Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2014 Marvell Technology Group Ltd.
  4 *
  5 * Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com>
  6 * Alexandre Belloni <alexandre.belloni@free-electrons.com>
  7 */
  8#include <linux/clk-provider.h>
  9#include <linux/io.h>
 10#include <linux/kernel.h>
 11#include <linux/of.h>
 12#include <linux/of_address.h>
 13#include <linux/slab.h>
 14
 15#include "berlin2-avpll.h"
 16
 17/*
 18 * Berlin2 SoCs comprise up to two PLLs called AVPLL built upon a
 19 * VCO with 8 channels each, channel 8 is the odd-one-out and does
 20 * not provide mul/div.
 21 *
 22 * Unfortunately, its registers are not named but just numbered. To
 23 * get in at least some kind of structure, we split each AVPLL into
 24 * the VCOs and each channel into separate clock drivers.
 25 *
 26 * Also, here and there the VCO registers are a bit different with
 27 * respect to bit shifts. Make sure to add a comment for those.
 28 */
 29#define NUM_CHANNELS	8
 30
 31#define AVPLL_CTRL(x)		((x) * 0x4)
 32
 33#define VCO_CTRL0		AVPLL_CTRL(0)
 34/* BG2/BG2CDs VCO_B has an additional shift of 4 for its VCO_CTRL0 reg */
 35#define  VCO_RESET		BIT(0)
 36#define  VCO_POWERUP		BIT(1)
 37#define  VCO_INTERPOL_SHIFT	2
 38#define  VCO_INTERPOL_MASK	(0xf << VCO_INTERPOL_SHIFT)
 39#define  VCO_REG1V45_SEL_SHIFT	6
 40#define  VCO_REG1V45_SEL(x)	((x) << VCO_REG1V45_SEL_SHIFT)
 41#define  VCO_REG1V45_SEL_1V40	VCO_REG1V45_SEL(0)
 42#define  VCO_REG1V45_SEL_1V45	VCO_REG1V45_SEL(1)
 43#define  VCO_REG1V45_SEL_1V50	VCO_REG1V45_SEL(2)
 44#define  VCO_REG1V45_SEL_1V55	VCO_REG1V45_SEL(3)
 45#define  VCO_REG1V45_SEL_MASK	VCO_REG1V45_SEL(3)
 46#define  VCO_REG0V9_SEL_SHIFT	8
 47#define  VCO_REG0V9_SEL_MASK	(0xf << VCO_REG0V9_SEL_SHIFT)
 48#define  VCO_VTHCAL_SHIFT	12
 49#define  VCO_VTHCAL(x)		((x) << VCO_VTHCAL_SHIFT)
 50#define  VCO_VTHCAL_0V90	VCO_VTHCAL(0)
 51#define  VCO_VTHCAL_0V95	VCO_VTHCAL(1)
 52#define  VCO_VTHCAL_1V00	VCO_VTHCAL(2)
 53#define  VCO_VTHCAL_1V05	VCO_VTHCAL(3)
 54#define  VCO_VTHCAL_MASK	VCO_VTHCAL(3)
 55#define  VCO_KVCOEXT_SHIFT	14
 56#define  VCO_KVCOEXT_MASK	(0x3 << VCO_KVCOEXT_SHIFT)
 57#define  VCO_KVCOEXT_ENABLE	BIT(17)
 58#define  VCO_V2IEXT_SHIFT	18
 59#define  VCO_V2IEXT_MASK	(0xf << VCO_V2IEXT_SHIFT)
 60#define  VCO_V2IEXT_ENABLE	BIT(22)
 61#define  VCO_SPEED_SHIFT	23
 62#define  VCO_SPEED(x)		((x) << VCO_SPEED_SHIFT)
 63#define  VCO_SPEED_1G08_1G21	VCO_SPEED(0)
 64#define  VCO_SPEED_1G21_1G40	VCO_SPEED(1)
 65#define  VCO_SPEED_1G40_1G61	VCO_SPEED(2)
 66#define  VCO_SPEED_1G61_1G86	VCO_SPEED(3)
 67#define  VCO_SPEED_1G86_2G00	VCO_SPEED(4)
 68#define  VCO_SPEED_2G00_2G22	VCO_SPEED(5)
 69#define  VCO_SPEED_2G22		VCO_SPEED(6)
 70#define  VCO_SPEED_MASK		VCO_SPEED(0x7)
 71#define  VCO_CLKDET_ENABLE	BIT(26)
 72#define VCO_CTRL1		AVPLL_CTRL(1)
 73#define  VCO_REFDIV_SHIFT	0
 74#define  VCO_REFDIV(x)		((x) << VCO_REFDIV_SHIFT)
 75#define  VCO_REFDIV_1		VCO_REFDIV(0)
 76#define  VCO_REFDIV_2		VCO_REFDIV(1)
 77#define  VCO_REFDIV_4		VCO_REFDIV(2)
