Loading...
1// SPDX-License-Identifier: GPL-2.0
2
3#define pr_fmt(fmt) "DMAR-IR: " fmt
4
5#include <linux/interrupt.h>
6#include <linux/dmar.h>
7#include <linux/spinlock.h>
8#include <linux/slab.h>
9#include <linux/jiffies.h>
10#include <linux/hpet.h>
11#include <linux/pci.h>
12#include <linux/irq.h>
13#include <linux/acpi.h>
14#include <linux/irqdomain.h>
15#include <linux/crash_dump.h>
16#include <asm/io_apic.h>
17#include <asm/apic.h>
18#include <asm/smp.h>
19#include <asm/cpu.h>
20#include <asm/irq_remapping.h>
21#include <asm/pci-direct.h>
22#include <asm/posted_intr.h>
23
24#include "iommu.h"
25#include "../irq_remapping.h"
26#include "../iommu-pages.h"
27#include "cap_audit.h"
28
29enum irq_mode {
30 IRQ_REMAPPING,
31 IRQ_POSTING,
32};
33
34struct ioapic_scope {
35 struct intel_iommu *iommu;
36 unsigned int id;
37 unsigned int bus; /* PCI bus number */
38 unsigned int devfn; /* PCI devfn number */
39};
40
41struct hpet_scope {
42 struct intel_iommu *iommu;
43 u8 id;
44 unsigned int bus;
45 unsigned int devfn;
46};
47
48struct irq_2_iommu {
49 struct intel_iommu *iommu;
50 u16 irte_index;
51 u16 sub_handle;
52 u8 irte_mask;
53 enum irq_mode mode;
54 bool posted_msi;
55};
56
57struct intel_ir_data {
58 struct irq_2_iommu irq_2_iommu;
59 struct irte irte_entry;
60 union {
61 struct msi_msg msi_entry;
62 };
63};
64
65#define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
66#define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8)
67
68static int __read_mostly eim_mode;
69static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
70static struct hpet_scope ir_hpet[MAX_HPET_TBS];
71
72/*
73 * Lock ordering:
74 * ->dmar_global_lock
75 * ->irq_2_ir_lock
76 * ->qi->q_lock
77 * ->iommu->register_lock
78 * Note:
79 * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
80 * in single-threaded environment with interrupt disabled, so no need to tabke
81 * the dmar_global_lock.
82 */
83DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
84static const struct irq_domain_ops intel_ir_domain_ops;
85
86static void iommu_disable_irq_remapping(struct intel_iommu *iommu);
87static int __init parse_ioapics_under_ir(void);
88static const struct msi_parent_ops dmar_msi_parent_ops;
89
90static bool ir_pre_enabled(struct intel_iommu *iommu)
91{
92 return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED);
93}
94
95static void clear_ir_pre_enabled(struct intel_iommu *iommu)
96{
97 iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
98}
99
100static void init_ir_status(struct intel_iommu *iommu)
101{
102 u32 gsts;
103
104 gsts = readl(iommu->reg + DMAR_GSTS_REG);
105 if (gsts & DMA_GSTS_IRES)
106 iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
107}
108
109static int alloc_irte(struct intel_iommu *iommu,
110 struct irq_2_iommu *irq_iommu, u16 count)
111{
112 struct ir_table *table = iommu->ir_table;
113 unsigned int mask = 0;
114 unsigned long flags;
115 int index;
116
117 if (!count || !irq_iommu)
118 return -1;
119
120 if (count > 1) {
121 count = __roundup_pow_of_two(count);
122 mask = ilog2(count);
123 }
124
125 if (mask > ecap_max_handle_mask(iommu->ecap)) {
126 pr_err("Requested mask %x exceeds the max invalidation handle"
127 " mask value %Lx\n", mask,
128 ecap_max_handle_mask(iommu->ecap));
129 return -1;
130 }
131
132 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
133 index = bitmap_find_free_region(table->bitmap,
134 INTR_REMAP_TABLE_ENTRIES, mask);
135 if (index < 0) {
136 pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id);
137 } else {
138 irq_iommu->iommu = iommu;
139 irq_iommu->irte_index = index;
140 irq_iommu->sub_handle = 0;
141 irq_iommu->irte_mask = mask;
142 irq_iommu->mode = IRQ_REMAPPING;
143 }
144 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
145
146 return index;
147}
148
149static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
150{
151 struct qi_desc desc;
152
153 desc.qw0 = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
154 | QI_IEC_SELECTIVE;
155 desc.qw1 = 0;
156 desc.qw2 = 0;
157 desc.qw3 = 0;
158
159 return qi_submit_sync(iommu, &desc, 1, 0);
160}
161
162static int modify_irte(struct irq_2_iommu *irq_iommu,
163 struct irte *irte_modified)
164{
165 struct intel_iommu *iommu;
166 unsigned long flags;
167 struct irte *irte;
168 int rc, index;
169
170 if (!irq_iommu)
171 return -1;
172
173 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
174
175 iommu = irq_iommu->iommu;
176
177 index = irq_iommu->irte_index + irq_iommu->sub_handle;
178 irte = &iommu->ir_table->base[index];
179
180 if ((irte->pst == 1) || (irte_modified->pst == 1)) {
181 /*
182 * We use cmpxchg16 to atomically update the 128-bit IRTE,
183 * and it cannot be updated by the hardware or other processors
184 * behind us, so the return value of cmpxchg16 should be the
185 * same as the old value.
186 */
187 u128 old = irte->irte;
188 WARN_ON(!try_cmpxchg128(&irte->irte, &old, irte_modified->irte));
189 } else {
190 WRITE_ONCE(irte->low, irte_modified->low);
191 WRITE_ONCE(irte->high, irte_modified->high);
192 }
193 __iommu_flush_cache(iommu, irte, sizeof(*irte));
194
195 rc = qi_flush_iec(iommu, index, 0);
196
197 /* Update iommu mode according to the IRTE mode */
198 irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING;
199 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
200
201 return rc;
202}
203
204static struct intel_iommu *map_hpet_to_iommu(u8 hpet_id)
205{
206 int i;
207
208 for (i = 0; i < MAX_HPET_TBS; i++) {
209 if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu)
210 return ir_hpet[i].iommu;
211 }
212 return NULL;
213}
214
215static struct intel_iommu *map_ioapic_to_iommu(int apic)
216{
217 int i;
218
219 for (i = 0; i < MAX_IO_APICS; i++) {
220 if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu)
221 return ir_ioapic[i].iommu;
222 }
223 return NULL;
224}
225
226static struct irq_domain *map_dev_to_ir(struct pci_dev *dev)
227{
228 struct dmar_drhd_unit *drhd = dmar_find_matched_drhd_unit(dev);
229
230 return drhd ? drhd->iommu->ir_domain : NULL;
231}
232
233static int clear_entries(struct irq_2_iommu *irq_iommu)
234{
235 struct irte *start, *entry, *end;
236 struct intel_iommu *iommu;
237 int index;
238
239 if (irq_iommu->sub_handle)
240 return 0;
241
242 iommu = irq_iommu->iommu;
243 index = irq_iommu->irte_index;
244
245 start = iommu->ir_table->base + index;
246 end = start + (1 << irq_iommu->irte_mask);
247
248 for (entry = start; entry < end; entry++) {
249 WRITE_ONCE(entry->low, 0);
250 WRITE_ONCE(entry->high, 0);
251 }
252 bitmap_release_region(iommu->ir_table->bitmap, index,
253 irq_iommu->irte_mask);
254
255 return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
256}
257
258/*
259 * source validation type
260 */
261#define SVT_NO_VERIFY 0x0 /* no verification is required */
262#define SVT_VERIFY_SID_SQ 0x1 /* verify using SID and SQ fields */
263#define SVT_VERIFY_BUS 0x2 /* verify bus of request-id */
264
265/*
266 * source-id qualifier
267 */
268#define SQ_ALL_16 0x0 /* verify all 16 bits of request-id */
269#define SQ_13_IGNORE_1 0x1 /* verify most significant 13 bits, ignore
270 * the third least significant bit
271 */
272#define SQ_13_IGNORE_2 0x2 /* verify most significant 13 bits, ignore
273 * the second and third least significant bits
274 */
275#define SQ_13_IGNORE_3 0x3 /* verify most significant 13 bits, ignore
276 * the least three significant bits
277 */
278
279/*
280 * set SVT, SQ and SID fields of irte to verify
281 * source ids of interrupt requests
282 */
283static void set_irte_sid(struct irte *irte, unsigned int svt,
284 unsigned int sq, unsigned int sid)
285{
286 if (disable_sourceid_checking)
287 svt = SVT_NO_VERIFY;
288 irte->svt = svt;
289 irte->sq = sq;
290 irte->sid = sid;
291}
292
293/*
294 * Set an IRTE to match only the bus number. Interrupt requests that reference
295 * this IRTE must have a requester-id whose bus number is between or equal
296 * to the start_bus and end_bus arguments.
297 */
298static void set_irte_verify_bus(struct irte *irte, unsigned int start_bus,
299 unsigned int end_bus)
300{
301 set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
302 (start_bus << 8) | end_bus);
303}
304
305static int set_ioapic_sid(struct irte *irte, int apic)
306{
307 int i;
308 u16 sid = 0;
309
310 if (!irte)
311 return -1;
312
313 for (i = 0; i < MAX_IO_APICS; i++) {
314 if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) {
315 sid = PCI_DEVID(ir_ioapic[i].bus, ir_ioapic[i].devfn);
316 break;
317 }
318 }
319
320 if (sid == 0) {
321 pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic);
322 return -1;
323 }
324
325 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid);
326
327 return 0;
328}
329
330static int set_hpet_sid(struct irte *irte, u8 id)
331{
332 int i;
333 u16 sid = 0;
334
335 if (!irte)
336 return -1;
337
338 for (i = 0; i < MAX_HPET_TBS; i++) {
339 if (ir_hpet[i].iommu && ir_hpet[i].id == id) {
340 sid = PCI_DEVID(ir_hpet[i].bus, ir_hpet[i].devfn);
341 break;
342 }
343 }
344
345 if (sid == 0) {
346 pr_warn("Failed to set source-id of HPET block (%d)\n", id);
347 return -1;
348 }
349
350 /*
351 * Should really use SQ_ALL_16. Some platforms are broken.
352 * While we figure out the right quirks for these broken platforms, use
353 * SQ_13_IGNORE_3 for now.
354 */
355 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);
356
357 return 0;
358}
359
360struct set_msi_sid_data {
361 struct pci_dev *pdev;
362 u16 alias;
363 int count;
364 int busmatch_count;
365};
366
367static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque)
368{
369 struct set_msi_sid_data *data = opaque;
370
371 if (data->count == 0 || PCI_BUS_NUM(alias) == PCI_BUS_NUM(data->alias))
372 data->busmatch_count++;
373
374 data->pdev = pdev;
375 data->alias = alias;
376 data->count++;
377
378 return 0;
379}
380
381static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
382{
383 struct set_msi_sid_data data;
384
385 if (!irte || !dev)
386 return -1;
387
388 data.count = 0;
389 data.busmatch_count = 0;
390 pci_for_each_dma_alias(dev, set_msi_sid_cb, &data);
391
392 /*
393 * DMA alias provides us with a PCI device and alias. The only case
394 * where the it will return an alias on a different bus than the
395 * device is the case of a PCIe-to-PCI bridge, where the alias is for
396 * the subordinate bus. In this case we can only verify the bus.
397 *
398 * If there are multiple aliases, all with the same bus number,
399 * then all we can do is verify the bus. This is typical in NTB
400 * hardware which use proxy IDs where the device will generate traffic
401 * from multiple devfn numbers on the same bus.
402 *
403 * If the alias device is on a different bus than our source device
404 * then we have a topology based alias, use it.
405 *
406 * Otherwise, the alias is for a device DMA quirk and we cannot
407 * assume that MSI uses the same requester ID. Therefore use the
408 * original device.
