Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
   4#include <linux/bitfield.h>
   5#include <linux/delay.h>
   6#include "i40e_alloc.h"
   7#include "i40e_prototype.h"
   8
   9/**
  10 * i40e_init_nvm - Initialize NVM function pointers
  11 * @hw: pointer to the HW structure
  12 *
  13 * Setup the function pointers and the NVM info structure. Should be called
  14 * once per NVM initialization, e.g. inside the i40e_init_shared_code().
  15 * Please notice that the NVM term is used here (& in all methods covered
  16 * in this file) as an equivalent of the FLASH part mapped into the SR.
  17 * We are accessing FLASH always thru the Shadow RAM.
  18 **/
  19int i40e_init_nvm(struct i40e_hw *hw)
  20{
  21	struct i40e_nvm_info *nvm = &hw->nvm;
  22	int ret_code = 0;
  23	u32 fla, gens;
  24	u8 sr_size;
  25
  26	/* The SR size is stored regardless of the nvm programming mode
  27	 * as the blank mode may be used in the factory line.
  28	 */
  29	gens = rd32(hw, I40E_GLNVM_GENS);
  30	sr_size = FIELD_GET(I40E_GLNVM_GENS_SR_SIZE_MASK, gens);
 
  31	/* Switching to words (sr_size contains power of 2KB) */
  32	nvm->sr_size = BIT(sr_size) * I40E_SR_WORDS_IN_1KB;
  33
  34	/* Check if we are in the normal or blank NVM programming mode */
  35	fla = rd32(hw, I40E_GLNVM_FLA);
  36	if (fla & I40E_GLNVM_FLA_LOCKED_MASK) { /* Normal programming mode */
  37		/* Max NVM timeout */
  38		nvm->timeout = I40E_MAX_NVM_TIMEOUT;
  39		nvm->blank_nvm_mode = false;
  40	} else { /* Blank programming mode */
  41		nvm->blank_nvm_mode = true;
  42		ret_code = -EIO;
  43		i40e_debug(hw, I40E_DEBUG_NVM, "NVM init error: unsupported blank mode.\n");
  44	}
  45
  46	return ret_code;
  47}
  48
  49/**
  50 * i40e_acquire_nvm - Generic request for acquiring the NVM ownership
  51 * @hw: pointer to the HW structure
  52 * @access: NVM access type (read or write)
  53 *
  54 * This function will request NVM ownership for reading
  55 * via the proper Admin Command.
  56 **/
  57int i40e_acquire_nvm(struct i40e_hw *hw,
  58		     enum i40e_aq_resource_access_type access)
  59{
 
  60	u64 gtime, timeout;
  61	u64 time_left = 0;
  62	int ret_code = 0;
  63
  64	if (hw->nvm.blank_nvm_mode)
  65		goto i40e_i40e_acquire_nvm_exit;
  66
  67	ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access,
  68					    0, &time_left, NULL);
  69	/* Reading the Global Device Timer */
  70	gtime = rd32(hw, I40E_GLVFGEN_TIMER);
  71
  72	/* Store the timeout */
  73	hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time_left) + gtime;
  74
  75	if (ret_code)
  76		i40e_debug(hw, I40E_DEBUG_NVM,
  77			   "NVM acquire type %d failed time_left=%llu ret=%d aq_err=%d\n",
  78			   access, time_left, ret_code, hw->aq.asq_last_status);
  79
  80	if (ret_code && time_left) {
  81		/* Poll until the current NVM owner timeouts */
  82		timeout = I40E_MS_TO_GTIME(I40E_MAX_NVM_TIMEOUT) + gtime;
  83		while ((gtime < timeout) && time_left) {
  84			usleep_range(10000, 20000);
  85			gtime = rd32(hw, I40E_GLVFGEN_TIMER);
  86			ret_code = i40e_aq_request_resource(hw,
  87							I40E_NVM_RESOURCE_ID,
  88							access, 0, &time_left,
  89							NULL);
  90			if (!ret_code) {
  91				hw->nvm.hw_semaphore_timeout =
  92					    I40E_MS_TO_GTIME(time_left) + gtime;
  93				break;
  94			}
  95		}
  96		if (ret_code) {
  97			hw->nvm.hw_semaphore_timeout = 0;
  98			i40e_debug(hw, I40E_DEBUG_NVM,
  99				   "NVM acquire timed out, wait %llu ms before trying again. status=%d aq_err=%d\n",
 100				   time_left, ret_code, hw->aq.asq_last_status);
 101		}
 102	}
 103
 104i40e_i40e_acquire_nvm_exit:
 105	return ret_code;
 106}
 107
 108/**
 109 * i40e_release_nvm - Generic request for releasing the NVM ownership
 110 * @hw: pointer to the HW structure
 111 *
 112 * This function will release NVM resource via the proper Admin Command.
 113 **/
 114void i40e_release_nvm(struct i40e_hw *hw)
 115{
 
 116	u32 total_delay = 0;
 117	int ret_code = 0;
 118
 119	if (hw->nvm.blank_nvm_mode)
 120		return;
 121
 122	ret_code = i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL);
 123
 124	/* there are some rare cases when trying to release the resource
 125	 * results in an admin Q timeout, so handle them correctly
 126	 */
 127	while ((ret_code == -EIO) &&
 128	       (total_delay < hw->aq.asq_cmd_timeout)) {
 129		usleep_range(1000, 2000);
 130		ret_code = i40e_aq_release_resource(hw,
 131						    I40E_NVM_RESOURCE_ID,
 132						    0, NULL);
 133		total_delay++;
 134	}
 135}
 136
 137/**
 138 * i40e_poll_sr_srctl_done_bit - Polls the GLNVM_SRCTL done bit
 139 * @hw: pointer to the HW structure
 140 *
 141 * Polls the SRCTL Shadow RAM register done bit.
 142 **/
 143static int i40e_poll_sr_srctl_done_bit(struct i40e_hw *hw)
 144{
 145	int ret_code = -EIO;
 146	u32 srctl, wait_cnt;
 147
 148	/* Poll the I40E_GLNVM_SRCTL until the done bit is set */
 149	for (wait_cnt = 0; wait_cnt < I40E_SRRD_SRCTL_ATTEMPTS; wait_cnt++) {
 150		srctl = rd32(hw, I40E_GLNVM_SRCTL);
 151		if (srctl & I40E_GLNVM_SRCTL_DONE_MASK) {
 152			ret_code = 0;
 153			break;
 154		}
 155		udelay(5);
 156	}
 157	if (ret_code == -EIO)
 158		i40e_debug(hw, I40E_DEBUG_NVM, "Done bit in GLNVM_SRCTL not set");
 159	return ret_code;
 160}
 161
 162/**
 163 * i40e_read_nvm_word_srctl - Reads Shadow RAM via SRCTL register
 164 * @hw: pointer to the HW structure
 165 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
 166 * @data: word read from the Shadow RAM
 167 *
 168 * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
 169 **/
 170static int i40e_read_nvm_word_srctl(struct i40e_hw *hw, u16 offset,
 171				    u16 *data)
 172{
 173	int ret_code = -EIO;
 174	u32 sr_reg;
 175
 176	if (offset >= hw->nvm.sr_size) {
 177		i40e_debug(hw, I40E_DEBUG_NVM,
 178			   "NVM read error: offset %d beyond Shadow RAM limit %d\n",
 179			   offset, hw->nvm.sr_size);
 180		ret_code = -EINVAL;
 181		goto read_nvm_exit;
 182	}
 183
 184	/* Poll the done bit first */
 185	ret_code = i40e_poll_sr_srctl_done_bit(hw);
 186	if (!ret_code) {
 187		/* Write the address and start reading */
 188		sr_reg = ((u32)offset << I40E_GLNVM_SRCTL_ADDR_SHIFT) |
 189			 BIT(I40E_GLNVM_SRCTL_START_SHIFT);
 190		wr32(hw, I40E_GLNVM_SRCTL, sr_reg);
 191
 192		/* Poll I40E_GLNVM_SRCTL until the done bit is set */
 193		ret_code = i40e_poll_sr_srctl_done_bit(hw);
 194		if (!ret_code) {
 195			sr_reg = rd32(hw, I40E_GLNVM_SRDATA);
 196			*data = FIELD_GET(I40E_GLNVM_SRDATA_RDDATA_MASK,
 197					  sr_reg);
 
 198		}
 199	}
 200	if (ret_code)
 201		i40e_debug(hw, I40E_DEBUG_NVM,
 202			   "NVM read error: Couldn't access Shadow RAM address: 0x%x\n",
 203			   offset);
 204
 205read_nvm_exit:
 206	return ret_code;
 207}
 208
 209/**
 210 * i40e_read_nvm_aq - Read Shadow RAM.
 211 * @hw: pointer to the HW structure.
 212 * @module_pointer: module pointer location in words from the NVM beginning
 213 * @offset: offset in words from module start
 214 * @words: number of words to read
 215 * @data: buffer with words to read to the Shadow RAM
 216 * @last_command: tells the AdminQ that this is the last command
 217 *
 218 * Reads a 16 bit words buffer to the Shadow RAM using the admin command.
 219 **/
 220static int i40e_read_nvm_aq(struct i40e_hw *hw,
 221			    u8 module_pointer, u32 offset,
 222			    u16 words, void *data,
 223			    bool last_command)
 224{
 
 225	struct i40e_asq_cmd_details cmd_details;
 226	int ret_code = -EIO;
 227
 228	memset(&cmd_details, 0, sizeof(cmd_details));
 229	cmd_details.wb_desc = &hw->nvm_wb_desc;
 230
 231	/* Here we are checking the SR limit only for the flat memory model.
 232	 * We cannot do it for the module-based model, as we did not acquire
 233	 * the NVM resource yet (we cannot get the module pointer value).
 234	 * Firmware will check the module-based model.
 235	 */
 236	if ((offset + words) > hw->nvm.sr_size)
 237		i40e_debug(hw, I40E_DEBUG_NVM,
 238			   "NVM read error: offset %d beyond Shadow RAM limit %d\n",
 239			   (offset + words), hw->nvm.sr_size);
 240	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
 241		/* We can read only up to 4KB (one sector), in one AQ write */
 242		i40e_debug(hw, I40E_DEBUG_NVM,
 243			   "NVM read fail error: tried to read %d words, limit is %d.\n",
 244			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
 245	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
 246		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
 247		/* A single read cannot spread over two sectors */
 248		i40e_debug(hw, I40E_DEBUG_NVM,
 249			   "NVM read error: cannot spread over two sectors in a single read offset=%d words=%d\n",
 250			   offset, words);
 251	else
 252		ret_code = i40e_aq_read_nvm(hw, module_pointer,
 253					    2 * offset,  /*bytes*/
 254					    2 * words,   /*bytes*/
 255					    data, last_command, &cmd_details);
 256
 257	return ret_code;
 258}
 259
 260/**
 261 * i40e_read_nvm_word_aq - Reads Shadow RAM via AQ
 262 * @hw: pointer to the HW structure
 263 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
 264 * @data: word read from the Shadow RAM
 265 *
 266 * Reads one 16 bit word from the Shadow RAM using the AdminQ
 267 **/
 268static int i40e_read_nvm_word_aq(struct i40e_hw *hw, u16 offset,
 269				 u16 *data)
 270{
 271	int ret_code = -EIO;
 272
 273	ret_code = i40e_read_nvm_aq(hw, 0x0, offset, 1, data, true);
 274	*data = le16_to_cpu(*(__le16 *)data);
 275
 276	return ret_code;
 277}
 278
 279/**
 280 * __i40e_read_nvm_word - Reads nvm word, assumes caller does the locking
 281 * @hw: pointer to the HW structure
 282 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
 283 * @data: word read from the Shadow RAM
 284 *
 285 * Reads one 16 bit word from the Shadow RAM.
 286 *
 287 * Do not use this function except in cases where the nvm lock is already
 288 * taken via i40e_acquire_nvm().
 289 **/
 290static int __i40e_read_nvm_word(struct i40e_hw *hw,
 291				u16 offset, u16 *data)
 292{
 293	if (test_bit(I40E_HW_CAP_AQ_SRCTL_ACCESS_ENABLE, hw->caps))
 294		return i40e_read_nvm_word_aq(hw, offset, data);
 295
 296	return i40e_read_nvm_word_srctl(hw, offset, data);
 297}
 298
 299/**
 300 * i40e_read_nvm_word - Reads nvm word and acquire lock if necessary
 301 * @hw: pointer to the HW structure
 302 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
 303 * @data: word read from the Shadow RAM
 304 *
 305 * Reads one 16 bit word from the Shadow RAM.
 306 **/
 307int i40e_read_nvm_word(struct i40e_hw *hw, u16 offset,
 308		       u16 *data)
 309{
 310	int ret_code = 0;
 311
 312	if (test_bit(I40E_HW_CAP_NVM_READ_REQUIRES_LOCK, hw->caps))
 313		ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 314	if (ret_code)
 315		return ret_code;
 316
 317	ret_code = __i40e_read_nvm_word(hw, offset, data);
 318
 319	if (test_bit(I40E_HW_CAP_NVM_READ_REQUIRES_LOCK, hw->caps))
 320		i40e_release_nvm(hw);
 321
 322	return ret_code;
 323}
 324
 325/**
 326 * i40e_read_nvm_module_data - Reads NVM Buffer to specified memory location
 327 * @hw: Pointer to the HW structure
 328 * @module_ptr: Pointer to module in words with respect to NVM beginning
 329 * @module_offset: Offset in words from module start
 330 * @data_offset: Offset in words from reading data area start
 331 * @words_data_size: Words to read from NVM
 332 * @data_ptr: Pointer to memory location where resulting buffer will be stored
 333 **/
 334int i40e_read_nvm_module_data(struct i40e_hw *hw,
 335			      u8 module_ptr,
 336			      u16 module_offset,
 337			      u16 data_offset,
 338			      u16 words_data_size,
 339			      u16 *data_ptr)
 340{
 
 341	u16 specific_ptr = 0;
 342	u16 ptr_value = 0;
 343	u32 offset = 0;
 344	int status;
 345
 346	if (module_ptr != 0) {
 347		status = i40e_read_nvm_word(hw, module_ptr, &ptr_value);
 348		if (status) {
 349			i40e_debug(hw, I40E_DEBUG_ALL,
 350				   "Reading nvm word failed.Error code: %d.\n",
 351				   status);
 352			return -EIO;
 353		}
 354	}
 355#define I40E_NVM_INVALID_PTR_VAL 0x7FFF
 356#define I40E_NVM_INVALID_VAL 0xFFFF
 357
 358	/* Pointer not initialized */
 359	if (ptr_value == I40E_NVM_INVALID_PTR_VAL ||
 360	    ptr_value == I40E_NVM_INVALID_VAL) {
 361		i40e_debug(hw, I40E_DEBUG_ALL, "Pointer not initialized.\n");
 362		return -EINVAL;
 363	}
 364
 365	/* Check whether the module is in SR mapped area or outside */
 366	if (ptr_value & I40E_PTR_TYPE) {
 367		/* Pointer points outside of the Shared RAM mapped area */
 368		i40e_debug(hw, I40E_DEBUG_ALL,
 369			   "Reading nvm data failed. Pointer points outside of the Shared RAM mapped area.\n");
 370
 371		return -EINVAL;
 372	} else {
 373		/* Read from the Shadow RAM */
 374
 375		status = i40e_read_nvm_word(hw, ptr_value + module_offset,
 376					    &specific_ptr);
 377		if (status) {
 378			i40e_debug(hw, I40E_DEBUG_ALL,
 379				   "Reading nvm word failed.Error code: %d.\n",
 380				   status);
 381			return -EIO;
 382		}
 383
 384		offset = ptr_value + module_offset + specific_ptr +
 385			data_offset;
 386
 387		status = i40e_read_nvm_buffer(hw, offset, &words_data_size,
 388					      data_ptr);
 389		if (status) {
 390			i40e_debug(hw, I40E_DEBUG_ALL,
 391				   "Reading nvm buffer failed.Error code: %d.\n",
 392				   status);
 393		}
 394	}
 395
 396	return status;
 397}
 398
 399/**
 400 * i40e_read_nvm_buffer_srctl - Reads Shadow RAM buffer via SRCTL register
 401 * @hw: pointer to the HW structure
 402 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
 403 * @words: (in) number of words to read; (out) number of words actually read
 404 * @data: words read from the Shadow RAM
 405 *
 406 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
 407 * method. The buffer read is preceded by the NVM ownership take
 408 * and followed by the release.
 409 **/
 410static int i40e_read_nvm_buffer_srctl(struct i40e_hw *hw, u16 offset,
 411				      u16 *words, u16 *data)
 412{
 413	int ret_code = 0;
 414	u16 index, word;
 415
 416	/* Loop thru the selected region */
 417	for (word = 0; word < *words; word++) {
 418		index = offset + word;
 419		ret_code = i40e_read_nvm_word_srctl(hw, index, &data[word]);
 420		if (ret_code)
 421			break;
 422	}
 423
 424	/* Update the number of words read from the Shadow RAM */
 425	*words = word;
 426
 427	return ret_code;
 428}
 429
 430/**
 431 * i40e_read_nvm_buffer_aq - Reads Shadow RAM buffer via AQ
 432 * @hw: pointer to the HW structure
 433 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
 434 * @words: (in) number of words to read; (out) number of words actually read
 435 * @data: words read from the Shadow RAM
 436 *
 437 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_aq()
 438 * method. The buffer read is preceded by the NVM ownership take
 439 * and followed by the release.
 440 **/
 441static int i40e_read_nvm_buffer_aq(struct i40e_hw *hw, u16 offset,
 442				   u16 *words, u16 *data)
 443{
 
