Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2006, Intel Corporation.
4 *
5 * Copyright (C) 2006-2008 Intel Corporation
6 * Author: Ashok Raj <ashok.raj@intel.com>
7 * Author: Shaohua Li <shaohua.li@intel.com>
8 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9 *
10 * This file implements early detection/parsing of Remapping Devices
11 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
12 * tables.
13 *
14 * These routines are used by both DMA-remapping and Interrupt-remapping
15 */
16
17#define pr_fmt(fmt) "DMAR: " fmt
18
19#include <linux/pci.h>
20#include <linux/dmar.h>
21#include <linux/iova.h>
22#include <linux/timer.h>
23#include <linux/irq.h>
24#include <linux/interrupt.h>
25#include <linux/tboot.h>
26#include <linux/dmi.h>
27#include <linux/slab.h>
28#include <linux/iommu.h>
29#include <linux/numa.h>
30#include <linux/limits.h>
31#include <asm/irq_remapping.h>
32
33#include "iommu.h"
34#include "../irq_remapping.h"
35#include "../iommu-pages.h"
36#include "perf.h"
37#include "trace.h"
38#include "perfmon.h"
39
40typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
41struct dmar_res_callback {
42 dmar_res_handler_t cb[ACPI_DMAR_TYPE_RESERVED];
43 void *arg[ACPI_DMAR_TYPE_RESERVED];
44 bool ignore_unhandled;
45 bool print_entry;
46};
47
48/*
49 * Assumptions:
50 * 1) The hotplug framework guarentees that DMAR unit will be hot-added
51 * before IO devices managed by that unit.
52 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
53 * after IO devices managed by that unit.
54 * 3) Hotplug events are rare.
55 *
56 * Locking rules for DMA and interrupt remapping related global data structures:
57 * 1) Use dmar_global_lock in process context
58 * 2) Use RCU in interrupt context
59 */
60DECLARE_RWSEM(dmar_global_lock);
61LIST_HEAD(dmar_drhd_units);
62
63struct acpi_table_header * __initdata dmar_tbl;
64static int dmar_dev_scope_status = 1;
65static DEFINE_IDA(dmar_seq_ids);
66
67static int alloc_iommu(struct dmar_drhd_unit *drhd);
68static void free_iommu(struct intel_iommu *iommu);
69
70static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
71{
72 /*
73 * add INCLUDE_ALL at the tail, so scan the list will find it at
74 * the very end.
75 */
76 if (drhd->include_all)
77 list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
78 else
79 list_add_rcu(&drhd->list, &dmar_drhd_units);
80}
81
82void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
83{
84 struct acpi_dmar_device_scope *scope;
85
86 *cnt = 0;
87 while (start < end) {
88 scope = start;
89 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
90 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
91 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
92 (*cnt)++;
93 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
94 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
95 pr_warn("Unsupported device scope\n");
96 }
97 start += scope->length;
98 }
99 if (*cnt == 0)
100 return NULL;
101
102 return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
103}
104
105void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
106{
107 int i;
108 struct device *tmp_dev;
109
110 if (*devices && *cnt) {
111 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
112 put_device(tmp_dev);
113 kfree(*devices);
114 }
115
116 *devices = NULL;
117 *cnt = 0;
118}
119
120/* Optimize out kzalloc()/kfree() for normal cases */
121static char dmar_pci_notify_info_buf[64];
122
123static struct dmar_pci_notify_info *
124dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
125{
126 int level = 0;
127 size_t size;
128 struct pci_dev *tmp;
129 struct dmar_pci_notify_info *info;
130
131 /*
132 * Ignore devices that have a domain number higher than what can
133 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
134 */
135 if (pci_domain_nr(dev->bus) > U16_MAX)
136 return NULL;
137
138 /* Only generate path[] for device addition event */
139 if (event == BUS_NOTIFY_ADD_DEVICE)
140 for (tmp = dev; tmp; tmp = tmp->bus->self)
141 level++;
142
143 size = struct_size(info, path, level);
144 if (size <= sizeof(dmar_pci_notify_info_buf)) {
145 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
146 } else {
147 info = kzalloc(size, GFP_KERNEL);
148 if (!info) {
149 if (dmar_dev_scope_status == 0)
150 dmar_dev_scope_status = -ENOMEM;
151 return NULL;
152 }
153 }
154
155 info->event = event;
156 info->dev = dev;
157 info->seg = pci_domain_nr(dev->bus);
158 info->level = level;
159 if (event == BUS_NOTIFY_ADD_DEVICE) {
160 for (tmp = dev; tmp; tmp = tmp->bus->self) {
161 level--;
162 info->path[level].bus = tmp->bus->number;
163 info->path[level].device = PCI_SLOT(tmp->devfn);
164 info->path[level].function = PCI_FUNC(tmp->devfn);
165 if (pci_is_root_bus(tmp->bus))
166 info->bus = tmp->bus->number;
167 }
168 }
169
170 return info;
171}
172
173static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
174{
175 if ((void *)info != dmar_pci_notify_info_buf)
176 kfree(info);
177}
178
179static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
180 struct acpi_dmar_pci_path *path, int count)
181{
182 int i;
183
184 if (info->bus != bus)
185 goto fallback;
186 if (info->level != count)
187 goto fallback;
188
189 for (i = 0; i < count; i++) {
190 if (path[i].device != info->path[i].device ||
191 path[i].function != info->path[i].function)
192 goto fallback;
193 }
194
195 return true;
196
197fallback:
198
199 if (count != 1)
200 return false;
201
202 i = info->level - 1;
203 if (bus == info->path[i].bus &&
204 path[0].device == info->path[i].device &&
205 path[0].function == info->path[i].function) {
206 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
207 bus, path[0].device, path[0].function);
208 return true;
209 }
210
211 return false;
212}
213
214/* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
215int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
216 void *start, void*end, u16 segment,
217 struct dmar_dev_scope *devices,
218 int devices_cnt)
219{
220 int i, level;
221 struct device *tmp, *dev = &info->dev->dev;
222 struct acpi_dmar_device_scope *scope;
223 struct acpi_dmar_pci_path *path;
224
225 if (segment != info->seg)
226 return 0;
227
228 for (; start < end; start += scope->length) {
229 scope = start;
230 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
231 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
232 continue;
233
234 path = (struct acpi_dmar_pci_path *)(scope + 1);
235 level = (scope->length - sizeof(*scope)) / sizeof(*path);
236 if (!dmar_match_pci_path(info, scope->bus, path, level))
237 continue;
238
239 /*
240 * We expect devices with endpoint scope to have normal PCI
241 * headers, and devices with bridge scope to have bridge PCI
242 * headers. However PCI NTB devices may be listed in the
243 * DMAR table with bridge scope, even though they have a
244 * normal PCI header. NTB devices are identified by class
245 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
246 * for this special case.
247 */
248 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
249 info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
250 (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
251 (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
252 info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
253 pr_warn("Device scope type does not match for %s\n",
254 pci_name(info->dev));
255 return -EINVAL;
256 }
257
258 for_each_dev_scope(devices, devices_cnt, i, tmp)
259 if (tmp == NULL) {
260 devices[i].bus = info->dev->bus->number;
261 devices[i].devfn = info->dev->devfn;
262 rcu_assign_pointer(devices[i].dev,
263 get_device(dev));
264 return 1;
265 }
266 if (WARN_ON(i >= devices_cnt))
267 return -EINVAL;
268 }
269
270 return 0;
271}
272
273int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
274 struct dmar_dev_scope *devices, int count)
275{
276 int index;
277 struct device *tmp;
278
279 if (info->seg != segment)
280 return 0;
281
282 for_each_active_dev_scope(devices, count, index, tmp)
283 if (tmp == &info->dev->dev) {
284 RCU_INIT_POINTER(devices[index].dev, NULL);
285 synchronize_rcu();
286 put_device(tmp);
287 return 1;
288 }
289
290 return 0;
291}
292
293static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
294{
295 int ret = 0;
296 struct dmar_drhd_unit *dmaru;
297 struct acpi_dmar_hardware_unit *drhd;
298
299 for_each_drhd_unit(dmaru) {
300 if (dmaru->include_all)
301 continue;
302
303 drhd = container_of(dmaru->hdr,
304 struct acpi_dmar_hardware_unit, header);
305 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
306 ((void *)drhd) + drhd->header.length,
307 dmaru->segment,
308 dmaru->devices, dmaru->devices_cnt);
309 if (ret)
310 break;
311 }
312 if (ret >= 0)
313 ret = dmar_iommu_notify_scope_dev(info);
314 if (ret < 0 && dmar_dev_scope_status == 0)
315 dmar_dev_scope_status = ret;
316
317 if (ret >= 0)
318 intel_irq_remap_add_device(info);
319
320 return ret;
321}
322
323static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
324{
325 struct dmar_drhd_unit *dmaru;
326
327 for_each_drhd_unit(dmaru)
328 if (dmar_remove_dev_scope(info, dmaru->segment,
329 dmaru->devices, dmaru->devices_cnt))
330 break;
331 dmar_iommu_notify_scope_dev(info);
332}
333
334static inline void vf_inherit_msi_domain(struct pci_dev *pdev)
335{
336 struct pci_dev *physfn = pci_physfn(pdev);
337
338 dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev));
339}
340
341static int dmar_pci_bus_notifier(struct notifier_block *nb,
342 unsigned long action, void *data)
343{
344 struct pci_dev *pdev = to_pci_dev(data);
345 struct dmar_pci_notify_info *info;
346
347 /* Only care about add/remove events for physical functions.
348 * For VFs we actually do the lookup based on the corresponding
349 * PF in device_to_iommu() anyway. */
350 if (pdev->is_virtfn) {
351 /*
352 * Ensure that the VF device inherits the irq domain of the
353 * PF device. Ideally the device would inherit the domain
354 * from the bus, but DMAR can have multiple units per bus
355 * which makes this impossible. The VF 'bus' could inherit
356 * from the PF device, but that's yet another x86'sism to
357 * inflict on everybody else.
358 */
359 if (action == BUS_NOTIFY_ADD_DEVICE)
360 vf_inherit_msi_domain(pdev);
361 return NOTIFY_DONE;
362 }
363
364 if (action != BUS_NOTIFY_ADD_DEVICE &&
365 action != BUS_NOTIFY_REMOVED_DEVICE)
366 return NOTIFY_DONE;
367
368 info = dmar_alloc_pci_notify_info(pdev, action);
369 if (!info)
370 return NOTIFY_DONE;
371
372 down_write(&dmar_global_lock);
373 if (action == BUS_NOTIFY_ADD_DEVICE)
374 dmar_pci_bus_add_dev(info);
375 else if (action == BUS_NOTIFY_REMOVED_DEVICE)
376 dmar_pci_bus_del_dev(info);
377 up_write(&dmar_global_lock);
378
379 dmar_free_pci_notify_info(info);
380
381 return NOTIFY_OK;
382}
383
384static struct notifier_block dmar_pci_bus_nb = {
385 .notifier_call = dmar_pci_bus_notifier,
386 .priority = 1,
387};
388
389static struct dmar_drhd_unit *
390dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
391{
392 struct dmar_drhd_unit *dmaru;
393
394 list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
395 dmar_rcu_check())
396 if (dmaru->segment == drhd->segment &&
397 dmaru->reg_base_addr == drhd->address)
398 return dmaru;
399
400 return NULL;
401}
402
403/*
404 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
405 * structure which uniquely represent one DMA remapping hardware unit
406 * present in the platform
407 */
408static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
409{
410 struct acpi_dmar_hardware_unit *drhd;
411 struct dmar_drhd_unit *dmaru;
412 int ret;
413
414 drhd = (struct acpi_dmar_hardware_unit *)header;
415 dmaru = dmar_find_dmaru(drhd);
416 if (dmaru)
417 goto out;
418
419 dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
420 if (!dmaru)
421 return -ENOMEM;
422
423 /*
424 * If header is allocated from slab by ACPI _DSM method, we need to
425 * copy the content because the memory buffer will be freed on return.
426 */
427 dmaru->hdr = (void *)(dmaru + 1);
428 memcpy(dmaru->hdr, header, header->length);
429 dmaru->reg_base_addr = drhd->address;
430 dmaru->segment = drhd->segment;
431 /* The size of the register set is 2 ^ N 4 KB pages. */
432 dmaru->reg_size = 1UL << (drhd->size + 12);
433 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
434 dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
435 ((void *)drhd) + drhd->header.length,
436 &dmaru->devices_cnt);
437 if (dmaru->devices_cnt && dmaru->devices == NULL) {
438 kfree(dmaru);
439 return -ENOMEM;
440 }
441
442 ret = alloc_iommu(dmaru);
443 if (ret) {
444 dmar_free_dev_scope(&dmaru->devices,
445 &dmaru->devices_cnt);
446 kfree(dmaru);
447 return ret;
448 }
449 dmar_register_drhd_unit(dmaru);
450
451out:
452 if (arg)
453 (*(int *)arg)++;
454
455 return 0;
456}
457
458static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
459{
460 if (dmaru->devices && dmaru->devices_cnt)
461 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
462 if (dmaru->iommu)
463 free_iommu(dmaru->iommu);
464 kfree(dmaru);
465}
466
467static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
468 void *arg)
469{
470 struct acpi_dmar_andd *andd = (void *)header;
471
472 /* Check for NUL termination within the designated length */
473 if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
474 pr_warn(FW_BUG
475 "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
476 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
477 dmi_get_system_info(DMI_BIOS_VENDOR),
478 dmi_get_system_info(DMI_BIOS_VERSION),
479 dmi_get_system_info(DMI_PRODUCT_VERSION));
480 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
481 return -EINVAL;
482 }
483 pr_info("ANDD device: %x name: %s\n", andd->device_number,
484 andd->device_name);
485
486 return 0;
487}
488
489#ifdef CONFIG_ACPI_NUMA
490static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
491{
492 struct acpi_dmar_rhsa *rhsa;
493 struct dmar_drhd_unit *drhd;
494
495 rhsa = (struct acpi_dmar_rhsa *)header;
496 for_each_drhd_unit(drhd) {
497 if (drhd->reg_base_addr == rhsa->base_address) {
498 int node = pxm_to_node(rhsa->proximity_domain);
499
500 if (node != NUMA_NO_NODE && !node_online(node))
501 node = NUMA_NO_NODE;
502 drhd->iommu->node = node;
503 return 0;
504 }
505 }
506 pr_warn(FW_BUG
507 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
508 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
509 rhsa->base_address,
510 dmi_get_system_info(DMI_BIOS_VENDOR),
511 dmi_get_system_info(DMI_BIOS_VERSION),
512 dmi_get_system_info(DMI_PRODUCT_VERSION));
513 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
514
515 return 0;
516}
517#else
518#define dmar_parse_one_rhsa dmar_res_noop
519#endif
520
521static void
522dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
523{
524 struct acpi_dmar_hardware_unit *drhd;
525 struct acpi_dmar_reserved_memory *rmrr;
526 struct acpi_dmar_atsr *atsr;
527 struct acpi_dmar_rhsa *rhsa;
528 struct acpi_dmar_satc *satc;
529
530 switch (header->type) {
531 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
532 drhd = container_of(header, struct acpi_dmar_hardware_unit,
533 header);
534 pr_info("DRHD base: %#016Lx flags: %#x\n",
535 (unsigned long long)drhd->address, drhd->flags);
536 break;
537 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
538 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
539 header);
540 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
541 (unsigned long long)rmrr->base_address,
542 (unsigned long long)rmrr->end_address);
543 break;
544 case ACPI_DMAR_TYPE_ROOT_ATS:
545 atsr = container_of(header, struct acpi_dmar_atsr, header);
546 pr_info("ATSR flags: %#x\n", atsr->flags);
547 break;
548 case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
549 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
550 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
551 (unsigned long long)rhsa->base_address,
552 rhsa->proximity_domain);
553 break;
554 case ACPI_DMAR_TYPE_NAMESPACE:
555 /* We don't print this here because we need to sanity-check
556 it first. So print it in dmar_parse_one_andd() instead. */
557 break;
558 case ACPI_DMAR_TYPE_SATC:
559 satc = container_of(header, struct acpi_dmar_satc, header);
560 pr_info("SATC flags: 0x%x\n", satc->flags);
561 break;
562 }
563}
564
565/**
566 * dmar_table_detect - checks to see if the platform supports DMAR devices
567 */
568static int __init dmar_table_detect(void)
569{
570 acpi_status status = AE_OK;
571
572 /* if we could find DMAR table, then there are DMAR devices */
573 status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
574
575 if (ACPI_SUCCESS(status) && !dmar_tbl) {
576 pr_warn("Unable to map DMAR\n");
577 status = AE_NOT_FOUND;
578 }
579
580 return ACPI_SUCCESS(status) ? 0 : -ENOENT;
581}
582
583static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
584 size_t len, struct dmar_res_callback *cb)
585{
586 struct acpi_dmar_header *iter, *next;
587 struct acpi_dmar_header *end = ((void *)start) + len;
588
589 for (iter = start; iter < end; iter = next) {
590 next = (void *)iter + iter->length;
591 if (iter->length == 0) {
592 /* Avoid looping forever on bad ACPI tables */
593 pr_debug(FW_BUG "Invalid 0-length structure\n");
594 break;
595 } else if (next > end) {
596 /* Avoid passing table end */
597 pr_warn(FW_BUG "Record passes table end\n");
598 return -EINVAL;
599 }
600
601 if (cb->print_entry)
602 dmar_table_print_dmar_entry(iter);
603
604 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
605 /* continue for forward compatibility */
606 pr_debug("Unknown DMAR structure type %d\n",
607 iter->type);
608 } else if (cb->cb[iter->type]) {
609 int ret;
610
611 ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
612 if (ret)
613 return ret;
614 } else if (!cb->ignore_unhandled) {
615 pr_warn("No handler for DMAR structure type %d\n",
616 iter->type);
617 return -EINVAL;
618 }
619 }
620
621 return 0;
622}
623
624static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
625 struct dmar_res_callback *cb)
626{
627 return dmar_walk_remapping_entries((void *)(dmar + 1),
628 dmar->header.length - sizeof(*dmar), cb);
629}
630
631/**
632 * parse_dmar_table - parses the DMA reporting table
633 */
634static int __init
635parse_dmar_table(void)
636{
637 struct acpi_table_dmar *dmar;
638 int drhd_count = 0;
639 int ret;
640 struct dmar_res_callback cb = {
641 .print_entry = true,
642 .ignore_unhandled = true,
643 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
644 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
645 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
646 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
647 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
648 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
649 .cb[ACPI_DMAR_TYPE_SATC] = &dmar_parse_one_satc,
650 };
651
652 /*
653 * Do it again, earlier dmar_tbl mapping could be mapped with
654 * fixed map.
