Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/* cpu_feature_enabled() cannot be used this early */
3#define USE_EARLY_PGTABLE_L5
4
5#include <linux/memblock.h>
6#include <linux/linkage.h>
7#include <linux/bitops.h>
8#include <linux/kernel.h>
9#include <linux/export.h>
10#include <linux/percpu.h>
11#include <linux/string.h>
12#include <linux/ctype.h>
13#include <linux/delay.h>
14#include <linux/sched/mm.h>
15#include <linux/sched/clock.h>
16#include <linux/sched/task.h>
17#include <linux/sched/smt.h>
18#include <linux/init.h>
19#include <linux/kprobes.h>
20#include <linux/kgdb.h>
21#include <linux/mem_encrypt.h>
22#include <linux/smp.h>
23#include <linux/cpu.h>
24#include <linux/io.h>
25#include <linux/syscore_ops.h>
26#include <linux/pgtable.h>
27#include <linux/stackprotector.h>
28#include <linux/utsname.h>
29
30#include <asm/alternative.h>
31#include <asm/cmdline.h>
32#include <asm/perf_event.h>
33#include <asm/mmu_context.h>
34#include <asm/doublefault.h>
35#include <asm/archrandom.h>
36#include <asm/hypervisor.h>
37#include <asm/processor.h>
38#include <asm/tlbflush.h>
39#include <asm/debugreg.h>
40#include <asm/sections.h>
41#include <asm/vsyscall.h>
42#include <linux/topology.h>
43#include <linux/cpumask.h>
44#include <linux/atomic.h>
45#include <asm/proto.h>
46#include <asm/setup.h>
47#include <asm/apic.h>
48#include <asm/desc.h>
49#include <asm/fpu/api.h>
50#include <asm/mtrr.h>
51#include <asm/hwcap2.h>
52#include <linux/numa.h>
53#include <asm/numa.h>
54#include <asm/asm.h>
55#include <asm/bugs.h>
56#include <asm/cpu.h>
57#include <asm/mce.h>
58#include <asm/msr.h>
59#include <asm/cacheinfo.h>
60#include <asm/memtype.h>
61#include <asm/microcode.h>
62#include <asm/intel-family.h>
63#include <asm/cpu_device_id.h>
64#include <asm/fred.h>
65#include <asm/uv/uv.h>
66#include <asm/ia32.h>
67#include <asm/set_memory.h>
68#include <asm/traps.h>
69#include <asm/sev.h>
70#include <asm/tdx.h>
71#include <asm/posted_intr.h>
72#include <asm/runtime-const.h>
73
74#include "cpu.h"
75
76DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
77EXPORT_PER_CPU_SYMBOL(cpu_info);
78
79u32 elf_hwcap2 __read_mostly;
80
81/* Number of siblings per CPU package */
82unsigned int __max_threads_per_core __ro_after_init = 1;
83EXPORT_SYMBOL(__max_threads_per_core);
84
85unsigned int __max_dies_per_package __ro_after_init = 1;
86EXPORT_SYMBOL(__max_dies_per_package);
87
88unsigned int __max_logical_packages __ro_after_init = 1;
89EXPORT_SYMBOL(__max_logical_packages);
90
91unsigned int __num_cores_per_package __ro_after_init = 1;
92EXPORT_SYMBOL(__num_cores_per_package);
93
94unsigned int __num_threads_per_package __ro_after_init = 1;
95EXPORT_SYMBOL(__num_threads_per_package);
96
97static struct ppin_info {
98 int feature;
99 int msr_ppin_ctl;
100 int msr_ppin;
101} ppin_info[] = {
102 [X86_VENDOR_INTEL] = {
103 .feature = X86_FEATURE_INTEL_PPIN,
104 .msr_ppin_ctl = MSR_PPIN_CTL,
105 .msr_ppin = MSR_PPIN
106 },
107 [X86_VENDOR_AMD] = {
108 .feature = X86_FEATURE_AMD_PPIN,
109 .msr_ppin_ctl = MSR_AMD_PPIN_CTL,
110 .msr_ppin = MSR_AMD_PPIN
111 },
112};
113
114static const struct x86_cpu_id ppin_cpuids[] = {
115 X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
116 X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
117
118 /* Legacy models without CPUID enumeration */
119 X86_MATCH_VFM(INTEL_IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
120 X86_MATCH_VFM(INTEL_HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
121 X86_MATCH_VFM(INTEL_BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
122 X86_MATCH_VFM(INTEL_BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
123 X86_MATCH_VFM(INTEL_SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
124 X86_MATCH_VFM(INTEL_ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
125 X86_MATCH_VFM(INTEL_ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
126 X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
127 X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
128 X86_MATCH_VFM(INTEL_XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
129 X86_MATCH_VFM(INTEL_XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
130
131 {}
132};
133
134static void ppin_init(struct cpuinfo_x86 *c)
135{
136 const struct x86_cpu_id *id;
137 unsigned long long val;
138 struct ppin_info *info;
139
140 id = x86_match_cpu(ppin_cpuids);
141 if (!id)
142 return;
143
144 /*
145 * Testing the presence of the MSR is not enough. Need to check
146 * that the PPIN_CTL allows reading of the PPIN.
147 */
148 info = (struct ppin_info *)id->driver_data;
149
150 if (rdmsrl_safe(info->msr_ppin_ctl, &val))
151 goto clear_ppin;
152
153 if ((val & 3UL) == 1UL) {
154 /* PPIN locked in disabled mode */
155 goto clear_ppin;
156 }
157
158 /* If PPIN is disabled, try to enable */
159 if (!(val & 2UL)) {
160 wrmsrl_safe(info->msr_ppin_ctl, val | 2UL);
161 rdmsrl_safe(info->msr_ppin_ctl, &val);
162 }
163
164 /* Is the enable bit set? */
165 if (val & 2UL) {
166 c->ppin = __rdmsr(info->msr_ppin);
167 set_cpu_cap(c, info->feature);
168 return;
169 }
170
171clear_ppin:
172 setup_clear_cpu_cap(info->feature);
173}
174
175static void default_init(struct cpuinfo_x86 *c)
176{
177#ifdef CONFIG_X86_64
178 cpu_detect_cache_sizes(c);
179#else
180 /* Not much we can do here... */
181 /* Check if at least it has cpuid */
182 if (c->cpuid_level == -1) {
183 /* No cpuid. It must be an ancient CPU */
184 if (c->x86 == 4)
185 strcpy(c->x86_model_id, "486");
186 else if (c->x86 == 3)
187 strcpy(c->x86_model_id, "386");
188 }
189#endif
190}
191
192static const struct cpu_dev default_cpu = {
193 .c_init = default_init,
194 .c_vendor = "Unknown",
195 .c_x86_vendor = X86_VENDOR_UNKNOWN,
196};
197
198static const struct cpu_dev *this_cpu = &default_cpu;
199
200DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
201#ifdef CONFIG_X86_64
202 /*
203 * We need valid kernel segments for data and code in long mode too
204 * IRET will check the segment types kkeil 2000/10/28
205 * Also sysret mandates a special GDT layout
206 *
207 * TLS descriptors are currently at a different place compared to i386.
208 * Hopefully nobody expects them at a fixed place (Wine?)
209 */
210 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
211 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(DESC_CODE64, 0, 0xfffff),
212 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(DESC_DATA64, 0, 0xfffff),
213 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
214 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(DESC_DATA64 | DESC_USER, 0, 0xfffff),
215 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(DESC_CODE64 | DESC_USER, 0, 0xfffff),
216#else
217 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
218 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
219 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
220 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(DESC_DATA32 | DESC_USER, 0, 0xfffff),
221 /*
222 * Segments used for calling PnP BIOS have byte granularity.
223 * They code segments and data segments have fixed 64k limits,
224 * the transfer segment sizes are set at run time.
225 */
226 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
227 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
228 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0xffff),
229 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
230 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
231 /*
232 * The APM segments have byte granularity and their bases
233 * are set at run time. All have 64k limits.
234 */
235 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
236 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
237 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(DESC_DATA32_BIOS, 0, 0xffff),
238
239 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
240 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
241#endif
242} };
243EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
244
245#ifdef CONFIG_X86_64
246static int __init x86_nopcid_setup(char *s)
247{
248 /* nopcid doesn't accept parameters */
249 if (s)
250 return -EINVAL;
251
252 /* do not emit a message if the feature is not present */
253 if (!boot_cpu_has(X86_FEATURE_PCID))
254 return 0;
255
256 setup_clear_cpu_cap(X86_FEATURE_PCID);
257 pr_info("nopcid: PCID feature disabled\n");
258 return 0;
259}
260early_param("nopcid", x86_nopcid_setup);
261#endif
262
263static int __init x86_noinvpcid_setup(char *s)
264{
265 /* noinvpcid doesn't accept parameters */
266 if (s)
267 return -EINVAL;
268
269 /* do not emit a message if the feature is not present */
270 if (!boot_cpu_has(X86_FEATURE_INVPCID))
271 return 0;
272
273 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
274 pr_info("noinvpcid: INVPCID feature disabled\n");
275 return 0;
276}
277early_param("noinvpcid", x86_noinvpcid_setup);
278
279/* Standard macro to see if a specific flag is changeable */
280static inline bool flag_is_changeable_p(unsigned long flag)
281{
282 unsigned long f1, f2;
283
284 if (!IS_ENABLED(CONFIG_X86_32))
285 return true;
286
287 /*
288 * Cyrix and IDT cpus allow disabling of CPUID
289 * so the code below may return different results
290 * when it is executed before and after enabling
291 * the CPUID. Add "volatile" to not allow gcc to
292 * optimize the subsequent calls to this function.
