Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *	Intel SMP support routines.
  4 *
  5 *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
  6 *	(c) 1998-99, 2000, 2009 Ingo Molnar <mingo@redhat.com>
  7 *      (c) 2002,2003 Andi Kleen, SuSE Labs.
  8 *
  9 *	i386 and x86_64 integration by Glauber Costa <gcosta@redhat.com>
 10 */
 11
 12#include <linux/init.h>
 13
 14#include <linux/mm.h>
 15#include <linux/delay.h>
 16#include <linux/spinlock.h>
 17#include <linux/export.h>
 18#include <linux/kernel_stat.h>
 19#include <linux/mc146818rtc.h>
 20#include <linux/cache.h>
 21#include <linux/interrupt.h>
 22#include <linux/cpu.h>
 23#include <linux/gfp.h>
 24#include <linux/kexec.h>
 25
 26#include <asm/mtrr.h>
 27#include <asm/tlbflush.h>
 28#include <asm/mmu_context.h>
 29#include <asm/proto.h>
 30#include <asm/apic.h>
 31#include <asm/cpu.h>
 32#include <asm/idtentry.h>
 33#include <asm/nmi.h>
 34#include <asm/mce.h>
 35#include <asm/trace/irq_vectors.h>
 36#include <asm/kexec.h>
 37#include <asm/reboot.h>
 38
 39/*
 40 *	Some notes on x86 processor bugs affecting SMP operation:
 41 *
 42 *	Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
 43 *	The Linux implications for SMP are handled as follows:
 44 *
 45 *	Pentium III / [Xeon]
 46 *		None of the E1AP-E3AP errata are visible to the user.
 47 *
 48 *	E1AP.	see PII A1AP
 49 *	E2AP.	see PII A2AP
 50 *	E3AP.	see PII A3AP
 51 *
 52 *	Pentium II / [Xeon]
 53 *		None of the A1AP-A3AP errata are visible to the user.
 54 *
 55 *	A1AP.	see PPro 1AP
 56 *	A2AP.	see PPro 2AP
 57 *	A3AP.	see PPro 7AP
 58 *
 59 *	Pentium Pro
 60 *		None of 1AP-9AP errata are visible to the normal user,
 61 *	except occasional delivery of 'spurious interrupt' as trap #15.
 62 *	This is very rare and a non-problem.
 63 *
 64 *	1AP.	Linux maps APIC as non-cacheable
 65 *	2AP.	worked around in hardware
 66 *	3AP.	fixed in C0 and above steppings microcode update.
 67 *		Linux does not use excessive STARTUP_IPIs.
 68 *	4AP.	worked around in hardware
 69 *	5AP.	symmetric IO mode (normal Linux operation) not affected.
 70 *		'noapic' mode has vector 0xf filled out properly.
 71 *	6AP.	'noapic' mode might be affected - fixed in later steppings
 72 *	7AP.	We do not assume writes to the LVT deasserting IRQs
 73 *	8AP.	We do not enable low power mode (deep sleep) during MP bootup
 74 *	9AP.	We do not use mixed mode
 75 *
 76 *	Pentium
 77 *		There is a marginal case where REP MOVS on 100MHz SMP
 78 *	machines with B stepping processors can fail. XXX should provide
 79 *	an L1cache=Writethrough or L1cache=off option.
 80 *
 81 *		B stepping CPUs may hang. There are hardware work arounds
 82 *	for this. We warn about it in case your board doesn't have the work
 83 *	arounds. Basically that's so I can tell anyone with a B stepping
 84 *	CPU and SMP problems "tough".
 85 *
 86 *	Specific items [From Pentium Processor Specification Update]
 87 *
 88 *	1AP.	Linux doesn't use remote read
 89 *	2AP.	Linux doesn't trust APIC errors
 90 *	3AP.	We work around this
 91 *	4AP.	Linux never generated 3 interrupts of the same priority
 92 *		to cause a lost local interrupt.
 93 *	5AP.	Remote read is never used
 94 *	6AP.	not affected - worked around in hardware
 95 *	7AP.	not affected - worked around in hardware
 96 *	8AP.	worked around in hardware - we get explicit CS errors if not
