(p_hwfn,
341 port_id,
342 PURE_LB_TC, max_phys_tcs_per_port);
343 qed_cmdq_lines_voq_rt_init(p_hwfn, ext_voq,
344 PBF_CMDQ_PURE_LB_LINES);
345 }
346}
347
348/* Prepare runtime init values to allocate guaranteed BTB blocks for the
349 * specified port. The guaranteed BTB space is divided between the TCs as
350 * follows (shared space Is currently not used):
351 * 1. Parameters:
352 * B - BTB blocks for this port
353 * C - Number of physical TCs for this port
354 * 2. Calculation:
355 * a. 38 blocks (9700B jumbo frame) are allocated for global per port
356 * headroom.
357 * b. B = B - 38 (remainder after global headroom allocation).
358 * c. MAX(38,B/(C+0.7)) blocks are allocated for the pure LB VOQ.
359 * d. B = B - MAX(38, B/(C+0.7)) (remainder after pure LB allocation).
360 * e. B/C blocks are allocated for each physical TC.
361 * Assumptions:
362 * - MTU is up to 9700 bytes (38 blocks)
363 * - All TCs are considered symmetrical (same rate and packet size)
364 * - No optimization for lossy TC (all are considered lossless). Shared space
365 * is not enabled and allocated for each TC.
366 */
367static void qed_btb_blocks_rt_init(
368 struct qed_hwfn *p_hwfn,
369 u8 max_ports_per_engine,
370 u8 max_phys_tcs_per_port,
371 struct init_qm_port_params port_params[MAX_NUM_PORTS])
372{
373 u32 usable_blocks, pure_lb_blocks, phys_blocks;
374 u8 tc, ext_voq, port_id, num_tcs_in_port;
375
376 for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
377 if (!port_params[port_id].active)
378 continue;
379
380 /* Subtract headroom blocks */
381 usable_blocks = port_params[port_id].num_btb_blocks -
382 BTB_HEADROOM_BLOCKS;
383
384 /* Find blocks per physical TC. Use factor to avoid floating
385 * arithmethic.
386 */
387 num_tcs_in_port = 0;
388 for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++)
389 if (((port_params[port_id].active_phys_tcs >>
390 tc) & 0x1) == 1)
391 num_tcs_in_port++;
392
393 pure_lb_blocks = (usable_blocks * BTB_PURE_LB_FACTOR) /
394 (num_tcs_in_port * BTB_PURE_LB_FACTOR +
395 BTB_PURE_LB_RATIO);
396 pure_lb_blocks = max_t(u32, BTB_JUMBO_PKT_BLOCKS,
397 pure_lb_blocks / BTB_PURE_LB_FACTOR);
398 phys_blocks = (usable_blocks - pure_lb_blocks) /
399 num_tcs_in_port;
400
401 /* Init physical TCs */
402 for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
403 if (((port_params[port_id].active_phys_tcs >>
404 tc) & 0x1) == 1) {
405 ext_voq =
406 qed_get_ext_voq(p_hwfn,
407 port_id,
408 tc,
409 max_phys_tcs_per_port);
410 STORE_RT_REG(p_hwfn,
411 PBF_BTB_GUARANTEED_RT_OFFSET
412 (ext_voq), phys_blocks);
413 }
414 }
415
416 /* Init pure LB TC */
417 ext_voq = qed_get_ext_voq(p_hwfn,
418 port_id,
419 PURE_LB_TC, max_phys_tcs_per_port);
420 STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq),
421 pure_lb_blocks);
422 }
423}
424
425/* Prepare runtime init values for the specified RL.
426 * Set max link speed (100Gbps) per rate limiter.
427 * Return -1 on error.
428 */
429static int qed_global_rl_rt_init(struct qed_hwfn *p_hwfn)
430{
431 u32 upper_bound = QM_VP_RL_UPPER_BOUND(QM_MAX_LINK_SPEED) |
432 (u32)QM_RL_CRD_REG_SIGN_BIT;
433 u32 inc_val;
434 u16 rl_id;
435
436 /* Go over all global RLs */
437 for (rl_id = 0; rl_id < MAX_QM_GLOBAL_RLS; rl_id++) {
438 inc_val = QM_RL_INC_VAL(QM_MAX_LINK_SPEED);
439
440 STORE_RT_REG(p_hwfn,
441 QM_REG_RLGLBLCRD_RT_OFFSET + rl_id,
442 (u32)QM_RL_CRD_REG_SIGN_BIT);
443 STORE_RT_REG(p_hwfn,
444 QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + rl_id,
445 upper_bound);
446 STORE_RT_REG(p_hwfn,
447 QM_REG_RLGLBLINCVAL_RT_OFFSET + rl_id, inc_val);
448 }
449
450 return 0;
451}
452
453/* Prepare Tx PQ mapping runtime init values for the specified PF */
454static void qed_tx_pq_map_rt_init(struct qed_hwfn *p_hwfn,
455 struct qed_ptt *p_ptt,
456 struct qed_qm_pf_rt_init_params *p_params,
457 u32 base_mem_addr_4kb)
458{
459 u32 tx_pq_vf_mask[MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE] = { 0 };
460 struct init_qm_vport_params *vport_params = p_params->vport_params;
461 u32 num_tx_pq_vf_masks = MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE;
462 u16 num_pqs, first_pq_group, last_pq_group, i, j, pq_id, pq_group;
463 struct init_qm_pq_params *pq_params = p_params->pq_params;
464 u32 pq_mem_4kb, vport_pq_mem_4kb, mem_addr_4kb;
465
466 num_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
467
468 first_pq_group = p_params->start_pq / QM_PF_QUEUE_GROUP_SIZE;
469 last_pq_group = (p_params->start_pq + num_pqs - 1) /
470 QM_PF_QUEUE_GROUP_SIZE;
471
472 pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids);
473 vport_pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_vf_cids);
474 mem_addr_4kb = base_mem_addr_4kb;
475
476 /* Set mapping from PQ group to PF */
477 for (pq_group = first_pq_group; pq_group <= last_pq_group; pq_group++)
478 STORE_RT_REG(p_hwfn, QM_REG_PQTX2PF_0_RT_OFFSET + pq_group,
479 (u32)(p_params->pf_id));
480
481 /* Set PQ sizes */
482 STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_0_RT_OFFSET,
483 QM_PQ_SIZE_256B(p_params->num_pf_cids));