 78#define  VCO_REFDIV_3		VCO_REFDIV(3)
 79#define  VCO_REFDIV_MASK	VCO_REFDIV(0x3f)
 80#define  VCO_FBDIV_SHIFT	6
 81#define  VCO_FBDIV(x)		((x) << VCO_FBDIV_SHIFT)
 82#define  VCO_FBDIV_MASK		VCO_FBDIV(0xff)
 83#define  VCO_ICP_SHIFT		14
 84/* PLL Charge Pump Current = 10uA * (x + 1) */
 85#define  VCO_ICP(x)		((x) << VCO_ICP_SHIFT)
 86#define  VCO_ICP_MASK		VCO_ICP(0xf)
 87#define  VCO_LOAD_CAP		BIT(18)
 88#define  VCO_CALIBRATION_START	BIT(19)
 89#define VCO_FREQOFFSETn(x)	AVPLL_CTRL(3 + (x))
 90#define  VCO_FREQOFFSET_MASK	0x7ffff
 91#define VCO_CTRL10		AVPLL_CTRL(10)
 92#define  VCO_POWERUP_CH1	BIT(20)
 93#define VCO_CTRL11		AVPLL_CTRL(11)
 94#define VCO_CTRL12		AVPLL_CTRL(12)
 95#define VCO_CTRL13		AVPLL_CTRL(13)
 96#define VCO_CTRL14		AVPLL_CTRL(14)
 97#define VCO_CTRL15		AVPLL_CTRL(15)
 98#define VCO_SYNC1n(x)		AVPLL_CTRL(15 + (x))
 99#define  VCO_SYNC1_MASK		0x1ffff
100#define VCO_SYNC2n(x)		AVPLL_CTRL(23 + (x))
101#define  VCO_SYNC2_MASK		0x1ffff
102#define VCO_CTRL30		AVPLL_CTRL(30)
103#define  VCO_DPLL_CH1_ENABLE	BIT(17)
104
105struct berlin2_avpll_vco {
106	struct clk_hw hw;
107	void __iomem *base;
108	u8 flags;
109};
110
111#define to_avpll_vco(hw) container_of(hw, struct berlin2_avpll_vco, hw)
112
113static int berlin2_avpll_vco_is_enabled(struct clk_hw *hw)
114{
115	struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
116	u32 reg;
117
118	reg = readl_relaxed(vco->base + VCO_CTRL0);
119	if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK)
120		reg >>= 4;
121
122	return !!(reg & VCO_POWERUP);
123}
124
125static int berlin2_avpll_vco_enable(struct clk_hw *hw)
126{
127	struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
128	u32 reg;
129
130	reg = readl_relaxed(vco->base + VCO_CTRL0);
131	if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK)
132		reg |= VCO_POWERUP << 4;
133	else
134		reg |= VCO_POWERUP;
135	writel_relaxed(reg, vco->base + VCO_CTRL0);
136
137	return 0;
138}
139
140static void berlin2_avpll_vco_disable(struct clk_hw *hw)
141{
142	struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
143	u32 reg;
144
145	reg = readl_relaxed(vco->base + VCO_CTRL0);
146	if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK)
147		reg &= ~(VCO_POWERUP << 4);
148	else
149		reg &= ~VCO_POWERUP;
150	writel_relaxed(reg, vco->base + VCO_CTRL0);
151}
152
153static u8 vco_refdiv[] = { 1, 2, 4, 3 };
154
155static unsigned long
156berlin2_avpll_vco_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
157{
158	struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
159	u32 reg, refdiv, fbdiv;
160	u64 freq = parent_rate;
161
162	/* AVPLL VCO frequency: Fvco = (Fref / refdiv) * fbdiv */
163	reg = readl_relaxed(vco->base + VCO_CTRL1);
164	refdiv = (reg & VCO_REFDIV_MASK) >> VCO_REFDIV_SHIFT;
165	refdiv = vco_refdiv[refdiv];
166	fbdiv = (reg & VCO_FBDIV_MASK) >> VCO_FBDIV_SHIFT;
167	freq *= fbdiv;
168	do_div(freq, refdiv);
169
170	return (unsigned long)freq;
171}
172
173static const struct clk_ops berlin2_avpll_vco_ops = {
