Loading...
1/*
2 Written 1997-1998 by Donald Becker.
3
4 This software may be used and distributed according to the terms
5 of the GNU General Public License, incorporated herein by reference.
6
7 This driver is for the 3Com ISA EtherLink XL "Corkscrew" 3c515 ethercard.
8
9 The author may be reached as becker@scyld.com, or C/O
10 Scyld Computing Corporation
11 410 Severn Ave., Suite 210
12 Annapolis MD 21403
13
14
15 2000/2/2- Added support for kernel-level ISAPnP
16 by Stephen Frost <sfrost@snowman.net> and Alessandro Zummo
17 Cleaned up for 2.3.x/softnet by Jeff Garzik and Alan Cox.
18
19 2001/11/17 - Added ethtool support (jgarzik)
20
21 2002/10/28 - Locking updates for 2.5 (alan@lxorguk.ukuu.org.uk)
22
23*/
24
25#define DRV_NAME "3c515"
26
27#define CORKSCREW 1
28
29/* "Knobs" that adjust features and parameters. */
30/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
31 Setting to > 1512 effectively disables this feature. */
32static int rx_copybreak = 200;
33
34/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
35static int max_interrupt_work = 20;
36
37/* Enable the automatic media selection code -- usually set. */
38#define AUTOMEDIA 1
39
40/* Allow the use of fragment bus master transfers instead of only
41 programmed-I/O for Vortex cards. Full-bus-master transfers are always
42 enabled by default on Boomerang cards. If VORTEX_BUS_MASTER is defined,
43 the feature may be turned on using 'options'. */
44#define VORTEX_BUS_MASTER
45
46/* A few values that may be tweaked. */
47/* Keep the ring sizes a power of two for efficiency. */
48#define TX_RING_SIZE 16
49#define RX_RING_SIZE 16
50#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer. */
51
52#include <linux/module.h>
53#include <linux/isapnp.h>
54#include <linux/kernel.h>
55#include <linux/netdevice.h>
56#include <linux/string.h>
57#include <linux/errno.h>
58#include <linux/in.h>
59#include <linux/ioport.h>
60#include <linux/skbuff.h>
61#include <linux/etherdevice.h>
62#include <linux/interrupt.h>
63#include <linux/timer.h>
64#include <linux/ethtool.h>
65#include <linux/bitops.h>
66#include <linux/uaccess.h>
67
68#include <net/Space.h>
69
70#include <asm/io.h>
71#include <asm/dma.h>
72
73#define NEW_MULTICAST
74#include <linux/delay.h>
75
76#define MAX_UNITS 8
77
78MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
79MODULE_DESCRIPTION("3Com 3c515 Corkscrew driver");
80MODULE_LICENSE("GPL");
81
82/* "Knobs" for adjusting internal parameters. */
83/* Put out somewhat more debugging messages. (0 - no msg, 1 minimal msgs). */
84#define DRIVER_DEBUG 1
85/* Some values here only for performance evaluation and path-coverage
86 debugging. */
87static int rx_nocopy, rx_copy, queued_packet;
88
89/* Number of times to check to see if the Tx FIFO has space, used in some
90 limited cases. */
91#define WAIT_TX_AVAIL 200
92
93/* Operational parameter that usually are not changed. */
94#define TX_TIMEOUT ((4*HZ)/10) /* Time in jiffies before concluding Tx hung */
95
96/* The size here is somewhat misleading: the Corkscrew also uses the ISA
97 aliased registers at <base>+0x400.
98 */
99#define CORKSCREW_TOTAL_SIZE 0x20
100
101#ifdef DRIVER_DEBUG
102static int corkscrew_debug = DRIVER_DEBUG;
103#else
104static int corkscrew_debug = 1;
105#endif
106
107#define CORKSCREW_ID 10
108
109/*
110 Theory of Operation
111
112I. Board Compatibility
113
114This device driver is designed for the 3Com 3c515 ISA Fast EtherLink XL,
1153Com's ISA bus adapter for Fast Ethernet. Due to the unique I/O port layout,
116it's not practical to integrate this driver with the other EtherLink drivers.
117
118II. Board-specific settings
119
120The Corkscrew has an EEPROM for configuration, but no special settings are
121needed for Linux.
122
123III. Driver operation
124
125The 3c515 series use an interface that's very similar to the 3c900 "Boomerang"
126PCI cards, with the bus master interface extensively modified to work with
127the ISA bus.
128
129The card is capable of full-bus-master transfers with separate
130lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
131DEC Tulip and Intel Speedo3.
132
133This driver uses a "RX_COPYBREAK" scheme rather than a fixed intermediate
134receive buffer. This scheme allocates full-sized skbuffs as receive
135buffers. The value RX_COPYBREAK is used as the copying breakpoint: it is
136chosen to trade-off the memory wasted by passing the full-sized skbuff to
137the queue layer for all frames vs. the copying cost of copying a frame to a
138correctly-sized skbuff.
139
140
141IIIC. Synchronization
142The driver runs as two independent, single-threaded flows of control. One
143is the send-packet routine, which enforces single-threaded use by the netif
144layer. The other thread is the interrupt handler, which is single
145threaded by the hardware and other software.
146
147IV. Notes
148
149Thanks to Terry Murphy of 3Com for providing documentation and a development
150board.
151
152The names "Vortex", "Boomerang" and "Corkscrew" are the internal 3Com
153project names. I use these names to eliminate confusion -- 3Com product
154numbers and names are very similar and often confused.
155
156The new chips support both ethernet (1.5K) and FDDI (4.5K) frame sizes!
157This driver only supports ethernet frames because of the recent MTU limit
158of 1.5K, but the changes to support 4.5K are minimal.
159*/
160
161/* Operational definitions.
162 These are not used by other compilation units and thus are not
163 exported in a ".h" file.
164
165 First the windows. There are eight register windows, with the command
166 and status registers available in each.
167 */
168#define EL3WINDOW(win_num) outw(SelectWindow + (win_num), ioaddr + EL3_CMD)
169#define EL3_CMD 0x0e
170#define EL3_STATUS 0x0e
171
172/* The top five bits written to EL3_CMD are a command, the lower
173 11 bits are the parameter, if applicable.
174 Note that 11 parameters bits was fine for ethernet, but the new chips
175 can handle FDDI length frames (~4500 octets) and now parameters count
176 32-bit 'Dwords' rather than octets. */
177
178enum corkscrew_cmd {
179 TotalReset = 0 << 11, SelectWindow = 1 << 11, StartCoax = 2 << 11,
180 RxDisable = 3 << 11, RxEnable = 4 << 11, RxReset = 5 << 11,
181 UpStall = 6 << 11, UpUnstall = (6 << 11) + 1, DownStall = (6 << 11) + 2,
182 DownUnstall = (6 << 11) + 3, RxDiscard = 8 << 11, TxEnable = 9 << 11,
183 TxDisable = 10 << 11, TxReset = 11 << 11, FakeIntr = 12 << 11,
184 AckIntr = 13 << 11, SetIntrEnb = 14 << 11, SetStatusEnb = 15 << 11,
185 SetRxFilter = 16 << 11, SetRxThreshold = 17 << 11,
186 SetTxThreshold = 18 << 11, SetTxStart = 19 << 11, StartDMAUp = 20 << 11,
187 StartDMADown = (20 << 11) + 1, StatsEnable = 21 << 11,
188 StatsDisable = 22 << 11, StopCoax = 23 << 11,
189};
190
191/* The SetRxFilter command accepts the following classes: */
192enum RxFilter {
193 RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8
194};
195
196/* Bits in the general status register. */
197enum corkscrew_status {
198 IntLatch = 0x0001, AdapterFailure = 0x0002, TxComplete = 0x0004,
199 TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
200 IntReq = 0x0040, StatsFull = 0x0080,
201 DMADone = 1 << 8, DownComplete = 1 << 9, UpComplete = 1 << 10,
202 DMAInProgress = 1 << 11, /* DMA controller is still busy. */
203 CmdInProgress = 1 << 12, /* EL3_CMD is still busy. */
204};
205
206/* Register window 1 offsets, the window used in normal operation.
207 On the Corkscrew this window is always mapped at offsets 0x10-0x1f. */
208enum Window1 {
209 TX_FIFO = 0x10, RX_FIFO = 0x10, RxErrors = 0x14,
210 RxStatus = 0x18, Timer = 0x1A, TxStatus = 0x1B,
211 TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
212};
213enum Window0 {
214 Wn0IRQ = 0x08,
215#if defined(CORKSCREW)
216 Wn0EepromCmd = 0x200A, /* Corkscrew EEPROM command register. */
217 Wn0EepromData = 0x200C, /* Corkscrew EEPROM results register. */
218#else
219 Wn0EepromCmd = 10, /* Window 0: EEPROM command register. */
220 Wn0EepromData = 12, /* Window 0: EEPROM results register. */
221#endif
222};
223enum Win0_EEPROM_bits {
224 EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
225 EEPROM_EWENB = 0x30, /* Enable erasing/writing for 10 msec. */
226 EEPROM_EWDIS = 0x00, /* Disable EWENB before 10 msec timeout. */
227};
228
229/* EEPROM locations. */
230enum eeprom_offset {
231 PhysAddr01 = 0, PhysAddr23 = 1, PhysAddr45 = 2, ModelID = 3,
232 EtherLink3ID = 7,
233};
234
235enum Window3 { /* Window 3: MAC/config bits. */
236 Wn3_Config = 0, Wn3_MAC_Ctrl = 6, Wn3_Options = 8,
237};
238enum wn3_config {
239 Ram_size = 7,
240 Ram_width = 8,
241 Ram_speed = 0x30,
242 Rom_size = 0xc0,
243 Ram_split_shift = 16,
244 Ram_split = 3 << Ram_split_shift,
245 Xcvr_shift = 20,
246 Xcvr = 7 << Xcvr_shift,
247 Autoselect = 0x1000000,
248};
249
250enum Window4 {
251 Wn4_NetDiag = 6, Wn4_Media = 10, /* Window 4: Xcvr/media bits. */
252};
253enum Win4_Media_bits {
254 Media_SQE = 0x0008, /* Enable SQE error counting for AUI. */
255 Media_10TP = 0x00C0, /* Enable link beat and jabber for 10baseT. */
256 Media_Lnk = 0x0080, /* Enable just link beat for 100TX/100FX. */
257 Media_LnkBeat = 0x0800,
258};
259enum Window7 { /* Window 7: Bus Master control. */
260 Wn7_MasterAddr = 0, Wn7_MasterLen = 6, Wn7_MasterStatus = 12,
261};
262
263/* Boomerang-style bus master control registers. Note ISA aliases! */
264enum MasterCtrl {
265 PktStatus = 0x400, DownListPtr = 0x404, FragAddr = 0x408, FragLen =
266 0x40c,
267 TxFreeThreshold = 0x40f, UpPktStatus = 0x410, UpListPtr = 0x418,
268};
269
270/* The Rx and Tx descriptor lists.
271 Caution Alpha hackers: these types are 32 bits! Note also the 8 byte
272 alignment contraint on tx_ring[] and rx_ring[]. */
273struct boom_rx_desc {
274 u32 next;
275 s32 status;
276 u32 addr;
277 s32 length;
278};
279
280/* Values for the Rx status entry. */
281enum rx_desc_status {
282 RxDComplete = 0x00008000, RxDError = 0x4000,
283 /* See boomerang_rx() for actual error bits */
284};
285
286struct boom_tx_desc {
287 u32 next;
288 s32 status;
289 u32 addr;
290 s32 length;
291};
292
293struct corkscrew_private {
294 const char *product_name;
295 struct list_head list;
296 struct net_device *our_dev;
297 /* The Rx and Tx rings are here to keep them quad-word-aligned. */
298 struct boom_rx_desc rx_ring[RX_RING_SIZE];
299 struct boom_tx_desc tx_ring[TX_RING_SIZE];
300 /* The addresses of transmit- and receive-in-place skbuffs. */
301 struct sk_buff *rx_skbuff[RX_RING_SIZE];
302 struct sk_buff *tx_skbuff[TX_RING_SIZE];
303 unsigned int cur_rx, cur_tx; /* The next free ring entry */
304 unsigned int dirty_rx, dirty_tx;/* The ring entries to be free()ed. */
305 struct sk_buff *tx_skb; /* Packet being eaten by bus master ctrl. */
306 struct timer_list timer; /* Media selection timer. */
307 int capabilities ; /* Adapter capabilities word. */
308 int options; /* User-settable misc. driver options. */
309 int last_rx_packets; /* For media autoselection. */
310 unsigned int available_media:8, /* From Wn3_Options */
311 media_override:3, /* Passed-in media type. */
312 default_media:3, /* Read from the EEPROM. */
313 full_duplex:1, autoselect:1, bus_master:1, /* Vortex can only do a fragment bus-m. */
314 full_bus_master_tx:1, full_bus_master_rx:1, /* Boomerang */
315 tx_full:1;
316 spinlock_t lock;
317 struct device *dev;
318};
319
320/* The action to take with a media selection timer tick.
321 Note that we deviate from the 3Com order by checking 10base2 before AUI.
322 */
323enum xcvr_types {
324 XCVR_10baseT = 0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
325 XCVR_100baseFx, XCVR_MII = 6, XCVR_Default = 8,
326};
327
328static struct media_table {
329 char *name;
330 unsigned int media_bits:16, /* Bits to set in Wn4_Media register. */
331 mask:8, /* The transceiver-present bit in Wn3_Config. */
332 next:8; /* The media type to try next. */
333 short wait; /* Time before we check media status. */
334} media_tbl[] = {
335 { "10baseT", Media_10TP, 0x08, XCVR_10base2, (14 * HZ) / 10 },
336 { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1 * HZ) / 10},
337 { "undefined", 0, 0x80, XCVR_10baseT, 10000},
338 { "10base2", 0, 0x10, XCVR_AUI, (1 * HZ) / 10},
339 { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14 * HZ) / 10},
340 { "100baseFX", Media_Lnk, 0x04, XCVR_MII, (14 * HZ) / 10},
341 { "MII", 0, 0x40, XCVR_10baseT, 3 * HZ},
342 { "undefined", 0, 0x01, XCVR_10baseT, 10000},
343 { "Default", 0, 0xFF, XCVR_10baseT, 10000},
344};
345
346#ifdef __ISAPNP__
347static struct isapnp_device_id corkscrew_isapnp_adapters[] = {
348 { ISAPNP_ANY_ID, ISAPNP_ANY_ID,
349 ISAPNP_VENDOR('T', 'C', 'M'), ISAPNP_FUNCTION(0x5051),
350 (long) "3Com Fast EtherLink ISA" },
351 { } /* terminate list */
352};
353
354MODULE_DEVICE_TABLE(isapnp, corkscrew_isapnp_adapters);
355
356static int nopnp;
357#endif /* __ISAPNP__ */
358
359static struct net_device *corkscrew_scan(int unit);
360static int corkscrew_setup(struct net_device *dev, int ioaddr,
361 struct pnp_dev *idev, int card_number);
362static int corkscrew_open(struct net_device *dev);
363static void corkscrew_timer(struct timer_list *t);
364static netdev_tx_t corkscrew_start_xmit(struct sk_buff *skb,
365 struct net_device *dev);
366static int corkscrew_rx(struct net_device *dev);
367static void corkscrew_timeout(struct net_device *dev, unsigned int txqueue);
368static int boomerang_rx(struct net_device *dev);
369static irqreturn_t corkscrew_interrupt(int irq, void *dev_id);
370static int corkscrew_close(struct net_device *dev);
371static void update_stats(int addr, struct net_device *dev);
372static struct net_device_stats *corkscrew_get_stats(struct net_device *dev);
373static void set_rx_mode(struct net_device *dev);
374static const struct ethtool_ops netdev_ethtool_ops;
375
376
377/*
378 Unfortunately maximizing the shared code between the integrated and
379 module version of the driver results in a complicated set of initialization
380 procedures.
381 init_module() -- modules / tc59x_init() -- built-in
382 The wrappers for corkscrew_scan()
383 corkscrew_scan() The common routine that scans for PCI and EISA cards
384 corkscrew_found_device() Allocate a device structure when we find a card.
385 Different versions exist for modules and built-in.
386 corkscrew_probe1() Fill in the device structure -- this is separated
387 so that the modules code can put it in dev->init.
