Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * handle transition of Linux booting another kernel
  4 * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
  5 */
  6
  7#define pr_fmt(fmt)	"kexec: " fmt
  8
  9#include <linux/mm.h>
 10#include <linux/kexec.h>
 11#include <linux/string.h>
 12#include <linux/gfp.h>
 13#include <linux/reboot.h>
 14#include <linux/numa.h>
 15#include <linux/ftrace.h>
 16#include <linux/io.h>
 17#include <linux/suspend.h>
 18#include <linux/vmalloc.h>
 19#include <linux/efi.h>
 20#include <linux/cc_platform.h>
 21
 22#include <asm/init.h>
 23#include <asm/tlbflush.h>
 24#include <asm/mmu_context.h>
 25#include <asm/io_apic.h>
 26#include <asm/debugreg.h>
 27#include <asm/kexec-bzimage64.h>
 28#include <asm/setup.h>
 29#include <asm/set_memory.h>
 30#include <asm/cpu.h>
 31#include <asm/efi.h>
 32
 33#ifdef CONFIG_ACPI
 34/*
 35 * Used while adding mapping for ACPI tables.
 36 * Can be reused when other iomem regions need be mapped
 37 */
 38struct init_pgtable_data {
 39	struct x86_mapping_info *info;
 40	pgd_t *level4p;
 41};
 42
 43static int mem_region_callback(struct resource *res, void *arg)
 44{
 45	struct init_pgtable_data *data = arg;
 
 
 
 
 46
 47	return kernel_ident_mapping_init(data->info, data->level4p,
 48					 res->start, res->end + 1);
 49}
 50
 51static int
 52map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
 53{
 54	struct init_pgtable_data data;
 55	unsigned long flags;
 56	int ret;
 57
 58	data.info = info;
 59	data.level4p = level4p;
 60	flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 61
 62	ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
 63				  &data, mem_region_callback);
 64	if (ret && ret != -EINVAL)
 65		return ret;
 66
 67	/* ACPI tables could be located in ACPI Non-volatile Storage region */
 68	ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
 69				  &data, mem_region_callback);
 70	if (ret && ret != -EINVAL)
 71		return ret;
 72
 73	return 0;
 74}
 75#else
 76static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
 77#endif
 78
 79#ifdef CONFIG_KEXEC_FILE
 80const struct kexec_file_ops * const kexec_file_loaders[] = {
 81		&kexec_bzImage64_ops,
 82		NULL
 83};
 84#endif
 85
 86static int
 87map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
 88{
 89#ifdef CONFIG_EFI
 90	unsigned long mstart, mend;
 91	void *kaddr;
 92	int ret;
 93
 94	if (!efi_enabled(EFI_BOOT))
 95		return 0;
 96
 97	mstart = (boot_params.efi_info.efi_systab |
 98			((u64)boot_params.efi_info.efi_systab_hi<<32));
 99
100	if (efi_enabled(EFI_64BIT))
101		mend = mstart + sizeof(efi_system_table_64_t);
102	else
103		mend = mstart + sizeof(efi_system_table_32_t);
104
105	if (!mstart)
106		return 0;
107
108	ret = kernel_ident_mapping_init(info, level4p, mstart, mend);
109	if (ret)
110		return ret;
111
112	kaddr = memremap(mstart, mend - mstart, MEMREMAP_WB);
113	if (!kaddr) {
114		pr_err("Could not map UEFI system table\n");
115		return -ENOMEM;
116	}
117
118	mstart = efi_config_table;
119
120	if (efi_enabled(EFI_64BIT)) {
121		efi_system_table_64_t *stbl = (efi_system_table_64_t *)kaddr;
122
123		mend = mstart + sizeof(efi_config_table_64_t) * stbl->nr_tables;
124	} else {
125		efi_system_table_32_t *stbl = (efi_system_table_32_t *)kaddr;
126
127		mend = mstart + sizeof(efi_config_table_32_t) * stbl->nr_tables;
128	}
129
130	memunmap(kaddr);
131
132	return kernel_ident_mapping_init(info, level4p, mstart, mend);
133#endif
134	return 0;
135}
136
137static void free_transition_pgtable(struct kimage *image)
138{
139	free_page((unsigned long)image->arch.p4d);
140	image->arch.p4d = NULL;
141	free_page((unsigned long)image->arch.pud);
142	image->arch.pud = NULL;
143	free_page((unsigned long)image->arch.pmd);
144	image->arch.pmd = NULL;
145	free_page((unsigned long)image->arch.pte);
146	image->arch.pte = NULL;
147}
148
149static int init_transition_pgtable(struct kimage *image, pgd_t *pgd,
150				   unsigned long control_page)
151{
152	pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
153	unsigned long vaddr, paddr;
154	int result = -ENOMEM;
155	p4d_t *p4d;
156	pud_t *pud;
157	pmd_t *pmd;
158	pte_t *pte;
159
160	vaddr = (unsigned long)relocate_kernel;
161	paddr = control_page;
162	pgd += pgd_index(vaddr);
163	if (!pgd_present(*pgd)) {
164		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
165		if (!p4d)
166			goto err;
167		image->arch.p4d = p4d;
168		set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
169	}
170	p4d = p4d_offset(pgd, vaddr);
171	if (!p4d_present(*p4d)) {
172		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
173		if (!pud)
174			goto err;
175		image->arch.pud = pud;
176		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
177	}
178	pud = pud_offset(p4d, vaddr);
179	if (!pud_present(*pud)) {
180		pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
181		if (!pmd)
182			goto err;
183		image->arch.pmd = pmd;
184		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
185	}
186	pmd = pmd_offset(pud, vaddr);
187	if (!pmd_present(*pmd)) {
188		pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
189		if (!pte)
190			goto err;
191		image->arch.pte = pte;
192		set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
193	}
194	pte = pte_offset_kernel(pmd, vaddr);
195
196	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
197		prot = PAGE_KERNEL_EXEC;
198
199	set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
200	return 0;
201err:
202	return result;
203}
204
205static void *alloc_pgt_page(void *data)
206{
207	struct kimage *image = (struct kimage *)data;
208	struct page *page;
209	void *p = NULL;
210
211	page = kimage_alloc_control_pages(image, 0);
212	if (page) {
213		p = page_address(page);
214		clear_page(p);
215	}
216
217	return p;
218}
219
220static int init_pgtable(struct kimage *image, unsigned long control_page)
221{
222	struct x86_mapping_info info = {
223		.alloc_pgt_page	= alloc_pgt_page,
224		.context	= image,
225		.page_flag	= __PAGE_KERNEL_LARGE_EXEC,
226		.kernpg_flag	= _KERNPG_TABLE_NOENC,
227	};
228	unsigned long mstart, mend;
 