174	.is_enabled	= berlin2_avpll_vco_is_enabled,
175	.enable		= berlin2_avpll_vco_enable,
176	.disable	= berlin2_avpll_vco_disable,
177	.recalc_rate	= berlin2_avpll_vco_recalc_rate,
178};
179
180int __init berlin2_avpll_vco_register(void __iomem *base,
181			       const char *name, const char *parent_name,
182			       u8 vco_flags, unsigned long flags)
183{
184	struct berlin2_avpll_vco *vco;
185	struct clk_init_data init;
186
187	vco = kzalloc(sizeof(*vco), GFP_KERNEL);
188	if (!vco)
189		return -ENOMEM;
190
191	vco->base = base;
192	vco->flags = vco_flags;
193	vco->hw.init = &init;
194	init.name = name;
195	init.ops = &berlin2_avpll_vco_ops;
196	init.parent_names = &parent_name;
197	init.num_parents = 1;
198	init.flags = flags;
199
200	return clk_hw_register(NULL, &vco->hw);
201}
202
203struct berlin2_avpll_channel {
204	struct clk_hw hw;
205	void __iomem *base;
206	u8 flags;
207	u8 index;
208};
209
210#define to_avpll_channel(hw) container_of(hw, struct berlin2_avpll_channel, hw)
211
212static int berlin2_avpll_channel_is_enabled(struct clk_hw *hw)
213{
214	struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
215	u32 reg;
216
217	if (ch->index == 7)
218		return 1;
219
220	reg = readl_relaxed(ch->base + VCO_CTRL10);
221	reg &= VCO_POWERUP_CH1 << ch->index;
222
223	return !!reg;
224}
225
226static int berlin2_avpll_channel_enable(struct clk_hw *hw)
227{
228	struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
229	u32 reg;
230
231	reg = readl_relaxed(ch->base + VCO_CTRL10);
232	reg |= VCO_POWERUP_CH1 << ch->index;
233	writel_relaxed(reg, ch->base + VCO_CTRL10);
234
235	return 0;
236}
237
238static void berlin2_avpll_channel_disable(struct clk_hw *hw)
239{
240	struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
241	u32 reg;
242
243	reg = readl_relaxed(ch->base + VCO_CTRL10);
244	reg &= ~(VCO_POWERUP_CH1 << ch->index);
245	writel_relaxed(reg, ch->base + VCO_CTRL10);
246}
247
248static const u8 div_hdmi[] = { 1, 2, 4, 6 };
249static const u8 div_av1[] = { 1, 2, 5, 5 };
250
251static unsigned long
252berlin2_avpll_channel_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
253{
254	struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
255	u32 reg, div_av2, div_av3, divider = 1;
256	u64 freq = parent_rate;
257
258	reg = readl_relaxed(ch->base + VCO_CTRL30);
259	if ((reg & (VCO_DPLL_CH1_ENABLE << ch->index)) == 0)
260		goto skip_div;
261
262	/*
263	 * Fch = (Fref * sync2) /
264	 *    (sync1 * div_hdmi * div_av1 * div_av2 * div_av3)
265	 */
266
267	reg = readl_relaxed(ch->base + VCO_SYNC1n(ch->index));
268	/* BG2/BG2CDs SYNC1 reg on AVPLL_B channel 1 is shifted by 4 */
269	if (ch->flags & BERLIN2_AVPLL_BIT_QUIRK && ch->index == 0)
270		reg >>= 4;
271	divider = reg & VCO_SYNC1_MASK;
272
273	reg = readl_relaxed(ch->base + VCO_SYNC2n(ch->index));
274	freq *= reg & VCO_SYNC2_MASK;
275
276	/* Channel 8 has no dividers */
277	if (ch->index == 7)
278		goto skip_div;
279
280	/*
281	 * HDMI divider start at VCO_CTRL11, bit 7; MSB is enable, lower 2 bit
282	 * determine divider.