409 */
410 if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number)
411 set_irte_verify_bus(irte, PCI_BUS_NUM(data.alias),
412 dev->bus->number);
413 else if (data.count >= 2 && data.busmatch_count == data.count)
414 set_irte_verify_bus(irte, dev->bus->number, dev->bus->number);
415 else if (data.pdev->bus->number != dev->bus->number)
416 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias);
417 else
418 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
419 pci_dev_id(dev));
420
421 return 0;
422}
423
424static int iommu_load_old_irte(struct intel_iommu *iommu)
425{
426 struct irte *old_ir_table;
427 phys_addr_t irt_phys;
428 unsigned int i;
429 size_t size;
430 u64 irta;
431
432 /* Check whether the old ir-table has the same size as ours */
433 irta = dmar_readq(iommu->reg + DMAR_IRTA_REG);
434 if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK)
435 != INTR_REMAP_TABLE_REG_SIZE)
436 return -EINVAL;
437
438 irt_phys = irta & VTD_PAGE_MASK;
439 size = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte);
440
441 /* Map the old IR table */
442 old_ir_table = memremap(irt_phys, size, MEMREMAP_WB);
443 if (!old_ir_table)
444 return -ENOMEM;
445
446 /* Copy data over */
447 memcpy(iommu->ir_table->base, old_ir_table, size);
448
449 __iommu_flush_cache(iommu, iommu->ir_table->base, size);
450
451 /*
452 * Now check the table for used entries and mark those as
453 * allocated in the bitmap
454 */
455 for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) {
456 if (iommu->ir_table->base[i].present)
457 bitmap_set(iommu->ir_table->bitmap, i, 1);
458 }
459
460 memunmap(old_ir_table);
461
462 return 0;
463}
464
465
466static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
467{
468 unsigned long flags;
469 u64 addr;
470 u32 sts;
471
472 addr = virt_to_phys((void *)iommu->ir_table->base);
473
474 raw_spin_lock_irqsave(&iommu->register_lock, flags);
475
476 dmar_writeq(iommu->reg + DMAR_IRTA_REG,
477 (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
478
479 /* Set interrupt-remapping table pointer */
480 writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG);
481
482 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
483 readl, (sts & DMA_GSTS_IRTPS), sts);
484 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
485
486 /*
487 * Global invalidation of interrupt entry cache to make sure the
488 * hardware uses the new irq remapping table.
489 */
490 if (!cap_esirtps(iommu->cap))
491 qi_global_iec(iommu);
492}
493
494static void iommu_enable_irq_remapping(struct intel_iommu *iommu)
495{
496 unsigned long flags;
497 u32 sts;
498
499 raw_spin_lock_irqsave(&iommu->register_lock, flags);
500
501 /* Enable interrupt-remapping */
502 iommu->gcmd |= DMA_GCMD_IRE;
503 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
504 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
505 readl, (sts & DMA_GSTS_IRES), sts);
506
507 /* Block compatibility-format MSIs */
508 if (sts & DMA_GSTS_CFIS) {
509 iommu->gcmd &= ~DMA_GCMD_CFI;
510 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
511 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
512 readl, !(sts & DMA_GSTS_CFIS), sts);
513 }
514
515 /*
516 * With CFI clear in the Global Command register, we should be
517 * protected from dangerous (i.e. compatibility) interrupts
518 * regardless of x2apic status. Check just to be sure.
519 */
520 if (sts & DMA_GSTS_CFIS)
521 WARN(1, KERN_WARNING
522 "Compatibility-format IRQs enabled despite intr remapping;\n"
523 "you are vulnerable to IRQ injection.\n");
524
525 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
526}
527
528static int intel_setup_irq_remapping(struct intel_iommu *iommu)
529{
530 struct ir_table *ir_table;
531 struct fwnode_handle *fn;
532 unsigned long *bitmap;
533 void *ir_table_base;
534
535 if (iommu->ir_table)
536 return 0;
537
538 ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL);
539 if (!ir_table)
540 return -ENOMEM;
541
542 ir_table_base = iommu_alloc_pages_node(iommu->node, GFP_KERNEL,
543 INTR_REMAP_PAGE_ORDER);
544 if (!ir_table_base) {
545 pr_err("IR%d: failed to allocate pages of order %d\n",
546 iommu->seq_id, INTR_REMAP_PAGE_ORDER);
547 goto out_free_table;
548 }
549
550 bitmap = bitmap_zalloc(INTR_REMAP_TABLE_ENTRIES, GFP_KERNEL);
551 if (bitmap == NULL) {
552 pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id);
553 goto out_free_pages;
554 }
555
556 fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id);
557 if (!fn)
558 goto out_free_bitmap;
559
560 iommu->ir_domain =
561 irq_domain_create_hierarchy(arch_get_ir_parent_domain(),
562 0, INTR_REMAP_TABLE_ENTRIES,
563 fn, &intel_ir_domain_ops,
564 iommu);
565 if (!iommu->ir_domain) {
566 pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id);
567 goto out_free_fwnode;
568 }
569
570 irq_domain_update_bus_token(iommu->ir_domain, DOMAIN_BUS_DMAR);
571 iommu->ir_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT |
572 IRQ_DOMAIN_FLAG_ISOLATED_MSI;
573 iommu->ir_domain->msi_parent_ops = &dmar_msi_parent_ops;
574
575 ir_table->base = ir_table_base;
576 ir_table->bitmap = bitmap;
577 iommu->ir_table = ir_table;
578
579 /*
580 * If the queued invalidation is already initialized,
581 * shouldn't disable it.
582 */
583 if (!iommu->qi) {
584 /*
585 * Clear previous faults.
586 */
587 dmar_fault(-1, iommu);
588 dmar_disable_qi(iommu);
589
590 if (dmar_enable_qi(iommu)) {
591 pr_err("Failed to enable queued invalidation\n");
592 goto out_free_ir_domain;
593 }
594 }
595
596 init_ir_status(iommu);
597
598 if (ir_pre_enabled(iommu)) {
599 if (!is_kdump_kernel()) {
600 pr_info_once("IRQ remapping was enabled on %s but we are not in kdump mode\n",
601 iommu->name);
602 clear_ir_pre_enabled(iommu);
603 iommu_disable_irq_remapping(iommu);
604 } else if (iommu_load_old_irte(iommu))
605 pr_err("Failed to copy IR table for %s from previous kernel\n",
606 iommu->name);
607 else
608 pr_info("Copied IR table for %s from previous kernel\n",
609 iommu->name);
610 }
611
612 iommu_set_irq_remapping(iommu, eim_mode);
613
614 return 0;
615
616out_free_ir_domain:
617 irq_domain_remove(iommu->ir_domain);
618 iommu->ir_domain = NULL;
619out_free_fwnode:
620 irq_domain_free_fwnode(fn);
621out_free_bitmap:
622 bitmap_free(bitmap);
623out_free_pages:
624 iommu_free_pages(ir_table_base, INTR_REMAP_PAGE_ORDER);
625out_free_table:
626 kfree(ir_table);
627
628 iommu->ir_table = NULL;
629
630 return -ENOMEM;
631}
632
633static void intel_teardown_irq_remapping(struct intel_iommu *iommu)
634{
635 struct fwnode_handle *fn;
636
637 if (iommu && iommu->ir_table) {
638 if (iommu->ir_domain) {
639 fn = iommu->ir_domain->fwnode;
640
641 irq_domain_remove(iommu->ir_domain);
642 irq_domain_free_fwnode(fn);
643 iommu->ir_domain = NULL;
644 }
645 iommu_free_pages(iommu->ir_table->base, INTR_REMAP_PAGE_ORDER);
646 bitmap_free(iommu->ir_table->bitmap);
647 kfree(iommu->ir_table);
648 iommu->ir_table = NULL;
649 }
650}
651
652/*
653 * Disable Interrupt Remapping.
654 */
655static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
656{
657 unsigned long flags;
658 u32 sts;
659
660 if (!ecap_ir_support(iommu->ecap))
661 return;
662
663 /*
664 * global invalidation of interrupt entry cache before disabling
665 * interrupt-remapping.
666 */
667 if (!cap_esirtps(iommu->cap))
668 qi_global_iec(iommu);
669
670 raw_spin_lock_irqsave(&iommu->register_lock, flags);
671
672 sts = readl(iommu->reg + DMAR_GSTS_REG);
673 if (!(sts & DMA_GSTS_IRES))
674 goto end;
675
676 iommu->gcmd &= ~DMA_GCMD_IRE;
677 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
678
679 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
680 readl, !(sts & DMA_GSTS_IRES), sts);
681
682end:
683 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
684}
685
686static int __init dmar_x2apic_optout(void)
687{
688 struct acpi_table_dmar *dmar;
689 dmar = (struct acpi_table_dmar *)dmar_tbl;
690 if (!dmar || no_x2apic_optout)
691 return 0;
692 return dmar->flags & DMAR_X2APIC_OPT_OUT;
693}
694
695static void __init intel_cleanup_irq_remapping(void)
696{
697 struct dmar_drhd_unit *drhd;
698 struct intel_iommu *iommu;
699
700 for_each_iommu(iommu, drhd) {
701 if (ecap_ir_support(iommu->ecap)) {
702 iommu_disable_irq_remapping(iommu);
703 intel_teardown_irq_remapping(iommu);
704 }
705 }
706
707 if (x2apic_supported())
708 pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n");
709}
710
711static int __init intel_prepare_irq_remapping(void)
712{
713 struct dmar_drhd_unit *drhd;
714 struct intel_iommu *iommu;
715 int eim = 0;
716
717 if (irq_remap_broken) {
718 pr_warn("This system BIOS has enabled interrupt remapping\n"
719 "on a chipset that contains an erratum making that\n"
720 "feature unstable. To maintain system stability\n"
721 "interrupt remapping is being disabled. Please\n"
722 "contact your BIOS vendor for an update\n");
723 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
724 return -ENODEV;
725 }
726
727 if (dmar_table_init() < 0)
728 return -ENODEV;
729
730 if (intel_cap_audit(CAP_AUDIT_STATIC_IRQR, NULL))
731 return -ENODEV;
732
733 if (!dmar_ir_support())
734 return -ENODEV;
735
736 if (parse_ioapics_under_ir()) {
737 pr_info("Not enabling interrupt remapping\n");
738 goto error;
739 }
740
741 /* First make sure all IOMMUs support IRQ remapping */
742 for_each_iommu(iommu, drhd)
743 if (!ecap_ir_support(iommu->ecap))
744 goto error;
745
746 /* Detect remapping mode: lapic or x2apic */
747 if (x2apic_supported()) {
748 eim = !dmar_x2apic_optout();
749 if (!eim) {
750 pr_info("x2apic is disabled because BIOS sets x2apic opt out bit.");
751 pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n");
752 }
753 }
754
755 for_each_iommu(iommu, drhd) {
756 if (eim && !ecap_eim_support(iommu->ecap)) {
757 pr_info("%s does not support EIM\n", iommu->name);
758 eim = 0;
759 }
760 }
761
762 eim_mode = eim;
763 if (eim)
764 pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
765
766 /* Do the initializations early */
767 for_each_iommu(iommu, drhd) {
768 if (intel_setup_irq_remapping(iommu)) {
769 pr_err("Failed to setup irq remapping for %s\n",
770 iommu->name);
771 goto error;
772 }
773 }
774
775 return 0;
776
777error:
778 intel_cleanup_irq_remapping();
779 return -ENODEV;
780}
781
782/*
783 * Set Posted-Interrupts capability.
784 */
785static inline void set_irq_posting_cap(void)
786{
787 struct dmar_drhd_unit *drhd;
788 struct intel_iommu *iommu;
789
790 if (!disable_irq_post) {
791 /*
792 * If IRTE is in posted format, the 'pda' field goes across the
793 * 64-bit boundary, we need use cmpxchg16b to atomically update
794 * it. We only expose posted-interrupt when X86_FEATURE_CX16
795 * is supported. Actually, hardware platforms supporting PI
796 * should have X86_FEATURE_CX16 support, this has been confirmed
797 * with Intel hardware guys.
798 */
799 if (boot_cpu_has(X86_FEATURE_CX16))
800 intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP;
801
802 for_each_iommu(iommu, drhd)
803 if (!cap_pi_support(iommu->cap)) {
804 intel_irq_remap_ops.capability &=
805 ~(1 << IRQ_POSTING_CAP);
806 break;
807 }
808 }
809}
810
811static int __init intel_enable_irq_remapping(void)
812{
813 struct dmar_drhd_unit *drhd;
814 struct intel_iommu *iommu;
815 bool setup = false;
816
817 /*
818 * Setup Interrupt-remapping for all the DRHD's now.