293 */
294 asm volatile ("pushfl \n\t"
295 "pushfl \n\t"
296 "popl %0 \n\t"
297 "movl %0, %1 \n\t"
298 "xorl %2, %0 \n\t"
299 "pushl %0 \n\t"
300 "popfl \n\t"
301 "pushfl \n\t"
302 "popl %0 \n\t"
303 "popfl \n\t"
304
305 : "=&r" (f1), "=&r" (f2)
306 : "ir" (flag));
307
308 return (f1 ^ f2) & flag;
309}
310
311#ifdef CONFIG_X86_32
312static int cachesize_override = -1;
313static int disable_x86_serial_nr = 1;
314
315static int __init cachesize_setup(char *str)
316{
317 get_option(&str, &cachesize_override);
318 return 1;
319}
320__setup("cachesize=", cachesize_setup);
321
322/* Probe for the CPUID instruction */
323bool have_cpuid_p(void)
324{
325 return flag_is_changeable_p(X86_EFLAGS_ID);
326}
327
328static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
329{
330 unsigned long lo, hi;
331
332 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
333 return;
334
335 /* Disable processor serial number: */
336
337 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
338 lo |= 0x200000;
339 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
340
341 pr_notice("CPU serial number disabled.\n");
342 clear_cpu_cap(c, X86_FEATURE_PN);
343
344 /* Disabling the serial number may affect the cpuid level */
345 c->cpuid_level = cpuid_eax(0);
346}
347
348static int __init x86_serial_nr_setup(char *s)
349{
350 disable_x86_serial_nr = 0;
351 return 1;
352}
353__setup("serialnumber", x86_serial_nr_setup);
354#else
355static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
356{
357}
358#endif
359
360static __always_inline void setup_smep(struct cpuinfo_x86 *c)
361{
362 if (cpu_has(c, X86_FEATURE_SMEP))
363 cr4_set_bits(X86_CR4_SMEP);
364}
365
366static __always_inline void setup_smap(struct cpuinfo_x86 *c)
367{
368 unsigned long eflags = native_save_fl();
369
370 /* This should have been cleared long ago */
371 BUG_ON(eflags & X86_EFLAGS_AC);
372
373 if (cpu_has(c, X86_FEATURE_SMAP))
374 cr4_set_bits(X86_CR4_SMAP);
375}
376
377static __always_inline void setup_umip(struct cpuinfo_x86 *c)
378{
379 /* Check the boot processor, plus build option for UMIP. */
380 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
381 goto out;
382
383 /* Check the current processor's cpuid bits. */
384 if (!cpu_has(c, X86_FEATURE_UMIP))
385 goto out;
386
387 cr4_set_bits(X86_CR4_UMIP);
388
389 pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
390
391 return;
392
393out:
394 /*
395 * Make sure UMIP is disabled in case it was enabled in a
396 * previous boot (e.g., via kexec).
397 */
398 cr4_clear_bits(X86_CR4_UMIP);
399}
400
401/* These bits should not change their value after CPU init is finished. */
402static const unsigned long cr4_pinned_mask = X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
403 X86_CR4_FSGSBASE | X86_CR4_CET | X86_CR4_FRED;
404static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
405static unsigned long cr4_pinned_bits __ro_after_init;
406
407void native_write_cr0(unsigned long val)
408{
409 unsigned long bits_missing = 0;
410
411set_register:
412 asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
413
414 if (static_branch_likely(&cr_pinning)) {
415 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
416 bits_missing = X86_CR0_WP;
417 val |= bits_missing;
418 goto set_register;
419 }
420 /* Warn after we've set the missing bits. */
421 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
422 }
423}
424EXPORT_SYMBOL(native_write_cr0);
425
426void __no_profile native_write_cr4(unsigned long val)
427{
428 unsigned long bits_changed = 0;
429
430set_register:
431 asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
432
433 if (static_branch_likely(&cr_pinning)) {
434 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
435 bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
436 val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
437 goto set_register;
438 }
439 /* Warn after we've corrected the changed bits. */
440 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
441 bits_changed);
442 }
443}
444#if IS_MODULE(CONFIG_LKDTM)
445EXPORT_SYMBOL_GPL(native_write_cr4);
446#endif
447
448void cr4_update_irqsoff(unsigned long set, unsigned long clear)
449{
450 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
451
452 lockdep_assert_irqs_disabled();
453
454 newval = (cr4 & ~clear) | set;
455 if (newval != cr4) {
456 this_cpu_write(cpu_tlbstate.cr4, newval);
457 __write_cr4(newval);
458 }
459}
460EXPORT_SYMBOL(cr4_update_irqsoff);
461
462/* Read the CR4 shadow. */
463unsigned long cr4_read_shadow(void)
464{
465 return this_cpu_read(cpu_tlbstate.cr4);
466}
467EXPORT_SYMBOL_GPL(cr4_read_shadow);
468
469void cr4_init(void)
470{
471 unsigned long cr4 = __read_cr4();
472
473 if (boot_cpu_has(X86_FEATURE_PCID))
474 cr4 |= X86_CR4_PCIDE;
475 if (static_branch_likely(&cr_pinning))
476 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
477
478 __write_cr4(cr4);
479
480 /* Initialize cr4 shadow for this CPU. */
481 this_cpu_write(cpu_tlbstate.cr4, cr4);
482}
483
484/*
485 * Once CPU feature detection is finished (and boot params have been
486 * parsed), record any of the sensitive CR bits that are set, and
487 * enable CR pinning.
488 */
489static void __init setup_cr_pinning(void)
490{
491 cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
492 static_key_enable(&cr_pinning.key);
493}
494
495static __init int x86_nofsgsbase_setup(char *arg)
496{
497 /* Require an exact match without trailing characters. */
498 if (strlen(arg))
499 return 0;
500
501 /* Do not emit a message if the feature is not present. */
502 if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
503 return 1;
504
505 setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
506 pr_info("FSGSBASE disabled via kernel command line\n");
507 return 1;
508}
509__setup("nofsgsbase", x86_nofsgsbase_setup);
510
511/*
512 * Protection Keys are not available in 32-bit mode.
513 */
514static bool pku_disabled;
515
516static __always_inline void setup_pku(struct cpuinfo_x86 *c)
517{
518 if (c == &boot_cpu_data) {
519 if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
520 return;
521 /*
522 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
523 * bit to be set. Enforce it.
524 */
525 setup_force_cpu_cap(X86_FEATURE_OSPKE);
526
527 } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
528 return;
529 }
530
531 cr4_set_bits(X86_CR4_PKE);
532 /* Load the default PKRU value */
533 pkru_write_default();
534}
535
536#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
537static __init int setup_disable_pku(char *arg)
538{
539 /*
540 * Do not clear the X86_FEATURE_PKU bit. All of the
541 * runtime checks are against OSPKE so clearing the
542 * bit does nothing.
543 *
544 * This way, we will see "pku" in cpuinfo, but not
545 * "ospke", which is exactly what we want. It shows
546 * that the CPU has PKU, but the OS has not enabled it.
547 * This happens to be exactly how a system would look
548 * if we disabled the config option.
549 */
550 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
551 pku_disabled = true;
552 return 1;
553}
554__setup("nopku", setup_disable_pku);
555#endif
556
557#ifdef CONFIG_X86_KERNEL_IBT
558
559__noendbr u64 ibt_save(bool disable)
560{
561 u64 msr = 0;
562
563 if (cpu_feature_enabled(X86_FEATURE_IBT)) {
564 rdmsrl(MSR_IA32_S_CET, msr);
565 if (disable)
566 wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
567 }
568
569 return msr;
570}
571
572__noendbr void ibt_restore(u64 save)
573{
574 u64 msr;
575
576 if (cpu_feature_enabled(X86_FEATURE_IBT)) {
577 rdmsrl(MSR_IA32_S_CET, msr);
578 msr &= ~CET_ENDBR_EN;
579 msr |= (save & CET_ENDBR_EN);
580 wrmsrl(MSR_IA32_S_CET, msr);
581 }
582}
583
584#endif
585
586static __always_inline void setup_cet(struct cpuinfo_x86 *c)
587{
588 bool user_shstk, kernel_ibt;
589
590 if (!IS_ENABLED(CONFIG_X86_CET))
591 return;
592
593 kernel_ibt = HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT);
594 user_shstk = cpu_feature_enabled(X86_FEATURE_SHSTK) &&
595 IS_ENABLED(CONFIG_X86_USER_SHADOW_STACK);
596
597 if (!kernel_ibt && !user_shstk)
598 return;
599
600 if (user_shstk)
601 set_cpu_cap(c, X86_FEATURE_USER_SHSTK);
602
603 if (kernel_ibt)
604 wrmsrl(MSR_IA32_S_CET, CET_ENDBR_EN);
605 else
606 wrmsrl(MSR_IA32_S_CET, 0);
607
608 cr4_set_bits(X86_CR4_CET);
609
610 if (kernel_ibt && ibt_selftest()) {
611 pr_err("IBT selftest: Failed!\n");
612 wrmsrl(MSR_IA32_S_CET, 0);
613 setup_clear_cpu_cap(X86_FEATURE_IBT);
614 }
615}
616
617__noendbr void cet_disable(void)
618{
619 if (!(cpu_feature_enabled(X86_FEATURE_IBT) ||
620 cpu_feature_enabled(X86_FEATURE_SHSTK)))
621 return;
622
623 wrmsrl(MSR_IA32_S_CET, 0);
624 wrmsrl(MSR_IA32_U_CET, 0);
625}
626
627/*
628 * Some CPU features depend on higher CPUID levels, which may not always
629 * be available due to CPUID level capping or broken virtualization
630 * software. Add those features to this table to auto-disable them.