 
 444	bool last_cmd = false;
 445	u16 words_read = 0;
 446	u16 read_size;
 447	int ret_code;
 448	u16 i = 0;
 449
 450	do {
 451		/* Calculate number of bytes we should read in this step.
 452		 * FVL AQ do not allow to read more than one page at a time or
 453		 * to cross page boundaries.
 454		 */
 455		if (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)
 456			read_size = min(*words,
 457					(u16)(I40E_SR_SECTOR_SIZE_IN_WORDS -
 458				      (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)));
 459		else
 460			read_size = min((*words - words_read),
 461					I40E_SR_SECTOR_SIZE_IN_WORDS);
 462
 463		/* Check if this is last command, if so set proper flag */
 464		if ((words_read + read_size) >= *words)
 465			last_cmd = true;
 466
 467		ret_code = i40e_read_nvm_aq(hw, 0x0, offset, read_size,
 468					    data + words_read, last_cmd);
 469		if (ret_code)
 470			goto read_nvm_buffer_aq_exit;
 471
 472		/* Increment counter for words already read and move offset to
 473		 * new read location
 474		 */
 475		words_read += read_size;
 476		offset += read_size;
 477	} while (words_read < *words);
 478
 479	for (i = 0; i < *words; i++)
 480		data[i] = le16_to_cpu(((__le16 *)data)[i]);
 481
 482read_nvm_buffer_aq_exit:
 483	*words = words_read;
 484	return ret_code;
 485}
 486
 487/**
 488 * __i40e_read_nvm_buffer - Reads nvm buffer, caller must acquire lock
 489 * @hw: pointer to the HW structure
 490 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
 491 * @words: (in) number of words to read; (out) number of words actually read
 492 * @data: words read from the Shadow RAM
 493 *
 494 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
 495 * method.
 496 **/
 497static int __i40e_read_nvm_buffer(struct i40e_hw *hw,
 498				  u16 offset, u16 *words,
 499				  u16 *data)
 500{
 501	if (test_bit(I40E_HW_CAP_AQ_SRCTL_ACCESS_ENABLE, hw->caps))
 502		return i40e_read_nvm_buffer_aq(hw, offset, words, data);
 503
 504	return i40e_read_nvm_buffer_srctl(hw, offset, words, data);
 505}
 506
 507/**
 508 * i40e_read_nvm_buffer - Reads Shadow RAM buffer and acquire lock if necessary
 509 * @hw: pointer to the HW structure
 510 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
 511 * @words: (in) number of words to read; (out) number of words actually read
 512 * @data: words read from the Shadow RAM
 513 *
 514 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
 515 * method. The buffer read is preceded by the NVM ownership take
 516 * and followed by the release.
 517 **/
 518int i40e_read_nvm_buffer(struct i40e_hw *hw, u16 offset,
 519			 u16 *words, u16 *data)
 520{
 521	int ret_code = 0;
 522
 523	if (test_bit(I40E_HW_CAP_AQ_SRCTL_ACCESS_ENABLE, hw->caps)) {
 524		ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 525		if (!ret_code) {
 526			ret_code = i40e_read_nvm_buffer_aq(hw, offset, words,
 527							   data);
 528			i40e_release_nvm(hw);
 529		}
 530	} else {
 531		ret_code = i40e_read_nvm_buffer_srctl(hw, offset, words, data);
 532	}
 533
 534	return ret_code;
 535}
 536
 537/**
 538 * i40e_write_nvm_aq - Writes Shadow RAM.
 539 * @hw: pointer to the HW structure.
 540 * @module_pointer: module pointer location in words from the NVM beginning
 541 * @offset: offset in words from module start
 542 * @words: number of words to write
 543 * @data: buffer with words to write to the Shadow RAM
 544 * @last_command: tells the AdminQ that this is the last command
 545 *
 546 * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
 547 **/
 548static int i40e_write_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
 549			     u32 offset, u16 words, void *data,
 550			     bool last_command)
 551{
 
 552	struct i40e_asq_cmd_details cmd_details;
 553	int ret_code = -EIO;
 554
 555	memset(&cmd_details, 0, sizeof(cmd_details));
 556	cmd_details.wb_desc = &hw->nvm_wb_desc;
 557
 558	/* Here we are checking the SR limit only for the flat memory model.
 559	 * We cannot do it for the module-based model, as we did not acquire
 560	 * the NVM resource yet (we cannot get the module pointer value).
 561	 * Firmware will check the module-based model.
 562	 */
 563	if ((offset + words) > hw->nvm.sr_size)
 564		i40e_debug(hw, I40E_DEBUG_NVM,
 565			   "NVM write error: offset %d beyond Shadow RAM limit %d\n",
 566			   (offset + words), hw->nvm.sr_size);
 567	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
 568		/* We can write only up to 4KB (one sector), in one AQ write */
 569		i40e_debug(hw, I40E_DEBUG_NVM,
 570			   "NVM write fail error: tried to write %d words, limit is %d.\n",
 571			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
 572	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
 573		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
 574		/* A single write cannot spread over two sectors */
 575		i40e_debug(hw, I40E_DEBUG_NVM,
 576			   "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
 577			   offset, words);
 578	else
 579		ret_code = i40e_aq_update_nvm(hw, module_pointer,
 580					      2 * offset,  /*bytes*/
 581					      2 * words,   /*bytes*/
 582					      data, last_command, 0,
 583					      &cmd_details);
 584
 585	return ret_code;
 586}
 587
 588/**
 589 * i40e_calc_nvm_checksum - Calculates and returns the checksum
 590 * @hw: pointer to hardware structure
 591 * @checksum: pointer to the checksum
 592 *
 593 * This function calculates SW Checksum that covers the whole 64kB shadow RAM
 594 * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD
 595 * is customer specific and unknown. Therefore, this function skips all maximum
 596 * possible size of VPD (1kB).
 597 **/
 598static int i40e_calc_nvm_checksum(struct i40e_hw *hw,
 599				  u16 *checksum)
 600{
 
 601	struct i40e_virt_mem vmem;
 602	u16 pcie_alt_module = 0;
 603	u16 checksum_local = 0;
 604	u16 vpd_module = 0;
 605	int ret_code;
 606	u16 *data;
 607	u16 i = 0;
 608
 609	ret_code = i40e_allocate_virt_mem(hw, &vmem,
 610				    I40E_SR_SECTOR_SIZE_IN_WORDS * sizeof(u16));
 611	if (ret_code)
 612		goto i40e_calc_nvm_checksum_exit;
 613	data = (u16 *)vmem.va;
 614
 615	/* read pointer to VPD area */
 616	ret_code = __i40e_read_nvm_word(hw, I40E_SR_VPD_PTR, &vpd_module);
 617	if (ret_code) {
 618		ret_code = -EIO;
 619		goto i40e_calc_nvm_checksum_exit;
 620	}
 621
 622	/* read pointer to PCIe Alt Auto-load module */
 623	ret_code = __i40e_read_nvm_word(hw, I40E_SR_PCIE_ALT_AUTO_LOAD_PTR,
 624					&pcie_alt_module);
 625	if (ret_code) {
 626		ret_code = -EIO;
 627		goto i40e_calc_nvm_checksum_exit;
 628	}
 629
 630	/* Calculate SW checksum that covers the whole 64kB shadow RAM
 631	 * except the VPD and PCIe ALT Auto-load modules
 632	 */
 633	for (i = 0; i < hw->nvm.sr_size; i++) {
 634		/* Read SR page */
 635		if ((i % I40E_SR_SECTOR_SIZE_IN_WORDS) == 0) {
 636			u16 words = I40E_SR_SECTOR_SIZE_IN_WORDS;
 637
 638			ret_code = __i40e_read_nvm_buffer(hw, i, &words, data);
 639			if (ret_code) {
 640				ret_code = -EIO;
 641				goto i40e_calc_nvm_checksum_exit;
 642			}
 643		}
 644
 645		/* Skip Checksum word */
 646		if (i == I40E_SR_SW_CHECKSUM_WORD)
 647			continue;
 648		/* Skip VPD module (convert byte size to word count) */
 649		if ((i >= (u32)vpd_module) &&
 650		    (i < ((u32)vpd_module +
 651		     (I40E_SR_VPD_MODULE_MAX_SIZE / 2)))) {
 652			continue;
 653		}
 654		/* Skip PCIe ALT module (convert byte size to word count) */
 655		if ((i >= (u32)pcie_alt_module) &&
 656		    (i < ((u32)pcie_alt_module +
 657		     (I40E_SR_PCIE_ALT_MODULE_MAX_SIZE / 2)))) {
 658			continue;
 659		}
 660
 661		checksum_local += data[i % I40E_SR_SECTOR_SIZE_IN_WORDS];
 662	}
 663
 664	*checksum = (u16)I40E_SR_SW_CHECKSUM_BASE - checksum_local;
 665
 666i40e_calc_nvm_checksum_exit:
 667	i40e_free_virt_mem(hw, &vmem);
 668	return ret_code;
 669}
 670
 671/**
 672 * i40e_update_nvm_checksum - Updates the NVM checksum
 673 * @hw: pointer to hardware structure
 674 *
 675 * NVM ownership must be acquired before calling this function and released
 676 * on ARQ completion event reception by caller.
 677 * This function will commit SR to NVM.
 678 **/
 679int i40e_update_nvm_checksum(struct i40e_hw *hw)
 680{
 681	__le16 le_sum;
 682	int ret_code;
 683	u16 checksum;
 
 684
 685	ret_code = i40e_calc_nvm_checksum(hw, &checksum);
 686	if (!ret_code) {
 687		le_sum = cpu_to_le16(checksum);
 688		ret_code = i40e_write_nvm_aq(hw, 0x00, I40E_SR_SW_CHECKSUM_WORD,
 689					     1, &le_sum, true);
 690	}
 691
 692	return ret_code;
 693}
 694
 695/**
 696 * i40e_validate_nvm_checksum - Validate EEPROM checksum
 697 * @hw: pointer to hardware structure
 698 * @checksum: calculated checksum
 699 *
 700 * Performs checksum calculation and validates the NVM SW checksum. If the
 701 * caller does not need checksum, the value can be NULL.
 702 **/
 703int i40e_validate_nvm_checksum(struct i40e_hw *hw,
 704			       u16 *checksum)
 705{
 706	u16 checksum_local = 0;
 707	u16 checksum_sr = 0;
 708	int ret_code = 0;
 709
 710	/* We must acquire the NVM lock in order to correctly synchronize the
 711	 * NVM accesses across multiple PFs. Without doing so it is possible
 712	 * for one of the PFs to read invalid data potentially indicating that
 713	 * the checksum is invalid.
 714	 */
 715	ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 716	if (ret_code)
 717		return ret_code;
 718	ret_code = i40e_calc_nvm_checksum(hw, &checksum_local);
 719	__i40e_read_nvm_word(hw, I40E_SR_SW_CHECKSUM_WORD, &checksum_sr);
 720	i40e_release_nvm(hw);
 721	if (ret_code)
 722		return ret_code;
 723
 724	/* Verify read checksum from EEPROM is the same as
 725	 * calculated checksum
 726	 */
 727	if (checksum_local != checksum_sr)
 728		ret_code = -EIO;
 729
 730	/* If the user cares, return the calculated checksum */
 731	if (checksum)
 732		*checksum = checksum_local;
 733
 734	return ret_code;
 735}
 736
 737static u8 i40e_nvmupd_get_module(u32 val)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 738{
 739	return (u8)(val & I40E_NVM_MOD_PNT_MASK);
 740}
 741static inline u8 i40e_nvmupd_get_transaction(u32 val)
 742{
 743	return FIELD_GET(I40E_NVM_TRANS_MASK, val);
 744}
 745
 746static inline u8 i40e_nvmupd_get_preservation_flags(u32 val)
 747{
 748	return FIELD_GET(I40E_NVM_PRESERVATION_FLAGS_MASK, val);
 