819 */
820 for_each_iommu(iommu, drhd) {
821 if (!ir_pre_enabled(iommu))
822 iommu_enable_irq_remapping(iommu);
823 setup = true;
824 }
825
826 if (!setup)
827 goto error;
828
829 irq_remapping_enabled = 1;
830
831 set_irq_posting_cap();
832
833 pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic");
834
835 return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
836
837error:
838 intel_cleanup_irq_remapping();
839 return -1;
840}
841
842static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
843 struct intel_iommu *iommu,
844 struct acpi_dmar_hardware_unit *drhd)
845{
846 struct acpi_dmar_pci_path *path;
847 u8 bus;
848 int count, free = -1;
849
850 bus = scope->bus;
851 path = (struct acpi_dmar_pci_path *)(scope + 1);
852 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
853 / sizeof(struct acpi_dmar_pci_path);
854
855 while (--count > 0) {
856 /*
857 * Access PCI directly due to the PCI
858 * subsystem isn't initialized yet.
859 */
860 bus = read_pci_config_byte(bus, path->device, path->function,
861 PCI_SECONDARY_BUS);
862 path++;
863 }
864
865 for (count = 0; count < MAX_HPET_TBS; count++) {
866 if (ir_hpet[count].iommu == iommu &&
867 ir_hpet[count].id == scope->enumeration_id)
868 return 0;
869 else if (ir_hpet[count].iommu == NULL && free == -1)
870 free = count;
871 }
872 if (free == -1) {
873 pr_warn("Exceeded Max HPET blocks\n");
874 return -ENOSPC;
875 }
876
877 ir_hpet[free].iommu = iommu;
878 ir_hpet[free].id = scope->enumeration_id;
879 ir_hpet[free].bus = bus;
880 ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function);
881 pr_info("HPET id %d under DRHD base 0x%Lx\n",
882 scope->enumeration_id, drhd->address);
883
884 return 0;
885}
886
887static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
888 struct intel_iommu *iommu,
889 struct acpi_dmar_hardware_unit *drhd)
890{
891 struct acpi_dmar_pci_path *path;
892 u8 bus;
893 int count, free = -1;
894
895 bus = scope->bus;
896 path = (struct acpi_dmar_pci_path *)(scope + 1);
897 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
898 / sizeof(struct acpi_dmar_pci_path);
899
900 while (--count > 0) {
901 /*
902 * Access PCI directly due to the PCI
903 * subsystem isn't initialized yet.
904 */
905 bus = read_pci_config_byte(bus, path->device, path->function,
906 PCI_SECONDARY_BUS);
907 path++;
908 }
909
910 for (count = 0; count < MAX_IO_APICS; count++) {
911 if (ir_ioapic[count].iommu == iommu &&
912 ir_ioapic[count].id == scope->enumeration_id)
913 return 0;
914 else if (ir_ioapic[count].iommu == NULL && free == -1)
915 free = count;
916 }
917 if (free == -1) {
918 pr_warn("Exceeded Max IO APICS\n");
919 return -ENOSPC;
920 }
921
922 ir_ioapic[free].bus = bus;
923 ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function);
924 ir_ioapic[free].iommu = iommu;
925 ir_ioapic[free].id = scope->enumeration_id;
926 pr_info("IOAPIC id %d under DRHD base 0x%Lx IOMMU %d\n",
927 scope->enumeration_id, drhd->address, iommu->seq_id);
928
929 return 0;
930}
931
932static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
933 struct intel_iommu *iommu)
934{
935 int ret = 0;
936 struct acpi_dmar_hardware_unit *drhd;
937 struct acpi_dmar_device_scope *scope;
938 void *start, *end;
939
940 drhd = (struct acpi_dmar_hardware_unit *)header;
941 start = (void *)(drhd + 1);
942 end = ((void *)drhd) + header->length;
943
944 while (start < end && ret == 0) {
945 scope = start;
946 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC)
947 ret = ir_parse_one_ioapic_scope(scope, iommu, drhd);
948 else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET)
949 ret = ir_parse_one_hpet_scope(scope, iommu, drhd);
950 start += scope->length;
951 }
952
953 return ret;
954}
955
956static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu)
957{
958 int i;
959
960 for (i = 0; i < MAX_HPET_TBS; i++)
961 if (ir_hpet[i].iommu == iommu)
962 ir_hpet[i].iommu = NULL;
963
964 for (i = 0; i < MAX_IO_APICS; i++)
965 if (ir_ioapic[i].iommu == iommu)
966 ir_ioapic[i].iommu = NULL;
967}
968
969/*
970 * Finds the assocaition between IOAPIC's and its Interrupt-remapping
971 * hardware unit.
972 */
973static int __init parse_ioapics_under_ir(void)
974{
975 struct dmar_drhd_unit *drhd;
976 struct intel_iommu *iommu;
977 bool ir_supported = false;
978 int ioapic_idx;
979
980 for_each_iommu(iommu, drhd) {
981 int ret;
982
983 if (!ecap_ir_support(iommu->ecap))
984 continue;
985
986 ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu);
987 if (ret)
988 return ret;
989
990 ir_supported = true;
991 }
992
993 if (!ir_supported)
994 return -ENODEV;
995
996 for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
997 int ioapic_id = mpc_ioapic_id(ioapic_idx);
998 if (!map_ioapic_to_iommu(ioapic_id)) {
999 pr_err(FW_BUG "ioapic %d has no mapping iommu, "
1000 "interrupt remapping will be disabled\n",
1001 ioapic_id);
1002 return -1;
1003 }
1004 }
1005
1006 return 0;
1007}
1008
1009static int __init ir_dev_scope_init(void)
1010{
1011 int ret;
1012
1013 if (!irq_remapping_enabled)
1014 return 0;
1015
1016 down_write(&dmar_global_lock);
1017 ret = dmar_dev_scope_init();
1018 up_write(&dmar_global_lock);
1019
1020 return ret;
1021}
1022rootfs_initcall(ir_dev_scope_init);
1023
1024static void disable_irq_remapping(void)
1025{
1026 struct dmar_drhd_unit *drhd;
1027 struct intel_iommu *iommu = NULL;
1028
1029 /*
1030 * Disable Interrupt-remapping for all the DRHD's now.
1031 */
1032 for_each_iommu(iommu, drhd) {
1033 if (!ecap_ir_support(iommu->ecap))
1034 continue;
1035
1036 iommu_disable_irq_remapping(iommu);
1037 }
1038
1039 /*
1040 * Clear Posted-Interrupts capability.
1041 */
1042 if (!disable_irq_post)
1043 intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP);
1044}
1045
1046static int reenable_irq_remapping(int eim)
1047{
1048 struct dmar_drhd_unit *drhd;
1049 bool setup = false;
1050 struct intel_iommu *iommu = NULL;
1051
1052 for_each_iommu(iommu, drhd)
1053 if (iommu->qi)
1054 dmar_reenable_qi(iommu);
1055
1056 /*
1057 * Setup Interrupt-remapping for all the DRHD's now.
1058 */
1059 for_each_iommu(iommu, drhd) {
1060 if (!ecap_ir_support(iommu->ecap))
1061 continue;
1062
1063 /* Set up interrupt remapping for iommu.*/
1064 iommu_set_irq_remapping(iommu, eim);
1065 iommu_enable_irq_remapping(iommu);
1066 setup = true;
1067 }
1068
1069 if (!setup)
1070 goto error;
1071
1072 set_irq_posting_cap();
1073
1074 return 0;
1075
1076error:
1077 /*
1078 * handle error condition gracefully here!
1079 */
1080 return -1;
1081}
1082
1083/*
1084 * Store the MSI remapping domain pointer in the device if enabled.
1085 *
1086 * This is called from dmar_pci_bus_add_dev() so it works even when DMA
1087 * remapping is disabled. Only update the pointer if the device is not
1088 * already handled by a non default PCI/MSI interrupt domain. This protects
1089 * e.g. VMD devices.
1090 */
1091void intel_irq_remap_add_device(struct dmar_pci_notify_info *info)
1092{
1093 if (!irq_remapping_enabled || !pci_dev_has_default_msi_parent_domain(info->dev))
1094 return;
1095
1096 dev_set_msi_domain(&info->dev->dev, map_dev_to_ir(info->dev));
1097}
1098
1099static void prepare_irte(struct irte *irte, int vector, unsigned int dest)
1100{
1101 memset(irte, 0, sizeof(*irte));
1102
1103 irte->present = 1;
1104 irte->dst_mode = apic->dest_mode_logical;
1105 /*
1106 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
1107 * actual level or edge trigger will be setup in the IO-APIC
1108 * RTE. This will help simplify level triggered irq migration.
1109 * For more details, see the comments (in io_apic.c) explainig IO-APIC
1110 * irq migration in the presence of interrupt-remapping.
1111 */
1112 irte->trigger_mode = 0;
1113 irte->dlvry_mode = APIC_DELIVERY_MODE_FIXED;
1114 irte->vector = vector;
1115 irte->dest_id = IRTE_DEST(dest);
1116 irte->redir_hint = 1;
1117}
1118
1119static void prepare_irte_posted(struct irte *irte)
1120{
1121 memset(irte, 0, sizeof(*irte));
1122
1123 irte->present = 1;
1124 irte->p_pst = 1;
1125}
1126
1127struct irq_remap_ops intel_irq_remap_ops = {
1128 .prepare = intel_prepare_irq_remapping,
1129 .enable = intel_enable_irq_remapping,
1130 .disable = disable_irq_remapping,
1131 .reenable = reenable_irq_remapping,
1132 .enable_faulting = enable_drhd_fault_handling,
1133};
1134
1135#ifdef CONFIG_X86_POSTED_MSI
1136
1137static phys_addr_t get_pi_desc_addr(struct irq_data *irqd)
1138{
1139 int cpu = cpumask_first(irq_data_get_effective_affinity_mask(irqd));
1140
1141 if (WARN_ON(cpu >= nr_cpu_ids))
1142 return 0;
1143
1144 return __pa(per_cpu_ptr(&posted_msi_pi_desc, cpu));
1145}
1146
1147static void intel_ir_reconfigure_irte_posted(struct irq_data *irqd)
1148{
1149 struct intel_ir_data *ir_data = irqd->chip_data;
1150 struct irte *irte = &ir_data->irte_entry;
1151 struct irte irte_pi;
1152 u64 pid_addr;
1153
1154 pid_addr = get_pi_desc_addr(irqd);
1155
1156 if (!pid_addr) {
1157 pr_warn("Failed to setup IRQ %d for posted mode", irqd->irq);
1158 return;
1159 }
1160
1161 memset(&irte_pi, 0, sizeof(irte_pi));
1162
1163 /* The shared IRTE already be set up as posted during alloc_irte */
1164 dmar_copy_shared_irte(&irte_pi, irte);
1165
1166 irte_pi.pda_l = (pid_addr >> (32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
1167 irte_pi.pda_h = (pid_addr >> 32) & ~(-1UL << PDA_HIGH_BIT);
1168
1169 modify_irte(&ir_data->irq_2_iommu, &irte_pi);
1170}
1171
1172#else
1173static inline void intel_ir_reconfigure_irte_posted(struct irq_data *irqd) {}
1174#endif
1175
1176static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force)
1177{
1178 struct intel_ir_data *ir_data = irqd->chip_data;
1179 struct irte *irte = &ir_data->irte_entry;
1180 struct irq_cfg *cfg = irqd_cfg(irqd);
1181
1182 /*
1183 * Atomically updates the IRTE with the new destination, vector
1184 * and flushes the interrupt entry cache.
1185 */
1186 irte->vector = cfg->vector;
1187 irte->dest_id = IRTE_DEST(cfg->dest_apicid);
1188
1189 if (ir_data->irq_2_iommu.posted_msi)
1190 intel_ir_reconfigure_irte_posted(irqd);
1191 else if (force || ir_data->irq_2_iommu.mode == IRQ_REMAPPING)
1192 modify_irte(&ir_data->irq_2_iommu, irte);
1193}
1194
1195/*
1196 * Migrate the IO-APIC irq in the presence of intr-remapping.
1197 *
1198 * For both level and edge triggered, irq migration is a simple atomic
1199 * update(of vector and cpu destination) of IRTE and flush the hardware cache.
1200 *
1201 * For level triggered, we eliminate the io-apic RTE modification (with the
1202 * updated vector information), by using a virtual vector (io-apic pin number).
1203 * Real vector that is used for interrupting cpu will be coming from
1204 * the interrupt-remapping table entry.