631 */
632struct cpuid_dependent_feature {
633 u32 feature;
634 u32 level;
635};
636
637static const struct cpuid_dependent_feature
638cpuid_dependent_features[] = {
639 { X86_FEATURE_MWAIT, 0x00000005 },
640 { X86_FEATURE_DCA, 0x00000009 },
641 { X86_FEATURE_XSAVE, 0x0000000d },
642 { 0, 0 }
643};
644
645static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
646{
647 const struct cpuid_dependent_feature *df;
648
649 for (df = cpuid_dependent_features; df->feature; df++) {
650
651 if (!cpu_has(c, df->feature))
652 continue;
653 /*
654 * Note: cpuid_level is set to -1 if unavailable, but
655 * extended_extended_level is set to 0 if unavailable
656 * and the legitimate extended levels are all negative
657 * when signed; hence the weird messing around with
658 * signs here...
659 */
660 if (!((s32)df->level < 0 ?
661 (u32)df->level > (u32)c->extended_cpuid_level :
662 (s32)df->level > (s32)c->cpuid_level))
663 continue;
664
665 clear_cpu_cap(c, df->feature);
666 if (!warn)
667 continue;
668
669 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
670 x86_cap_flag(df->feature), df->level);
671 }
672}
673
674/*
675 * Naming convention should be: <Name> [(<Codename>)]
676 * This table only is used unless init_<vendor>() below doesn't set it;
677 * in particular, if CPUID levels 0x80000002..4 are supported, this
678 * isn't used
679 */
680
681/* Look up CPU names by table lookup. */
682static const char *table_lookup_model(struct cpuinfo_x86 *c)
683{
684#ifdef CONFIG_X86_32
685 const struct legacy_cpu_model_info *info;
686
687 if (c->x86_model >= 16)
688 return NULL; /* Range check */
689
690 if (!this_cpu)
691 return NULL;
692
693 info = this_cpu->legacy_models;
694
695 while (info->family) {
696 if (info->family == c->x86)
697 return info->model_names[c->x86_model];
698 info++;
699 }
700#endif
701 return NULL; /* Not found */
702}
703
704/* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
705__u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
706__u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
707
708#ifdef CONFIG_X86_32
709/* The 32-bit entry code needs to find cpu_entry_area. */
710DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
711#endif
712
713/* Load the original GDT from the per-cpu structure */
714void load_direct_gdt(int cpu)
715{
716 struct desc_ptr gdt_descr;
717
718 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
719 gdt_descr.size = GDT_SIZE - 1;
720 load_gdt(&gdt_descr);
721}
722EXPORT_SYMBOL_GPL(load_direct_gdt);
723
724/* Load a fixmap remapping of the per-cpu GDT */
725void load_fixmap_gdt(int cpu)
726{
727 struct desc_ptr gdt_descr;
728
729 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
730 gdt_descr.size = GDT_SIZE - 1;
731 load_gdt(&gdt_descr);
732}
733EXPORT_SYMBOL_GPL(load_fixmap_gdt);
734
735/**
736 * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
737 * @cpu: The CPU number for which this is invoked
738 *
739 * Invoked during early boot to switch from early GDT and early per CPU to
740 * the direct GDT and the runtime per CPU area. On 32-bit the percpu base
741 * switch is implicit by loading the direct GDT. On 64bit this requires
742 * to update GSBASE.
743 */
744void __init switch_gdt_and_percpu_base(int cpu)
745{
746 load_direct_gdt(cpu);
747
748#ifdef CONFIG_X86_64
749 /*
750 * No need to load %gs. It is already correct.
751 *
752 * Writing %gs on 64bit would zero GSBASE which would make any per
753 * CPU operation up to the point of the wrmsrl() fault.
754 *
755 * Set GSBASE to the new offset. Until the wrmsrl() happens the
756 * early mapping is still valid. That means the GSBASE update will
757 * lose any prior per CPU data which was not copied over in
758 * setup_per_cpu_areas().
759 *
760 * This works even with stackprotector enabled because the
761 * per CPU stack canary is 0 in both per CPU areas.
762 */
763 wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
764#else
765 /*
766 * %fs is already set to __KERNEL_PERCPU, but after switching GDT
767 * it is required to load FS again so that the 'hidden' part is
768 * updated from the new GDT. Up to this point the early per CPU
769 * translation is active. Any content of the early per CPU data
770 * which was not copied over in setup_per_cpu_areas() is lost.
771 */
772 loadsegment(fs, __KERNEL_PERCPU);
773#endif
774}
775
776static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
777
778static void get_model_name(struct cpuinfo_x86 *c)
779{
780 unsigned int *v;
781 char *p, *q, *s;
782
783 if (c->extended_cpuid_level < 0x80000004)
784 return;
785
786 v = (unsigned int *)c->x86_model_id;
787 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
788 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
789 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
790 c->x86_model_id[48] = 0;
791
792 /* Trim whitespace */
793 p = q = s = &c->x86_model_id[0];
794
795 while (*p == ' ')
796 p++;
797
798 while (*p) {
799 /* Note the last non-whitespace index */
800 if (!isspace(*p))
801 s = q;
802
803 *q++ = *p++;
804 }
805
806 *(s + 1) = '\0';
807}
808
809void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
810{
811 unsigned int n, dummy, ebx, ecx, edx, l2size;
812
813 n = c->extended_cpuid_level;
814
815 if (n >= 0x80000005) {
816 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
817 c->x86_cache_size = (ecx>>24) + (edx>>24);
818#ifdef CONFIG_X86_64
819 /* On K8 L1 TLB is inclusive, so don't count it */
820 c->x86_tlbsize = 0;
821#endif
822 }
823
824 if (n < 0x80000006) /* Some chips just has a large L1. */
825 return;
826
827 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
828 l2size = ecx >> 16;
829
830#ifdef CONFIG_X86_64
831 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
832#else
833 /* do processor-specific cache resizing */
834 if (this_cpu->legacy_cache_size)
835 l2size = this_cpu->legacy_cache_size(c, l2size);
836
837 /* Allow user to override all this if necessary. */
838 if (cachesize_override != -1)
839 l2size = cachesize_override;
840
841 if (l2size == 0)
842 return; /* Again, no L2 cache is possible */
843#endif
844
845 c->x86_cache_size = l2size;
846}
847
848u16 __read_mostly tlb_lli_4k[NR_INFO];
849u16 __read_mostly tlb_lli_2m[NR_INFO];
850u16 __read_mostly tlb_lli_4m[NR_INFO];
851u16 __read_mostly tlb_lld_4k[NR_INFO];
852u16 __read_mostly tlb_lld_2m[NR_INFO];
853u16 __read_mostly tlb_lld_4m[NR_INFO];
854u16 __read_mostly tlb_lld_1g[NR_INFO];
855
856static void cpu_detect_tlb(struct cpuinfo_x86 *c)
857{
858 if (this_cpu->c_detect_tlb)
859 this_cpu->c_detect_tlb(c);
860
861 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
862 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
863 tlb_lli_4m[ENTRIES]);
864
865 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
866 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
867 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
868}
869
870void get_cpu_vendor(struct cpuinfo_x86 *c)
871{
872 char *v = c->x86_vendor_id;
873 int i;
874
875 for (i = 0; i < X86_VENDOR_NUM; i++) {
876 if (!cpu_devs[i])
877 break;
878
879 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
880 (cpu_devs[i]->c_ident[1] &&
881 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
882
883 this_cpu = cpu_devs[i];
884 c->x86_vendor = this_cpu->c_x86_vendor;
885 return;
886 }
887 }
888
889 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
890 "CPU: Your system may be unstable.\n", v);
891
892 c->x86_vendor = X86_VENDOR_UNKNOWN;
893 this_cpu = &default_cpu;
894}
895
896void cpu_detect(struct cpuinfo_x86 *c)
897{
898 /* Get vendor name */
899 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
900 (unsigned int *)&c->x86_vendor_id[0],
901 (unsigned int *)&c->x86_vendor_id[8],
902 (unsigned int *)&c->x86_vendor_id[4]);
903
904 c->x86 = 4;
905 /* Intel-defined flags: level 0x00000001 */
906 if (c->cpuid_level >= 0x00000001) {
907 u32 junk, tfms, cap0, misc;
908
909 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
910 c->x86 = x86_family(tfms);
911 c->x86_model = x86_model(tfms);
912 c->x86_stepping = x86_stepping(tfms);
913
914 if (cap0 & (1<<19)) {
915 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
916 c->x86_cache_alignment = c->x86_clflush_size;
917 }
918 }
919}
920
921static void apply_forced_caps(struct cpuinfo_x86 *c)
922{
923 int i;
924
925 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
926 c->x86_capability[i] &= ~cpu_caps_cleared[i];
927 c->x86_capability[i] |= cpu_caps_set[i];
928 }
929}
930
931static void init_speculation_control(struct cpuinfo_x86 *c)
932{
933 /*
934 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
935 * and they also have a different bit for STIBP support. Also,
936 * a hypervisor might have set the individual AMD bits even on
937 * Intel CPUs, for finer-grained selection of what's available.