388*/
389/* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
390/* Note: this is the only limit on the number of cards supported!! */
391static int options[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1, };
392
393#ifdef MODULE
394static int debug = -1;
395
396module_param(debug, int, 0);
397module_param_array(options, int, NULL, 0);
398module_param(rx_copybreak, int, 0);
399module_param(max_interrupt_work, int, 0);
400MODULE_PARM_DESC(debug, "3c515 debug level (0-6)");
401MODULE_PARM_DESC(options, "3c515: Bits 0-2: media type, bit 3: full duplex, bit 4: bus mastering");
402MODULE_PARM_DESC(rx_copybreak, "3c515 copy breakpoint for copy-only-tiny-frames");
403MODULE_PARM_DESC(max_interrupt_work, "3c515 maximum events handled per interrupt");
404
405/* A list of all installed Vortex devices, for removing the driver module. */
406/* we will need locking (and refcounting) if we ever use it for more */
407static LIST_HEAD(root_corkscrew_dev);
408
409static int corkscrew_init_module(void)
410{
411 int found = 0;
412 if (debug >= 0)
413 corkscrew_debug = debug;
414 while (corkscrew_scan(-1))
415 found++;
416 return found ? 0 : -ENODEV;
417}
418module_init(corkscrew_init_module);
419
420#else
421struct net_device *tc515_probe(int unit)
422{
423 struct net_device *dev = corkscrew_scan(unit);
424
425 if (!dev)
426 return ERR_PTR(-ENODEV);
427
428 return dev;
429}
430#endif /* not MODULE */
431
432static int check_device(unsigned ioaddr)
433{
434 int timer;
435
436 if (!request_region(ioaddr, CORKSCREW_TOTAL_SIZE, "3c515"))
437 return 0;
438 /* Check the resource configuration for a matching ioaddr. */
439 if ((inw(ioaddr + 0x2002) & 0x1f0) != (ioaddr & 0x1f0)) {
440 release_region(ioaddr, CORKSCREW_TOTAL_SIZE);
441 return 0;
442 }
443 /* Verify by reading the device ID from the EEPROM. */
444 outw(EEPROM_Read + 7, ioaddr + Wn0EepromCmd);
445 /* Pause for at least 162 us. for the read to take place. */
446 for (timer = 4; timer >= 0; timer--) {
447 udelay(162);
448 if ((inw(ioaddr + Wn0EepromCmd) & 0x0200) == 0)
449 break;
450 }
451 if (inw(ioaddr + Wn0EepromData) != 0x6d50) {
452 release_region(ioaddr, CORKSCREW_TOTAL_SIZE);
453 return 0;
454 }
455 return 1;
456}
457
458static void cleanup_card(struct net_device *dev)
459{
460 struct corkscrew_private *vp = netdev_priv(dev);
461 list_del_init(&vp->list);
462 if (dev->dma)
463 free_dma(dev->dma);
464 outw(TotalReset, dev->base_addr + EL3_CMD);
465 release_region(dev->base_addr, CORKSCREW_TOTAL_SIZE);
466 if (vp->dev)
467 pnp_device_detach(to_pnp_dev(vp->dev));
468}
469
470static struct net_device *corkscrew_scan(int unit)
471{
472 struct net_device *dev;
473 static int cards_found = 0;
474 static int ioaddr;
475 int err;
476#ifdef __ISAPNP__
477 short i;
478 static int pnp_cards;
479#endif
480
481 dev = alloc_etherdev(sizeof(struct corkscrew_private));
482 if (!dev)
483 return ERR_PTR(-ENOMEM);
484
485 if (unit >= 0) {
486 sprintf(dev->name, "eth%d", unit);
487 netdev_boot_setup_check(dev);
488 }
489
490#ifdef __ISAPNP__
491 if(nopnp == 1)
492 goto no_pnp;
493 for(i=0; corkscrew_isapnp_adapters[i].vendor != 0; i++) {
494 struct pnp_dev *idev = NULL;
495 int irq;
496 while((idev = pnp_find_dev(NULL,
497 corkscrew_isapnp_adapters[i].vendor,
498 corkscrew_isapnp_adapters[i].function,
499 idev))) {
500
501 if (pnp_device_attach(idev) < 0)
502 continue;
503 if (pnp_activate_dev(idev) < 0) {
504 pr_warn("pnp activate failed (out of resources?)\n");
505 pnp_device_detach(idev);
506 continue;
507 }
508 if (!pnp_port_valid(idev, 0) || !pnp_irq_valid(idev, 0)) {
509 pnp_device_detach(idev);
510 continue;
511 }
512 ioaddr = pnp_port_start(idev, 0);
513 irq = pnp_irq(idev, 0);
514 if (!check_device(ioaddr)) {
515 pnp_device_detach(idev);
516 continue;
517 }
518 if(corkscrew_debug)
519 pr_debug("ISAPNP reports %s at i/o 0x%x, irq %d\n",
520 (char*) corkscrew_isapnp_adapters[i].driver_data, ioaddr, irq);
521 pr_info("3c515 Resource configuration register %#4.4x, DCR %4.4x.\n",
522 inl(ioaddr + 0x2002), inw(ioaddr + 0x2000));
523 /* irq = inw(ioaddr + 0x2002) & 15; */ /* Use the irq from isapnp */
524 SET_NETDEV_DEV(dev, &idev->dev);
525 pnp_cards++;
526 err = corkscrew_setup(dev, ioaddr, idev, cards_found++);
527 if (!err)
528 return dev;
529 cleanup_card(dev);
530 }
531 }
532no_pnp:
533#endif /* __ISAPNP__ */
534
535 /* Check all locations on the ISA bus -- evil! */
536 for (ioaddr = 0x100; ioaddr < 0x400; ioaddr += 0x20) {
537 if (!check_device(ioaddr))
538 continue;
539
540 pr_info("3c515 Resource configuration register %#4.4x, DCR %4.4x.\n",
541 inl(ioaddr + 0x2002), inw(ioaddr + 0x2000));
542 err = corkscrew_setup(dev, ioaddr, NULL, cards_found++);
543 if (!err)
544 return dev;
545 cleanup_card(dev);
546 }
547 free_netdev(dev);
548 return NULL;
549}
550
551
552static const struct net_device_ops netdev_ops = {
553 .ndo_open = corkscrew_open,
554 .ndo_stop = corkscrew_close,
555 .ndo_start_xmit = corkscrew_start_xmit,
556 .ndo_tx_timeout = corkscrew_timeout,
557 .ndo_get_stats = corkscrew_get_stats,
558 .ndo_set_rx_mode = set_rx_mode,
559 .ndo_set_mac_address = eth_mac_addr,
560 .ndo_validate_addr = eth_validate_addr,
561};
562
563
564static int corkscrew_setup(struct net_device *dev, int ioaddr,
565 struct pnp_dev *idev, int card_number)
566{
567 struct corkscrew_private *vp = netdev_priv(dev);
568 unsigned int eeprom[0x40], checksum = 0; /* EEPROM contents */
569 __be16 addr[ETH_ALEN / 2];
570 int i;
571 int irq;
572
573#ifdef __ISAPNP__
574 if (idev) {
575 irq = pnp_irq(idev, 0);
576 vp->dev = &idev->dev;
577 } else {
578 irq = inw(ioaddr + 0x2002) & 15;
579 }
580#else
581 irq = inw(ioaddr + 0x2002) & 15;
582#endif
583
584 dev->base_addr = ioaddr;
585 dev->irq = irq;
586 dev->dma = inw(ioaddr + 0x2000) & 7;
587 vp->product_name = "3c515";
588 vp->options = dev->mem_start;
589 vp->our_dev = dev;
590
591 if (!vp->options) {
592 if (card_number >= MAX_UNITS)
593 vp->options = -1;
594 else
595 vp->options = options[card_number];
596 }
597
598 if (vp->options >= 0) {
599 vp->media_override = vp->options & 7;
600 if (vp->media_override == 2)
601 vp->media_override = 0;
602 vp->full_duplex = (vp->options & 8) ? 1 : 0;
603 vp->bus_master = (vp->options & 16) ? 1 : 0;
604 } else {
605 vp->media_override = 7;
606 vp->full_duplex = 0;
607 vp->bus_master = 0;
608 }
609#ifdef MODULE
610 list_add(&vp->list, &root_corkscrew_dev);
611#endif
612
613 pr_info("%s: 3Com %s at %#3x,", dev->name, vp->product_name, ioaddr);
614
615 spin_lock_init(&vp->lock);
616
617 timer_setup(&vp->timer, corkscrew_timer, 0);
618
619 /* Read the station address from the EEPROM. */
620 EL3WINDOW(0);
621 for (i = 0; i < 0x18; i++) {
622 int timer;
623 outw(EEPROM_Read + i, ioaddr + Wn0EepromCmd);
624 /* Pause for at least 162 us. for the read to take place. */
625 for (timer = 4; timer >= 0; timer--) {
626 udelay(162);
627 if ((inw(ioaddr + Wn0EepromCmd) & 0x0200) == 0)
628 break;
629 }
630 eeprom[i] = inw(ioaddr + Wn0EepromData);
631 checksum ^= eeprom[i];
632 if (i < 3)
633 addr[i] = htons(eeprom[i]);
634 }
635 eth_hw_addr_set(dev, (u8 *)addr);
636 checksum = (checksum ^ (checksum >> 8)) & 0xff;
637 if (checksum != 0x00)
638 pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
639 pr_cont(" %pM", dev->dev_addr);
640 if (eeprom[16] == 0x11c7) { /* Corkscrew */
641 if (request_dma(dev->dma, "3c515")) {
642 pr_cont(", DMA %d allocation failed", dev->dma);
643 dev->dma = 0;
644 } else
645 pr_cont(", DMA %d", dev->dma);
646 }
647 pr_cont(", IRQ %d\n", dev->irq);
648 /* Tell them about an invalid IRQ. */
649 if (corkscrew_debug && (dev->irq <= 0 || dev->irq > 15))
650 pr_warn(" *** Warning: this IRQ is unlikely to work! ***\n");
651
652 {
653 static const char * const ram_split[] = {
654 "5:3", "3:1", "1:1", "3:5"
655 };
656 __u32 config;
657 EL3WINDOW(3);
658 vp->available_media = inw(ioaddr + Wn3_Options);
659 config = inl(ioaddr + Wn3_Config);
660 if (corkscrew_debug > 1)
661 pr_info(" Internal config register is %4.4x, transceivers %#x.\n",
662 config, inw(ioaddr + Wn3_Options));
663 pr_info(" %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
664 8 << config & Ram_size,
665 config & Ram_width ? "word" : "byte",
666 ram_split[(config & Ram_split) >> Ram_split_shift],
667 config & Autoselect ? "autoselect/" : "",
668 media_tbl[(config & Xcvr) >> Xcvr_shift].name);
669 vp->default_media = (config & Xcvr) >> Xcvr_shift;
670 vp->autoselect = config & Autoselect ? 1 : 0;
671 dev->if_port = vp->default_media;
672 }
673 if (vp->media_override != 7) {
674 pr_info(" Media override to transceiver type %d (%s).\n",
675 vp->media_override,
676 media_tbl[vp->media_override].name);
677 dev->if_port = vp->media_override;
678 }
679
680 vp->capabilities = eeprom[16];
681 vp->full_bus_master_tx = (vp->capabilities & 0x20) ? 1 : 0;
682 /* Rx is broken at 10mbps, so we always disable it. */
683 /* vp->full_bus_master_rx = 0; */
684 vp->full_bus_master_rx = (vp->capabilities & 0x20) ? 1 : 0;
685
686 /* The 3c51x-specific entries in the device structure. */
687 dev->netdev_ops = &netdev_ops;
688 dev->watchdog_timeo = (400 * HZ) / 1000;
689 dev->ethtool_ops = &netdev_ethtool_ops;
690
691 return register_netdev(dev);
692}
693
694
695static int corkscrew_open(struct net_device *dev)
696{
697 int ioaddr = dev->base_addr;
698 struct corkscrew_private *vp = netdev_priv(dev);
699 bool armtimer = false;
700 __u32 config;
701 int i;
702
703 /* Before initializing select the active media port. */
704 EL3WINDOW(3);
705 if (vp->full_duplex)
706 outb(0x20, ioaddr + Wn3_MAC_Ctrl); /* Set the full-duplex bit. */
707 config = inl(ioaddr + Wn3_Config);
708
709 if (vp->media_override != 7) {
710 if (corkscrew_debug > 1)
711 pr_info("%s: Media override to transceiver %d (%s).\n",
712 dev->name, vp->media_override,
713 media_tbl[vp->media_override].name);
714 dev->if_port = vp->media_override;
715 } else if (vp->autoselect) {
716 /* Find first available media type, starting with 100baseTx. */
717 dev->if_port = 4;
718 while (!(vp->available_media & media_tbl[dev->if_port].mask))
719 dev->if_port = media_tbl[dev->if_port].next;
720
721 if (corkscrew_debug > 1)
722 pr_debug("%s: Initial media type %s.\n",
723 dev->name, media_tbl[dev->if_port].name);
724 armtimer = true;
725 } else
726 dev->if_port = vp->default_media;
727
728 config = (config & ~Xcvr) | (dev->if_port << Xcvr_shift);
729 outl(config, ioaddr + Wn3_Config);
730
731 if (corkscrew_debug > 1) {
732 pr_debug("%s: corkscrew_open() InternalConfig %8.8x.\n",
733 dev->name, config);
734 }
735
736 outw(TxReset, ioaddr + EL3_CMD);
737 for (i = 20; i >= 0; i--)
738 if (!(inw(ioaddr + EL3_STATUS) & CmdInProgress))
739 break;
740
741 outw(RxReset, ioaddr + EL3_CMD);
742 /* Wait a few ticks for the RxReset command to complete. */
743 for (i = 20; i >= 0; i--)
744 if (!(inw(ioaddr + EL3_STATUS) & CmdInProgress))
745 break;
746
747 outw(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
748
749 /* Use the now-standard shared IRQ implementation. */
750 if (vp->capabilities == 0x11c7) {
751 /* Corkscrew: Cannot share ISA resources. */
752 if (dev->irq == 0 ||
753 dev->dma == 0 ||
754 request_irq(dev->irq, corkscrew_interrupt, 0,
755 vp->product_name, dev))
756 return -EAGAIN;
757 enable_dma(dev->dma);
758 set_dma_mode(dev->dma, DMA_MODE_CASCADE);
759 } else if (request_irq(dev->irq, corkscrew_interrupt, IRQF_SHARED,
760 vp->product_name, dev)) {
761 return -EAGAIN;
762 }
763
764 if (armtimer)
765 mod_timer(&vp->timer, jiffies + media_tbl[dev->if_port].wait);
766
767 if (corkscrew_debug > 1) {
768 EL3WINDOW(4);
769 pr_debug("%s: corkscrew_open() irq %d media status %4.4x.\n",
770 dev->name, dev->irq, inw(ioaddr + Wn4_Media));
771 }
772
773 /* Set the station address and mask in window 2 each time opened. */
774 EL3WINDOW(2);
775 for (i = 0; i < 6; i++)