655 */
656 dmar_table_detect();
657
658 /*
659 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
660 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
661 */
662 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
663
664 dmar = (struct acpi_table_dmar *)dmar_tbl;
665 if (!dmar)
666 return -ENODEV;
667
668 if (dmar->width < PAGE_SHIFT - 1) {
669 pr_warn("Invalid DMAR haw\n");
670 return -EINVAL;
671 }
672
673 pr_info("Host address width %d\n", dmar->width + 1);
674 ret = dmar_walk_dmar_table(dmar, &cb);
675 if (ret == 0 && drhd_count == 0)
676 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
677
678 return ret;
679}
680
681static int dmar_pci_device_match(struct dmar_dev_scope devices[],
682 int cnt, struct pci_dev *dev)
683{
684 int index;
685 struct device *tmp;
686
687 while (dev) {
688 for_each_active_dev_scope(devices, cnt, index, tmp)
689 if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
690 return 1;
691
692 /* Check our parent */
693 dev = dev->bus->self;
694 }
695
696 return 0;
697}
698
699struct dmar_drhd_unit *
700dmar_find_matched_drhd_unit(struct pci_dev *dev)
701{
702 struct dmar_drhd_unit *dmaru;
703 struct acpi_dmar_hardware_unit *drhd;
704
705 dev = pci_physfn(dev);
706
707 rcu_read_lock();
708 for_each_drhd_unit(dmaru) {
709 drhd = container_of(dmaru->hdr,
710 struct acpi_dmar_hardware_unit,
711 header);
712
713 if (dmaru->include_all &&
714 drhd->segment == pci_domain_nr(dev->bus))
715 goto out;
716
717 if (dmar_pci_device_match(dmaru->devices,
718 dmaru->devices_cnt, dev))
719 goto out;
720 }
721 dmaru = NULL;
722out:
723 rcu_read_unlock();
724
725 return dmaru;
726}
727
728static void __init dmar_acpi_insert_dev_scope(u8 device_number,
729 struct acpi_device *adev)
730{
731 struct dmar_drhd_unit *dmaru;
732 struct acpi_dmar_hardware_unit *drhd;
733 struct acpi_dmar_device_scope *scope;
734 struct device *tmp;
735 int i;
736 struct acpi_dmar_pci_path *path;
737
738 for_each_drhd_unit(dmaru) {
739 drhd = container_of(dmaru->hdr,
740 struct acpi_dmar_hardware_unit,
741 header);
742
743 for (scope = (void *)(drhd + 1);
744 (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
745 scope = ((void *)scope) + scope->length) {
746 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
747 continue;
748 if (scope->enumeration_id != device_number)
749 continue;
750
751 path = (void *)(scope + 1);
752 pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
753 dev_name(&adev->dev), dmaru->reg_base_addr,
754 scope->bus, path->device, path->function);
755 for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
756 if (tmp == NULL) {
757 dmaru->devices[i].bus = scope->bus;
758 dmaru->devices[i].devfn = PCI_DEVFN(path->device,
759 path->function);
760 rcu_assign_pointer(dmaru->devices[i].dev,
761 get_device(&adev->dev));
762 return;
763 }
764 BUG_ON(i >= dmaru->devices_cnt);
765 }
766 }
767 pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
768 device_number, dev_name(&adev->dev));
769}
770
771static int __init dmar_acpi_dev_scope_init(void)
772{
773 struct acpi_dmar_andd *andd;
774
775 if (dmar_tbl == NULL)
776 return -ENODEV;
777
778 for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
779 ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
780 andd = ((void *)andd) + andd->header.length) {
781 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
782 acpi_handle h;
783 struct acpi_device *adev;
784
785 if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
786 andd->device_name,
787 &h))) {
788 pr_err("Failed to find handle for ACPI object %s\n",
789 andd->device_name);
790 continue;
791 }
792 adev = acpi_fetch_acpi_dev(h);
793 if (!adev) {
794 pr_err("Failed to get device for ACPI object %s\n",
795 andd->device_name);
796 continue;
797 }
798 dmar_acpi_insert_dev_scope(andd->device_number, adev);
799 }
800 }
801 return 0;
802}
803
804int __init dmar_dev_scope_init(void)
805{
806 struct pci_dev *dev = NULL;
807 struct dmar_pci_notify_info *info;
808
809 if (dmar_dev_scope_status != 1)
810 return dmar_dev_scope_status;
811
812 if (list_empty(&dmar_drhd_units)) {
813 dmar_dev_scope_status = -ENODEV;
814 } else {
815 dmar_dev_scope_status = 0;
816
817 dmar_acpi_dev_scope_init();
818
819 for_each_pci_dev(dev) {
820 if (dev->is_virtfn)
821 continue;
822
823 info = dmar_alloc_pci_notify_info(dev,
824 BUS_NOTIFY_ADD_DEVICE);
825 if (!info) {
826 pci_dev_put(dev);
827 return dmar_dev_scope_status;
828 } else {
829 dmar_pci_bus_add_dev(info);
830 dmar_free_pci_notify_info(info);
831 }
832 }
833 }
834
835 return dmar_dev_scope_status;
836}
837
838void __init dmar_register_bus_notifier(void)
839{
840 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
841}
842
843
844int __init dmar_table_init(void)
845{
846 static int dmar_table_initialized;
847 int ret;
848
849 if (dmar_table_initialized == 0) {
850 ret = parse_dmar_table();
851 if (ret < 0) {
852 if (ret != -ENODEV)
853 pr_info("Parse DMAR table failure.\n");
854 } else if (list_empty(&dmar_drhd_units)) {
855 pr_info("No DMAR devices found\n");
856 ret = -ENODEV;
857 }
858
859 if (ret < 0)
860 dmar_table_initialized = ret;
861 else
862 dmar_table_initialized = 1;
863 }
864
865 return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
866}
867
868static void warn_invalid_dmar(u64 addr, const char *message)
869{
870 pr_warn_once(FW_BUG
871 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
872 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
873 addr, message,
874 dmi_get_system_info(DMI_BIOS_VENDOR),
875 dmi_get_system_info(DMI_BIOS_VERSION),
876 dmi_get_system_info(DMI_PRODUCT_VERSION));
877 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
878}
879
880static int __ref
881dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
882{
883 struct acpi_dmar_hardware_unit *drhd;
884 void __iomem *addr;
885 u64 cap, ecap;
886
887 drhd = (void *)entry;
888 if (!drhd->address) {
889 warn_invalid_dmar(0, "");
890 return -EINVAL;
891 }
892
893 if (arg)
894 addr = ioremap(drhd->address, VTD_PAGE_SIZE);
895 else
896 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
897 if (!addr) {
898 pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
899 return -EINVAL;
900 }
901
902 cap = dmar_readq(addr + DMAR_CAP_REG);
903 ecap = dmar_readq(addr + DMAR_ECAP_REG);
904
905 if (arg)
906 iounmap(addr);
907 else
908 early_iounmap(addr, VTD_PAGE_SIZE);
909
910 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
911 warn_invalid_dmar(drhd->address, " returns all ones");
912 return -EINVAL;
913 }
914
915 return 0;
916}
917
918void __init detect_intel_iommu(void)
919{
920 int ret;
921 struct dmar_res_callback validate_drhd_cb = {
922 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
923 .ignore_unhandled = true,
924 };
925
926 down_write(&dmar_global_lock);
927 ret = dmar_table_detect();
928 if (!ret)
929 ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
930 &validate_drhd_cb);
931 if (!ret && !no_iommu && !iommu_detected &&
932 (!dmar_disabled || dmar_platform_optin())) {
933 iommu_detected = 1;
934 /* Make sure ACS will be enabled */
935 pci_request_acs();
936 }
937
938#ifdef CONFIG_X86
939 if (!ret) {
940 x86_init.iommu.iommu_init = intel_iommu_init;
941 x86_platform.iommu_shutdown = intel_iommu_shutdown;
942 }
943
944#endif
945
946 if (dmar_tbl) {
947 acpi_put_table(dmar_tbl);
948 dmar_tbl = NULL;
949 }
950 up_write(&dmar_global_lock);
951}
952
953static void unmap_iommu(struct intel_iommu *iommu)
954{
955 iounmap(iommu->reg);
956 release_mem_region(iommu->reg_phys, iommu->reg_size);
957}
958
959/**
960 * map_iommu: map the iommu's registers
961 * @iommu: the iommu to map
962 * @drhd: DMA remapping hardware definition structure
963 *
964 * Memory map the iommu's registers. Start w/ a single page, and
965 * possibly expand if that turns out to be insufficent.
966 */
967static int map_iommu(struct intel_iommu *iommu, struct dmar_drhd_unit *drhd)
968{
969 u64 phys_addr = drhd->reg_base_addr;
970 int map_size, err=0;
971
972 iommu->reg_phys = phys_addr;
973 iommu->reg_size = drhd->reg_size;
974
975 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
976 pr_err("Can't reserve memory\n");
977 err = -EBUSY;
978 goto out;
979 }
980
981 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
982 if (!iommu->reg) {
983 pr_err("Can't map the region\n");
984 err = -ENOMEM;
985 goto release;
986 }
987
988 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
989 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
990
991 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
992 err = -EINVAL;
993 warn_invalid_dmar(phys_addr, " returns all ones");
994 goto unmap;
995 }
996
997 /* the registers might be more than one page */
998 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
999 cap_max_fault_reg_offset(iommu->cap));
1000 map_size = VTD_PAGE_ALIGN(map_size);
1001 if (map_size > iommu->reg_size) {
1002 iounmap(iommu->reg);
1003 release_mem_region(iommu->reg_phys, iommu->reg_size);
1004 iommu->reg_size = map_size;
1005 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
1006 iommu->name)) {
1007 pr_err("Can't reserve memory\n");
1008 err = -EBUSY;
1009 goto out;
1010 }
1011 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
1012 if (!iommu->reg) {
1013 pr_err("Can't map the region\n");
1014 err = -ENOMEM;
1015 goto release;
1016 }
1017 }
1018
1019 if (cap_ecmds(iommu->cap)) {
1020 int i;
1021
1022 for (i = 0; i < DMA_MAX_NUM_ECMDCAP; i++) {
1023 iommu->ecmdcap[i] = dmar_readq(iommu->reg + DMAR_ECCAP_REG +
1024 i * DMA_ECMD_REG_STEP);
1025 }
1026 }
1027
1028 err = 0;
1029 goto out;
1030
1031unmap:
1032 iounmap(iommu->reg);
1033release:
1034 release_mem_region(iommu->reg_phys, iommu->reg_size);
1035out:
1036 return err;
1037}
1038
1039static int alloc_iommu(struct dmar_drhd_unit *drhd)
1040{
1041 struct intel_iommu *iommu;
1042 u32 ver, sts;
1043 int agaw = -1;
1044 int msagaw = -1;
1045 int err;
1046
1047 if (!drhd->reg_base_addr) {
1048 warn_invalid_dmar(0, "");
1049 return -EINVAL;
1050 }
1051
1052 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1053 if (!iommu)
1054 return -ENOMEM;
1055
1056 iommu->seq_id = ida_alloc_range(&dmar_seq_ids, 0,
1057 DMAR_UNITS_SUPPORTED - 1, GFP_KERNEL);
1058 if (iommu->seq_id < 0) {
1059 pr_err("Failed to allocate seq_id\n");
1060 err = iommu->seq_id;
1061 goto error;
1062 }
1063 snprintf(iommu->name, sizeof(iommu->name), "dmar%d", iommu->seq_id);
1064
1065 err = map_iommu(iommu, drhd);
1066 if (err) {
1067 pr_err("Failed to map %s\n", iommu->name);
1068 goto error_free_seq_id;
1069 }
1070
1071 if (!cap_sagaw(iommu->cap) &&
1072 (!ecap_smts(iommu->ecap) || ecap_slts(iommu->ecap))) {
1073 pr_info("%s: No supported address widths. Not attempting DMA translation.\n",
1074 iommu->name);
1075 drhd->ignored = 1;
1076 }
1077
1078 if (!drhd->ignored) {
1079 agaw = iommu_calculate_agaw(iommu);
1080 if (agaw < 0) {
1081 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1082 iommu->seq_id);
1083 drhd->ignored = 1;
1084 }
1085 }
1086 if (!drhd->ignored) {
1087 msagaw = iommu_calculate_max_sagaw(iommu);
1088 if (msagaw < 0) {
1089 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1090 iommu->seq_id);
1091 drhd->ignored = 1;
1092 agaw = -1;
1093 }
1094 }
1095 iommu->agaw = agaw;
1096 iommu->msagaw = msagaw;
1097 iommu->segment = drhd->segment;
1098 iommu->device_rbtree = RB_ROOT;
1099 spin_lock_init(&iommu->device_rbtree_lock);
1100 mutex_init(&iommu->iopf_lock);
1101 iommu->node = NUMA_NO_NODE;
1102
1103 ver = readl(iommu->reg + DMAR_VER_REG);
1104 pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1105 iommu->name,
1106 (unsigned long long)drhd->reg_base_addr,
1107 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1108 (unsigned long long)iommu->cap,
1109 (unsigned long long)iommu->ecap);
1110
1111 /* Reflect status in gcmd */
1112 sts = readl(iommu->reg + DMAR_GSTS_REG);
1113 if (sts & DMA_GSTS_IRES)
1114 iommu->gcmd |= DMA_GCMD_IRE;
1115 if (sts & DMA_GSTS_TES)
1116 iommu->gcmd |= DMA_GCMD_TE;
1117 if (sts & DMA_GSTS_QIES)
1118 iommu->gcmd |= DMA_GCMD_QIE;
1119
1120 if (alloc_iommu_pmu(iommu))
1121 pr_debug("Cannot alloc PMU for iommu (seq_id = %d)\n", iommu->seq_id);
1122
1123 raw_spin_lock_init(&iommu->register_lock);
1124
1125 /*
1126 * A value of N in PSS field of eCap register indicates hardware
1127 * supports PASID field of N+1 bits.
1128 */
1129 if (pasid_supported(iommu))
1130 iommu->iommu.max_pasids = 2UL << ecap_pss(iommu->ecap);
1131
1132 /*
1133 * This is only for hotplug; at boot time intel_iommu_enabled won't
1134 * be set yet. When intel_iommu_init() runs, it registers the units
1135 * present at boot time, then sets intel_iommu_enabled.
1136 */
1137 if (intel_iommu_enabled && !drhd->ignored) {
1138 err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1139 intel_iommu_groups,
1140 "%s", iommu->name);
1141 if (err)
1142 goto err_unmap;
1143
1144 err = iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL);
1145 if (err)
1146 goto err_sysfs;
1147
1148 iommu_pmu_register(iommu);
1149 }
1150
1151 drhd->iommu = iommu;
1152 iommu->drhd = drhd;
1153
1154 return 0;
1155
1156err_sysfs:
1157 iommu_device_sysfs_remove(&iommu->iommu);
1158err_unmap:
1159 free_iommu_pmu(iommu);
1160 unmap_iommu(iommu);
1161error_free_seq_id:
1162 ida_free(&dmar_seq_ids, iommu->seq_id);
1163error:
1164 kfree(iommu);
1165 return err;
1166}
1167
1168static void free_iommu(struct intel_iommu *iommu)
1169{
1170 if (intel_iommu_enabled && !iommu->drhd->ignored) {
1171 iommu_pmu_unregister(iommu);
1172 iommu_device_unregister(&iommu->iommu);
1173 iommu_device_sysfs_remove(&iommu->iommu);
1174 }
1175
1176 free_iommu_pmu(iommu);
1177
1178 if (iommu->irq) {
1179 if (iommu->pr_irq) {
1180 free_irq(iommu->pr_irq, iommu);
1181 dmar_free_hwirq(iommu->pr_irq);
1182 iommu->pr_irq = 0;
1183 }
1184 free_irq(iommu->irq, iommu);
1185 dmar_free_hwirq(iommu->irq);
1186 iommu->irq = 0;
1187 }
1188
1189 if (iommu->qi) {
1190 iommu_free_page(iommu->qi->desc);
1191 kfree(iommu->qi->desc_status);
1192 kfree(iommu->qi);
1193 }
1194
1195 if (iommu->reg)
1196 unmap_iommu(iommu);
1197
1198 ida_free(&dmar_seq_ids, iommu->seq_id);
1199 kfree(iommu);
1200}
1201
1202/*
1203 * Reclaim all the submitted descriptors which have completed its work.