484 STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_1_RT_OFFSET,
485 QM_PQ_SIZE_256B(p_params->num_vf_cids));
486
487 /* Go over all Tx PQs */
488 for (i = 0, pq_id = p_params->start_pq; i < num_pqs; i++, pq_id++) {
489 u16 *p_first_tx_pq_id, vport_id_in_pf;
490 struct qm_rf_pq_map_e4 tx_pq_map;
491 u8 tc_id = pq_params[i].tc_id;
492 bool is_vf_pq;
493 u8 ext_voq;
494
495 ext_voq = qed_get_ext_voq(p_hwfn,
496 pq_params[i].port_id,
497 tc_id,
498 p_params->max_phys_tcs_per_port);
499 is_vf_pq = (i >= p_params->num_pf_pqs);
500
501 /* Update first Tx PQ of VPORT/TC */
502 vport_id_in_pf = pq_params[i].vport_id - p_params->start_vport;
503 p_first_tx_pq_id =
504 &vport_params[vport_id_in_pf].first_tx_pq_id[tc_id];
505 if (*p_first_tx_pq_id == QM_INVALID_PQ_ID) {
506 u32 map_val =
507 (ext_voq << QM_WFQ_VP_PQ_VOQ_SHIFT) |
508 (p_params->pf_id << QM_WFQ_VP_PQ_PF_E4_SHIFT);
509
510 /* Create new VP PQ */
511 *p_first_tx_pq_id = pq_id;
512
513 /* Map VP PQ to VOQ and PF */
514 STORE_RT_REG(p_hwfn,
515 QM_REG_WFQVPMAP_RT_OFFSET +
516 *p_first_tx_pq_id,
517 map_val);
518 }
519
520 /* Prepare PQ map entry */
521 QM_INIT_TX_PQ_MAP(p_hwfn,
522 tx_pq_map,
523 E4,
524 pq_id,
525 *p_first_tx_pq_id,
526 pq_params[i].rl_valid,
527 pq_params[i].rl_id,
528 ext_voq, pq_params[i].wrr_group);
529
530 /* Set PQ base address */
531 STORE_RT_REG(p_hwfn,
532 QM_REG_BASEADDRTXPQ_RT_OFFSET + pq_id,
533 mem_addr_4kb);
534
535 /* Clear PQ pointer table entry (64 bit) */
536 if (p_params->is_pf_loading)
537 for (j = 0; j < 2; j++)
538 STORE_RT_REG(p_hwfn,
539 QM_REG_PTRTBLTX_RT_OFFSET +
540 (pq_id * 2) + j, 0);
541
542 /* Write PQ info to RAM */
543 if (WRITE_PQ_INFO_TO_RAM != 0) {
544 u32 pq_info = 0;
545
546 pq_info = PQ_INFO_ELEMENT(*p_first_tx_pq_id,
547 p_params->pf_id,
548 tc_id,
549 pq_params[i].port_id,
550 pq_params[i].rl_valid,
551 pq_params[i].rl_id);
552 qed_wr(p_hwfn, p_ptt, PQ_INFO_RAM_GRC_ADDRESS(pq_id),
553 pq_info);
554 }
555
556 /* If VF PQ, add indication to PQ VF mask */
557 if (is_vf_pq) {
558 tx_pq_vf_mask[pq_id /
559 QM_PF_QUEUE_GROUP_SIZE] |=
560 BIT((pq_id % QM_PF_QUEUE_GROUP_SIZE));
561 mem_addr_4kb += vport_pq_mem_4kb;
562 } else {
563 mem_addr_4kb += pq_mem_4kb;
564 }
565 }
566
567 /* Store Tx PQ VF mask to size select register */
568 for (i = 0; i < num_tx_pq_vf_masks; i++)
569 if (tx_pq_vf_mask[i])
570 STORE_RT_REG(p_hwfn,
571 QM_REG_MAXPQSIZETXSEL_0_RT_OFFSET + i,
572 tx_pq_vf_mask[i]);
573}
574
575/* Prepare Other PQ mapping runtime init values for the specified PF */
576static void qed_other_pq_map_rt_init(struct qed_hwfn *p_hwfn,
577 u8 pf_id,
578 bool is_pf_loading,
579 u32 num_pf_cids,
580 u32 num_tids, u32 base_mem_addr_4kb)
581{
582 u32 pq_size, pq_mem_4kb, mem_addr_4kb;
583 u16 i, j, pq_id, pq_group;
584
585 /* A single other PQ group is used in each PF, where PQ group i is used
586 * in PF i.
587 */
588 pq_group = pf_id;
589 pq_size = num_pf_cids + num_tids;
590 pq_mem_4kb = QM_PQ_MEM_4KB(pq_size);
591 mem_addr_4kb = base_mem_addr_4kb;
592
593 /* Map PQ group to PF */
594 STORE_RT_REG(p_hwfn, QM_REG_PQOTHER2PF_0_RT_OFFSET + pq_group,
595 (u32)(pf_id));
596
597 /* Set PQ sizes */
598 STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_2_RT_OFFSET,
599 QM_PQ_SIZE_256B(pq_size));
600
601 for (i = 0, pq_id = pf_id * QM_PF_QUEUE_GROUP_SIZE;
602 i < QM_OTHER_PQS_PER_PF; i++, pq_id++) {
603 /* Set PQ base address */
604 STORE_RT_REG(p_hwfn,
605 QM_REG_BASEADDROTHERPQ_RT_OFFSET + pq_id,
606 mem_addr_4kb);
607
608 /* Clear PQ pointer table entry */
609 if (is_pf_loading)
610 for (j = 0; j < 2; j++)
611 STORE_RT_REG(p_hwfn,
612 QM_REG_PTRTBLOTHER_RT_OFFSET +
613 (pq_id * 2) + j, 0);
614
615 mem_addr_4kb += pq_mem_4kb;
616 }
617}
618
619/* Prepare PF WFQ runtime init values for the specified PF.
620 * Return -1 on error.
621 */
622static int qed_pf_wfq_rt_init(struct qed_hwfn *p_hwfn,
623
624 struct qed_qm_pf_rt_init_params *p_params)
625{
626 u16 num_tx_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
627 struct init_qm_pq_params *pq_params = p_params->pq_params;
628 u32 inc_val, crd_reg_offset;
629 u8 ext_voq;
630 u16 i;
631
632 inc_val = QM_WFQ_INC_VAL(p_params->pf_wfq);
633 if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
634 DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n");
635 return -1;
636 }
637
638 for (i = 0; i < num_tx_pqs; i++) {
639 ext_voq = qed_get_ext_voq(p_hwfn,
640 pq_params[i].port_id,
641 pq_params[i].tc_id,
642 p_params->max_phys_tcs_per_port);
643 crd_reg_offset =
644 (p_params->pf_id < MAX_NUM_PFS_BB ?
645 QM_REG_WFQPFCRD_RT_OFFSET :
646 QM_REG_WFQPFCRD_MSB_RT_OFFSET) +
647 ext_voq * MAX_NUM_PFS_BB +
648 (p_params->pf_id % MAX_NUM_PFS_BB);
649 OVERWRITE_RT_REG(p_hwfn,
650 crd_reg_offset, (u32)QM_WFQ_CRD_REG_SIGN_BIT);
651 }
652
653 STORE_RT_REG(p_hwfn,
654 QM_REG_WFQPFUPPERBOUND_RT_OFFSET + p_params->pf_id,
655 QM_WFQ_UPPER_BOUND | (u32)QM_WFQ_CRD_REG_SIGN_BIT);
656 STORE_RT_REG(p_hwfn, QM_REG_WFQPFWEIGHT_RT_OFFSET + p_params->pf_id,
657 inc_val);
658
659 return 0;
660}
661
662/* Prepare PF RL runtime init values for the specified PF.