938 */
939 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
940 set_cpu_cap(c, X86_FEATURE_IBRS);
941 set_cpu_cap(c, X86_FEATURE_IBPB);
942 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
943 }
944
945 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
946 set_cpu_cap(c, X86_FEATURE_STIBP);
947
948 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
949 cpu_has(c, X86_FEATURE_VIRT_SSBD))
950 set_cpu_cap(c, X86_FEATURE_SSBD);
951
952 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
953 set_cpu_cap(c, X86_FEATURE_IBRS);
954 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
955 }
956
957 if (cpu_has(c, X86_FEATURE_AMD_IBPB))
958 set_cpu_cap(c, X86_FEATURE_IBPB);
959
960 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
961 set_cpu_cap(c, X86_FEATURE_STIBP);
962 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
963 }
964
965 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
966 set_cpu_cap(c, X86_FEATURE_SSBD);
967 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
968 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
969 }
970}
971
972void get_cpu_cap(struct cpuinfo_x86 *c)
973{
974 u32 eax, ebx, ecx, edx;
975
976 /* Intel-defined flags: level 0x00000001 */
977 if (c->cpuid_level >= 0x00000001) {
978 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
979
980 c->x86_capability[CPUID_1_ECX] = ecx;
981 c->x86_capability[CPUID_1_EDX] = edx;
982 }
983
984 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
985 if (c->cpuid_level >= 0x00000006)
986 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
987
988 /* Additional Intel-defined flags: level 0x00000007 */
989 if (c->cpuid_level >= 0x00000007) {
990 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
991 c->x86_capability[CPUID_7_0_EBX] = ebx;
992 c->x86_capability[CPUID_7_ECX] = ecx;
993 c->x86_capability[CPUID_7_EDX] = edx;
994
995 /* Check valid sub-leaf index before accessing it */
996 if (eax >= 1) {
997 cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
998 c->x86_capability[CPUID_7_1_EAX] = eax;
999 }
1000 }
1001
1002 /* Extended state features: level 0x0000000d */
1003 if (c->cpuid_level >= 0x0000000d) {
1004 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1005
1006 c->x86_capability[CPUID_D_1_EAX] = eax;
1007 }
1008
1009 /* AMD-defined flags: level 0x80000001 */
1010 eax = cpuid_eax(0x80000000);
1011 c->extended_cpuid_level = eax;
1012
1013 if ((eax & 0xffff0000) == 0x80000000) {
1014 if (eax >= 0x80000001) {
1015 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1016
1017 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1018 c->x86_capability[CPUID_8000_0001_EDX] = edx;
1019 }
1020 }
1021
1022 if (c->extended_cpuid_level >= 0x80000007) {
1023 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1024
1025 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1026 c->x86_power = edx;
1027 }
1028
1029 if (c->extended_cpuid_level >= 0x80000008) {
1030 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1031 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1032 }
1033
1034 if (c->extended_cpuid_level >= 0x8000000a)
1035 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1036
1037 if (c->extended_cpuid_level >= 0x8000001f)
1038 c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1039
1040 if (c->extended_cpuid_level >= 0x80000021)
1041 c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021);
1042
1043 init_scattered_cpuid_features(c);
1044 init_speculation_control(c);
1045
1046 /*
1047 * Clear/Set all flags overridden by options, after probe.
1048 * This needs to happen each time we re-probe, which may happen
1049 * several times during CPU initialization.
1050 */
1051 apply_forced_caps(c);
1052}
1053
1054void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1055{
1056 u32 eax, ebx, ecx, edx;
1057
1058 if (!cpu_has(c, X86_FEATURE_CPUID) ||
1059 (c->extended_cpuid_level < 0x80000008)) {
1060 if (IS_ENABLED(CONFIG_X86_64)) {
1061 c->x86_clflush_size = 64;
1062 c->x86_phys_bits = 36;
1063 c->x86_virt_bits = 48;
1064 } else {
1065 c->x86_clflush_size = 32;
1066 c->x86_virt_bits = 32;
1067 c->x86_phys_bits = 32;
1068
1069 if (cpu_has(c, X86_FEATURE_PAE) ||
1070 cpu_has(c, X86_FEATURE_PSE36))
1071 c->x86_phys_bits = 36;
1072 }
1073 } else {
1074 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1075
1076 c->x86_virt_bits = (eax >> 8) & 0xff;
1077 c->x86_phys_bits = eax & 0xff;
1078
1079 /* Provide a sane default if not enumerated: */
1080 if (!c->x86_clflush_size)
1081 c->x86_clflush_size = 32;
1082 }
1083
1084 c->x86_cache_bits = c->x86_phys_bits;
1085 c->x86_cache_alignment = c->x86_clflush_size;
1086}
1087
1088static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1089{
1090 int i;
1091
1092 /*
1093 * First of all, decide if this is a 486 or higher
1094 * It's a 486 if we can modify the AC flag
1095 */
1096 if (flag_is_changeable_p(X86_EFLAGS_AC))
1097 c->x86 = 4;
1098 else
1099 c->x86 = 3;
1100
1101 for (i = 0; i < X86_VENDOR_NUM; i++)
1102 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1103 c->x86_vendor_id[0] = 0;
1104 cpu_devs[i]->c_identify(c);
1105 if (c->x86_vendor_id[0]) {
1106 get_cpu_vendor(c);
1107 break;
1108 }
1109 }
1110}
1111
1112#define NO_SPECULATION BIT(0)
1113#define NO_MELTDOWN BIT(1)
1114#define NO_SSB BIT(2)
1115#define NO_L1TF BIT(3)
1116#define NO_MDS BIT(4)
1117#define MSBDS_ONLY BIT(5)
1118#define NO_SWAPGS BIT(6)
1119#define NO_ITLB_MULTIHIT BIT(7)
1120#define NO_SPECTRE_V2 BIT(8)
1121#define NO_MMIO BIT(9)
1122#define NO_EIBRS_PBRSB BIT(10)
1123#define NO_BHI BIT(11)
1124
1125#define VULNWL(vendor, family, model, whitelist) \
1126 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1127
1128#define VULNWL_INTEL(vfm, whitelist) \
1129 X86_MATCH_VFM(vfm, whitelist)
1130
1131#define VULNWL_AMD(family, whitelist) \
1132 VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1133
1134#define VULNWL_HYGON(family, whitelist) \
1135 VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1136
1137static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1138 VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
1139 VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
1140 VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
1141 VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
1142 VULNWL(VORTEX, 5, X86_MODEL_ANY, NO_SPECULATION),
1143 VULNWL(VORTEX, 6, X86_MODEL_ANY, NO_SPECULATION),
1144
1145 /* Intel Family 6 */
1146 VULNWL_INTEL(INTEL_TIGERLAKE, NO_MMIO),
1147 VULNWL_INTEL(INTEL_TIGERLAKE_L, NO_MMIO),
1148 VULNWL_INTEL(INTEL_ALDERLAKE, NO_MMIO),
1149 VULNWL_INTEL(INTEL_ALDERLAKE_L, NO_MMIO),
1150
1151 VULNWL_INTEL(INTEL_ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1152 VULNWL_INTEL(INTEL_ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
1153 VULNWL_INTEL(INTEL_ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1154 VULNWL_INTEL(INTEL_ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1155 VULNWL_INTEL(INTEL_ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1156
1157 VULNWL_INTEL(INTEL_ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1158 VULNWL_INTEL(INTEL_ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1159 VULNWL_INTEL(INTEL_ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1160 VULNWL_INTEL(INTEL_ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1161 VULNWL_INTEL(INTEL_XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1162 VULNWL_INTEL(INTEL_XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1163
1164 VULNWL_INTEL(INTEL_CORE_YONAH, NO_SSB),
1165
1166 VULNWL_INTEL(INTEL_ATOM_AIRMONT_MID, NO_SSB | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | MSBDS_ONLY),
1167 VULNWL_INTEL(INTEL_ATOM_AIRMONT_NP, NO_SSB | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1168
1169 VULNWL_INTEL(INTEL_ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1170 VULNWL_INTEL(INTEL_ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1171 VULNWL_INTEL(INTEL_ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1172
1173 /*
1174 * Technically, swapgs isn't serializing on AMD (despite it previously
1175 * being documented as such in the APM). But according to AMD, %gs is
1176 * updated non-speculatively, and the issuing of %gs-relative memory
1177 * operands will be blocked until the %gs update completes, which is
1178 * good enough for our purposes.