1205 *
1206 * As the migration is a simple atomic update of IRTE, the same mechanism
1207 * is used to migrate MSI irq's in the presence of interrupt-remapping.
1208 */
1209static int
1210intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask,
1211 bool force)
1212{
1213 struct irq_data *parent = data->parent_data;
1214 struct irq_cfg *cfg = irqd_cfg(data);
1215 int ret;
1216
1217 ret = parent->chip->irq_set_affinity(parent, mask, force);
1218 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
1219 return ret;
1220
1221 intel_ir_reconfigure_irte(data, false);
1222 /*
1223 * After this point, all the interrupts will start arriving
1224 * at the new destination. So, time to cleanup the previous
1225 * vector allocation.
1226 */
1227 vector_schedule_cleanup(cfg);
1228
1229 return IRQ_SET_MASK_OK_DONE;
1230}
1231
1232static void intel_ir_compose_msi_msg(struct irq_data *irq_data,
1233 struct msi_msg *msg)
1234{
1235 struct intel_ir_data *ir_data = irq_data->chip_data;
1236
1237 *msg = ir_data->msi_entry;
1238}
1239
1240static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info)
1241{
1242 struct intel_ir_data *ir_data = data->chip_data;
1243 struct vcpu_data *vcpu_pi_info = info;
1244
1245 /* stop posting interrupts, back to the default mode */
1246 if (!vcpu_pi_info) {
1247 modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry);
1248 } else {
1249 struct irte irte_pi;
1250
1251 /*
1252 * We are not caching the posted interrupt entry. We
1253 * copy the data from the remapped entry and modify
1254 * the fields which are relevant for posted mode. The
1255 * cached remapped entry is used for switching back to
1256 * remapped mode.
1257 */
1258 memset(&irte_pi, 0, sizeof(irte_pi));
1259 dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry);
1260
1261 /* Update the posted mode fields */
1262 irte_pi.p_pst = 1;
1263 irte_pi.p_urgent = 0;
1264 irte_pi.p_vector = vcpu_pi_info->vector;
1265 irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >>
1266 (32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
1267 irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) &
1268 ~(-1UL << PDA_HIGH_BIT);
1269
1270 modify_irte(&ir_data->irq_2_iommu, &irte_pi);
1271 }
1272
1273 return 0;
1274}
1275
1276static struct irq_chip intel_ir_chip = {
1277 .name = "INTEL-IR",
1278 .irq_ack = apic_ack_irq,
1279 .irq_set_affinity = intel_ir_set_affinity,
1280 .irq_compose_msi_msg = intel_ir_compose_msi_msg,
1281 .irq_set_vcpu_affinity = intel_ir_set_vcpu_affinity,
1282};
1283
1284/*
1285 * With posted MSIs, all vectors are multiplexed into a single notification
1286 * vector. Devices MSIs are then dispatched in a demux loop where
1287 * EOIs can be coalesced as well.
1288 *
1289 * "INTEL-IR-POST" IRQ chip does not do EOI on ACK, thus the dummy irq_ack()
1290 * function. Instead EOI is performed by the posted interrupt notification
1291 * handler.
1292 *
1293 * For the example below, 3 MSIs are coalesced into one CPU notification. Only
1294 * one apic_eoi() is needed.
1295 *
1296 * __sysvec_posted_msi_notification()
1297 * irq_enter();
1298 * handle_edge_irq()
1299 * irq_chip_ack_parent()
1300 * dummy(); // No EOI
1301 * handle_irq_event()
1302 * driver_handler()
1303 * handle_edge_irq()
1304 * irq_chip_ack_parent()
1305 * dummy(); // No EOI
1306 * handle_irq_event()
1307 * driver_handler()
1308 * handle_edge_irq()
1309 * irq_chip_ack_parent()
1310 * dummy(); // No EOI
1311 * handle_irq_event()
1312 * driver_handler()
1313 * apic_eoi()
1314 * irq_exit()
1315 */
1316
1317static void dummy_ack(struct irq_data *d) { }
1318
1319static struct irq_chip intel_ir_chip_post_msi = {
1320 .name = "INTEL-IR-POST",
1321 .irq_ack = dummy_ack,
1322 .irq_set_affinity = intel_ir_set_affinity,
1323 .irq_compose_msi_msg = intel_ir_compose_msi_msg,
1324 .irq_set_vcpu_affinity = intel_ir_set_vcpu_affinity,
1325};
1326
1327static void fill_msi_msg(struct msi_msg *msg, u32 index, u32 subhandle)
1328{
1329 memset(msg, 0, sizeof(*msg));
1330
1331 msg->arch_addr_lo.dmar_base_address = X86_MSI_BASE_ADDRESS_LOW;
1332 msg->arch_addr_lo.dmar_subhandle_valid = true;
1333 msg->arch_addr_lo.dmar_format = true;
1334 msg->arch_addr_lo.dmar_index_0_14 = index & 0x7FFF;
1335 msg->arch_addr_lo.dmar_index_15 = !!(index & 0x8000);
1336
1337 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
1338
1339 msg->arch_data.dmar_subhandle = subhandle;
1340}
1341
1342static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data,
1343 struct irq_cfg *irq_cfg,
1344 struct irq_alloc_info *info,
1345 int index, int sub_handle)
1346{
1347 struct irte *irte = &data->irte_entry;
1348
1349 prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid);
1350
1351 switch (info->type) {
1352 case X86_IRQ_ALLOC_TYPE_IOAPIC:
1353 /* Set source-id of interrupt request */
1354 set_ioapic_sid(irte, info->devid);
1355 apic_pr_verbose("IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n",
1356 info->devid, irte->present, irte->fpd, irte->dst_mode,
1357 irte->redir_hint, irte->trigger_mode, irte->dlvry_mode,
1358 irte->avail, irte->vector, irte->dest_id, irte->sid,
1359 irte->sq, irte->svt);
1360 sub_handle = info->ioapic.pin;
1361 break;
1362 case X86_IRQ_ALLOC_TYPE_HPET:
1363 set_hpet_sid(irte, info->devid);
1364 break;
1365 case X86_IRQ_ALLOC_TYPE_PCI_MSI:
1366 case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
1367 if (posted_msi_supported()) {
1368 prepare_irte_posted(irte);
1369 data->irq_2_iommu.posted_msi = 1;
1370 }
1371
1372 set_msi_sid(irte,
1373 pci_real_dma_dev(msi_desc_to_pci_dev(info->desc)));
1374 break;
1375 default:
1376 BUG_ON(1);
1377 break;
1378 }
1379 fill_msi_msg(&data->msi_entry, index, sub_handle);
1380}
1381
1382static void intel_free_irq_resources(struct irq_domain *domain,
1383 unsigned int virq, unsigned int nr_irqs)
1384{
1385 struct irq_data *irq_data;
1386 struct intel_ir_data *data;
1387 struct irq_2_iommu *irq_iommu;
1388 unsigned long flags;
1389 int i;
1390 for (i = 0; i < nr_irqs; i++) {
1391 irq_data = irq_domain_get_irq_data(domain, virq + i);
1392 if (irq_data && irq_data->chip_data) {
1393 data = irq_data->chip_data;
1394 irq_iommu = &data->irq_2_iommu;
1395 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
1396 clear_entries(irq_iommu);
1397 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
1398 irq_domain_reset_irq_data(irq_data);
1399 kfree(data);
1400 }
1401 }
1402}
1403
1404static int intel_irq_remapping_alloc(struct irq_domain *domain,
1405 unsigned int virq, unsigned int nr_irqs,
1406 void *arg)
1407{
1408 struct intel_iommu *iommu = domain->host_data;
1409 struct irq_alloc_info *info = arg;
1410 struct intel_ir_data *data, *ird;
1411 struct irq_data *irq_data;
1412 struct irq_cfg *irq_cfg;
1413 int i, ret, index;
1414
1415 if (!info || !iommu)
1416 return -EINVAL;
1417 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI)
1418 return -EINVAL;
1419
1420 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
1421 if (ret < 0)
1422 return ret;
1423
1424 ret = -ENOMEM;
1425 data = kzalloc(sizeof(*data), GFP_KERNEL);
1426 if (!data)
1427 goto out_free_parent;
1428
1429 index = alloc_irte(iommu, &data->irq_2_iommu, nr_irqs);
1430 if (index < 0) {
1431 pr_warn("Failed to allocate IRTE\n");
1432 kfree(data);
1433 goto out_free_parent;
1434 }
1435
1436 for (i = 0; i < nr_irqs; i++) {
1437 irq_data = irq_domain_get_irq_data(domain, virq + i);
1438 irq_cfg = irqd_cfg(irq_data);
1439 if (!irq_data || !irq_cfg) {
1440 if (!i)
1441 kfree(data);
1442 ret = -EINVAL;
1443 goto out_free_data;
1444 }
1445
1446 if (i > 0) {
1447 ird = kzalloc(sizeof(*ird), GFP_KERNEL);
1448 if (!ird)
1449 goto out_free_data;
1450 /* Initialize the common data */
1451 ird->irq_2_iommu = data->irq_2_iommu;
1452 ird->irq_2_iommu.sub_handle = i;
1453 } else {
1454 ird = data;
1455 }
1456
1457 irq_data->hwirq = (index << 16) + i;
1458 irq_data->chip_data = ird;
1459 if (posted_msi_supported() &&
1460 ((info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI) ||
1461 (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX)))
1462 irq_data->chip = &intel_ir_chip_post_msi;
1463 else
1464 irq_data->chip = &intel_ir_chip;
1465 intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i);
1466 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
1467 }
1468 return 0;
1469
1470out_free_data:
1471 intel_free_irq_resources(domain, virq, i);
1472out_free_parent:
1473 irq_domain_free_irqs_common(domain, virq, nr_irqs);
1474 return ret;
1475}
1476
1477static void intel_irq_remapping_free(struct irq_domain *domain,
1478 unsigned int virq, unsigned int nr_irqs)
1479{
1480 intel_free_irq_resources(domain, virq, nr_irqs);
1481 irq_domain_free_irqs_common(domain, virq, nr_irqs);
1482}
1483
1484static int intel_irq_remapping_activate(struct irq_domain *domain,
1485 struct irq_data *irq_data, bool reserve)
1486{
1487 intel_ir_reconfigure_irte(irq_data, true);
1488 return 0;
1489}
1490
1491static void intel_irq_remapping_deactivate(struct irq_domain *domain,
1492 struct irq_data *irq_data)
1493{
1494 struct intel_ir_data *data = irq_data->chip_data;
1495 struct irte entry;
1496
1497 memset(&entry, 0, sizeof(entry));
1498 modify_irte(&data->irq_2_iommu, &entry);
1499}
1500
1501static int intel_irq_remapping_select(struct irq_domain *d,
1502 struct irq_fwspec *fwspec,
1503 enum irq_domain_bus_token bus_token)
1504{
1505 struct intel_iommu *iommu = NULL;
1506
1507 if (x86_fwspec_is_ioapic(fwspec))
1508 iommu = map_ioapic_to_iommu(fwspec->param[0]);
1509 else if (x86_fwspec_is_hpet(fwspec))
1510 iommu = map_hpet_to_iommu(fwspec->param[0]);
1511
1512 return iommu && d == iommu->ir_domain;
1513}
1514
1515static const struct irq_domain_ops intel_ir_domain_ops = {
1516 .select = intel_irq_remapping_select,
1517 .alloc = intel_irq_remapping_alloc,
1518 .free = intel_irq_remapping_free,
1519 .activate = intel_irq_remapping_activate,
1520 .deactivate = intel_irq_remapping_deactivate,
1521};
1522
1523static const struct msi_parent_ops dmar_msi_parent_ops = {
1524 .supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED | MSI_FLAG_MULTI_PCI_MSI,
1525 .prefix = "IR-",
1526 .init_dev_msi_info = msi_parent_init_dev_msi_info,
1527};
1528
1529/*
1530 * Support of Interrupt Remapping Unit Hotplug
1531 */
1532static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu)
1533{
1534 int ret;
1535 int eim = x2apic_enabled();
1536
1537 ret = intel_cap_audit(CAP_AUDIT_HOTPLUG_IRQR, iommu);
1538 if (ret)
1539 return ret;
1540
1541 if (eim && !ecap_eim_support(iommu->ecap)) {
1542 pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n",
1543 iommu->reg_phys, iommu->ecap);
1544 return -ENODEV;
1545 }
1546
1547 if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) {