229	int result;
230	int i;
231
232	image->arch.pgd = alloc_pgt_page(image);
233	if (!image->arch.pgd)
234		return -ENOMEM;
235
236	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
237		info.page_flag   |= _PAGE_ENC;
238		info.kernpg_flag |= _PAGE_ENC;
239	}
240
241	if (direct_gbpages)
242		info.direct_gbpages = true;
243
244	for (i = 0; i < nr_pfn_mapped; i++) {
245		mstart = pfn_mapped[i].start << PAGE_SHIFT;
246		mend   = pfn_mapped[i].end << PAGE_SHIFT;
247
248		result = kernel_ident_mapping_init(&info, image->arch.pgd,
249						   mstart, mend);
250		if (result)
251			return result;
252	}
253
254	/*
255	 * segments's mem ranges could be outside 0 ~ max_pfn,
256	 * for example when jump back to original kernel from kexeced kernel.
257	 * or first kernel is booted with user mem map, and second kernel
258	 * could be loaded out of that range.
259	 */
260	for (i = 0; i < image->nr_segments; i++) {
261		mstart = image->segment[i].mem;
262		mend   = mstart + image->segment[i].memsz;
263
264		result = kernel_ident_mapping_init(&info, image->arch.pgd,
265						   mstart, mend);
266
267		if (result)
268			return result;
269	}
270
271	/*
272	 * Prepare EFI systab and ACPI tables for kexec kernel since they are
273	 * not covered by pfn_mapped.
274	 */
275	result = map_efi_systab(&info, image->arch.pgd);
276	if (result)
277		return result;
278
279	result = map_acpi_tables(&info, image->arch.pgd);
280	if (result)
281		return result;
282
283	/*
284	 * This must be last because the intermediate page table pages it
285	 * allocates will not be control pages and may overlap the image.
286	 */
287	return init_transition_pgtable(image, image->arch.pgd, control_page);
288}
289
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
290static void load_segments(void)
291{
292	__asm__ __volatile__ (
293		"\tmovl %0,%%ds\n"
294		"\tmovl %0,%%es\n"
295		"\tmovl %0,%%ss\n"
296		"\tmovl %0,%%fs\n"
297		"\tmovl %0,%%gs\n"
298		: : "a" (__KERNEL_DS) : "memory"
299		);
300}
301
302int machine_kexec_prepare(struct kimage *image)
303{
304	unsigned long control_page;
305	int result;
306
307	/* Calculate the offsets */
308	control_page = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
309
310	/* Setup the identity mapped 64bit page table */
311	result = init_pgtable(image, control_page);
312	if (result)
313		return result;
314
315	return 0;
316}
317
318void machine_kexec_cleanup(struct kimage *image)
319{
320	free_transition_pgtable(image);
321}
322
323/*
324 * Do not allocate memory (or fail in any way) in machine_kexec().
325 * We are past the point of no return, committed to rebooting now.
326 */
327void machine_kexec(struct kimage *image)
328{
329	unsigned long page_list[PAGES_NR];
330	unsigned int host_mem_enc_active;
331	int save_ftrace_enabled;
332	void *control_page;
333
334	/*
335	 * This must be done before load_segments() since if call depth tracking
336	 * is used then GS must be valid to make any function calls.
337	 */
338	host_mem_enc_active = cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT);
339
340#ifdef CONFIG_KEXEC_JUMP
341	if (image->preserve_context)
342		save_processor_state();
343#endif
344
345	save_ftrace_enabled = __ftrace_enabled_save();
346
347	/* Interrupts aren't acceptable while we reboot */
348	local_irq_disable();
349	hw_breakpoint_disable();
350	cet_disable();
351
352	if (image->preserve_context) {
353#ifdef CONFIG_X86_IO_APIC
354		/*
355		 * We need to put APICs in legacy mode so that we can
356		 * get timer interrupts in second kernel. kexec/kdump
357		 * paths already have calls to restore_boot_irq_mode()
358		 * in one form or other. kexec jump path also need one.
359		 */
360		clear_IO_APIC();
361		restore_boot_irq_mode();
362#endif
363	}
364
365	control_page = page_address(image->control_code_page);
366	__memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
367
368	page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
369	page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
370	page_list[PA_TABLE_PAGE] = (unsigned long)__pa(image->arch.pgd);
 