663 * Return -1 on error.
664 */
665static int qed_pf_rl_rt_init(struct qed_hwfn *p_hwfn, u8 pf_id, u32 pf_rl)
666{
667 u32 inc_val = QM_RL_INC_VAL(pf_rl);
668
669 if (inc_val > QM_PF_RL_MAX_INC_VAL) {
670 DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n");
671 return -1;
672 }
673
674 STORE_RT_REG(p_hwfn,
675 QM_REG_RLPFCRD_RT_OFFSET + pf_id,
676 (u32)QM_RL_CRD_REG_SIGN_BIT);
677 STORE_RT_REG(p_hwfn,
678 QM_REG_RLPFUPPERBOUND_RT_OFFSET + pf_id,
679 QM_PF_RL_UPPER_BOUND | (u32)QM_RL_CRD_REG_SIGN_BIT);
680 STORE_RT_REG(p_hwfn, QM_REG_RLPFINCVAL_RT_OFFSET + pf_id, inc_val);
681
682 return 0;
683}
684
685/* Prepare VPORT WFQ runtime init values for the specified VPORTs.
686 * Return -1 on error.
687 */
688static int qed_vp_wfq_rt_init(struct qed_hwfn *p_hwfn,
689 u16 num_vports,
690 struct init_qm_vport_params *vport_params)
691{
692 u16 vport_pq_id, i;
693 u32 inc_val;
694 u8 tc;
695
696 /* Go over all PF VPORTs */
697 for (i = 0; i < num_vports; i++) {
698 if (!vport_params[i].wfq)
699 continue;
700
701 inc_val = QM_WFQ_INC_VAL(vport_params[i].wfq);
702 if (inc_val > QM_WFQ_MAX_INC_VAL) {
703 DP_NOTICE(p_hwfn,
704 "Invalid VPORT WFQ weight configuration\n");
705 return -1;
706 }
707
708 /* Each VPORT can have several VPORT PQ IDs for various TCs */
709 for (tc = 0; tc < NUM_OF_TCS; tc++) {
710 vport_pq_id = vport_params[i].first_tx_pq_id[tc];
711 if (vport_pq_id != QM_INVALID_PQ_ID) {
712 STORE_RT_REG(p_hwfn,
713 QM_REG_WFQVPCRD_RT_OFFSET +
714 vport_pq_id,
715 (u32)QM_WFQ_CRD_REG_SIGN_BIT);
716 STORE_RT_REG(p_hwfn,
717 QM_REG_WFQVPWEIGHT_RT_OFFSET +
718 vport_pq_id, inc_val);
719 }
720 }
721 }
722
723 return 0;
724}
725
726static bool qed_poll_on_qm_cmd_ready(struct qed_hwfn *p_hwfn,
727 struct qed_ptt *p_ptt)
728{
729 u32 reg_val, i;
730
731 for (i = 0, reg_val = 0; i < QM_STOP_CMD_MAX_POLL_COUNT && !reg_val;
732 i++) {
733 udelay(QM_STOP_CMD_POLL_PERIOD_US);
734 reg_val = qed_rd(p_hwfn, p_ptt, QM_REG_SDMCMDREADY);
735 }
736
737 /* Check if timeout while waiting for SDM command ready */
738 if (i == QM_STOP_CMD_MAX_POLL_COUNT) {
739 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
740 "Timeout when waiting for QM SDM command ready signal\n");
741 return false;
742 }
743
744 return true;
745}
746
747static bool qed_send_qm_cmd(struct qed_hwfn *p_hwfn,
748 struct qed_ptt *p_ptt,
749 u32 cmd_addr, u32 cmd_data_lsb, u32 cmd_data_msb)
750{
751 if (!qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt))
752 return false;
753
754 qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDADDR, cmd_addr);
755 qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATALSB, cmd_data_lsb);
756 qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATAMSB, cmd_data_msb);
757 qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 1);
758 qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 0);
759
760 return qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt);
761}
762
763/******************** INTERFACE IMPLEMENTATION *********************/
764
765u32 qed_qm_pf_mem_size(u32 num_pf_cids,
766 u32 num_vf_cids,
767 u32 num_tids, u16 num_pf_pqs, u16 num_vf_pqs)
768{
769 return QM_PQ_MEM_4KB(num_pf_cids) * num_pf_pqs +
770 QM_PQ_MEM_4KB(num_vf_cids) * num_vf_pqs +
771 QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
772}
773
774int qed_qm_common_rt_init(struct qed_hwfn *p_hwfn,
775 struct qed_qm_common_rt_init_params *p_params)
776{
777 u32 mask = 0;
778
779 /* Init AFullOprtnstcCrdMask */
780 SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_LINEVOQ,
781 QM_OPPOR_LINE_VOQ_DEF);
782 SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_BYTEVOQ, QM_BYTE_CRD_EN);
783 SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_PFWFQ, p_params->pf_wfq_en);
784 SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_VPWFQ, p_params->vport_wfq_en);
785 SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_PFRL, p_params->pf_rl_en);
786 SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_VPQCNRL,
787 p_params->global_rl_en);
788 SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_FWPAUSE, QM_OPPOR_FW_STOP_DEF);
789 SET_FIELD(mask,
790 QM_RF_OPPORTUNISTIC_MASK_QUEUEEMPTY, QM_OPPOR_PQ_EMPTY_DEF);
791 STORE_RT_REG(p_hwfn, QM_REG_AFULLOPRTNSTCCRDMASK_RT_OFFSET, mask);
792
793 /* Enable/disable PF RL */
794 qed_enable_pf_rl(p_hwfn, p_params->pf_rl_en);
795
796 /* Enable/disable PF WFQ */
797 qed_enable_pf_wfq(p_hwfn, p_params->pf_wfq_en);
798
799 /* Enable/disable global RL */
800 qed_enable_global_rl(p_hwfn, p_params->global_rl_en);
801
802 /* Enable/disable VPORT WFQ */
803 qed_enable_vport_wfq(p_hwfn, p_params->vport_wfq_en);
804
805 /* Init PBF CMDQ line credit */
806 qed_cmdq_lines_rt_init(p_hwfn,
807 p_params->max_ports_per_engine,
808 p_params->max_phys_tcs_per_port,
809 p_params->port_params);
810
811 /* Init BTB blocks in PBF */
812 qed_btb_blocks_rt_init(p_hwfn,
813 p_params->max_ports_per_engine,
814 p_params->max_phys_tcs_per_port,
815 p_params->port_params);
816
817 qed_global_rl_rt_init(p_hwfn);
818
819 return 0;
820}
821
822int qed_qm_pf_rt_init(struct qed_hwfn *p_hwfn,