776 outb(dev->dev_addr[i], ioaddr + i);
777 for (; i < 12; i += 2)
778 outw(0, ioaddr + i);
779
780 if (dev->if_port == 3)
781 /* Start the thinnet transceiver. We should really wait 50ms... */
782 outw(StartCoax, ioaddr + EL3_CMD);
783 EL3WINDOW(4);
784 outw((inw(ioaddr + Wn4_Media) & ~(Media_10TP | Media_SQE)) |
785 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
786
787 /* Switch to the stats window, and clear all stats by reading. */
788 outw(StatsDisable, ioaddr + EL3_CMD);
789 EL3WINDOW(6);
790 for (i = 0; i < 10; i++)
791 inb(ioaddr + i);
792 inw(ioaddr + 10);
793 inw(ioaddr + 12);
794 /* New: On the Vortex we must also clear the BadSSD counter. */
795 EL3WINDOW(4);
796 inb(ioaddr + 12);
797 /* ..and on the Boomerang we enable the extra statistics bits. */
798 outw(0x0040, ioaddr + Wn4_NetDiag);
799
800 /* Switch to register set 7 for normal use. */
801 EL3WINDOW(7);
802
803 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
804 vp->cur_rx = vp->dirty_rx = 0;
805 if (corkscrew_debug > 2)
806 pr_debug("%s: Filling in the Rx ring.\n", dev->name);
807 for (i = 0; i < RX_RING_SIZE; i++) {
808 struct sk_buff *skb;
809 if (i < (RX_RING_SIZE - 1))
810 vp->rx_ring[i].next =
811 isa_virt_to_bus(&vp->rx_ring[i + 1]);
812 else
813 vp->rx_ring[i].next = 0;
814 vp->rx_ring[i].status = 0; /* Clear complete bit. */
815 vp->rx_ring[i].length = PKT_BUF_SZ | 0x80000000;
816 skb = netdev_alloc_skb(dev, PKT_BUF_SZ);
817 vp->rx_skbuff[i] = skb;
818 if (skb == NULL)
819 break; /* Bad news! */
820 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
821 vp->rx_ring[i].addr = isa_virt_to_bus(skb->data);
822 }
823 if (i != 0)
824 vp->rx_ring[i - 1].next =
825 isa_virt_to_bus(&vp->rx_ring[0]); /* Wrap the ring. */
826 outl(isa_virt_to_bus(&vp->rx_ring[0]), ioaddr + UpListPtr);
827 }
828 if (vp->full_bus_master_tx) { /* Boomerang bus master Tx. */
829 vp->cur_tx = vp->dirty_tx = 0;
830 outb(PKT_BUF_SZ >> 8, ioaddr + TxFreeThreshold); /* Room for a packet. */
831 /* Clear the Tx ring. */
832 for (i = 0; i < TX_RING_SIZE; i++)
833 vp->tx_skbuff[i] = NULL;
834 outl(0, ioaddr + DownListPtr);
835 }
836 /* Set receiver mode: presumably accept b-case and phys addr only. */
837 set_rx_mode(dev);
838 outw(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
839
840 netif_start_queue(dev);
841
842 outw(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
843 outw(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
844 /* Allow status bits to be seen. */
845 outw(SetStatusEnb | AdapterFailure | IntReq | StatsFull |
846 (vp->full_bus_master_tx ? DownComplete : TxAvailable) |
847 (vp->full_bus_master_rx ? UpComplete : RxComplete) |
848 (vp->bus_master ? DMADone : 0), ioaddr + EL3_CMD);
849 /* Ack all pending events, and set active indicator mask. */
850 outw(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
851 ioaddr + EL3_CMD);
852 outw(SetIntrEnb | IntLatch | TxAvailable | RxComplete | StatsFull
853 | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete,
854 ioaddr + EL3_CMD);
855
856 return 0;
857}
858
859static void corkscrew_timer(struct timer_list *t)
860{
861#ifdef AUTOMEDIA
862 struct corkscrew_private *vp = from_timer(vp, t, timer);
863 struct net_device *dev = vp->our_dev;
864 int ioaddr = dev->base_addr;
865 unsigned long flags;
866 int ok = 0;
867
868 if (corkscrew_debug > 1)
869 pr_debug("%s: Media selection timer tick happened, %s.\n",
870 dev->name, media_tbl[dev->if_port].name);
871
872 spin_lock_irqsave(&vp->lock, flags);
873
874 {
875 int old_window = inw(ioaddr + EL3_CMD) >> 13;
876 int media_status;
877 EL3WINDOW(4);
878 media_status = inw(ioaddr + Wn4_Media);
879 switch (dev->if_port) {
880 case 0:
881 case 4:
882 case 5: /* 10baseT, 100baseTX, 100baseFX */
883 if (media_status & Media_LnkBeat) {
884 ok = 1;
885 if (corkscrew_debug > 1)
886 pr_debug("%s: Media %s has link beat, %x.\n",
887 dev->name,
888 media_tbl[dev->if_port].name,
889 media_status);
890 } else if (corkscrew_debug > 1)
891 pr_debug("%s: Media %s is has no link beat, %x.\n",
892 dev->name,
893 media_tbl[dev->if_port].name,
894 media_status);
895
896 break;
897 default: /* Other media types handled by Tx timeouts. */
898 if (corkscrew_debug > 1)
899 pr_debug("%s: Media %s is has no indication, %x.\n",
900 dev->name,
901 media_tbl[dev->if_port].name,
902 media_status);
903 ok = 1;
904 }
905 if (!ok) {
906 __u32 config;
907
908 do {
909 dev->if_port =
910 media_tbl[dev->if_port].next;
911 }
912 while (!(vp->available_media & media_tbl[dev->if_port].mask));
913
914 if (dev->if_port == 8) { /* Go back to default. */
915 dev->if_port = vp->default_media;
916 if (corkscrew_debug > 1)
917 pr_debug("%s: Media selection failing, using default %s port.\n",
918 dev->name,
919 media_tbl[dev->if_port].name);
920 } else {
921 if (corkscrew_debug > 1)
922 pr_debug("%s: Media selection failed, now trying %s port.\n",
923 dev->name,
924 media_tbl[dev->if_port].name);
925 vp->timer.expires = jiffies + media_tbl[dev->if_port].wait;
926 add_timer(&vp->timer);
927 }
928 outw((media_status & ~(Media_10TP | Media_SQE)) |
929 media_tbl[dev->if_port].media_bits,
930 ioaddr + Wn4_Media);
931
932 EL3WINDOW(3);
933 config = inl(ioaddr + Wn3_Config);
934 config = (config & ~Xcvr) | (dev->if_port << Xcvr_shift);
935 outl(config, ioaddr + Wn3_Config);
936
937 outw(dev->if_port == 3 ? StartCoax : StopCoax,
938 ioaddr + EL3_CMD);
939 }
940 EL3WINDOW(old_window);
941 }
942
943 spin_unlock_irqrestore(&vp->lock, flags);
944 if (corkscrew_debug > 1)
945 pr_debug("%s: Media selection timer finished, %s.\n",
946 dev->name, media_tbl[dev->if_port].name);
947
948#endif /* AUTOMEDIA */
949}
950
951static void corkscrew_timeout(struct net_device *dev, unsigned int txqueue)
952{
953 int i;
954 struct corkscrew_private *vp = netdev_priv(dev);
955 int ioaddr = dev->base_addr;
956
957 pr_warn("%s: transmit timed out, tx_status %2.2x status %4.4x\n",
958 dev->name, inb(ioaddr + TxStatus),
959 inw(ioaddr + EL3_STATUS));
960 /* Slight code bloat to be user friendly. */
961 if ((inb(ioaddr + TxStatus) & 0x88) == 0x88)
962 pr_warn("%s: Transmitter encountered 16 collisions -- network cable problem?\n",
963 dev->name);
964#ifndef final_version
965 pr_debug(" Flags; bus-master %d, full %d; dirty %d current %d.\n",
966 vp->full_bus_master_tx, vp->tx_full, vp->dirty_tx,
967 vp->cur_tx);
968 pr_debug(" Down list %8.8x vs. %p.\n", inl(ioaddr + DownListPtr),
969 &vp->tx_ring[0]);
970 for (i = 0; i < TX_RING_SIZE; i++) {
971 pr_debug(" %d: %p length %8.8x status %8.8x\n", i,
972 &vp->tx_ring[i],
973 vp->tx_ring[i].length, vp->tx_ring[i].status);
974 }
975#endif
976 /* Issue TX_RESET and TX_START commands. */
977 outw(TxReset, ioaddr + EL3_CMD);
978 for (i = 20; i >= 0; i--)
979 if (!(inw(ioaddr + EL3_STATUS) & CmdInProgress))
980 break;
981 outw(TxEnable, ioaddr + EL3_CMD);
982 netif_trans_update(dev); /* prevent tx timeout */
983 dev->stats.tx_errors++;
984 dev->stats.tx_dropped++;
985 netif_wake_queue(dev);
986}
987
988static netdev_tx_t corkscrew_start_xmit(struct sk_buff *skb,
989 struct net_device *dev)
990{
991 struct corkscrew_private *vp = netdev_priv(dev);
992 int ioaddr = dev->base_addr;
993
994 /* Block a timer-based transmit from overlapping. */
995
996 netif_stop_queue(dev);
997
998 if (vp->full_bus_master_tx) { /* BOOMERANG bus-master */
999 /* Calculate the next Tx descriptor entry. */
1000 int entry = vp->cur_tx % TX_RING_SIZE;
1001 struct boom_tx_desc *prev_entry;
1002 unsigned long flags;
1003 int i;
1004
1005 if (vp->tx_full) /* No room to transmit with */
1006 return NETDEV_TX_BUSY;
1007 if (vp->cur_tx != 0)
1008 prev_entry = &vp->tx_ring[(vp->cur_tx - 1) % TX_RING_SIZE];
1009 else
1010 prev_entry = NULL;
1011 if (corkscrew_debug > 3)
1012 pr_debug("%s: Trying to send a packet, Tx index %d.\n",
1013 dev->name, vp->cur_tx);
1014 /* vp->tx_full = 1; */
1015 vp->tx_skbuff[entry] = skb;
1016 vp->tx_ring[entry].next = 0;
1017 vp->tx_ring[entry].addr = isa_virt_to_bus(skb->data);
1018 vp->tx_ring[entry].length = skb->len | 0x80000000;
1019 vp->tx_ring[entry].status = skb->len | 0x80000000;
1020
1021 spin_lock_irqsave(&vp->lock, flags);
1022 outw(DownStall, ioaddr + EL3_CMD);
1023 /* Wait for the stall to complete. */
1024 for (i = 20; i >= 0; i--)
1025 if ((inw(ioaddr + EL3_STATUS) & CmdInProgress) == 0)
1026 break;
1027 if (prev_entry)
1028 prev_entry->next = isa_virt_to_bus(&vp->tx_ring[entry]);
1029 if (inl(ioaddr + DownListPtr) == 0) {
1030 outl(isa_virt_to_bus(&vp->tx_ring[entry]),
1031 ioaddr + DownListPtr);
1032 queued_packet++;
1033 }
1034 outw(DownUnstall, ioaddr + EL3_CMD);
1035 spin_unlock_irqrestore(&vp->lock, flags);
1036
1037 vp->cur_tx++;
1038 if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1)
1039 vp->tx_full = 1;
1040 else { /* Clear previous interrupt enable. */
1041 if (prev_entry)
1042 prev_entry->status &= ~0x80000000;
1043 netif_wake_queue(dev);
1044 }
1045 return NETDEV_TX_OK;
1046 }
1047 /* Put out the doubleword header... */
1048 outl(skb->len, ioaddr + TX_FIFO);
1049 dev->stats.tx_bytes += skb->len;
1050#ifdef VORTEX_BUS_MASTER
1051 if (vp->bus_master) {
1052 /* Set the bus-master controller to transfer the packet. */
1053 outl(isa_virt_to_bus(skb->data), ioaddr + Wn7_MasterAddr);
1054 outw((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
1055 vp->tx_skb = skb;
1056 outw(StartDMADown, ioaddr + EL3_CMD);
1057 /* queue will be woken at the DMADone interrupt. */
1058 } else {
1059 /* ... and the packet rounded to a doubleword. */
1060 outsl(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
1061 dev_kfree_skb(skb);
1062 if (inw(ioaddr + TxFree) > 1536) {
1063 netif_wake_queue(dev);
1064 } else
1065 /* Interrupt us when the FIFO has room for max-sized packet. */
1066 outw(SetTxThreshold + (1536 >> 2),
1067 ioaddr + EL3_CMD);
1068 }
1069#else
1070 /* ... and the packet rounded to a doubleword. */
1071 outsl(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
1072 dev_kfree_skb(skb);
1073 if (inw(ioaddr + TxFree) > 1536) {
1074 netif_wake_queue(dev);
1075 } else
1076 /* Interrupt us when the FIFO has room for max-sized packet. */
1077 outw(SetTxThreshold + (1536 >> 2), ioaddr + EL3_CMD);
1078#endif /* bus master */
1079
1080
1081 /* Clear the Tx status stack. */
1082 {
1083 short tx_status;
1084 int i = 4;
1085
1086 while (--i > 0 && (tx_status = inb(ioaddr + TxStatus)) > 0) {
1087 if (tx_status & 0x3C) { /* A Tx-disabling error occurred. */
1088 if (corkscrew_debug > 2)
1089 pr_debug("%s: Tx error, status %2.2x.\n",
1090 dev->name, tx_status);
1091 if (tx_status & 0x04)
1092 dev->stats.tx_fifo_errors++;
1093 if (tx_status & 0x38)
1094 dev->stats.tx_aborted_errors++;
1095 if (tx_status & 0x30) {
1096 int j;
1097 outw(TxReset, ioaddr + EL3_CMD);
1098 for (j = 20; j >= 0; j--)
1099 if (!(inw(ioaddr + EL3_STATUS) & CmdInProgress))
1100 break;
1101 }
1102 outw(TxEnable, ioaddr + EL3_CMD);
1103 }
1104 outb(0x00, ioaddr + TxStatus); /* Pop the status stack. */
1105 }
1106 }
1107 return NETDEV_TX_OK;
1108}
1109
1110/* The interrupt handler does all of the Rx thread work and cleans up
1111 after the Tx thread. */
1112
1113static irqreturn_t corkscrew_interrupt(int irq, void *dev_id)
1114{
1115 /* Use the now-standard shared IRQ implementation. */
1116 struct net_device *dev = dev_id;
1117 struct corkscrew_private *lp = netdev_priv(dev);
1118 int ioaddr, status;
1119 int latency;
1120 int i = max_interrupt_work;
1121
1122 ioaddr = dev->base_addr;
1123 latency = inb(ioaddr + Timer);
1124
1125 spin_lock(&lp->lock);
1126
1127 status = inw(ioaddr + EL3_STATUS);
1128
1129 if (corkscrew_debug > 4)
1130 pr_debug("%s: interrupt, status %4.4x, timer %d.\n",
1131 dev->name, status, latency);
1132 if ((status & 0xE000) != 0xE000) {
1133 static int donedidthis;
1134 /* Some interrupt controllers store a bogus interrupt from boot-time.