283	 */
284	reg = readl_relaxed(ch->base + VCO_CTRL11) >> 7;
285	reg = (reg >> (ch->index * 3));
286	if (reg & BIT(2))
287		divider *= div_hdmi[reg & 0x3];
288
289	/*
290	 * AV1 divider start at VCO_CTRL11, bit 28; MSB is enable, lower 2 bit
291	 * determine divider.
292	 */
293	if (ch->index == 0) {
294		reg = readl_relaxed(ch->base + VCO_CTRL11);
295		reg >>= 28;
296	} else {
297		reg = readl_relaxed(ch->base + VCO_CTRL12);
298		reg >>= (ch->index-1) * 3;
299	}
300	if (reg & BIT(2))
301		divider *= div_av1[reg & 0x3];
302
303	/*
304	 * AV2 divider start at VCO_CTRL12, bit 18; each 7 bits wide,
305	 * zero is not a valid value.
306	 */
307	if (ch->index < 2) {
308		reg = readl_relaxed(ch->base + VCO_CTRL12);
309		reg >>= 18 + (ch->index * 7);
310	} else if (ch->index < 7) {
311		reg = readl_relaxed(ch->base + VCO_CTRL13);
312		reg >>= (ch->index - 2) * 7;
313	} else {
314		reg = readl_relaxed(ch->base + VCO_CTRL14);
315	}
316	div_av2 = reg & 0x7f;
317	if (div_av2)
318		divider *= div_av2;
319
320	/*
321	 * AV3 divider start at VCO_CTRL14, bit 7; each 4 bits wide.
322	 * AV2/AV3 form a fractional divider, where only specfic values for AV3
323	 * are allowed. AV3 != 0 divides by AV2/2, AV3=0 is bypass.
324	 */
325	if (ch->index < 6) {
326		reg = readl_relaxed(ch->base + VCO_CTRL14);
327		reg >>= 7 + (ch->index * 4);
328	} else {
329		reg = readl_relaxed(ch->base + VCO_CTRL15);
330	}
331	div_av3 = reg & 0xf;
332	if (div_av2 && div_av3)
333		freq *= 2;
334
335skip_div:
336	do_div(freq, divider);
337	return (unsigned long)freq;
338}
339
340static const struct clk_ops berlin2_avpll_channel_ops = {
341	.is_enabled	= berlin2_avpll_channel_is_enabled,
342	.enable		= berlin2_avpll_channel_enable,
343	.disable	= berlin2_avpll_channel_disable,
344	.recalc_rate	= berlin2_avpll_channel_recalc_rate,
345};
346
347/*
348 * Another nice quirk:
349 * On some production SoCs, AVPLL channels are scrambled with respect
350 * to the channel numbering in the registers but still referenced by
351 * their original channel numbers. We deal with it by having a flag
352 * and a translation table for the index.
353 */
354static const u8 quirk_index[] __initconst = { 0, 6, 5, 4, 3, 2, 1, 7 };
355
356int __init berlin2_avpll_channel_register(void __iomem *base,
357			   const char *name, u8 index, const char *parent_name,
358			   u8 ch_flags, unsigned long flags)
359{
360	struct berlin2_avpll_channel *ch;
361	struct clk_init_data init;
362
363	ch = kzalloc(sizeof(*ch), GFP_KERNEL);
364	if (!ch)
365		return -ENOMEM;
366
367	ch->base = base;
368	if (ch_flags & BERLIN2_AVPLL_SCRAMBLE_QUIRK)
369		ch->index = quirk_index[index];
370	else
371		ch->index = index;
372
373	ch->flags = ch_flags;
374	ch->hw.init = &init;
375	init.name = name;
376	init.ops = &berlin2_avpll_channel_ops;
377	init.parent_names = &parent_name;
378	init.num_parents = 1;
379	init.flags = flags;
380
381	return clk_hw_register(NULL, &ch->hw);
382}
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2014 Marvell Technology Group Ltd.