1548 pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n",
1549 iommu->reg_phys);
1550 return -ENODEV;
1551 }
1552
1553 /* TODO: check all IOAPICs are covered by IOMMU */
1554
1555 /* Setup Interrupt-remapping now. */
1556 ret = intel_setup_irq_remapping(iommu);
1557 if (ret) {
1558 pr_err("Failed to setup irq remapping for %s\n",
1559 iommu->name);
1560 intel_teardown_irq_remapping(iommu);
1561 ir_remove_ioapic_hpet_scope(iommu);
1562 } else {
1563 iommu_enable_irq_remapping(iommu);
1564 }
1565
1566 return ret;
1567}
1568
1569int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
1570{
1571 int ret = 0;
1572 struct intel_iommu *iommu = dmaru->iommu;
1573
1574 if (!irq_remapping_enabled)
1575 return 0;
1576 if (iommu == NULL)
1577 return -EINVAL;
1578 if (!ecap_ir_support(iommu->ecap))
1579 return 0;
1580 if (irq_remapping_cap(IRQ_POSTING_CAP) &&
1581 !cap_pi_support(iommu->cap))
1582 return -EBUSY;
1583
1584 if (insert) {
1585 if (!iommu->ir_table)
1586 ret = dmar_ir_add(dmaru, iommu);
1587 } else {
1588 if (iommu->ir_table) {
1589 if (!bitmap_empty(iommu->ir_table->bitmap,
1590 INTR_REMAP_TABLE_ENTRIES)) {
1591 ret = -EBUSY;
1592 } else {
1593 iommu_disable_irq_remapping(iommu);
1594 intel_teardown_irq_remapping(iommu);
1595 ir_remove_ioapic_hpet_scope(iommu);
1596 }
1597 }
1598 }
1599
1600 return ret;
1601}
1// SPDX-License-Identifier: GPL-2.0
2
3#define pr_fmt(fmt) "DMAR-IR: " fmt
4
5#include <linux/interrupt.h>
6#include <linux/dmar.h>
7#include <linux/spinlock.h>
8#include <linux/slab.h>
9#include <linux/jiffies.h>
10#include <linux/hpet.h>
11#include <linux/pci.h>
12#include <linux/irq.h>
13#include <linux/intel-iommu.h>
14#include <linux/acpi.h>
15#include <linux/irqdomain.h>
16#include <linux/crash_dump.h>
17#include <asm/io_apic.h>
18#include <asm/apic.h>
19#include <asm/smp.h>
20#include <asm/cpu.h>
21#include <asm/irq_remapping.h>
22#include <asm/pci-direct.h>
23#include <asm/msidef.h>
24
25#include "../irq_remapping.h"
26
27enum irq_mode {
28 IRQ_REMAPPING,
29 IRQ_POSTING,
30};
31
32struct ioapic_scope {
33 struct intel_iommu *iommu;
34 unsigned int id;
35 unsigned int bus; /* PCI bus number */
36 unsigned int devfn; /* PCI devfn number */
37};
38
39struct hpet_scope {
40 struct intel_iommu *iommu;
41 u8 id;
42 unsigned int bus;
43 unsigned int devfn;
44};
45
46struct irq_2_iommu {
47 struct intel_iommu *iommu;
48 u16 irte_index;
49 u16 sub_handle;
50 u8 irte_mask;
51 enum irq_mode mode;
52};
53
54struct intel_ir_data {
55 struct irq_2_iommu irq_2_iommu;
56 struct irte irte_entry;
57 union {
58 struct msi_msg msi_entry;
59 };
60};
61
62#define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
63#define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8)
64
65static int __read_mostly eim_mode;
66static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
67static struct hpet_scope ir_hpet[MAX_HPET_TBS];
68
69/*
70 * Lock ordering:
71 * ->dmar_global_lock
72 * ->irq_2_ir_lock
73 * ->qi->q_lock
74 * ->iommu->register_lock
75 * Note:
76 * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
77 * in single-threaded environment with interrupt disabled, so no need to tabke
78 * the dmar_global_lock.
79 */
80DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
81static const struct irq_domain_ops intel_ir_domain_ops;
82
83static void iommu_disable_irq_remapping(struct intel_iommu *iommu);
84static int __init parse_ioapics_under_ir(void);
85
86static bool ir_pre_enabled(struct intel_iommu *iommu)
87{
88 return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED);
89}
90
91static void clear_ir_pre_enabled(struct intel_iommu *iommu)
92{
93 iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
94}
95
96static void init_ir_status(struct intel_iommu *iommu)
97{
98 u32 gsts;
99
100 gsts = readl(iommu->reg + DMAR_GSTS_REG);
101 if (gsts & DMA_GSTS_IRES)
102 iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
103}
104
105static int alloc_irte(struct intel_iommu *iommu,
106 struct irq_2_iommu *irq_iommu, u16 count)
107{
108 struct ir_table *table = iommu->ir_table;
109 unsigned int mask = 0;
110 unsigned long flags;
111 int index;
112
113 if (!count || !irq_iommu)
114 return -1;
115
116 if (count > 1) {
117 count = __roundup_pow_of_two(count);
118 mask = ilog2(count);
119 }
120
121 if (mask > ecap_max_handle_mask(iommu->ecap)) {
122 pr_err("Requested mask %x exceeds the max invalidation handle"
123 " mask value %Lx\n", mask,
124 ecap_max_handle_mask(iommu->ecap));
125 return -1;
126 }
127
128 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
129 index = bitmap_find_free_region(table->bitmap,
130 INTR_REMAP_TABLE_ENTRIES, mask);
131 if (index < 0) {
132 pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id);
133 } else {
134 irq_iommu->iommu = iommu;
135 irq_iommu->irte_index = index;
136 irq_iommu->sub_handle = 0;
137 irq_iommu->irte_mask = mask;
138 irq_iommu->mode = IRQ_REMAPPING;
139 }
140 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
141
142 return index;
143}
144
145static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
146{
147 struct qi_desc desc;
148
149 desc.qw0 = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
150 | QI_IEC_SELECTIVE;
151 desc.qw1 = 0;
152 desc.qw2 = 0;
153 desc.qw3 = 0;
154
155 return qi_submit_sync(iommu, &desc, 1, 0);
156}
157
158static int modify_irte(struct irq_2_iommu *irq_iommu,
159 struct irte *irte_modified)
160{
161 struct intel_iommu *iommu;
162 unsigned long flags;
163 struct irte *irte;
164 int rc, index;
165
166 if (!irq_iommu)
167 return -1;
168
169 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
170
171 iommu = irq_iommu->iommu;
172
173 index = irq_iommu->irte_index + irq_iommu->sub_handle;
174 irte = &iommu->ir_table->base[index];
175
176#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE)
177 if ((irte->pst == 1) || (irte_modified->pst == 1)) {
178 bool ret;
179
180 ret = cmpxchg_double(&irte->low, &irte->high,
181 irte->low, irte->high,
182 irte_modified->low, irte_modified->high);
183 /*
184 * We use cmpxchg16 to atomically update the 128-bit IRTE,
185 * and it cannot be updated by the hardware or other processors
186 * behind us, so the return value of cmpxchg16 should be the
187 * same as the old value.
188 */
189 WARN_ON(!ret);
190 } else
191#endif
192 {
193 set_64bit(&irte->low, irte_modified->low);
194 set_64bit(&irte->high, irte_modified->high);
195 }
196 __iommu_flush_cache(iommu, irte, sizeof(*irte));
197
198 rc = qi_flush_iec(iommu, index, 0);
199
200 /* Update iommu mode according to the IRTE mode */
201 irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING;
202 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
203
204 return rc;
205}
206
207static struct intel_iommu *map_hpet_to_ir(u8 hpet_id)
208{
209 int i;
210
211 for (i = 0; i < MAX_HPET_TBS; i++)
212 if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu)
213 return ir_hpet[i].iommu;
214 return NULL;
215}
216
217static struct intel_iommu *map_ioapic_to_ir(int apic)
218{
219 int i;
220
221 for (i = 0; i < MAX_IO_APICS; i++)
222 if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu)
223 return ir_ioapic[i].iommu;
224 return NULL;
225}
226
227static struct intel_iommu *map_dev_to_ir(struct pci_dev *dev)
228{
229 struct dmar_drhd_unit *drhd;
230
231 drhd = dmar_find_matched_drhd_unit(dev);
232 if (!drhd)
233 return NULL;
234
235 return drhd->iommu;
236}
237
238static int clear_entries(struct irq_2_iommu *irq_iommu)
239{
240 struct irte *start, *entry, *end;
241 struct intel_iommu *iommu;
242 int index;
243
244 if (irq_iommu->sub_handle)
245 return 0;
246
247 iommu = irq_iommu->iommu;
248 index = irq_iommu->irte_index;
249
250 start = iommu->ir_table->base + index;
251 end = start + (1 << irq_iommu->irte_mask);
252
253 for (entry = start; entry < end; entry++) {
254 set_64bit(&entry->low, 0);
255 set_64bit(&entry->high, 0);
256 }
257 bitmap_release_region(iommu->ir_table->bitmap, index,
258 irq_iommu->irte_mask);
259
260 return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
261}
262
263/*
264 * source validation type
265 */
266#define SVT_NO_VERIFY 0x0 /* no verification is required */
267#define SVT_VERIFY_SID_SQ 0x1 /* verify using SID and SQ fields */
268#define SVT_VERIFY_BUS 0x2 /* verify bus of request-id */
269
270/*
271 * source-id qualifier
272 */
273#define SQ_ALL_16 0x0 /* verify all 16 bits of request-id */
274#define SQ_13_IGNORE_1 0x1 /* verify most significant 13 bits, ignore
275 * the third least significant bit
276 */
277#define SQ_13_IGNORE_2 0x2 /* verify most significant 13 bits, ignore
278 * the second and third least significant bits
279 */
280#define SQ_13_IGNORE_3 0x3 /* verify most significant 13 bits, ignore
281 * the least three significant bits
282 */
283
284/*
285 * set SVT, SQ and SID fields of irte to verify
286 * source ids of interrupt requests
287 */
288static void set_irte_sid(struct irte *irte, unsigned int svt,
289 unsigned int sq, unsigned int sid)
290{
291 if (disable_sourceid_checking)
292 svt = SVT_NO_VERIFY;
293 irte->svt = svt;
294 irte->sq = sq;
295 irte->sid = sid;
296}
297
298/*
299 * Set an IRTE to match only the bus number. Interrupt requests that reference
300 * this IRTE must have a requester-id whose bus number is between or equal
301 * to the start_bus and end_bus arguments.
302 */
303static void set_irte_verify_bus(struct irte *irte, unsigned int start_bus,
304 unsigned int end_bus)
305{
306 set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
307 (start_bus << 8) | end_bus);
308}
309
310static int set_ioapic_sid(struct irte *irte, int apic)
311{
312 int i;
313 u16 sid = 0;
314
315 if (!irte)
316 return -1;
317
318 down_read(&dmar_global_lock);
319 for (i = 0; i < MAX_IO_APICS; i++) {
320 if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) {
321 sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn;
322 break;
323 }
324 }
325 up_read(&dmar_global_lock);
326
327 if (sid == 0) {
328 pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic);
329 return -1;
330 }
331
332 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid);
333
334 return 0;
335}
336
337static int set_hpet_sid(struct irte *irte, u8 id)
338{
339 int i;
340 u16 sid = 0;
341
342 if (!irte)
343 return -1;
344
345 down_read(&dmar_global_lock);
346 for (i = 0; i < MAX_HPET_TBS; i++) {
347 if (ir_hpet[i].iommu && ir_hpet[i].id == id) {
348 sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn;
349 break;
350 }
351 }
352 up_read(&dmar_global_lock);
353
354 if (sid == 0) {
355 pr_warn("Failed to set source-id of HPET block (%d)\n", id);
356 return -1;
357 }
358
359 /*
360 * Should really use SQ_ALL_16. Some platforms are broken.
361 * While we figure out the right quirks for these broken platforms, use
362 * SQ_13_IGNORE_3 for now.