1179 */
1180
1181 VULNWL_INTEL(INTEL_ATOM_TREMONT, NO_EIBRS_PBRSB),
1182 VULNWL_INTEL(INTEL_ATOM_TREMONT_L, NO_EIBRS_PBRSB),
1183 VULNWL_INTEL(INTEL_ATOM_TREMONT_D, NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1184
1185 /* AMD Family 0xf - 0x12 */
1186 VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1187 VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1188 VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1189 VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1190
1191 /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1192 VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI),
1193 VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI),
1194
1195 /* Zhaoxin Family 7 */
1196 VULNWL(CENTAUR, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI),
1197 VULNWL(ZHAOXIN, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI),
1198 {}
1199};
1200
1201#define VULNBL(vendor, family, model, blacklist) \
1202 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1203
1204#define VULNBL_INTEL_STEPPINGS(vfm, steppings, issues) \
1205 X86_MATCH_VFM_STEPPINGS(vfm, steppings, issues)
1206
1207#define VULNBL_AMD(family, blacklist) \
1208 VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1209
1210#define VULNBL_HYGON(family, blacklist) \
1211 VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1212
1213#define SRBDS BIT(0)
1214/* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1215#define MMIO BIT(1)
1216/* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1217#define MMIO_SBDS BIT(2)
1218/* CPU is affected by RETbleed, speculating where you would not expect it */
1219#define RETBLEED BIT(3)
1220/* CPU is affected by SMT (cross-thread) return predictions */
1221#define SMT_RSB BIT(4)
1222/* CPU is affected by SRSO */
1223#define SRSO BIT(5)
1224/* CPU is affected by GDS */
1225#define GDS BIT(6)
1226/* CPU is affected by Register File Data Sampling */
1227#define RFDS BIT(7)
1228
1229static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1230 VULNBL_INTEL_STEPPINGS(INTEL_IVYBRIDGE, X86_STEPPING_ANY, SRBDS),
1231 VULNBL_INTEL_STEPPINGS(INTEL_HASWELL, X86_STEPPING_ANY, SRBDS),
1232 VULNBL_INTEL_STEPPINGS(INTEL_HASWELL_L, X86_STEPPING_ANY, SRBDS),
1233 VULNBL_INTEL_STEPPINGS(INTEL_HASWELL_G, X86_STEPPING_ANY, SRBDS),
1234 VULNBL_INTEL_STEPPINGS(INTEL_HASWELL_X, X86_STEPPING_ANY, MMIO),
1235 VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL_D, X86_STEPPING_ANY, MMIO),
1236 VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL_G, X86_STEPPING_ANY, SRBDS),
1237 VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL_X, X86_STEPPING_ANY, MMIO),
1238 VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL, X86_STEPPING_ANY, SRBDS),
1239 VULNBL_INTEL_STEPPINGS(INTEL_SKYLAKE_X, X86_STEPPING_ANY, MMIO | RETBLEED | GDS),
1240 VULNBL_INTEL_STEPPINGS(INTEL_SKYLAKE_L, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS),
1241 VULNBL_INTEL_STEPPINGS(INTEL_SKYLAKE, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS),
1242 VULNBL_INTEL_STEPPINGS(INTEL_KABYLAKE_L, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS),
1243 VULNBL_INTEL_STEPPINGS(INTEL_KABYLAKE, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS),
1244 VULNBL_INTEL_STEPPINGS(INTEL_CANNONLAKE_L, X86_STEPPING_ANY, RETBLEED),
1245 VULNBL_INTEL_STEPPINGS(INTEL_ICELAKE_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED | GDS),
1246 VULNBL_INTEL_STEPPINGS(INTEL_ICELAKE_D, X86_STEPPING_ANY, MMIO | GDS),
1247 VULNBL_INTEL_STEPPINGS(INTEL_ICELAKE_X, X86_STEPPING_ANY, MMIO | GDS),
1248 VULNBL_INTEL_STEPPINGS(INTEL_COMETLAKE, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED | GDS),
1249 VULNBL_INTEL_STEPPINGS(INTEL_COMETLAKE_L, X86_STEPPINGS(0x0, 0x0), MMIO | RETBLEED),
1250 VULNBL_INTEL_STEPPINGS(INTEL_COMETLAKE_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED | GDS),
1251 VULNBL_INTEL_STEPPINGS(INTEL_TIGERLAKE_L, X86_STEPPING_ANY, GDS),
1252 VULNBL_INTEL_STEPPINGS(INTEL_TIGERLAKE, X86_STEPPING_ANY, GDS),
1253 VULNBL_INTEL_STEPPINGS(INTEL_LAKEFIELD, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED),
1254 VULNBL_INTEL_STEPPINGS(INTEL_ROCKETLAKE, X86_STEPPING_ANY, MMIO | RETBLEED | GDS),
1255 VULNBL_INTEL_STEPPINGS(INTEL_ALDERLAKE, X86_STEPPING_ANY, RFDS),
1256 VULNBL_INTEL_STEPPINGS(INTEL_ALDERLAKE_L, X86_STEPPING_ANY, RFDS),
1257 VULNBL_INTEL_STEPPINGS(INTEL_RAPTORLAKE, X86_STEPPING_ANY, RFDS),
1258 VULNBL_INTEL_STEPPINGS(INTEL_RAPTORLAKE_P, X86_STEPPING_ANY, RFDS),
1259 VULNBL_INTEL_STEPPINGS(INTEL_RAPTORLAKE_S, X86_STEPPING_ANY, RFDS),
1260 VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GRACEMONT, X86_STEPPING_ANY, RFDS),
1261 VULNBL_INTEL_STEPPINGS(INTEL_ATOM_TREMONT, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RFDS),
1262 VULNBL_INTEL_STEPPINGS(INTEL_ATOM_TREMONT_D, X86_STEPPING_ANY, MMIO | RFDS),
1263 VULNBL_INTEL_STEPPINGS(INTEL_ATOM_TREMONT_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RFDS),
1264 VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GOLDMONT, X86_STEPPING_ANY, RFDS),
1265 VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GOLDMONT_D, X86_STEPPING_ANY, RFDS),
1266 VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GOLDMONT_PLUS, X86_STEPPING_ANY, RFDS),
1267
1268 VULNBL_AMD(0x15, RETBLEED),
1269 VULNBL_AMD(0x16, RETBLEED),
1270 VULNBL_AMD(0x17, RETBLEED | SMT_RSB | SRSO),
1271 VULNBL_HYGON(0x18, RETBLEED | SMT_RSB | SRSO),
1272 VULNBL_AMD(0x19, SRSO),
1273 {}
1274};
1275
1276static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1277{
1278 const struct x86_cpu_id *m = x86_match_cpu(table);
1279
1280 return m && !!(m->driver_data & which);
1281}
1282
1283u64 x86_read_arch_cap_msr(void)
1284{
1285 u64 x86_arch_cap_msr = 0;
1286
1287 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1288 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, x86_arch_cap_msr);
1289
1290 return x86_arch_cap_msr;
1291}
1292
1293static bool arch_cap_mmio_immune(u64 x86_arch_cap_msr)
1294{
1295 return (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO &&
1296 x86_arch_cap_msr & ARCH_CAP_PSDP_NO &&
1297 x86_arch_cap_msr & ARCH_CAP_SBDR_SSDP_NO);
1298}
1299
1300static bool __init vulnerable_to_rfds(u64 x86_arch_cap_msr)
1301{
1302 /* The "immunity" bit trumps everything else: */
1303 if (x86_arch_cap_msr & ARCH_CAP_RFDS_NO)
1304 return false;
1305
1306 /*
1307 * VMMs set ARCH_CAP_RFDS_CLEAR for processors not in the blacklist to
1308 * indicate that mitigation is needed because guest is running on a
1309 * vulnerable hardware or may migrate to such hardware:
1310 */
1311 if (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR)
1312 return true;
1313
1314 /* Only consult the blacklist when there is no enumeration: */
1315 return cpu_matches(cpu_vuln_blacklist, RFDS);
1316}
1317
1318static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1319{
1320 u64 x86_arch_cap_msr = x86_read_arch_cap_msr();
1321
1322 /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1323 if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1324 !(x86_arch_cap_msr & ARCH_CAP_PSCHANGE_MC_NO))
1325 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1326
1327 if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1328 return;
1329
1330 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1331
1332 if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1333 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1334
1335 if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1336 !(x86_arch_cap_msr & ARCH_CAP_SSB_NO) &&
1337 !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1338 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1339
1340 /*
1341 * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature
1342 * flag and protect from vendor-specific bugs via the whitelist.
1343 *
1344 * Don't use AutoIBRS when SNP is enabled because it degrades host
1345 * userspace indirect branch performance.
1346 */
1347 if ((x86_arch_cap_msr & ARCH_CAP_IBRS_ALL) ||
1348 (cpu_has(c, X86_FEATURE_AUTOIBRS) &&
1349 !cpu_feature_enabled(X86_FEATURE_SEV_SNP))) {
1350 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1351 if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1352 !(x86_arch_cap_msr & ARCH_CAP_PBRSB_NO))
1353 setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1354 }
1355
1356 if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1357 !(x86_arch_cap_msr & ARCH_CAP_MDS_NO)) {
1358 setup_force_cpu_bug(X86_BUG_MDS);
1359 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1360 setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1361 }
1362
1363 if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1364 setup_force_cpu_bug(X86_BUG_SWAPGS);
1365
1366 /*
1367 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1368 * - TSX is supported or
1369 * - TSX_CTRL is present
1370 *
1371 * TSX_CTRL check is needed for cases when TSX could be disabled before
1372 * the kernel boot e.g. kexec.
1373 * TSX_CTRL check alone is not sufficient for cases when the microcode
1374 * update is not present or running as guest that don't get TSX_CTRL.
1375 */
1376 if (!(x86_arch_cap_msr & ARCH_CAP_TAA_NO) &&
1377 (cpu_has(c, X86_FEATURE_RTM) ||
1378 (x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR)))
1379 setup_force_cpu_bug(X86_BUG_TAA);
1380
1381 /*
1382 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1383 * in the vulnerability blacklist.
1384 *
1385 * Some of the implications and mitigation of Shared Buffers Data
1386 * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1387 * SRBDS.