 97 *	9AP.	only 'noapic' mode affected. Might generate spurious
 98 *		interrupts, we log only the first one and count the
 99 *		rest silently.
100 *	10AP.	not affected - worked around in hardware
101 *	11AP.	Linux reads the APIC between writes to avoid this, as per
102 *		the documentation. Make sure you preserve this as it affects
103 *		the C stepping chips too.
104 *	12AP.	not affected - worked around in hardware
105 *	13AP.	not affected - worked around in hardware
106 *	14AP.	we always deassert INIT during bootup
107 *	15AP.	not affected - worked around in hardware
108 *	16AP.	not affected - worked around in hardware
109 *	17AP.	not affected - worked around in hardware
110 *	18AP.	not affected - worked around in hardware
111 *	19AP.	not affected - worked around in BIOS
112 *
113 *	If this sounds worrying believe me these bugs are either ___RARE___,
114 *	or are signal timing bugs worked around in hardware and there's
115 *	about nothing of note with C stepping upwards.
116 */
117
118static atomic_t stopping_cpu = ATOMIC_INIT(-1);
119static bool smp_no_nmi_ipi = false;
120
121static int smp_stop_nmi_callback(unsigned int val, struct pt_regs *regs)
122{
123	/* We are registered on stopping cpu too, avoid spurious NMI */
124	if (raw_smp_processor_id() == atomic_read(&stopping_cpu))
125		return NMI_HANDLED;
126
127	cpu_emergency_disable_virtualization();
128	stop_this_cpu(NULL);
129
130	return NMI_HANDLED;
131}
132
133/*
134 * this function calls the 'stop' function on all other CPUs in the system.
135 */
136DEFINE_IDTENTRY_SYSVEC(sysvec_reboot)
137{
138	apic_eoi();
139	cpu_emergency_disable_virtualization();
140	stop_this_cpu(NULL);
141}
142
143static int register_stop_handler(void)
144{
145	return register_nmi_handler(NMI_LOCAL, smp_stop_nmi_callback,
146				    NMI_FLAG_FIRST, "smp_stop");
147}
148
149static void native_stop_other_cpus(int wait)
150{
151	unsigned int old_cpu, this_cpu;
152	unsigned long flags, timeout;
153
154	if (reboot_force)
155		return;
156
157	/* Only proceed if this is the first CPU to reach this code */
158	old_cpu = -1;
159	this_cpu = smp_processor_id();
160	if (!atomic_try_cmpxchg(&stopping_cpu, &old_cpu, this_cpu))
161		return;
162
163	/* For kexec, ensure that offline CPUs are out of MWAIT and in HLT */
164	if (kexec_in_progress)
165		smp_kick_mwait_play_dead();
166
167	/*
168	 * 1) Send an IPI on the reboot vector to all other CPUs.
169	 *
170	 *    The other CPUs should react on it after leaving critical
171	 *    sections and re-enabling interrupts. They might still hold
172	 *    locks, but there is nothing which can be done about that.
173	 *
174	 * 2) Wait for all other CPUs to report that they reached the
175	 *    HLT loop in stop_this_cpu()
176	 *
177	 * 3) If #2 timed out send an NMI to the CPUs which did not
178	 *    yet report
179	 *
180	 * 4) Wait for all other CPUs to report that they reached the
181	 *    HLT loop in stop_this_cpu()
182	 *
183	 * #3 can obviously race against a CPU reaching the HLT loop late.
184	 * That CPU will have reported already and the "have all CPUs
185	 * reached HLT" condition will be true despite the fact that the
186	 * other CPU is still handling the NMI. Again, there is no
187	 * protection against that as "disabled" APICs still respond to
188	 * NMIs.
189	 */
190	cpumask_copy(&cpus_stop_mask, cpu_online_mask);
191	cpumask_clear_cpu(this_cpu, &cpus_stop_mask);
 