363 */
364 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);
365
366 return 0;
367}
368
369struct set_msi_sid_data {
370 struct pci_dev *pdev;
371 u16 alias;
372 int count;
373 int busmatch_count;
374};
375
376static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque)
377{
378 struct set_msi_sid_data *data = opaque;
379
380 if (data->count == 0 || PCI_BUS_NUM(alias) == PCI_BUS_NUM(data->alias))
381 data->busmatch_count++;
382
383 data->pdev = pdev;
384 data->alias = alias;
385 data->count++;
386
387 return 0;
388}
389
390static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
391{
392 struct set_msi_sid_data data;
393
394 if (!irte || !dev)
395 return -1;
396
397 data.count = 0;
398 data.busmatch_count = 0;
399 pci_for_each_dma_alias(dev, set_msi_sid_cb, &data);
400
401 /*
402 * DMA alias provides us with a PCI device and alias. The only case
403 * where the it will return an alias on a different bus than the
404 * device is the case of a PCIe-to-PCI bridge, where the alias is for
405 * the subordinate bus. In this case we can only verify the bus.
406 *
407 * If there are multiple aliases, all with the same bus number,
408 * then all we can do is verify the bus. This is typical in NTB
409 * hardware which use proxy IDs where the device will generate traffic
410 * from multiple devfn numbers on the same bus.
411 *
412 * If the alias device is on a different bus than our source device
413 * then we have a topology based alias, use it.
414 *
415 * Otherwise, the alias is for a device DMA quirk and we cannot
416 * assume that MSI uses the same requester ID. Therefore use the
417 * original device.
418 */
419 if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number)
420 set_irte_verify_bus(irte, PCI_BUS_NUM(data.alias),
421 dev->bus->number);
422 else if (data.count >= 2 && data.busmatch_count == data.count)
423 set_irte_verify_bus(irte, dev->bus->number, dev->bus->number);
424 else if (data.pdev->bus->number != dev->bus->number)
425 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias);
426 else
427 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
428 pci_dev_id(dev));
429
430 return 0;
431}
432
433static int iommu_load_old_irte(struct intel_iommu *iommu)
434{
435 struct irte *old_ir_table;
436 phys_addr_t irt_phys;
437 unsigned int i;
438 size_t size;
439 u64 irta;
440
441 /* Check whether the old ir-table has the same size as ours */
442 irta = dmar_readq(iommu->reg + DMAR_IRTA_REG);
443 if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK)
444 != INTR_REMAP_TABLE_REG_SIZE)
445 return -EINVAL;
446
447 irt_phys = irta & VTD_PAGE_MASK;
448 size = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte);
449
450 /* Map the old IR table */
451 old_ir_table = memremap(irt_phys, size, MEMREMAP_WB);
452 if (!old_ir_table)
453 return -ENOMEM;
454
455 /* Copy data over */
456 memcpy(iommu->ir_table->base, old_ir_table, size);
457
458 __iommu_flush_cache(iommu, iommu->ir_table->base, size);
459
460 /*
461 * Now check the table for used entries and mark those as
462 * allocated in the bitmap
463 */
464 for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) {
465 if (iommu->ir_table->base[i].present)
466 bitmap_set(iommu->ir_table->bitmap, i, 1);
467 }
468
469 memunmap(old_ir_table);
470
471 return 0;
472}
473
474
475static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
476{
477 unsigned long flags;
478 u64 addr;
479 u32 sts;
480
481 addr = virt_to_phys((void *)iommu->ir_table->base);
482
483 raw_spin_lock_irqsave(&iommu->register_lock, flags);
484
485 dmar_writeq(iommu->reg + DMAR_IRTA_REG,
486 (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
487
488 /* Set interrupt-remapping table pointer */
489 writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG);
490
491 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
492 readl, (sts & DMA_GSTS_IRTPS), sts);
493 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
494
495 /*
496 * Global invalidation of interrupt entry cache to make sure the
497 * hardware uses the new irq remapping table.
498 */
499 qi_global_iec(iommu);
500}
501
502static void iommu_enable_irq_remapping(struct intel_iommu *iommu)
503{
504 unsigned long flags;
505 u32 sts;
506
507 raw_spin_lock_irqsave(&iommu->register_lock, flags);
508
509 /* Enable interrupt-remapping */
510 iommu->gcmd |= DMA_GCMD_IRE;
511 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
512 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
513 readl, (sts & DMA_GSTS_IRES), sts);
514
515 /* Block compatibility-format MSIs */
516 if (sts & DMA_GSTS_CFIS) {
517 iommu->gcmd &= ~DMA_GCMD_CFI;
518 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
519 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
520 readl, !(sts & DMA_GSTS_CFIS), sts);
521 }
522
523 /*
524 * With CFI clear in the Global Command register, we should be
525 * protected from dangerous (i.e. compatibility) interrupts
526 * regardless of x2apic status. Check just to be sure.
527 */
528 if (sts & DMA_GSTS_CFIS)
529 WARN(1, KERN_WARNING
530 "Compatibility-format IRQs enabled despite intr remapping;\n"
531 "you are vulnerable to IRQ injection.\n");
532
533 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
534}
535
536static int intel_setup_irq_remapping(struct intel_iommu *iommu)
537{
538 struct ir_table *ir_table;
539 struct fwnode_handle *fn;
540 unsigned long *bitmap;
541 struct page *pages;
542
543 if (iommu->ir_table)
544 return 0;
545
546 ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL);
547 if (!ir_table)
548 return -ENOMEM;
549
550 pages = alloc_pages_node(iommu->node, GFP_KERNEL | __GFP_ZERO,
551 INTR_REMAP_PAGE_ORDER);
552 if (!pages) {
553 pr_err("IR%d: failed to allocate pages of order %d\n",
554 iommu->seq_id, INTR_REMAP_PAGE_ORDER);
555 goto out_free_table;
556 }
557
558 bitmap = bitmap_zalloc(INTR_REMAP_TABLE_ENTRIES, GFP_ATOMIC);
559 if (bitmap == NULL) {
560 pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id);
561 goto out_free_pages;
562 }
563
564 fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id);
565 if (!fn)
566 goto out_free_bitmap;
567
568 iommu->ir_domain =
569 irq_domain_create_hierarchy(arch_get_ir_parent_domain(),
570 0, INTR_REMAP_TABLE_ENTRIES,
571 fn, &intel_ir_domain_ops,
572 iommu);
573 if (!iommu->ir_domain) {
574 irq_domain_free_fwnode(fn);
575 pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id);
576 goto out_free_bitmap;
577 }
578 iommu->ir_msi_domain =
579 arch_create_remap_msi_irq_domain(iommu->ir_domain,
580 "INTEL-IR-MSI",
581 iommu->seq_id);
582
583 ir_table->base = page_address(pages);
584 ir_table->bitmap = bitmap;
585 iommu->ir_table = ir_table;
586
587 /*
588 * If the queued invalidation is already initialized,
589 * shouldn't disable it.
590 */
591 if (!iommu->qi) {
592 /*
593 * Clear previous faults.
594 */
595 dmar_fault(-1, iommu);
596 dmar_disable_qi(iommu);
597
598 if (dmar_enable_qi(iommu)) {
599 pr_err("Failed to enable queued invalidation\n");
600 goto out_free_bitmap;
601 }
602 }
603
604 init_ir_status(iommu);
605
606 if (ir_pre_enabled(iommu)) {
607 if (!is_kdump_kernel()) {
608 pr_warn("IRQ remapping was enabled on %s but we are not in kdump mode\n",
609 iommu->name);
610 clear_ir_pre_enabled(iommu);
611 iommu_disable_irq_remapping(iommu);
612 } else if (iommu_load_old_irte(iommu))
613 pr_err("Failed to copy IR table for %s from previous kernel\n",
614 iommu->name);
615 else
616 pr_info("Copied IR table for %s from previous kernel\n",
617 iommu->name);
618 }
619
620 iommu_set_irq_remapping(iommu, eim_mode);
621
622 return 0;
623
624out_free_bitmap:
625 bitmap_free(bitmap);
626out_free_pages:
627 __free_pages(pages, INTR_REMAP_PAGE_ORDER);
628out_free_table:
629 kfree(ir_table);
630
631 iommu->ir_table = NULL;
632
633 return -ENOMEM;
634}
635
636static void intel_teardown_irq_remapping(struct intel_iommu *iommu)
637{
638 struct fwnode_handle *fn;
639
640 if (iommu && iommu->ir_table) {
641 if (iommu->ir_msi_domain) {
642 fn = iommu->ir_msi_domain->fwnode;
643
644 irq_domain_remove(iommu->ir_msi_domain);
645 irq_domain_free_fwnode(fn);
646 iommu->ir_msi_domain = NULL;
647 }
648 if (iommu->ir_domain) {
649 fn = iommu->ir_domain->fwnode;
650
651 irq_domain_remove(iommu->ir_domain);
652 irq_domain_free_fwnode(fn);
653 iommu->ir_domain = NULL;
654 }
655 free_pages((unsigned long)iommu->ir_table->base,
656 INTR_REMAP_PAGE_ORDER);
657 bitmap_free(iommu->ir_table->bitmap);
658 kfree(iommu->ir_table);
659 iommu->ir_table = NULL;
660 }
661}
662
663/*
664 * Disable Interrupt Remapping.
665 */
666static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
667{
668 unsigned long flags;
669 u32 sts;
670
671 if (!ecap_ir_support(iommu->ecap))
672 return;
673
674 /*
675 * global invalidation of interrupt entry cache before disabling
676 * interrupt-remapping.
677 */
678 qi_global_iec(iommu);
679
680 raw_spin_lock_irqsave(&iommu->register_lock, flags);
681
682 sts = readl(iommu->reg + DMAR_GSTS_REG);
683 if (!(sts & DMA_GSTS_IRES))
684 goto end;
685
686 iommu->gcmd &= ~DMA_GCMD_IRE;
687 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
688
689 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
690 readl, !(sts & DMA_GSTS_IRES), sts);
691
692end:
693 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
694}
695
696static int __init dmar_x2apic_optout(void)
697{
698 struct acpi_table_dmar *dmar;
699 dmar = (struct acpi_table_dmar *)dmar_tbl;
700 if (!dmar || no_x2apic_optout)
701 return 0;
702 return dmar->flags & DMAR_X2APIC_OPT_OUT;
703}
704
705static void __init intel_cleanup_irq_remapping(void)
706{
707 struct dmar_drhd_unit *drhd;
708 struct intel_iommu *iommu;
709
710 for_each_iommu(iommu, drhd) {
711 if (ecap_ir_support(iommu->ecap)) {
712 iommu_disable_irq_remapping(iommu);
713 intel_teardown_irq_remapping(iommu);
714 }
715 }
716
717 if (x2apic_supported())
718 pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n");
719}
720
721static int __init intel_prepare_irq_remapping(void)
722{
723 struct dmar_drhd_unit *drhd;
724 struct intel_iommu *iommu;
725 int eim = 0;
726
727 if (irq_remap_broken) {
728 pr_warn("This system BIOS has enabled interrupt remapping\n"
729 "on a chipset that contains an erratum making that\n"
730 "feature unstable. To maintain system stability\n"
731 "interrupt remapping is being disabled. Please\n"
732 "contact your BIOS vendor for an update\n");
733 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
734 return -ENODEV;
735 }
736
737 if (dmar_table_init() < 0)
738 return -ENODEV;
739
740 if (!dmar_ir_support())
741 return -ENODEV;
742
743 if (parse_ioapics_under_ir()) {
744 pr_info("Not enabling interrupt remapping\n");
745 goto error;
746 }
747
748 /* First make sure all IOMMUs support IRQ remapping */
749 for_each_iommu(iommu, drhd)
750 if (!ecap_ir_support(iommu->ecap))
751 goto error;
752
753 /* Detect remapping mode: lapic or x2apic */
754 if (x2apic_supported()) {
755 eim = !dmar_x2apic_optout();
756 if (!eim) {
757 pr_info("x2apic is disabled because BIOS sets x2apic opt out bit.");
758 pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n");
759 }
760 }
761
762 for_each_iommu(iommu, drhd) {
763 if (eim && !ecap_eim_support(iommu->ecap)) {
764 pr_info("%s does not support EIM\n", iommu->name);
765 eim = 0;
766 }
767 }
768
769 eim_mode = eim;
770 if (eim)
771 pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
772
773 /* Do the initializations early */
774 for_each_iommu(iommu, drhd) {
775 if (intel_setup_irq_remapping(iommu)) {
776 pr_err("Failed to setup irq remapping for %s\n",
777 iommu->name);
778 goto error;
779 }
780 }
781
782 return 0;
783
784error:
785 intel_cleanup_irq_remapping();
786 return -ENODEV;
787}
788
789/*
790 * Set Posted-Interrupts capability.