371
372	if (image->type == KEXEC_TYPE_DEFAULT)
373		page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
374						<< PAGE_SHIFT);
375
376	/*
377	 * The segment registers are funny things, they have both a
378	 * visible and an invisible part.  Whenever the visible part is
379	 * set to a specific selector, the invisible part is loaded
380	 * with from a table in memory.  At no other time is the
381	 * descriptor table in memory accessed.
382	 *
383	 * I take advantage of this here by force loading the
384	 * segments, before I zap the gdt with an invalid value.
385	 */
386	load_segments();
387	/*
388	 * The gdt & idt are now invalid.
389	 * If you want to load them you must set up your own idt & gdt.
390	 */
391	native_idt_invalidate();
392	native_gdt_invalidate();
393
394	/* now call it */
395	image->start = relocate_kernel((unsigned long)image->head,
396				       (unsigned long)page_list,
397				       image->start,
398				       image->preserve_context,
399				       host_mem_enc_active);
400
401#ifdef CONFIG_KEXEC_JUMP
402	if (image->preserve_context)
403		restore_processor_state();
404#endif
405
406	__ftrace_enabled_restore(save_ftrace_enabled);
407}
408
409/* arch-dependent functionality related to kexec file-based syscall */
410
411#ifdef CONFIG_KEXEC_FILE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
412/*
413 * Apply purgatory relocations.
414 *
415 * @pi:		Purgatory to be relocated.
416 * @section:	Section relocations applying to.
417 * @relsec:	Section containing RELAs.
418 * @symtabsec:	Corresponding symtab.
419 *
420 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
421 */
422int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
423				     Elf_Shdr *section, const Elf_Shdr *relsec,
424				     const Elf_Shdr *symtabsec)
425{
426	unsigned int i;
427	Elf64_Rela *rel;
428	Elf64_Sym *sym;
429	void *location;
430	unsigned long address, sec_base, value;
431	const char *strtab, *name, *shstrtab;
432	const Elf_Shdr *sechdrs;
433
434	/* String & section header string table */
435	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
436	strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
437	shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
438
439	rel = (void *)pi->ehdr + relsec->sh_offset;
440
441	pr_debug("Applying relocate section %s to %u\n",
442		 shstrtab + relsec->sh_name, relsec->sh_info);
443
444	for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
445
446		/*
447		 * rel[i].r_offset contains byte offset from beginning
448		 * of section to the storage unit affected.
449		 *
450		 * This is location to update. This is temporary buffer
451		 * where section is currently loaded. This will finally be
452		 * loaded to a different address later, pointed to by
453		 * ->sh_addr. kexec takes care of moving it
454		 *  (kexec_load_segment()).
455		 */
456		location = pi->purgatory_buf;
457		location += section->sh_offset;
458		location += rel[i].r_offset;
459
460		/* Final address of the location */
461		address = section->sh_addr + rel[i].r_offset;
462
463		/*
464		 * rel[i].r_info contains information about symbol table index
465		 * w.r.t which relocation must be made and type of relocation
466		 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
467		 * these respectively.
468		 */
469		sym = (void *)pi->ehdr + symtabsec->sh_offset;
470		sym += ELF64_R_SYM(rel[i].r_info);
471
472		if (sym->st_name)
473			name = strtab + sym->st_name;
474		else
475			name = shstrtab + sechdrs[sym->st_shndx].sh_name;
476
477		pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
478			 name, sym->st_info, sym->st_shndx, sym->st_value,
479			 sym->st_size);
480
481		if (sym->st_shndx == SHN_UNDEF) {
482			pr_err("Undefined symbol: %s\n", name);
483			return -ENOEXEC;
484		}
485
486		if (sym->st_shndx == SHN_COMMON) {
487			pr_err("symbol '%s' in common section\n", name);
488			return -ENOEXEC;
489		}
490
491		if (sym->st_shndx == SHN_ABS)
492			sec_base = 0;
493		else if (sym->st_shndx >= pi->ehdr->e_shnum) {
494			pr_err("Invalid section %d for symbol %s\n",
495			       sym->st_shndx, name);
496			return -ENOEXEC;
497		} else
498			sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
499
500		value = sym->st_value;
501		value += sec_base;
502		value += rel[i].r_addend;
503
504		switch (ELF64_R_TYPE(rel[i].r_info)) {
505		case R_X86_64_NONE:
506			break;
507		case R_X86_64_64:
508			*(u64 *)location = value;
509			break;
510		case R_X86_64_32:
511			*(u32 *)location = value;
512			if (value != *(u32 *)location)
513				goto overflow;
514			break;
515		case R_X86_64_32S:
516			*(s32 *)location = value;
517			if ((s64)value != *(s32 *)location)
518				goto overflow;
519			break;
520		case R_X86_64_PC32:
521		case R_X86_64_PLT32:
522			value -= (u64)address;
523			*(u32 *)location = value;
524			break;
525		default:
526			pr_err("Unknown rela relocation: %llu\n",
527			       ELF64_R_TYPE(rel[i].r_info));
528			return -ENOEXEC;
529		}
530	}
531	return 0;
532
533overflow:
534	pr_err("Overflow in relocation type %d value 0x%lx\n",
535	       (int)ELF64_R_TYPE(rel[i].r_info), value);
536	return -ENOEXEC;
537}
538
539int arch_kimage_file_post_load_cleanup(struct kimage *image)
540{
541	vfree(image->elf_headers);
542	image->elf_headers = NULL;
543	image->elf_headers_sz = 0;
544
545	return kexec_image_post_load_cleanup_default(image);
546}
547#endif /* CONFIG_KEXEC_FILE */
548
549#ifdef CONFIG_CRASH_DUMP
550
551static int
552kexec_mark_range(unsigned long start, unsigned long end, bool protect)
553{
554	struct page *page;
555	unsigned int nr_pages;
556
557	/*
558	 * For physical range: [start, end]. We must skip the unassigned
559	 * crashk resource with zero-valued "end" member.
560	 */
561	if (!end || start > end)
562		return 0;
563
564	page = pfn_to_page(start >> PAGE_SHIFT);
565	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
566	if (protect)
567		return set_pages_ro(page, nr_pages);
568	else
569		return set_pages_rw(page, nr_pages);
570}
571
572static void kexec_mark_crashkres(bool protect)
573{
574	unsigned long control;
575
576	kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
577
578	/* Don't touch the control code page used in crash_kexec().*/
579	control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
580	kexec_mark_range(crashk_res.start, control - 1, protect);
 