1204 */
1205static inline void reclaim_free_desc(struct q_inval *qi)
1206{
1207 while (qi->desc_status[qi->free_tail] == QI_FREE && qi->free_tail != qi->free_head) {
1208 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1209 qi->free_cnt++;
1210 }
1211}
1212
1213static const char *qi_type_string(u8 type)
1214{
1215 switch (type) {
1216 case QI_CC_TYPE:
1217 return "Context-cache Invalidation";
1218 case QI_IOTLB_TYPE:
1219 return "IOTLB Invalidation";
1220 case QI_DIOTLB_TYPE:
1221 return "Device-TLB Invalidation";
1222 case QI_IEC_TYPE:
1223 return "Interrupt Entry Cache Invalidation";
1224 case QI_IWD_TYPE:
1225 return "Invalidation Wait";
1226 case QI_EIOTLB_TYPE:
1227 return "PASID-based IOTLB Invalidation";
1228 case QI_PC_TYPE:
1229 return "PASID-cache Invalidation";
1230 case QI_DEIOTLB_TYPE:
1231 return "PASID-based Device-TLB Invalidation";
1232 case QI_PGRP_RESP_TYPE:
1233 return "Page Group Response";
1234 default:
1235 return "UNKNOWN";
1236 }
1237}
1238
1239static void qi_dump_fault(struct intel_iommu *iommu, u32 fault)
1240{
1241 unsigned int head = dmar_readl(iommu->reg + DMAR_IQH_REG);
1242 u64 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG);
1243 struct qi_desc *desc = iommu->qi->desc + head;
1244
1245 if (fault & DMA_FSTS_IQE)
1246 pr_err("VT-d detected Invalidation Queue Error: Reason %llx",
1247 DMAR_IQER_REG_IQEI(iqe_err));
1248 if (fault & DMA_FSTS_ITE)
1249 pr_err("VT-d detected Invalidation Time-out Error: SID %llx",
1250 DMAR_IQER_REG_ITESID(iqe_err));
1251 if (fault & DMA_FSTS_ICE)
1252 pr_err("VT-d detected Invalidation Completion Error: SID %llx",
1253 DMAR_IQER_REG_ICESID(iqe_err));
1254
1255 pr_err("QI HEAD: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1256 qi_type_string(desc->qw0 & 0xf),
1257 (unsigned long long)desc->qw0,
1258 (unsigned long long)desc->qw1);
1259
1260 head = ((head >> qi_shift(iommu)) + QI_LENGTH - 1) % QI_LENGTH;
1261 head <<= qi_shift(iommu);
1262 desc = iommu->qi->desc + head;
1263
1264 pr_err("QI PRIOR: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1265 qi_type_string(desc->qw0 & 0xf),
1266 (unsigned long long)desc->qw0,
1267 (unsigned long long)desc->qw1);
1268}
1269
1270static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
1271{
1272 u32 fault;
1273 int head, tail;
1274 struct device *dev;
1275 u64 iqe_err, ite_sid;
1276 struct q_inval *qi = iommu->qi;
1277 int shift = qi_shift(iommu);
1278
1279 if (qi->desc_status[wait_index] == QI_ABORT)
1280 return -EAGAIN;
1281
1282 fault = readl(iommu->reg + DMAR_FSTS_REG);
1283 if (fault & (DMA_FSTS_IQE | DMA_FSTS_ITE | DMA_FSTS_ICE))
1284 qi_dump_fault(iommu, fault);
1285
1286 /*
1287 * If IQE happens, the head points to the descriptor associated
1288 * with the error. No new descriptors are fetched until the IQE
1289 * is cleared.
1290 */
1291 if (fault & DMA_FSTS_IQE) {
1292 head = readl(iommu->reg + DMAR_IQH_REG);
1293 if ((head >> shift) == index) {
1294 struct qi_desc *desc = qi->desc + head;
1295
1296 /*
1297 * desc->qw2 and desc->qw3 are either reserved or
1298 * used by software as private data. We won't print
1299 * out these two qw's for security consideration.
1300 */
1301 memcpy(desc, qi->desc + (wait_index << shift),
1302 1 << shift);
1303 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1304 pr_info("Invalidation Queue Error (IQE) cleared\n");
1305 return -EINVAL;
1306 }
1307 }
1308
1309 /*
1310 * If ITE happens, all pending wait_desc commands are aborted.
1311 * No new descriptors are fetched until the ITE is cleared.
1312 */
1313 if (fault & DMA_FSTS_ITE) {
1314 head = readl(iommu->reg + DMAR_IQH_REG);
1315 head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1316 head |= 1;
1317 tail = readl(iommu->reg + DMAR_IQT_REG);
1318 tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1319
1320 /*
1321 * SID field is valid only when the ITE field is Set in FSTS_REG
1322 * see Intel VT-d spec r4.1, section 11.4.9.9
1323 */
1324 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG);
1325 ite_sid = DMAR_IQER_REG_ITESID(iqe_err);
1326
1327 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1328 pr_info("Invalidation Time-out Error (ITE) cleared\n");
1329
1330 do {
1331 if (qi->desc_status[head] == QI_IN_USE)
1332 qi->desc_status[head] = QI_ABORT;
1333 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1334 } while (head != tail);
1335
1336 /*
1337 * If device was released or isn't present, no need to retry
1338 * the ATS invalidate request anymore.
1339 *
1340 * 0 value of ite_sid means old VT-d device, no ite_sid value.
1341 * see Intel VT-d spec r4.1, section 11.4.9.9
1342 */
1343 if (ite_sid) {
1344 dev = device_rbtree_find(iommu, ite_sid);
1345 if (!dev || !dev_is_pci(dev) ||
1346 !pci_device_is_present(to_pci_dev(dev)))
1347 return -ETIMEDOUT;
1348 }
1349 if (qi->desc_status[wait_index] == QI_ABORT)
1350 return -EAGAIN;
1351 }
1352
1353 if (fault & DMA_FSTS_ICE) {
1354 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1355 pr_info("Invalidation Completion Error (ICE) cleared\n");
1356 }
1357
1358 return 0;
1359}
1360
1361/*
1362 * Function to submit invalidation descriptors of all types to the queued
1363 * invalidation interface(QI). Multiple descriptors can be submitted at a
1364 * time, a wait descriptor will be appended to each submission to ensure
1365 * hardware has completed the invalidation before return. Wait descriptors
1366 * can be part of the submission but it will not be polled for completion.
1367 */
1368int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1369 unsigned int count, unsigned long options)
1370{
1371 struct q_inval *qi = iommu->qi;
1372 s64 devtlb_start_ktime = 0;
1373 s64 iotlb_start_ktime = 0;
1374 s64 iec_start_ktime = 0;
1375 struct qi_desc wait_desc;
1376 int wait_index, index;
1377 unsigned long flags;
1378 int offset, shift;
1379 int rc, i;
1380 u64 type;
1381
1382 if (!qi)
1383 return 0;
1384
1385 type = desc->qw0 & GENMASK_ULL(3, 0);
1386
1387 if ((type == QI_IOTLB_TYPE || type == QI_EIOTLB_TYPE) &&
1388 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IOTLB))
1389 iotlb_start_ktime = ktime_to_ns(ktime_get());
1390
1391 if ((type == QI_DIOTLB_TYPE || type == QI_DEIOTLB_TYPE) &&
1392 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_DEVTLB))
1393 devtlb_start_ktime = ktime_to_ns(ktime_get());
1394
1395 if (type == QI_IEC_TYPE &&
1396 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IEC))
1397 iec_start_ktime = ktime_to_ns(ktime_get());
1398
1399restart:
1400 rc = 0;
1401
1402 raw_spin_lock_irqsave(&qi->q_lock, flags);
1403 /*
1404 * Check if we have enough empty slots in the queue to submit,
1405 * the calculation is based on:
1406 * # of desc + 1 wait desc + 1 space between head and tail
1407 */
1408 while (qi->free_cnt < count + 2) {
1409 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1410 cpu_relax();
1411 raw_spin_lock_irqsave(&qi->q_lock, flags);
1412 }
1413
1414 index = qi->free_head;
1415 wait_index = (index + count) % QI_LENGTH;
1416 shift = qi_shift(iommu);
1417
1418 for (i = 0; i < count; i++) {
1419 offset = ((index + i) % QI_LENGTH) << shift;
1420 memcpy(qi->desc + offset, &desc[i], 1 << shift);
1421 qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
1422 trace_qi_submit(iommu, desc[i].qw0, desc[i].qw1,
1423 desc[i].qw2, desc[i].qw3);
1424 }
1425 qi->desc_status[wait_index] = QI_IN_USE;
1426
1427 wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1428 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1429 if (options & QI_OPT_WAIT_DRAIN)
1430 wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
1431 wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1432 wait_desc.qw2 = 0;
1433 wait_desc.qw3 = 0;
1434
1435 offset = wait_index << shift;
1436 memcpy(qi->desc + offset, &wait_desc, 1 << shift);
1437
1438 qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
1439 qi->free_cnt -= count + 1;
1440
1441 /*
1442 * update the HW tail register indicating the presence of
1443 * new descriptors.
1444 */
1445 writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1446
1447 while (READ_ONCE(qi->desc_status[wait_index]) != QI_DONE) {
1448 /*
1449 * We will leave the interrupts disabled, to prevent interrupt
1450 * context to queue another cmd while a cmd is already submitted
1451 * and waiting for completion on this cpu. This is to avoid
1452 * a deadlock where the interrupt context can wait indefinitely
1453 * for free slots in the queue.
1454 */
1455 rc = qi_check_fault(iommu, index, wait_index);
1456 if (rc)
1457 break;
1458
1459 raw_spin_unlock(&qi->q_lock);
1460 cpu_relax();
1461 raw_spin_lock(&qi->q_lock);
1462 }
1463
1464 /*
1465 * The reclaim code can free descriptors from multiple submissions
1466 * starting from the tail of the queue. When count == 0, the
1467 * status of the standalone wait descriptor at the tail of the queue
1468 * must be set to QI_FREE to allow the reclaim code to proceed.
1469 * It is also possible that descriptors from one of the previous
1470 * submissions has to be reclaimed by a subsequent submission.
1471 */
1472 for (i = 0; i <= count; i++)
1473 qi->desc_status[(index + i) % QI_LENGTH] = QI_FREE;
1474
1475 reclaim_free_desc(qi);
1476 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1477
1478 if (rc == -EAGAIN)
1479 goto restart;
1480
1481 if (iotlb_start_ktime)
1482 dmar_latency_update(iommu, DMAR_LATENCY_INV_IOTLB,
1483 ktime_to_ns(ktime_get()) - iotlb_start_ktime);
1484
1485 if (devtlb_start_ktime)
1486 dmar_latency_update(iommu, DMAR_LATENCY_INV_DEVTLB,
1487 ktime_to_ns(ktime_get()) - devtlb_start_ktime);
1488
1489 if (iec_start_ktime)
1490 dmar_latency_update(iommu, DMAR_LATENCY_INV_IEC,
1491 ktime_to_ns(ktime_get()) - iec_start_ktime);
1492
1493 return rc;
1494}
1495
1496/*
1497 * Flush the global interrupt entry cache.
1498 */
1499void qi_global_iec(struct intel_iommu *iommu)
1500{
1501 struct qi_desc desc;
1502
1503 desc.qw0 = QI_IEC_TYPE;
1504 desc.qw1 = 0;
1505 desc.qw2 = 0;
1506 desc.qw3 = 0;
1507
1508 /* should never fail */
1509 qi_submit_sync(iommu, &desc, 1, 0);
1510}
1511
1512void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1513 u64 type)
1514{
1515 struct qi_desc desc;
1516
1517 desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1518 | QI_CC_GRAN(type) | QI_CC_TYPE;
1519 desc.qw1 = 0;
1520 desc.qw2 = 0;
1521 desc.qw3 = 0;
1522
1523 qi_submit_sync(iommu, &desc, 1, 0);
1524}
1525
1526void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1527 unsigned int size_order, u64 type)
1528{
1529 struct qi_desc desc;
1530
1531 qi_desc_iotlb(iommu, did, addr, size_order, type, &desc);
1532 qi_submit_sync(iommu, &desc, 1, 0);
1533}
1534
1535void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1536 u16 qdep, u64 addr, unsigned mask)
1537{
1538 struct qi_desc desc;
1539
1540 /*
1541 * VT-d spec, section 4.3:
1542 *
1543 * Software is recommended to not submit any Device-TLB invalidation
1544 * requests while address remapping hardware is disabled.
1545 */
1546 if (!(iommu->gcmd & DMA_GCMD_TE))
1547 return;
1548
1549 qi_desc_dev_iotlb(sid, pfsid, qdep, addr, mask, &desc);
1550 qi_submit_sync(iommu, &desc, 1, 0);
1551}
1552
1553/* PASID-based IOTLB invalidation */
1554void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1555 unsigned long npages, bool ih)
1556{
1557 struct qi_desc desc = {.qw2 = 0, .qw3 = 0};
1558
1559 /*
1560 * npages == -1 means a PASID-selective invalidation, otherwise,
1561 * a positive value for Page-selective-within-PASID invalidation.
1562 * 0 is not a valid input.
1563 */
1564 if (WARN_ON(!npages)) {
1565 pr_err("Invalid input npages = %ld\n", npages);
1566 return;
1567 }
1568
1569 qi_desc_piotlb(did, pasid, addr, npages, ih, &desc);
1570 qi_submit_sync(iommu, &desc, 1, 0);
1571}
1572
1573/* PASID-based device IOTLB Invalidate */
1574void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1575 u32 pasid, u16 qdep, u64 addr, unsigned int size_order)
1576{
1577 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1578
1579 /*
1580 * VT-d spec, section 4.3:
1581 *
1582 * Software is recommended to not submit any Device-TLB invalidation
1583 * requests while address remapping hardware is disabled.
1584 */
1585 if (!(iommu->gcmd & DMA_GCMD_TE))
1586 return;
1587
1588 qi_desc_dev_iotlb_pasid(sid, pfsid, pasid,
1589 qdep, addr, size_order,
1590 &desc);
1591 qi_submit_sync(iommu, &desc, 1, 0);
1592}
1593
1594void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
1595 u64 granu, u32 pasid)
1596{
1597 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1598
1599 desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
1600 QI_PC_GRAN(granu) | QI_PC_TYPE;
1601 qi_submit_sync(iommu, &desc, 1, 0);
1602}
1603
1604/*
1605 * Disable Queued Invalidation interface.
1606 */
1607void dmar_disable_qi(struct intel_iommu *iommu)
1608{
1609 unsigned long flags;
1610 u32 sts;
1611 cycles_t start_time = get_cycles();
1612
1613 if (!ecap_qis(iommu->ecap))
1614 return;
1615
1616 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1617
1618 sts = readl(iommu->reg + DMAR_GSTS_REG);
1619 if (!(sts & DMA_GSTS_QIES))
1620 goto end;
1621
1622 /*
1623 * Give a chance to HW to complete the pending invalidation requests.
1624 */
1625 while ((readl(iommu->reg + DMAR_IQT_REG) !=
1626 readl(iommu->reg + DMAR_IQH_REG)) &&
1627 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1628 cpu_relax();
1629
1630 iommu->gcmd &= ~DMA_GCMD_QIE;
1631 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1632
1633 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1634 !(sts & DMA_GSTS_QIES), sts);
1635end:
1636 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1637}
1638
1639/*
1640 * Enable queued invalidation.
1641 */
1642static void __dmar_enable_qi(struct intel_iommu *iommu)
1643{
1644 u32 sts;
1645 unsigned long flags;
1646 struct q_inval *qi = iommu->qi;
1647 u64 val = virt_to_phys(qi->desc);
1648
1649 qi->free_head = qi->free_tail = 0;
1650 qi->free_cnt = QI_LENGTH;
1651
1652 /*
1653 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1654 * is present.
1655 */
1656 if (ecap_smts(iommu->ecap))
1657 val |= BIT_ULL(11) | BIT_ULL(0);
1658
1659 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1660
1661 /* write zero to the tail reg */
1662 writel(0, iommu->reg + DMAR_IQT_REG);
1663
1664 dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1665
1666 iommu->gcmd |= DMA_GCMD_QIE;
1667 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1668
1669 /* Make sure hardware complete it */
1670 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1671
1672 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1673}
1674
1675/*
1676 * Enable Queued Invalidation interface. This is a must to support
1677 * interrupt-remapping. Also used by DMA-remapping, which replaces
1678 * register based IOTLB invalidation.
1679 */
1680int dmar_enable_qi(struct intel_iommu *iommu)
1681{
1682 struct q_inval *qi;
1683 void *desc;
1684 int order;
1685
1686 if (!ecap_qis(iommu->ecap))
1687 return -ENOENT;
1688
1689 /*
1690 * queued invalidation is already setup and enabled.
1691 */
1692 if (iommu->qi)
1693 return 0;
1694
1695 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1696 if (!iommu->qi)
1697 return -ENOMEM;
1698
1699 qi = iommu->qi;
1700
1701 /*
1702 * Need two pages to accommodate 256 descriptors of 256 bits each
1703 * if the remapping hardware supports scalable mode translation.