  4 *
  5 * Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com>
  6 * Alexandre Belloni <alexandre.belloni@free-electrons.com>
  7 */
  8#include <linux/clk-provider.h>
  9#include <linux/io.h>
 10#include <linux/kernel.h>
 11#include <linux/of.h>
 12#include <linux/of_address.h>
 13#include <linux/slab.h>
 14
 15#include "berlin2-avpll.h"
 16
 17/*
 18 * Berlin2 SoCs comprise up to two PLLs called AVPLL built upon a
 19 * VCO with 8 channels each, channel 8 is the odd-one-out and does
 20 * not provide mul/div.
 21 *
 22 * Unfortunately, its registers are not named but just numbered. To
 23 * get in at least some kind of structure, we split each AVPLL into
 24 * the VCOs and each channel into separate clock drivers.
 25 *
 26 * Also, here and there the VCO registers are a bit different with
 27 * respect to bit shifts. Make sure to add a comment for those.
 28 */
 29#define NUM_CHANNELS	8
 30
 31#define AVPLL_CTRL(x)		((x) * 0x4)
 32
 33#define VCO_CTRL0		AVPLL_CTRL(0)
 34/* BG2/BG2CDs VCO_B has an additional shift of 4 for its VCO_CTRL0 reg */
 35#define  VCO_RESET		BIT(0)
 36#define  VCO_POWERUP		BIT(1)
 37#define  VCO_INTERPOL_SHIFT	2
 38#define  VCO_INTERPOL_MASK	(0xf << VCO_INTERPOL_SHIFT)
 39#define  VCO_REG1V45_SEL_SHIFT	6
 40#define  VCO_REG1V45_SEL(x)	((x) << VCO_REG1V45_SEL_SHIFT)
 41#define  VCO_REG1V45_SEL_1V40	VCO_REG1V45_SEL(0)
 42#define  VCO_REG1V45_SEL_1V45	VCO_REG1V45_SEL(1)
 43#define  VCO_REG1V45_SEL_1V50	VCO_REG1V45_SEL(2)
 44#define  VCO_REG1V45_SEL_1V55	VCO_REG1V45_SEL(3)
 45#define  VCO_REG1V45_SEL_MASK	VCO_REG1V45_SEL(3)
 46#define  VCO_REG0V9_SEL_SHIFT	8
 47#define  VCO_REG0V9_SEL_MASK	(0xf << VCO_REG0V9_SEL_SHIFT)
 48#define  VCO_VTHCAL_SHIFT	12
 49#define  VCO_VTHCAL(x)		((x) << VCO_VTHCAL_SHIFT)
 50#define  VCO_VTHCAL_0V90	VCO_VTHCAL(0)
 51#define  VCO_VTHCAL_0V95	VCO_VTHCAL(1)
 52#define  VCO_VTHCAL_1V00	VCO_VTHCAL(2)
 53#define  VCO_VTHCAL_1V05	VCO_VTHCAL(3)
 54#define  VCO_VTHCAL_MASK	VCO_VTHCAL(3)
 55#define  VCO_KVCOEXT_SHIFT	14
 56#define  VCO_KVCOEXT_MASK	(0x3 << VCO_KVCOEXT_SHIFT)
 57#define  VCO_KVCOEXT_ENABLE	BIT(17)
 58#define  VCO_V2IEXT_SHIFT	18
 59#define  VCO_V2IEXT_MASK	(0xf << VCO_V2IEXT_SHIFT)
 60#define  VCO_V2IEXT_ENABLE	BIT(22)
 61#define  VCO_SPEED_SHIFT	23
 62#define  VCO_SPEED(x)		((x) << VCO_SPEED_SHIFT)
 63#define  VCO_SPEED_1G08_1G21	VCO_SPEED(0)
 64#define  VCO_SPEED_1G21_1G40	VCO_SPEED(1)
 65#define  VCO_SPEED_1G40_1G61	VCO_SPEED(2)
 66#define  VCO_SPEED_1G61_1G86	VCO_SPEED(3)
 67#define  VCO_SPEED_1G86_2G00	VCO_SPEED(4)
 68#define  VCO_SPEED_2G00_2G22	VCO_SPEED(5)
 69#define  VCO_SPEED_2G22		VCO_SPEED(6)
 70#define  VCO_SPEED_MASK		VCO_SPEED(0x7)
 71#define  VCO_CLKDET_ENABLE	BIT(26)
 72#define VCO_CTRL1		AVPLL_CTRL(1)
 73#define  VCO_REFDIV_SHIFT	0
 74#define  VCO_REFDIV(x)		((x) << VCO_REFDIV_SHIFT)
 75#define  VCO_REFDIV_1		VCO_REFDIV(0)
 76#define  VCO_REFDIV_2		VCO_REFDIV(1)
 77#define  VCO_REFDIV_4		VCO_REFDIV(2)
 78#define  VCO_REFDIV_3		VCO_REFDIV(3)