 
 
 
 
192
193	if (!cpumask_empty(&cpus_stop_mask)) {
194		apic_send_IPI_allbutself(REBOOT_VECTOR);
195
196		/*
197		 * Don't wait longer than a second for IPI completion. The
198		 * wait request is not checked here because that would
199		 * prevent an NMI shutdown attempt in case that not all
200		 * CPUs reach shutdown state.
201		 */
202		timeout = USEC_PER_SEC;
203		while (!cpumask_empty(&cpus_stop_mask) && timeout--)
204			udelay(1);
205	}
206
207	/* if the REBOOT_VECTOR didn't work, try with the NMI */
208	if (!cpumask_empty(&cpus_stop_mask)) {
209		/*
210		 * If NMI IPI is enabled, try to register the stop handler
211		 * and send the IPI. In any case try to wait for the other
212		 * CPUs to stop.
213		 */
214		if (!smp_no_nmi_ipi && !register_stop_handler()) {
215			unsigned int cpu;
 
216
217			pr_emerg("Shutting down cpus with NMI\n");
218
219			for_each_cpu(cpu, &cpus_stop_mask)
220				__apic_send_IPI(cpu, NMI_VECTOR);
221		}
222		/*
223		 * Don't wait longer than 10 ms if the caller didn't
224		 * request it. If wait is true, the machine hangs here if
225		 * one or more CPUs do not reach shutdown state.
226		 */
227		timeout = USEC_PER_MSEC * 10;
228		while (!cpumask_empty(&cpus_stop_mask) && (wait || timeout--))
229			udelay(1);
230	}
231
232	local_irq_save(flags);
233	disable_local_APIC();
234	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
235	local_irq_restore(flags);
236
237	/*
238	 * Ensure that the cpus_stop_mask cache lines are invalidated on
239	 * the other CPUs. See comment vs. SME in stop_this_cpu().
240	 */
241	cpumask_clear(&cpus_stop_mask);
242}
243
244/*
245 * Reschedule call back. KVM uses this interrupt to force a cpu out of
246 * guest mode.
247 */
248DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_reschedule_ipi)
249{
250	apic_eoi();
251	trace_reschedule_entry(RESCHEDULE_VECTOR);
252	inc_irq_stat(irq_resched_count);
253	scheduler_ipi();
254	trace_reschedule_exit(RESCHEDULE_VECTOR);
255}
256
257DEFINE_IDTENTRY_SYSVEC(sysvec_call_function)
258{
259	apic_eoi();
260	trace_call_function_entry(CALL_FUNCTION_VECTOR);
261	inc_irq_stat(irq_call_count);
262	generic_smp_call_function_interrupt();
263	trace_call_function_exit(CALL_FUNCTION_VECTOR);
264}
265
266DEFINE_IDTENTRY_SYSVEC(sysvec_call_function_single)
267{
268	apic_eoi();
269	trace_call_function_single_entry(CALL_FUNCTION_SINGLE_VECTOR);
270	inc_irq_stat(irq_call_count);
271	generic_smp_call_function_single_interrupt();
272	trace_call_function_single_exit(CALL_FUNCTION_SINGLE_VECTOR);
273}
274
275static int __init nonmi_ipi_setup(char *str)
276{
277	smp_no_nmi_ipi = true;
278	return 1;
279}
280
281__setup("nonmi_ipi", nonmi_ipi_setup);
282
283struct smp_ops smp_ops = {
284	.smp_prepare_boot_cpu	= native_smp_prepare_boot_cpu,
285	.smp_prepare_cpus	= native_smp_prepare_cpus,
286	.smp_cpus_done		= native_smp_cpus_done,
287
288	.stop_other_cpus	= native_stop_other_cpus,
289#if defined(CONFIG_CRASH_DUMP)
290	.crash_stop_other_cpus	= kdump_nmi_shootdown_cpus,
291#endif
292	.smp_send_reschedule	= native_smp_send_reschedule,
293
294	.kick_ap_alive		= native_kick_ap,
 