1135 Ignore a single early interrupt, but don't hang the machine for
1136 other interrupt problems. */
1137 if (donedidthis++ > 100) {
1138 pr_err("%s: Bogus interrupt, bailing. Status %4.4x, start=%d.\n",
1139 dev->name, status, netif_running(dev));
1140 free_irq(dev->irq, dev);
1141 dev->irq = -1;
1142 }
1143 }
1144
1145 do {
1146 if (corkscrew_debug > 5)
1147 pr_debug("%s: In interrupt loop, status %4.4x.\n",
1148 dev->name, status);
1149 if (status & RxComplete)
1150 corkscrew_rx(dev);
1151
1152 if (status & TxAvailable) {
1153 if (corkscrew_debug > 5)
1154 pr_debug(" TX room bit was handled.\n");
1155 /* There's room in the FIFO for a full-sized packet. */
1156 outw(AckIntr | TxAvailable, ioaddr + EL3_CMD);
1157 netif_wake_queue(dev);
1158 }
1159 if (status & DownComplete) {
1160 unsigned int dirty_tx = lp->dirty_tx;
1161
1162 while (lp->cur_tx - dirty_tx > 0) {
1163 int entry = dirty_tx % TX_RING_SIZE;
1164 if (inl(ioaddr + DownListPtr) == isa_virt_to_bus(&lp->tx_ring[entry]))
1165 break; /* It still hasn't been processed. */
1166 if (lp->tx_skbuff[entry]) {
1167 dev_consume_skb_irq(lp->tx_skbuff[entry]);
1168 lp->tx_skbuff[entry] = NULL;
1169 }
1170 dirty_tx++;
1171 }
1172 lp->dirty_tx = dirty_tx;
1173 outw(AckIntr | DownComplete, ioaddr + EL3_CMD);
1174 if (lp->tx_full && (lp->cur_tx - dirty_tx <= TX_RING_SIZE - 1)) {
1175 lp->tx_full = 0;
1176 netif_wake_queue(dev);
1177 }
1178 }
1179#ifdef VORTEX_BUS_MASTER
1180 if (status & DMADone) {
1181 outw(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
1182 dev_consume_skb_irq(lp->tx_skb); /* Release the transferred buffer */
1183 netif_wake_queue(dev);
1184 }
1185#endif
1186 if (status & UpComplete) {
1187 boomerang_rx(dev);
1188 outw(AckIntr | UpComplete, ioaddr + EL3_CMD);
1189 }
1190 if (status & (AdapterFailure | RxEarly | StatsFull)) {
1191 /* Handle all uncommon interrupts at once. */
1192 if (status & RxEarly) { /* Rx early is unused. */
1193 corkscrew_rx(dev);
1194 outw(AckIntr | RxEarly, ioaddr + EL3_CMD);
1195 }
1196 if (status & StatsFull) { /* Empty statistics. */
1197 static int DoneDidThat;
1198 if (corkscrew_debug > 4)
1199 pr_debug("%s: Updating stats.\n", dev->name);
1200 update_stats(ioaddr, dev);
1201 /* DEBUG HACK: Disable statistics as an interrupt source. */
1202 /* This occurs when we have the wrong media type! */
1203 if (DoneDidThat == 0 && inw(ioaddr + EL3_STATUS) & StatsFull) {
1204 int win, reg;
1205 pr_notice("%s: Updating stats failed, disabling stats as an interrupt source.\n",
1206 dev->name);
1207 for (win = 0; win < 8; win++) {
1208 EL3WINDOW(win);
1209 pr_notice("Vortex window %d:", win);
1210 for (reg = 0; reg < 16; reg++)
1211 pr_cont(" %2.2x", inb(ioaddr + reg));
1212 pr_cont("\n");
1213 }
1214 EL3WINDOW(7);
1215 outw(SetIntrEnb | TxAvailable |
1216 RxComplete | AdapterFailure |
1217 UpComplete | DownComplete |
1218 TxComplete, ioaddr + EL3_CMD);
1219 DoneDidThat++;
1220 }
1221 }
1222 if (status & AdapterFailure) {
1223 /* Adapter failure requires Rx reset and reinit. */
1224 outw(RxReset, ioaddr + EL3_CMD);
1225 /* Set the Rx filter to the current state. */
1226 set_rx_mode(dev);
1227 outw(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
1228 outw(AckIntr | AdapterFailure,
1229 ioaddr + EL3_CMD);
1230 }
1231 }
1232
1233 if (--i < 0) {
1234 pr_err("%s: Too much work in interrupt, status %4.4x. Disabling functions (%4.4x).\n",
1235 dev->name, status, SetStatusEnb | ((~status) & 0x7FE));
1236 /* Disable all pending interrupts. */
1237 outw(SetStatusEnb | ((~status) & 0x7FE), ioaddr + EL3_CMD);
1238 outw(AckIntr | 0x7FF, ioaddr + EL3_CMD);
1239 break;
1240 }
1241 /* Acknowledge the IRQ. */
1242 outw(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
1243
1244 } while ((status = inw(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
1245
1246 spin_unlock(&lp->lock);
1247
1248 if (corkscrew_debug > 4)
1249 pr_debug("%s: exiting interrupt, status %4.4x.\n", dev->name, status);
1250 return IRQ_HANDLED;
1251}
1252
1253static int corkscrew_rx(struct net_device *dev)
1254{
1255 int ioaddr = dev->base_addr;
1256 int i;
1257 short rx_status;
1258
1259 if (corkscrew_debug > 5)
1260 pr_debug(" In rx_packet(), status %4.4x, rx_status %4.4x.\n",
1261 inw(ioaddr + EL3_STATUS), inw(ioaddr + RxStatus));
1262 while ((rx_status = inw(ioaddr + RxStatus)) > 0) {
1263 if (rx_status & 0x4000) { /* Error, update stats. */
1264 unsigned char rx_error = inb(ioaddr + RxErrors);
1265 if (corkscrew_debug > 2)
1266 pr_debug(" Rx error: status %2.2x.\n",
1267 rx_error);
1268 dev->stats.rx_errors++;
1269 if (rx_error & 0x01)
1270 dev->stats.rx_over_errors++;
1271 if (rx_error & 0x02)
1272 dev->stats.rx_length_errors++;
1273 if (rx_error & 0x04)
1274 dev->stats.rx_frame_errors++;
1275 if (rx_error & 0x08)
1276 dev->stats.rx_crc_errors++;
1277 if (rx_error & 0x10)
1278 dev->stats.rx_length_errors++;
1279 } else {
1280 /* The packet length: up to 4.5K!. */
1281 short pkt_len = rx_status & 0x1fff;
1282 struct sk_buff *skb;
1283
1284 skb = netdev_alloc_skb(dev, pkt_len + 5 + 2);
1285 if (corkscrew_debug > 4)
1286 pr_debug("Receiving packet size %d status %4.4x.\n",
1287 pkt_len, rx_status);
1288 if (skb != NULL) {
1289 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1290 /* 'skb_put()' points to the start of sk_buff data area. */
1291 insl(ioaddr + RX_FIFO,
1292 skb_put(skb, pkt_len),
1293 (pkt_len + 3) >> 2);
1294 outw(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
1295 skb->protocol = eth_type_trans(skb, dev);
1296 netif_rx(skb);
1297 dev->stats.rx_packets++;
1298 dev->stats.rx_bytes += pkt_len;
1299 /* Wait a limited time to go to next packet. */
1300 for (i = 200; i >= 0; i--)
1301 if (! (inw(ioaddr + EL3_STATUS) & CmdInProgress))
1302 break;
1303 continue;
1304 } else if (corkscrew_debug)
1305 pr_debug("%s: Couldn't allocate a sk_buff of size %d.\n", dev->name, pkt_len);
1306 }
1307 outw(RxDiscard, ioaddr + EL3_CMD);
1308 dev->stats.rx_dropped++;
1309 /* Wait a limited time to skip this packet. */
1310 for (i = 200; i >= 0; i--)
1311 if (!(inw(ioaddr + EL3_STATUS) & CmdInProgress))
1312 break;
1313 }
1314 return 0;
1315}
1316
1317static int boomerang_rx(struct net_device *dev)
1318{
1319 struct corkscrew_private *vp = netdev_priv(dev);
1320 int entry = vp->cur_rx % RX_RING_SIZE;
1321 int ioaddr = dev->base_addr;
1322 int rx_status;
1323
1324 if (corkscrew_debug > 5)
1325 pr_debug(" In boomerang_rx(), status %4.4x, rx_status %4.4x.\n",
1326 inw(ioaddr + EL3_STATUS), inw(ioaddr + RxStatus));
1327 while ((rx_status = vp->rx_ring[entry].status) & RxDComplete) {
1328 if (rx_status & RxDError) { /* Error, update stats. */
1329 unsigned char rx_error = rx_status >> 16;
1330 if (corkscrew_debug > 2)
1331 pr_debug(" Rx error: status %2.2x.\n",
1332 rx_error);
1333 dev->stats.rx_errors++;
1334 if (rx_error & 0x01)
1335 dev->stats.rx_over_errors++;
1336 if (rx_error & 0x02)
1337 dev->stats.rx_length_errors++;
1338 if (rx_error & 0x04)
1339 dev->stats.rx_frame_errors++;
1340 if (rx_error & 0x08)
1341 dev->stats.rx_crc_errors++;
1342 if (rx_error & 0x10)
1343 dev->stats.rx_length_errors++;
1344 } else {
1345 /* The packet length: up to 4.5K!. */
1346 short pkt_len = rx_status & 0x1fff;
1347 struct sk_buff *skb;
1348
1349 dev->stats.rx_bytes += pkt_len;
1350 if (corkscrew_debug > 4)
1351 pr_debug("Receiving packet size %d status %4.4x.\n",
1352 pkt_len, rx_status);
1353
1354 /* Check if the packet is long enough to just accept without
1355 copying to a properly sized skbuff. */
1356 if (pkt_len < rx_copybreak &&
1357 (skb = netdev_alloc_skb(dev, pkt_len + 4)) != NULL) {
1358 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1359 /* 'skb_put()' points to the start of sk_buff data area. */
1360 skb_put_data(skb,
1361 isa_bus_to_virt(vp->rx_ring[entry].addr),
1362 pkt_len);
1363 rx_copy++;
1364 } else {
1365 void *temp;
1366 /* Pass up the skbuff already on the Rx ring. */
1367 skb = vp->rx_skbuff[entry];
1368 vp->rx_skbuff[entry] = NULL;
1369 temp = skb_put(skb, pkt_len);
1370 /* Remove this checking code for final release. */
1371 if (isa_bus_to_virt(vp->rx_ring[entry].addr) != temp)
1372 pr_warn("%s: Warning -- the skbuff addresses do not match in boomerang_rx: %p vs. %p / %p\n",
1373 dev->name,
1374 isa_bus_to_virt(vp->rx_ring[entry].addr),
1375 skb->head, temp);
1376 rx_nocopy++;
1377 }
1378 skb->protocol = eth_type_trans(skb, dev);
1379 netif_rx(skb);
1380 dev->stats.rx_packets++;
1381 }
1382 entry = (++vp->cur_rx) % RX_RING_SIZE;
1383 }
1384 /* Refill the Rx ring buffers. */
1385 for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
1386 struct sk_buff *skb;
1387 entry = vp->dirty_rx % RX_RING_SIZE;
1388 if (vp->rx_skbuff[entry] == NULL) {
1389 skb = netdev_alloc_skb(dev, PKT_BUF_SZ);
1390 if (skb == NULL)
1391 break; /* Bad news! */
1392 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1393 vp->rx_ring[entry].addr = isa_virt_to_bus(skb->data);
1394 vp->rx_skbuff[entry] = skb;
1395 }
1396 vp->rx_ring[entry].status = 0; /* Clear complete bit. */
1397 }
1398 return 0;
1399}
1400
1401static int corkscrew_close(struct net_device *dev)
1402{
1403 struct corkscrew_private *vp = netdev_priv(dev);
1404 int ioaddr = dev->base_addr;
1405 int i;
1406
1407 netif_stop_queue(dev);
1408
1409 if (corkscrew_debug > 1) {
1410 pr_debug("%s: corkscrew_close() status %4.4x, Tx status %2.2x.\n",
1411 dev->name, inw(ioaddr + EL3_STATUS),
1412 inb(ioaddr + TxStatus));
1413 pr_debug("%s: corkscrew close stats: rx_nocopy %d rx_copy %d tx_queued %d.\n",
1414 dev->name, rx_nocopy, rx_copy, queued_packet);
1415 }
1416
1417 del_timer_sync(&vp->timer);
1418
1419 /* Turn off statistics ASAP. We update lp->stats below. */
1420 outw(StatsDisable, ioaddr + EL3_CMD);
1421
1422 /* Disable the receiver and transmitter. */
1423 outw(RxDisable, ioaddr + EL3_CMD);
1424 outw(TxDisable, ioaddr + EL3_CMD);
1425
1426 if (dev->if_port == XCVR_10base2)
1427 /* Turn off thinnet power. Green! */
1428 outw(StopCoax, ioaddr + EL3_CMD);
1429
1430 free_irq(dev->irq, dev);
1431
1432 outw(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
1433
1434 update_stats(ioaddr, dev);
1435 if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
1436 outl(0, ioaddr + UpListPtr);
1437 for (i = 0; i < RX_RING_SIZE; i++)
1438 if (vp->rx_skbuff[i]) {
1439 dev_kfree_skb(vp->rx_skbuff[i]);
1440 vp->rx_skbuff[i] = NULL;
1441 }
1442 }
1443 if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
1444 outl(0, ioaddr + DownListPtr);
1445 for (i = 0; i < TX_RING_SIZE; i++)
1446 if (vp->tx_skbuff[i]) {
1447 dev_kfree_skb(vp->tx_skbuff[i]);
1448 vp->tx_skbuff[i] = NULL;
1449 }
1450 }
1451
1452 return 0;
1453}
1454
1455static struct net_device_stats *corkscrew_get_stats(struct net_device *dev)
1456{
1457 struct corkscrew_private *vp = netdev_priv(dev);
1458 unsigned long flags;
1459
1460 if (netif_running(dev)) {
1461 spin_lock_irqsave(&vp->lock, flags);
1462 update_stats(dev->base_addr, dev);
1463 spin_unlock_irqrestore(&vp->lock, flags);
1464 }
1465 return &dev->stats;
1466}
1467
1468/* Update statistics.
1469 Unlike with the EL3 we need not worry about interrupts changing
1470 the window setting from underneath us, but we must still guard
1471 against a race condition with a StatsUpdate interrupt updating the
1472 table. This is done by checking that the ASM (!) code generated uses
1473 atomic updates with '+='.
1474 */
1475static void update_stats(int ioaddr, struct net_device *dev)
1476{
1477 /* Unlike the 3c5x9 we need not turn off stats updates while reading. */
1478 /* Switch to the stats window, and read everything. */
1479 EL3WINDOW(6);
1480 dev->stats.tx_carrier_errors += inb(ioaddr + 0);
1481 dev->stats.tx_heartbeat_errors += inb(ioaddr + 1);
1482 /* Multiple collisions. */ inb(ioaddr + 2);
1483 dev->stats.collisions += inb(ioaddr + 3);
1484 dev->stats.tx_window_errors += inb(ioaddr + 4);
1485 dev->stats.rx_fifo_errors += inb(ioaddr + 5);
1486 dev->stats.tx_packets += inb(ioaddr + 6);
1487 dev->stats.tx_packets += (inb(ioaddr + 9) & 0x30) << 4;
1488 /* Rx packets */ inb(ioaddr + 7);
1489 /* Must read to clear */
1490 /* Tx deferrals */ inb(ioaddr + 8);
1491 /* Don't bother with register 9, an extension of registers 6&7.
1492 If we do use the 6&7 values the atomic update assumption above
1493 is invalid. */
1494 inw(ioaddr + 10); /* Total Rx and Tx octets. */
1495 inw(ioaddr + 12);
1496 /* New: On the Vortex we must also clear the BadSSD counter. */
1497 EL3WINDOW(4);
1498 inb(ioaddr + 12);
1499
1500 /* We change back to window 7 (not 1) with the Vortex. */
1501 EL3WINDOW(7);
1502}
1503
1504/* This new version of set_rx_mode() supports v1.4 kernels.
1505 The Vortex chip has no documented multicast filter, so the only
1506 multicast setting is to receive all multicast frames. At least
1507 the chip has a very clean way to set the mode, unlike many others. */
1508static void set_rx_mode(struct net_device *dev)
1509{
1510 int ioaddr = dev->base_addr;
1511 unsigned short new_mode;
1512
1513 if (dev->flags & IFF_PROMISC) {
1514 if (corkscrew_debug > 3)
1515 pr_debug("%s: Setting promiscuous mode.\n",
1516 dev->name);
1517 new_mode = SetRxFilter | RxStation | RxMulticast | RxBroadcast | RxProm;
1518 } else if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) {
1519 new_mode = SetRxFilter | RxStation | RxMulticast | RxBroadcast;
1520 } else
1521 new_mode = SetRxFilter | RxStation | RxBroadcast;
1522
1523 outw(new_mode, ioaddr + EL3_CMD);
1524}
1525
1526static void netdev_get_drvinfo(struct net_device *dev,
1527 struct ethtool_drvinfo *info)
1528{
1529 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1530 snprintf(info->bus_info, sizeof(info->bus_info), "ISA 0x%lx",
1531 dev->base_addr);
1532}
1533
1534static u32 netdev_get_msglevel(struct net_device *dev)
1535{
1536 return corkscrew_debug;
1537}
1538
1539static void netdev_set_msglevel(struct net_device *dev, u32 level)
1540{
1541 corkscrew_debug = level;
1542}
1543
1544static const struct ethtool_ops netdev_ethtool_ops = {
1545 .get_drvinfo = netdev_get_drvinfo,
1546 .get_msglevel = netdev_get_msglevel,
1547 .set_msglevel = netdev_set_msglevel,
1548};
1549
1550
1551#ifdef MODULE
1552void cleanup_module(void)
1553{
1554 while (!list_empty(&root_corkscrew_dev)) {
1555 struct net_device *dev;
1556 struct corkscrew_private *vp;
1557
1558 vp = list_entry(root_corkscrew_dev.next,
1559 struct corkscrew_private, list);
1560 dev = vp->our_dev;
1561 unregister_netdev(dev);
1562 cleanup_card(dev);
1563 free_netdev(dev);
1564 }
1565}
1566#endif /* MODULE */
1/*
2 Written 1997-1998 by Donald Becker.
3
4 This software may be used and distributed according to the terms
5 of the GNU General Public License, incorporated herein by reference.