1388 */
1389 if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1390 cpu_has(c, X86_FEATURE_RDSEED)) &&
1391 cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1392 setup_force_cpu_bug(X86_BUG_SRBDS);
1393
1394 /*
1395 * Processor MMIO Stale Data bug enumeration
1396 *
1397 * Affected CPU list is generally enough to enumerate the vulnerability,
1398 * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1399 * not want the guest to enumerate the bug.
1400 *
1401 * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
1402 * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
1403 */
1404 if (!arch_cap_mmio_immune(x86_arch_cap_msr)) {
1405 if (cpu_matches(cpu_vuln_blacklist, MMIO))
1406 setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1407 else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
1408 setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
1409 }
1410
1411 if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1412 if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (x86_arch_cap_msr & ARCH_CAP_RSBA))
1413 setup_force_cpu_bug(X86_BUG_RETBLEED);
1414 }
1415
1416 if (cpu_matches(cpu_vuln_blacklist, SMT_RSB))
1417 setup_force_cpu_bug(X86_BUG_SMT_RSB);
1418
1419 if (!cpu_has(c, X86_FEATURE_SRSO_NO)) {
1420 if (cpu_matches(cpu_vuln_blacklist, SRSO))
1421 setup_force_cpu_bug(X86_BUG_SRSO);
1422 }
1423
1424 /*
1425 * Check if CPU is vulnerable to GDS. If running in a virtual machine on
1426 * an affected processor, the VMM may have disabled the use of GATHER by
1427 * disabling AVX2. The only way to do this in HW is to clear XCR0[2],
1428 * which means that AVX will be disabled.
1429 */
1430 if (cpu_matches(cpu_vuln_blacklist, GDS) && !(x86_arch_cap_msr & ARCH_CAP_GDS_NO) &&
1431 boot_cpu_has(X86_FEATURE_AVX))
1432 setup_force_cpu_bug(X86_BUG_GDS);
1433
1434 if (vulnerable_to_rfds(x86_arch_cap_msr))
1435 setup_force_cpu_bug(X86_BUG_RFDS);
1436
1437 /* When virtualized, eIBRS could be hidden, assume vulnerable */
1438 if (!(x86_arch_cap_msr & ARCH_CAP_BHI_NO) &&
1439 !cpu_matches(cpu_vuln_whitelist, NO_BHI) &&
1440 (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED) ||
1441 boot_cpu_has(X86_FEATURE_HYPERVISOR)))
1442 setup_force_cpu_bug(X86_BUG_BHI);
1443
1444 if (cpu_has(c, X86_FEATURE_AMD_IBPB) && !cpu_has(c, X86_FEATURE_AMD_IBPB_RET))
1445 setup_force_cpu_bug(X86_BUG_IBPB_NO_RET);
1446
1447 if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1448 return;
1449
1450 /* Rogue Data Cache Load? No! */
1451 if (x86_arch_cap_msr & ARCH_CAP_RDCL_NO)
1452 return;
1453
1454 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1455
1456 if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1457 return;
1458
1459 setup_force_cpu_bug(X86_BUG_L1TF);
1460}
1461
1462/*
1463 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1464 * unfortunately, that's not true in practice because of early VIA
1465 * chips and (more importantly) broken virtualizers that are not easy
1466 * to detect. In the latter case it doesn't even *fail* reliably, so
1467 * probing for it doesn't even work. Disable it completely on 32-bit
1468 * unless we can find a reliable way to detect all the broken cases.
1469 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1470 */
1471static void detect_nopl(void)
1472{
1473#ifdef CONFIG_X86_32
1474 setup_clear_cpu_cap(X86_FEATURE_NOPL);
1475#else
1476 setup_force_cpu_cap(X86_FEATURE_NOPL);
1477#endif
1478}
1479
1480/*
1481 * We parse cpu parameters early because fpu__init_system() is executed
1482 * before parse_early_param().
1483 */
1484static void __init cpu_parse_early_param(void)
1485{
1486 char arg[128];
1487 char *argptr = arg, *opt;
1488 int arglen, taint = 0;
1489
1490#ifdef CONFIG_X86_32
1491 if (cmdline_find_option_bool(boot_command_line, "no387"))
1492#ifdef CONFIG_MATH_EMULATION
1493 setup_clear_cpu_cap(X86_FEATURE_FPU);
1494#else
1495 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1496#endif
1497
1498 if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1499 setup_clear_cpu_cap(X86_FEATURE_FXSR);
1500#endif
1501
1502 if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1503 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1504
1505 if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1506 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1507
1508 if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1509 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1510
1511 if (cmdline_find_option_bool(boot_command_line, "nousershstk"))
1512 setup_clear_cpu_cap(X86_FEATURE_USER_SHSTK);
1513
1514 /* Minimize the gap between FRED is available and available but disabled. */
1515 arglen = cmdline_find_option(boot_command_line, "fred", arg, sizeof(arg));
1516 if (arglen != 2 || strncmp(arg, "on", 2))
1517 setup_clear_cpu_cap(X86_FEATURE_FRED);
1518
1519 arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1520 if (arglen <= 0)
1521 return;
1522
1523 pr_info("Clearing CPUID bits:");
1524
1525 while (argptr) {
1526 bool found __maybe_unused = false;
1527 unsigned int bit;
1528
1529 opt = strsep(&argptr, ",");
1530
1531 /*
1532 * Handle naked numbers first for feature flags which don't
1533 * have names.
1534 */
1535 if (!kstrtouint(opt, 10, &bit)) {
1536 if (bit < NCAPINTS * 32) {
1537
1538 /* empty-string, i.e., ""-defined feature flags */
1539 if (!x86_cap_flags[bit])
1540 pr_cont(" " X86_CAP_FMT_NUM, x86_cap_flag_num(bit));
1541 else
1542 pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1543
1544 setup_clear_cpu_cap(bit);
1545 taint++;
1546 }
1547 /*
1548 * The assumption is that there are no feature names with only
1549 * numbers in the name thus go to the next argument.
1550 */
1551 continue;
1552 }
1553
1554 for (bit = 0; bit < 32 * NCAPINTS; bit++) {
1555 if (!x86_cap_flag(bit))
1556 continue;
1557
1558 if (strcmp(x86_cap_flag(bit), opt))
1559 continue;
1560
1561 pr_cont(" %s", opt);
1562 setup_clear_cpu_cap(bit);
1563 taint++;
1564 found = true;
1565 break;
1566 }
1567
1568 if (!found)
1569 pr_cont(" (unknown: %s)", opt);
1570 }
1571 pr_cont("\n");
1572
1573 if (taint)
1574 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1575}
1576
1577/*
1578 * Do minimum CPU detection early.
1579 * Fields really needed: vendor, cpuid_level, family, model, mask,
1580 * cache alignment.
1581 * The others are not touched to avoid unwanted side effects.
1582 *
1583 * WARNING: this function is only called on the boot CPU. Don't add code
1584 * here that is supposed to run on all CPUs.
1585 */
1586static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1587{
1588 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1589 c->extended_cpuid_level = 0;
1590
1591 if (!have_cpuid_p())
1592 identify_cpu_without_cpuid(c);
1593
1594 /* cyrix could have cpuid enabled via c_identify()*/
1595 if (have_cpuid_p()) {
1596 cpu_detect(c);
1597 get_cpu_vendor(c);
1598 intel_unlock_cpuid_leafs(c);
1599 get_cpu_cap(c);
1600 setup_force_cpu_cap(X86_FEATURE_CPUID);
1601 get_cpu_address_sizes(c);
1602 cpu_parse_early_param();
1603
1604 cpu_init_topology(c);
1605
1606 if (this_cpu->c_early_init)
1607 this_cpu->c_early_init(c);
1608
1609 c->cpu_index = 0;
1610 filter_cpuid_features(c, false);
1611
1612 if (this_cpu->c_bsp_init)
1613 this_cpu->c_bsp_init(c);
1614 } else {
1615 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1616 get_cpu_address_sizes(c);
1617 cpu_init_topology(c);
1618 }
1619
1620 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1621
1622 cpu_set_bug_bits(c);
1623
1624 sld_setup(c);
1625
1626#ifdef CONFIG_X86_32
1627 /*
1628 * Regardless of whether PCID is enumerated, the SDM says
1629 * that it can't be enabled in 32-bit mode.
1630 */
1631 setup_clear_cpu_cap(X86_FEATURE_PCID);
1632#endif
1633
1634 /*
1635 * Later in the boot process pgtable_l5_enabled() relies on
1636 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1637 * enabled by this point we need to clear the feature bit to avoid
1638 * false-positives at the later stage.
1639 *
1640 * pgtable_l5_enabled() can be false here for several reasons:
1641 * - 5-level paging is disabled compile-time;
1642 * - it's 32-bit kernel;
1643 * - machine doesn't support 5-level paging;
1644 * - user specified 'no5lvl' in kernel command line.