295	.cpu_disable		= native_cpu_disable,
296	.play_dead		= native_play_dead,
297
298	.send_call_func_ipi	= native_send_call_func_ipi,
299	.send_call_func_single_ipi = native_send_call_func_single_ipi,
300};
301EXPORT_SYMBOL_GPL(smp_ops);
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *	Intel SMP support routines.
  4 *
  5 *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
  6 *	(c) 1998-99, 2000, 2009 Ingo Molnar <mingo@redhat.com>
  7 *      (c) 2002,2003 Andi Kleen, SuSE Labs.
  8 *
  9 *	i386 and x86_64 integration by Glauber Costa <gcosta@redhat.com>
 10 */
 11
 12#include <linux/init.h>
 13
 14#include <linux/mm.h>
 15#include <linux/delay.h>
 16#include <linux/spinlock.h>
 17#include <linux/export.h>
 18#include <linux/kernel_stat.h>
 19#include <linux/mc146818rtc.h>
 20#include <linux/cache.h>
 21#include <linux/interrupt.h>
 22#include <linux/cpu.h>
 23#include <linux/gfp.h>
 
 24
 25#include <asm/mtrr.h>
 26#include <asm/tlbflush.h>
 27#include <asm/mmu_context.h>
 28#include <asm/proto.h>
 29#include <asm/apic.h>
 