581	control += KEXEC_CONTROL_PAGE_SIZE;
582	kexec_mark_range(control, crashk_res.end, protect);
583}
584
585void arch_kexec_protect_crashkres(void)
586{
587	kexec_mark_crashkres(true);
588}
589
590void arch_kexec_unprotect_crashkres(void)
591{
592	kexec_mark_crashkres(false);
593}
594#endif
595
596/*
597 * During a traditional boot under SME, SME will encrypt the kernel,
598 * so the SME kexec kernel also needs to be un-encrypted in order to
599 * replicate a normal SME boot.
600 *
601 * During a traditional boot under SEV, the kernel has already been
602 * loaded encrypted, so the SEV kexec kernel needs to be encrypted in
603 * order to replicate a normal SEV boot.
604 */
605int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
606{
607	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
608		return 0;
609
610	/*
611	 * If host memory encryption is active we need to be sure that kexec
612	 * pages are not encrypted because when we boot to the new kernel the
613	 * pages won't be accessed encrypted (initially).
614	 */
615	return set_memory_decrypted((unsigned long)vaddr, pages);
616}
617
618void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
619{
620	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
621		return;
622
623	/*
624	 * If host memory encryption is active we need to reset the pages back
625	 * to being an encrypted mapping before freeing them.
626	 */
627	set_memory_encrypted((unsigned long)vaddr, pages);
628}
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * handle transition of Linux booting another kernel
  4 * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
  5 */
  6
  7#define pr_fmt(fmt)	"kexec: " fmt
  8
  9#include <linux/mm.h>
 10#include <linux/kexec.h>
 11#include <linux/string.h>
 12#include <linux/gfp.h>
 13#include <linux/reboot.h>
 14#include <linux/numa.h>
 15#include <linux/ftrace.h>
 16#include <linux/io.h>
 17#include <linux/suspend.h>
 18#include <linux/vmalloc.h>
 19#include <linux/efi.h>
 