6
7 This driver is for the 3Com ISA EtherLink XL "Corkscrew" 3c515 ethercard.
8
9 The author may be reached as becker@scyld.com, or C/O
10 Scyld Computing Corporation
11 410 Severn Ave., Suite 210
12 Annapolis MD 21403
13
14
15 2000/2/2- Added support for kernel-level ISAPnP
16 by Stephen Frost <sfrost@snowman.net> and Alessandro Zummo
17 Cleaned up for 2.3.x/softnet by Jeff Garzik and Alan Cox.
18
19 2001/11/17 - Added ethtool support (jgarzik)
20
21 2002/10/28 - Locking updates for 2.5 (alan@lxorguk.ukuu.org.uk)
22
23*/
24
25#define DRV_NAME "3c515"
26
27#define CORKSCREW 1
28
29/* "Knobs" that adjust features and parameters. */
30/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
31 Setting to > 1512 effectively disables this feature. */
32static int rx_copybreak = 200;
33
34/* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
35static const int mtu = 1500;
36
37/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
38static int max_interrupt_work = 20;
39
40/* Enable the automatic media selection code -- usually set. */
41#define AUTOMEDIA 1
42
43/* Allow the use of fragment bus master transfers instead of only
44 programmed-I/O for Vortex cards. Full-bus-master transfers are always
45 enabled by default on Boomerang cards. If VORTEX_BUS_MASTER is defined,
46 the feature may be turned on using 'options'. */
47#define VORTEX_BUS_MASTER
48
49/* A few values that may be tweaked. */
50/* Keep the ring sizes a power of two for efficiency. */
51#define TX_RING_SIZE 16
52#define RX_RING_SIZE 16
53#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer. */
54
55#include <linux/module.h>
56#include <linux/isapnp.h>
57#include <linux/kernel.h>
58#include <linux/netdevice.h>
59#include <linux/string.h>
60#include <linux/errno.h>
61#include <linux/in.h>
62#include <linux/ioport.h>
63#include <linux/skbuff.h>
64#include <linux/etherdevice.h>
65#include <linux/interrupt.h>
66#include <linux/timer.h>
67#include <linux/ethtool.h>
68#include <linux/bitops.h>
69
70#include <linux/uaccess.h>
71#include <asm/io.h>
72#include <asm/dma.h>
73
74#define NEW_MULTICAST
75#include <linux/delay.h>
76
77#define MAX_UNITS 8
78
79MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
80MODULE_DESCRIPTION("3Com 3c515 Corkscrew driver");
81MODULE_LICENSE("GPL");
82
83/* "Knobs" for adjusting internal parameters. */
84/* Put out somewhat more debugging messages. (0 - no msg, 1 minimal msgs). */
85#define DRIVER_DEBUG 1
86/* Some values here only for performance evaluation and path-coverage
87 debugging. */
88static int rx_nocopy, rx_copy, queued_packet;
89
90/* Number of times to check to see if the Tx FIFO has space, used in some
91 limited cases. */
92#define WAIT_TX_AVAIL 200
93
94/* Operational parameter that usually are not changed. */
95#define TX_TIMEOUT ((4*HZ)/10) /* Time in jiffies before concluding Tx hung */
96
97/* The size here is somewhat misleading: the Corkscrew also uses the ISA
98 aliased registers at <base>+0x400.
99 */
100#define CORKSCREW_TOTAL_SIZE 0x20
101
102#ifdef DRIVER_DEBUG
103static int corkscrew_debug = DRIVER_DEBUG;
104#else
105static int corkscrew_debug = 1;
106#endif
107
108#define CORKSCREW_ID 10
109
110/*
111 Theory of Operation
112
113I. Board Compatibility
114
115This device driver is designed for the 3Com 3c515 ISA Fast EtherLink XL,
1163Com's ISA bus adapter for Fast Ethernet. Due to the unique I/O port layout,
117it's not practical to integrate this driver with the other EtherLink drivers.
118
119II. Board-specific settings
120
121The Corkscrew has an EEPROM for configuration, but no special settings are
122needed for Linux.
123
124III. Driver operation
125
126The 3c515 series use an interface that's very similar to the 3c900 "Boomerang"
127PCI cards, with the bus master interface extensively modified to work with
128the ISA bus.
129
130The card is capable of full-bus-master transfers with separate
131lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
132DEC Tulip and Intel Speedo3.
133
134This driver uses a "RX_COPYBREAK" scheme rather than a fixed intermediate
135receive buffer. This scheme allocates full-sized skbuffs as receive
136buffers. The value RX_COPYBREAK is used as the copying breakpoint: it is
137chosen to trade-off the memory wasted by passing the full-sized skbuff to
138the queue layer for all frames vs. the copying cost of copying a frame to a
139correctly-sized skbuff.
140
141
142IIIC. Synchronization
143The driver runs as two independent, single-threaded flows of control. One
144is the send-packet routine, which enforces single-threaded use by the netif
145layer. The other thread is the interrupt handler, which is single
146threaded by the hardware and other software.
147
148IV. Notes
149
150Thanks to Terry Murphy of 3Com for providing documentation and a development
151board.
152
153The names "Vortex", "Boomerang" and "Corkscrew" are the internal 3Com
154project names. I use these names to eliminate confusion -- 3Com product
155numbers and names are very similar and often confused.
156
157The new chips support both ethernet (1.5K) and FDDI (4.5K) frame sizes!
158This driver only supports ethernet frames because of the recent MTU limit
159of 1.5K, but the changes to support 4.5K are minimal.
160*/
161
162/* Operational definitions.
163 These are not used by other compilation units and thus are not
164 exported in a ".h" file.
165
166 First the windows. There are eight register windows, with the command
167 and status registers available in each.
168 */
169#define EL3WINDOW(win_num) outw(SelectWindow + (win_num), ioaddr + EL3_CMD)
170#define EL3_CMD 0x0e
171#define EL3_STATUS 0x0e
172
173/* The top five bits written to EL3_CMD are a command, the lower
174 11 bits are the parameter, if applicable.
175 Note that 11 parameters bits was fine for ethernet, but the new chips
176 can handle FDDI length frames (~4500 octets) and now parameters count
177 32-bit 'Dwords' rather than octets. */
178
179enum corkscrew_cmd {
180 TotalReset = 0 << 11, SelectWindow = 1 << 11, StartCoax = 2 << 11,
181 RxDisable = 3 << 11, RxEnable = 4 << 11, RxReset = 5 << 11,
182 UpStall = 6 << 11, UpUnstall = (6 << 11) + 1, DownStall = (6 << 11) + 2,
183 DownUnstall = (6 << 11) + 3, RxDiscard = 8 << 11, TxEnable = 9 << 11,
184 TxDisable = 10 << 11, TxReset = 11 << 11, FakeIntr = 12 << 11,
185 AckIntr = 13 << 11, SetIntrEnb = 14 << 11, SetStatusEnb = 15 << 11,
186 SetRxFilter = 16 << 11, SetRxThreshold = 17 << 11,
187 SetTxThreshold = 18 << 11, SetTxStart = 19 << 11, StartDMAUp = 20 << 11,
188 StartDMADown = (20 << 11) + 1, StatsEnable = 21 << 11,
189 StatsDisable = 22 << 11, StopCoax = 23 << 11,
190};
191
192/* The SetRxFilter command accepts the following classes: */
193enum RxFilter {
194 RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8
195};
196
197/* Bits in the general status register. */
198enum corkscrew_status {
199 IntLatch = 0x0001, AdapterFailure = 0x0002, TxComplete = 0x0004,
200 TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
201 IntReq = 0x0040, StatsFull = 0x0080,
202 DMADone = 1 << 8, DownComplete = 1 << 9, UpComplete = 1 << 10,
203 DMAInProgress = 1 << 11, /* DMA controller is still busy. */
204 CmdInProgress = 1 << 12, /* EL3_CMD is still busy. */
205};
206
207/* Register window 1 offsets, the window used in normal operation.
208 On the Corkscrew this window is always mapped at offsets 0x10-0x1f. */
209enum Window1 {
210 TX_FIFO = 0x10, RX_FIFO = 0x10, RxErrors = 0x14,
211 RxStatus = 0x18, Timer = 0x1A, TxStatus = 0x1B,
212 TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
213};
214enum Window0 {
215 Wn0IRQ = 0x08,
216#if defined(CORKSCREW)
217 Wn0EepromCmd = 0x200A, /* Corkscrew EEPROM command register. */
218 Wn0EepromData = 0x200C, /* Corkscrew EEPROM results register. */
219#else
220 Wn0EepromCmd = 10, /* Window 0: EEPROM command register. */
221 Wn0EepromData = 12, /* Window 0: EEPROM results register. */
222#endif
223};
224enum Win0_EEPROM_bits {
225 EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
226 EEPROM_EWENB = 0x30, /* Enable erasing/writing for 10 msec. */
227 EEPROM_EWDIS = 0x00, /* Disable EWENB before 10 msec timeout. */
228};
229
230/* EEPROM locations. */
231enum eeprom_offset {
232 PhysAddr01 = 0, PhysAddr23 = 1, PhysAddr45 = 2, ModelID = 3,
233 EtherLink3ID = 7,
234};
235
236enum Window3 { /* Window 3: MAC/config bits. */
237 Wn3_Config = 0, Wn3_MAC_Ctrl = 6, Wn3_Options = 8,
238};
239enum wn3_config {
240 Ram_size = 7,
241 Ram_width = 8,
242 Ram_speed = 0x30,
243 Rom_size = 0xc0,
244 Ram_split_shift = 16,
245 Ram_split = 3 << Ram_split_shift,
246 Xcvr_shift = 20,
247 Xcvr = 7 << Xcvr_shift,
248 Autoselect = 0x1000000,
249};
250
251enum Window4 {
252 Wn4_NetDiag = 6, Wn4_Media = 10, /* Window 4: Xcvr/media bits. */
253};
254enum Win4_Media_bits {
255 Media_SQE = 0x0008, /* Enable SQE error counting for AUI. */
256 Media_10TP = 0x00C0, /* Enable link beat and jabber for 10baseT. */
257 Media_Lnk = 0x0080, /* Enable just link beat for 100TX/100FX. */
258 Media_LnkBeat = 0x0800,
259};
260enum Window7 { /* Window 7: Bus Master control. */
261 Wn7_MasterAddr = 0, Wn7_MasterLen = 6, Wn7_MasterStatus = 12,
262};
263
264/* Boomerang-style bus master control registers. Note ISA aliases! */
265enum MasterCtrl {
266 PktStatus = 0x400, DownListPtr = 0x404, FragAddr = 0x408, FragLen =
267 0x40c,
268 TxFreeThreshold = 0x40f, UpPktStatus = 0x410, UpListPtr = 0x418,
269};
270
271/* The Rx and Tx descriptor lists.
272 Caution Alpha hackers: these types are 32 bits! Note also the 8 byte
273 alignment contraint on tx_ring[] and rx_ring[]. */
274struct boom_rx_desc {
275 u32 next;
276 s32 status;
277 u32 addr;
278 s32 length;
279};
280
281/* Values for the Rx status entry. */
282enum rx_desc_status {
283 RxDComplete = 0x00008000, RxDError = 0x4000,
284 /* See boomerang_rx() for actual error bits */
285};
286
287struct boom_tx_desc {
288 u32 next;
289 s32 status;
290 u32 addr;
291 s32 length;
292};
293
294struct corkscrew_private {
295 const char *product_name;
296 struct list_head list;
297 struct net_device *our_dev;
298 /* The Rx and Tx rings are here to keep them quad-word-aligned. */
299 struct boom_rx_desc rx_ring[RX_RING_SIZE];
300 struct boom_tx_desc tx_ring[TX_RING_SIZE];
301 /* The addresses of transmit- and receive-in-place skbuffs. */
302 struct sk_buff *rx_skbuff[RX_RING_SIZE];
303 struct sk_buff *tx_skbuff[TX_RING_SIZE];
304 unsigned int cur_rx, cur_tx; /* The next free ring entry */
305 unsigned int dirty_rx, dirty_tx;/* The ring entries to be free()ed. */
306 struct sk_buff *tx_skb; /* Packet being eaten by bus master ctrl. */
307 struct timer_list timer; /* Media selection timer. */
308 int capabilities ; /* Adapter capabilities word. */
309 int options; /* User-settable misc. driver options. */
310 int last_rx_packets; /* For media autoselection. */
311 unsigned int available_media:8, /* From Wn3_Options */
312 media_override:3, /* Passed-in media type. */
313 default_media:3, /* Read from the EEPROM. */
314 full_duplex:1, autoselect:1, bus_master:1, /* Vortex can only do a fragment bus-m. */
315 full_bus_master_tx:1, full_bus_master_rx:1, /* Boomerang */
316 tx_full:1;
317 spinlock_t lock;
318 struct device *dev;
319};
320
321/* The action to take with a media selection timer tick.
322 Note that we deviate from the 3Com order by checking 10base2 before AUI.
323 */
324enum xcvr_types {
325 XCVR_10baseT = 0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
326 XCVR_100baseFx, XCVR_MII = 6, XCVR_Default = 8,
327};
328
329static struct media_table {
330 char *name;
331 unsigned int media_bits:16, /* Bits to set in Wn4_Media register. */
332 mask:8, /* The transceiver-present bit in Wn3_Config. */
333 next:8; /* The media type to try next. */
334 short wait; /* Time before we check media status. */
335} media_tbl[] = {
336 { "10baseT", Media_10TP, 0x08, XCVR_10base2, (14 * HZ) / 10 },
337 { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1 * HZ) / 10},
338 { "undefined", 0, 0x80, XCVR_10baseT, 10000},
339 { "10base2", 0, 0x10, XCVR_AUI, (1 * HZ) / 10},
340 { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14 * HZ) / 10},
341 { "100baseFX", Media_Lnk, 0x04, XCVR_MII, (14 * HZ) / 10},
342 { "MII", 0, 0x40, XCVR_10baseT, 3 * HZ},
343 { "undefined", 0, 0x01, XCVR_10baseT, 10000},
344 { "Default", 0, 0xFF, XCVR_10baseT, 10000},
345};
346
347#ifdef __ISAPNP__
348static struct isapnp_device_id corkscrew_isapnp_adapters[] = {
349 { ISAPNP_ANY_ID, ISAPNP_ANY_ID,
350 ISAPNP_VENDOR('T', 'C', 'M'), ISAPNP_FUNCTION(0x5051),
351 (long) "3Com Fast EtherLink ISA" },
352 { } /* terminate list */
353};
354
355MODULE_DEVICE_TABLE(isapnp, corkscrew_isapnp_adapters);
356
357static int nopnp;
358#endif /* __ISAPNP__ */
359
360static struct net_device *corkscrew_scan(int unit);
361static int corkscrew_setup(struct net_device *dev, int ioaddr,
362 struct pnp_dev *idev, int card_number);
363static int corkscrew_open(struct net_device *dev);
364static void corkscrew_timer(struct timer_list *t);
365static netdev_tx_t corkscrew_start_xmit(struct sk_buff *skb,
366 struct net_device *dev);
367static int corkscrew_rx(struct net_device *dev);
368static void corkscrew_timeout(struct net_device *dev, unsigned int txqueue);
369static int boomerang_rx(struct net_device *dev);
370static irqreturn_t corkscrew_interrupt(int irq, void *dev_id);
371static int corkscrew_close(struct net_device *dev);
372static void update_stats(int addr, struct net_device *dev);
373static struct net_device_stats *corkscrew_get_stats(struct net_device *dev);
374static void set_rx_mode(struct net_device *dev);
375static const struct ethtool_ops netdev_ethtool_ops;
376
377
378/*
379 Unfortunately maximizing the shared code between the integrated and
380 module version of the driver results in a complicated set of initialization
381 procedures.
382 init_module() -- modules / tc59x_init() -- built-in
383 The wrappers for corkscrew_scan()
384 corkscrew_scan() The common routine that scans for PCI and EISA cards
385 corkscrew_found_device() Allocate a device structure when we find a card.