1704 */
1705 order = ecap_smts(iommu->ecap) ? 1 : 0;
1706 desc = iommu_alloc_pages_node(iommu->node, GFP_ATOMIC, order);
1707 if (!desc) {
1708 kfree(qi);
1709 iommu->qi = NULL;
1710 return -ENOMEM;
1711 }
1712
1713 qi->desc = desc;
1714
1715 qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1716 if (!qi->desc_status) {
1717 iommu_free_page(qi->desc);
1718 kfree(qi);
1719 iommu->qi = NULL;
1720 return -ENOMEM;
1721 }
1722
1723 raw_spin_lock_init(&qi->q_lock);
1724
1725 __dmar_enable_qi(iommu);
1726
1727 return 0;
1728}
1729
1730/* iommu interrupt handling. Most stuff are MSI-like. */
1731
1732enum faulttype {
1733 DMA_REMAP,
1734 INTR_REMAP,
1735 UNKNOWN,
1736};
1737
1738static const char *dma_remap_fault_reasons[] =
1739{
1740 "Software",
1741 "Present bit in root entry is clear",
1742 "Present bit in context entry is clear",
1743 "Invalid context entry",
1744 "Access beyond MGAW",
1745 "PTE Write access is not set",
1746 "PTE Read access is not set",
1747 "Next page table ptr is invalid",
1748 "Root table address invalid",
1749 "Context table ptr is invalid",
1750 "non-zero reserved fields in RTP",
1751 "non-zero reserved fields in CTP",
1752 "non-zero reserved fields in PTE",
1753 "PCE for translation request specifies blocking",
1754};
1755
1756static const char * const dma_remap_sm_fault_reasons[] = {
1757 "SM: Invalid Root Table Address",
1758 "SM: TTM 0 for request with PASID",
1759 "SM: TTM 0 for page group request",
1760 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1761 "SM: Error attempting to access Root Entry",
1762 "SM: Present bit in Root Entry is clear",
1763 "SM: Non-zero reserved field set in Root Entry",
1764 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1765 "SM: Error attempting to access Context Entry",
1766 "SM: Present bit in Context Entry is clear",
1767 "SM: Non-zero reserved field set in the Context Entry",
1768 "SM: Invalid Context Entry",
1769 "SM: DTE field in Context Entry is clear",
1770 "SM: PASID Enable field in Context Entry is clear",
1771 "SM: PASID is larger than the max in Context Entry",
1772 "SM: PRE field in Context-Entry is clear",
1773 "SM: RID_PASID field error in Context-Entry",
1774 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1775 "SM: Error attempting to access the PASID Directory Entry",
1776 "SM: Present bit in Directory Entry is clear",
1777 "SM: Non-zero reserved field set in PASID Directory Entry",
1778 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1779 "SM: Error attempting to access PASID Table Entry",
1780 "SM: Present bit in PASID Table Entry is clear",
1781 "SM: Non-zero reserved field set in PASID Table Entry",
1782 "SM: Invalid Scalable-Mode PASID Table Entry",
1783 "SM: ERE field is clear in PASID Table Entry",
1784 "SM: SRE field is clear in PASID Table Entry",
1785 "Unknown", "Unknown",/* 0x5E-0x5F */
1786 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1787 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1788 "SM: Error attempting to access first-level paging entry",
1789 "SM: Present bit in first-level paging entry is clear",
1790 "SM: Non-zero reserved field set in first-level paging entry",
1791 "SM: Error attempting to access FL-PML4 entry",
1792 "SM: First-level entry address beyond MGAW in Nested translation",
1793 "SM: Read permission error in FL-PML4 entry in Nested translation",
1794 "SM: Read permission error in first-level paging entry in Nested translation",
1795 "SM: Write permission error in first-level paging entry in Nested translation",
1796 "SM: Error attempting to access second-level paging entry",
1797 "SM: Read/Write permission error in second-level paging entry",
1798 "SM: Non-zero reserved field set in second-level paging entry",
1799 "SM: Invalid second-level page table pointer",
1800 "SM: A/D bit update needed in second-level entry when set up in no snoop",
1801 "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1802 "SM: Address in first-level translation is not canonical",
1803 "SM: U/S set 0 for first-level translation with user privilege",
1804 "SM: No execute permission for request with PASID and ER=1",
1805 "SM: Address beyond the DMA hardware max",
1806 "SM: Second-level entry address beyond the max",
1807 "SM: No write permission for Write/AtomicOp request",
1808 "SM: No read permission for Read/AtomicOp request",
1809 "SM: Invalid address-interrupt address",
1810 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1811 "SM: A/D bit update needed in first-level entry when set up in no snoop",
1812};
1813
1814static const char *irq_remap_fault_reasons[] =
1815{
1816 "Detected reserved fields in the decoded interrupt-remapped request",
1817 "Interrupt index exceeded the interrupt-remapping table size",
1818 "Present field in the IRTE entry is clear",
1819 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1820 "Detected reserved fields in the IRTE entry",
1821 "Blocked a compatibility format interrupt request",
1822 "Blocked an interrupt request due to source-id verification failure",
1823};
1824
1825static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1826{
1827 if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1828 ARRAY_SIZE(irq_remap_fault_reasons))) {
1829 *fault_type = INTR_REMAP;
1830 return irq_remap_fault_reasons[fault_reason - 0x20];
1831 } else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1832 ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1833 *fault_type = DMA_REMAP;
1834 return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1835 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1836 *fault_type = DMA_REMAP;
1837 return dma_remap_fault_reasons[fault_reason];
1838 } else {
1839 *fault_type = UNKNOWN;
1840 return "Unknown";
1841 }
1842}
1843
1844
1845static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1846{
1847 if (iommu->irq == irq)
1848 return DMAR_FECTL_REG;
1849 else if (iommu->pr_irq == irq)
1850 return DMAR_PECTL_REG;
1851 else if (iommu->perf_irq == irq)
1852 return DMAR_PERFINTRCTL_REG;
1853 else
1854 BUG();
1855}
1856
1857void dmar_msi_unmask(struct irq_data *data)
1858{
1859 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1860 int reg = dmar_msi_reg(iommu, data->irq);
1861 unsigned long flag;
1862
1863 /* unmask it */
1864 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1865 writel(0, iommu->reg + reg);
1866 /* Read a reg to force flush the post write */
1867 readl(iommu->reg + reg);
1868 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1869}
1870
1871void dmar_msi_mask(struct irq_data *data)
1872{
1873 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1874 int reg = dmar_msi_reg(iommu, data->irq);
1875 unsigned long flag;
1876
1877 /* mask it */
1878 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1879 writel(DMA_FECTL_IM, iommu->reg + reg);
1880 /* Read a reg to force flush the post write */
1881 readl(iommu->reg + reg);
1882 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1883}
1884
1885void dmar_msi_write(int irq, struct msi_msg *msg)
1886{
1887 struct intel_iommu *iommu = irq_get_handler_data(irq);
1888 int reg = dmar_msi_reg(iommu, irq);
1889 unsigned long flag;
1890
1891 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1892 writel(msg->data, iommu->reg + reg + 4);
1893 writel(msg->address_lo, iommu->reg + reg + 8);
1894 writel(msg->address_hi, iommu->reg + reg + 12);
1895 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1896}
1897
1898static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1899 u8 fault_reason, u32 pasid, u16 source_id,
1900 unsigned long long addr)
1901{
1902 const char *reason;
1903 int fault_type;
1904
1905 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1906
1907 if (fault_type == INTR_REMAP) {
1908 pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index 0x%llx [fault reason 0x%02x] %s\n",
1909 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1910 PCI_FUNC(source_id & 0xFF), addr >> 48,
1911 fault_reason, reason);
1912
1913 return 0;
1914 }
1915
1916 if (pasid == IOMMU_PASID_INVALID)
1917 pr_err("[%s NO_PASID] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1918 type ? "DMA Read" : "DMA Write",
1919 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1920 PCI_FUNC(source_id & 0xFF), addr,
1921 fault_reason, reason);
1922 else
1923 pr_err("[%s PASID 0x%x] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1924 type ? "DMA Read" : "DMA Write", pasid,
1925 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1926 PCI_FUNC(source_id & 0xFF), addr,
1927 fault_reason, reason);
1928
1929 dmar_fault_dump_ptes(iommu, source_id, addr, pasid);
1930
1931 return 0;
1932}
1933
1934#define PRIMARY_FAULT_REG_LEN (16)
1935irqreturn_t dmar_fault(int irq, void *dev_id)
1936{
1937 struct intel_iommu *iommu = dev_id;
1938 int reg, fault_index;
1939 u32 fault_status;
1940 unsigned long flag;
1941 static DEFINE_RATELIMIT_STATE(rs,
1942 DEFAULT_RATELIMIT_INTERVAL,
1943 DEFAULT_RATELIMIT_BURST);
1944
1945 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1946 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1947 if (fault_status && __ratelimit(&rs))
1948 pr_err("DRHD: handling fault status reg %x\n", fault_status);
1949
1950 /* TBD: ignore advanced fault log currently */
1951 if (!(fault_status & DMA_FSTS_PPF))
1952 goto unlock_exit;
1953
1954 fault_index = dma_fsts_fault_record_index(fault_status);
1955 reg = cap_fault_reg_offset(iommu->cap);
1956 while (1) {
1957 /* Disable printing, simply clear the fault when ratelimited */
1958 bool ratelimited = !__ratelimit(&rs);
1959 u8 fault_reason;
1960 u16 source_id;
1961 u64 guest_addr;
1962 u32 pasid;
1963 int type;
1964 u32 data;
1965 bool pasid_present;
1966
1967 /* highest 32 bits */
1968 data = readl(iommu->reg + reg +
1969 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1970 if (!(data & DMA_FRCD_F))
1971 break;
1972
1973 if (!ratelimited) {
1974 fault_reason = dma_frcd_fault_reason(data);
1975 type = dma_frcd_type(data);
1976
1977 pasid = dma_frcd_pasid_value(data);
1978 data = readl(iommu->reg + reg +
1979 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1980 source_id = dma_frcd_source_id(data);
1981
1982 pasid_present = dma_frcd_pasid_present(data);
1983 guest_addr = dmar_readq(iommu->reg + reg +
1984 fault_index * PRIMARY_FAULT_REG_LEN);
1985 guest_addr = dma_frcd_page_addr(guest_addr);
1986 }
1987
1988 /* clear the fault */
1989 writel(DMA_FRCD_F, iommu->reg + reg +
1990 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1991
1992 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1993
1994 if (!ratelimited)
1995 /* Using pasid -1 if pasid is not present */
1996 dmar_fault_do_one(iommu, type, fault_reason,
1997 pasid_present ? pasid : IOMMU_PASID_INVALID,
1998 source_id, guest_addr);
1999
2000 fault_index++;
2001 if (fault_index >= cap_num_fault_regs(iommu->cap))
2002 fault_index = 0;
2003 raw_spin_lock_irqsave(&iommu->register_lock, flag);
2004 }
2005
2006 writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
2007 iommu->reg + DMAR_FSTS_REG);
2008
2009unlock_exit:
2010 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2011 return IRQ_HANDLED;
2012}
2013
2014int dmar_set_interrupt(struct intel_iommu *iommu)
2015{
2016 int irq, ret;
2017
2018 /*
2019 * Check if the fault interrupt is already initialized.
2020 */
2021 if (iommu->irq)
2022 return 0;
2023
2024 irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
2025 if (irq > 0) {
2026 iommu->irq = irq;
2027 } else {
2028 pr_err("No free IRQ vectors\n");
2029 return -EINVAL;
2030 }
2031
2032 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
2033 if (ret)
2034 pr_err("Can't request irq\n");
2035 return ret;
2036}
2037
2038int enable_drhd_fault_handling(unsigned int cpu)
2039{
2040 struct dmar_drhd_unit *drhd;
2041 struct intel_iommu *iommu;
2042
2043 /*
2044 * Enable fault control interrupt.
2045 */
2046 guard(rwsem_read)(&dmar_global_lock);
2047 for_each_iommu(iommu, drhd) {
2048 u32 fault_status;
2049 int ret;
2050
2051 if (iommu->irq || iommu->node != cpu_to_node(cpu))
2052 continue;
2053
2054 ret = dmar_set_interrupt(iommu);
2055
2056 if (ret) {
2057 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
2058 (unsigned long long)drhd->reg_base_addr, ret);
2059 return -1;
2060 }
2061
2062 /*
2063 * Clear any previous faults.
2064 */
2065 dmar_fault(iommu->irq, iommu);
2066 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
2067 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
2068 }
2069
2070 return 0;
2071}
2072
2073/*
2074 * Re-enable Queued Invalidation interface.
2075 */
2076int dmar_reenable_qi(struct intel_iommu *iommu)
2077{
2078 if (!ecap_qis(iommu->ecap))
2079 return -ENOENT;
2080
2081 if (!iommu->qi)
2082 return -ENOENT;
2083
2084 /*
2085 * First disable queued invalidation.
2086 */
2087 dmar_disable_qi(iommu);
2088 /*
2089 * Then enable queued invalidation again. Since there is no pending
2090 * invalidation requests now, it's safe to re-enable queued
2091 * invalidation.
2092 */
2093 __dmar_enable_qi(iommu);
2094
2095 return 0;
2096}
2097
2098/*
2099 * Check interrupt remapping support in DMAR table description.
2100 */
2101int __init dmar_ir_support(void)
2102{
2103 struct acpi_table_dmar *dmar;
2104 dmar = (struct acpi_table_dmar *)dmar_tbl;
2105 if (!dmar)
2106 return 0;
2107 return dmar->flags & 0x1;
2108}
2109
2110/* Check whether DMAR units are in use */
2111static inline bool dmar_in_use(void)
2112{
2113 return irq_remapping_enabled || intel_iommu_enabled;
2114}
2115
2116static int __init dmar_free_unused_resources(void)
2117{
2118 struct dmar_drhd_unit *dmaru, *dmaru_n;
2119
2120 if (dmar_in_use())
2121 return 0;
2122
2123 if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
2124 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
2125
2126 down_write(&dmar_global_lock);
2127 list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
2128 list_del(&dmaru->list);
2129 dmar_free_drhd(dmaru);
2130 }
2131 up_write(&dmar_global_lock);
2132
2133 return 0;
2134}
2135
2136late_initcall(dmar_free_unused_resources);
2137
2138/*
2139 * DMAR Hotplug Support
2140 * For more details, please refer to Intel(R) Virtualization Technology
2141 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
2142 * "Remapping Hardware Unit Hot Plug".
2143 */
2144static guid_t dmar_hp_guid =
2145 GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
2146 0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
2147
2148/*
2149 * Currently there's only one revision and BIOS will not check the revision id,
2150 * so use 0 for safety.
2151 */
2152#define DMAR_DSM_REV_ID 0
2153#define DMAR_DSM_FUNC_DRHD 1
2154#define DMAR_DSM_FUNC_ATSR 2
2155#define DMAR_DSM_FUNC_RHSA 3
2156#define DMAR_DSM_FUNC_SATC 4
2157
2158static inline bool dmar_detect_dsm(acpi_handle handle, int func)
2159{
2160 return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
2161}
2162
2163static int dmar_walk_dsm_resource(acpi_handle handle, int func,
2164 dmar_res_handler_t handler, void *arg)
2165{
2166 int ret = -ENODEV;
2167 union acpi_object *obj;
2168 struct acpi_dmar_header *start;
2169 struct dmar_res_callback callback;
2170 static int res_type[] = {
2171 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
2172 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
2173 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
2174 [DMAR_DSM_FUNC_SATC] = ACPI_DMAR_TYPE_SATC,
2175 };
2176
2177 if (!dmar_detect_dsm(handle, func))
2178 return 0;
2179
2180 obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
2181 func, NULL, ACPI_TYPE_BUFFER);
2182 if (!obj)
2183 return -ENODEV;
2184
2185 memset(&callback, 0, sizeof(callback));
2186 callback.cb[res_type[func]] = handler;
2187 callback.arg[res_type[func]] = arg;
2188 start = (struct acpi_dmar_header *)obj->buffer.pointer;
2189 ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
2190
2191 ACPI_FREE(obj);
2192
2193 return ret;
2194}
2195
2196static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
2197{
2198 int ret;
2199 struct dmar_drhd_unit *dmaru;
2200
2201 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2202 if (!dmaru)
2203 return -ENODEV;
2204
2205 ret = dmar_ir_hotplug(dmaru, true);
2206 if (ret == 0)
2207 ret = dmar_iommu_hotplug(dmaru, true);
2208
2209 return ret;
2210}
2211
2212static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
2213{
2214 int i, ret;
2215 struct device *dev;
2216 struct dmar_drhd_unit *dmaru;
2217
2218 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2219 if (!dmaru)
2220 return 0;
2221
2222 /*
2223 * All PCI devices managed by this unit should have been destroyed.