 20
 21#include <asm/init.h>
 22#include <asm/tlbflush.h>
 23#include <asm/mmu_context.h>
 24#include <asm/io_apic.h>
 25#include <asm/debugreg.h>
 26#include <asm/kexec-bzimage64.h>
 27#include <asm/setup.h>
 28#include <asm/set_memory.h>
 
 
 29
 30#ifdef CONFIG_ACPI
 31/*
 32 * Used while adding mapping for ACPI tables.
 33 * Can be reused when other iomem regions need be mapped
 34 */
 35struct init_pgtable_data {
 36	struct x86_mapping_info *info;
 37	pgd_t *level4p;
 38};
 39
 40static int mem_region_callback(struct resource *res, void *arg)
 41{
 42	struct init_pgtable_data *data = arg;
 43	unsigned long mstart, mend;
 44
 45	mstart = res->start;
 46	mend = mstart + resource_size(res) - 1;
 47
 48	return kernel_ident_mapping_init(data->info, data->level4p, mstart, mend);
 
 49}
 50
 51static int
 52map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
 53{
 54	struct init_pgtable_data data;
 55	unsigned long flags;
 56	int ret;
 57
 58	data.info = info;
 59	data.level4p = level4p;
 60	flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 61
 62	ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
 63				  &data, mem_region_callback);
 64	if (ret && ret != -EINVAL)
 65		return ret;
 66
 67	/* ACPI tables could be located in ACPI Non-volatile Storage region */
 68	ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
 69				  &data, mem_region_callback);
 70	if (ret && ret != -EINVAL)
 71		return ret;
 72
 73	return 0;
 74}
 75#else
 76static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
 77#endif
 78
 79#ifdef CONFIG_KEXEC_FILE
 80const struct kexec_file_ops * const kexec_file_loaders[] = {
 81		&kexec_bzImage64_ops,
 82		NULL
 83};
 84#endif
 85
 86static int
 87map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
 88{
 89#ifdef CONFIG_EFI
 90	unsigned long mstart, mend;
 
 
 91
 92	if (!efi_enabled(EFI_BOOT))
 93		return 0;
 94
 95	mstart = (boot_params.efi_info.efi_systab |
 96			((u64)boot_params.efi_info.efi_systab_hi<<32));
 97
 98	if (efi_enabled(EFI_64BIT))
 99		mend = mstart + sizeof(efi_system_table_64_t);
100	else
101		mend = mstart + sizeof(efi_system_table_32_t);
102
103	if (!mstart)
104		return 0;
105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106	return kernel_ident_mapping_init(info, level4p, mstart, mend);
107#endif
108	return 0;
109}
110
111static void free_transition_pgtable(struct kimage *image)
112{
113	free_page((unsigned long)image->arch.p4d);
114	image->arch.p4d = NULL;
115	free_page((unsigned long)image->arch.pud);
116	image->arch.pud = NULL;
117	free_page((unsigned long)image->arch.pmd);
118	image->arch.pmd = NULL;
119	free_page((unsigned long)image->arch.pte);
120	image->arch.pte = NULL;
121}
122
123static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
 