 749}
 750
 751static const char * const i40e_nvm_update_state_str[] = {
 752	"I40E_NVMUPD_INVALID",
 753	"I40E_NVMUPD_READ_CON",
 754	"I40E_NVMUPD_READ_SNT",
 755	"I40E_NVMUPD_READ_LCB",
 756	"I40E_NVMUPD_READ_SA",
 757	"I40E_NVMUPD_WRITE_ERA",
 758	"I40E_NVMUPD_WRITE_CON",
 759	"I40E_NVMUPD_WRITE_SNT",
 760	"I40E_NVMUPD_WRITE_LCB",
 761	"I40E_NVMUPD_WRITE_SA",
 762	"I40E_NVMUPD_CSUM_CON",
 763	"I40E_NVMUPD_CSUM_SA",
 764	"I40E_NVMUPD_CSUM_LCB",
 765	"I40E_NVMUPD_STATUS",
 766	"I40E_NVMUPD_EXEC_AQ",
 767	"I40E_NVMUPD_GET_AQ_RESULT",
 768	"I40E_NVMUPD_GET_AQ_EVENT",
 769};
 770
 771/**
 772 * i40e_nvmupd_validate_command - Validate given command
 773 * @hw: pointer to hardware structure
 774 * @cmd: pointer to nvm update command buffer
 775 * @perrno: pointer to return error code
 776 *
 777 * Return one of the valid command types or I40E_NVMUPD_INVALID
 778 **/
 779static enum i40e_nvmupd_cmd
 780i40e_nvmupd_validate_command(struct i40e_hw *hw, struct i40e_nvm_access *cmd,
 781			     int *perrno)
 782{
 783	enum i40e_nvmupd_cmd upd_cmd;
 784	u8 module, transaction;
 785
 786	/* anything that doesn't match a recognized case is an error */
 787	upd_cmd = I40E_NVMUPD_INVALID;
 788
 789	transaction = i40e_nvmupd_get_transaction(cmd->config);
 790	module = i40e_nvmupd_get_module(cmd->config);
 791
 792	/* limits on data size */
 793	if (cmd->data_size < 1 || cmd->data_size > I40E_NVMUPD_MAX_DATA) {
 794		i40e_debug(hw, I40E_DEBUG_NVM,
 795			   "%s data_size %d\n", __func__, cmd->data_size);
 796		*perrno = -EFAULT;
 797		return I40E_NVMUPD_INVALID;
 798	}
 799
 800	switch (cmd->command) {
 801	case I40E_NVM_READ:
 802		switch (transaction) {
 803		case I40E_NVM_CON:
 804			upd_cmd = I40E_NVMUPD_READ_CON;
 805			break;
 806		case I40E_NVM_SNT:
 807			upd_cmd = I40E_NVMUPD_READ_SNT;
 808			break;
 809		case I40E_NVM_LCB:
 810			upd_cmd = I40E_NVMUPD_READ_LCB;
 811			break;
 812		case I40E_NVM_SA:
 813			upd_cmd = I40E_NVMUPD_READ_SA;
 814			break;
 815		case I40E_NVM_EXEC:
 816			if (module == 0xf)
 817				upd_cmd = I40E_NVMUPD_STATUS;
 818			else if (module == 0)
 819				upd_cmd = I40E_NVMUPD_GET_AQ_RESULT;
 820			break;
 821		case I40E_NVM_AQE:
 822			upd_cmd = I40E_NVMUPD_GET_AQ_EVENT;
 823			break;
 824		}
 825		break;
 826
 827	case I40E_NVM_WRITE:
 828		switch (transaction) {
 829		case I40E_NVM_CON:
 830			upd_cmd = I40E_NVMUPD_WRITE_CON;
 831			break;
 832		case I40E_NVM_SNT:
 833			upd_cmd = I40E_NVMUPD_WRITE_SNT;
 834			break;
 835		case I40E_NVM_LCB:
 836			upd_cmd = I40E_NVMUPD_WRITE_LCB;
 837			break;
 838		case I40E_NVM_SA:
 839			upd_cmd = I40E_NVMUPD_WRITE_SA;
 840			break;
 841		case I40E_NVM_ERA:
 842			upd_cmd = I40E_NVMUPD_WRITE_ERA;
 843			break;
 844		case I40E_NVM_CSUM:
 845			upd_cmd = I40E_NVMUPD_CSUM_CON;
 846			break;
 847		case (I40E_NVM_CSUM | I40E_NVM_SA):
 848			upd_cmd = I40E_NVMUPD_CSUM_SA;
 849			break;
 850		case (I40E_NVM_CSUM | I40E_NVM_LCB):
 851			upd_cmd = I40E_NVMUPD_CSUM_LCB;
 852			break;
 853		case I40E_NVM_EXEC:
 854			if (module == 0)
 855				upd_cmd = I40E_NVMUPD_EXEC_AQ;
 856			break;
 857		}
 858		break;
 859	}
 860
 861	return upd_cmd;
 862}
 863
 864/**
 865 * i40e_nvmupd_nvm_erase - Erase an NVM module
 866 * @hw: pointer to hardware structure
 867 * @cmd: pointer to nvm update command buffer
 868 * @perrno: pointer to return error code
 869 *
 870 * module, offset, data_size and data are in cmd structure
 871 **/
 872static int i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
 873				 struct i40e_nvm_access *cmd,
 874				 int *perrno)
 875{
 876	struct i40e_asq_cmd_details cmd_details;
 877	u8 module, transaction;
 878	int status = 0;
 879	bool last;
 880
 881	transaction = i40e_nvmupd_get_transaction(cmd->config);
 882	module = i40e_nvmupd_get_module(cmd->config);
 883	last = (transaction & I40E_NVM_LCB);
 884
 885	memset(&cmd_details, 0, sizeof(cmd_details));
 886	cmd_details.wb_desc = &hw->nvm_wb_desc;
 887
 888	status = i40e_aq_erase_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
 889				   last, &cmd_details);
 890	if (status) {
 891		i40e_debug(hw, I40E_DEBUG_NVM,
 892			   "%s mod 0x%x  off 0x%x len 0x%x\n",
 893			   __func__, module, cmd->offset, cmd->data_size);
 894		i40e_debug(hw, I40E_DEBUG_NVM,
 895			   "%s status %d aq %d\n",
 896			   __func__, status, hw->aq.asq_last_status);
 897		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
 898	}
 899
 900	return status;
 901}
 902
 903/**
 904 * i40e_nvmupd_nvm_write - Write NVM
 905 * @hw: pointer to hardware structure
 906 * @cmd: pointer to nvm update command buffer
 907 * @bytes: pointer to the data buffer
 908 * @perrno: pointer to return error code
 909 *
 910 * module, offset, data_size and data are in cmd structure
 911 **/
 912static int i40e_nvmupd_nvm_write(struct i40e_hw *hw,
 913				 struct i40e_nvm_access *cmd,
 914				 u8 *bytes, int *perrno)
 915{
 916	struct i40e_asq_cmd_details cmd_details;
 917	u8 module, transaction;
 918	u8 preservation_flags;
 919	int status = 0;
 920	bool last;
 921
 922	transaction = i40e_nvmupd_get_transaction(cmd->config);
 923	module = i40e_nvmupd_get_module(cmd->config);
 924	last = (transaction & I40E_NVM_LCB);
 925	preservation_flags = i40e_nvmupd_get_preservation_flags(cmd->config);
 926
 927	memset(&cmd_details, 0, sizeof(cmd_details));
 928	cmd_details.wb_desc = &hw->nvm_wb_desc;
 929
 930	status = i40e_aq_update_nvm(hw, module, cmd->offset,
 931				    (u16)cmd->data_size, bytes, last,
 932				    preservation_flags, &cmd_details);
 933	if (status) {
 934		i40e_debug(hw, I40E_DEBUG_NVM,
 935			   "%s mod 0x%x off 0x%x len 0x%x\n",
 936			   __func__, module, cmd->offset, cmd->data_size);
 937		i40e_debug(hw, I40E_DEBUG_NVM,
 938			   "%s status %d aq %d\n",
 939			   __func__, status, hw->aq.asq_last_status);
 940		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
 941	}
 942
 943	return status;
 944}
 945
 946/**
 947 * i40e_nvmupd_nvm_read - Read NVM
 948 * @hw: pointer to hardware structure
 949 * @cmd: pointer to nvm update command buffer
 950 * @bytes: pointer to the data buffer
 951 * @perrno: pointer to return error code
 952 *
 953 * cmd structure contains identifiers and data buffer
 954 **/
 955static int i40e_nvmupd_nvm_read(struct i40e_hw *hw,
 956				struct i40e_nvm_access *cmd,
 957				u8 *bytes, int *perrno)
 958{
 959	struct i40e_asq_cmd_details cmd_details;
 960	u8 module, transaction;
 961	int status;
 962	bool last;
 963
 964	transaction = i40e_nvmupd_get_transaction(cmd->config);
 965	module = i40e_nvmupd_get_module(cmd->config);
 966	last = (transaction == I40E_NVM_LCB) || (transaction == I40E_NVM_SA);
 967
 968	memset(&cmd_details, 0, sizeof(cmd_details));
 969	cmd_details.wb_desc = &hw->nvm_wb_desc;
 970
 971	status = i40e_aq_read_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
 972				  bytes, last, &cmd_details);
 973	if (status) {
 974		i40e_debug(hw, I40E_DEBUG_NVM,
 975			   "%s mod 0x%x  off 0x%x  len 0x%x\n",
 976			   __func__, module, cmd->offset, cmd->data_size);
 977		i40e_debug(hw, I40E_DEBUG_NVM,
 978			   "%s status %d aq %d\n",
 979			   __func__, status, hw->aq.asq_last_status);
 980		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
 981	}
 982
 983	return status;
 984}
 985
 986/**
 987 * i40e_nvmupd_exec_aq - Run an AQ command
 988 * @hw: pointer to hardware structure
 989 * @cmd: pointer to nvm update command buffer
 990 * @bytes: pointer to the data buffer
 991 * @perrno: pointer to return error code
 992 *
 993 * cmd structure contains identifiers and data buffer
 994 **/
 995static int i40e_nvmupd_exec_aq(struct i40e_hw *hw,
 996			       struct i40e_nvm_access *cmd,
 997			       u8 *bytes, int *perrno)
 998{
 999	struct i40e_asq_cmd_details cmd_details;
1000	struct i40e_aq_desc *aq_desc;
1001	u32 buff_size = 0;
1002	u8 *buff = NULL;
1003	u32 aq_desc_len;
1004	u32 aq_data_len;
1005	int status;
1006
1007	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1008	if (cmd->offset == 0xffff)
1009		return 0;
1010
1011	memset(&cmd_details, 0, sizeof(cmd_details));
1012	cmd_details.wb_desc = &hw->nvm_wb_desc;
1013
1014	aq_desc_len = sizeof(struct i40e_aq_desc);
1015	memset(&hw->nvm_wb_desc, 0, aq_desc_len);
 
 
 
1016
1017	/* get the aq descriptor */
1018	if (cmd->data_size < aq_desc_len) {
1019		i40e_debug(hw, I40E_DEBUG_NVM,
1020			   "NVMUPD: not enough aq desc bytes for exec, size %d < %d\n",
1021			   cmd->data_size, aq_desc_len);
1022		*perrno = -EINVAL;
1023		return -EINVAL;
1024	}
1025	aq_desc = (struct i40e_aq_desc *)bytes;
1026
1027	/* if data buffer needed, make sure it's ready */
1028	aq_data_len = cmd->data_size - aq_desc_len;
1029	buff_size = max_t(u32, aq_data_len, le16_to_cpu(aq_desc->datalen));
1030	if (buff_size) {
1031		if (!hw->nvm_buff.va) {
1032			status = i40e_allocate_virt_mem(hw, &hw->nvm_buff,
1033							hw->aq.asq_buf_size);
1034			if (status)
1035				i40e_debug(hw, I40E_DEBUG_NVM,
1036					   "NVMUPD: i40e_allocate_virt_mem for exec buff failed, %d\n",
1037					   status);
1038		}
1039
1040		if (hw->nvm_buff.va) {
1041			buff = hw->nvm_buff.va;
1042			memcpy(buff, &bytes[aq_desc_len], aq_data_len);
1043		}
1044	}
1045
1046	if (cmd->offset)
1047		memset(&hw->nvm_aq_event_desc, 0, aq_desc_len);
1048
1049	/* and away we go! */
1050	status = i40e_asq_send_command(hw, aq_desc, buff,
1051				       buff_size, &cmd_details);
1052	if (status) {
1053		i40e_debug(hw, I40E_DEBUG_NVM,
1054			   "%s err %pe aq_err %s\n",
1055			   __func__, ERR_PTR(status),
1056			   i40e_aq_str(hw, hw->aq.asq_last_status));
1057		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1058		return status;
1059	}
1060
1061	/* should we wait for a followup event? */
1062	if (cmd->offset) {
1063		hw->nvm_wait_opcode = cmd->offset;
1064		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1065	}
1066
1067	return status;
1068}
1069
1070/**
1071 * i40e_nvmupd_get_aq_result - Get the results from the previous exec_aq
1072 * @hw: pointer to hardware structure
1073 * @cmd: pointer to nvm update command buffer
1074 * @bytes: pointer to the data buffer
1075 * @perrno: pointer to return error code
1076 *
1077 * cmd structure contains identifiers and data buffer
1078 **/
1079static int i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
1080				     struct i40e_nvm_access *cmd,
1081				     u8 *bytes, int *perrno)
1082{
1083	u32 aq_total_len;
1084	u32 aq_desc_len;
1085	int remainder;
1086	u8 *buff;
1087
1088	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1089
1090	aq_desc_len = sizeof(struct i40e_aq_desc);
1091	aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_wb_desc.datalen);
1092
1093	/* check offset range */
1094	if (cmd->offset > aq_total_len) {
1095		i40e_debug(hw, I40E_DEBUG_NVM, "%s: offset too big %d > %d\n",
1096			   __func__, cmd->offset, aq_total_len);
1097		*perrno = -EINVAL;
1098		return -EINVAL;
1099	}
1100
1101	/* check copylength range */
1102	if (cmd->data_size > (aq_total_len - cmd->offset)) {
1103		int new_len = aq_total_len - cmd->offset;
1104
1105		i40e_debug(hw, I40E_DEBUG_NVM, "%s: copy length %d too big, trimming to %d\n",
1106			   __func__, cmd->data_size, new_len);
1107		cmd->data_size = new_len;
1108	}
1109
1110	remainder = cmd->data_size;
1111	if (cmd->offset < aq_desc_len) {
1112		u32 len = aq_desc_len - cmd->offset;
1113
1114		len = min(len, cmd->data_size);
1115		i40e_debug(hw, I40E_DEBUG_NVM, "%s: aq_desc bytes %d to %d\n",
1116			   __func__, cmd->offset, cmd->offset + len);
1117
1118		buff = ((u8 *)&hw->nvm_wb_desc) + cmd->offset;
1119		memcpy(bytes, buff, len);
1120
1121		bytes += len;
1122		remainder -= len;
1123		buff = hw->nvm_buff.va;
1124	} else {
1125		buff = hw->nvm_buff.va + (cmd->offset - aq_desc_len);
1126	}
1127
1128	if (remainder > 0) {
1129		int start_byte = buff - (u8 *)hw->nvm_buff.va;
1130
1131		i40e_debug(hw, I40E_DEBUG_NVM, "%s: databuf bytes %d to %d\n",
1132			   __func__, start_byte, start_byte + remainder);
1133		memcpy(bytes, buff, remainder);
1134	}
 
 
 
 
 
 
1135
1136	return 0;
1137}
 
1138
1139/**
1140 * i40e_nvmupd_get_aq_event - Get the Admin Queue event from previous exec_aq
1141 * @hw: pointer to hardware structure
1142 * @cmd: pointer to nvm update command buffer
1143 * @bytes: pointer to the data buffer
1144 * @perrno: pointer to return error code
1145 *
1146 * cmd structure contains identifiers and data buffer
1147 **/
1148static int i40e_nvmupd_get_aq_event(struct i40e_hw *hw,
1149				    struct i40e_nvm_access *cmd,
1150				    u8 *bytes, int *perrno)
1151{
1152	u32 aq_total_len;
1153	u32 aq_desc_len;
1154
1155	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
 
 
 
 
 
 
 
 
 
1156
1157	aq_desc_len = sizeof(struct i40e_aq_desc);
1158	aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_aq_event_desc.datalen);
 
1159
1160	/* check copylength range */
1161	if (cmd->data_size > aq_total_len) {
1162		i40e_debug(hw, I40E_DEBUG_NVM,
1163			   "%s: copy length %d too big, trimming to %d\n",
1164			   __func__, cmd->data_size, aq_total_len);
1165		cmd->data_size = aq_total_len;
 
1166	}
1167
1168	memcpy(bytes, &hw->nvm_aq_event_desc, cmd->data_size);
1169
1170	return 0;
1171}
1172
1173/**
1174 * i40e_nvmupd_state_init - Handle NVM update state Init
1175 * @hw: pointer to hardware structure
1176 * @cmd: pointer to nvm update command buffer
1177 * @bytes: pointer to the data buffer
1178 * @perrno: pointer to return error code
1179 *
1180 * Process legitimate commands of the Init state and conditionally set next
1181 * state. Reject all other commands.
1182 **/
1183static int i40e_nvmupd_state_init(struct i40e_hw *hw,
1184				  struct i40e_nvm_access *cmd,
1185				  u8 *bytes, int *perrno)
1186{
 