823 struct qed_ptt *p_ptt,
824 struct qed_qm_pf_rt_init_params *p_params)
825{
826 struct init_qm_vport_params *vport_params = p_params->vport_params;
827 u32 other_mem_size_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids +
828 p_params->num_tids) *
829 QM_OTHER_PQS_PER_PF;
830 u16 i;
831 u8 tc;
832
833
834 /* Clear first Tx PQ ID array for each VPORT */
835 for (i = 0; i < p_params->num_vports; i++)
836 for (tc = 0; tc < NUM_OF_TCS; tc++)
837 vport_params[i].first_tx_pq_id[tc] = QM_INVALID_PQ_ID;
838
839 /* Map Other PQs (if any) */
840 qed_other_pq_map_rt_init(p_hwfn,
841 p_params->pf_id,
842 p_params->is_pf_loading, p_params->num_pf_cids,
843 p_params->num_tids, 0);
844
845 /* Map Tx PQs */
846 qed_tx_pq_map_rt_init(p_hwfn, p_ptt, p_params, other_mem_size_4kb);
847
848 /* Init PF WFQ */
849 if (p_params->pf_wfq)
850 if (qed_pf_wfq_rt_init(p_hwfn, p_params))
851 return -1;
852
853 /* Init PF RL */
854 if (qed_pf_rl_rt_init(p_hwfn, p_params->pf_id, p_params->pf_rl))
855 return -1;
856
857 /* Init VPORT WFQ */
858 if (qed_vp_wfq_rt_init(p_hwfn, p_params->num_vports, vport_params))
859 return -1;
860
861 return 0;
862}
863
864int qed_init_pf_wfq(struct qed_hwfn *p_hwfn,
865 struct qed_ptt *p_ptt, u8 pf_id, u16 pf_wfq)
866{
867 u32 inc_val = QM_WFQ_INC_VAL(pf_wfq);
868
869 if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
870 DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n");
871 return -1;
872 }
873
874 qed_wr(p_hwfn, p_ptt, QM_REG_WFQPFWEIGHT + pf_id * 4, inc_val);
875
876 return 0;
877}
878
879int qed_init_pf_rl(struct qed_hwfn *p_hwfn,
880 struct qed_ptt *p_ptt, u8 pf_id, u32 pf_rl)
881{
882 u32 inc_val = QM_RL_INC_VAL(pf_rl);
883
884 if (inc_val > QM_PF_RL_MAX_INC_VAL) {
885 DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n");
886 return -1;
887 }
888
889 qed_wr(p_hwfn,
890 p_ptt, QM_REG_RLPFCRD + pf_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
891 qed_wr(p_hwfn, p_ptt, QM_REG_RLPFINCVAL + pf_id * 4, inc_val);
892
893 return 0;
894}
895
896int qed_init_vport_wfq(struct qed_hwfn *p_hwfn,
897 struct qed_ptt *p_ptt,
898 u16 first_tx_pq_id[NUM_OF_TCS], u16 wfq)
899{
900 u16 vport_pq_id;
901 u32 inc_val;
902 u8 tc;
903
904 inc_val = QM_WFQ_INC_VAL(wfq);
905 if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
906 DP_NOTICE(p_hwfn, "Invalid VPORT WFQ configuration.\n");
907 return -1;
908 }
909
910 /* A VPORT can have several VPORT PQ IDs for various TCs */
911 for (tc = 0; tc < NUM_OF_TCS; tc++) {
912 vport_pq_id = first_tx_pq_id[tc];
913 if (vport_pq_id != QM_INVALID_PQ_ID)
914 qed_wr(p_hwfn,
915 p_ptt,
916 QM_REG_WFQVPWEIGHT + vport_pq_id * 4, inc_val);
917 }
918
919 return 0;
920}
921
922int qed_init_global_rl(struct qed_hwfn *p_hwfn,
923 struct qed_ptt *p_ptt, u16 rl_id, u32 rate_limit)
924{
925 u32 inc_val;
926
927 inc_val = QM_RL_INC_VAL(rate_limit);
928 if (inc_val > QM_VP_RL_MAX_INC_VAL(rate_limit)) {
929 DP_NOTICE(p_hwfn, "Invalid rate limit configuration.\n");
930 return -1;
931 }
932
933 qed_wr(p_hwfn, p_ptt,
934 QM_REG_RLGLBLCRD + rl_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
935 qed_wr(p_hwfn, p_ptt, QM_REG_RLGLBLINCVAL + rl_id * 4, inc_val);
936
937 return 0;
938}
939
940bool qed_send_qm_stop_cmd(struct qed_hwfn *p_hwfn,
941 struct qed_ptt *p_ptt,
942 bool is_release_cmd,
943 bool is_tx_pq, u16 start_pq, u16 num_pqs)
944{
945 u32 cmd_arr[QM_CMD_STRUCT_SIZE(QM_STOP_CMD)] = { 0 };
946 u32 pq_mask = 0, last_pq, pq_id;
947
948 last_pq = start_pq + num_pqs - 1;
949
950 /* Set command's PQ type */
951 QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PQ_TYPE, is_tx_pq ? 0 : 1);
952
953 /* Go over requested PQs */
954 for (pq_id = start_pq; pq_id <= last_pq; pq_id++) {
955 /* Set PQ bit in mask (stop command only) */
956 if (!is_release_cmd)
957 pq_mask |= BIT((pq_id % QM_STOP_PQ_MASK_WIDTH));
958
959 /* If last PQ or end of PQ mask, write command */
960 if ((pq_id == last_pq) ||
961 (pq_id % QM_STOP_PQ_MASK_WIDTH ==
962 (QM_STOP_PQ_MASK_WIDTH - 1))) {
963 QM_CMD_SET_FIELD(cmd_arr,
964 QM_STOP_CMD, PAUSE_MASK, pq_mask);
965 QM_CMD_SET_FIELD(cmd_arr,
966 QM_STOP_CMD,
967 GROUP_ID,
968 pq_id / QM_STOP_PQ_MASK_WIDTH);
969 if (!qed_send_qm_cmd(p_hwfn, p_ptt, QM_STOP_CMD_ADDR,
970 cmd_arr[0], cmd_arr[1]))
971 return false;
972 pq_mask = 0;
973 }
974 }
975
976 return true;
977}
978
979#define SET_TUNNEL_TYPE_ENABLE_BIT(var, offset, enable) \
980 do { \
981 typeof(var) *__p_var = &(var); \
982 typeof(offset) __offset = offset; \
983 *__p_var = (*__p_var & ~BIT(__offset)) | \
984 ((enable) ? BIT(__offset) : 0); \
985 } while (0)
986
987#define PRS_ETH_TUNN_OUTPUT_FORMAT 0xF4DAB910
988#define PRS_ETH_OUTPUT_FORMAT 0xFFFF4910
989
990#define ARR_REG_WR(dev, ptt, addr, arr, arr_size) \
991 do { \
992 u32 i; \
993 \
994 for (i = 0; i < (arr_size); i++) \
995 qed_wr(dev, ptt, \
996 ((addr) + (4 * i)), \
997 ((u32 *)&(arr))[i]); \
998 } while (0)
999
1000/**
1001 * qed_dmae_to_grc() - Internal function for writing from host to
1002 * wide-bus registers (split registers are not supported yet).