 79#define  VCO_REFDIV_MASK	VCO_REFDIV(0x3f)
 80#define  VCO_FBDIV_SHIFT	6
 81#define  VCO_FBDIV(x)		((x) << VCO_FBDIV_SHIFT)
 82#define  VCO_FBDIV_MASK		VCO_FBDIV(0xff)
 83#define  VCO_ICP_SHIFT		14
 84/* PLL Charge Pump Current = 10uA * (x + 1) */
 85#define  VCO_ICP(x)		((x) << VCO_ICP_SHIFT)
 86#define  VCO_ICP_MASK		VCO_ICP(0xf)
 87#define  VCO_LOAD_CAP		BIT(18)
 88#define  VCO_CALIBRATION_START	BIT(19)
 89#define VCO_FREQOFFSETn(x)	AVPLL_CTRL(3 + (x))
 90#define  VCO_FREQOFFSET_MASK	0x7ffff
 91#define VCO_CTRL10		AVPLL_CTRL(10)
 92#define  VCO_POWERUP_CH1	BIT(20)
 93#define VCO_CTRL11		AVPLL_CTRL(11)
 94#define VCO_CTRL12		AVPLL_CTRL(12)
 95#define VCO_CTRL13		AVPLL_CTRL(13)
 96#define VCO_CTRL14		AVPLL_CTRL(14)
 97#define VCO_CTRL15		AVPLL_CTRL(15)
 98#define VCO_SYNC1n(x)		AVPLL_CTRL(15 + (x))
 99#define  VCO_SYNC1_MASK		0x1ffff
100#define VCO_SYNC2n(x)		AVPLL_CTRL(23 + (x))
101#define  VCO_SYNC2_MASK		0x1ffff
102#define VCO_CTRL30		AVPLL_CTRL(30)
103#define  VCO_DPLL_CH1_ENABLE	BIT(17)
104
105struct berlin2_avpll_vco {
106	struct clk_hw hw;
107	void __iomem *base;
108	u8 flags;
109};
110
111#define to_avpll_vco(hw) container_of(hw, struct berlin2_avpll_vco, hw)
112
113static int berlin2_avpll_vco_is_enabled(struct clk_hw *hw)
114{
115	struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
116	u32 reg;
117
118	reg = readl_relaxed(vco->base + VCO_CTRL0);
119	if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK)
120		reg >>= 4;
121
122	return !!(reg & VCO_POWERUP);
123}
124
125static int berlin2_avpll_vco_enable(struct clk_hw *hw)
126{
127	struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
128	u32 reg;
129
130	reg = readl_relaxed(vco->base + VCO_CTRL0);
131	if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK)
132		reg |= VCO_POWERUP << 4;
133	else
134		reg |= VCO_POWERUP;
135	writel_relaxed(reg, vco->base + VCO_CTRL0);
136
137	return 0;
138}
139
140static void berlin2_avpll_vco_disable(struct clk_hw *hw)
141{
142	struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
143	u32 reg;
144
145	reg = readl_relaxed(vco->base + VCO_CTRL0);
146	if (vco->flags & BERLIN2_AVPLL_BIT_QUIRK)
147		reg &= ~(VCO_POWERUP << 4);
148	else
149		reg &= ~VCO_POWERUP;
150	writel_relaxed(reg, vco->base + VCO_CTRL0);
151}
152
153static u8 vco_refdiv[] = { 1, 2, 4, 3 };
154
155static unsigned long
156berlin2_avpll_vco_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
157{
158	struct berlin2_avpll_vco *vco = to_avpll_vco(hw);
159	u32 reg, refdiv, fbdiv;
160	u64 freq = parent_rate;
161
162	/* AVPLL VCO frequency: Fvco = (Fref / refdiv) * fbdiv */
163	reg = readl_relaxed(vco->base + VCO_CTRL1);
164	refdiv = (reg & VCO_REFDIV_MASK) >> VCO_REFDIV_SHIFT;
165	refdiv = vco_refdiv[refdiv];
166	fbdiv = (reg & VCO_FBDIV_MASK) >> VCO_FBDIV_SHIFT;
167	freq *= fbdiv;
168	do_div(freq, refdiv);
169
170	return (unsigned long)freq;
171}
172
173static const struct clk_ops berlin2_avpll_vco_ops = {
174	.is_enabled	= berlin2_avpll_vco_is_enabled,