791 */
792static inline void set_irq_posting_cap(void)
793{
794 struct dmar_drhd_unit *drhd;
795 struct intel_iommu *iommu;
796
797 if (!disable_irq_post) {
798 /*
799 * If IRTE is in posted format, the 'pda' field goes across the
800 * 64-bit boundary, we need use cmpxchg16b to atomically update
801 * it. We only expose posted-interrupt when X86_FEATURE_CX16
802 * is supported. Actually, hardware platforms supporting PI
803 * should have X86_FEATURE_CX16 support, this has been confirmed
804 * with Intel hardware guys.
805 */
806 if (boot_cpu_has(X86_FEATURE_CX16))
807 intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP;
808
809 for_each_iommu(iommu, drhd)
810 if (!cap_pi_support(iommu->cap)) {
811 intel_irq_remap_ops.capability &=
812 ~(1 << IRQ_POSTING_CAP);
813 break;
814 }
815 }
816}
817
818static int __init intel_enable_irq_remapping(void)
819{
820 struct dmar_drhd_unit *drhd;
821 struct intel_iommu *iommu;
822 bool setup = false;
823
824 /*
825 * Setup Interrupt-remapping for all the DRHD's now.
826 */
827 for_each_iommu(iommu, drhd) {
828 if (!ir_pre_enabled(iommu))
829 iommu_enable_irq_remapping(iommu);
830 setup = true;
831 }
832
833 if (!setup)
834 goto error;
835
836 irq_remapping_enabled = 1;
837
838 set_irq_posting_cap();
839
840 pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic");
841
842 return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
843
844error:
845 intel_cleanup_irq_remapping();
846 return -1;
847}
848
849static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
850 struct intel_iommu *iommu,
851 struct acpi_dmar_hardware_unit *drhd)
852{
853 struct acpi_dmar_pci_path *path;
854 u8 bus;
855 int count, free = -1;
856
857 bus = scope->bus;
858 path = (struct acpi_dmar_pci_path *)(scope + 1);
859 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
860 / sizeof(struct acpi_dmar_pci_path);
861
862 while (--count > 0) {
863 /*
864 * Access PCI directly due to the PCI
865 * subsystem isn't initialized yet.
866 */
867 bus = read_pci_config_byte(bus, path->device, path->function,
868 PCI_SECONDARY_BUS);
869 path++;
870 }
871
872 for (count = 0; count < MAX_HPET_TBS; count++) {
873 if (ir_hpet[count].iommu == iommu &&
874 ir_hpet[count].id == scope->enumeration_id)
875 return 0;
876 else if (ir_hpet[count].iommu == NULL && free == -1)
877 free = count;
878 }
879 if (free == -1) {
880 pr_warn("Exceeded Max HPET blocks\n");
881 return -ENOSPC;
882 }
883
884 ir_hpet[free].iommu = iommu;
885 ir_hpet[free].id = scope->enumeration_id;
886 ir_hpet[free].bus = bus;
887 ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function);
888 pr_info("HPET id %d under DRHD base 0x%Lx\n",
889 scope->enumeration_id, drhd->address);
890
891 return 0;
892}
893
894static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
895 struct intel_iommu *iommu,
896 struct acpi_dmar_hardware_unit *drhd)
897{
898 struct acpi_dmar_pci_path *path;
899 u8 bus;
900 int count, free = -1;
901
902 bus = scope->bus;
903 path = (struct acpi_dmar_pci_path *)(scope + 1);
904 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
905 / sizeof(struct acpi_dmar_pci_path);
906
907 while (--count > 0) {
908 /*
909 * Access PCI directly due to the PCI
910 * subsystem isn't initialized yet.
911 */
912 bus = read_pci_config_byte(bus, path->device, path->function,
913 PCI_SECONDARY_BUS);
914 path++;
915 }
916
917 for (count = 0; count < MAX_IO_APICS; count++) {
918 if (ir_ioapic[count].iommu == iommu &&
919 ir_ioapic[count].id == scope->enumeration_id)
920 return 0;
921 else if (ir_ioapic[count].iommu == NULL && free == -1)
922 free = count;
923 }
924 if (free == -1) {
925 pr_warn("Exceeded Max IO APICS\n");
926 return -ENOSPC;
927 }
928
929 ir_ioapic[free].bus = bus;
930 ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function);
931 ir_ioapic[free].iommu = iommu;
932 ir_ioapic[free].id = scope->enumeration_id;
933 pr_info("IOAPIC id %d under DRHD base 0x%Lx IOMMU %d\n",
934 scope->enumeration_id, drhd->address, iommu->seq_id);
935
936 return 0;
937}
938
939static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
940 struct intel_iommu *iommu)
941{
942 int ret = 0;
943 struct acpi_dmar_hardware_unit *drhd;
944 struct acpi_dmar_device_scope *scope;
945 void *start, *end;
946
947 drhd = (struct acpi_dmar_hardware_unit *)header;
948 start = (void *)(drhd + 1);
949 end = ((void *)drhd) + header->length;
950
951 while (start < end && ret == 0) {
952 scope = start;
953 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC)
954 ret = ir_parse_one_ioapic_scope(scope, iommu, drhd);
955 else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET)
956 ret = ir_parse_one_hpet_scope(scope, iommu, drhd);
957 start += scope->length;
958 }
959
960 return ret;
961}
962
963static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu)
964{
965 int i;
966
967 for (i = 0; i < MAX_HPET_TBS; i++)
968 if (ir_hpet[i].iommu == iommu)
969 ir_hpet[i].iommu = NULL;
970
971 for (i = 0; i < MAX_IO_APICS; i++)
972 if (ir_ioapic[i].iommu == iommu)
973 ir_ioapic[i].iommu = NULL;
974}
975
976/*
977 * Finds the assocaition between IOAPIC's and its Interrupt-remapping
978 * hardware unit.
979 */
980static int __init parse_ioapics_under_ir(void)
981{
982 struct dmar_drhd_unit *drhd;
983 struct intel_iommu *iommu;
984 bool ir_supported = false;
985 int ioapic_idx;
986
987 for_each_iommu(iommu, drhd) {
988 int ret;
989
990 if (!ecap_ir_support(iommu->ecap))
991 continue;
992
993 ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu);
994 if (ret)
995 return ret;
996
997 ir_supported = true;
998 }
999
1000 if (!ir_supported)
1001 return -ENODEV;
1002
1003 for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
1004 int ioapic_id = mpc_ioapic_id(ioapic_idx);
1005 if (!map_ioapic_to_ir(ioapic_id)) {
1006 pr_err(FW_BUG "ioapic %d has no mapping iommu, "
1007 "interrupt remapping will be disabled\n",
1008 ioapic_id);
1009 return -1;
1010 }
1011 }
1012
1013 return 0;
1014}
1015
1016static int __init ir_dev_scope_init(void)
1017{
1018 int ret;
1019
1020 if (!irq_remapping_enabled)
1021 return 0;
1022
1023 down_write(&dmar_global_lock);
1024 ret = dmar_dev_scope_init();
1025 up_write(&dmar_global_lock);
1026
1027 return ret;
1028}
1029rootfs_initcall(ir_dev_scope_init);
1030
1031static void disable_irq_remapping(void)
1032{
1033 struct dmar_drhd_unit *drhd;
1034 struct intel_iommu *iommu = NULL;
1035
1036 /*
1037 * Disable Interrupt-remapping for all the DRHD's now.
1038 */
1039 for_each_iommu(iommu, drhd) {
1040 if (!ecap_ir_support(iommu->ecap))
1041 continue;
1042
1043 iommu_disable_irq_remapping(iommu);
1044 }
1045
1046 /*
1047 * Clear Posted-Interrupts capability.
1048 */
1049 if (!disable_irq_post)
1050 intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP);
1051}
1052
1053static int reenable_irq_remapping(int eim)
1054{
1055 struct dmar_drhd_unit *drhd;
1056 bool setup = false;
1057 struct intel_iommu *iommu = NULL;
1058
1059 for_each_iommu(iommu, drhd)
1060 if (iommu->qi)
1061 dmar_reenable_qi(iommu);
1062
1063 /*
1064 * Setup Interrupt-remapping for all the DRHD's now.
1065 */
1066 for_each_iommu(iommu, drhd) {
1067 if (!ecap_ir_support(iommu->ecap))
1068 continue;
1069
1070 /* Set up interrupt remapping for iommu.*/
1071 iommu_set_irq_remapping(iommu, eim);
1072 iommu_enable_irq_remapping(iommu);
1073 setup = true;
1074 }
1075
1076 if (!setup)
1077 goto error;
1078
1079 set_irq_posting_cap();
1080
1081 return 0;
1082
1083error:
1084 /*
1085 * handle error condition gracefully here!
1086 */
1087 return -1;
1088}
1089
1090static void prepare_irte(struct irte *irte, int vector, unsigned int dest)
1091{
1092 memset(irte, 0, sizeof(*irte));
1093
1094 irte->present = 1;
1095 irte->dst_mode = apic->irq_dest_mode;
1096 /*
1097 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
1098 * actual level or edge trigger will be setup in the IO-APIC
1099 * RTE. This will help simplify level triggered irq migration.
1100 * For more details, see the comments (in io_apic.c) explainig IO-APIC
1101 * irq migration in the presence of interrupt-remapping.
1102 */
1103 irte->trigger_mode = 0;
1104 irte->dlvry_mode = apic->irq_delivery_mode;
1105 irte->vector = vector;
1106 irte->dest_id = IRTE_DEST(dest);
1107 irte->redir_hint = 1;
1108}
1109
1110static struct irq_domain *intel_get_ir_irq_domain(struct irq_alloc_info *info)
1111{
1112 struct intel_iommu *iommu = NULL;
1113
1114 if (!info)
1115 return NULL;
1116
1117 switch (info->type) {
1118 case X86_IRQ_ALLOC_TYPE_IOAPIC:
1119 iommu = map_ioapic_to_ir(info->ioapic_id);
1120 break;
1121 case X86_IRQ_ALLOC_TYPE_HPET:
1122 iommu = map_hpet_to_ir(info->hpet_id);
1123 break;
1124 case X86_IRQ_ALLOC_TYPE_MSI:
1125 case X86_IRQ_ALLOC_TYPE_MSIX:
1126 iommu = map_dev_to_ir(info->msi_dev);
1127 break;
1128 default:
1129 BUG_ON(1);
1130 break;
1131 }
1132
1133 return iommu ? iommu->ir_domain : NULL;
1134}
1135
1136static struct irq_domain *intel_get_irq_domain(struct irq_alloc_info *info)
1137{
1138 struct intel_iommu *iommu;
1139
1140 if (!info)
1141 return NULL;
1142
1143 switch (info->type) {
1144 case X86_IRQ_ALLOC_TYPE_MSI:
1145 case X86_IRQ_ALLOC_TYPE_MSIX:
1146 iommu = map_dev_to_ir(info->msi_dev);
1147 if (iommu)
1148 return iommu->ir_msi_domain;
1149 break;
1150 default:
1151 break;
1152 }
1153
1154 return NULL;
1155}
1156
1157struct irq_remap_ops intel_irq_remap_ops = {
1158 .prepare = intel_prepare_irq_remapping,
1159 .enable = intel_enable_irq_remapping,
1160 .disable = disable_irq_remapping,
1161 .reenable = reenable_irq_remapping,
1162 .enable_faulting = enable_drhd_fault_handling,
1163 .get_ir_irq_domain = intel_get_ir_irq_domain,
1164 .get_irq_domain = intel_get_irq_domain,
1165};
1166
1167static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force)
1168{
1169 struct intel_ir_data *ir_data = irqd->chip_data;
1170 struct irte *irte = &ir_data->irte_entry;
1171 struct irq_cfg *cfg = irqd_cfg(irqd);
1172
1173 /*
1174 * Atomically updates the IRTE with the new destination, vector
1175 * and flushes the interrupt entry cache.
1176 */
1177 irte->vector = cfg->vector;
1178 irte->dest_id = IRTE_DEST(cfg->dest_apicid);
1179
1180 /* Update the hardware only if the interrupt is in remapped mode. */
1181 if (force || ir_data->irq_2_iommu.mode == IRQ_REMAPPING)
1182 modify_irte(&ir_data->irq_2_iommu, irte);
1183}
1184
1185/*
1186 * Migrate the IO-APIC irq in the presence of intr-remapping.