1003 *
1004 * @p_hwfn: HW device data.
1005 * @p_ptt: PTT window used for writing the registers.
1006 * @p_data: Pointer to source data.
1007 * @addr: Destination register address.
1008 * @len_in_dwords: Data length in dwords (u32).
1009 *
1010 * Return: Length of the written data in dwords (u32) or -1 on invalid
1011 * input.
1012 */
1013static int qed_dmae_to_grc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
1014 __le32 *p_data, u32 addr, u32 len_in_dwords)
1015{
1016 struct qed_dmae_params params = {};
1017 u32 *data_cpu;
1018 int rc;
1019
1020 if (!p_data)
1021 return -1;
1022
1023 /* Set DMAE params */
1024 SET_FIELD(params.flags, QED_DMAE_PARAMS_COMPLETION_DST, 1);
1025
1026 /* Execute DMAE command */
1027 rc = qed_dmae_host2grc(p_hwfn, p_ptt,
1028 (u64)(uintptr_t)(p_data),
1029 addr, len_in_dwords, ¶ms);
1030
1031 /* If not read using DMAE, read using GRC */
1032 if (rc) {
1033 DP_VERBOSE(p_hwfn,
1034 QED_MSG_DEBUG,
1035 "Failed writing to chip using DMAE, using GRC instead\n");
1036
1037 /* Swap to CPU byteorder and write to registers using GRC */
1038 data_cpu = (__force u32 *)p_data;
1039 le32_to_cpu_array(data_cpu, len_in_dwords);
1040
1041 ARR_REG_WR(p_hwfn, p_ptt, addr, data_cpu, len_in_dwords);
1042 cpu_to_le32_array(data_cpu, len_in_dwords);
1043 }
1044
1045 return len_in_dwords;
1046}
1047
1048void qed_set_vxlan_dest_port(struct qed_hwfn *p_hwfn,
1049 struct qed_ptt *p_ptt, u16 dest_port)
1050{
1051 /* Update PRS register */
1052 qed_wr(p_hwfn, p_ptt, PRS_REG_VXLAN_PORT, dest_port);
1053
1054 /* Update NIG register */
1055 qed_wr(p_hwfn, p_ptt, NIG_REG_VXLAN_CTRL, dest_port);
1056
1057 /* Update PBF register */
1058 qed_wr(p_hwfn, p_ptt, PBF_REG_VXLAN_PORT, dest_port);
1059}
1060
1061void qed_set_vxlan_enable(struct qed_hwfn *p_hwfn,
1062 struct qed_ptt *p_ptt, bool vxlan_enable)
1063{
1064 u32 reg_val;
1065 u8 shift;
1066
1067 /* Update PRS register */
1068 reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1069 shift = PRS_REG_ENCAPSULATION_TYPE_EN_VXLAN_ENABLE_SHIFT;
1070 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, vxlan_enable);
1071 qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1072 if (reg_val) {
1073 reg_val =
1074 qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
1075
1076 /* Update output only if tunnel blocks not included. */
1077 if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1078 qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2,
1079 (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1080 }
1081
1082 /* Update NIG register */
1083 reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1084 shift = NIG_REG_ENC_TYPE_ENABLE_VXLAN_ENABLE_SHIFT;
1085 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, vxlan_enable);
1086 qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1087
1088 /* Update DORQ register */
1089 qed_wr(p_hwfn,
1090 p_ptt, DORQ_REG_L2_EDPM_TUNNEL_VXLAN_EN, vxlan_enable ? 1 : 0);
1091}
1092
1093void qed_set_gre_enable(struct qed_hwfn *p_hwfn,
1094 struct qed_ptt *p_ptt,
1095 bool eth_gre_enable, bool ip_gre_enable)
1096{
1097 u32 reg_val;
1098 u8 shift;
1099
1100 /* Update PRS register */
1101 reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1102 shift = PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GRE_ENABLE_SHIFT;
1103 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_gre_enable);
1104 shift = PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GRE_ENABLE_SHIFT;
1105 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_gre_enable);
1106 qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1107 if (reg_val) {
1108 reg_val =
1109 qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
1110
1111 /* Update output only if tunnel blocks not included. */
1112 if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1113 qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2,
1114 (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1115 }
1116
1117 /* Update NIG register */
1118 reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1119 shift = NIG_REG_ENC_TYPE_ENABLE_ETH_OVER_GRE_ENABLE_SHIFT;
1120 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_gre_enable);
1121 shift = NIG_REG_ENC_TYPE_ENABLE_IP_OVER_GRE_ENABLE_SHIFT;
1122 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_gre_enable);
1123 qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1124
1125 /* Update DORQ registers */
1126 qed_wr(p_hwfn,
1127 p_ptt,
1128 DORQ_REG_L2_EDPM_TUNNEL_GRE_ETH_EN, eth_gre_enable ? 1 : 0);
1129 qed_wr(p_hwfn,
1130 p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_IP_EN, ip_gre_enable ? 1 : 0);
1131}
1132
1133void qed_set_geneve_dest_port(struct qed_hwfn *p_hwfn,
1134 struct qed_ptt *p_ptt, u16 dest_port)
1135{
1136 /* Update PRS register */
1137 qed_wr(p_hwfn, p_ptt, PRS_REG_NGE_PORT, dest_port);
1138
1139 /* Update NIG register */
1140 qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_PORT, dest_port);
1141
1142 /* Update PBF register */
1143 qed_wr(p_hwfn, p_ptt, PBF_REG_NGE_PORT, dest_port);
1144}
1145
1146void qed_set_geneve_enable(struct qed_hwfn *p_hwfn,
1147 struct qed_ptt *p_ptt,
1148 bool eth_geneve_enable, bool ip_geneve_enable)
1149{
1150 u32 reg_val;
1151 u8 shift;
1152
1153 /* Update PRS register */
1154 reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1155 shift = PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GENEVE_ENABLE_SHIFT;
1156 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_geneve_enable);
1157 shift = PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GENEVE_ENABLE_SHIFT;
1158 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_geneve_enable);
1159 qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1160 if (reg_val) {
1161 reg_val =
1162 qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
1163
1164 /* Update output only if tunnel blocks not included. */
1165 if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1166 qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2,
1167 (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1168 }
1169
1170 /* Update NIG register */