175	.enable		= berlin2_avpll_vco_enable,
176	.disable	= berlin2_avpll_vco_disable,
177	.recalc_rate	= berlin2_avpll_vco_recalc_rate,
178};
179
180int __init berlin2_avpll_vco_register(void __iomem *base,
181			       const char *name, const char *parent_name,
182			       u8 vco_flags, unsigned long flags)
183{
184	struct berlin2_avpll_vco *vco;
185	struct clk_init_data init;
186
187	vco = kzalloc(sizeof(*vco), GFP_KERNEL);
188	if (!vco)
189		return -ENOMEM;
190
191	vco->base = base;
192	vco->flags = vco_flags;
193	vco->hw.init = &init;
194	init.name = name;
195	init.ops = &berlin2_avpll_vco_ops;
196	init.parent_names = &parent_name;
197	init.num_parents = 1;
198	init.flags = flags;
199
200	return clk_hw_register(NULL, &vco->hw);
201}
202
203struct berlin2_avpll_channel {
204	struct clk_hw hw;
205	void __iomem *base;
206	u8 flags;
207	u8 index;
208};
209
210#define to_avpll_channel(hw) container_of(hw, struct berlin2_avpll_channel, hw)
211
212static int berlin2_avpll_channel_is_enabled(struct clk_hw *hw)
213{
214	struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
215	u32 reg;
216
217	if (ch->index == 7)
218		return 1;
219
220	reg = readl_relaxed(ch->base + VCO_CTRL10);
221	reg &= VCO_POWERUP_CH1 << ch->index;
222
223	return !!reg;
224}
225
226static int berlin2_avpll_channel_enable(struct clk_hw *hw)
227{
228	struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
229	u32 reg;
230
231	reg = readl_relaxed(ch->base + VCO_CTRL10);
232	reg |= VCO_POWERUP_CH1 << ch->index;
233	writel_relaxed(reg, ch->base + VCO_CTRL10);
234
235	return 0;
236}
237
238static void berlin2_avpll_channel_disable(struct clk_hw *hw)
239{
240	struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
241	u32 reg;
242
243	reg = readl_relaxed(ch->base + VCO_CTRL10);
244	reg &= ~(VCO_POWERUP_CH1 << ch->index);
245	writel_relaxed(reg, ch->base + VCO_CTRL10);
246}
247
248static const u8 div_hdmi[] = { 1, 2, 4, 6 };
249static const u8 div_av1[] = { 1, 2, 5, 5 };
250
251static unsigned long
252berlin2_avpll_channel_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
253{
254	struct berlin2_avpll_channel *ch = to_avpll_channel(hw);
255	u32 reg, div_av2, div_av3, divider = 1;
256	u64 freq = parent_rate;
257
258	reg = readl_relaxed(ch->base + VCO_CTRL30);
259	if ((reg & (VCO_DPLL_CH1_ENABLE << ch->index)) == 0)
260		goto skip_div;
261
262	/*
263	 * Fch = (Fref * sync2) /
264	 *    (sync1 * div_hdmi * div_av1 * div_av2 * div_av3)
265	 */
266
267	reg = readl_relaxed(ch->base + VCO_SYNC1n(ch->index));
268	/* BG2/BG2CDs SYNC1 reg on AVPLL_B channel 1 is shifted by 4 */
269	if (ch->flags & BERLIN2_AVPLL_BIT_QUIRK && ch->index == 0)
270		reg >>= 4;
271	divider = reg & VCO_SYNC1_MASK;
272
273	reg = readl_relaxed(ch->base + VCO_SYNC2n(ch->index));
274	freq *= reg & VCO_SYNC2_MASK;
275
276	/* Channel 8 has no dividers */
277	if (ch->index == 7)
278		goto skip_div;
279
280	/*
281	 * HDMI divider start at VCO_CTRL11, bit 7; MSB is enable, lower 2 bit
282	 * determine divider.