124{
125	pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
126	unsigned long vaddr, paddr;
127	int result = -ENOMEM;
128	p4d_t *p4d;
129	pud_t *pud;
130	pmd_t *pmd;
131	pte_t *pte;
132
133	vaddr = (unsigned long)relocate_kernel;
134	paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
135	pgd += pgd_index(vaddr);
136	if (!pgd_present(*pgd)) {
137		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
138		if (!p4d)
139			goto err;
140		image->arch.p4d = p4d;
141		set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
142	}
143	p4d = p4d_offset(pgd, vaddr);
144	if (!p4d_present(*p4d)) {
145		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
146		if (!pud)
147			goto err;
148		image->arch.pud = pud;
149		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
150	}
151	pud = pud_offset(p4d, vaddr);
152	if (!pud_present(*pud)) {
153		pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
154		if (!pmd)
155			goto err;
156		image->arch.pmd = pmd;
157		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
158	}
159	pmd = pmd_offset(pud, vaddr);
160	if (!pmd_present(*pmd)) {
161		pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
162		if (!pte)
163			goto err;
164		image->arch.pte = pte;
165		set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
166	}
167	pte = pte_offset_kernel(pmd, vaddr);
168
169	if (sev_active())
170		prot = PAGE_KERNEL_EXEC;
171
172	set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
173	return 0;
174err:
175	return result;
176}
177
178static void *alloc_pgt_page(void *data)
179{
180	struct kimage *image = (struct kimage *)data;
181	struct page *page;
182	void *p = NULL;
183
184	page = kimage_alloc_control_pages(image, 0);
185	if (page) {
186		p = page_address(page);
187		clear_page(p);
188	}
189
190	return p;
191}
192
193static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
194{
195	struct x86_mapping_info info = {
196		.alloc_pgt_page	= alloc_pgt_page,
197		.context	= image,
198		.page_flag	= __PAGE_KERNEL_LARGE_EXEC,
199		.kernpg_flag	= _KERNPG_TABLE_NOENC,
200	};
201	unsigned long mstart, mend;
202	pgd_t *level4p;
203	int result;
204	int i;
205
206	level4p = (pgd_t *)__va(start_pgtable);
207	clear_page(level4p);
 
208
209	if (sev_active()) {
210		info.page_flag   |= _PAGE_ENC;
211		info.kernpg_flag |= _PAGE_ENC;
212	}
213
214	if (direct_gbpages)
215		info.direct_gbpages = true;
216
217	for (i = 0; i < nr_pfn_mapped; i++) {
218		mstart = pfn_mapped[i].start << PAGE_SHIFT;
219		mend   = pfn_mapped[i].end << PAGE_SHIFT;
220
221		result = kernel_ident_mapping_init(&info,
222						 level4p, mstart, mend);
223		if (result)
224			return result;
225	}
226
227	/*
228	 * segments's mem ranges could be outside 0 ~ max_pfn,
229	 * for example when jump back to original kernel from kexeced kernel.
230	 * or first kernel is booted with user mem map, and second kernel
231	 * could be loaded out of that range.
232	 */
233	for (i = 0; i < image->nr_segments; i++) {
234		mstart = image->segment[i].mem;
235		mend   = mstart + image->segment[i].memsz;
236
237		result = kernel_ident_mapping_init(&info,
238						 level4p, mstart, mend);
239
240		if (result)
241			return result;
242	}
243
244	/*
245	 * Prepare EFI systab and ACPI tables for kexec kernel since they are
246	 * not covered by pfn_mapped.
247	 */
248	result = map_efi_systab(&info, level4p);
249	if (result)
250		return result;
251
252	result = map_acpi_tables(&info, level4p);
253	if (result)
254		return result;
255
256	return init_transition_pgtable(image, level4p);
 
 
 
 
257}
258
259static void set_idt(void *newidt, u16 limit)
260{
261	struct desc_ptr curidt;
262
263	/* x86-64 supports unaliged loads & stores */
264	curidt.size    = limit;
265	curidt.address = (unsigned long)newidt;
266
267	__asm__ __volatile__ (
268		"lidtq %0\n"
269		: : "m" (curidt)
270		);
271};
272
273
274static void set_gdt(void *newgdt, u16 limit)
275{
276	struct desc_ptr curgdt;
277
278	/* x86-64 supports unaligned loads & stores */
279	curgdt.size    = limit;
280	curgdt.address = (unsigned long)newgdt;
281
282	__asm__ __volatile__ (
283		"lgdtq %0\n"
284		: : "m" (curgdt)
285		);
286};
287
288static void load_segments(void)
289{
290	__asm__ __volatile__ (
291		"\tmovl %0,%%ds\n"
292		"\tmovl %0,%%es\n"
293		"\tmovl %0,%%ss\n"
294		"\tmovl %0,%%fs\n"
295		"\tmovl %0,%%gs\n"
296		: : "a" (__KERNEL_DS) : "memory"
297		);
298}
299
300int machine_kexec_prepare(struct kimage *image)
301{
302	unsigned long start_pgtable;
303	int result;
304
305	/* Calculate the offsets */
306	start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
307
308	/* Setup the identity mapped 64bit page table */
309	result = init_pgtable(image, start_pgtable);
310	if (result)
311		return result;
312
313	return 0;
314}
315
316void machine_kexec_cleanup(struct kimage *image)
317{
318	free_transition_pgtable(image);
319}
320
321/*
322 * Do not allocate memory (or fail in any way) in machine_kexec().
323 * We are past the point of no return, committed to rebooting now.
324 */
325void machine_kexec(struct kimage *image)
326{
327	unsigned long page_list[PAGES_NR];
 