1171 qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_ETH_ENABLE,
1172 eth_geneve_enable ? 1 : 0);
1173 qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_IP_ENABLE, ip_geneve_enable ? 1 : 0);
1174
1175 /* EDPM with geneve tunnel not supported in BB */
1176 if (QED_IS_BB_B0(p_hwfn->cdev))
1177 return;
1178
1179 /* Update DORQ registers */
1180 qed_wr(p_hwfn,
1181 p_ptt,
1182 DORQ_REG_L2_EDPM_TUNNEL_NGE_ETH_EN_K2_E5,
1183 eth_geneve_enable ? 1 : 0);
1184 qed_wr(p_hwfn,
1185 p_ptt,
1186 DORQ_REG_L2_EDPM_TUNNEL_NGE_IP_EN_K2_E5,
1187 ip_geneve_enable ? 1 : 0);
1188}
1189
1190#define PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET 3
1191#define PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT -925189872
1192
1193void qed_set_vxlan_no_l2_enable(struct qed_hwfn *p_hwfn,
1194 struct qed_ptt *p_ptt, bool enable)
1195{
1196 u32 reg_val, cfg_mask;
1197
1198 /* read PRS config register */
1199 reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_MSG_INFO);
1200
1201 /* set VXLAN_NO_L2_ENABLE mask */
1202 cfg_mask = BIT(PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET);
1203
1204 if (enable) {
1205 /* set VXLAN_NO_L2_ENABLE flag */
1206 reg_val |= cfg_mask;
1207
1208 /* update PRS FIC register */
1209 qed_wr(p_hwfn,
1210 p_ptt,
1211 PRS_REG_OUTPUT_FORMAT_4_0_BB_K2,
1212 (u32)PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT);
1213 } else {
1214 /* clear VXLAN_NO_L2_ENABLE flag */
1215 reg_val &= ~cfg_mask;
1216 }
1217
1218 /* write PRS config register */
1219 qed_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, reg_val);
1220}
1221
1222#define T_ETH_PACKET_ACTION_GFT_EVENTID 23
1223#define PARSER_ETH_CONN_GFT_ACTION_CM_HDR 272
1224#define T_ETH_PACKET_MATCH_RFS_EVENTID 25
1225#define PARSER_ETH_CONN_CM_HDR 0
1226#define CAM_LINE_SIZE sizeof(u32)
1227#define RAM_LINE_SIZE sizeof(u64)
1228#define REG_SIZE sizeof(u32)
1229
1230void qed_gft_disable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 pf_id)
1231{
1232 struct regpair ram_line = { };
1233
1234 /* Disable gft search for PF */
1235 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 0);
1236
1237 /* Clean ram & cam for next gft session */
1238
1239 /* Zero camline */
1240 qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id, 0);
1241
1242 /* Zero ramline */
1243 qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo,
1244 PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id,
1245 sizeof(ram_line) / REG_SIZE);
1246}
1247
1248void qed_gft_config(struct qed_hwfn *p_hwfn,
1249 struct qed_ptt *p_ptt,
1250 u16 pf_id,
1251 bool tcp,
1252 bool udp,
1253 bool ipv4, bool ipv6, enum gft_profile_type profile_type)
1254{
1255 struct regpair ram_line;
1256 u32 search_non_ip_as_gft;
1257 u32 reg_val, cam_line;
1258 u32 lo = 0, hi = 0;
1259
1260 if (!ipv6 && !ipv4)
1261 DP_NOTICE(p_hwfn,
1262 "gft_config: must accept at least on of - ipv4 or ipv6'\n");
1263 if (!tcp && !udp)
1264 DP_NOTICE(p_hwfn,
1265 "gft_config: must accept at least on of - udp or tcp\n");
1266 if (profile_type >= MAX_GFT_PROFILE_TYPE)
1267 DP_NOTICE(p_hwfn, "gft_config: unsupported gft_profile_type\n");
1268
1269 /* Set RFS event ID to be awakened i Tstorm By Prs */
1270 reg_val = T_ETH_PACKET_MATCH_RFS_EVENTID <<
1271 PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT;
1272 reg_val |= PARSER_ETH_CONN_CM_HDR << PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT;
1273 qed_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, reg_val);
1274
1275 /* Do not load context only cid in PRS on match. */
1276 qed_wr(p_hwfn, p_ptt, PRS_REG_LOAD_L2_FILTER, 0);
1277
1278 /* Do not use tenant ID exist bit for gft search */
1279 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TENANT_ID, 0);
1280
1281 /* Set Cam */
1282 cam_line = 0;
1283 SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_VALID, 1);
1284
1285 /* Filters are per PF!! */
1286 SET_FIELD(cam_line,
1287 GFT_CAM_LINE_MAPPED_PF_ID_MASK,
1288 GFT_CAM_LINE_MAPPED_PF_ID_MASK_MASK);
1289 SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_PF_ID, pf_id);
1290
1291 if (!(tcp && udp)) {
1292 SET_FIELD(cam_line,
1293 GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK,
1294 GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK_MASK);
1295 if (tcp)
1296 SET_FIELD(cam_line,
1297 GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
1298 GFT_PROFILE_TCP_PROTOCOL);
1299 else
1300 SET_FIELD(cam_line,
1301 GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
1302 GFT_PROFILE_UDP_PROTOCOL);
1303 }
1304
1305 if (!(ipv4 && ipv6)) {
1306 SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION_MASK, 1);
1307 if (ipv4)
1308 SET_FIELD(cam_line,
1309 GFT_CAM_LINE_MAPPED_IP_VERSION,
1310 GFT_PROFILE_IPV4);
1311 else
1312 SET_FIELD(cam_line,
1313 GFT_CAM_LINE_MAPPED_IP_VERSION,
1314 GFT_PROFILE_IPV6);
1315 }
1316
1317 /* Write characteristics to cam */
1318 qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id,
1319 cam_line);
1320 cam_line =
1321 qed_rd(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id);
1322
1323 /* Write line to RAM - compare to filter 4 tuple */
1324
1325 /* Search no IP as GFT */
1326 search_non_ip_as_gft = 0;
1327
1328 /* Tunnel type */
1329 SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_DST_PORT, 1);
1330 SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_OVER_IP_PROTOCOL, 1);
1331
1332 if (profile_type == GFT_PROFILE_TYPE_4_TUPLE) {
1333 SET_FIELD(hi, GFT_RAM_LINE_DST_IP, 1);
1334 SET_FIELD(hi, GFT_RAM_LINE_SRC_IP, 1);
1335 SET_FIELD(hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
1336 SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1337 SET_FIELD(lo, GFT_RAM_LINE_SRC_PORT, 1);
1338 SET_FIELD(lo, GFT_RAM_LINE_DST_PORT, 1);
1339 } else if (profile_type == GFT_PROFILE_TYPE_L4_DST_PORT) {
1340 SET_FIELD(hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
1341 SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1342 SET_FIELD(lo, GFT_RAM_LINE_DST_PORT, 1);
1343 } else if (profile_type == GFT_PROFILE_TYPE_IP_DST_ADDR) {
1344 SET_FIELD(hi, GFT_RAM_LINE_DST_IP, 1);