386 Different versions exist for modules and built-in.
387 corkscrew_probe1() Fill in the device structure -- this is separated
388 so that the modules code can put it in dev->init.
389*/
390/* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
391/* Note: this is the only limit on the number of cards supported!! */
392static int options[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1, };
393
394#ifdef MODULE
395static int debug = -1;
396
397module_param(debug, int, 0);
398module_param_array(options, int, NULL, 0);
399module_param(rx_copybreak, int, 0);
400module_param(max_interrupt_work, int, 0);
401MODULE_PARM_DESC(debug, "3c515 debug level (0-6)");
402MODULE_PARM_DESC(options, "3c515: Bits 0-2: media type, bit 3: full duplex, bit 4: bus mastering");
403MODULE_PARM_DESC(rx_copybreak, "3c515 copy breakpoint for copy-only-tiny-frames");
404MODULE_PARM_DESC(max_interrupt_work, "3c515 maximum events handled per interrupt");
405
406/* A list of all installed Vortex devices, for removing the driver module. */
407/* we will need locking (and refcounting) if we ever use it for more */
408static LIST_HEAD(root_corkscrew_dev);
409
410int init_module(void)
411{
412 int found = 0;
413 if (debug >= 0)
414 corkscrew_debug = debug;
415 while (corkscrew_scan(-1))
416 found++;
417 return found ? 0 : -ENODEV;
418}
419
420#else
421struct net_device *tc515_probe(int unit)
422{
423 struct net_device *dev = corkscrew_scan(unit);
424
425 if (!dev)
426 return ERR_PTR(-ENODEV);
427
428 return dev;
429}
430#endif /* not MODULE */
431
432static int check_device(unsigned ioaddr)
433{
434 int timer;
435
436 if (!request_region(ioaddr, CORKSCREW_TOTAL_SIZE, "3c515"))
437 return 0;
438 /* Check the resource configuration for a matching ioaddr. */
439 if ((inw(ioaddr + 0x2002) & 0x1f0) != (ioaddr & 0x1f0)) {
440 release_region(ioaddr, CORKSCREW_TOTAL_SIZE);
441 return 0;
442 }
443 /* Verify by reading the device ID from the EEPROM. */
444 outw(EEPROM_Read + 7, ioaddr + Wn0EepromCmd);
445 /* Pause for at least 162 us. for the read to take place. */
446 for (timer = 4; timer >= 0; timer--) {
447 udelay(162);
448 if ((inw(ioaddr + Wn0EepromCmd) & 0x0200) == 0)
449 break;
450 }
451 if (inw(ioaddr + Wn0EepromData) != 0x6d50) {
452 release_region(ioaddr, CORKSCREW_TOTAL_SIZE);
453 return 0;
454 }
455 return 1;
456}
457
458static void cleanup_card(struct net_device *dev)
459{
460 struct corkscrew_private *vp = netdev_priv(dev);
461 list_del_init(&vp->list);
462 if (dev->dma)
463 free_dma(dev->dma);
464 outw(TotalReset, dev->base_addr + EL3_CMD);
465 release_region(dev->base_addr, CORKSCREW_TOTAL_SIZE);
466 if (vp->dev)
467 pnp_device_detach(to_pnp_dev(vp->dev));
468}
469
470static struct net_device *corkscrew_scan(int unit)
471{
472 struct net_device *dev;
473 static int cards_found = 0;
474 static int ioaddr;
475 int err;
476#ifdef __ISAPNP__
477 short i;
478 static int pnp_cards;
479#endif
480
481 dev = alloc_etherdev(sizeof(struct corkscrew_private));
482 if (!dev)
483 return ERR_PTR(-ENOMEM);
484
485 if (unit >= 0) {
486 sprintf(dev->name, "eth%d", unit);
487 netdev_boot_setup_check(dev);
488 }
489
490#ifdef __ISAPNP__
491 if(nopnp == 1)
492 goto no_pnp;
493 for(i=0; corkscrew_isapnp_adapters[i].vendor != 0; i++) {
494 struct pnp_dev *idev = NULL;
495 int irq;
496 while((idev = pnp_find_dev(NULL,
497 corkscrew_isapnp_adapters[i].vendor,
498 corkscrew_isapnp_adapters[i].function,
499 idev))) {
500
501 if (pnp_device_attach(idev) < 0)
502 continue;
503 if (pnp_activate_dev(idev) < 0) {
504 pr_warn("pnp activate failed (out of resources?)\n");
505 pnp_device_detach(idev);
506 continue;
507 }
508 if (!pnp_port_valid(idev, 0) || !pnp_irq_valid(idev, 0)) {
509 pnp_device_detach(idev);
510 continue;
511 }
512 ioaddr = pnp_port_start(idev, 0);
513 irq = pnp_irq(idev, 0);
514 if (!check_device(ioaddr)) {
515 pnp_device_detach(idev);
516 continue;
517 }
518 if(corkscrew_debug)
519 pr_debug("ISAPNP reports %s at i/o 0x%x, irq %d\n",
520 (char*) corkscrew_isapnp_adapters[i].driver_data, ioaddr, irq);
521 pr_info("3c515 Resource configuration register %#4.4x, DCR %4.4x.\n",
522 inl(ioaddr + 0x2002), inw(ioaddr + 0x2000));
523 /* irq = inw(ioaddr + 0x2002) & 15; */ /* Use the irq from isapnp */
524 SET_NETDEV_DEV(dev, &idev->dev);
525 pnp_cards++;
526 err = corkscrew_setup(dev, ioaddr, idev, cards_found++);
527 if (!err)
528 return dev;
529 cleanup_card(dev);
530 }
531 }
532no_pnp:
533#endif /* __ISAPNP__ */
534
535 /* Check all locations on the ISA bus -- evil! */
536 for (ioaddr = 0x100; ioaddr < 0x400; ioaddr += 0x20) {
537 if (!check_device(ioaddr))
538 continue;
539
540 pr_info("3c515 Resource configuration register %#4.4x, DCR %4.4x.\n",
541 inl(ioaddr + 0x2002), inw(ioaddr + 0x2000));
542 err = corkscrew_setup(dev, ioaddr, NULL, cards_found++);
543 if (!err)
544 return dev;
545 cleanup_card(dev);
546 }
547 free_netdev(dev);
548 return NULL;
549}
550
551
552static const struct net_device_ops netdev_ops = {
553 .ndo_open = corkscrew_open,
554 .ndo_stop = corkscrew_close,
555 .ndo_start_xmit = corkscrew_start_xmit,
556 .ndo_tx_timeout = corkscrew_timeout,
557 .ndo_get_stats = corkscrew_get_stats,
558 .ndo_set_rx_mode = set_rx_mode,
559 .ndo_set_mac_address = eth_mac_addr,
560 .ndo_validate_addr = eth_validate_addr,
561};
562
563
564static int corkscrew_setup(struct net_device *dev, int ioaddr,
565 struct pnp_dev *idev, int card_number)
566{
567 struct corkscrew_private *vp = netdev_priv(dev);
568 unsigned int eeprom[0x40], checksum = 0; /* EEPROM contents */
569 int i;
570 int irq;
571
572#ifdef __ISAPNP__
573 if (idev) {
574 irq = pnp_irq(idev, 0);
575 vp->dev = &idev->dev;
576 } else {
577 irq = inw(ioaddr + 0x2002) & 15;
578 }
579#else
580 irq = inw(ioaddr + 0x2002) & 15;
581#endif
582
583 dev->base_addr = ioaddr;
584 dev->irq = irq;
585 dev->dma = inw(ioaddr + 0x2000) & 7;
586 vp->product_name = "3c515";
587 vp->options = dev->mem_start;
588 vp->our_dev = dev;
589
590 if (!vp->options) {
591 if (card_number >= MAX_UNITS)
592 vp->options = -1;
593 else
594 vp->options = options[card_number];
595 }
596
597 if (vp->options >= 0) {
598 vp->media_override = vp->options & 7;
599 if (vp->media_override == 2)
600 vp->media_override = 0;
601 vp->full_duplex = (vp->options & 8) ? 1 : 0;
602 vp->bus_master = (vp->options & 16) ? 1 : 0;
603 } else {
604 vp->media_override = 7;
605 vp->full_duplex = 0;
606 vp->bus_master = 0;
607 }
608#ifdef MODULE
609 list_add(&vp->list, &root_corkscrew_dev);
610#endif
611
612 pr_info("%s: 3Com %s at %#3x,", dev->name, vp->product_name, ioaddr);
613
614 spin_lock_init(&vp->lock);
615
616 timer_setup(&vp->timer, corkscrew_timer, 0);
617
618 /* Read the station address from the EEPROM. */
619 EL3WINDOW(0);
620 for (i = 0; i < 0x18; i++) {
621 __be16 *phys_addr = (__be16 *) dev->dev_addr;
622 int timer;
623 outw(EEPROM_Read + i, ioaddr + Wn0EepromCmd);
624 /* Pause for at least 162 us. for the read to take place. */
625 for (timer = 4; timer >= 0; timer--) {
626 udelay(162);
627 if ((inw(ioaddr + Wn0EepromCmd) & 0x0200) == 0)
628 break;
629 }
630 eeprom[i] = inw(ioaddr + Wn0EepromData);
631 checksum ^= eeprom[i];
632 if (i < 3)
633 phys_addr[i] = htons(eeprom[i]);
634 }
635 checksum = (checksum ^ (checksum >> 8)) & 0xff;
636 if (checksum != 0x00)
637 pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
638 pr_cont(" %pM", dev->dev_addr);
639 if (eeprom[16] == 0x11c7) { /* Corkscrew */
640 if (request_dma(dev->dma, "3c515")) {
641 pr_cont(", DMA %d allocation failed", dev->dma);
642 dev->dma = 0;
643 } else
644 pr_cont(", DMA %d", dev->dma);
645 }
646 pr_cont(", IRQ %d\n", dev->irq);
647 /* Tell them about an invalid IRQ. */
648 if (corkscrew_debug && (dev->irq <= 0 || dev->irq > 15))
649 pr_warn(" *** Warning: this IRQ is unlikely to work! ***\n");
650
651 {
652 static const char * const ram_split[] = {
653 "5:3", "3:1", "1:1", "3:5"
654 };
655 __u32 config;
656 EL3WINDOW(3);
657 vp->available_media = inw(ioaddr + Wn3_Options);
658 config = inl(ioaddr + Wn3_Config);
659 if (corkscrew_debug > 1)
660 pr_info(" Internal config register is %4.4x, transceivers %#x.\n",
661 config, inw(ioaddr + Wn3_Options));
662 pr_info(" %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
663 8 << config & Ram_size,
664 config & Ram_width ? "word" : "byte",
665 ram_split[(config & Ram_split) >> Ram_split_shift],
666 config & Autoselect ? "autoselect/" : "",
667 media_tbl[(config & Xcvr) >> Xcvr_shift].name);
668 vp->default_media = (config & Xcvr) >> Xcvr_shift;
669 vp->autoselect = config & Autoselect ? 1 : 0;
670 dev->if_port = vp->default_media;
671 }
672 if (vp->media_override != 7) {
673 pr_info(" Media override to transceiver type %d (%s).\n",
674 vp->media_override,
675 media_tbl[vp->media_override].name);
676 dev->if_port = vp->media_override;
677 }
678
679 vp->capabilities = eeprom[16];
680 vp->full_bus_master_tx = (vp->capabilities & 0x20) ? 1 : 0;
681 /* Rx is broken at 10mbps, so we always disable it. */
682 /* vp->full_bus_master_rx = 0; */
683 vp->full_bus_master_rx = (vp->capabilities & 0x20) ? 1 : 0;
684
685 /* The 3c51x-specific entries in the device structure. */
686 dev->netdev_ops = &netdev_ops;
687 dev->watchdog_timeo = (400 * HZ) / 1000;
688 dev->ethtool_ops = &netdev_ethtool_ops;
689
690 return register_netdev(dev);
691}
692
693
694static int corkscrew_open(struct net_device *dev)
695{
696 int ioaddr = dev->base_addr;
697 struct corkscrew_private *vp = netdev_priv(dev);
698 bool armtimer = false;
699 __u32 config;
700 int i;
701
702 /* Before initializing select the active media port. */
703 EL3WINDOW(3);
704 if (vp->full_duplex)
705 outb(0x20, ioaddr + Wn3_MAC_Ctrl); /* Set the full-duplex bit. */
706 config = inl(ioaddr + Wn3_Config);
707
708 if (vp->media_override != 7) {
709 if (corkscrew_debug > 1)
710 pr_info("%s: Media override to transceiver %d (%s).\n",
711 dev->name, vp->media_override,
712 media_tbl[vp->media_override].name);
713 dev->if_port = vp->media_override;
714 } else if (vp->autoselect) {
715 /* Find first available media type, starting with 100baseTx. */
716 dev->if_port = 4;
717 while (!(vp->available_media & media_tbl[dev->if_port].mask))
718 dev->if_port = media_tbl[dev->if_port].next;
719
720 if (corkscrew_debug > 1)
721 pr_debug("%s: Initial media type %s.\n",
722 dev->name, media_tbl[dev->if_port].name);
723 armtimer = true;
724 } else
725 dev->if_port = vp->default_media;
726
727 config = (config & ~Xcvr) | (dev->if_port << Xcvr_shift);
728 outl(config, ioaddr + Wn3_Config);
729
730 if (corkscrew_debug > 1) {
731 pr_debug("%s: corkscrew_open() InternalConfig %8.8x.\n",
732 dev->name, config);
733 }
734
735 outw(TxReset, ioaddr + EL3_CMD);
736 for (i = 20; i >= 0; i--)
737 if (!(inw(ioaddr + EL3_STATUS) & CmdInProgress))
738 break;
739
740 outw(RxReset, ioaddr + EL3_CMD);
741 /* Wait a few ticks for the RxReset command to complete. */
742 for (i = 20; i >= 0; i--)
743 if (!(inw(ioaddr + EL3_STATUS) & CmdInProgress))
744 break;
745
746 outw(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
747
748 /* Use the now-standard shared IRQ implementation. */
749 if (vp->capabilities == 0x11c7) {
750 /* Corkscrew: Cannot share ISA resources. */
751 if (dev->irq == 0 ||
752 dev->dma == 0 ||
753 request_irq(dev->irq, corkscrew_interrupt, 0,
754 vp->product_name, dev))
755 return -EAGAIN;
756 enable_dma(dev->dma);
757 set_dma_mode(dev->dma, DMA_MODE_CASCADE);
758 } else if (request_irq(dev->irq, corkscrew_interrupt, IRQF_SHARED,
759 vp->product_name, dev)) {
760 return -EAGAIN;
761 }
762
763 if (armtimer)
764 mod_timer(&vp->timer, jiffies + media_tbl[dev->if_port].wait);
765
766 if (corkscrew_debug > 1) {
767 EL3WINDOW(4);
768 pr_debug("%s: corkscrew_open() irq %d media status %4.4x.\n",
769 dev->name, dev->irq, inw(ioaddr + Wn4_Media));
770 }
771
772 /* Set the station address and mask in window 2 each time opened. */