 
328	void *control_page;
329	int save_ftrace_enabled;
 
 
 
 
 
330
331#ifdef CONFIG_KEXEC_JUMP
332	if (image->preserve_context)
333		save_processor_state();
334#endif
335
336	save_ftrace_enabled = __ftrace_enabled_save();
337
338	/* Interrupts aren't acceptable while we reboot */
339	local_irq_disable();
340	hw_breakpoint_disable();
 
341
342	if (image->preserve_context) {
343#ifdef CONFIG_X86_IO_APIC
344		/*
345		 * We need to put APICs in legacy mode so that we can
346		 * get timer interrupts in second kernel. kexec/kdump
347		 * paths already have calls to restore_boot_irq_mode()
348		 * in one form or other. kexec jump path also need one.
349		 */
350		clear_IO_APIC();
351		restore_boot_irq_mode();
352#endif
353	}
354
355	control_page = page_address(image->control_code_page) + PAGE_SIZE;
356	memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
357
358	page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
359	page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
360	page_list[PA_TABLE_PAGE] =
361	  (unsigned long)__pa(page_address(image->control_code_page));
362
363	if (image->type == KEXEC_TYPE_DEFAULT)
364		page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
365						<< PAGE_SHIFT);
366
367	/*
368	 * The segment registers are funny things, they have both a
369	 * visible and an invisible part.  Whenever the visible part is
370	 * set to a specific selector, the invisible part is loaded
371	 * with from a table in memory.  At no other time is the
372	 * descriptor table in memory accessed.
373	 *
374	 * I take advantage of this here by force loading the
375	 * segments, before I zap the gdt with an invalid value.
376	 */
377	load_segments();
378	/*
379	 * The gdt & idt are now invalid.
380	 * If you want to load them you must set up your own idt & gdt.
381	 */
382	set_gdt(phys_to_virt(0), 0);
383	set_idt(phys_to_virt(0), 0);
384
385	/* now call it */
386	image->start = relocate_kernel((unsigned long)image->head,
387				       (unsigned long)page_list,
388				       image->start,
389				       image->preserve_context,
390				       sme_active());
391
392#ifdef CONFIG_KEXEC_JUMP
393	if (image->preserve_context)
394		restore_processor_state();
395#endif
396
397	__ftrace_enabled_restore(save_ftrace_enabled);
398}
399
400/* arch-dependent functionality related to kexec file-based syscall */
401
402#ifdef CONFIG_KEXEC_FILE
403void *arch_kexec_kernel_image_load(struct kimage *image)
404{
405	vfree(image->arch.elf_headers);
406	image->arch.elf_headers = NULL;
407
408	if (!image->fops || !image->fops->load)
409		return ERR_PTR(-ENOEXEC);
410
411	return image->fops->load(image, image->kernel_buf,
412				 image->kernel_buf_len, image->initrd_buf,
413				 image->initrd_buf_len, image->cmdline_buf,
414				 image->cmdline_buf_len);
415}
416
417/*
418 * Apply purgatory relocations.
419 *
420 * @pi:		Purgatory to be relocated.
421 * @section:	Section relocations applying to.
422 * @relsec:	Section containing RELAs.
423 * @symtabsec:	Corresponding symtab.
424 *
425 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
426 */
427int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
428				     Elf_Shdr *section, const Elf_Shdr *relsec,
429				     const Elf_Shdr *symtabsec)
430{
431	unsigned int i;
432	Elf64_Rela *rel;
433	Elf64_Sym *sym;
434	void *location;
435	unsigned long address, sec_base, value;
436	const char *strtab, *name, *shstrtab;
437	const Elf_Shdr *sechdrs;
438
439	/* String & section header string table */
440	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
441	strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
442	shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
443
444	rel = (void *)pi->ehdr + relsec->sh_offset;
445
446	pr_debug("Applying relocate section %s to %u\n",
447		 shstrtab + relsec->sh_name, relsec->sh_info);
448
449	for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
450
451		/*
452		 * rel[i].r_offset contains byte offset from beginning
453		 * of section to the storage unit affected.
454		 *
455		 * This is location to update. This is temporary buffer
456		 * where section is currently loaded. This will finally be
457		 * loaded to a different address later, pointed to by
458		 * ->sh_addr. kexec takes care of moving it
459		 *  (kexec_load_segment()).
460		 */
461		location = pi->purgatory_buf;
462		location += section->sh_offset;
463		location += rel[i].r_offset;
464
465		/* Final address of the location */
466		address = section->sh_addr + rel[i].r_offset;
467
468		/*
469		 * rel[i].r_info contains information about symbol table index
470		 * w.r.t which relocation must be made and type of relocation
471		 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
472		 * these respectively.
473		 */
474		sym = (void *)pi->ehdr + symtabsec->sh_offset;
475		sym += ELF64_R_SYM(rel[i].r_info);
476
477		if (sym->st_name)
478			name = strtab + sym->st_name;
479		else
480			name = shstrtab + sechdrs[sym->st_shndx].sh_name;
481
482		pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
483			 name, sym->st_info, sym->st_shndx, sym->st_value,
484			 sym->st_size);
485
486		if (sym->st_shndx == SHN_UNDEF) {
487			pr_err("Undefined symbol: %s\n", name);
488			return -ENOEXEC;
489		}
490
491		if (sym->st_shndx == SHN_COMMON) {
492			pr_err("symbol '%s' in common section\n", name);
493			return -ENOEXEC;
494		}
495
496		if (sym->st_shndx == SHN_ABS)
497			sec_base = 0;
498		else if (sym->st_shndx >= pi->ehdr->e_shnum) {
499			pr_err("Invalid section %d for symbol %s\n",
500			       sym->st_shndx, name);
501			return -ENOEXEC;
502		} else
503			sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
504
505		value = sym->st_value;
506		value += sec_base;
507		value += rel[i].r_addend;
508
509		switch (ELF64_R_TYPE(rel[i].r_info)) {
510		case R_X86_64_NONE:
511			break;
512		case R_X86_64_64:
513			*(u64 *)location = value;
514			break;
515		case R_X86_64_32:
516			*(u32 *)location = value;
517			if (value != *(u32 *)location)
518				goto overflow;
519			break;
520		case R_X86_64_32S:
521			*(s32 *)location = value;
522			if ((s64)value != *(s32 *)location)
523				goto overflow;
524			break;
525		case R_X86_64_PC32:
526		case R_X86_64_PLT32:
527			value -= (u64)address;
528			*(u32 *)location = value;
529			break;
530		default:
531			pr_err("Unknown rela relocation: %llu\n",
532			       ELF64_R_TYPE(rel[i].r_info));
533			return -ENOEXEC;
534		}
535	}
536	return 0;
537
538overflow:
539	pr_err("Overflow in relocation type %d value 0x%lx\n",
540	       (int)ELF64_R_TYPE(rel[i].r_info), value);
541	return -ENOEXEC;
542}
 