1345 SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1346 } else if (profile_type == GFT_PROFILE_TYPE_IP_SRC_ADDR) {
1347 SET_FIELD(hi, GFT_RAM_LINE_SRC_IP, 1);
1348 SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1349 } else if (profile_type == GFT_PROFILE_TYPE_TUNNEL_TYPE) {
1350 SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_ETHERTYPE, 1);
1351
1352 /* Allow tunneled traffic without inner IP */
1353 search_non_ip_as_gft = 1;
1354 }
1355
1356 ram_line.lo = cpu_to_le32(lo);
1357 ram_line.hi = cpu_to_le32(hi);
1358
1359 qed_wr(p_hwfn,
1360 p_ptt, PRS_REG_SEARCH_NON_IP_AS_GFT, search_non_ip_as_gft);
1361 qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo,
1362 PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id,
1363 sizeof(ram_line) / REG_SIZE);
1364
1365 /* Set default profile so that no filter match will happen */
1366 ram_line.lo = cpu_to_le32(0xffffffff);
1367 ram_line.hi = cpu_to_le32(0x3ff);
1368 qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo,
1369 PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE *
1370 PRS_GFT_CAM_LINES_NO_MATCH,
1371 sizeof(ram_line) / REG_SIZE);
1372
1373 /* Enable gft search */
1374 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 1);
1375}
1376
1377DECLARE_CRC8_TABLE(cdu_crc8_table);
1378
1379/* Calculate and return CDU validation byte per connection type/region/cid */
1380static u8 qed_calc_cdu_validation_byte(u8 conn_type, u8 region, u32 cid)
1381{
1382 const u8 validation_cfg = CDU_VALIDATION_DEFAULT_CFG;
1383 u8 crc, validation_byte = 0;
1384 static u8 crc8_table_valid; /* automatically initialized to 0 */
1385 u32 validation_string = 0;
1386 __be32 data_to_crc;
1387
1388 if (!crc8_table_valid) {
1389 crc8_populate_msb(cdu_crc8_table, 0x07);
1390 crc8_table_valid = 1;
1391 }
1392
1393 /* The CRC is calculated on the String-to-compress:
1394 * [31:8] = {CID[31:20],CID[11:0]}
1395 * [7:4] = Region
1396 * [3:0] = Type
1397 */
1398 if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_CID) & 1)
1399 validation_string |= (cid & 0xFFF00000) | ((cid & 0xFFF) << 8);
1400
1401 if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_REGION) & 1)
1402 validation_string |= ((region & 0xF) << 4);
1403
1404 if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_TYPE) & 1)
1405 validation_string |= (conn_type & 0xF);
1406
1407 /* Convert to big-endian and calculate CRC8 */
1408 data_to_crc = cpu_to_be32(validation_string);
1409 crc = crc8(cdu_crc8_table, (u8 *)&data_to_crc, sizeof(data_to_crc),
1410 CRC8_INIT_VALUE);
1411
1412 /* The validation byte [7:0] is composed:
1413 * for type A validation
1414 * [7] = active configuration bit
1415 * [6:0] = crc[6:0]
1416 *
1417 * for type B validation
1418 * [7] = active configuration bit
1419 * [6:3] = connection_type[3:0]
1420 * [2:0] = crc[2:0]
1421 */
1422 validation_byte |=
1423 ((validation_cfg >>
1424 CDU_CONTEXT_VALIDATION_CFG_USE_ACTIVE) & 1) << 7;
1425
1426 if ((validation_cfg >>
1427 CDU_CONTEXT_VALIDATION_CFG_VALIDATION_TYPE_SHIFT) & 1)
1428 validation_byte |= ((conn_type & 0xF) << 3) | (crc & 0x7);
1429 else
1430 validation_byte |= crc & 0x7F;
1431
1432 return validation_byte;
1433}
1434
1435/* Calcualte and set validation bytes for session context */
1436void qed_calc_session_ctx_validation(void *p_ctx_mem,
1437 u16 ctx_size, u8 ctx_type, u32 cid)
1438{
1439 u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
1440
1441 p_ctx = (u8 * const)p_ctx_mem;
1442 x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
1443 t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
1444 u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
1445
1446 memset(p_ctx, 0, ctx_size);
1447
1448 *x_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 3, cid);
1449 *t_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 4, cid);
1450 *u_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 5, cid);
1451}
1452
1453/* Calcualte and set validation bytes for task context */
1454void qed_calc_task_ctx_validation(void *p_ctx_mem,
1455 u16 ctx_size, u8 ctx_type, u32 tid)
1456{
1457 u8 *p_ctx, *region1_val_ptr;
1458
1459 p_ctx = (u8 * const)p_ctx_mem;
1460 region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
1461
1462 memset(p_ctx, 0, ctx_size);
1463
1464 *region1_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 1, tid);
1465}
1466
1467/* Memset session context to 0 while preserving validation bytes */
1468void qed_memset_session_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
1469{
1470 u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
1471 u8 x_val, t_val, u_val;
1472
1473 p_ctx = (u8 * const)p_ctx_mem;
1474 x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
1475 t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
1476 u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
1477
1478 x_val = *x_val_ptr;
1479 t_val = *t_val_ptr;
1480 u_val = *u_val_ptr;
1481
1482 memset(p_ctx, 0, ctx_size);
1483
1484 *x_val_ptr = x_val;
1485 *t_val_ptr = t_val;
1486 *u_val_ptr = u_val;
1487}
1488
1489/* Memset task context to 0 while preserving validation bytes */
1490void qed_memset_task_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
1491{
1492 u8 *p_ctx, *region1_val_ptr;
1493 u8 region1_val;
1494
1495 p_ctx = (u8 * const)p_ctx_mem;
1496 region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
1497
1498 region1_val = *region1_val_ptr;
1499
1500 memset(p_ctx, 0, ctx_size);
1501
1502 *region1_val_ptr = region1_val;
1503}
1504
1505/* Enable and configure context validation */
1506void qed_enable_context_validation(struct qed_hwfn *p_hwfn,
1507 struct qed_ptt *p_ptt)
1508{
1509 u32 ctx_validation;
1510
1511 /* Enable validation for connection region 3: CCFC_CTX_VALID0[31:24] */
1512 ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 24;
1513 qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID0, ctx_validation);
1514
1515 /* Enable validation for connection region 5: CCFC_CTX_VALID1[15:8] */
1516 ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
1517 qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID1, ctx_validation);