773 EL3WINDOW(2);
774 for (i = 0; i < 6; i++)
775 outb(dev->dev_addr[i], ioaddr + i);
776 for (; i < 12; i += 2)
777 outw(0, ioaddr + i);
778
779 if (dev->if_port == 3)
780 /* Start the thinnet transceiver. We should really wait 50ms... */
781 outw(StartCoax, ioaddr + EL3_CMD);
782 EL3WINDOW(4);
783 outw((inw(ioaddr + Wn4_Media) & ~(Media_10TP | Media_SQE)) |
784 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
785
786 /* Switch to the stats window, and clear all stats by reading. */
787 outw(StatsDisable, ioaddr + EL3_CMD);
788 EL3WINDOW(6);
789 for (i = 0; i < 10; i++)
790 inb(ioaddr + i);
791 inw(ioaddr + 10);
792 inw(ioaddr + 12);
793 /* New: On the Vortex we must also clear the BadSSD counter. */
794 EL3WINDOW(4);
795 inb(ioaddr + 12);
796 /* ..and on the Boomerang we enable the extra statistics bits. */
797 outw(0x0040, ioaddr + Wn4_NetDiag);
798
799 /* Switch to register set 7 for normal use. */
800 EL3WINDOW(7);
801
802 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
803 vp->cur_rx = vp->dirty_rx = 0;
804 if (corkscrew_debug > 2)
805 pr_debug("%s: Filling in the Rx ring.\n", dev->name);
806 for (i = 0; i < RX_RING_SIZE; i++) {
807 struct sk_buff *skb;
808 if (i < (RX_RING_SIZE - 1))
809 vp->rx_ring[i].next =
810 isa_virt_to_bus(&vp->rx_ring[i + 1]);
811 else
812 vp->rx_ring[i].next = 0;
813 vp->rx_ring[i].status = 0; /* Clear complete bit. */
814 vp->rx_ring[i].length = PKT_BUF_SZ | 0x80000000;
815 skb = netdev_alloc_skb(dev, PKT_BUF_SZ);
816 vp->rx_skbuff[i] = skb;
817 if (skb == NULL)
818 break; /* Bad news! */
819 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
820 vp->rx_ring[i].addr = isa_virt_to_bus(skb->data);
821 }
822 if (i != 0)
823 vp->rx_ring[i - 1].next =
824 isa_virt_to_bus(&vp->rx_ring[0]); /* Wrap the ring. */
825 outl(isa_virt_to_bus(&vp->rx_ring[0]), ioaddr + UpListPtr);
826 }
827 if (vp->full_bus_master_tx) { /* Boomerang bus master Tx. */
828 vp->cur_tx = vp->dirty_tx = 0;
829 outb(PKT_BUF_SZ >> 8, ioaddr + TxFreeThreshold); /* Room for a packet. */
830 /* Clear the Tx ring. */
831 for (i = 0; i < TX_RING_SIZE; i++)
832 vp->tx_skbuff[i] = NULL;
833 outl(0, ioaddr + DownListPtr);
834 }
835 /* Set receiver mode: presumably accept b-case and phys addr only. */
836 set_rx_mode(dev);
837 outw(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
838
839 netif_start_queue(dev);
840
841 outw(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
842 outw(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
843 /* Allow status bits to be seen. */
844 outw(SetStatusEnb | AdapterFailure | IntReq | StatsFull |
845 (vp->full_bus_master_tx ? DownComplete : TxAvailable) |
846 (vp->full_bus_master_rx ? UpComplete : RxComplete) |
847 (vp->bus_master ? DMADone : 0), ioaddr + EL3_CMD);
848 /* Ack all pending events, and set active indicator mask. */
849 outw(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
850 ioaddr + EL3_CMD);
851 outw(SetIntrEnb | IntLatch | TxAvailable | RxComplete | StatsFull
852 | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete,
853 ioaddr + EL3_CMD);
854
855 return 0;
856}
857
858static void corkscrew_timer(struct timer_list *t)
859{
860#ifdef AUTOMEDIA
861 struct corkscrew_private *vp = from_timer(vp, t, timer);
862 struct net_device *dev = vp->our_dev;
863 int ioaddr = dev->base_addr;
864 unsigned long flags;
865 int ok = 0;
866
867 if (corkscrew_debug > 1)
868 pr_debug("%s: Media selection timer tick happened, %s.\n",
869 dev->name, media_tbl[dev->if_port].name);
870
871 spin_lock_irqsave(&vp->lock, flags);
872
873 {
874 int old_window = inw(ioaddr + EL3_CMD) >> 13;
875 int media_status;
876 EL3WINDOW(4);
877 media_status = inw(ioaddr + Wn4_Media);
878 switch (dev->if_port) {
879 case 0:
880 case 4:
881 case 5: /* 10baseT, 100baseTX, 100baseFX */
882 if (media_status & Media_LnkBeat) {
883 ok = 1;
884 if (corkscrew_debug > 1)
885 pr_debug("%s: Media %s has link beat, %x.\n",
886 dev->name,
887 media_tbl[dev->if_port].name,
888 media_status);
889 } else if (corkscrew_debug > 1)
890 pr_debug("%s: Media %s is has no link beat, %x.\n",
891 dev->name,
892 media_tbl[dev->if_port].name,
893 media_status);
894
895 break;
896 default: /* Other media types handled by Tx timeouts. */
897 if (corkscrew_debug > 1)
898 pr_debug("%s: Media %s is has no indication, %x.\n",
899 dev->name,
900 media_tbl[dev->if_port].name,
901 media_status);
902 ok = 1;
903 }
904 if (!ok) {
905 __u32 config;
906
907 do {
908 dev->if_port =
909 media_tbl[dev->if_port].next;
910 }
911 while (!(vp->available_media & media_tbl[dev->if_port].mask));
912
913 if (dev->if_port == 8) { /* Go back to default. */
914 dev->if_port = vp->default_media;
915 if (corkscrew_debug > 1)
916 pr_debug("%s: Media selection failing, using default %s port.\n",
917 dev->name,
918 media_tbl[dev->if_port].name);
919 } else {
920 if (corkscrew_debug > 1)
921 pr_debug("%s: Media selection failed, now trying %s port.\n",
922 dev->name,
923 media_tbl[dev->if_port].name);
924 vp->timer.expires = jiffies + media_tbl[dev->if_port].wait;
925 add_timer(&vp->timer);
926 }
927 outw((media_status & ~(Media_10TP | Media_SQE)) |
928 media_tbl[dev->if_port].media_bits,
929 ioaddr + Wn4_Media);
930
931 EL3WINDOW(3);
932 config = inl(ioaddr + Wn3_Config);
933 config = (config & ~Xcvr) | (dev->if_port << Xcvr_shift);
934 outl(config, ioaddr + Wn3_Config);
935
936 outw(dev->if_port == 3 ? StartCoax : StopCoax,
937 ioaddr + EL3_CMD);
938 }
939 EL3WINDOW(old_window);
940 }
941
942 spin_unlock_irqrestore(&vp->lock, flags);
943 if (corkscrew_debug > 1)
944 pr_debug("%s: Media selection timer finished, %s.\n",
945 dev->name, media_tbl[dev->if_port].name);
946
947#endif /* AUTOMEDIA */
948}
949
950static void corkscrew_timeout(struct net_device *dev, unsigned int txqueue)
951{
952 int i;
953 struct corkscrew_private *vp = netdev_priv(dev);
954 int ioaddr = dev->base_addr;
955
956 pr_warn("%s: transmit timed out, tx_status %2.2x status %4.4x\n",
957 dev->name, inb(ioaddr + TxStatus),
958 inw(ioaddr + EL3_STATUS));
959 /* Slight code bloat to be user friendly. */
960 if ((inb(ioaddr + TxStatus) & 0x88) == 0x88)
961 pr_warn("%s: Transmitter encountered 16 collisions -- network cable problem?\n",
962 dev->name);
963#ifndef final_version
964 pr_debug(" Flags; bus-master %d, full %d; dirty %d current %d.\n",
965 vp->full_bus_master_tx, vp->tx_full, vp->dirty_tx,
966 vp->cur_tx);
967 pr_debug(" Down list %8.8x vs. %p.\n", inl(ioaddr + DownListPtr),
968 &vp->tx_ring[0]);
969 for (i = 0; i < TX_RING_SIZE; i++) {
970 pr_debug(" %d: %p length %8.8x status %8.8x\n", i,
971 &vp->tx_ring[i],
972 vp->tx_ring[i].length, vp->tx_ring[i].status);
973 }
974#endif
975 /* Issue TX_RESET and TX_START commands. */
976 outw(TxReset, ioaddr + EL3_CMD);
977 for (i = 20; i >= 0; i--)
978 if (!(inw(ioaddr + EL3_STATUS) & CmdInProgress))
979 break;
980 outw(TxEnable, ioaddr + EL3_CMD);
981 netif_trans_update(dev); /* prevent tx timeout */
982 dev->stats.tx_errors++;
983 dev->stats.tx_dropped++;
984 netif_wake_queue(dev);
985}
986
987static netdev_tx_t corkscrew_start_xmit(struct sk_buff *skb,
988 struct net_device *dev)
989{
990 struct corkscrew_private *vp = netdev_priv(dev);
991 int ioaddr = dev->base_addr;
992
993 /* Block a timer-based transmit from overlapping. */
994
995 netif_stop_queue(dev);
996
997 if (vp->full_bus_master_tx) { /* BOOMERANG bus-master */
998 /* Calculate the next Tx descriptor entry. */
999 int entry = vp->cur_tx % TX_RING_SIZE;
1000 struct boom_tx_desc *prev_entry;
1001 unsigned long flags;
1002 int i;
1003
1004 if (vp->tx_full) /* No room to transmit with */
1005 return NETDEV_TX_BUSY;
1006 if (vp->cur_tx != 0)
1007 prev_entry = &vp->tx_ring[(vp->cur_tx - 1) % TX_RING_SIZE];
1008 else
1009 prev_entry = NULL;
1010 if (corkscrew_debug > 3)
1011 pr_debug("%s: Trying to send a packet, Tx index %d.\n",
1012 dev->name, vp->cur_tx);
1013 /* vp->tx_full = 1; */
1014 vp->tx_skbuff[entry] = skb;
1015 vp->tx_ring[entry].next = 0;
1016 vp->tx_ring[entry].addr = isa_virt_to_bus(skb->data);
1017 vp->tx_ring[entry].length = skb->len | 0x80000000;
1018 vp->tx_ring[entry].status = skb->len | 0x80000000;
1019
1020 spin_lock_irqsave(&vp->lock, flags);
1021 outw(DownStall, ioaddr + EL3_CMD);
1022 /* Wait for the stall to complete. */
1023 for (i = 20; i >= 0; i--)
1024 if ((inw(ioaddr + EL3_STATUS) & CmdInProgress) == 0)
1025 break;
1026 if (prev_entry)
1027 prev_entry->next = isa_virt_to_bus(&vp->tx_ring[entry]);
1028 if (inl(ioaddr + DownListPtr) == 0) {
1029 outl(isa_virt_to_bus(&vp->tx_ring[entry]),
1030 ioaddr + DownListPtr);
1031 queued_packet++;
1032 }
1033 outw(DownUnstall, ioaddr + EL3_CMD);
1034 spin_unlock_irqrestore(&vp->lock, flags);
1035
1036 vp->cur_tx++;
1037 if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1)
1038 vp->tx_full = 1;
1039 else { /* Clear previous interrupt enable. */
1040 if (prev_entry)
1041 prev_entry->status &= ~0x80000000;
1042 netif_wake_queue(dev);
1043 }
1044 return NETDEV_TX_OK;
1045 }
1046 /* Put out the doubleword header... */
1047 outl(skb->len, ioaddr + TX_FIFO);
1048 dev->stats.tx_bytes += skb->len;
1049#ifdef VORTEX_BUS_MASTER
1050 if (vp->bus_master) {
1051 /* Set the bus-master controller to transfer the packet. */
1052 outl((int) (skb->data), ioaddr + Wn7_MasterAddr);
1053 outw((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
1054 vp->tx_skb = skb;
1055 outw(StartDMADown, ioaddr + EL3_CMD);
1056 /* queue will be woken at the DMADone interrupt. */
1057 } else {
1058 /* ... and the packet rounded to a doubleword. */
1059 outsl(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
1060 dev_kfree_skb(skb);
1061 if (inw(ioaddr + TxFree) > 1536) {
1062 netif_wake_queue(dev);
1063 } else
1064 /* Interrupt us when the FIFO has room for max-sized packet. */
1065 outw(SetTxThreshold + (1536 >> 2),
1066 ioaddr + EL3_CMD);
1067 }
1068#else
1069 /* ... and the packet rounded to a doubleword. */
1070 outsl(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
1071 dev_kfree_skb(skb);
1072 if (inw(ioaddr + TxFree) > 1536) {
1073 netif_wake_queue(dev);
1074 } else
1075 /* Interrupt us when the FIFO has room for max-sized packet. */
1076 outw(SetTxThreshold + (1536 >> 2), ioaddr + EL3_CMD);
1077#endif /* bus master */
1078
1079
1080 /* Clear the Tx status stack. */
1081 {
1082 short tx_status;
1083 int i = 4;
1084
1085 while (--i > 0 && (tx_status = inb(ioaddr + TxStatus)) > 0) {
1086 if (tx_status & 0x3C) { /* A Tx-disabling error occurred. */
1087 if (corkscrew_debug > 2)
1088 pr_debug("%s: Tx error, status %2.2x.\n",
1089 dev->name, tx_status);
1090 if (tx_status & 0x04)
1091 dev->stats.tx_fifo_errors++;
1092 if (tx_status & 0x38)
1093 dev->stats.tx_aborted_errors++;
1094 if (tx_status & 0x30) {
1095 int j;
1096 outw(TxReset, ioaddr + EL3_CMD);
1097 for (j = 20; j >= 0; j--)
1098 if (!(inw(ioaddr + EL3_STATUS) & CmdInProgress))
1099 break;
1100 }
1101 outw(TxEnable, ioaddr + EL3_CMD);
1102 }
1103 outb(0x00, ioaddr + TxStatus); /* Pop the status stack. */
1104 }
1105 }
1106 return NETDEV_TX_OK;
1107}
1108
1109/* The interrupt handler does all of the Rx thread work and cleans up
1110 after the Tx thread. */
1111
1112static irqreturn_t corkscrew_interrupt(int irq, void *dev_id)
1113{
1114 /* Use the now-standard shared IRQ implementation. */
1115 struct net_device *dev = dev_id;
1116 struct corkscrew_private *lp = netdev_priv(dev);
1117 int ioaddr, status;
1118 int latency;
1119 int i = max_interrupt_work;
1120
1121 ioaddr = dev->base_addr;
1122 latency = inb(ioaddr + Timer);
1123
1124 spin_lock(&lp->lock);
1125
1126 status = inw(ioaddr + EL3_STATUS);
1127
1128 if (corkscrew_debug > 4)
1129 pr_debug("%s: interrupt, status %4.4x, timer %d.\n",
1130 dev->name, status, latency);
1131 if ((status & 0xE000) != 0xE000) {
1132 static int donedidthis;
1133 /* Some interrupt controllers store a bogus interrupt from boot-time.