2224 */
2225 if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2226 for_each_active_dev_scope(dmaru->devices,
2227 dmaru->devices_cnt, i, dev)
2228 return -EBUSY;
2229 }
2230
2231 ret = dmar_ir_hotplug(dmaru, false);
2232 if (ret == 0)
2233 ret = dmar_iommu_hotplug(dmaru, false);
2234
2235 return ret;
2236}
2237
2238static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
2239{
2240 struct dmar_drhd_unit *dmaru;
2241
2242 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2243 if (dmaru) {
2244 list_del_rcu(&dmaru->list);
2245 synchronize_rcu();
2246 dmar_free_drhd(dmaru);
2247 }
2248
2249 return 0;
2250}
2251
2252static int dmar_hotplug_insert(acpi_handle handle)
2253{
2254 int ret;
2255 int drhd_count = 0;
2256
2257 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2258 &dmar_validate_one_drhd, (void *)1);
2259 if (ret)
2260 goto out;
2261
2262 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2263 &dmar_parse_one_drhd, (void *)&drhd_count);
2264 if (ret == 0 && drhd_count == 0) {
2265 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2266 goto out;
2267 } else if (ret) {
2268 goto release_drhd;
2269 }
2270
2271 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2272 &dmar_parse_one_rhsa, NULL);
2273 if (ret)
2274 goto release_drhd;
2275
2276 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2277 &dmar_parse_one_atsr, NULL);
2278 if (ret)
2279 goto release_atsr;
2280
2281 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2282 &dmar_hp_add_drhd, NULL);
2283 if (!ret)
2284 return 0;
2285
2286 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2287 &dmar_hp_remove_drhd, NULL);
2288release_atsr:
2289 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2290 &dmar_release_one_atsr, NULL);
2291release_drhd:
2292 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2293 &dmar_hp_release_drhd, NULL);
2294out:
2295 return ret;
2296}
2297
2298static int dmar_hotplug_remove(acpi_handle handle)
2299{
2300 int ret;
2301
2302 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2303 &dmar_check_one_atsr, NULL);
2304 if (ret)
2305 return ret;
2306
2307 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2308 &dmar_hp_remove_drhd, NULL);
2309 if (ret == 0) {
2310 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2311 &dmar_release_one_atsr, NULL));
2312 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2313 &dmar_hp_release_drhd, NULL));
2314 } else {
2315 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2316 &dmar_hp_add_drhd, NULL);
2317 }
2318
2319 return ret;
2320}
2321
2322static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2323 void *context, void **retval)
2324{
2325 acpi_handle *phdl = retval;
2326
2327 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2328 *phdl = handle;
2329 return AE_CTRL_TERMINATE;
2330 }
2331
2332 return AE_OK;
2333}
2334
2335static int dmar_device_hotplug(acpi_handle handle, bool insert)
2336{
2337 int ret;
2338 acpi_handle tmp = NULL;
2339 acpi_status status;
2340
2341 if (!dmar_in_use())
2342 return 0;
2343
2344 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2345 tmp = handle;
2346 } else {
2347 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2348 ACPI_UINT32_MAX,
2349 dmar_get_dsm_handle,
2350 NULL, NULL, &tmp);
2351 if (ACPI_FAILURE(status)) {
2352 pr_warn("Failed to locate _DSM method.\n");
2353 return -ENXIO;
2354 }
2355 }
2356 if (tmp == NULL)
2357 return 0;
2358
2359 down_write(&dmar_global_lock);
2360 if (insert)
2361 ret = dmar_hotplug_insert(tmp);
2362 else
2363 ret = dmar_hotplug_remove(tmp);
2364 up_write(&dmar_global_lock);
2365
2366 return ret;
2367}
2368
2369int dmar_device_add(acpi_handle handle)
2370{
2371 return dmar_device_hotplug(handle, true);
2372}
2373
2374int dmar_device_remove(acpi_handle handle)
2375{
2376 return dmar_device_hotplug(handle, false);
2377}
2378
2379/*
2380 * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2381 *
2382 * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2383 * the ACPI DMAR table. This means that the platform boot firmware has made
2384 * sure no device can issue DMA outside of RMRR regions.
2385 */
2386bool dmar_platform_optin(void)
2387{
2388 struct acpi_table_dmar *dmar;
2389 acpi_status status;
2390 bool ret;
2391
2392 status = acpi_get_table(ACPI_SIG_DMAR, 0,
2393 (struct acpi_table_header **)&dmar);
2394 if (ACPI_FAILURE(status))
2395 return false;
2396
2397 ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2398 acpi_put_table((struct acpi_table_header *)dmar);
2399
2400 return ret;
2401}
2402EXPORT_SYMBOL_GPL(dmar_platform_optin);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2006, Intel Corporation.
4 *
5 * Copyright (C) 2006-2008 Intel Corporation
6 * Author: Ashok Raj <ashok.raj@intel.com>
7 * Author: Shaohua Li <shaohua.li@intel.com>
8 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9 *
10 * This file implements early detection/parsing of Remapping Devices
11 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
12 * tables.
13 *
14 * These routines are used by both DMA-remapping and Interrupt-remapping
15 */
16
17#define pr_fmt(fmt) "DMAR: " fmt
18
19#include <linux/pci.h>
20#include <linux/dmar.h>
21#include <linux/iova.h>
22#include <linux/intel-iommu.h>
23#include <linux/timer.h>
24#include <linux/irq.h>
25#include <linux/interrupt.h>
26#include <linux/tboot.h>
27#include <linux/dmi.h>
28#include <linux/slab.h>
29#include <linux/iommu.h>
30#include <linux/numa.h>
31#include <linux/limits.h>
32#include <asm/irq_remapping.h>
33#include <asm/iommu_table.h>
34
35#include "../irq_remapping.h"
36
37typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
38struct dmar_res_callback {
39 dmar_res_handler_t cb[ACPI_DMAR_TYPE_RESERVED];
40 void *arg[ACPI_DMAR_TYPE_RESERVED];
41 bool ignore_unhandled;
42 bool print_entry;
43};
44
45/*
46 * Assumptions:
47 * 1) The hotplug framework guarentees that DMAR unit will be hot-added
48 * before IO devices managed by that unit.
49 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
50 * after IO devices managed by that unit.
51 * 3) Hotplug events are rare.
52 *
53 * Locking rules for DMA and interrupt remapping related global data structures:
54 * 1) Use dmar_global_lock in process context
55 * 2) Use RCU in interrupt context
56 */
57DECLARE_RWSEM(dmar_global_lock);
58LIST_HEAD(dmar_drhd_units);
59
60struct acpi_table_header * __initdata dmar_tbl;
61static int dmar_dev_scope_status = 1;
62static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)];
63
64static int alloc_iommu(struct dmar_drhd_unit *drhd);
65static void free_iommu(struct intel_iommu *iommu);
66
67extern const struct iommu_ops intel_iommu_ops;
68
69static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
70{
71 /*
72 * add INCLUDE_ALL at the tail, so scan the list will find it at
73 * the very end.
74 */
75 if (drhd->include_all)
76 list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
77 else
78 list_add_rcu(&drhd->list, &dmar_drhd_units);
79}
80
81void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
82{
83 struct acpi_dmar_device_scope *scope;
84
85 *cnt = 0;
86 while (start < end) {
87 scope = start;
88 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
89 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
90 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
91 (*cnt)++;
92 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
93 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
94 pr_warn("Unsupported device scope\n");
95 }
96 start += scope->length;
97 }
98 if (*cnt == 0)
99 return NULL;
100
101 return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
102}
103
104void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
105{
106 int i;
107 struct device *tmp_dev;
108
109 if (*devices && *cnt) {
110 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
111 put_device(tmp_dev);
112 kfree(*devices);
113 }
114
115 *devices = NULL;
116 *cnt = 0;
117}
118
119/* Optimize out kzalloc()/kfree() for normal cases */
120static char dmar_pci_notify_info_buf[64];
121
122static struct dmar_pci_notify_info *
123dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
124{
125 int level = 0;
126 size_t size;
127 struct pci_dev *tmp;
128 struct dmar_pci_notify_info *info;
129
130 BUG_ON(dev->is_virtfn);
131
132 /*
133 * Ignore devices that have a domain number higher than what can
134 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
135 */
136 if (pci_domain_nr(dev->bus) > U16_MAX)
137 return NULL;
138
139 /* Only generate path[] for device addition event */
140 if (event == BUS_NOTIFY_ADD_DEVICE)
141 for (tmp = dev; tmp; tmp = tmp->bus->self)
142 level++;
143
144 size = struct_size(info, path, level);
145 if (size <= sizeof(dmar_pci_notify_info_buf)) {
146 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
147 } else {
148 info = kzalloc(size, GFP_KERNEL);
149 if (!info) {
150 pr_warn("Out of memory when allocating notify_info "
151 "for %s.\n", pci_name(dev));
152 if (dmar_dev_scope_status == 0)
153 dmar_dev_scope_status = -ENOMEM;
154 return NULL;
155 }
156 }
157
158 info->event = event;
159 info->dev = dev;
160 info->seg = pci_domain_nr(dev->bus);
161 info->level = level;
162 if (event == BUS_NOTIFY_ADD_DEVICE) {
163 for (tmp = dev; tmp; tmp = tmp->bus->self) {
164 level--;
165 info->path[level].bus = tmp->bus->number;
166 info->path[level].device = PCI_SLOT(tmp->devfn);
167 info->path[level].function = PCI_FUNC(tmp->devfn);
168 if (pci_is_root_bus(tmp->bus))
169 info->bus = tmp->bus->number;
170 }
171 }
172
173 return info;
174}
175
176static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
177{
178 if ((void *)info != dmar_pci_notify_info_buf)
179 kfree(info);
180}
181
182static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
183 struct acpi_dmar_pci_path *path, int count)
184{
185 int i;
186
187 if (info->bus != bus)
188 goto fallback;
189 if (info->level != count)
190 goto fallback;
191
192 for (i = 0; i < count; i++) {
193 if (path[i].device != info->path[i].device ||
194 path[i].function != info->path[i].function)
195 goto fallback;
196 }
197
198 return true;
199
200fallback:
201
202 if (count != 1)
203 return false;
204
205 i = info->level - 1;
206 if (bus == info->path[i].bus &&
207 path[0].device == info->path[i].device &&
208 path[0].function == info->path[i].function) {
209 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
210 bus, path[0].device, path[0].function);
211 return true;
212 }
213
214 return false;
215}
216
217/* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
218int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
219 void *start, void*end, u16 segment,
220 struct dmar_dev_scope *devices,
221 int devices_cnt)
222{
223 int i, level;
224 struct device *tmp, *dev = &info->dev->dev;
225 struct acpi_dmar_device_scope *scope;
226 struct acpi_dmar_pci_path *path;
227
228 if (segment != info->seg)
229 return 0;
230
231 for (; start < end; start += scope->length) {
232 scope = start;
233 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
234 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
235 continue;
236
237 path = (struct acpi_dmar_pci_path *)(scope + 1);
238 level = (scope->length - sizeof(*scope)) / sizeof(*path);
239 if (!dmar_match_pci_path(info, scope->bus, path, level))
240 continue;
241
242 /*
243 * We expect devices with endpoint scope to have normal PCI
244 * headers, and devices with bridge scope to have bridge PCI
245 * headers. However PCI NTB devices may be listed in the
246 * DMAR table with bridge scope, even though they have a
247 * normal PCI header. NTB devices are identified by class
248 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
249 * for this special case.
250 */
251 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
252 info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
253 (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
254 (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
255 info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
256 pr_warn("Device scope type does not match for %s\n",
257 pci_name(info->dev));
258 return -EINVAL;
259 }
260
261 for_each_dev_scope(devices, devices_cnt, i, tmp)
262 if (tmp == NULL) {
263 devices[i].bus = info->dev->bus->number;
264 devices[i].devfn = info->dev->devfn;
265 rcu_assign_pointer(devices[i].dev,
266 get_device(dev));
267 return 1;
268 }
269 BUG_ON(i >= devices_cnt);
270 }
271
272 return 0;
273}
274
275int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
276 struct dmar_dev_scope *devices, int count)
277{
278 int index;
279 struct device *tmp;
280
281 if (info->seg != segment)
282 return 0;
283
284 for_each_active_dev_scope(devices, count, index, tmp)
285 if (tmp == &info->dev->dev) {
286 RCU_INIT_POINTER(devices[index].dev, NULL);
287 synchronize_rcu();
288 put_device(tmp);
289 return 1;
290 }
291
292 return 0;
293}
294
295static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
296{
297 int ret = 0;
298 struct dmar_drhd_unit *dmaru;
299 struct acpi_dmar_hardware_unit *drhd;
300
301 for_each_drhd_unit(dmaru) {
302 if (dmaru->include_all)
303 continue;
304
305 drhd = container_of(dmaru->hdr,
306 struct acpi_dmar_hardware_unit, header);
307 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
308 ((void *)drhd) + drhd->header.length,
309 dmaru->segment,
310 dmaru->devices, dmaru->devices_cnt);
311 if (ret)
312 break;
313 }
314 if (ret >= 0)
315 ret = dmar_iommu_notify_scope_dev(info);
316 if (ret < 0 && dmar_dev_scope_status == 0)
317 dmar_dev_scope_status = ret;
318
319 return ret;
320}
321
322static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
323{
324 struct dmar_drhd_unit *dmaru;
325
326 for_each_drhd_unit(dmaru)
327 if (dmar_remove_dev_scope(info, dmaru->segment,
328 dmaru->devices, dmaru->devices_cnt))
329 break;
330 dmar_iommu_notify_scope_dev(info);
331}
332
333static int dmar_pci_bus_notifier(struct notifier_block *nb,
334 unsigned long action, void *data)
335{
336 struct pci_dev *pdev = to_pci_dev(data);
337 struct dmar_pci_notify_info *info;
338
339 /* Only care about add/remove events for physical functions.
340 * For VFs we actually do the lookup based on the corresponding
341 * PF in device_to_iommu() anyway. */
342 if (pdev->is_virtfn)
343 return NOTIFY_DONE;
344 if (action != BUS_NOTIFY_ADD_DEVICE &&
345 action != BUS_NOTIFY_REMOVED_DEVICE)
346 return NOTIFY_DONE;
347
348 info = dmar_alloc_pci_notify_info(pdev, action);
349 if (!info)
350 return NOTIFY_DONE;
351
352 down_write(&dmar_global_lock);
353 if (action == BUS_NOTIFY_ADD_DEVICE)
354 dmar_pci_bus_add_dev(info);
355 else if (action == BUS_NOTIFY_REMOVED_DEVICE)
356 dmar_pci_bus_del_dev(info);
357 up_write(&dmar_global_lock);
358
359 dmar_free_pci_notify_info(info);
360
361 return NOTIFY_OK;
362}
363
364static struct notifier_block dmar_pci_bus_nb = {
365 .notifier_call = dmar_pci_bus_notifier,
366 .priority = INT_MIN,
367};
368
369static struct dmar_drhd_unit *
370dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
371{
372 struct dmar_drhd_unit *dmaru;
373
374 list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
375 dmar_rcu_check())
376 if (dmaru->segment == drhd->segment &&
377 dmaru->reg_base_addr == drhd->address)
378 return dmaru;
379
380 return NULL;
381}
382
383/**
384 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
385 * structure which uniquely represent one DMA remapping hardware unit
386 * present in the platform
387 */
388static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
389{
390 struct acpi_dmar_hardware_unit *drhd;
391 struct dmar_drhd_unit *dmaru;
392 int ret;
393
394 drhd = (struct acpi_dmar_hardware_unit *)header;
395 dmaru = dmar_find_dmaru(drhd);
396 if (dmaru)
397 goto out;
398
399 dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
400 if (!dmaru)
401 return -ENOMEM;
402
403 /*
404 * If header is allocated from slab by ACPI _DSM method, we need to
405 * copy the content because the memory buffer will be freed on return.