1187	enum i40e_nvmupd_cmd upd_cmd;
1188	int status = 0;
1189
1190	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1191
1192	switch (upd_cmd) {
1193	case I40E_NVMUPD_READ_SA:
1194		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
1195		if (status) {
1196			*perrno = i40e_aq_rc_to_posix(status,
1197						      hw->aq.asq_last_status);
1198		} else {
1199			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1200			i40e_release_nvm(hw);
1201		}
1202		break;
1203
1204	case I40E_NVMUPD_READ_SNT:
1205		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
1206		if (status) {
1207			*perrno = i40e_aq_rc_to_posix(status,
1208						      hw->aq.asq_last_status);
1209		} else {
1210			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1211			if (status)
1212				i40e_release_nvm(hw);
1213			else
1214				hw->nvmupd_state = I40E_NVMUPD_STATE_READING;
1215		}
1216		break;
1217
1218	case I40E_NVMUPD_WRITE_ERA:
1219		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1220		if (status) {
1221			*perrno = i40e_aq_rc_to_posix(status,
1222						      hw->aq.asq_last_status);
1223		} else {
1224			status = i40e_nvmupd_nvm_erase(hw, cmd, perrno);
1225			if (status) {
1226				i40e_release_nvm(hw);
1227			} else {
1228				hw->nvm_release_on_done = true;
1229				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_erase;
1230				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1231			}
1232		}
1233		break;
1234
1235	case I40E_NVMUPD_WRITE_SA:
1236		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1237		if (status) {
1238			*perrno = i40e_aq_rc_to_posix(status,
1239						      hw->aq.asq_last_status);
1240		} else {
1241			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1242			if (status) {
1243				i40e_release_nvm(hw);
1244			} else {
1245				hw->nvm_release_on_done = true;
1246				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1247				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1248			}
1249		}
1250		break;
1251
1252	case I40E_NVMUPD_WRITE_SNT:
1253		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1254		if (status) {
1255			*perrno = i40e_aq_rc_to_posix(status,
1256						      hw->aq.asq_last_status);
1257		} else {
1258			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1259			if (status) {
1260				i40e_release_nvm(hw);
1261			} else {
1262				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1263				hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1264			}
1265		}
1266		break;
1267
1268	case I40E_NVMUPD_CSUM_SA:
1269		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1270		if (status) {
1271			*perrno = i40e_aq_rc_to_posix(status,
1272						      hw->aq.asq_last_status);
1273		} else {
1274			status = i40e_update_nvm_checksum(hw);
1275			if (status) {
1276				*perrno = hw->aq.asq_last_status ?
1277				   i40e_aq_rc_to_posix(status,
1278						       hw->aq.asq_last_status) :
1279				   -EIO;
1280				i40e_release_nvm(hw);
1281			} else {
1282				hw->nvm_release_on_done = true;
1283				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1284				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1285			}
1286		}
1287		break;
1288
1289	case I40E_NVMUPD_EXEC_AQ:
1290		status = i40e_nvmupd_exec_aq(hw, cmd, bytes, perrno);
1291		break;
1292
1293	case I40E_NVMUPD_GET_AQ_RESULT:
1294		status = i40e_nvmupd_get_aq_result(hw, cmd, bytes, perrno);
1295		break;
1296
1297	case I40E_NVMUPD_GET_AQ_EVENT:
1298		status = i40e_nvmupd_get_aq_event(hw, cmd, bytes, perrno);
1299		break;
1300
1301	default:
1302		i40e_debug(hw, I40E_DEBUG_NVM,
1303			   "NVMUPD: bad cmd %s in init state\n",
1304			   i40e_nvm_update_state_str[upd_cmd]);
1305		status = -EIO;
1306		*perrno = -ESRCH;
1307		break;
1308	}
1309	return status;
1310}
1311
1312/**
1313 * i40e_nvmupd_state_reading - Handle NVM update state Reading
1314 * @hw: pointer to hardware structure
1315 * @cmd: pointer to nvm update command buffer
1316 * @bytes: pointer to the data buffer
1317 * @perrno: pointer to return error code
1318 *
1319 * NVM ownership is already held.  Process legitimate commands and set any
1320 * change in state; reject all other commands.
1321 **/
1322static int i40e_nvmupd_state_reading(struct i40e_hw *hw,
1323				     struct i40e_nvm_access *cmd,
1324				     u8 *bytes, int *perrno)
1325{
 
1326	enum i40e_nvmupd_cmd upd_cmd;
1327	int status = 0;
1328
1329	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1330
1331	switch (upd_cmd) {
1332	case I40E_NVMUPD_READ_SA:
1333	case I40E_NVMUPD_READ_CON:
1334		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1335		break;
1336
1337	case I40E_NVMUPD_READ_LCB:
1338		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1339		i40e_release_nvm(hw);
1340		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1341		break;
1342
1343	default:
1344		i40e_debug(hw, I40E_DEBUG_NVM,
1345			   "NVMUPD: bad cmd %s in reading state.\n",
1346			   i40e_nvm_update_state_str[upd_cmd]);
1347		status = -EOPNOTSUPP;
1348		*perrno = -ESRCH;
1349		break;
1350	}
1351	return status;
1352}
1353
1354/**
1355 * i40e_nvmupd_state_writing - Handle NVM update state Writing
1356 * @hw: pointer to hardware structure
1357 * @cmd: pointer to nvm update command buffer
1358 * @bytes: pointer to the data buffer
1359 * @perrno: pointer to return error code
1360 *
1361 * NVM ownership is already held.  Process legitimate commands and set any
1362 * change in state; reject all other commands
1363 **/
1364static int i40e_nvmupd_state_writing(struct i40e_hw *hw,
1365				     struct i40e_nvm_access *cmd,
1366				     u8 *bytes, int *perrno)
1367{
 
1368	enum i40e_nvmupd_cmd upd_cmd;
1369	bool retry_attempt = false;
1370	int status = 0;
1371
1372	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1373
1374retry:
1375	switch (upd_cmd) {
1376	case I40E_NVMUPD_WRITE_CON:
1377		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1378		if (!status) {
1379			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1380			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1381		}
1382		break;
1383
1384	case I40E_NVMUPD_WRITE_LCB:
1385		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1386		if (status) {
1387			*perrno = hw->aq.asq_last_status ?
1388				   i40e_aq_rc_to_posix(status,
1389						       hw->aq.asq_last_status) :
1390				   -EIO;
1391			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1392		} else {
1393			hw->nvm_release_on_done = true;
1394			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1395			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1396		}
1397		break;
1398
1399	case I40E_NVMUPD_CSUM_CON:
1400		/* Assumes the caller has acquired the nvm */
1401		status = i40e_update_nvm_checksum(hw);
1402		if (status) {
1403			*perrno = hw->aq.asq_last_status ?
1404				   i40e_aq_rc_to_posix(status,
1405						       hw->aq.asq_last_status) :
1406				   -EIO;
1407			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1408		} else {
1409			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1410			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1411		}
1412		break;
1413
1414	case I40E_NVMUPD_CSUM_LCB:
1415		/* Assumes the caller has acquired the nvm */
1416		status = i40e_update_nvm_checksum(hw);
1417		if (status) {
1418			*perrno = hw->aq.asq_last_status ?
1419				   i40e_aq_rc_to_posix(status,
1420						       hw->aq.asq_last_status) :
1421				   -EIO;
1422			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1423		} else {
1424			hw->nvm_release_on_done = true;
1425			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1426			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1427		}
1428		break;
1429
1430	default:
1431		i40e_debug(hw, I40E_DEBUG_NVM,
1432			   "NVMUPD: bad cmd %s in writing state.\n",
1433			   i40e_nvm_update_state_str[upd_cmd]);
1434		status = -EOPNOTSUPP;
1435		*perrno = -ESRCH;
1436		break;
1437	}
1438
1439	/* In some circumstances, a multi-write transaction takes longer
1440	 * than the default 3 minute timeout on the write semaphore.  If
1441	 * the write failed with an EBUSY status, this is likely the problem,
1442	 * so here we try to reacquire the semaphore then retry the write.
1443	 * We only do one retry, then give up.
1444	 */
1445	if (status && hw->aq.asq_last_status == I40E_AQ_RC_EBUSY &&
1446	    !retry_attempt) {
 
1447		u32 old_asq_status = hw->aq.asq_last_status;
1448		int old_status = status;
1449		u32 gtime;
1450
1451		gtime = rd32(hw, I40E_GLVFGEN_TIMER);
1452		if (gtime >= hw->nvm.hw_semaphore_timeout) {
1453			i40e_debug(hw, I40E_DEBUG_ALL,
1454				   "NVMUPD: write semaphore expired (%d >= %lld), retrying\n",
1455				   gtime, hw->nvm.hw_semaphore_timeout);
1456			i40e_release_nvm(hw);
1457			status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1458			if (status) {
1459				i40e_debug(hw, I40E_DEBUG_ALL,
1460					   "NVMUPD: write semaphore reacquire failed aq_err = %d\n",
1461					   hw->aq.asq_last_status);
1462				status = old_status;
1463				hw->aq.asq_last_status = old_asq_status;
1464			} else {
1465				retry_attempt = true;
1466				goto retry;
1467			}
1468		}
1469	}
1470
1471	return status;
1472}
1473
1474/**
1475 * i40e_nvmupd_command - Process an NVM update command
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1476 * @hw: pointer to hardware structure
1477 * @cmd: pointer to nvm update command
1478 * @bytes: pointer to the data buffer
1479 * @perrno: pointer to return error code
1480 *
1481 * Dispatches command depending on what update state is current
1482 **/
1483int i40e_nvmupd_command(struct i40e_hw *hw,
1484			struct i40e_nvm_access *cmd,
1485			u8 *bytes, int *perrno)
1486{
1487	enum i40e_nvmupd_cmd upd_cmd;
1488	int status;
1489
1490	/* assume success */
1491	*perrno = 0;
1492
1493	/* early check for status command and debug msgs */
1494	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1495
1496	i40e_debug(hw, I40E_DEBUG_NVM, "%s state %d nvm_release_on_hold %d opc 0x%04x cmd 0x%08x config 0x%08x offset 0x%08x data_size 0x%08x\n",
1497		   i40e_nvm_update_state_str[upd_cmd],
1498		   hw->nvmupd_state,
1499		   hw->nvm_release_on_done, hw->nvm_wait_opcode,
1500		   cmd->command, cmd->config, cmd->offset, cmd->data_size);
1501
1502	if (upd_cmd == I40E_NVMUPD_INVALID) {
1503		*perrno = -EFAULT;
 
1504		i40e_debug(hw, I40E_DEBUG_NVM,
1505			   "i40e_nvmupd_validate_command returns %d errno %d\n",
1506			   upd_cmd, *perrno);
 
 
1507	}
1508
1509	/* a status request returns immediately rather than
1510	 * going into the state machine
1511	 */
1512	if (upd_cmd == I40E_NVMUPD_STATUS) {
1513		if (!cmd->data_size) {
1514			*perrno = -EFAULT;
1515			return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1516		}
 
1517
1518		bytes[0] = hw->nvmupd_state;
1519
1520		if (cmd->data_size >= 4) {
1521			bytes[1] = 0;
1522			*((u16 *)&bytes[2]) = hw->nvm_wait_opcode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1523		}
 
 
1524
1525		/* Clear error status on read */
1526		if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR)
1527			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1529		return 0;
1530	}
1531
1532	/* Clear status even it is not read and log */
1533	if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR) {
1534		i40e_debug(hw, I40E_DEBUG_NVM,
1535			   "Clearing I40E_NVMUPD_STATE_ERROR state without reading\n");
1536		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1537	}
1538
1539	/* Acquire lock to prevent race condition where adminq_task
1540	 * can execute after i40e_nvmupd_nvm_read/write but before state
1541	 * variables (nvm_wait_opcode, nvm_release_on_done) are updated.
1542	 *
1543	 * During NVMUpdate, it is observed that lock could be held for
1544	 * ~5ms for most commands. However lock is held for ~60ms for
1545	 * NVMUPD_CSUM_LCB command.
1546	 */
1547	mutex_lock(&hw->aq.arq_mutex);
1548	switch (hw->nvmupd_state) {
1549	case I40E_NVMUPD_STATE_INIT:
1550		status = i40e_nvmupd_state_init(hw, cmd, bytes, perrno);
1551		break;
1552
1553	case I40E_NVMUPD_STATE_READING:
1554		status = i40e_nvmupd_state_reading(hw, cmd, bytes, perrno);
1555		break;
 
 
 
 
 
 
1556
1557	case I40E_NVMUPD_STATE_WRITING:
1558		status = i40e_nvmupd_state_writing(hw, cmd, bytes, perrno);
1559		break;
 
 
 
 
 
 
 
 
 
1560
1561	case I40E_NVMUPD_STATE_INIT_WAIT:
1562	case I40E_NVMUPD_STATE_WRITE_WAIT:
1563		/* if we need to stop waiting for an event, clear
1564		 * the wait info and return before doing anything else
1565		 */
1566		if (cmd->offset == 0xffff) {
1567			i40e_nvmupd_clear_wait_state(hw);
1568			status = 0;
1569			break;
1570		}
 
1571
1572		status = -EBUSY;
1573		*perrno = -EBUSY;
1574		break;
1575
1576	default:
1577		/* invalid state, should never happen */
 
 
1578		i40e_debug(hw, I40E_DEBUG_NVM,
1579			   "NVMUPD: no such state %d\n", hw->nvmupd_state);
1580		status = -EOPNOTSUPP;
1581		*perrno = -ESRCH;
1582		break;
 
 
 
 
 
 
 
1583	}
1584
1585	mutex_unlock(&hw->aq.arq_mutex);
1586	return status;
1587}
1588
1589/**
1590 * i40e_nvmupd_clear_wait_state - clear wait state on hw
1591 * @hw: pointer to the hardware structure
 
 
 
 
 
1592 **/
1593void i40e_nvmupd_clear_wait_state(struct i40e_hw *hw)
 
 
1594{
1595	i40e_debug(hw, I40E_DEBUG_NVM,
1596		   "NVMUPD: clearing wait on opcode 0x%04x\n",
1597		   hw->nvm_wait_opcode);
 
1598
1599	if (hw->nvm_release_on_done) {
1600		i40e_release_nvm(hw);
1601		hw->nvm_release_on_done = false;
 
 
 
 
 
 
 
 
1602	}
1603	hw->nvm_wait_opcode = 0;
1604
1605	if (hw->aq.arq_last_status) {
1606		hw->nvmupd_state = I40E_NVMUPD_STATE_ERROR;
1607		return;
 
 
 
 
1608	}
1609
1610	switch (hw->nvmupd_state) {
1611	case I40E_NVMUPD_STATE_INIT_WAIT:
1612		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1613		break;
1614
1615	case I40E_NVMUPD_STATE_WRITE_WAIT:
1616		hw->nvmupd_state = I40E_NVMUPD_STATE_WRITING;
1617		break;
1618
1619	default:
1620		break;
 
 
 
 
 
 
1621	}
 
 
 
 
 
 
 
 
 
 
1622}
1623
1624/**
1625 * i40e_nvmupd_check_wait_event - handle NVM update operation events
1626 * @hw: pointer to the hardware structure
1627 * @opcode: the event that just happened
1628 * @desc: AdminQ descriptor
 
 
 
1629 **/
1630void i40e_nvmupd_check_wait_event(struct i40e_hw *hw, u16 opcode,
1631				  struct i40e_aq_desc *desc)
 
1632{
1633	u32 aq_desc_len = sizeof(struct i40e_aq_desc);
 
1634
1635	if (opcode == hw->nvm_wait_opcode) {
1636		memcpy(&hw->nvm_aq_event_desc, desc, aq_desc_len);
1637		i40e_nvmupd_clear_wait_state(hw);
 
 
 
 
 
 
 
 
1638	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1639}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
 
 
 