1134 Ignore a single early interrupt, but don't hang the machine for
1135 other interrupt problems. */
1136 if (donedidthis++ > 100) {
1137 pr_err("%s: Bogus interrupt, bailing. Status %4.4x, start=%d.\n",
1138 dev->name, status, netif_running(dev));
1139 free_irq(dev->irq, dev);
1140 dev->irq = -1;
1141 }
1142 }
1143
1144 do {
1145 if (corkscrew_debug > 5)
1146 pr_debug("%s: In interrupt loop, status %4.4x.\n",
1147 dev->name, status);
1148 if (status & RxComplete)
1149 corkscrew_rx(dev);
1150
1151 if (status & TxAvailable) {
1152 if (corkscrew_debug > 5)
1153 pr_debug(" TX room bit was handled.\n");
1154 /* There's room in the FIFO for a full-sized packet. */
1155 outw(AckIntr | TxAvailable, ioaddr + EL3_CMD);
1156 netif_wake_queue(dev);
1157 }
1158 if (status & DownComplete) {
1159 unsigned int dirty_tx = lp->dirty_tx;
1160
1161 while (lp->cur_tx - dirty_tx > 0) {
1162 int entry = dirty_tx % TX_RING_SIZE;
1163 if (inl(ioaddr + DownListPtr) == isa_virt_to_bus(&lp->tx_ring[entry]))
1164 break; /* It still hasn't been processed. */
1165 if (lp->tx_skbuff[entry]) {
1166 dev_consume_skb_irq(lp->tx_skbuff[entry]);
1167 lp->tx_skbuff[entry] = NULL;
1168 }
1169 dirty_tx++;
1170 }
1171 lp->dirty_tx = dirty_tx;
1172 outw(AckIntr | DownComplete, ioaddr + EL3_CMD);
1173 if (lp->tx_full && (lp->cur_tx - dirty_tx <= TX_RING_SIZE - 1)) {
1174 lp->tx_full = 0;
1175 netif_wake_queue(dev);
1176 }
1177 }
1178#ifdef VORTEX_BUS_MASTER
1179 if (status & DMADone) {
1180 outw(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
1181 dev_consume_skb_irq(lp->tx_skb); /* Release the transferred buffer */
1182 netif_wake_queue(dev);
1183 }
1184#endif
1185 if (status & UpComplete) {
1186 boomerang_rx(dev);
1187 outw(AckIntr | UpComplete, ioaddr + EL3_CMD);
1188 }
1189 if (status & (AdapterFailure | RxEarly | StatsFull)) {
1190 /* Handle all uncommon interrupts at once. */
1191 if (status & RxEarly) { /* Rx early is unused. */
1192 corkscrew_rx(dev);
1193 outw(AckIntr | RxEarly, ioaddr + EL3_CMD);
1194 }
1195 if (status & StatsFull) { /* Empty statistics. */
1196 static int DoneDidThat;
1197 if (corkscrew_debug > 4)
1198 pr_debug("%s: Updating stats.\n", dev->name);
1199 update_stats(ioaddr, dev);
1200 /* DEBUG HACK: Disable statistics as an interrupt source. */
1201 /* This occurs when we have the wrong media type! */
1202 if (DoneDidThat == 0 && inw(ioaddr + EL3_STATUS) & StatsFull) {
1203 int win, reg;
1204 pr_notice("%s: Updating stats failed, disabling stats as an interrupt source.\n",
1205 dev->name);
1206 for (win = 0; win < 8; win++) {
1207 EL3WINDOW(win);
1208 pr_notice("Vortex window %d:", win);
1209 for (reg = 0; reg < 16; reg++)
1210 pr_cont(" %2.2x", inb(ioaddr + reg));
1211 pr_cont("\n");
1212 }
1213 EL3WINDOW(7);
1214 outw(SetIntrEnb | TxAvailable |
1215 RxComplete | AdapterFailure |
1216 UpComplete | DownComplete |
1217 TxComplete, ioaddr + EL3_CMD);
1218 DoneDidThat++;
1219 }
1220 }
1221 if (status & AdapterFailure) {
1222 /* Adapter failure requires Rx reset and reinit. */
1223 outw(RxReset, ioaddr + EL3_CMD);
1224 /* Set the Rx filter to the current state. */
1225 set_rx_mode(dev);
1226 outw(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
1227 outw(AckIntr | AdapterFailure,
1228 ioaddr + EL3_CMD);
1229 }
1230 }
1231
1232 if (--i < 0) {
1233 pr_err("%s: Too much work in interrupt, status %4.4x. Disabling functions (%4.4x).\n",
1234 dev->name, status, SetStatusEnb | ((~status) & 0x7FE));
1235 /* Disable all pending interrupts. */
1236 outw(SetStatusEnb | ((~status) & 0x7FE), ioaddr + EL3_CMD);
1237 outw(AckIntr | 0x7FF, ioaddr + EL3_CMD);
1238 break;
1239 }
1240 /* Acknowledge the IRQ. */
1241 outw(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
1242
1243 } while ((status = inw(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
1244
1245 spin_unlock(&lp->lock);
1246
1247 if (corkscrew_debug > 4)
1248 pr_debug("%s: exiting interrupt, status %4.4x.\n", dev->name, status);
1249 return IRQ_HANDLED;
1250}
1251
1252static int corkscrew_rx(struct net_device *dev)
1253{
1254 int ioaddr = dev->base_addr;
1255 int i;
1256 short rx_status;
1257
1258 if (corkscrew_debug > 5)
1259 pr_debug(" In rx_packet(), status %4.4x, rx_status %4.4x.\n",
1260 inw(ioaddr + EL3_STATUS), inw(ioaddr + RxStatus));
1261 while ((rx_status = inw(ioaddr + RxStatus)) > 0) {
1262 if (rx_status & 0x4000) { /* Error, update stats. */
1263 unsigned char rx_error = inb(ioaddr + RxErrors);
1264 if (corkscrew_debug > 2)
1265 pr_debug(" Rx error: status %2.2x.\n",
1266 rx_error);
1267 dev->stats.rx_errors++;
1268 if (rx_error & 0x01)
1269 dev->stats.rx_over_errors++;
1270 if (rx_error & 0x02)
1271 dev->stats.rx_length_errors++;
1272 if (rx_error & 0x04)
1273 dev->stats.rx_frame_errors++;
1274 if (rx_error & 0x08)
1275 dev->stats.rx_crc_errors++;
1276 if (rx_error & 0x10)
1277 dev->stats.rx_length_errors++;
1278 } else {
1279 /* The packet length: up to 4.5K!. */
1280 short pkt_len = rx_status & 0x1fff;
1281 struct sk_buff *skb;
1282
1283 skb = netdev_alloc_skb(dev, pkt_len + 5 + 2);
1284 if (corkscrew_debug > 4)
1285 pr_debug("Receiving packet size %d status %4.4x.\n",
1286 pkt_len, rx_status);
1287 if (skb != NULL) {
1288 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1289 /* 'skb_put()' points to the start of sk_buff data area. */
1290 insl(ioaddr + RX_FIFO,
1291 skb_put(skb, pkt_len),
1292 (pkt_len + 3) >> 2);
1293 outw(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
1294 skb->protocol = eth_type_trans(skb, dev);
1295 netif_rx(skb);
1296 dev->stats.rx_packets++;
1297 dev->stats.rx_bytes += pkt_len;
1298 /* Wait a limited time to go to next packet. */
1299 for (i = 200; i >= 0; i--)
1300 if (! (inw(ioaddr + EL3_STATUS) & CmdInProgress))
1301 break;
1302 continue;
1303 } else if (corkscrew_debug)
1304 pr_debug("%s: Couldn't allocate a sk_buff of size %d.\n", dev->name, pkt_len);
1305 }
1306 outw(RxDiscard, ioaddr + EL3_CMD);
1307 dev->stats.rx_dropped++;
1308 /* Wait a limited time to skip this packet. */
1309 for (i = 200; i >= 0; i--)
1310 if (!(inw(ioaddr + EL3_STATUS) & CmdInProgress))
1311 break;
1312 }
1313 return 0;
1314}
1315
1316static int boomerang_rx(struct net_device *dev)
1317{
1318 struct corkscrew_private *vp = netdev_priv(dev);
1319 int entry = vp->cur_rx % RX_RING_SIZE;
1320 int ioaddr = dev->base_addr;
1321 int rx_status;
1322
1323 if (corkscrew_debug > 5)
1324 pr_debug(" In boomerang_rx(), status %4.4x, rx_status %4.4x.\n",
1325 inw(ioaddr + EL3_STATUS), inw(ioaddr + RxStatus));
1326 while ((rx_status = vp->rx_ring[entry].status) & RxDComplete) {
1327 if (rx_status & RxDError) { /* Error, update stats. */
1328 unsigned char rx_error = rx_status >> 16;
1329 if (corkscrew_debug > 2)
1330 pr_debug(" Rx error: status %2.2x.\n",
1331 rx_error);
1332 dev->stats.rx_errors++;
1333 if (rx_error & 0x01)
1334 dev->stats.rx_over_errors++;
1335 if (rx_error & 0x02)
1336 dev->stats.rx_length_errors++;
1337 if (rx_error & 0x04)
1338 dev->stats.rx_frame_errors++;
1339 if (rx_error & 0x08)
1340 dev->stats.rx_crc_errors++;
1341 if (rx_error & 0x10)
1342 dev->stats.rx_length_errors++;
1343 } else {
1344 /* The packet length: up to 4.5K!. */
1345 short pkt_len = rx_status & 0x1fff;
1346 struct sk_buff *skb;
1347
1348 dev->stats.rx_bytes += pkt_len;
1349 if (corkscrew_debug > 4)
1350 pr_debug("Receiving packet size %d status %4.4x.\n",
1351 pkt_len, rx_status);
1352
1353 /* Check if the packet is long enough to just accept without
1354 copying to a properly sized skbuff. */
1355 if (pkt_len < rx_copybreak &&
1356 (skb = netdev_alloc_skb(dev, pkt_len + 4)) != NULL) {
1357 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1358 /* 'skb_put()' points to the start of sk_buff data area. */
1359 skb_put_data(skb,
1360 isa_bus_to_virt(vp->rx_ring[entry].addr),
1361 pkt_len);
1362 rx_copy++;
1363 } else {
1364 void *temp;
1365 /* Pass up the skbuff already on the Rx ring. */
1366 skb = vp->rx_skbuff[entry];
1367 vp->rx_skbuff[entry] = NULL;
1368 temp = skb_put(skb, pkt_len);
1369 /* Remove this checking code for final release. */
1370 if (isa_bus_to_virt(vp->rx_ring[entry].addr) != temp)
1371 pr_warn("%s: Warning -- the skbuff addresses do not match in boomerang_rx: %p vs. %p / %p\n",
1372 dev->name,
1373 isa_bus_to_virt(vp->rx_ring[entry].addr),
1374 skb->head, temp);
1375 rx_nocopy++;
1376 }
1377 skb->protocol = eth_type_trans(skb, dev);
1378 netif_rx(skb);
1379 dev->stats.rx_packets++;
1380 }
1381 entry = (++vp->cur_rx) % RX_RING_SIZE;
1382 }
1383 /* Refill the Rx ring buffers. */
1384 for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
1385 struct sk_buff *skb;
1386 entry = vp->dirty_rx % RX_RING_SIZE;
1387 if (vp->rx_skbuff[entry] == NULL) {
1388 skb = netdev_alloc_skb(dev, PKT_BUF_SZ);
1389 if (skb == NULL)
1390 break; /* Bad news! */
1391 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1392 vp->rx_ring[entry].addr = isa_virt_to_bus(skb->data);
1393 vp->rx_skbuff[entry] = skb;
1394 }
1395 vp->rx_ring[entry].status = 0; /* Clear complete bit. */
1396 }
1397 return 0;
1398}
1399
1400static int corkscrew_close(struct net_device *dev)
1401{
1402 struct corkscrew_private *vp = netdev_priv(dev);
1403 int ioaddr = dev->base_addr;
1404 int i;
1405
1406 netif_stop_queue(dev);
1407
1408 if (corkscrew_debug > 1) {
1409 pr_debug("%s: corkscrew_close() status %4.4x, Tx status %2.2x.\n",
1410 dev->name, inw(ioaddr + EL3_STATUS),
1411 inb(ioaddr + TxStatus));
1412 pr_debug("%s: corkscrew close stats: rx_nocopy %d rx_copy %d tx_queued %d.\n",
1413 dev->name, rx_nocopy, rx_copy, queued_packet);
1414 }
1415
1416 del_timer_sync(&vp->timer);
1417
1418 /* Turn off statistics ASAP. We update lp->stats below. */
1419 outw(StatsDisable, ioaddr + EL3_CMD);
1420
1421 /* Disable the receiver and transmitter. */
1422 outw(RxDisable, ioaddr + EL3_CMD);
1423 outw(TxDisable, ioaddr + EL3_CMD);
1424
1425 if (dev->if_port == XCVR_10base2)
1426 /* Turn off thinnet power. Green! */
1427 outw(StopCoax, ioaddr + EL3_CMD);
1428
1429 free_irq(dev->irq, dev);
1430
1431 outw(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
1432
1433 update_stats(ioaddr, dev);
1434 if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
1435 outl(0, ioaddr + UpListPtr);
1436 for (i = 0; i < RX_RING_SIZE; i++)
1437 if (vp->rx_skbuff[i]) {
1438 dev_kfree_skb(vp->rx_skbuff[i]);
1439 vp->rx_skbuff[i] = NULL;
1440 }
1441 }
1442 if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
1443 outl(0, ioaddr + DownListPtr);
1444 for (i = 0; i < TX_RING_SIZE; i++)
1445 if (vp->tx_skbuff[i]) {
1446 dev_kfree_skb(vp->tx_skbuff[i]);
1447 vp->tx_skbuff[i] = NULL;
1448 }
1449 }
1450
1451 return 0;
1452}
1453
1454static struct net_device_stats *corkscrew_get_stats(struct net_device *dev)
1455{
1456 struct corkscrew_private *vp = netdev_priv(dev);
1457 unsigned long flags;
1458
1459 if (netif_running(dev)) {
1460 spin_lock_irqsave(&vp->lock, flags);
1461 update_stats(dev->base_addr, dev);
1462 spin_unlock_irqrestore(&vp->lock, flags);
1463 }
1464 return &dev->stats;
1465}
1466
1467/* Update statistics.
1468 Unlike with the EL3 we need not worry about interrupts changing
1469 the window setting from underneath us, but we must still guard
1470 against a race condition with a StatsUpdate interrupt updating the
1471 table. This is done by checking that the ASM (!) code generated uses
1472 atomic updates with '+='.
1473 */
1474static void update_stats(int ioaddr, struct net_device *dev)
1475{
1476 /* Unlike the 3c5x9 we need not turn off stats updates while reading. */
1477 /* Switch to the stats window, and read everything. */
1478 EL3WINDOW(6);
1479 dev->stats.tx_carrier_errors += inb(ioaddr + 0);
1480 dev->stats.tx_heartbeat_errors += inb(ioaddr + 1);
1481 /* Multiple collisions. */ inb(ioaddr + 2);
1482 dev->stats.collisions += inb(ioaddr + 3);
1483 dev->stats.tx_window_errors += inb(ioaddr + 4);
1484 dev->stats.rx_fifo_errors += inb(ioaddr + 5);
1485 dev->stats.tx_packets += inb(ioaddr + 6);
1486 dev->stats.tx_packets += (inb(ioaddr + 9) & 0x30) << 4;
1487 /* Rx packets */ inb(ioaddr + 7);
1488 /* Must read to clear */
1489 /* Tx deferrals */ inb(ioaddr + 8);
1490 /* Don't bother with register 9, an extension of registers 6&7.
1491 If we do use the 6&7 values the atomic update assumption above
1492 is invalid. */
1493 inw(ioaddr + 10); /* Total Rx and Tx octets. */
1494 inw(ioaddr + 12);
1495 /* New: On the Vortex we must also clear the BadSSD counter. */
1496 EL3WINDOW(4);
1497 inb(ioaddr + 12);
1498
1499 /* We change back to window 7 (not 1) with the Vortex. */
1500 EL3WINDOW(7);
1501}
1502
1503/* This new version of set_rx_mode() supports v1.4 kernels.
1504 The Vortex chip has no documented multicast filter, so the only
1505 multicast setting is to receive all multicast frames. At least
1506 the chip has a very clean way to set the mode, unlike many others. */
1507static void set_rx_mode(struct net_device *dev)
1508{
1509 int ioaddr = dev->base_addr;
1510 unsigned short new_mode;
1511
1512 if (dev->flags & IFF_PROMISC) {
1513 if (corkscrew_debug > 3)
1514 pr_debug("%s: Setting promiscuous mode.\n",
1515 dev->name);
1516 new_mode = SetRxFilter | RxStation | RxMulticast | RxBroadcast | RxProm;
1517 } else if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) {
1518 new_mode = SetRxFilter | RxStation | RxMulticast | RxBroadcast;
1519 } else
1520 new_mode = SetRxFilter | RxStation | RxBroadcast;
1521
1522 outw(new_mode, ioaddr + EL3_CMD);
1523}
1524
1525static void netdev_get_drvinfo(struct net_device *dev,
1526 struct ethtool_drvinfo *info)
1527{
1528 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1529 snprintf(info->bus_info, sizeof(info->bus_info), "ISA 0x%lx",
1530 dev->base_addr);
1531}
1532
1533static u32 netdev_get_msglevel(struct net_device *dev)
1534{
1535 return corkscrew_debug;
1536}
1537
1538static void netdev_set_msglevel(struct net_device *dev, u32 level)
1539{
1540 corkscrew_debug = level;
1541}
1542
1543static const struct ethtool_ops netdev_ethtool_ops = {
1544 .get_drvinfo = netdev_get_drvinfo,
1545 .get_msglevel = netdev_get_msglevel,
1546 .set_msglevel = netdev_set_msglevel,
1547};
1548
1549
1550#ifdef MODULE
1551void cleanup_module(void)
1552{
1553 while (!list_empty(&root_corkscrew_dev)) {
1554 struct net_device *dev;
1555 struct corkscrew_private *vp;
1556
1557 vp = list_entry(root_corkscrew_dev.next,
1558 struct corkscrew_private, list);
1559 dev = vp->our_dev;
1560 unregister_netdev(dev);
1561 cleanup_card(dev);
1562 free_netdev(dev);
1563 }
1564}
1565#endif /* MODULE */