 30#include <asm/idtentry.h>
 31#include <asm/nmi.h>
 32#include <asm/mce.h>
 33#include <asm/trace/irq_vectors.h>
 34#include <asm/kexec.h>
 35#include <asm/virtext.h>
 36
 37/*
 38 *	Some notes on x86 processor bugs affecting SMP operation:
 39 *
 40 *	Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
 41 *	The Linux implications for SMP are handled as follows:
 42 *
 43 *	Pentium III / [Xeon]
 44 *		None of the E1AP-E3AP errata are visible to the user.
 45 *
 46 *	E1AP.	see PII A1AP
 47 *	E2AP.	see PII A2AP
 48 *	E3AP.	see PII A3AP
 49 *
 50 *	Pentium II / [Xeon]
 51 *		None of the A1AP-A3AP errata are visible to the user.
 52 *
 53 *	A1AP.	see PPro 1AP
 54 *	A2AP.	see PPro 2AP
 55 *	A3AP.	see PPro 7AP
 56 *
 57 *	Pentium Pro
 58 *		None of 1AP-9AP errata are visible to the normal user,
 59 *	except occasional delivery of 'spurious interrupt' as trap #15.
 60 *	This is very rare and a non-problem.
 61 *
 62 *	1AP.	Linux maps APIC as non-cacheable
 63 *	2AP.	worked around in hardware
 64 *	3AP.	fixed in C0 and above steppings microcode update.
 65 *		Linux does not use excessive STARTUP_IPIs.
 66 *	4AP.	worked around in hardware
 67 *	5AP.	symmetric IO mode (normal Linux operation) not affected.
 68 *		'noapic' mode has vector 0xf filled out properly.
 69 *	6AP.	'noapic' mode might be affected - fixed in later steppings
 70 *	7AP.	We do not assume writes to the LVT deassering IRQs
 71 *	8AP.	We do not enable low power mode (deep sleep) during MP bootup
 72 *	9AP.	We do not use mixed mode
 73 *
 74 *	Pentium
 75 *		There is a marginal case where REP MOVS on 100MHz SMP
 76 *	machines with B stepping processors can fail. XXX should provide
 77 *	an L1cache=Writethrough or L1cache=off option.
 78 *
 79 *		B stepping CPUs may hang. There are hardware work arounds
 80 *	for this. We warn about it in case your board doesn't have the work
 81 *	arounds. Basically that's so I can tell anyone with a B stepping
 82 *	CPU and SMP problems "tough".
 83 *
 84 *	Specific items [From Pentium Processor Specification Update]
 85 *
 86 *	1AP.	Linux doesn't use remote read
 87 *	2AP.	Linux doesn't trust APIC errors
 88 *	3AP.	We work around this
 89 *	4AP.	Linux never generated 3 interrupts of the same priority
 90 *		to cause a lost local interrupt.
 91 *	5AP.	Remote read is never used
 92 *	6AP.	not affected - worked around in hardware
 93 *	7AP.	not affected - worked around in hardware
 94 *	8AP.	worked around in hardware - we get explicit CS errors if not
 95 *	9AP.	only 'noapic' mode affected. Might generate spurious
 96 *		interrupts, we log only the first one and count the
 97 *		rest silently.
 98 *	10AP.	not affected - worked around in hardware
 99 *	11AP.	Linux reads the APIC between writes to avoid this, as per
100 *		the documentation. Make sure you preserve this as it affects
101 *		the C stepping chips too.
102 *	12AP.	not affected - worked around in hardware
103 *	13AP.	not affected - worked around in hardware
104 *	14AP.	we always deassert INIT during bootup
105 *	15AP.	not affected - worked around in hardware
106 *	16AP.	not affected - worked around in hardware
107 *	17AP.	not affected - worked around in hardware
108 *	18AP.	not affected - worked around in hardware
109 *	19AP.	not affected - worked around in BIOS
110 *
111 *	If this sounds worrying believe me these bugs are either ___RARE___,
112 *	or are signal timing bugs worked around in hardware and there's
113 *	about nothing of note with C stepping upwards.
114 */
115
116static atomic_t stopping_cpu = ATOMIC_INIT(-1);
117static bool smp_no_nmi_ipi = false;
118
119static int smp_stop_nmi_callback(unsigned int val, struct pt_regs *regs)
120{
121	/* We are registered on stopping cpu too, avoid spurious NMI */
122	if (raw_smp_processor_id() == atomic_read(&stopping_cpu))
123		return NMI_HANDLED;
124
125	cpu_emergency_vmxoff();
126	stop_this_cpu(NULL);
127
128	return NMI_HANDLED;
129}
130
131/*
132 * this function calls the 'stop' function on all other CPUs in the system.
133 */
134DEFINE_IDTENTRY_SYSVEC(sysvec_reboot)
135{
136	ack_APIC_irq();
137	cpu_emergency_vmxoff();
138	stop_this_cpu(NULL);
139}
140
141static int register_stop_handler(void)
142{
143	return register_nmi_handler(NMI_LOCAL, smp_stop_nmi_callback,
144				    NMI_FLAG_FIRST, "smp_stop");
145}
146
147static void native_stop_other_cpus(int wait)
148{
149	unsigned long flags;
150	unsigned long timeout;
151
152	if (reboot_force)
153		return;
154
155	/*
156	 * Use an own vector here because smp_call_function
157	 * does lots of things not suitable in a panic situation.
158	 */
 
 
 
 
 
159
160	/*
161	 * We start by using the REBOOT_VECTOR irq.
162	 * The irq is treated as a sync point to allow critical
163	 * regions of code on other cpus to release their spin locks
164	 * and re-enable irqs.  Jumping straight to an NMI might
165	 * accidentally cause deadlocks with further shutdown/panic
166	 * code.  By syncing, we give the cpus up to one second to
167	 * finish their work before we force them off with the NMI.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168	 */
169	if (num_online_cpus() > 1) {
170		/* did someone beat us here? */
171		if (atomic_cmpxchg(&stopping_cpu, -1, safe_smp_processor_id()) != -1)
172			return;
173
174		/* sync above data before sending IRQ */
175		wmb();
176
 