1645 */
1646 if (!pgtable_l5_enabled())
1647 setup_clear_cpu_cap(X86_FEATURE_LA57);
1648
1649 detect_nopl();
1650}
1651
1652void __init init_cpu_devs(void)
1653{
1654 const struct cpu_dev *const *cdev;
1655 int count = 0;
1656
1657 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1658 const struct cpu_dev *cpudev = *cdev;
1659
1660 if (count >= X86_VENDOR_NUM)
1661 break;
1662 cpu_devs[count] = cpudev;
1663 count++;
1664 }
1665}
1666
1667void __init early_cpu_init(void)
1668{
1669#ifdef CONFIG_PROCESSOR_SELECT
1670 unsigned int i, j;
1671
1672 pr_info("KERNEL supported cpus:\n");
1673#endif
1674
1675 init_cpu_devs();
1676
1677#ifdef CONFIG_PROCESSOR_SELECT
1678 for (i = 0; i < X86_VENDOR_NUM && cpu_devs[i]; i++) {
1679 for (j = 0; j < 2; j++) {
1680 if (!cpu_devs[i]->c_ident[j])
1681 continue;
1682 pr_info(" %s %s\n", cpu_devs[i]->c_vendor,
1683 cpu_devs[i]->c_ident[j]);
1684 }
1685 }
1686#endif
1687
1688 early_identify_cpu(&boot_cpu_data);
1689}
1690
1691static bool detect_null_seg_behavior(void)
1692{
1693 /*
1694 * Empirically, writing zero to a segment selector on AMD does
1695 * not clear the base, whereas writing zero to a segment
1696 * selector on Intel does clear the base. Intel's behavior
1697 * allows slightly faster context switches in the common case
1698 * where GS is unused by the prev and next threads.
1699 *
1700 * Since neither vendor documents this anywhere that I can see,
1701 * detect it directly instead of hard-coding the choice by
1702 * vendor.
1703 *
1704 * I've designated AMD's behavior as the "bug" because it's
1705 * counterintuitive and less friendly.
1706 */
1707
1708 unsigned long old_base, tmp;
1709 rdmsrl(MSR_FS_BASE, old_base);
1710 wrmsrl(MSR_FS_BASE, 1);
1711 loadsegment(fs, 0);
1712 rdmsrl(MSR_FS_BASE, tmp);
1713 wrmsrl(MSR_FS_BASE, old_base);
1714 return tmp == 0;
1715}
1716
1717void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1718{
1719 /* BUG_NULL_SEG is only relevant with 64bit userspace */
1720 if (!IS_ENABLED(CONFIG_X86_64))
1721 return;
1722
1723 if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE))
1724 return;
1725
1726 /*
1727 * CPUID bit above wasn't set. If this kernel is still running
1728 * as a HV guest, then the HV has decided not to advertize
1729 * that CPUID bit for whatever reason. For example, one
1730 * member of the migration pool might be vulnerable. Which
1731 * means, the bug is present: set the BUG flag and return.
1732 */
1733 if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1734 set_cpu_bug(c, X86_BUG_NULL_SEG);
1735 return;
1736 }
1737
1738 /*
1739 * Zen2 CPUs also have this behaviour, but no CPUID bit.
1740 * 0x18 is the respective family for Hygon.
1741 */
1742 if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1743 detect_null_seg_behavior())
1744 return;
1745
1746 /* All the remaining ones are affected */
1747 set_cpu_bug(c, X86_BUG_NULL_SEG);
1748}
1749
1750static void generic_identify(struct cpuinfo_x86 *c)
1751{
1752 c->extended_cpuid_level = 0;
1753
1754 if (!have_cpuid_p())
1755 identify_cpu_without_cpuid(c);
1756
1757 /* cyrix could have cpuid enabled via c_identify()*/
1758 if (!have_cpuid_p())
1759 return;
1760
1761 cpu_detect(c);
1762
1763 get_cpu_vendor(c);
1764 intel_unlock_cpuid_leafs(c);
1765 get_cpu_cap(c);
1766
1767 get_cpu_address_sizes(c);
1768
1769 get_model_name(c); /* Default name */
1770
1771 /*
1772 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1773 * systems that run Linux at CPL > 0 may or may not have the
1774 * issue, but, even if they have the issue, there's absolutely
1775 * nothing we can do about it because we can't use the real IRET
1776 * instruction.
1777 *
1778 * NB: For the time being, only 32-bit kernels support
1779 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1780 * whether to apply espfix using paravirt hooks. If any
1781 * non-paravirt system ever shows up that does *not* have the
1782 * ESPFIX issue, we can change this.
1783 */
1784#ifdef CONFIG_X86_32
1785 set_cpu_bug(c, X86_BUG_ESPFIX);
1786#endif
1787}
1788
1789/*
1790 * This does the hard work of actually picking apart the CPU stuff...
1791 */
1792static void identify_cpu(struct cpuinfo_x86 *c)
1793{
1794 int i;
1795
1796 c->loops_per_jiffy = loops_per_jiffy;
1797 c->x86_cache_size = 0;
1798 c->x86_vendor = X86_VENDOR_UNKNOWN;
1799 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1800 c->x86_vendor_id[0] = '\0'; /* Unset */
1801 c->x86_model_id[0] = '\0'; /* Unset */
1802#ifdef CONFIG_X86_64
1803 c->x86_clflush_size = 64;
1804 c->x86_phys_bits = 36;
1805 c->x86_virt_bits = 48;
1806#else
1807 c->cpuid_level = -1; /* CPUID not detected */
1808 c->x86_clflush_size = 32;
1809 c->x86_phys_bits = 32;
1810 c->x86_virt_bits = 32;
1811#endif
1812 c->x86_cache_alignment = c->x86_clflush_size;
1813 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1814#ifdef CONFIG_X86_VMX_FEATURE_NAMES
1815 memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1816#endif
1817
1818 generic_identify(c);
1819
1820 cpu_parse_topology(c);
1821
1822 if (this_cpu->c_identify)
1823 this_cpu->c_identify(c);
1824
1825 /* Clear/Set all flags overridden by options, after probe */
1826 apply_forced_caps(c);
1827
1828 /*
1829 * Set default APIC and TSC_DEADLINE MSR fencing flag. AMD and
1830 * Hygon will clear it in ->c_init() below.
1831 */
1832 set_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE);
1833
1834 /*
1835 * Vendor-specific initialization. In this section we
1836 * canonicalize the feature flags, meaning if there are
1837 * features a certain CPU supports which CPUID doesn't
1838 * tell us, CPUID claiming incorrect flags, or other bugs,
1839 * we handle them here.
1840 *
1841 * At the end of this section, c->x86_capability better
1842 * indicate the features this CPU genuinely supports!
1843 */
1844 if (this_cpu->c_init)
1845 this_cpu->c_init(c);
1846
1847 bus_lock_init();
1848
1849 /* Disable the PN if appropriate */
1850 squash_the_stupid_serial_number(c);
1851
1852 /* Set up SMEP/SMAP/UMIP */
1853 setup_smep(c);
1854 setup_smap(c);
1855 setup_umip(c);
1856
1857 /* Enable FSGSBASE instructions if available. */
1858 if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1859 cr4_set_bits(X86_CR4_FSGSBASE);
1860 elf_hwcap2 |= HWCAP2_FSGSBASE;
1861 }
1862
1863 /*
1864 * The vendor-specific functions might have changed features.
1865 * Now we do "generic changes."
1866 */
1867
1868 /* Filter out anything that depends on CPUID levels we don't have */
1869 filter_cpuid_features(c, true);
1870
1871 /* If the model name is still unset, do table lookup. */
1872 if (!c->x86_model_id[0]) {
1873 const char *p;
1874 p = table_lookup_model(c);
1875 if (p)
1876 strcpy(c->x86_model_id, p);
1877 else
1878 /* Last resort... */
1879 sprintf(c->x86_model_id, "%02x/%02x",
1880 c->x86, c->x86_model);
1881 }
1882
1883 x86_init_rdrand(c);
1884 setup_pku(c);
1885 setup_cet(c);
1886
1887 /*
1888 * Clear/Set all flags overridden by options, need do it
1889 * before following smp all cpus cap AND.
1890 */
1891 apply_forced_caps(c);
1892
1893 /*
1894 * On SMP, boot_cpu_data holds the common feature set between
1895 * all CPUs; so make sure that we indicate which features are
1896 * common between the CPUs. The first time this routine gets
1897 * executed, c == &boot_cpu_data.
1898 */
1899 if (c != &boot_cpu_data) {
1900 /* AND the already accumulated flags with these */
1901 for (i = 0; i < NCAPINTS; i++)
1902 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1903
1904 /* OR, i.e. replicate the bug flags */
1905 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1906 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1907 }
1908
1909 ppin_init(c);
1910
1911 /* Init Machine Check Exception if available. */
1912 mcheck_cpu_init(c);
1913
1914 numa_add_cpu(smp_processor_id());
1915}
1916
1917/*
1918 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1919 * on 32-bit kernels:
1920 */
1921#ifdef CONFIG_X86_32
1922void enable_sep_cpu(void)
1923{
1924 struct tss_struct *tss;
1925 int cpu;
1926
1927 if (!boot_cpu_has(X86_FEATURE_SEP))
1928 return;
1929
1930 cpu = get_cpu();
1931 tss = &per_cpu(cpu_tss_rw, cpu);
1932
1933 /*
1934 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1935 * see the big comment in struct x86_hw_tss's definition.