406 */
407 dmaru->hdr = (void *)(dmaru + 1);
408 memcpy(dmaru->hdr, header, header->length);
409 dmaru->reg_base_addr = drhd->address;
410 dmaru->segment = drhd->segment;
411 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
412 dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
413 ((void *)drhd) + drhd->header.length,
414 &dmaru->devices_cnt);
415 if (dmaru->devices_cnt && dmaru->devices == NULL) {
416 kfree(dmaru);
417 return -ENOMEM;
418 }
419
420 ret = alloc_iommu(dmaru);
421 if (ret) {
422 dmar_free_dev_scope(&dmaru->devices,
423 &dmaru->devices_cnt);
424 kfree(dmaru);
425 return ret;
426 }
427 dmar_register_drhd_unit(dmaru);
428
429out:
430 if (arg)
431 (*(int *)arg)++;
432
433 return 0;
434}
435
436static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
437{
438 if (dmaru->devices && dmaru->devices_cnt)
439 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
440 if (dmaru->iommu)
441 free_iommu(dmaru->iommu);
442 kfree(dmaru);
443}
444
445static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
446 void *arg)
447{
448 struct acpi_dmar_andd *andd = (void *)header;
449
450 /* Check for NUL termination within the designated length */
451 if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
452 pr_warn(FW_BUG
453 "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
454 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
455 dmi_get_system_info(DMI_BIOS_VENDOR),
456 dmi_get_system_info(DMI_BIOS_VERSION),
457 dmi_get_system_info(DMI_PRODUCT_VERSION));
458 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
459 return -EINVAL;
460 }
461 pr_info("ANDD device: %x name: %s\n", andd->device_number,
462 andd->device_name);
463
464 return 0;
465}
466
467#ifdef CONFIG_ACPI_NUMA
468static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
469{
470 struct acpi_dmar_rhsa *rhsa;
471 struct dmar_drhd_unit *drhd;
472
473 rhsa = (struct acpi_dmar_rhsa *)header;
474 for_each_drhd_unit(drhd) {
475 if (drhd->reg_base_addr == rhsa->base_address) {
476 int node = acpi_map_pxm_to_node(rhsa->proximity_domain);
477
478 if (!node_online(node))
479 node = NUMA_NO_NODE;
480 drhd->iommu->node = node;
481 return 0;
482 }
483 }
484 pr_warn(FW_BUG
485 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
486 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
487 rhsa->base_address,
488 dmi_get_system_info(DMI_BIOS_VENDOR),
489 dmi_get_system_info(DMI_BIOS_VERSION),
490 dmi_get_system_info(DMI_PRODUCT_VERSION));
491 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
492
493 return 0;
494}
495#else
496#define dmar_parse_one_rhsa dmar_res_noop
497#endif
498
499static void
500dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
501{
502 struct acpi_dmar_hardware_unit *drhd;
503 struct acpi_dmar_reserved_memory *rmrr;
504 struct acpi_dmar_atsr *atsr;
505 struct acpi_dmar_rhsa *rhsa;
506
507 switch (header->type) {
508 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
509 drhd = container_of(header, struct acpi_dmar_hardware_unit,
510 header);
511 pr_info("DRHD base: %#016Lx flags: %#x\n",
512 (unsigned long long)drhd->address, drhd->flags);
513 break;
514 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
515 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
516 header);
517 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
518 (unsigned long long)rmrr->base_address,
519 (unsigned long long)rmrr->end_address);
520 break;
521 case ACPI_DMAR_TYPE_ROOT_ATS:
522 atsr = container_of(header, struct acpi_dmar_atsr, header);
523 pr_info("ATSR flags: %#x\n", atsr->flags);
524 break;
525 case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
526 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
527 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
528 (unsigned long long)rhsa->base_address,
529 rhsa->proximity_domain);
530 break;
531 case ACPI_DMAR_TYPE_NAMESPACE:
532 /* We don't print this here because we need to sanity-check
533 it first. So print it in dmar_parse_one_andd() instead. */
534 break;
535 }
536}
537
538/**
539 * dmar_table_detect - checks to see if the platform supports DMAR devices
540 */
541static int __init dmar_table_detect(void)
542{
543 acpi_status status = AE_OK;
544
545 /* if we could find DMAR table, then there are DMAR devices */
546 status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
547
548 if (ACPI_SUCCESS(status) && !dmar_tbl) {
549 pr_warn("Unable to map DMAR\n");
550 status = AE_NOT_FOUND;
551 }
552
553 return ACPI_SUCCESS(status) ? 0 : -ENOENT;
554}
555
556static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
557 size_t len, struct dmar_res_callback *cb)
558{
559 struct acpi_dmar_header *iter, *next;
560 struct acpi_dmar_header *end = ((void *)start) + len;
561
562 for (iter = start; iter < end; iter = next) {
563 next = (void *)iter + iter->length;
564 if (iter->length == 0) {
565 /* Avoid looping forever on bad ACPI tables */
566 pr_debug(FW_BUG "Invalid 0-length structure\n");
567 break;
568 } else if (next > end) {
569 /* Avoid passing table end */
570 pr_warn(FW_BUG "Record passes table end\n");
571 return -EINVAL;
572 }
573
574 if (cb->print_entry)
575 dmar_table_print_dmar_entry(iter);
576
577 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
578 /* continue for forward compatibility */
579 pr_debug("Unknown DMAR structure type %d\n",
580 iter->type);
581 } else if (cb->cb[iter->type]) {
582 int ret;
583
584 ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
585 if (ret)
586 return ret;
587 } else if (!cb->ignore_unhandled) {
588 pr_warn("No handler for DMAR structure type %d\n",
589 iter->type);
590 return -EINVAL;
591 }
592 }
593
594 return 0;
595}
596
597static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
598 struct dmar_res_callback *cb)
599{
600 return dmar_walk_remapping_entries((void *)(dmar + 1),
601 dmar->header.length - sizeof(*dmar), cb);
602}
603
604/**
605 * parse_dmar_table - parses the DMA reporting table
606 */
607static int __init
608parse_dmar_table(void)
609{
610 struct acpi_table_dmar *dmar;
611 int drhd_count = 0;
612 int ret;
613 struct dmar_res_callback cb = {
614 .print_entry = true,
615 .ignore_unhandled = true,
616 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
617 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
618 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
619 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
620 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
621 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
622 };
623
624 /*
625 * Do it again, earlier dmar_tbl mapping could be mapped with
626 * fixed map.
627 */
628 dmar_table_detect();
629
630 /*
631 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
632 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
633 */
634 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
635
636 dmar = (struct acpi_table_dmar *)dmar_tbl;
637 if (!dmar)
638 return -ENODEV;
639
640 if (dmar->width < PAGE_SHIFT - 1) {
641 pr_warn("Invalid DMAR haw\n");
642 return -EINVAL;
643 }
644
645 pr_info("Host address width %d\n", dmar->width + 1);
646 ret = dmar_walk_dmar_table(dmar, &cb);
647 if (ret == 0 && drhd_count == 0)
648 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
649
650 return ret;
651}
652
653static int dmar_pci_device_match(struct dmar_dev_scope devices[],
654 int cnt, struct pci_dev *dev)
655{
656 int index;
657 struct device *tmp;
658
659 while (dev) {
660 for_each_active_dev_scope(devices, cnt, index, tmp)
661 if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
662 return 1;
663
664 /* Check our parent */
665 dev = dev->bus->self;
666 }
667
668 return 0;
669}
670
671struct dmar_drhd_unit *
672dmar_find_matched_drhd_unit(struct pci_dev *dev)
673{
674 struct dmar_drhd_unit *dmaru;
675 struct acpi_dmar_hardware_unit *drhd;
676
677 dev = pci_physfn(dev);
678
679 rcu_read_lock();
680 for_each_drhd_unit(dmaru) {
681 drhd = container_of(dmaru->hdr,
682 struct acpi_dmar_hardware_unit,
683 header);
684
685 if (dmaru->include_all &&
686 drhd->segment == pci_domain_nr(dev->bus))
687 goto out;
688
689 if (dmar_pci_device_match(dmaru->devices,
690 dmaru->devices_cnt, dev))
691 goto out;
692 }
693 dmaru = NULL;
694out:
695 rcu_read_unlock();
696
697 return dmaru;
698}
699
700static void __init dmar_acpi_insert_dev_scope(u8 device_number,
701 struct acpi_device *adev)
702{
703 struct dmar_drhd_unit *dmaru;
704 struct acpi_dmar_hardware_unit *drhd;
705 struct acpi_dmar_device_scope *scope;
706 struct device *tmp;
707 int i;
708 struct acpi_dmar_pci_path *path;
709
710 for_each_drhd_unit(dmaru) {
711 drhd = container_of(dmaru->hdr,
712 struct acpi_dmar_hardware_unit,
713 header);
714
715 for (scope = (void *)(drhd + 1);
716 (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
717 scope = ((void *)scope) + scope->length) {
718 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
719 continue;
720 if (scope->enumeration_id != device_number)
721 continue;
722
723 path = (void *)(scope + 1);
724 pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
725 dev_name(&adev->dev), dmaru->reg_base_addr,
726 scope->bus, path->device, path->function);
727 for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
728 if (tmp == NULL) {
729 dmaru->devices[i].bus = scope->bus;
730 dmaru->devices[i].devfn = PCI_DEVFN(path->device,
731 path->function);
732 rcu_assign_pointer(dmaru->devices[i].dev,
733 get_device(&adev->dev));
734 return;
735 }
736 BUG_ON(i >= dmaru->devices_cnt);
737 }
738 }
739 pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
740 device_number, dev_name(&adev->dev));
741}
742
743static int __init dmar_acpi_dev_scope_init(void)
744{
745 struct acpi_dmar_andd *andd;
746
747 if (dmar_tbl == NULL)
748 return -ENODEV;
749
750 for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
751 ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
752 andd = ((void *)andd) + andd->header.length) {
753 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
754 acpi_handle h;
755 struct acpi_device *adev;
756
757 if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
758 andd->device_name,
759 &h))) {
760 pr_err("Failed to find handle for ACPI object %s\n",
761 andd->device_name);
762 continue;
763 }
764 if (acpi_bus_get_device(h, &adev)) {
765 pr_err("Failed to get device for ACPI object %s\n",
766 andd->device_name);
767 continue;
768 }
769 dmar_acpi_insert_dev_scope(andd->device_number, adev);
770 }
771 }
772 return 0;
773}
774
775int __init dmar_dev_scope_init(void)
776{
777 struct pci_dev *dev = NULL;
778 struct dmar_pci_notify_info *info;
779
780 if (dmar_dev_scope_status != 1)
781 return dmar_dev_scope_status;
782
783 if (list_empty(&dmar_drhd_units)) {
784 dmar_dev_scope_status = -ENODEV;
785 } else {
786 dmar_dev_scope_status = 0;
787
788 dmar_acpi_dev_scope_init();
789
790 for_each_pci_dev(dev) {
791 if (dev->is_virtfn)
792 continue;
793
794 info = dmar_alloc_pci_notify_info(dev,
795 BUS_NOTIFY_ADD_DEVICE);
796 if (!info) {
797 return dmar_dev_scope_status;
798 } else {
799 dmar_pci_bus_add_dev(info);
800 dmar_free_pci_notify_info(info);
801 }
802 }
803 }
804
805 return dmar_dev_scope_status;
806}
807
808void __init dmar_register_bus_notifier(void)
809{
810 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
811}
812
813
814int __init dmar_table_init(void)
815{
816 static int dmar_table_initialized;
817 int ret;
818
819 if (dmar_table_initialized == 0) {
820 ret = parse_dmar_table();
821 if (ret < 0) {
822 if (ret != -ENODEV)
823 pr_info("Parse DMAR table failure.\n");
824 } else if (list_empty(&dmar_drhd_units)) {
825 pr_info("No DMAR devices found\n");
826 ret = -ENODEV;
827 }
828
829 if (ret < 0)
830 dmar_table_initialized = ret;
831 else
832 dmar_table_initialized = 1;
833 }
834
835 return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
836}
837
838static void warn_invalid_dmar(u64 addr, const char *message)
839{
840 pr_warn_once(FW_BUG
841 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
842 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
843 addr, message,
844 dmi_get_system_info(DMI_BIOS_VENDOR),
845 dmi_get_system_info(DMI_BIOS_VERSION),
846 dmi_get_system_info(DMI_PRODUCT_VERSION));
847 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
848}
849
850static int __ref
851dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
852{
853 struct acpi_dmar_hardware_unit *drhd;
854 void __iomem *addr;
855 u64 cap, ecap;
856
857 drhd = (void *)entry;
858 if (!drhd->address) {
859 warn_invalid_dmar(0, "");
860 return -EINVAL;
861 }
862
863 if (arg)
864 addr = ioremap(drhd->address, VTD_PAGE_SIZE);
865 else
866 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
867 if (!addr) {
868 pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
869 return -EINVAL;
870 }
871
872 cap = dmar_readq(addr + DMAR_CAP_REG);
873 ecap = dmar_readq(addr + DMAR_ECAP_REG);
874
875 if (arg)
876 iounmap(addr);
877 else
878 early_iounmap(addr, VTD_PAGE_SIZE);
879
880 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
881 warn_invalid_dmar(drhd->address, " returns all ones");
882 return -EINVAL;
883 }
884
885 return 0;
886}
887
888int __init detect_intel_iommu(void)
889{
890 int ret;
891 struct dmar_res_callback validate_drhd_cb = {
892 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
893 .ignore_unhandled = true,
894 };
895
896 down_write(&dmar_global_lock);
897 ret = dmar_table_detect();
898 if (!ret)
899 ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
900 &validate_drhd_cb);
901 if (!ret && !no_iommu && !iommu_detected &&
902 (!dmar_disabled || dmar_platform_optin())) {
903 iommu_detected = 1;
904 /* Make sure ACS will be enabled */
905 pci_request_acs();
906 }
907
908#ifdef CONFIG_X86
909 if (!ret) {
910 x86_init.iommu.iommu_init = intel_iommu_init;
911 x86_platform.iommu_shutdown = intel_iommu_shutdown;
912 }
913
914#endif
915
916 if (dmar_tbl) {
917 acpi_put_table(dmar_tbl);
918 dmar_tbl = NULL;
919 }
920 up_write(&dmar_global_lock);
921
922 return ret ? ret : 1;
923}
924
925static void unmap_iommu(struct intel_iommu *iommu)
926{
927 iounmap(iommu->reg);
928 release_mem_region(iommu->reg_phys, iommu->reg_size);
929}
930
931/**
932 * map_iommu: map the iommu's registers
933 * @iommu: the iommu to map
934 * @phys_addr: the physical address of the base resgister
935 *
936 * Memory map the iommu's registers. Start w/ a single page, and
937 * possibly expand if that turns out to be insufficent.
938 */
939static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
940{
941 int map_size, err=0;
942
943 iommu->reg_phys = phys_addr;
944 iommu->reg_size = VTD_PAGE_SIZE;
945
946 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
947 pr_err("Can't reserve memory\n");
948 err = -EBUSY;
949 goto out;
950 }
951
952 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
953 if (!iommu->reg) {
954 pr_err("Can't map the region\n");
955 err = -ENOMEM;
956 goto release;
957 }
958
959 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
960 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
961
962 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
963 err = -EINVAL;
964 warn_invalid_dmar(phys_addr, " returns all ones");
965 goto unmap;
966 }
967 iommu->vccap = dmar_readq(iommu->reg + DMAR_VCCAP_REG);
968
969 /* the registers might be more than one page */
970 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
971 cap_max_fault_reg_offset(iommu->cap));
972 map_size = VTD_PAGE_ALIGN(map_size);
973 if (map_size > iommu->reg_size) {
974 iounmap(iommu->reg);
975 release_mem_region(iommu->reg_phys, iommu->reg_size);
976 iommu->reg_size = map_size;
977 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
978 iommu->name)) {
979 pr_err("Can't reserve memory\n");
980 err = -EBUSY;
981 goto out;
982 }
983 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
984 if (!iommu->reg) {
985 pr_err("Can't map the region\n");
986 err = -ENOMEM;
987 goto release;
988 }
989 }
990 err = 0;
991 goto out;
992
993unmap:
994 iounmap(iommu->reg);
995release:
996 release_mem_region(iommu->reg_phys, iommu->reg_size);
997out:
998 return err;
999}
1000
1001static int dmar_alloc_seq_id(struct intel_iommu *iommu)
1002{
1003 iommu->seq_id = find_first_zero_bit(dmar_seq_ids,
1004 DMAR_UNITS_SUPPORTED);
1005 if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) {
1006 iommu->seq_id = -1;
1007 } else {
1008 set_bit(iommu->seq_id, dmar_seq_ids);
1009 sprintf(iommu->name, "dmar%d", iommu->seq_id);
1010 }
1011
1012 return iommu->seq_id;
1013}
1014
1015static void dmar_free_seq_id(struct intel_iommu *iommu)
1016{
1017 if (iommu->seq_id >= 0) {
1018 clear_bit(iommu->seq_id, dmar_seq_ids);
1019 iommu->seq_id = -1;
1020 }
1021}
1022
1023static int alloc_iommu(struct dmar_drhd_unit *drhd)
1024{
1025 struct intel_iommu *iommu;
1026 u32 ver, sts;
1027 int agaw = 0;
1028 int msagaw = 0;
1029 int err;
1030
1031 if (!drhd->reg_base_addr) {
1032 warn_invalid_dmar(0, "");
1033 return -EINVAL;
1034 }
1035
1036 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1037 if (!iommu)
1038 return -ENOMEM;
1039
1040 if (dmar_alloc_seq_id(iommu) < 0) {
1041 pr_err("Failed to allocate seq_id\n");
1042 err = -ENOSPC;
1043 goto error;
1044 }
1045
1046 err = map_iommu(iommu, drhd->reg_base_addr);
1047 if (err) {
1048 pr_err("Failed to map %s\n", iommu->name);
1049 goto error_free_seq_id;
1050 }
1051
1052 err = -EINVAL;
1053 agaw = iommu_calculate_agaw(iommu);
1054 if (agaw < 0) {
1055 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1056 iommu->seq_id);
1057 goto err_unmap;
1058 }
1059 msagaw = iommu_calculate_max_sagaw(iommu);
1060 if (msagaw < 0) {
1061 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1062 iommu->seq_id);
1063 goto err_unmap;
1064 }
1065 iommu->agaw = agaw;
1066 iommu->msagaw = msagaw;
1067 iommu->segment = drhd->segment;
1068
1069 iommu->node = NUMA_NO_NODE;
1070
1071 ver = readl(iommu->reg + DMAR_VER_REG);
1072 pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1073 iommu->name,
1074 (unsigned long long)drhd->reg_base_addr,
1075 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1076 (unsigned long long)iommu->cap,
1077 (unsigned long long)iommu->ecap);
1078
1079 /* Reflect status in gcmd */
1080 sts = readl(iommu->reg + DMAR_GSTS_REG);
1081 if (sts & DMA_GSTS_IRES)
1082 iommu->gcmd |= DMA_GCMD_IRE;
1083 if (sts & DMA_GSTS_TES)
1084 iommu->gcmd |= DMA_GCMD_TE;
1085 if (sts & DMA_GSTS_QIES)
1086 iommu->gcmd |= DMA_GCMD_QIE;
1087
1088 raw_spin_lock_init(&iommu->register_lock);
1089
1090 if (intel_iommu_enabled) {
1091 err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1092 intel_iommu_groups,
1093 "%s", iommu->name);
1094 if (err)
1095 goto err_unmap;
1096
1097 iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
1098
1099 err = iommu_device_register(&iommu->iommu);
1100 if (err)
1101 goto err_unmap;
1102 }
1103
1104 drhd->iommu = iommu;
1105 iommu->drhd = drhd;
1106
1107 return 0;
1108
1109err_unmap:
1110 unmap_iommu(iommu);
1111error_free_seq_id:
1112 dmar_free_seq_id(iommu);
1113error:
1114 kfree(iommu);
1115 return err;
1116}
1117
1118static void free_iommu(struct intel_iommu *iommu)
1119{
1120 if (intel_iommu_enabled) {
1121 iommu_device_unregister(&iommu->iommu);
1122 iommu_device_sysfs_remove(&iommu->iommu);
1123 }
1124
1125 if (iommu->irq) {
1126 if (iommu->pr_irq) {
1127 free_irq(iommu->pr_irq, iommu);
1128 dmar_free_hwirq(iommu->pr_irq);
1129 iommu->pr_irq = 0;
1130 }
1131 free_irq(iommu->irq, iommu);
1132 dmar_free_hwirq(iommu->irq);
1133 iommu->irq = 0;
1134 }
1135
1136 if (iommu->qi) {
1137 free_page((unsigned long)iommu->qi->desc);
1138 kfree(iommu->qi->desc_status);
1139 kfree(iommu->qi);
1140 }
1141
1142 if (iommu->reg)
1143 unmap_iommu(iommu);
1144
1145 dmar_free_seq_id(iommu);
1146 kfree(iommu);
1147}
1148
1149/*
1150 * Reclaim all the submitted descriptors which have completed its work.