   4#include "i40e_prototype.h"
   5
   6/**
   7 * i40e_init_nvm_ops - Initialize NVM function pointers
   8 * @hw: pointer to the HW structure
   9 *
  10 * Setup the function pointers and the NVM info structure. Should be called
  11 * once per NVM initialization, e.g. inside the i40e_init_shared_code().
  12 * Please notice that the NVM term is used here (& in all methods covered
  13 * in this file) as an equivalent of the FLASH part mapped into the SR.
  14 * We are accessing FLASH always thru the Shadow RAM.
  15 **/
  16i40e_status i40e_init_nvm(struct i40e_hw *hw)
  17{
  18	struct i40e_nvm_info *nvm = &hw->nvm;
  19	i40e_status ret_code = 0;
  20	u32 fla, gens;
  21	u8 sr_size;
  22
  23	/* The SR size is stored regardless of the nvm programming mode
  24	 * as the blank mode may be used in the factory line.
  25	 */
  26	gens = rd32(hw, I40E_GLNVM_GENS);
  27	sr_size = ((gens & I40E_GLNVM_GENS_SR_SIZE_MASK) >>
  28			   I40E_GLNVM_GENS_SR_SIZE_SHIFT);
  29	/* Switching to words (sr_size contains power of 2KB) */
  30	nvm->sr_size = BIT(sr_size) * I40E_SR_WORDS_IN_1KB;
  31
  32	/* Check if we are in the normal or blank NVM programming mode */
  33	fla = rd32(hw, I40E_GLNVM_FLA);
  34	if (fla & I40E_GLNVM_FLA_LOCKED_MASK) { /* Normal programming mode */
  35		/* Max NVM timeout */
  36		nvm->timeout = I40E_MAX_NVM_TIMEOUT;
  37		nvm->blank_nvm_mode = false;
  38	} else { /* Blank programming mode */
  39		nvm->blank_nvm_mode = true;
  40		ret_code = I40E_ERR_NVM_BLANK_MODE;
  41		i40e_debug(hw, I40E_DEBUG_NVM, "NVM init error: unsupported blank mode.\n");
  42	}
  43
  44	return ret_code;
  45}
  46
  47/**
  48 * i40e_acquire_nvm - Generic request for acquiring the NVM ownership
  49 * @hw: pointer to the HW structure
  50 * @access: NVM access type (read or write)
  51 *
  52 * This function will request NVM ownership for reading
  53 * via the proper Admin Command.
  54 **/
  55i40e_status i40e_acquire_nvm(struct i40e_hw *hw,
  56				       enum i40e_aq_resource_access_type access)
  57{
  58	i40e_status ret_code = 0;
  59	u64 gtime, timeout;
  60	u64 time_left = 0;
 
  61
  62	if (hw->nvm.blank_nvm_mode)
  63		goto i40e_i40e_acquire_nvm_exit;
  64
  65	ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access,
  66					    0, &time_left, NULL);
  67	/* Reading the Global Device Timer */
  68	gtime = rd32(hw, I40E_GLVFGEN_TIMER);
  69
  70	/* Store the timeout */
  71	hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time_left) + gtime;
  72
  73	if (ret_code)
  74		i40e_debug(hw, I40E_DEBUG_NVM,
  75			   "NVM acquire type %d failed time_left=%llu ret=%d aq_err=%d\n",
  76			   access, time_left, ret_code, hw->aq.asq_last_status);
  77
  78	if (ret_code && time_left) {
  79		/* Poll until the current NVM owner timeouts */
  80		timeout = I40E_MS_TO_GTIME(I40E_MAX_NVM_TIMEOUT) + gtime;
  81		while ((gtime < timeout) && time_left) {
  82			usleep_range(10000, 20000);
  83			gtime = rd32(hw, I40E_GLVFGEN_TIMER);
  84			ret_code = i40e_aq_request_resource(hw,
  85							I40E_NVM_RESOURCE_ID,
  86							access, 0, &time_left,
  87							NULL);
  88			if (!ret_code) {
  89				hw->nvm.hw_semaphore_timeout =
  90					    I40E_MS_TO_GTIME(time_left) + gtime;
  91				break;
  92			}
  93		}
  94		if (ret_code) {
  95			hw->nvm.hw_semaphore_timeout = 0;
  96			i40e_debug(hw, I40E_DEBUG_NVM,
  97				   "NVM acquire timed out, wait %llu ms before trying again. status=%d aq_err=%d\n",
  98				   time_left, ret_code, hw->aq.asq_last_status);
  99		}
 100	}
 101
 102i40e_i40e_acquire_nvm_exit:
 103	return ret_code;
 104}
 105
 106/**
 107 * i40e_release_nvm - Generic request for releasing the NVM ownership
 108 * @hw: pointer to the HW structure
 109 *
 110 * This function will release NVM resource via the proper Admin Command.
 111 **/
 112void i40e_release_nvm(struct i40e_hw *hw)
 113{
 114	i40e_status ret_code = I40E_SUCCESS;
 115	u32 total_delay = 0;
 
 116
 117	if (hw->nvm.blank_nvm_mode)
 118		return;
 119
 120	ret_code = i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL);
 121
 122	/* there are some rare cases when trying to release the resource
 123	 * results in an admin Q timeout, so handle them correctly
 124	 */
 125	while ((ret_code == I40E_ERR_ADMIN_QUEUE_TIMEOUT) &&
 126	       (total_delay < hw->aq.asq_cmd_timeout)) {
 127		usleep_range(1000, 2000);
 128		ret_code = i40e_aq_release_resource(hw,
 129						    I40E_NVM_RESOURCE_ID,
 130						    0, NULL);
 131		total_delay++;
 132	}
 133}
 134
 135/**
 136 * i40e_poll_sr_srctl_done_bit - Polls the GLNVM_SRCTL done bit
 137 * @hw: pointer to the HW structure
 138 *
 139 * Polls the SRCTL Shadow RAM register done bit.
 140 **/
 141static i40e_status i40e_poll_sr_srctl_done_bit(struct i40e_hw *hw)
 142{
 143	i40e_status ret_code = I40E_ERR_TIMEOUT;
 144	u32 srctl, wait_cnt;
 145
 146	/* Poll the I40E_GLNVM_SRCTL until the done bit is set */
 147	for (wait_cnt = 0; wait_cnt < I40E_SRRD_SRCTL_ATTEMPTS; wait_cnt++) {
 148		srctl = rd32(hw, I40E_GLNVM_SRCTL);
 149		if (srctl & I40E_GLNVM_SRCTL_DONE_MASK) {
 150			ret_code = 0;
 151			break;
 152		}
 153		udelay(5);
 154	}
 155	if (ret_code == I40E_ERR_TIMEOUT)
 156		i40e_debug(hw, I40E_DEBUG_NVM, "Done bit in GLNVM_SRCTL not set");
 157	return ret_code;
 158}
 159
 160/**
 161 * i40e_read_nvm_word_srctl - Reads Shadow RAM via SRCTL register
 162 * @hw: pointer to the HW structure
 163 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
 164 * @data: word read from the Shadow RAM
 165 *
 166 * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
 167 **/
 168static i40e_status i40e_read_nvm_word_srctl(struct i40e_hw *hw, u16 offset,
 169					    u16 *data)
 170{
 171	i40e_status ret_code = I40E_ERR_TIMEOUT;
 172	u32 sr_reg;
 173
 174	if (offset >= hw->nvm.sr_size) {
 175		i40e_debug(hw, I40E_DEBUG_NVM,
 176			   "NVM read error: offset %d beyond Shadow RAM limit %d\n",
 177			   offset, hw->nvm.sr_size);
 178		ret_code = I40E_ERR_PARAM;
 179		goto read_nvm_exit;
 180	}
 181
 182	/* Poll the done bit first */
 183	ret_code = i40e_poll_sr_srctl_done_bit(hw);
 184	if (!ret_code) {
 185		/* Write the address and start reading */
 186		sr_reg = ((u32)offset << I40E_GLNVM_SRCTL_ADDR_SHIFT) |
 187			 BIT(I40E_GLNVM_SRCTL_START_SHIFT);
 188		wr32(hw, I40E_GLNVM_SRCTL, sr_reg);
 189
 190		/* Poll I40E_GLNVM_SRCTL until the done bit is set */
 191		ret_code = i40e_poll_sr_srctl_done_bit(hw);
 192		if (!ret_code) {
 193			sr_reg = rd32(hw, I40E_GLNVM_SRDATA);
 194			*data = (u16)((sr_reg &
 195				       I40E_GLNVM_SRDATA_RDDATA_MASK)
 196				    >> I40E_GLNVM_SRDATA_RDDATA_SHIFT);
 197		}
 198	}
 199	if (ret_code)
 200		i40e_debug(hw, I40E_DEBUG_NVM,
 201			   "NVM read error: Couldn't access Shadow RAM address: 0x%x\n",
 202			   offset);
 203
 204read_nvm_exit:
 205	return ret_code;
 206}
 207
 208/**
 209 * i40e_read_nvm_aq - Read Shadow RAM.
 210 * @hw: pointer to the HW structure.
 211 * @module_pointer: module pointer location in words from the NVM beginning
 212 * @offset: offset in words from module start
 213 * @words: number of words to write
 214 * @data: buffer with words to write to the Shadow RAM
 215 * @last_command: tells the AdminQ that this is the last command
 216 *
 217 * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
 218 **/
 219static i40e_status i40e_read_nvm_aq(struct i40e_hw *hw,
 220				    u8 module_pointer, u32 offset,
 221				    u16 words, void *data,
 222				    bool last_command)
 223{
 224	i40e_status ret_code = I40E_ERR_NVM;
 225	struct i40e_asq_cmd_details cmd_details;
 
 226
 227	memset(&cmd_details, 0, sizeof(cmd_details));
 228	cmd_details.wb_desc = &hw->nvm_wb_desc;
 229
 230	/* Here we are checking the SR limit only for the flat memory model.
 231	 * We cannot do it for the module-based model, as we did not acquire
 232	 * the NVM resource yet (we cannot get the module pointer value).
 233	 * Firmware will check the module-based model.
 234	 */
 235	if ((offset + words) > hw->nvm.sr_size)
 236		i40e_debug(hw, I40E_DEBUG_NVM,
 237			   "NVM write error: offset %d beyond Shadow RAM limit %d\n",
 238			   (offset + words), hw->nvm.sr_size);
 239	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
 240		/* We can write only up to 4KB (one sector), in one AQ write */
 241		i40e_debug(hw, I40E_DEBUG_NVM,
 242			   "NVM write fail error: tried to write %d words, limit is %d.\n",
 243			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
 244	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
 245		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
 246		/* A single write cannot spread over two sectors */
 247		i40e_debug(hw, I40E_DEBUG_NVM,
 248			   "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
 249			   offset, words);
 250	else
 251		ret_code = i40e_aq_read_nvm(hw, module_pointer,
 252					    2 * offset,  /*bytes*/
 253					    2 * words,   /*bytes*/
 254					    data, last_command, &cmd_details);
 255
 256	return ret_code;
 257}
 258
 259/**
 260 * i40e_read_nvm_word_aq - Reads Shadow RAM via AQ
 261 * @hw: pointer to the HW structure
 262 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
 263 * @data: word read from the Shadow RAM
 264 *
 265 * Reads one 16 bit word from the Shadow RAM using the AdminQ
 266 **/
 267static i40e_status i40e_read_nvm_word_aq(struct i40e_hw *hw, u16 offset,
 268					 u16 *data)
 269{
 270	i40e_status ret_code = I40E_ERR_TIMEOUT;
 271
 272	ret_code = i40e_read_nvm_aq(hw, 0x0, offset, 1, data, true);
 273	*data = le16_to_cpu(*(__le16 *)data);
 274
 275	return ret_code;
 276}
 277
 278/**
 279 * __i40e_read_nvm_word - Reads nvm word, assumes caller does the locking
 280 * @hw: pointer to the HW structure
 281 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
 282 * @data: word read from the Shadow RAM
 283 *
 284 * Reads one 16 bit word from the Shadow RAM.
 285 *
 286 * Do not use this function except in cases where the nvm lock is already
 287 * taken via i40e_acquire_nvm().
 288 **/
 289static i40e_status __i40e_read_nvm_word(struct i40e_hw *hw,
 290					u16 offset, u16 *data)
 291{
 292	if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE)
 293		return i40e_read_nvm_word_aq(hw, offset, data);
 294
 295	return i40e_read_nvm_word_srctl(hw, offset, data);
 296}
 297
 298/**
 299 * i40e_read_nvm_word - Reads nvm word and acquire lock if necessary
 300 * @hw: pointer to the HW structure
 301 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
 302 * @data: word read from the Shadow RAM
 303 *
 304 * Reads one 16 bit word from the Shadow RAM.
 305 **/
 306i40e_status i40e_read_nvm_word(struct i40e_hw *hw, u16 offset,
 307			       u16 *data)
 308{
 309	i40e_status ret_code = 0;
 310
 311	if (hw->flags & I40E_HW_FLAG_NVM_READ_REQUIRES_LOCK)
 312		ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 313	if (ret_code)
 314		return ret_code;
 315
 316	ret_code = __i40e_read_nvm_word(hw, offset, data);
 317
 318	if (hw->flags & I40E_HW_FLAG_NVM_READ_REQUIRES_LOCK)
 319		i40e_release_nvm(hw);
 320
 321	return ret_code;
 322}
 323
 324/**
 325 * i40e_read_nvm_module_data - Reads NVM Buffer to specified memory location
 326 * @hw: Pointer to the HW structure
 327 * @module_ptr: Pointer to module in words with respect to NVM beginning
 328 * @module_offset: Offset in words from module start
 329 * @data_offset: Offset in words from reading data area start
 330 * @words_data_size: Words to read from NVM
 331 * @data_ptr: Pointer to memory location where resulting buffer will be stored
 332 **/
 333enum i40e_status_code i40e_read_nvm_module_data(struct i40e_hw *hw,
 334						u8 module_ptr,
 335						u16 module_offset,
 336						u16 data_offset,
 337						u16 words_data_size,
 338						u16 *data_ptr)
 339{
 340	i40e_status status;
 341	u16 specific_ptr = 0;
 342	u16 ptr_value = 0;
 343	u32 offset = 0;
 
 344
 345	if (module_ptr != 0) {
 346		status = i40e_read_nvm_word(hw, module_ptr, &ptr_value);
 347		if (status) {
 348			i40e_debug(hw, I40E_DEBUG_ALL,
 349				   "Reading nvm word failed.Error code: %d.\n",
 350				   status);
 351			return I40E_ERR_NVM;
 352		}
 353	}
 354#define I40E_NVM_INVALID_PTR_VAL 0x7FFF
 355#define I40E_NVM_INVALID_VAL 0xFFFF
 356
 357	/* Pointer not initialized */
 358	if (ptr_value == I40E_NVM_INVALID_PTR_VAL ||
 359	    ptr_value == I40E_NVM_INVALID_VAL) {
 360		i40e_debug(hw, I40E_DEBUG_ALL, "Pointer not initialized.\n");
 361		return I40E_ERR_BAD_PTR;
 362	}
 363
 364	/* Check whether the module is in SR mapped area or outside */
 365	if (ptr_value & I40E_PTR_TYPE) {
 366		/* Pointer points outside of the Shared RAM mapped area */
 367		i40e_debug(hw, I40E_DEBUG_ALL,
 368			   "Reading nvm data failed. Pointer points outside of the Shared RAM mapped area.\n");
 369
 370		return I40E_ERR_PARAM;
 371	} else {
 372		/* Read from the Shadow RAM */
 373
 374		status = i40e_read_nvm_word(hw, ptr_value + module_offset,
 375					    &specific_ptr);
 376		if (status) {
 377			i40e_debug(hw, I40E_DEBUG_ALL,
 378				   "Reading nvm word failed.Error code: %d.\n",
 379				   status);
 380			return I40E_ERR_NVM;
 381		}
 382
 383		offset = ptr_value + module_offset + specific_ptr +
 384			data_offset;
 385
 386		status = i40e_read_nvm_buffer(hw, offset, &words_data_size,
 387					      data_ptr);
 388		if (status) {
 389			i40e_debug(hw, I40E_DEBUG_ALL,
 390				   "Reading nvm buffer failed.Error code: %d.\n",
 391				   status);
 392		}
 393	}
 394
 395	return status;
 396}
 397
 398/**
 399 * i40e_read_nvm_buffer_srctl - Reads Shadow RAM buffer via SRCTL register
 400 * @hw: pointer to the HW structure
 401 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
 402 * @words: (in) number of words to read; (out) number of words actually read
 403 * @data: words read from the Shadow RAM
 404 *
 405 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
 406 * method. The buffer read is preceded by the NVM ownership take
 407 * and followed by the release.
 408 **/
 409static i40e_status i40e_read_nvm_buffer_srctl(struct i40e_hw *hw, u16 offset,
 410					      u16 *words, u16 *data)
 411{
 412	i40e_status ret_code = 0;
 413	u16 index, word;
 414
 415	/* Loop thru the selected region */
 416	for (word = 0; word < *words; word++) {
 417		index = offset + word;
 418		ret_code = i40e_read_nvm_word_srctl(hw, index, &data[word]);
 419		if (ret_code)
 420			break;
 421	}
 422
 423	/* Update the number of words read from the Shadow RAM */
 424	*words = word;
 425
 426	return ret_code;
 427}
 428
 429/**
 430 * i40e_read_nvm_buffer_aq - Reads Shadow RAM buffer via AQ
 431 * @hw: pointer to the HW structure
 432 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
 433 * @words: (in) number of words to read; (out) number of words actually read
 434 * @data: words read from the Shadow RAM
 435 *
 436 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_aq()
 437 * method. The buffer read is preceded by the NVM ownership take
 438 * and followed by the release.
 439 **/
 440static i40e_status i40e_read_nvm_buffer_aq(struct i40e_hw *hw, u16 offset,
 441					   u16 *words, u16 *data)
 442{
 443	i40e_status ret_code;
 444	u16 read_size;
 445	bool last_cmd = false;
 446	u16 words_read = 0;
 