 
 
 
 
 
 
 
 
543#endif /* CONFIG_KEXEC_FILE */
544
 
 
545static int
546kexec_mark_range(unsigned long start, unsigned long end, bool protect)
547{
548	struct page *page;
549	unsigned int nr_pages;
550
551	/*
552	 * For physical range: [start, end]. We must skip the unassigned
553	 * crashk resource with zero-valued "end" member.
554	 */
555	if (!end || start > end)
556		return 0;
557
558	page = pfn_to_page(start >> PAGE_SHIFT);
559	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
560	if (protect)
561		return set_pages_ro(page, nr_pages);
562	else
563		return set_pages_rw(page, nr_pages);
564}
565
566static void kexec_mark_crashkres(bool protect)
567{
568	unsigned long control;
569
570	kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
571
572	/* Don't touch the control code page used in crash_kexec().*/
573	control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
574	/* Control code page is located in the 2nd page. */
575	kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
576	control += KEXEC_CONTROL_PAGE_SIZE;
577	kexec_mark_range(control, crashk_res.end, protect);
578}
579
580void arch_kexec_protect_crashkres(void)
581{
582	kexec_mark_crashkres(true);
583}
584
585void arch_kexec_unprotect_crashkres(void)
586{
587	kexec_mark_crashkres(false);
588}
 
589
590/*
591 * During a traditional boot under SME, SME will encrypt the kernel,
592 * so the SME kexec kernel also needs to be un-encrypted in order to
593 * replicate a normal SME boot.
594 *
595 * During a traditional boot under SEV, the kernel has already been
596 * loaded encrypted, so the SEV kexec kernel needs to be encrypted in
597 * order to replicate a normal SEV boot.
598 */
599int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
600{
601	if (sev_active())
602		return 0;
603
604	/*
605	 * If SME is active we need to be sure that kexec pages are
606	 * not encrypted because when we boot to the new kernel the
607	 * pages won't be accessed encrypted (initially).
608	 */
609	return set_memory_decrypted((unsigned long)vaddr, pages);
610}
611
612void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
613{
614	if (sev_active())
615		return;
616
617	/*
618	 * If SME is active we need to reset the pages back to being
619	 * an encrypted mapping before freeing them.
620	 */
621	set_memory_encrypted((unsigned long)vaddr, pages);
622}