1151 */
1152static inline void reclaim_free_desc(struct q_inval *qi)
1153{
1154 while (qi->desc_status[qi->free_tail] == QI_DONE ||
1155 qi->desc_status[qi->free_tail] == QI_ABORT) {
1156 qi->desc_status[qi->free_tail] = QI_FREE;
1157 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1158 qi->free_cnt++;
1159 }
1160}
1161
1162static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
1163{
1164 u32 fault;
1165 int head, tail;
1166 struct q_inval *qi = iommu->qi;
1167 int shift = qi_shift(iommu);
1168
1169 if (qi->desc_status[wait_index] == QI_ABORT)
1170 return -EAGAIN;
1171
1172 fault = readl(iommu->reg + DMAR_FSTS_REG);
1173
1174 /*
1175 * If IQE happens, the head points to the descriptor associated
1176 * with the error. No new descriptors are fetched until the IQE
1177 * is cleared.
1178 */
1179 if (fault & DMA_FSTS_IQE) {
1180 head = readl(iommu->reg + DMAR_IQH_REG);
1181 if ((head >> shift) == index) {
1182 struct qi_desc *desc = qi->desc + head;
1183
1184 /*
1185 * desc->qw2 and desc->qw3 are either reserved or
1186 * used by software as private data. We won't print
1187 * out these two qw's for security consideration.
1188 */
1189 pr_err("VT-d detected invalid descriptor: qw0 = %llx, qw1 = %llx\n",
1190 (unsigned long long)desc->qw0,
1191 (unsigned long long)desc->qw1);
1192 memcpy(desc, qi->desc + (wait_index << shift),
1193 1 << shift);
1194 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1195 return -EINVAL;
1196 }
1197 }
1198
1199 /*
1200 * If ITE happens, all pending wait_desc commands are aborted.
1201 * No new descriptors are fetched until the ITE is cleared.
1202 */
1203 if (fault & DMA_FSTS_ITE) {
1204 head = readl(iommu->reg + DMAR_IQH_REG);
1205 head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1206 head |= 1;
1207 tail = readl(iommu->reg + DMAR_IQT_REG);
1208 tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1209
1210 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1211
1212 do {
1213 if (qi->desc_status[head] == QI_IN_USE)
1214 qi->desc_status[head] = QI_ABORT;
1215 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1216 } while (head != tail);
1217
1218 if (qi->desc_status[wait_index] == QI_ABORT)
1219 return -EAGAIN;
1220 }
1221
1222 if (fault & DMA_FSTS_ICE)
1223 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1224
1225 return 0;
1226}
1227
1228/*
1229 * Function to submit invalidation descriptors of all types to the queued
1230 * invalidation interface(QI). Multiple descriptors can be submitted at a
1231 * time, a wait descriptor will be appended to each submission to ensure
1232 * hardware has completed the invalidation before return. Wait descriptors
1233 * can be part of the submission but it will not be polled for completion.
1234 */
1235int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1236 unsigned int count, unsigned long options)
1237{
1238 struct q_inval *qi = iommu->qi;
1239 struct qi_desc wait_desc;
1240 int wait_index, index;
1241 unsigned long flags;
1242 int offset, shift;
1243 int rc, i;
1244
1245 if (!qi)
1246 return 0;
1247
1248restart:
1249 rc = 0;
1250
1251 raw_spin_lock_irqsave(&qi->q_lock, flags);
1252 /*
1253 * Check if we have enough empty slots in the queue to submit,
1254 * the calculation is based on:
1255 * # of desc + 1 wait desc + 1 space between head and tail
1256 */
1257 while (qi->free_cnt < count + 2) {
1258 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1259 cpu_relax();
1260 raw_spin_lock_irqsave(&qi->q_lock, flags);
1261 }
1262
1263 index = qi->free_head;
1264 wait_index = (index + count) % QI_LENGTH;
1265 shift = qi_shift(iommu);
1266
1267 for (i = 0; i < count; i++) {
1268 offset = ((index + i) % QI_LENGTH) << shift;
1269 memcpy(qi->desc + offset, &desc[i], 1 << shift);
1270 qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
1271 }
1272 qi->desc_status[wait_index] = QI_IN_USE;
1273
1274 wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1275 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1276 if (options & QI_OPT_WAIT_DRAIN)
1277 wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
1278 wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1279 wait_desc.qw2 = 0;
1280 wait_desc.qw3 = 0;
1281
1282 offset = wait_index << shift;
1283 memcpy(qi->desc + offset, &wait_desc, 1 << shift);
1284
1285 qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
1286 qi->free_cnt -= count + 1;
1287
1288 /*
1289 * update the HW tail register indicating the presence of
1290 * new descriptors.
1291 */
1292 writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1293
1294 while (qi->desc_status[wait_index] != QI_DONE) {
1295 /*
1296 * We will leave the interrupts disabled, to prevent interrupt
1297 * context to queue another cmd while a cmd is already submitted
1298 * and waiting for completion on this cpu. This is to avoid
1299 * a deadlock where the interrupt context can wait indefinitely
1300 * for free slots in the queue.
1301 */
1302 rc = qi_check_fault(iommu, index, wait_index);
1303 if (rc)
1304 break;
1305
1306 raw_spin_unlock(&qi->q_lock);
1307 cpu_relax();
1308 raw_spin_lock(&qi->q_lock);
1309 }
1310
1311 for (i = 0; i < count; i++)
1312 qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE;
1313
1314 reclaim_free_desc(qi);
1315 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1316
1317 if (rc == -EAGAIN)
1318 goto restart;
1319
1320 return rc;
1321}
1322
1323/*
1324 * Flush the global interrupt entry cache.
1325 */
1326void qi_global_iec(struct intel_iommu *iommu)
1327{
1328 struct qi_desc desc;
1329
1330 desc.qw0 = QI_IEC_TYPE;
1331 desc.qw1 = 0;
1332 desc.qw2 = 0;
1333 desc.qw3 = 0;
1334
1335 /* should never fail */
1336 qi_submit_sync(iommu, &desc, 1, 0);
1337}
1338
1339void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1340 u64 type)
1341{
1342 struct qi_desc desc;
1343
1344 desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1345 | QI_CC_GRAN(type) | QI_CC_TYPE;
1346 desc.qw1 = 0;
1347 desc.qw2 = 0;
1348 desc.qw3 = 0;
1349
1350 qi_submit_sync(iommu, &desc, 1, 0);
1351}
1352
1353void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1354 unsigned int size_order, u64 type)
1355{
1356 u8 dw = 0, dr = 0;
1357
1358 struct qi_desc desc;
1359 int ih = 0;
1360
1361 if (cap_write_drain(iommu->cap))
1362 dw = 1;
1363
1364 if (cap_read_drain(iommu->cap))
1365 dr = 1;
1366
1367 desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1368 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1369 desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1370 | QI_IOTLB_AM(size_order);
1371 desc.qw2 = 0;
1372 desc.qw3 = 0;
1373
1374 qi_submit_sync(iommu, &desc, 1, 0);
1375}
1376
1377void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1378 u16 qdep, u64 addr, unsigned mask)
1379{
1380 struct qi_desc desc;
1381
1382 if (mask) {
1383 addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1384 desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1385 } else
1386 desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1387
1388 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1389 qdep = 0;
1390
1391 desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1392 QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1393 desc.qw2 = 0;
1394 desc.qw3 = 0;
1395
1396 qi_submit_sync(iommu, &desc, 1, 0);
1397}
1398
1399/* PASID-based IOTLB invalidation */
1400void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1401 unsigned long npages, bool ih)
1402{
1403 struct qi_desc desc = {.qw2 = 0, .qw3 = 0};
1404
1405 /*
1406 * npages == -1 means a PASID-selective invalidation, otherwise,
1407 * a positive value for Page-selective-within-PASID invalidation.
1408 * 0 is not a valid input.
1409 */
1410 if (WARN_ON(!npages)) {
1411 pr_err("Invalid input npages = %ld\n", npages);
1412 return;
1413 }
1414
1415 if (npages == -1) {
1416 desc.qw0 = QI_EIOTLB_PASID(pasid) |
1417 QI_EIOTLB_DID(did) |
1418 QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
1419 QI_EIOTLB_TYPE;
1420 desc.qw1 = 0;
1421 } else {
1422 int mask = ilog2(__roundup_pow_of_two(npages));
1423 unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
1424
1425 if (WARN_ON_ONCE(!ALIGN(addr, align)))
1426 addr &= ~(align - 1);
1427
1428 desc.qw0 = QI_EIOTLB_PASID(pasid) |
1429 QI_EIOTLB_DID(did) |
1430 QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
1431 QI_EIOTLB_TYPE;
1432 desc.qw1 = QI_EIOTLB_ADDR(addr) |
1433 QI_EIOTLB_IH(ih) |
1434 QI_EIOTLB_AM(mask);
1435 }
1436
1437 qi_submit_sync(iommu, &desc, 1, 0);
1438}
1439
1440/* PASID-based device IOTLB Invalidate */
1441void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1442 u32 pasid, u16 qdep, u64 addr, unsigned int size_order)
1443{
1444 unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
1445 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1446
1447 desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
1448 QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
1449 QI_DEV_IOTLB_PFSID(pfsid);
1450
1451 /*
1452 * If S bit is 0, we only flush a single page. If S bit is set,
1453 * The least significant zero bit indicates the invalidation address
1454 * range. VT-d spec 6.5.2.6.
1455 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
1456 * size order = 0 is PAGE_SIZE 4KB
1457 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in
1458 * ECAP.
1459 */
1460 if (addr & GENMASK_ULL(size_order + VTD_PAGE_SHIFT, 0))
1461 pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n",
1462 addr, size_order);
1463
1464 /* Take page address */
1465 desc.qw1 = QI_DEV_EIOTLB_ADDR(addr);
1466
1467 if (size_order) {
1468 /*
1469 * Existing 0s in address below size_order may be the least
1470 * significant bit, we must set them to 1s to avoid having
1471 * smaller size than desired.
1472 */
1473 desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1,
1474 VTD_PAGE_SHIFT);
1475 /* Clear size_order bit to indicate size */
1476 desc.qw1 &= ~mask;
1477 /* Set the S bit to indicate flushing more than 1 page */
1478 desc.qw1 |= QI_DEV_EIOTLB_SIZE;
1479 }
1480
1481 qi_submit_sync(iommu, &desc, 1, 0);
1482}
1483
1484void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
1485 u64 granu, int pasid)
1486{
1487 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1488
1489 desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
1490 QI_PC_GRAN(granu) | QI_PC_TYPE;
1491 qi_submit_sync(iommu, &desc, 1, 0);
1492}
1493
1494/*
1495 * Disable Queued Invalidation interface.
1496 */
1497void dmar_disable_qi(struct intel_iommu *iommu)
1498{
1499 unsigned long flags;
1500 u32 sts;
1501 cycles_t start_time = get_cycles();
1502
1503 if (!ecap_qis(iommu->ecap))
1504 return;
1505
1506 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1507
1508 sts = readl(iommu->reg + DMAR_GSTS_REG);
1509 if (!(sts & DMA_GSTS_QIES))
1510 goto end;
1511
1512 /*
1513 * Give a chance to HW to complete the pending invalidation requests.
1514 */
1515 while ((readl(iommu->reg + DMAR_IQT_REG) !=
1516 readl(iommu->reg + DMAR_IQH_REG)) &&
1517 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1518 cpu_relax();
1519
1520 iommu->gcmd &= ~DMA_GCMD_QIE;
1521 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1522
1523 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1524 !(sts & DMA_GSTS_QIES), sts);
1525end:
1526 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1527}
1528
1529/*
1530 * Enable queued invalidation.
1531 */
1532static void __dmar_enable_qi(struct intel_iommu *iommu)
1533{
1534 u32 sts;
1535 unsigned long flags;
1536 struct q_inval *qi = iommu->qi;
1537 u64 val = virt_to_phys(qi->desc);
1538
1539 qi->free_head = qi->free_tail = 0;
1540 qi->free_cnt = QI_LENGTH;
1541
1542 /*
1543 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1544 * is present.
1545 */
1546 if (ecap_smts(iommu->ecap))
1547 val |= (1 << 11) | 1;
1548
1549 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1550
1551 /* write zero to the tail reg */
1552 writel(0, iommu->reg + DMAR_IQT_REG);
1553
1554 dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1555
1556 iommu->gcmd |= DMA_GCMD_QIE;
1557 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1558
1559 /* Make sure hardware complete it */
1560 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1561
1562 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1563}
1564
1565/*
1566 * Enable Queued Invalidation interface. This is a must to support
1567 * interrupt-remapping. Also used by DMA-remapping, which replaces
1568 * register based IOTLB invalidation.
1569 */
1570int dmar_enable_qi(struct intel_iommu *iommu)
1571{
1572 struct q_inval *qi;
1573 struct page *desc_page;
1574
1575 if (!ecap_qis(iommu->ecap))
1576 return -ENOENT;
1577
1578 /*
1579 * queued invalidation is already setup and enabled.
1580 */
1581 if (iommu->qi)
1582 return 0;
1583
1584 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1585 if (!iommu->qi)
1586 return -ENOMEM;
1587
1588 qi = iommu->qi;
1589
1590 /*
1591 * Need two pages to accommodate 256 descriptors of 256 bits each
1592 * if the remapping hardware supports scalable mode translation.