 
 447	u16 i = 0;
 448
 449	do {
 450		/* Calculate number of bytes we should read in this step.
 451		 * FVL AQ do not allow to read more than one page at a time or
 452		 * to cross page boundaries.
 453		 */
 454		if (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)
 455			read_size = min(*words,
 456					(u16)(I40E_SR_SECTOR_SIZE_IN_WORDS -
 457				      (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)));
 458		else
 459			read_size = min((*words - words_read),
 460					I40E_SR_SECTOR_SIZE_IN_WORDS);
 461
 462		/* Check if this is last command, if so set proper flag */
 463		if ((words_read + read_size) >= *words)
 464			last_cmd = true;
 465
 466		ret_code = i40e_read_nvm_aq(hw, 0x0, offset, read_size,
 467					    data + words_read, last_cmd);
 468		if (ret_code)
 469			goto read_nvm_buffer_aq_exit;
 470
 471		/* Increment counter for words already read and move offset to
 472		 * new read location
 473		 */
 474		words_read += read_size;
 475		offset += read_size;
 476	} while (words_read < *words);
 477
 478	for (i = 0; i < *words; i++)
 479		data[i] = le16_to_cpu(((__le16 *)data)[i]);
 480
 481read_nvm_buffer_aq_exit:
 482	*words = words_read;
 483	return ret_code;
 484}
 485
 486/**
 487 * __i40e_read_nvm_buffer - Reads nvm buffer, caller must acquire lock
 488 * @hw: pointer to the HW structure
 489 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
 490 * @words: (in) number of words to read; (out) number of words actually read
 491 * @data: words read from the Shadow RAM
 492 *
 493 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
 494 * method.
 495 **/
 496static i40e_status __i40e_read_nvm_buffer(struct i40e_hw *hw,
 497					  u16 offset, u16 *words,
 498					  u16 *data)
 499{
 500	if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE)
 501		return i40e_read_nvm_buffer_aq(hw, offset, words, data);
 502
 503	return i40e_read_nvm_buffer_srctl(hw, offset, words, data);
 504}
 505
 506/**
 507 * i40e_read_nvm_buffer - Reads Shadow RAM buffer and acquire lock if necessary
 508 * @hw: pointer to the HW structure
 509 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
 510 * @words: (in) number of words to read; (out) number of words actually read
 511 * @data: words read from the Shadow RAM
 512 *
 513 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
 514 * method. The buffer read is preceded by the NVM ownership take
 515 * and followed by the release.
 516 **/
 517i40e_status i40e_read_nvm_buffer(struct i40e_hw *hw, u16 offset,
 518				 u16 *words, u16 *data)
 519{
 520	i40e_status ret_code = 0;
 521
 522	if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE) {
 523		ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 524		if (!ret_code) {
 525			ret_code = i40e_read_nvm_buffer_aq(hw, offset, words,
 526							   data);
 527			i40e_release_nvm(hw);
 528		}
 529	} else {
 530		ret_code = i40e_read_nvm_buffer_srctl(hw, offset, words, data);
 531	}
 532
 533	return ret_code;
 534}
 535
 536/**
 537 * i40e_write_nvm_aq - Writes Shadow RAM.
 538 * @hw: pointer to the HW structure.
 539 * @module_pointer: module pointer location in words from the NVM beginning
 540 * @offset: offset in words from module start
 541 * @words: number of words to write
 542 * @data: buffer with words to write to the Shadow RAM
 543 * @last_command: tells the AdminQ that this is the last command
 544 *
 545 * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
 546 **/
 547static i40e_status i40e_write_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
 548				     u32 offset, u16 words, void *data,
 549				     bool last_command)
 550{
 551	i40e_status ret_code = I40E_ERR_NVM;
 552	struct i40e_asq_cmd_details cmd_details;
 
 553
 554	memset(&cmd_details, 0, sizeof(cmd_details));
 555	cmd_details.wb_desc = &hw->nvm_wb_desc;
 556
 557	/* Here we are checking the SR limit only for the flat memory model.
 558	 * We cannot do it for the module-based model, as we did not acquire
 559	 * the NVM resource yet (we cannot get the module pointer value).
 560	 * Firmware will check the module-based model.
 561	 */
 562	if ((offset + words) > hw->nvm.sr_size)
 563		i40e_debug(hw, I40E_DEBUG_NVM,
 564			   "NVM write error: offset %d beyond Shadow RAM limit %d\n",
 565			   (offset + words), hw->nvm.sr_size);
 566	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
 567		/* We can write only up to 4KB (one sector), in one AQ write */
 568		i40e_debug(hw, I40E_DEBUG_NVM,
 569			   "NVM write fail error: tried to write %d words, limit is %d.\n",
 570			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
 571	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
 572		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
 573		/* A single write cannot spread over two sectors */
 574		i40e_debug(hw, I40E_DEBUG_NVM,
 575			   "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
 576			   offset, words);
 577	else
 578		ret_code = i40e_aq_update_nvm(hw, module_pointer,
 579					      2 * offset,  /*bytes*/
 580					      2 * words,   /*bytes*/
 581					      data, last_command, 0,
 582					      &cmd_details);
 583
 584	return ret_code;
 585}
 586
 587/**
 588 * i40e_calc_nvm_checksum - Calculates and returns the checksum
 589 * @hw: pointer to hardware structure
 590 * @checksum: pointer to the checksum
 591 *
 592 * This function calculates SW Checksum that covers the whole 64kB shadow RAM
 593 * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD
 594 * is customer specific and unknown. Therefore, this function skips all maximum
 595 * possible size of VPD (1kB).
 596 **/
 597static i40e_status i40e_calc_nvm_checksum(struct i40e_hw *hw,
 598						    u16 *checksum)
 599{
 600	i40e_status ret_code;
 601	struct i40e_virt_mem vmem;
 602	u16 pcie_alt_module = 0;
 603	u16 checksum_local = 0;
 604	u16 vpd_module = 0;
 
 605	u16 *data;
 606	u16 i = 0;
 607
 608	ret_code = i40e_allocate_virt_mem(hw, &vmem,
 609				    I40E_SR_SECTOR_SIZE_IN_WORDS * sizeof(u16));
 610	if (ret_code)
 611		goto i40e_calc_nvm_checksum_exit;
 612	data = (u16 *)vmem.va;
 613
 614	/* read pointer to VPD area */
 615	ret_code = __i40e_read_nvm_word(hw, I40E_SR_VPD_PTR, &vpd_module);
 616	if (ret_code) {
 617		ret_code = I40E_ERR_NVM_CHECKSUM;
 618		goto i40e_calc_nvm_checksum_exit;
 619	}
 620
 621	/* read pointer to PCIe Alt Auto-load module */
 622	ret_code = __i40e_read_nvm_word(hw, I40E_SR_PCIE_ALT_AUTO_LOAD_PTR,
 623					&pcie_alt_module);
 624	if (ret_code) {
 625		ret_code = I40E_ERR_NVM_CHECKSUM;
 626		goto i40e_calc_nvm_checksum_exit;
 627	}
 628
 629	/* Calculate SW checksum that covers the whole 64kB shadow RAM
 630	 * except the VPD and PCIe ALT Auto-load modules
 631	 */
 632	for (i = 0; i < hw->nvm.sr_size; i++) {
 633		/* Read SR page */
 634		if ((i % I40E_SR_SECTOR_SIZE_IN_WORDS) == 0) {
 635			u16 words = I40E_SR_SECTOR_SIZE_IN_WORDS;
 636
 637			ret_code = __i40e_read_nvm_buffer(hw, i, &words, data);
 638			if (ret_code) {
 639				ret_code = I40E_ERR_NVM_CHECKSUM;
 640				goto i40e_calc_nvm_checksum_exit;
 641			}
 642		}
 643
 644		/* Skip Checksum word */
 645		if (i == I40E_SR_SW_CHECKSUM_WORD)
 646			continue;
 647		/* Skip VPD module (convert byte size to word count) */
 648		if ((i >= (u32)vpd_module) &&
 649		    (i < ((u32)vpd_module +
 650		     (I40E_SR_VPD_MODULE_MAX_SIZE / 2)))) {
 651			continue;
 652		}
 653		/* Skip PCIe ALT module (convert byte size to word count) */
 654		if ((i >= (u32)pcie_alt_module) &&
 655		    (i < ((u32)pcie_alt_module +
 656		     (I40E_SR_PCIE_ALT_MODULE_MAX_SIZE / 2)))) {
 657			continue;
 658		}
 659
 660		checksum_local += data[i % I40E_SR_SECTOR_SIZE_IN_WORDS];
 661	}
 662
 663	*checksum = (u16)I40E_SR_SW_CHECKSUM_BASE - checksum_local;
 664
 665i40e_calc_nvm_checksum_exit:
 666	i40e_free_virt_mem(hw, &vmem);
 667	return ret_code;
 668}
 669
 670/**
 671 * i40e_update_nvm_checksum - Updates the NVM checksum
 672 * @hw: pointer to hardware structure
 673 *
 674 * NVM ownership must be acquired before calling this function and released
 675 * on ARQ completion event reception by caller.
 676 * This function will commit SR to NVM.
 677 **/
 678i40e_status i40e_update_nvm_checksum(struct i40e_hw *hw)
 679{
 680	i40e_status ret_code;
 
 681	u16 checksum;
 682	__le16 le_sum;
 683
 684	ret_code = i40e_calc_nvm_checksum(hw, &checksum);
 685	le_sum = cpu_to_le16(checksum);
 686	if (!ret_code)
 687		ret_code = i40e_write_nvm_aq(hw, 0x00, I40E_SR_SW_CHECKSUM_WORD,
 688					     1, &le_sum, true);
 
 689
 690	return ret_code;
 691}
 692
 693/**
 694 * i40e_validate_nvm_checksum - Validate EEPROM checksum
 695 * @hw: pointer to hardware structure
 696 * @checksum: calculated checksum
 697 *
 698 * Performs checksum calculation and validates the NVM SW checksum. If the
 699 * caller does not need checksum, the value can be NULL.
 700 **/
 701i40e_status i40e_validate_nvm_checksum(struct i40e_hw *hw,
 702						 u16 *checksum)
 703{
 704	i40e_status ret_code = 0;
 705	u16 checksum_sr = 0;
 706	u16 checksum_local = 0;
 707
 708	/* We must acquire the NVM lock in order to correctly synchronize the
 709	 * NVM accesses across multiple PFs. Without doing so it is possible
 710	 * for one of the PFs to read invalid data potentially indicating that
 711	 * the checksum is invalid.
 712	 */
 713	ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 714	if (ret_code)
 715		return ret_code;
 716	ret_code = i40e_calc_nvm_checksum(hw, &checksum_local);
 717	__i40e_read_nvm_word(hw, I40E_SR_SW_CHECKSUM_WORD, &checksum_sr);
 718	i40e_release_nvm(hw);
 719	if (ret_code)
 720		return ret_code;
 721
 722	/* Verify read checksum from EEPROM is the same as
 723	 * calculated checksum
 724	 */
 725	if (checksum_local != checksum_sr)
 726		ret_code = I40E_ERR_NVM_CHECKSUM;
 727
 728	/* If the user cares, return the calculated checksum */
 729	if (checksum)
 730		*checksum = checksum_local;
 731
 732	return ret_code;
 733}
 734
 735static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw,
 736					  struct i40e_nvm_access *cmd,
 737					  u8 *bytes, int *perrno);
 738static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw,
 739					     struct i40e_nvm_access *cmd,
 740					     u8 *bytes, int *perrno);
 741static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw,
 742					     struct i40e_nvm_access *cmd,
 743					     u8 *bytes, int *errno);
 744static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
 745						struct i40e_nvm_access *cmd,
 746						int *perrno);
 747static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
 748					 struct i40e_nvm_access *cmd,
 749					 int *perrno);
 750static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw,
 751					 struct i40e_nvm_access *cmd,
 752					 u8 *bytes, int *perrno);
 753static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw,
 754					struct i40e_nvm_access *cmd,
 755					u8 *bytes, int *perrno);
 756static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw,
 757				       struct i40e_nvm_access *cmd,
 758				       u8 *bytes, int *perrno);
 759static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
 760					     struct i40e_nvm_access *cmd,
 761					     u8 *bytes, int *perrno);
 762static i40e_status i40e_nvmupd_get_aq_event(struct i40e_hw *hw,
 763					    struct i40e_nvm_access *cmd,
 764					    u8 *bytes, int *perrno);
 765static inline u8 i40e_nvmupd_get_module(u32 val)
 766{
 767	return (u8)(val & I40E_NVM_MOD_PNT_MASK);
 768}
 769static inline u8 i40e_nvmupd_get_transaction(u32 val)
 770{
 771	return (u8)((val & I40E_NVM_TRANS_MASK) >> I40E_NVM_TRANS_SHIFT);
 772}
 773
 774static inline u8 i40e_nvmupd_get_preservation_flags(u32 val)
 775{
 776	return (u8)((val & I40E_NVM_PRESERVATION_FLAGS_MASK) >>
 777		    I40E_NVM_PRESERVATION_FLAGS_SHIFT);
 778}
 779
 780static const char * const i40e_nvm_update_state_str[] = {
 781	"I40E_NVMUPD_INVALID",
 782	"I40E_NVMUPD_READ_CON",
 783	"I40E_NVMUPD_READ_SNT",
 784	"I40E_NVMUPD_READ_LCB",
 785	"I40E_NVMUPD_READ_SA",
 786	"I40E_NVMUPD_WRITE_ERA",
 787	"I40E_NVMUPD_WRITE_CON",
 788	"I40E_NVMUPD_WRITE_SNT",
 789	"I40E_NVMUPD_WRITE_LCB",
 790	"I40E_NVMUPD_WRITE_SA",
 791	"I40E_NVMUPD_CSUM_CON",
 792	"I40E_NVMUPD_CSUM_SA",
 793	"I40E_NVMUPD_CSUM_LCB",
 794	"I40E_NVMUPD_STATUS",
 795	"I40E_NVMUPD_EXEC_AQ",
 796	"I40E_NVMUPD_GET_AQ_RESULT",
 797	"I40E_NVMUPD_GET_AQ_EVENT",
 798};
 799
 800/**
 801 * i40e_nvmupd_command - Process an NVM update command
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 802 * @hw: pointer to hardware structure
 803 * @cmd: pointer to nvm update command
 804 * @bytes: pointer to the data buffer
 805 * @perrno: pointer to return error code
 806 *
 807 * Dispatches command depending on what update state is current
 808 **/
 809i40e_status i40e_nvmupd_command(struct i40e_hw *hw,
 810				struct i40e_nvm_access *cmd,
 811				u8 *bytes, int *perrno)
 812{
 813	i40e_status status;
 814	enum i40e_nvmupd_cmd upd_cmd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 815
 816	/* assume success */
 817	*perrno = 0;
 