1518
1519 /* Enable validation for connection region 1: TCFC_CTX_VALID0[15:8] */
1520 ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
1521 qed_wr(p_hwfn, p_ptt, CDU_REG_TCFC_CTX_VALID0, ctx_validation);
1522}
1523
1524static u32 qed_get_rdma_assert_ram_addr(struct qed_hwfn *p_hwfn, u8 storm_id)
1525{
1526 switch (storm_id) {
1527 case 0:
1528 return TSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1529 TSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1530 case 1:
1531 return MSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1532 MSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1533 case 2:
1534 return USEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1535 USTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1536 case 3:
1537 return XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1538 XSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1539 case 4:
1540 return YSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1541 YSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1542 case 5:
1543 return PSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1544 PSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1545
1546 default:
1547 return 0;
1548 }
1549}
1550
1551void qed_set_rdma_error_level(struct qed_hwfn *p_hwfn,
1552 struct qed_ptt *p_ptt,
1553 u8 assert_level[NUM_STORMS])
1554{
1555 u8 storm_id;
1556
1557 for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
1558 u32 ram_addr = qed_get_rdma_assert_ram_addr(p_hwfn, storm_id);
1559
1560 qed_wr(p_hwfn, p_ptt, ram_addr, assert_level[storm_id]);
1561 }
1562}
1563
1564#define PHYS_ADDR_DWORDS DIV_ROUND_UP(sizeof(dma_addr_t), 4)
1565#define OVERLAY_HDR_SIZE_DWORDS (sizeof(struct fw_overlay_buf_hdr) / 4)
1566
1567static u32 qed_get_overlay_addr_ram_addr(struct qed_hwfn *p_hwfn, u8 storm_id)
1568{
1569 switch (storm_id) {
1570 case 0:
1571 return TSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1572 TSTORM_OVERLAY_BUF_ADDR_OFFSET;
1573 case 1:
1574 return MSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1575 MSTORM_OVERLAY_BUF_ADDR_OFFSET;
1576 case 2:
1577 return USEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1578 USTORM_OVERLAY_BUF_ADDR_OFFSET;
1579 case 3:
1580 return XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1581 XSTORM_OVERLAY_BUF_ADDR_OFFSET;
1582 case 4:
1583 return YSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1584 YSTORM_OVERLAY_BUF_ADDR_OFFSET;
1585 case 5:
1586 return PSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1587 PSTORM_OVERLAY_BUF_ADDR_OFFSET;
1588
1589 default:
1590 return 0;
1591 }
1592}
1593
1594struct phys_mem_desc *qed_fw_overlay_mem_alloc(struct qed_hwfn *p_hwfn,
1595 const u32 * const
1596 fw_overlay_in_buf,
1597 u32 buf_size_in_bytes)
1598{
1599 u32 buf_size = buf_size_in_bytes / sizeof(u32), buf_offset = 0;
1600 struct phys_mem_desc *allocated_mem;
1601
1602 if (!buf_size)
1603 return NULL;
1604
1605 allocated_mem = kcalloc(NUM_STORMS, sizeof(struct phys_mem_desc),
1606 GFP_KERNEL);
1607 if (!allocated_mem)
1608 return NULL;
1609
1610 memset(allocated_mem, 0, NUM_STORMS * sizeof(struct phys_mem_desc));
1611
1612 /* For each Storm, set physical address in RAM */
1613 while (buf_offset < buf_size) {
1614 struct phys_mem_desc *storm_mem_desc;
1615 struct fw_overlay_buf_hdr *hdr;
1616 u32 storm_buf_size;
1617 u8 storm_id;
1618
1619 hdr =
1620 (struct fw_overlay_buf_hdr *)&fw_overlay_in_buf[buf_offset];
1621 storm_buf_size = GET_FIELD(hdr->data,
1622 FW_OVERLAY_BUF_HDR_BUF_SIZE);
1623 storm_id = GET_FIELD(hdr->data, FW_OVERLAY_BUF_HDR_STORM_ID);
1624 storm_mem_desc = allocated_mem + storm_id;
1625 storm_mem_desc->size = storm_buf_size * sizeof(u32);
1626
1627 /* Allocate physical memory for Storm's overlays buffer */
1628 storm_mem_desc->virt_addr =
1629 dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
1630 storm_mem_desc->size,
1631 &storm_mem_desc->phys_addr, GFP_KERNEL);
1632 if (!storm_mem_desc->virt_addr)
1633 break;
1634
1635 /* Skip overlays buffer header */
1636 buf_offset += OVERLAY_HDR_SIZE_DWORDS;
1637
1638 /* Copy Storm's overlays buffer to allocated memory */
1639 memcpy(storm_mem_desc->virt_addr,
1640 &fw_overlay_in_buf[buf_offset], storm_mem_desc->size);
1641
1642 /* Advance to next Storm */
1643 buf_offset += storm_buf_size;
1644 }
1645
1646 /* If memory allocation has failed, free all allocated memory */
1647 if (buf_offset < buf_size) {
1648 qed_fw_overlay_mem_free(p_hwfn, allocated_mem);
1649 return NULL;
1650 }
1651
1652 return allocated_mem;
1653}
1654
1655void qed_fw_overlay_init_ram(struct qed_hwfn *p_hwfn,
1656 struct qed_ptt *p_ptt,
1657 struct phys_mem_desc *fw_overlay_mem)
1658{
1659 u8 storm_id;
1660
1661 for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
1662 struct phys_mem_desc *storm_mem_desc =
1663 (struct phys_mem_desc *)fw_overlay_mem + storm_id;
1664 u32 ram_addr, i;
1665
1666 /* Skip Storms with no FW overlays */
1667 if (!storm_mem_desc->virt_addr)
1668 continue;
1669
1670 /* Calculate overlay RAM GRC address of current PF */
1671 ram_addr = qed_get_overlay_addr_ram_addr(p_hwfn, storm_id) +
1672 sizeof(dma_addr_t) * p_hwfn->rel_pf_id;
1673
1674 /* Write Storm's overlay physical address to RAM */
1675 for (i = 0; i < PHYS_ADDR_DWORDS; i++, ram_addr += sizeof(u32))
1676 qed_wr(p_hwfn, p_ptt, ram_addr,
1677 ((u32 *)&storm_mem_desc->phys_addr)[i]);
1678 }
1679}
1680
1681void qed_fw_overlay_mem_free(struct qed_hwfn *p_hwfn,
1682 struct phys_mem_desc *fw_overlay_mem)
1683{
1684 u8 storm_id;
1685
1686 if (!fw_overlay_mem)
1687 return;
1688
1689 for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
1690 struct phys_mem_desc *storm_mem_desc =
1691 (struct phys_mem_desc *)fw_overlay_mem + storm_id;
1692
1693 /* Free Storm's physical memory */
1694 if (storm_mem_desc->virt_addr)
1695 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1696 storm_mem_desc->size,
1697 storm_mem_desc->virt_addr,
1698 storm_mem_desc->phys_addr);
1699 }
1700
1701 /* Free allocated virtual memory */
1702 kfree(fw_overlay_mem);
1703}