283	 */
284	reg = readl_relaxed(ch->base + VCO_CTRL11) >> 7;
285	reg = (reg >> (ch->index * 3));
286	if (reg & BIT(2))
287		divider *= div_hdmi[reg & 0x3];
288
289	/*
290	 * AV1 divider start at VCO_CTRL11, bit 28; MSB is enable, lower 2 bit
291	 * determine divider.
292	 */
293	if (ch->index == 0) {
294		reg = readl_relaxed(ch->base + VCO_CTRL11);
295		reg >>= 28;
296	} else {
297		reg = readl_relaxed(ch->base + VCO_CTRL12);
298		reg >>= (ch->index-1) * 3;
299	}
300	if (reg & BIT(2))
301		divider *= div_av1[reg & 0x3];
302
303	/*
304	 * AV2 divider start at VCO_CTRL12, bit 18; each 7 bits wide,
305	 * zero is not a valid value.
306	 */
307	if (ch->index < 2) {
308		reg = readl_relaxed(ch->base + VCO_CTRL12);
309		reg >>= 18 + (ch->index * 7);
310	} else if (ch->index < 7) {
311		reg = readl_relaxed(ch->base + VCO_CTRL13);
312		reg >>= (ch->index - 2) * 7;
313	} else {
314		reg = readl_relaxed(ch->base + VCO_CTRL14);
315	}
316	div_av2 = reg & 0x7f;
317	if (div_av2)
318		divider *= div_av2;
319
320	/*
321	 * AV3 divider start at VCO_CTRL14, bit 7; each 4 bits wide.
322	 * AV2/AV3 form a fractional divider, where only specfic values for AV3
323	 * are allowed. AV3 != 0 divides by AV2/2, AV3=0 is bypass.
324	 */
325	if (ch->index < 6) {
326		reg = readl_relaxed(ch->base + VCO_CTRL14);
327		reg >>= 7 + (ch->index * 4);
328	} else {
329		reg = readl_relaxed(ch->base + VCO_CTRL15);
330	}
331	div_av3 = reg & 0xf;
332	if (div_av2 && div_av3)
333		freq *= 2;
334
335skip_div:
336	do_div(freq, divider);
337	return (unsigned long)freq;
338}
339
340static const struct clk_ops berlin2_avpll_channel_ops = {
341	.is_enabled	= berlin2_avpll_channel_is_enabled,
342	.enable		= berlin2_avpll_channel_enable,
343	.disable	= berlin2_avpll_channel_disable,
344	.recalc_rate	= berlin2_avpll_channel_recalc_rate,
345};
346
347/*
348 * Another nice quirk:
349 * On some production SoCs, AVPLL channels are scrambled with respect
350 * to the channel numbering in the registers but still referenced by
351 * their original channel numbers. We deal with it by having a flag
352 * and a translation table for the index.
353 */
354static const u8 quirk_index[] __initconst = { 0, 6, 5, 4, 3, 2, 1, 7 };
355
356int __init berlin2_avpll_channel_register(void __iomem *base,
357			   const char *name, u8 index, const char *parent_name,
358			   u8 ch_flags, unsigned long flags)
359{
360	struct berlin2_avpll_channel *ch;
361	struct clk_init_data init;
362
363	ch = kzalloc(sizeof(*ch), GFP_KERNEL);
364	if (!ch)
365		return -ENOMEM;
366
367	ch->base = base;
368	if (ch_flags & BERLIN2_AVPLL_SCRAMBLE_QUIRK)
369		ch->index = quirk_index[index];
370	else
371		ch->index = index;
372
373	ch->flags = ch_flags;
374	ch->hw.init = &init;
375	init.name = name;
376	init.ops = &berlin2_avpll_channel_ops;
377	init.parent_names = &parent_name;
378	init.num_parents = 1;
379	init.flags = flags;
380
381	return clk_hw_register(NULL, &ch->hw);
382}