 818
 819	/* early check for status command and debug msgs */
 820	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
 821
 822	i40e_debug(hw, I40E_DEBUG_NVM, "%s state %d nvm_release_on_hold %d opc 0x%04x cmd 0x%08x config 0x%08x offset 0x%08x data_size 0x%08x\n",
 823		   i40e_nvm_update_state_str[upd_cmd],
 824		   hw->nvmupd_state,
 825		   hw->nvm_release_on_done, hw->nvm_wait_opcode,
 826		   cmd->command, cmd->config, cmd->offset, cmd->data_size);
 827
 828	if (upd_cmd == I40E_NVMUPD_INVALID) {
 829		*perrno = -EFAULT;
 830		i40e_debug(hw, I40E_DEBUG_NVM,
 831			   "i40e_nvmupd_validate_command returns %d errno %d\n",
 832			   upd_cmd, *perrno);
 
 
 833	}
 
 834
 835	/* a status request returns immediately rather than
 836	 * going into the state machine
 837	 */
 838	if (upd_cmd == I40E_NVMUPD_STATUS) {
 839		if (!cmd->data_size) {
 840			*perrno = -EFAULT;
 841			return I40E_ERR_BUF_TOO_SHORT;
 
 
 
 
 
 
 
 
 
 842		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 843
 844		bytes[0] = hw->nvmupd_state;
 
 
 
 845
 846		if (cmd->data_size >= 4) {
 847			bytes[1] = 0;
 848			*((u16 *)&bytes[2]) = hw->nvm_wait_opcode;
 849		}
 
 
 
 850
 851		/* Clear error status on read */
 852		if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR)
 853			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
 854
 855		return 0;
 
 
 856	}
 857
 858	/* Clear status even it is not read and log */
 859	if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR) {
 860		i40e_debug(hw, I40E_DEBUG_NVM,
 861			   "Clearing I40E_NVMUPD_STATE_ERROR state without reading\n");
 862		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
 
 
 
 
 
 
 
 
 
 
 
 863	}
 864
 865	/* Acquire lock to prevent race condition where adminq_task
 866	 * can execute after i40e_nvmupd_nvm_read/write but before state
 867	 * variables (nvm_wait_opcode, nvm_release_on_done) are updated.
 868	 *
 869	 * During NVMUpdate, it is observed that lock could be held for
 870	 * ~5ms for most commands. However lock is held for ~60ms for
 871	 * NVMUPD_CSUM_LCB command.
 872	 */
 873	mutex_lock(&hw->aq.arq_mutex);
 874	switch (hw->nvmupd_state) {
 875	case I40E_NVMUPD_STATE_INIT:
 876		status = i40e_nvmupd_state_init(hw, cmd, bytes, perrno);
 877		break;
 878
 879	case I40E_NVMUPD_STATE_READING:
 880		status = i40e_nvmupd_state_reading(hw, cmd, bytes, perrno);
 881		break;
 882
 883	case I40E_NVMUPD_STATE_WRITING:
 884		status = i40e_nvmupd_state_writing(hw, cmd, bytes, perrno);
 885		break;
 
 
 
 
 
 
 
 
 
 
 
 
 886
 887	case I40E_NVMUPD_STATE_INIT_WAIT:
 888	case I40E_NVMUPD_STATE_WRITE_WAIT:
 889		/* if we need to stop waiting for an event, clear
 890		 * the wait info and return before doing anything else
 891		 */
 892		if (cmd->offset == 0xffff) {
 893			i40e_nvmupd_clear_wait_state(hw);
 894			status = 0;
 895			break;
 896		}
 897
 898		status = I40E_ERR_NOT_READY;
 899		*perrno = -EBUSY;
 900		break;
 901
 902	default:
 903		/* invalid state, should never happen */
 904		i40e_debug(hw, I40E_DEBUG_NVM,
 905			   "NVMUPD: no such state %d\n", hw->nvmupd_state);
 906		status = I40E_NOT_SUPPORTED;
 907		*perrno = -ESRCH;
 908		break;
 909	}
 910
 911	mutex_unlock(&hw->aq.arq_mutex);
 912	return status;
 
 913}
 914
 915/**
 916 * i40e_nvmupd_state_init - Handle NVM update state Init
 917 * @hw: pointer to hardware structure
 918 * @cmd: pointer to nvm update command buffer
 919 * @bytes: pointer to the data buffer
 920 * @perrno: pointer to return error code
 921 *
 922 * Process legitimate commands of the Init state and conditionally set next
 923 * state. Reject all other commands.
 924 **/
 925static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw,
 926					  struct i40e_nvm_access *cmd,
 927					  u8 *bytes, int *perrno)
 928{
 929	i40e_status status = 0;
 930	enum i40e_nvmupd_cmd upd_cmd;
 
 931
 932	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
 933
 934	switch (upd_cmd) {
 935	case I40E_NVMUPD_READ_SA:
 936		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 937		if (status) {
 938			*perrno = i40e_aq_rc_to_posix(status,
 939						     hw->aq.asq_last_status);
 940		} else {
 941			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
 942			i40e_release_nvm(hw);
 943		}
 944		break;
 945
 946	case I40E_NVMUPD_READ_SNT:
 947		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 948		if (status) {
 949			*perrno = i40e_aq_rc_to_posix(status,
 950						     hw->aq.asq_last_status);
 951		} else {
 952			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
 953			if (status)
 954				i40e_release_nvm(hw);
 955			else
 956				hw->nvmupd_state = I40E_NVMUPD_STATE_READING;
 957		}
 958		break;
 959
 960	case I40E_NVMUPD_WRITE_ERA:
 961		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
 962		if (status) {
 963			*perrno = i40e_aq_rc_to_posix(status,
 964						     hw->aq.asq_last_status);
 965		} else {
 966			status = i40e_nvmupd_nvm_erase(hw, cmd, perrno);
 967			if (status) {
 968				i40e_release_nvm(hw);
 969			} else {
 970				hw->nvm_release_on_done = true;
 971				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_erase;
 972				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
 973			}
 974		}
 975		break;
 976
 977	case I40E_NVMUPD_WRITE_SA:
 978		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
 979		if (status) {
 980			*perrno = i40e_aq_rc_to_posix(status,
 981						     hw->aq.asq_last_status);
 982		} else {
 983			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
 984			if (status) {
 985				i40e_release_nvm(hw);
 986			} else {
 987				hw->nvm_release_on_done = true;
 988				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
 989				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
 990			}
 991		}
 992		break;
 993
 994	case I40E_NVMUPD_WRITE_SNT:
 995		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
 996		if (status) {
 997			*perrno = i40e_aq_rc_to_posix(status,
 998						     hw->aq.asq_last_status);
 999		} else {
1000			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1001			if (status) {
1002				i40e_release_nvm(hw);
1003			} else {
1004				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1005				hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1006			}
1007		}
1008		break;
1009
1010	case I40E_NVMUPD_CSUM_SA:
1011		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1012		if (status) {
1013			*perrno = i40e_aq_rc_to_posix(status,
1014						     hw->aq.asq_last_status);
1015		} else {
1016			status = i40e_update_nvm_checksum(hw);
1017			if (status) {
1018				*perrno = hw->aq.asq_last_status ?
1019				   i40e_aq_rc_to_posix(status,
1020						       hw->aq.asq_last_status) :
1021				   -EIO;
1022				i40e_release_nvm(hw);
1023			} else {
1024				hw->nvm_release_on_done = true;
1025				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1026				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1027			}
1028		}
1029		break;
1030
1031	case I40E_NVMUPD_EXEC_AQ:
1032		status = i40e_nvmupd_exec_aq(hw, cmd, bytes, perrno);
1033		break;
1034
1035	case I40E_NVMUPD_GET_AQ_RESULT:
1036		status = i40e_nvmupd_get_aq_result(hw, cmd, bytes, perrno);
1037		break;
1038
1039	case I40E_NVMUPD_GET_AQ_EVENT:
1040		status = i40e_nvmupd_get_aq_event(hw, cmd, bytes, perrno);
1041		break;
1042
1043	default:
1044		i40e_debug(hw, I40E_DEBUG_NVM,
1045			   "NVMUPD: bad cmd %s in init state\n",
1046			   i40e_nvm_update_state_str[upd_cmd]);
1047		status = I40E_ERR_NVM;
1048		*perrno = -ESRCH;
1049		break;
1050	}
1051	return status;
1052}
1053
1054/**
1055 * i40e_nvmupd_state_reading - Handle NVM update state Reading
1056 * @hw: pointer to hardware structure
1057 * @cmd: pointer to nvm update command buffer
1058 * @bytes: pointer to the data buffer
1059 * @perrno: pointer to return error code
1060 *
1061 * NVM ownership is already held.  Process legitimate commands and set any
1062 * change in state; reject all other commands.
1063 **/
1064static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw,
1065					     struct i40e_nvm_access *cmd,
1066					     u8 *bytes, int *perrno)
1067{
1068	i40e_status status = 0;
1069	enum i40e_nvmupd_cmd upd_cmd;
 
1070
1071	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1072
1073	switch (upd_cmd) {
1074	case I40E_NVMUPD_READ_SA:
1075	case I40E_NVMUPD_READ_CON:
1076		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1077		break;
1078
1079	case I40E_NVMUPD_READ_LCB:
1080		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1081		i40e_release_nvm(hw);
1082		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1083		break;
1084
1085	default:
1086		i40e_debug(hw, I40E_DEBUG_NVM,
1087			   "NVMUPD: bad cmd %s in reading state.\n",
1088			   i40e_nvm_update_state_str[upd_cmd]);
1089		status = I40E_NOT_SUPPORTED;
1090		*perrno = -ESRCH;
1091		break;
1092	}
1093	return status;
1094}
1095
1096/**
1097 * i40e_nvmupd_state_writing - Handle NVM update state Writing
1098 * @hw: pointer to hardware structure
1099 * @cmd: pointer to nvm update command buffer
1100 * @bytes: pointer to the data buffer
1101 * @perrno: pointer to return error code
1102 *
1103 * NVM ownership is already held.  Process legitimate commands and set any
1104 * change in state; reject all other commands
1105 **/
1106static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw,
1107					     struct i40e_nvm_access *cmd,
1108					     u8 *bytes, int *perrno)
1109{
1110	i40e_status status = 0;
1111	enum i40e_nvmupd_cmd upd_cmd;
1112	bool retry_attempt = false;
 
1113
1114	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1115
1116retry:
1117	switch (upd_cmd) {
1118	case I40E_NVMUPD_WRITE_CON:
1119		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1120		if (!status) {
1121			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1122			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1123		}
1124		break;
1125
1126	case I40E_NVMUPD_WRITE_LCB:
1127		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1128		if (status) {
1129			*perrno = hw->aq.asq_last_status ?
1130				   i40e_aq_rc_to_posix(status,
1131						       hw->aq.asq_last_status) :
1132				   -EIO;
1133			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1134		} else {
1135			hw->nvm_release_on_done = true;
1136			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1137			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1138		}
1139		break;
1140
1141	case I40E_NVMUPD_CSUM_CON:
1142		/* Assumes the caller has acquired the nvm */
1143		status = i40e_update_nvm_checksum(hw);
1144		if (status) {
1145			*perrno = hw->aq.asq_last_status ?
1146				   i40e_aq_rc_to_posix(status,
1147						       hw->aq.asq_last_status) :
1148				   -EIO;
1149			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1150		} else {
1151			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1152			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1153		}
1154		break;
1155
1156	case I40E_NVMUPD_CSUM_LCB:
1157		/* Assumes the caller has acquired the nvm */
1158		status = i40e_update_nvm_checksum(hw);
1159		if (status) {
1160			*perrno = hw->aq.asq_last_status ?
1161				   i40e_aq_rc_to_posix(status,
1162						       hw->aq.asq_last_status) :
1163				   -EIO;
1164			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1165		} else {
1166			hw->nvm_release_on_done = true;
1167			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1168			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1169		}
1170		break;
1171
1172	default:
1173		i40e_debug(hw, I40E_DEBUG_NVM,
1174			   "NVMUPD: bad cmd %s in writing state.\n",
1175			   i40e_nvm_update_state_str[upd_cmd]);
1176		status = I40E_NOT_SUPPORTED;
1177		*perrno = -ESRCH;
1178		break;
1179	}
1180
1181	/* In some circumstances, a multi-write transaction takes longer
1182	 * than the default 3 minute timeout on the write semaphore.  If
1183	 * the write failed with an EBUSY status, this is likely the problem,
1184	 * so here we try to reacquire the semaphore then retry the write.
1185	 * We only do one retry, then give up.
1186	 */
1187	if (status && (hw->aq.asq_last_status == I40E_AQ_RC_EBUSY) &&
1188	    !retry_attempt) {
1189		i40e_status old_status = status;
1190		u32 old_asq_status = hw->aq.asq_last_status;
 
1191		u32 gtime;
1192
1193		gtime = rd32(hw, I40E_GLVFGEN_TIMER);
1194		if (gtime >= hw->nvm.hw_semaphore_timeout) {
1195			i40e_debug(hw, I40E_DEBUG_ALL,
1196				   "NVMUPD: write semaphore expired (%d >= %lld), retrying\n",
1197				   gtime, hw->nvm.hw_semaphore_timeout);
1198			i40e_release_nvm(hw);
1199			status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1200			if (status) {
1201				i40e_debug(hw, I40E_DEBUG_ALL,
1202					   "NVMUPD: write semaphore reacquire failed aq_err = %d\n",
1203					   hw->aq.asq_last_status);
1204				status = old_status;
1205				hw->aq.asq_last_status = old_asq_status;
1206			} else {
1207				retry_attempt = true;
1208				goto retry;
1209			}
1210		}
1211	}
1212
1213	return status;
1214}
1215
1216/**
1217 * i40e_nvmupd_clear_wait_state - clear wait state on hw
1218 * @hw: pointer to the hardware structure
1219 **/
1220void i40e_nvmupd_clear_wait_state(struct i40e_hw *hw)
1221{
1222	i40e_debug(hw, I40E_DEBUG_NVM,
1223		   "NVMUPD: clearing wait on opcode 0x%04x\n",
1224		   hw->nvm_wait_opcode);
1225
1226	if (hw->nvm_release_on_done) {
1227		i40e_release_nvm(hw);
1228		hw->nvm_release_on_done = false;
1229	}
1230	hw->nvm_wait_opcode = 0;
1231
1232	if (hw->aq.arq_last_status) {
1233		hw->nvmupd_state = I40E_NVMUPD_STATE_ERROR;
1234		return;
1235	}
1236
1237	switch (hw->nvmupd_state) {
1238	case I40E_NVMUPD_STATE_INIT_WAIT:
1239		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1240		break;
1241
1242	case I40E_NVMUPD_STATE_WRITE_WAIT:
1243		hw->nvmupd_state = I40E_NVMUPD_STATE_WRITING;
1244		break;
1245
1246	default:
1247		break;
1248	}
1249}
1250
1251/**
1252 * i40e_nvmupd_check_wait_event - handle NVM update operation events
1253 * @hw: pointer to the hardware structure
1254 * @opcode: the event that just happened
1255 * @desc: AdminQ descriptor
1256 **/
1257void i40e_nvmupd_check_wait_event(struct i40e_hw *hw, u16 opcode,
1258				  struct i40e_aq_desc *desc)
1259{
1260	u32 aq_desc_len = sizeof(struct i40e_aq_desc);
1261
1262	if (opcode == hw->nvm_wait_opcode) {
1263		memcpy(&hw->nvm_aq_event_desc, desc, aq_desc_len);
1264		i40e_nvmupd_clear_wait_state(hw);
1265	}
1266}
1267
1268/**
1269 * i40e_nvmupd_validate_command - Validate given command
1270 * @hw: pointer to hardware structure
1271 * @cmd: pointer to nvm update command buffer
 