177		apic_send_IPI_allbutself(REBOOT_VECTOR);
178
179		/*
180		 * Don't wait longer than a second for IPI completion. The
181		 * wait request is not checked here because that would
182		 * prevent an NMI shutdown attempt in case that not all
183		 * CPUs reach shutdown state.
184		 */
185		timeout = USEC_PER_SEC;
186		while (num_online_cpus() > 1 && timeout--)
187			udelay(1);
188	}
189
190	/* if the REBOOT_VECTOR didn't work, try with the NMI */
191	if (num_online_cpus() > 1) {
192		/*
193		 * If NMI IPI is enabled, try to register the stop handler
194		 * and send the IPI. In any case try to wait for the other
195		 * CPUs to stop.
196		 */
197		if (!smp_no_nmi_ipi && !register_stop_handler()) {
198			/* Sync above data before sending IRQ */
199			wmb();
200
201			pr_emerg("Shutting down cpus with NMI\n");
202
203			apic_send_IPI_allbutself(NMI_VECTOR);
 
204		}
205		/*
206		 * Don't wait longer than 10 ms if the caller didn't
207		 * reqeust it. If wait is true, the machine hangs here if
208		 * one or more CPUs do not reach shutdown state.
209		 */
210		timeout = USEC_PER_MSEC * 10;
211		while (num_online_cpus() > 1 && (wait || timeout--))
212			udelay(1);
213	}
214
215	local_irq_save(flags);
216	disable_local_APIC();
217	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
218	local_irq_restore(flags);
 
 
 
 
 
 
219}
220
221/*
222 * Reschedule call back. KVM uses this interrupt to force a cpu out of
223 * guest mode.
224 */
225DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_reschedule_ipi)
226{
227	ack_APIC_irq();
228	trace_reschedule_entry(RESCHEDULE_VECTOR);
229	inc_irq_stat(irq_resched_count);
230	scheduler_ipi();
231	trace_reschedule_exit(RESCHEDULE_VECTOR);
232}
233
234DEFINE_IDTENTRY_SYSVEC(sysvec_call_function)
235{
236	ack_APIC_irq();
237	trace_call_function_entry(CALL_FUNCTION_VECTOR);
238	inc_irq_stat(irq_call_count);
239	generic_smp_call_function_interrupt();
240	trace_call_function_exit(CALL_FUNCTION_VECTOR);
241}
242
243DEFINE_IDTENTRY_SYSVEC(sysvec_call_function_single)
244{
245	ack_APIC_irq();
246	trace_call_function_single_entry(CALL_FUNCTION_SINGLE_VECTOR);
247	inc_irq_stat(irq_call_count);
248	generic_smp_call_function_single_interrupt();
249	trace_call_function_single_exit(CALL_FUNCTION_SINGLE_VECTOR);
250}
251
252static int __init nonmi_ipi_setup(char *str)
253{
254	smp_no_nmi_ipi = true;
255	return 1;
256}
257
258__setup("nonmi_ipi", nonmi_ipi_setup);
259
260struct smp_ops smp_ops = {
261	.smp_prepare_boot_cpu	= native_smp_prepare_boot_cpu,
262	.smp_prepare_cpus	= native_smp_prepare_cpus,
263	.smp_cpus_done		= native_smp_cpus_done,
264
265	.stop_other_cpus	= native_stop_other_cpus,
266#if defined(CONFIG_KEXEC_CORE)
267	.crash_stop_other_cpus	= kdump_nmi_shootdown_cpus,
268#endif
269	.smp_send_reschedule	= native_smp_send_reschedule,
270
271	.cpu_up			= native_cpu_up,
272	.cpu_die		= native_cpu_die,
273	.cpu_disable		= native_cpu_disable,
274	.play_dead		= native_play_dead,
275
276	.send_call_func_ipi	= native_send_call_func_ipi,
277	.send_call_func_single_ipi = native_send_call_func_single_ipi,
278};
279EXPORT_SYMBOL_GPL(smp_ops);