1593 */
1594 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
1595 !!ecap_smts(iommu->ecap));
1596 if (!desc_page) {
1597 kfree(qi);
1598 iommu->qi = NULL;
1599 return -ENOMEM;
1600 }
1601
1602 qi->desc = page_address(desc_page);
1603
1604 qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1605 if (!qi->desc_status) {
1606 free_page((unsigned long) qi->desc);
1607 kfree(qi);
1608 iommu->qi = NULL;
1609 return -ENOMEM;
1610 }
1611
1612 raw_spin_lock_init(&qi->q_lock);
1613
1614 __dmar_enable_qi(iommu);
1615
1616 return 0;
1617}
1618
1619/* iommu interrupt handling. Most stuff are MSI-like. */
1620
1621enum faulttype {
1622 DMA_REMAP,
1623 INTR_REMAP,
1624 UNKNOWN,
1625};
1626
1627static const char *dma_remap_fault_reasons[] =
1628{
1629 "Software",
1630 "Present bit in root entry is clear",
1631 "Present bit in context entry is clear",
1632 "Invalid context entry",
1633 "Access beyond MGAW",
1634 "PTE Write access is not set",
1635 "PTE Read access is not set",
1636 "Next page table ptr is invalid",
1637 "Root table address invalid",
1638 "Context table ptr is invalid",
1639 "non-zero reserved fields in RTP",
1640 "non-zero reserved fields in CTP",
1641 "non-zero reserved fields in PTE",
1642 "PCE for translation request specifies blocking",
1643};
1644
1645static const char * const dma_remap_sm_fault_reasons[] = {
1646 "SM: Invalid Root Table Address",
1647 "SM: TTM 0 for request with PASID",
1648 "SM: TTM 0 for page group request",
1649 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1650 "SM: Error attempting to access Root Entry",
1651 "SM: Present bit in Root Entry is clear",
1652 "SM: Non-zero reserved field set in Root Entry",
1653 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1654 "SM: Error attempting to access Context Entry",
1655 "SM: Present bit in Context Entry is clear",
1656 "SM: Non-zero reserved field set in the Context Entry",
1657 "SM: Invalid Context Entry",
1658 "SM: DTE field in Context Entry is clear",
1659 "SM: PASID Enable field in Context Entry is clear",
1660 "SM: PASID is larger than the max in Context Entry",
1661 "SM: PRE field in Context-Entry is clear",
1662 "SM: RID_PASID field error in Context-Entry",
1663 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1664 "SM: Error attempting to access the PASID Directory Entry",
1665 "SM: Present bit in Directory Entry is clear",
1666 "SM: Non-zero reserved field set in PASID Directory Entry",
1667 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1668 "SM: Error attempting to access PASID Table Entry",
1669 "SM: Present bit in PASID Table Entry is clear",
1670 "SM: Non-zero reserved field set in PASID Table Entry",
1671 "SM: Invalid Scalable-Mode PASID Table Entry",
1672 "SM: ERE field is clear in PASID Table Entry",
1673 "SM: SRE field is clear in PASID Table Entry",
1674 "Unknown", "Unknown",/* 0x5E-0x5F */
1675 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1676 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1677 "SM: Error attempting to access first-level paging entry",
1678 "SM: Present bit in first-level paging entry is clear",
1679 "SM: Non-zero reserved field set in first-level paging entry",
1680 "SM: Error attempting to access FL-PML4 entry",
1681 "SM: First-level entry address beyond MGAW in Nested translation",
1682 "SM: Read permission error in FL-PML4 entry in Nested translation",
1683 "SM: Read permission error in first-level paging entry in Nested translation",
1684 "SM: Write permission error in first-level paging entry in Nested translation",
1685 "SM: Error attempting to access second-level paging entry",
1686 "SM: Read/Write permission error in second-level paging entry",
1687 "SM: Non-zero reserved field set in second-level paging entry",
1688 "SM: Invalid second-level page table pointer",
1689 "SM: A/D bit update needed in second-level entry when set up in no snoop",
1690 "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1691 "SM: Address in first-level translation is not canonical",
1692 "SM: U/S set 0 for first-level translation with user privilege",
1693 "SM: No execute permission for request with PASID and ER=1",
1694 "SM: Address beyond the DMA hardware max",
1695 "SM: Second-level entry address beyond the max",
1696 "SM: No write permission for Write/AtomicOp request",
1697 "SM: No read permission for Read/AtomicOp request",
1698 "SM: Invalid address-interrupt address",
1699 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1700 "SM: A/D bit update needed in first-level entry when set up in no snoop",
1701};
1702
1703static const char *irq_remap_fault_reasons[] =
1704{
1705 "Detected reserved fields in the decoded interrupt-remapped request",
1706 "Interrupt index exceeded the interrupt-remapping table size",
1707 "Present field in the IRTE entry is clear",
1708 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1709 "Detected reserved fields in the IRTE entry",
1710 "Blocked a compatibility format interrupt request",
1711 "Blocked an interrupt request due to source-id verification failure",
1712};
1713
1714static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1715{
1716 if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1717 ARRAY_SIZE(irq_remap_fault_reasons))) {
1718 *fault_type = INTR_REMAP;
1719 return irq_remap_fault_reasons[fault_reason - 0x20];
1720 } else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1721 ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1722 *fault_type = DMA_REMAP;
1723 return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1724 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1725 *fault_type = DMA_REMAP;
1726 return dma_remap_fault_reasons[fault_reason];
1727 } else {
1728 *fault_type = UNKNOWN;
1729 return "Unknown";
1730 }
1731}
1732
1733
1734static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1735{
1736 if (iommu->irq == irq)
1737 return DMAR_FECTL_REG;
1738 else if (iommu->pr_irq == irq)
1739 return DMAR_PECTL_REG;
1740 else
1741 BUG();
1742}
1743
1744void dmar_msi_unmask(struct irq_data *data)
1745{
1746 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1747 int reg = dmar_msi_reg(iommu, data->irq);
1748 unsigned long flag;
1749
1750 /* unmask it */
1751 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1752 writel(0, iommu->reg + reg);
1753 /* Read a reg to force flush the post write */
1754 readl(iommu->reg + reg);
1755 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1756}
1757
1758void dmar_msi_mask(struct irq_data *data)
1759{
1760 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1761 int reg = dmar_msi_reg(iommu, data->irq);
1762 unsigned long flag;
1763
1764 /* mask it */
1765 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1766 writel(DMA_FECTL_IM, iommu->reg + reg);
1767 /* Read a reg to force flush the post write */
1768 readl(iommu->reg + reg);
1769 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1770}
1771
1772void dmar_msi_write(int irq, struct msi_msg *msg)
1773{
1774 struct intel_iommu *iommu = irq_get_handler_data(irq);
1775 int reg = dmar_msi_reg(iommu, irq);
1776 unsigned long flag;
1777
1778 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1779 writel(msg->data, iommu->reg + reg + 4);
1780 writel(msg->address_lo, iommu->reg + reg + 8);
1781 writel(msg->address_hi, iommu->reg + reg + 12);
1782 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1783}
1784
1785void dmar_msi_read(int irq, struct msi_msg *msg)
1786{
1787 struct intel_iommu *iommu = irq_get_handler_data(irq);
1788 int reg = dmar_msi_reg(iommu, irq);
1789 unsigned long flag;
1790
1791 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1792 msg->data = readl(iommu->reg + reg + 4);
1793 msg->address_lo = readl(iommu->reg + reg + 8);
1794 msg->address_hi = readl(iommu->reg + reg + 12);
1795 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1796}
1797
1798static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1799 u8 fault_reason, int pasid, u16 source_id,
1800 unsigned long long addr)
1801{
1802 const char *reason;
1803 int fault_type;
1804
1805 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1806
1807 if (fault_type == INTR_REMAP)
1808 pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index %llx [fault reason %02d] %s\n",
1809 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1810 PCI_FUNC(source_id & 0xFF), addr >> 48,
1811 fault_reason, reason);
1812 else
1813 pr_err("[%s] Request device [%02x:%02x.%d] PASID %x fault addr %llx [fault reason %02d] %s\n",
1814 type ? "DMA Read" : "DMA Write",
1815 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1816 PCI_FUNC(source_id & 0xFF), pasid, addr,
1817 fault_reason, reason);
1818 return 0;
1819}
1820
1821#define PRIMARY_FAULT_REG_LEN (16)
1822irqreturn_t dmar_fault(int irq, void *dev_id)
1823{
1824 struct intel_iommu *iommu = dev_id;
1825 int reg, fault_index;
1826 u32 fault_status;
1827 unsigned long flag;
1828 static DEFINE_RATELIMIT_STATE(rs,
1829 DEFAULT_RATELIMIT_INTERVAL,
1830 DEFAULT_RATELIMIT_BURST);
1831
1832 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1833 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1834 if (fault_status && __ratelimit(&rs))
1835 pr_err("DRHD: handling fault status reg %x\n", fault_status);
1836
1837 /* TBD: ignore advanced fault log currently */
1838 if (!(fault_status & DMA_FSTS_PPF))
1839 goto unlock_exit;
1840
1841 fault_index = dma_fsts_fault_record_index(fault_status);
1842 reg = cap_fault_reg_offset(iommu->cap);
1843 while (1) {
1844 /* Disable printing, simply clear the fault when ratelimited */
1845 bool ratelimited = !__ratelimit(&rs);
1846 u8 fault_reason;
1847 u16 source_id;
1848 u64 guest_addr;
1849 int type, pasid;
1850 u32 data;
1851 bool pasid_present;
1852
1853 /* highest 32 bits */
1854 data = readl(iommu->reg + reg +
1855 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1856 if (!(data & DMA_FRCD_F))
1857 break;
1858
1859 if (!ratelimited) {
1860 fault_reason = dma_frcd_fault_reason(data);
1861 type = dma_frcd_type(data);
1862
1863 pasid = dma_frcd_pasid_value(data);
1864 data = readl(iommu->reg + reg +
1865 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1866 source_id = dma_frcd_source_id(data);
1867
1868 pasid_present = dma_frcd_pasid_present(data);
1869 guest_addr = dmar_readq(iommu->reg + reg +
1870 fault_index * PRIMARY_FAULT_REG_LEN);
1871 guest_addr = dma_frcd_page_addr(guest_addr);
1872 }
1873
1874 /* clear the fault */
1875 writel(DMA_FRCD_F, iommu->reg + reg +
1876 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1877
1878 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1879
1880 if (!ratelimited)
1881 /* Using pasid -1 if pasid is not present */
1882 dmar_fault_do_one(iommu, type, fault_reason,
1883 pasid_present ? pasid : -1,
1884 source_id, guest_addr);
1885
1886 fault_index++;
1887 if (fault_index >= cap_num_fault_regs(iommu->cap))
1888 fault_index = 0;
1889 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1890 }
1891
1892 writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
1893 iommu->reg + DMAR_FSTS_REG);
1894
1895unlock_exit:
1896 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1897 return IRQ_HANDLED;
1898}
1899
1900int dmar_set_interrupt(struct intel_iommu *iommu)
1901{
1902 int irq, ret;
1903
1904 /*
1905 * Check if the fault interrupt is already initialized.
1906 */
1907 if (iommu->irq)
1908 return 0;
1909
1910 irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
1911 if (irq > 0) {
1912 iommu->irq = irq;
1913 } else {
1914 pr_err("No free IRQ vectors\n");
1915 return -EINVAL;
1916 }
1917
1918 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1919 if (ret)
1920 pr_err("Can't request irq\n");
1921 return ret;
1922}
1923
1924int __init enable_drhd_fault_handling(void)
1925{
1926 struct dmar_drhd_unit *drhd;
1927 struct intel_iommu *iommu;
1928
1929 /*
1930 * Enable fault control interrupt.
1931 */
1932 for_each_iommu(iommu, drhd) {
1933 u32 fault_status;
1934 int ret = dmar_set_interrupt(iommu);
1935
1936 if (ret) {
1937 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1938 (unsigned long long)drhd->reg_base_addr, ret);
1939 return -1;
1940 }
1941
1942 /*
1943 * Clear any previous faults.
1944 */
1945 dmar_fault(iommu->irq, iommu);
1946 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1947 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1948 }
1949
1950 return 0;
1951}
1952
1953/*
1954 * Re-enable Queued Invalidation interface.
1955 */
1956int dmar_reenable_qi(struct intel_iommu *iommu)
1957{
1958 if (!ecap_qis(iommu->ecap))
1959 return -ENOENT;
1960
1961 if (!iommu->qi)
1962 return -ENOENT;
1963
1964 /*
1965 * First disable queued invalidation.
1966 */
1967 dmar_disable_qi(iommu);
1968 /*
1969 * Then enable queued invalidation again. Since there is no pending
1970 * invalidation requests now, it's safe to re-enable queued
1971 * invalidation.
1972 */
1973 __dmar_enable_qi(iommu);
1974
1975 return 0;
1976}
1977
1978/*
1979 * Check interrupt remapping support in DMAR table description.
1980 */
1981int __init dmar_ir_support(void)
1982{
1983 struct acpi_table_dmar *dmar;
1984 dmar = (struct acpi_table_dmar *)dmar_tbl;
1985 if (!dmar)
1986 return 0;
1987 return dmar->flags & 0x1;
1988}
1989
1990/* Check whether DMAR units are in use */
1991static inline bool dmar_in_use(void)
1992{
1993 return irq_remapping_enabled || intel_iommu_enabled;
1994}
1995
1996static int __init dmar_free_unused_resources(void)
1997{
1998 struct dmar_drhd_unit *dmaru, *dmaru_n;
1999
2000 if (dmar_in_use())
2001 return 0;
2002
2003 if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
2004 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
2005
2006 down_write(&dmar_global_lock);
2007 list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
2008 list_del(&dmaru->list);
2009 dmar_free_drhd(dmaru);
2010 }
2011 up_write(&dmar_global_lock);
2012
2013 return 0;
2014}
2015
2016late_initcall(dmar_free_unused_resources);
2017IOMMU_INIT_POST(detect_intel_iommu);
2018
2019/*
2020 * DMAR Hotplug Support
2021 * For more details, please refer to Intel(R) Virtualization Technology
2022 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
2023 * "Remapping Hardware Unit Hot Plug".
2024 */
2025static guid_t dmar_hp_guid =
2026 GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
2027 0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
2028
2029/*
2030 * Currently there's only one revision and BIOS will not check the revision id,
2031 * so use 0 for safety.
2032 */
2033#define DMAR_DSM_REV_ID 0
2034#define DMAR_DSM_FUNC_DRHD 1
2035#define DMAR_DSM_FUNC_ATSR 2
2036#define DMAR_DSM_FUNC_RHSA 3
2037
2038static inline bool dmar_detect_dsm(acpi_handle handle, int func)
2039{
2040 return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
2041}
2042
2043static int dmar_walk_dsm_resource(acpi_handle handle, int func,
2044 dmar_res_handler_t handler, void *arg)
2045{
2046 int ret = -ENODEV;
2047 union acpi_object *obj;
2048 struct acpi_dmar_header *start;
2049 struct dmar_res_callback callback;
2050 static int res_type[] = {
2051 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
2052 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
2053 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
2054 };
2055
2056 if (!dmar_detect_dsm(handle, func))
2057 return 0;
2058
2059 obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
2060 func, NULL, ACPI_TYPE_BUFFER);
2061 if (!obj)
2062 return -ENODEV;
2063
2064 memset(&callback, 0, sizeof(callback));
2065 callback.cb[res_type[func]] = handler;
2066 callback.arg[res_type[func]] = arg;
2067 start = (struct acpi_dmar_header *)obj->buffer.pointer;
2068 ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
2069
2070 ACPI_FREE(obj);
2071
2072 return ret;
2073}
2074
2075static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
2076{
2077 int ret;
2078 struct dmar_drhd_unit *dmaru;
2079
2080 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2081 if (!dmaru)
2082 return -ENODEV;
2083
2084 ret = dmar_ir_hotplug(dmaru, true);
2085 if (ret == 0)
2086 ret = dmar_iommu_hotplug(dmaru, true);
2087
2088 return ret;
2089}
2090
2091static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
2092{
2093 int i, ret;
2094 struct device *dev;
2095 struct dmar_drhd_unit *dmaru;
2096
2097 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2098 if (!dmaru)
2099 return 0;
2100
2101 /*
2102 * All PCI devices managed by this unit should have been destroyed.
2103 */
2104 if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2105 for_each_active_dev_scope(dmaru->devices,
2106 dmaru->devices_cnt, i, dev)
2107 return -EBUSY;
2108 }
2109
2110 ret = dmar_ir_hotplug(dmaru, false);
2111 if (ret == 0)
2112 ret = dmar_iommu_hotplug(dmaru, false);
2113
2114 return ret;
2115}
2116
2117static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
2118{
2119 struct dmar_drhd_unit *dmaru;
2120
2121 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2122 if (dmaru) {
2123 list_del_rcu(&dmaru->list);
2124 synchronize_rcu();
2125 dmar_free_drhd(dmaru);
2126 }
2127
2128 return 0;
2129}
2130
2131static int dmar_hotplug_insert(acpi_handle handle)
2132{
2133 int ret;
2134 int drhd_count = 0;
2135
2136 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2137 &dmar_validate_one_drhd, (void *)1);
2138 if (ret)
2139 goto out;
2140
2141 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2142 &dmar_parse_one_drhd, (void *)&drhd_count);
2143 if (ret == 0 && drhd_count == 0) {
2144 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2145 goto out;
2146 } else if (ret) {
2147 goto release_drhd;
2148 }
2149
2150 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2151 &dmar_parse_one_rhsa, NULL);
2152 if (ret)
2153 goto release_drhd;
2154
2155 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2156 &dmar_parse_one_atsr, NULL);
2157 if (ret)
2158 goto release_atsr;
2159
2160 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2161 &dmar_hp_add_drhd, NULL);
2162 if (!ret)
2163 return 0;
2164
2165 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2166 &dmar_hp_remove_drhd, NULL);
2167release_atsr:
2168 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2169 &dmar_release_one_atsr, NULL);
2170release_drhd:
2171 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2172 &dmar_hp_release_drhd, NULL);
2173out:
2174 return ret;
2175}
2176
2177static int dmar_hotplug_remove(acpi_handle handle)
2178{
2179 int ret;
2180
2181 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2182 &dmar_check_one_atsr, NULL);
2183 if (ret)
2184 return ret;
2185
2186 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2187 &dmar_hp_remove_drhd, NULL);
2188 if (ret == 0) {
2189 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2190 &dmar_release_one_atsr, NULL));
2191 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2192 &dmar_hp_release_drhd, NULL));
2193 } else {
2194 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2195 &dmar_hp_add_drhd, NULL);
2196 }
2197
2198 return ret;
2199}
2200
2201static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2202 void *context, void **retval)
2203{
2204 acpi_handle *phdl = retval;
2205
2206 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2207 *phdl = handle;
2208 return AE_CTRL_TERMINATE;
2209 }
2210
2211 return AE_OK;
2212}
2213
2214static int dmar_device_hotplug(acpi_handle handle, bool insert)
2215{
2216 int ret;
2217 acpi_handle tmp = NULL;
2218 acpi_status status;
2219
2220 if (!dmar_in_use())
2221 return 0;
2222
2223 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2224 tmp = handle;
2225 } else {
2226 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2227 ACPI_UINT32_MAX,
2228 dmar_get_dsm_handle,
2229 NULL, NULL, &tmp);
2230 if (ACPI_FAILURE(status)) {
2231 pr_warn("Failed to locate _DSM method.\n");
2232 return -ENXIO;
2233 }
2234 }
2235 if (tmp == NULL)
2236 return 0;
2237
2238 down_write(&dmar_global_lock);
2239 if (insert)
2240 ret = dmar_hotplug_insert(tmp);
2241 else
2242 ret = dmar_hotplug_remove(tmp);
2243 up_write(&dmar_global_lock);
2244
2245 return ret;
2246}
2247
2248int dmar_device_add(acpi_handle handle)
2249{
2250 return dmar_device_hotplug(handle, true);
2251}
2252
2253int dmar_device_remove(acpi_handle handle)
2254{
2255 return dmar_device_hotplug(handle, false);
2256}
2257
2258/*
2259 * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2260 *
2261 * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2262 * the ACPI DMAR table. This means that the platform boot firmware has made
2263 * sure no device can issue DMA outside of RMRR regions.
2264 */
2265bool dmar_platform_optin(void)
2266{
2267 struct acpi_table_dmar *dmar;
2268 acpi_status status;
2269 bool ret;
2270
2271 status = acpi_get_table(ACPI_SIG_DMAR, 0,
2272 (struct acpi_table_header **)&dmar);
2273 if (ACPI_FAILURE(status))
2274 return false;
2275
2276 ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2277 acpi_put_table((struct acpi_table_header *)dmar);
2278
2279 return ret;
2280}
2281EXPORT_SYMBOL_GPL(dmar_platform_optin);