1272 * @perrno: pointer to return error code
1273 *
1274 * Return one of the valid command types or I40E_NVMUPD_INVALID
1275 **/
1276static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
1277						 struct i40e_nvm_access *cmd,
1278						 int *perrno)
1279{
1280	enum i40e_nvmupd_cmd upd_cmd;
1281	u8 module, transaction;
 
 
 
1282
1283	/* anything that doesn't match a recognized case is an error */
1284	upd_cmd = I40E_NVMUPD_INVALID;
1285
1286	transaction = i40e_nvmupd_get_transaction(cmd->config);
1287	module = i40e_nvmupd_get_module(cmd->config);
 
 
 
1288
1289	/* limits on data size */
1290	if ((cmd->data_size < 1) ||
1291	    (cmd->data_size > I40E_NVMUPD_MAX_DATA)) {
1292		i40e_debug(hw, I40E_DEBUG_NVM,
1293			   "i40e_nvmupd_validate_command data_size %d\n",
1294			   cmd->data_size);
1295		*perrno = -EFAULT;
1296		return I40E_NVMUPD_INVALID;
1297	}
1298
1299	switch (cmd->command) {
1300	case I40E_NVM_READ:
1301		switch (transaction) {
1302		case I40E_NVM_CON:
1303			upd_cmd = I40E_NVMUPD_READ_CON;
1304			break;
1305		case I40E_NVM_SNT:
1306			upd_cmd = I40E_NVMUPD_READ_SNT;
1307			break;
1308		case I40E_NVM_LCB:
1309			upd_cmd = I40E_NVMUPD_READ_LCB;
1310			break;
1311		case I40E_NVM_SA:
1312			upd_cmd = I40E_NVMUPD_READ_SA;
1313			break;
1314		case I40E_NVM_EXEC:
1315			if (module == 0xf)
1316				upd_cmd = I40E_NVMUPD_STATUS;
1317			else if (module == 0)
1318				upd_cmd = I40E_NVMUPD_GET_AQ_RESULT;
1319			break;
1320		case I40E_NVM_AQE:
1321			upd_cmd = I40E_NVMUPD_GET_AQ_EVENT;
1322			break;
1323		}
1324		break;
1325
1326	case I40E_NVM_WRITE:
1327		switch (transaction) {
1328		case I40E_NVM_CON:
1329			upd_cmd = I40E_NVMUPD_WRITE_CON;
1330			break;
1331		case I40E_NVM_SNT:
1332			upd_cmd = I40E_NVMUPD_WRITE_SNT;
1333			break;
1334		case I40E_NVM_LCB:
1335			upd_cmd = I40E_NVMUPD_WRITE_LCB;
1336			break;
1337		case I40E_NVM_SA:
1338			upd_cmd = I40E_NVMUPD_WRITE_SA;
1339			break;
1340		case I40E_NVM_ERA:
1341			upd_cmd = I40E_NVMUPD_WRITE_ERA;
1342			break;
1343		case I40E_NVM_CSUM:
1344			upd_cmd = I40E_NVMUPD_CSUM_CON;
1345			break;
1346		case (I40E_NVM_CSUM|I40E_NVM_SA):
1347			upd_cmd = I40E_NVMUPD_CSUM_SA;
1348			break;
1349		case (I40E_NVM_CSUM|I40E_NVM_LCB):
1350			upd_cmd = I40E_NVMUPD_CSUM_LCB;
1351			break;
1352		case I40E_NVM_EXEC:
1353			if (module == 0)
1354				upd_cmd = I40E_NVMUPD_EXEC_AQ;
1355			break;
1356		}
1357		break;
1358	}
1359
1360	return upd_cmd;
1361}
 
1362
1363/**
1364 * i40e_nvmupd_exec_aq - Run an AQ command
1365 * @hw: pointer to hardware structure
1366 * @cmd: pointer to nvm update command buffer
1367 * @bytes: pointer to the data buffer
1368 * @perrno: pointer to return error code
1369 *
1370 * cmd structure contains identifiers and data buffer
1371 **/
1372static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw,
1373				       struct i40e_nvm_access *cmd,
1374				       u8 *bytes, int *perrno)
1375{
1376	struct i40e_asq_cmd_details cmd_details;
1377	i40e_status status;
1378	struct i40e_aq_desc *aq_desc;
1379	u32 buff_size = 0;
1380	u8 *buff = NULL;
1381	u32 aq_desc_len;
1382	u32 aq_data_len;
1383
1384	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1385	if (cmd->offset == 0xffff)
1386		return 0;
 
1387
1388	memset(&cmd_details, 0, sizeof(cmd_details));
1389	cmd_details.wb_desc = &hw->nvm_wb_desc;
 
 
 
 
1390
1391	aq_desc_len = sizeof(struct i40e_aq_desc);
1392	memset(&hw->nvm_wb_desc, 0, aq_desc_len);
 
 
 
 
 
 
 
 
 
 
 
1393
1394	/* get the aq descriptor */
1395	if (cmd->data_size < aq_desc_len) {
1396		i40e_debug(hw, I40E_DEBUG_NVM,
1397			   "NVMUPD: not enough aq desc bytes for exec, size %d < %d\n",
1398			   cmd->data_size, aq_desc_len);
1399		*perrno = -EINVAL;
1400		return I40E_ERR_PARAM;
1401	}
1402	aq_desc = (struct i40e_aq_desc *)bytes;
1403
1404	/* if data buffer needed, make sure it's ready */
1405	aq_data_len = cmd->data_size - aq_desc_len;
1406	buff_size = max_t(u32, aq_data_len, le16_to_cpu(aq_desc->datalen));
1407	if (buff_size) {
1408		if (!hw->nvm_buff.va) {
1409			status = i40e_allocate_virt_mem(hw, &hw->nvm_buff,
1410							hw->aq.asq_buf_size);
1411			if (status)
1412				i40e_debug(hw, I40E_DEBUG_NVM,
1413					   "NVMUPD: i40e_allocate_virt_mem for exec buff failed, %d\n",
1414					   status);
1415		}
1416
1417		if (hw->nvm_buff.va) {
1418			buff = hw->nvm_buff.va;
1419			memcpy(buff, &bytes[aq_desc_len], aq_data_len);
 
 
 
 
 
 
1420		}
1421	}
1422
1423	if (cmd->offset)
1424		memset(&hw->nvm_aq_event_desc, 0, aq_desc_len);
 
1425
1426	/* and away we go! */
1427	status = i40e_asq_send_command(hw, aq_desc, buff,
1428				       buff_size, &cmd_details);
1429	if (status) {
1430		i40e_debug(hw, I40E_DEBUG_NVM,
1431			   "i40e_nvmupd_exec_aq err %s aq_err %s\n",
1432			   i40e_stat_str(hw, status),
1433			   i40e_aq_str(hw, hw->aq.asq_last_status));
1434		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1435		return status;
1436	}
1437
1438	/* should we wait for a followup event? */
1439	if (cmd->offset) {
1440		hw->nvm_wait_opcode = cmd->offset;
1441		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1442	}
1443
 
1444	return status;
1445}
1446
1447/**
1448 * i40e_nvmupd_get_aq_result - Get the results from the previous exec_aq
1449 * @hw: pointer to hardware structure
1450 * @cmd: pointer to nvm update command buffer
1451 * @bytes: pointer to the data buffer
1452 * @perrno: pointer to return error code
1453 *
1454 * cmd structure contains identifiers and data buffer
1455 **/
1456static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
1457					     struct i40e_nvm_access *cmd,
1458					     u8 *bytes, int *perrno)
1459{
1460	u32 aq_total_len;
1461	u32 aq_desc_len;
1462	int remainder;
1463	u8 *buff;
1464
1465	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1466
1467	aq_desc_len = sizeof(struct i40e_aq_desc);
1468	aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_wb_desc.datalen);
1469
1470	/* check offset range */
1471	if (cmd->offset > aq_total_len) {
1472		i40e_debug(hw, I40E_DEBUG_NVM, "%s: offset too big %d > %d\n",
1473			   __func__, cmd->offset, aq_total_len);
1474		*perrno = -EINVAL;
1475		return I40E_ERR_PARAM;
1476	}
 
1477
1478	/* check copylength range */
1479	if (cmd->data_size > (aq_total_len - cmd->offset)) {
1480		int new_len = aq_total_len - cmd->offset;
1481
1482		i40e_debug(hw, I40E_DEBUG_NVM, "%s: copy length %d too big, trimming to %d\n",
1483			   __func__, cmd->data_size, new_len);
1484		cmd->data_size = new_len;
1485	}
1486
1487	remainder = cmd->data_size;
1488	if (cmd->offset < aq_desc_len) {
1489		u32 len = aq_desc_len - cmd->offset;
 
1490
1491		len = min(len, cmd->data_size);
1492		i40e_debug(hw, I40E_DEBUG_NVM, "%s: aq_desc bytes %d to %d\n",
1493			   __func__, cmd->offset, cmd->offset + len);
1494
1495		buff = ((u8 *)&hw->nvm_wb_desc) + cmd->offset;
1496		memcpy(bytes, buff, len);
1497
1498		bytes += len;
1499		remainder -= len;
1500		buff = hw->nvm_buff.va;
1501	} else {
1502		buff = hw->nvm_buff.va + (cmd->offset - aq_desc_len);
1503	}
1504
1505	if (remainder > 0) {
1506		int start_byte = buff - (u8 *)hw->nvm_buff.va;
1507
1508		i40e_debug(hw, I40E_DEBUG_NVM, "%s: databuf bytes %d to %d\n",
1509			   __func__, start_byte, start_byte + remainder);
1510		memcpy(bytes, buff, remainder);
1511	}
1512
1513	return 0;
1514}
1515
1516/**
1517 * i40e_nvmupd_get_aq_event - Get the Admin Queue event from previous exec_aq
1518 * @hw: pointer to hardware structure
1519 * @cmd: pointer to nvm update command buffer
1520 * @bytes: pointer to the data buffer
1521 * @perrno: pointer to return error code
1522 *
1523 * cmd structure contains identifiers and data buffer
1524 **/
1525static i40e_status i40e_nvmupd_get_aq_event(struct i40e_hw *hw,
1526					    struct i40e_nvm_access *cmd,
1527					    u8 *bytes, int *perrno)
1528{
1529	u32 aq_total_len;
1530	u32 aq_desc_len;
1531
1532	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1533
1534	aq_desc_len = sizeof(struct i40e_aq_desc);
1535	aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_aq_event_desc.datalen);
1536
1537	/* check copylength range */
1538	if (cmd->data_size > aq_total_len) {
1539		i40e_debug(hw, I40E_DEBUG_NVM,
1540			   "%s: copy length %d too big, trimming to %d\n",
1541			   __func__, cmd->data_size, aq_total_len);
1542		cmd->data_size = aq_total_len;
1543	}
1544
1545	memcpy(bytes, &hw->nvm_aq_event_desc, cmd->data_size);
1546
1547	return 0;
1548}
1549
1550/**
1551 * i40e_nvmupd_nvm_read - Read NVM
1552 * @hw: pointer to hardware structure
1553 * @cmd: pointer to nvm update command buffer
1554 * @bytes: pointer to the data buffer
1555 * @perrno: pointer to return error code
1556 *
1557 * cmd structure contains identifiers and data buffer
1558 **/
1559static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw,
1560					struct i40e_nvm_access *cmd,
1561					u8 *bytes, int *perrno)
1562{
1563	struct i40e_asq_cmd_details cmd_details;
1564	i40e_status status;
1565	u8 module, transaction;
1566	bool last;
1567
1568	transaction = i40e_nvmupd_get_transaction(cmd->config);
1569	module = i40e_nvmupd_get_module(cmd->config);
1570	last = (transaction == I40E_NVM_LCB) || (transaction == I40E_NVM_SA);
1571
1572	memset(&cmd_details, 0, sizeof(cmd_details));
1573	cmd_details.wb_desc = &hw->nvm_wb_desc;
1574
1575	status = i40e_aq_read_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1576				  bytes, last, &cmd_details);
1577	if (status) {
1578		i40e_debug(hw, I40E_DEBUG_NVM,
1579			   "i40e_nvmupd_nvm_read mod 0x%x  off 0x%x  len 0x%x\n",
1580			   module, cmd->offset, cmd->data_size);
1581		i40e_debug(hw, I40E_DEBUG_NVM,
1582			   "i40e_nvmupd_nvm_read status %d aq %d\n",
1583			   status, hw->aq.asq_last_status);
1584		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1585	}
1586
1587	return status;
1588}
1589
1590/**
1591 * i40e_nvmupd_nvm_erase - Erase an NVM module
1592 * @hw: pointer to hardware structure
1593 * @cmd: pointer to nvm update command buffer
1594 * @perrno: pointer to return error code
1595 *
1596 * module, offset, data_size and data are in cmd structure
1597 **/
1598static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
1599					 struct i40e_nvm_access *cmd,
1600					 int *perrno)
1601{
1602	i40e_status status = 0;
1603	struct i40e_asq_cmd_details cmd_details;
1604	u8 module, transaction;
1605	bool last;
1606
1607	transaction = i40e_nvmupd_get_transaction(cmd->config);
1608	module = i40e_nvmupd_get_module(cmd->config);
1609	last = (transaction & I40E_NVM_LCB);
1610
1611	memset(&cmd_details, 0, sizeof(cmd_details));
1612	cmd_details.wb_desc = &hw->nvm_wb_desc;
1613
1614	status = i40e_aq_erase_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1615				   last, &cmd_details);
1616	if (status) {
1617		i40e_debug(hw, I40E_DEBUG_NVM,
1618			   "i40e_nvmupd_nvm_erase mod 0x%x  off 0x%x len 0x%x\n",
1619			   module, cmd->offset, cmd->data_size);
1620		i40e_debug(hw, I40E_DEBUG_NVM,
1621			   "i40e_nvmupd_nvm_erase status %d aq %d\n",
1622			   status, hw->aq.asq_last_status);
1623		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1624	}
1625
1626	return status;
1627}
1628
1629/**
1630 * i40e_nvmupd_nvm_write - Write NVM
1631 * @hw: pointer to hardware structure
1632 * @cmd: pointer to nvm update command buffer
1633 * @bytes: pointer to the data buffer
1634 * @perrno: pointer to return error code
1635 *
1636 * module, offset, data_size and data are in cmd structure
1637 **/
1638static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw,
1639					 struct i40e_nvm_access *cmd,
1640					 u8 *bytes, int *perrno)
1641{
1642	i40e_status status = 0;
1643	struct i40e_asq_cmd_details cmd_details;
1644	u8 module, transaction;
1645	u8 preservation_flags;
1646	bool last;
1647
1648	transaction = i40e_nvmupd_get_transaction(cmd->config);
1649	module = i40e_nvmupd_get_module(cmd->config);
1650	last = (transaction & I40E_NVM_LCB);
1651	preservation_flags = i40e_nvmupd_get_preservation_flags(cmd->config);
1652
1653	memset(&cmd_details, 0, sizeof(cmd_details));
1654	cmd_details.wb_desc = &hw->nvm_wb_desc;
1655
1656	status = i40e_aq_update_nvm(hw, module, cmd->offset,
1657				    (u16)cmd->data_size, bytes, last,
1658				    preservation_flags, &cmd_details);
1659	if (status) {
1660		i40e_debug(hw, I40E_DEBUG_NVM,
1661			   "i40e_nvmupd_nvm_write mod 0x%x off 0x%x len 0x%x\n",
1662			   module, cmd->offset, cmd->data_size);
1663		i40e_debug(hw, I40E_DEBUG_NVM,
1664			   "i40e_nvmupd_nvm_write status %d aq %d\n",
1665			   status, hw->aq.asq_last_status);
1666		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1667	}
1668
1669	return status;
1670}