1187 *
1188 * For both level and edge triggered, irq migration is a simple atomic
1189 * update(of vector and cpu destination) of IRTE and flush the hardware cache.
1190 *
1191 * For level triggered, we eliminate the io-apic RTE modification (with the
1192 * updated vector information), by using a virtual vector (io-apic pin number).
1193 * Real vector that is used for interrupting cpu will be coming from
1194 * the interrupt-remapping table entry.
1195 *
1196 * As the migration is a simple atomic update of IRTE, the same mechanism
1197 * is used to migrate MSI irq's in the presence of interrupt-remapping.
1198 */
1199static int
1200intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask,
1201 bool force)
1202{
1203 struct irq_data *parent = data->parent_data;
1204 struct irq_cfg *cfg = irqd_cfg(data);
1205 int ret;
1206
1207 ret = parent->chip->irq_set_affinity(parent, mask, force);
1208 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
1209 return ret;
1210
1211 intel_ir_reconfigure_irte(data, false);
1212 /*
1213 * After this point, all the interrupts will start arriving
1214 * at the new destination. So, time to cleanup the previous
1215 * vector allocation.
1216 */
1217 send_cleanup_vector(cfg);
1218
1219 return IRQ_SET_MASK_OK_DONE;
1220}
1221
1222static void intel_ir_compose_msi_msg(struct irq_data *irq_data,
1223 struct msi_msg *msg)
1224{
1225 struct intel_ir_data *ir_data = irq_data->chip_data;
1226
1227 *msg = ir_data->msi_entry;
1228}
1229
1230static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info)
1231{
1232 struct intel_ir_data *ir_data = data->chip_data;
1233 struct vcpu_data *vcpu_pi_info = info;
1234
1235 /* stop posting interrupts, back to remapping mode */
1236 if (!vcpu_pi_info) {
1237 modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry);
1238 } else {
1239 struct irte irte_pi;
1240
1241 /*
1242 * We are not caching the posted interrupt entry. We
1243 * copy the data from the remapped entry and modify
1244 * the fields which are relevant for posted mode. The
1245 * cached remapped entry is used for switching back to
1246 * remapped mode.
1247 */
1248 memset(&irte_pi, 0, sizeof(irte_pi));
1249 dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry);
1250
1251 /* Update the posted mode fields */
1252 irte_pi.p_pst = 1;
1253 irte_pi.p_urgent = 0;
1254 irte_pi.p_vector = vcpu_pi_info->vector;
1255 irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >>
1256 (32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
1257 irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) &
1258 ~(-1UL << PDA_HIGH_BIT);
1259
1260 modify_irte(&ir_data->irq_2_iommu, &irte_pi);
1261 }
1262
1263 return 0;
1264}
1265
1266static struct irq_chip intel_ir_chip = {
1267 .name = "INTEL-IR",
1268 .irq_ack = apic_ack_irq,
1269 .irq_set_affinity = intel_ir_set_affinity,
1270 .irq_compose_msi_msg = intel_ir_compose_msi_msg,
1271 .irq_set_vcpu_affinity = intel_ir_set_vcpu_affinity,
1272};
1273
1274static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data,
1275 struct irq_cfg *irq_cfg,
1276 struct irq_alloc_info *info,
1277 int index, int sub_handle)
1278{
1279 struct IR_IO_APIC_route_entry *entry;
1280 struct irte *irte = &data->irte_entry;
1281 struct msi_msg *msg = &data->msi_entry;
1282
1283 prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid);
1284 switch (info->type) {
1285 case X86_IRQ_ALLOC_TYPE_IOAPIC:
1286 /* Set source-id of interrupt request */
1287 set_ioapic_sid(irte, info->ioapic_id);
1288 apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n",
1289 info->ioapic_id, irte->present, irte->fpd,
1290 irte->dst_mode, irte->redir_hint,
1291 irte->trigger_mode, irte->dlvry_mode,
1292 irte->avail, irte->vector, irte->dest_id,
1293 irte->sid, irte->sq, irte->svt);
1294
1295 entry = (struct IR_IO_APIC_route_entry *)info->ioapic_entry;
1296 info->ioapic_entry = NULL;
1297 memset(entry, 0, sizeof(*entry));
1298 entry->index2 = (index >> 15) & 0x1;
1299 entry->zero = 0;
1300 entry->format = 1;
1301 entry->index = (index & 0x7fff);
1302 /*
1303 * IO-APIC RTE will be configured with virtual vector.
1304 * irq handler will do the explicit EOI to the io-apic.
1305 */
1306 entry->vector = info->ioapic_pin;
1307 entry->mask = 0; /* enable IRQ */
1308 entry->trigger = info->ioapic_trigger;
1309 entry->polarity = info->ioapic_polarity;
1310 if (info->ioapic_trigger)
1311 entry->mask = 1; /* Mask level triggered irqs. */
1312 break;
1313
1314 case X86_IRQ_ALLOC_TYPE_HPET:
1315 case X86_IRQ_ALLOC_TYPE_MSI:
1316 case X86_IRQ_ALLOC_TYPE_MSIX:
1317 if (info->type == X86_IRQ_ALLOC_TYPE_HPET)
1318 set_hpet_sid(irte, info->hpet_id);
1319 else
1320 set_msi_sid(irte, info->msi_dev);
1321
1322 msg->address_hi = MSI_ADDR_BASE_HI;
1323 msg->data = sub_handle;
1324 msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
1325 MSI_ADDR_IR_SHV |
1326 MSI_ADDR_IR_INDEX1(index) |
1327 MSI_ADDR_IR_INDEX2(index);
1328 break;
1329
1330 default:
1331 BUG_ON(1);
1332 break;
1333 }
1334}
1335
1336static void intel_free_irq_resources(struct irq_domain *domain,
1337 unsigned int virq, unsigned int nr_irqs)
1338{
1339 struct irq_data *irq_data;
1340 struct intel_ir_data *data;
1341 struct irq_2_iommu *irq_iommu;
1342 unsigned long flags;
1343 int i;
1344 for (i = 0; i < nr_irqs; i++) {
1345 irq_data = irq_domain_get_irq_data(domain, virq + i);
1346 if (irq_data && irq_data->chip_data) {
1347 data = irq_data->chip_data;
1348 irq_iommu = &data->irq_2_iommu;
1349 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
1350 clear_entries(irq_iommu);
1351 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
1352 irq_domain_reset_irq_data(irq_data);
1353 kfree(data);
1354 }
1355 }
1356}
1357
1358static int intel_irq_remapping_alloc(struct irq_domain *domain,
1359 unsigned int virq, unsigned int nr_irqs,
1360 void *arg)
1361{
1362 struct intel_iommu *iommu = domain->host_data;
1363 struct irq_alloc_info *info = arg;
1364 struct intel_ir_data *data, *ird;
1365 struct irq_data *irq_data;
1366 struct irq_cfg *irq_cfg;
1367 int i, ret, index;
1368
1369 if (!info || !iommu)
1370 return -EINVAL;
1371 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
1372 info->type != X86_IRQ_ALLOC_TYPE_MSIX)
1373 return -EINVAL;
1374
1375 /*
1376 * With IRQ remapping enabled, don't need contiguous CPU vectors
1377 * to support multiple MSI interrupts.
1378 */
1379 if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
1380 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
1381
1382 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
1383 if (ret < 0)
1384 return ret;
1385
1386 ret = -ENOMEM;
1387 data = kzalloc(sizeof(*data), GFP_KERNEL);
1388 if (!data)
1389 goto out_free_parent;
1390
1391 down_read(&dmar_global_lock);
1392 index = alloc_irte(iommu, &data->irq_2_iommu, nr_irqs);
1393 up_read(&dmar_global_lock);
1394 if (index < 0) {
1395 pr_warn("Failed to allocate IRTE\n");
1396 kfree(data);
1397 goto out_free_parent;
1398 }
1399
1400 for (i = 0; i < nr_irqs; i++) {
1401 irq_data = irq_domain_get_irq_data(domain, virq + i);
1402 irq_cfg = irqd_cfg(irq_data);
1403 if (!irq_data || !irq_cfg) {
1404 ret = -EINVAL;
1405 goto out_free_data;
1406 }
1407
1408 if (i > 0) {
1409 ird = kzalloc(sizeof(*ird), GFP_KERNEL);
1410 if (!ird)
1411 goto out_free_data;
1412 /* Initialize the common data */
1413 ird->irq_2_iommu = data->irq_2_iommu;
1414 ird->irq_2_iommu.sub_handle = i;
1415 } else {
1416 ird = data;
1417 }
1418
1419 irq_data->hwirq = (index << 16) + i;
1420 irq_data->chip_data = ird;
1421 irq_data->chip = &intel_ir_chip;
1422 intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i);
1423 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
1424 }
1425 return 0;
1426
1427out_free_data:
1428 intel_free_irq_resources(domain, virq, i);
1429out_free_parent:
1430 irq_domain_free_irqs_common(domain, virq, nr_irqs);
1431 return ret;
1432}
1433
1434static void intel_irq_remapping_free(struct irq_domain *domain,
1435 unsigned int virq, unsigned int nr_irqs)
1436{
1437 intel_free_irq_resources(domain, virq, nr_irqs);
1438 irq_domain_free_irqs_common(domain, virq, nr_irqs);
1439}
1440
1441static int intel_irq_remapping_activate(struct irq_domain *domain,
1442 struct irq_data *irq_data, bool reserve)
1443{
1444 intel_ir_reconfigure_irte(irq_data, true);
1445 return 0;
1446}
1447
1448static void intel_irq_remapping_deactivate(struct irq_domain *domain,
1449 struct irq_data *irq_data)
1450{
1451 struct intel_ir_data *data = irq_data->chip_data;
1452 struct irte entry;
1453
1454 memset(&entry, 0, sizeof(entry));
1455 modify_irte(&data->irq_2_iommu, &entry);
1456}
1457
1458static const struct irq_domain_ops intel_ir_domain_ops = {
1459 .alloc = intel_irq_remapping_alloc,
1460 .free = intel_irq_remapping_free,
1461 .activate = intel_irq_remapping_activate,
1462 .deactivate = intel_irq_remapping_deactivate,
1463};
1464
1465/*
1466 * Support of Interrupt Remapping Unit Hotplug
1467 */
1468static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu)
1469{
1470 int ret;
1471 int eim = x2apic_enabled();
1472
1473 if (eim && !ecap_eim_support(iommu->ecap)) {
1474 pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n",
1475 iommu->reg_phys, iommu->ecap);
1476 return -ENODEV;
1477 }
1478
1479 if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) {
1480 pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n",
1481 iommu->reg_phys);
1482 return -ENODEV;
1483 }
1484
1485 /* TODO: check all IOAPICs are covered by IOMMU */
1486
1487 /* Setup Interrupt-remapping now. */
1488 ret = intel_setup_irq_remapping(iommu);
1489 if (ret) {
1490 pr_err("Failed to setup irq remapping for %s\n",
1491 iommu->name);
1492 intel_teardown_irq_remapping(iommu);
1493 ir_remove_ioapic_hpet_scope(iommu);
1494 } else {
1495 iommu_enable_irq_remapping(iommu);
1496 }
1497
1498 return ret;
1499}
1500
1501int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
1502{
1503 int ret = 0;
1504 struct intel_iommu *iommu = dmaru->iommu;
1505
1506 if (!irq_remapping_enabled)
1507 return 0;
1508 if (iommu == NULL)
1509 return -EINVAL;
1510 if (!ecap_ir_support(iommu->ecap))
1511 return 0;
1512 if (irq_remapping_cap(IRQ_POSTING_CAP) &&
1513 !cap_pi_support(iommu->cap))
1514 return -EBUSY;
1515
1516 if (insert) {
1517 if (!iommu->ir_table)
1518 ret = dmar_ir_add(dmaru, iommu);
1519 } else {
1520 if (iommu->ir_table) {
1521 if (!bitmap_empty(iommu->ir_table->bitmap,
1522 INTR_REMAP_TABLE_ENTRIES)) {
1523 ret = -EBUSY;
1524 } else {
1525 iommu_disable_irq_remapping(iommu);
1526 intel_teardown_irq_remapping(iommu);
1527 ir_remove_ioapic_hpet_scope(iommu);
1528 }
1529 }
1530 }
1531
1532 return ret;
1533}