1936 */
1937
1938 tss->x86_tss.ss1 = __KERNEL_CS;
1939 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1940 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1941 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1942
1943 put_cpu();
1944}
1945#endif
1946
1947static __init void identify_boot_cpu(void)
1948{
1949 identify_cpu(&boot_cpu_data);
1950 if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1951 pr_info("CET detected: Indirect Branch Tracking enabled\n");
1952#ifdef CONFIG_X86_32
1953 enable_sep_cpu();
1954#endif
1955 cpu_detect_tlb(&boot_cpu_data);
1956 setup_cr_pinning();
1957
1958 tsx_init();
1959 tdx_init();
1960 lkgs_init();
1961}
1962
1963void identify_secondary_cpu(struct cpuinfo_x86 *c)
1964{
1965 BUG_ON(c == &boot_cpu_data);
1966 identify_cpu(c);
1967#ifdef CONFIG_X86_32
1968 enable_sep_cpu();
1969#endif
1970 x86_spec_ctrl_setup_ap();
1971 update_srbds_msr();
1972 if (boot_cpu_has_bug(X86_BUG_GDS))
1973 update_gds_msr();
1974
1975 tsx_ap_init();
1976}
1977
1978void print_cpu_info(struct cpuinfo_x86 *c)
1979{
1980 const char *vendor = NULL;
1981
1982 if (c->x86_vendor < X86_VENDOR_NUM) {
1983 vendor = this_cpu->c_vendor;
1984 } else {
1985 if (c->cpuid_level >= 0)
1986 vendor = c->x86_vendor_id;
1987 }
1988
1989 if (vendor && !strstr(c->x86_model_id, vendor))
1990 pr_cont("%s ", vendor);
1991
1992 if (c->x86_model_id[0])
1993 pr_cont("%s", c->x86_model_id);
1994 else
1995 pr_cont("%d86", c->x86);
1996
1997 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1998
1999 if (c->x86_stepping || c->cpuid_level >= 0)
2000 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
2001 else
2002 pr_cont(")\n");
2003}
2004
2005/*
2006 * clearcpuid= was already parsed in cpu_parse_early_param(). This dummy
2007 * function prevents it from becoming an environment variable for init.
2008 */
2009static __init int setup_clearcpuid(char *arg)
2010{
2011 return 1;
2012}
2013__setup("clearcpuid=", setup_clearcpuid);
2014
2015DEFINE_PER_CPU_ALIGNED(struct pcpu_hot, pcpu_hot) = {
2016 .current_task = &init_task,
2017 .preempt_count = INIT_PREEMPT_COUNT,
2018 .top_of_stack = TOP_OF_INIT_STACK,
2019};
2020EXPORT_PER_CPU_SYMBOL(pcpu_hot);
2021EXPORT_PER_CPU_SYMBOL(const_pcpu_hot);
2022
2023#ifdef CONFIG_X86_64
2024DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
2025 fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
2026EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
2027
2028static void wrmsrl_cstar(unsigned long val)
2029{
2030 /*
2031 * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
2032 * is so far ignored by the CPU, but raises a #VE trap in a TDX
2033 * guest. Avoid the pointless write on all Intel CPUs.
2034 */
2035 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2036 wrmsrl(MSR_CSTAR, val);
2037}
2038
2039static inline void idt_syscall_init(void)
2040{
2041 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
2042
2043 if (ia32_enabled()) {
2044 wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
2045 /*
2046 * This only works on Intel CPUs.
2047 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
2048 * This does not cause SYSENTER to jump to the wrong location, because
2049 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
2050 */
2051 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
2052 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
2053 (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
2054 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
2055 } else {
2056 wrmsrl_cstar((unsigned long)entry_SYSCALL32_ignore);
2057 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
2058 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
2059 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
2060 }
2061
2062 /*
2063 * Flags to clear on syscall; clear as much as possible
2064 * to minimize user space-kernel interference.
2065 */
2066 wrmsrl(MSR_SYSCALL_MASK,
2067 X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
2068 X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
2069 X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
2070 X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
2071 X86_EFLAGS_AC|X86_EFLAGS_ID);
2072}
2073
2074/* May not be marked __init: used by software suspend */
2075void syscall_init(void)
2076{
2077 /* The default user and kernel segments */
2078 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
2079
2080 /*
2081 * Except the IA32_STAR MSR, there is NO need to setup SYSCALL and
2082 * SYSENTER MSRs for FRED, because FRED uses the ring 3 FRED
2083 * entrypoint for SYSCALL and SYSENTER, and ERETU is the only legit
2084 * instruction to return to ring 3 (both sysexit and sysret cause
2085 * #UD when FRED is enabled).
2086 */
2087 if (!cpu_feature_enabled(X86_FEATURE_FRED))
2088 idt_syscall_init();
2089}
2090
2091#else /* CONFIG_X86_64 */
2092
2093#ifdef CONFIG_STACKPROTECTOR
2094DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
2095#ifndef CONFIG_SMP
2096EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
2097#endif
2098#endif
2099
2100#endif /* CONFIG_X86_64 */
2101
2102/*
2103 * Clear all 6 debug registers:
2104 */
2105static void clear_all_debug_regs(void)
2106{
2107 int i;
2108
2109 for (i = 0; i < 8; i++) {
2110 /* Ignore db4, db5 */
2111 if ((i == 4) || (i == 5))
2112 continue;
2113
2114 set_debugreg(0, i);
2115 }
2116}
2117
2118#ifdef CONFIG_KGDB
2119/*
2120 * Restore debug regs if using kgdbwait and you have a kernel debugger
2121 * connection established.
2122 */
2123static void dbg_restore_debug_regs(void)
2124{
2125 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2126 arch_kgdb_ops.correct_hw_break();
2127}
2128#else /* ! CONFIG_KGDB */
2129#define dbg_restore_debug_regs()
2130#endif /* ! CONFIG_KGDB */
2131
2132static inline void setup_getcpu(int cpu)
2133{
2134 unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2135 struct desc_struct d = { };
2136
2137 if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2138 wrmsr(MSR_TSC_AUX, cpudata, 0);
2139
2140 /* Store CPU and node number in limit. */
2141 d.limit0 = cpudata;
2142 d.limit1 = cpudata >> 16;
2143
2144 d.type = 5; /* RO data, expand down, accessed */
2145 d.dpl = 3; /* Visible to user code */
2146 d.s = 1; /* Not a system segment */
2147 d.p = 1; /* Present */
2148 d.d = 1; /* 32-bit */
2149
2150 write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2151}
2152
2153#ifdef CONFIG_X86_64
2154static inline void tss_setup_ist(struct tss_struct *tss)
2155{
2156 /* Set up the per-CPU TSS IST stacks */
2157 tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2158 tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2159 tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2160 tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2161 /* Only mapped when SEV-ES is active */
2162 tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2163}
2164#else /* CONFIG_X86_64 */
2165static inline void tss_setup_ist(struct tss_struct *tss) { }
2166#endif /* !CONFIG_X86_64 */
2167
2168static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2169{
2170 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2171
2172#ifdef CONFIG_X86_IOPL_IOPERM
2173 tss->io_bitmap.prev_max = 0;
2174 tss->io_bitmap.prev_sequence = 0;
2175 memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2176 /*
2177 * Invalidate the extra array entry past the end of the all
2178 * permission bitmap as required by the hardware.
2179 */
2180 tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2181#endif
2182}
2183
2184/*
2185 * Setup everything needed to handle exceptions from the IDT, including the IST
2186 * exceptions which use paranoid_entry().
2187 */
2188void cpu_init_exception_handling(bool boot_cpu)
2189{
2190 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2191 int cpu = raw_smp_processor_id();
2192
2193 /* paranoid_entry() gets the CPU number from the GDT */
2194 setup_getcpu(cpu);
2195
2196 /* For IDT mode, IST vectors need to be set in TSS. */
2197 if (!cpu_feature_enabled(X86_FEATURE_FRED))
2198 tss_setup_ist(tss);
2199 tss_setup_io_bitmap(tss);
2200 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2201
2202 load_TR_desc();
2203
2204 /* GHCB needs to be setup to handle #VC. */
2205 setup_ghcb();
2206
2207 if (cpu_feature_enabled(X86_FEATURE_FRED)) {
2208 /* The boot CPU has enabled FRED during early boot */
2209 if (!boot_cpu)
2210 cpu_init_fred_exceptions();
2211
2212 cpu_init_fred_rsps();
2213 } else {
2214 load_current_idt();
2215 }
2216}
2217
2218void __init cpu_init_replace_early_idt(void)
2219{
2220 if (cpu_feature_enabled(X86_FEATURE_FRED))
2221 cpu_init_fred_exceptions();
2222 else
2223 idt_setup_early_pf();
2224}
2225
2226/*
2227 * cpu_init() initializes state that is per-CPU. Some data is already
2228 * initialized (naturally) in the bootstrap process, such as the GDT. We
2229 * reload it nevertheless, this function acts as a 'CPU state barrier',
2230 * nothing should get across.
2231 */
2232void cpu_init(void)
2233{
2234 struct task_struct *cur = current;
2235 int cpu = raw_smp_processor_id();
2236
2237#ifdef CONFIG_NUMA
2238 if (this_cpu_read(numa_node) == 0 &&
2239 early_cpu_to_node(cpu) != NUMA_NO_NODE)
2240 set_numa_node(early_cpu_to_node(cpu));
2241#endif
2242 pr_debug("Initializing CPU#%d\n", cpu);
2243
2244 if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2245 boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2246 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2247
2248 if (IS_ENABLED(CONFIG_X86_64)) {
2249 loadsegment(fs, 0);
2250 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2251 syscall_init();
2252
2253 wrmsrl(MSR_FS_BASE, 0);
2254 wrmsrl(MSR_KERNEL_GS_BASE, 0);
2255 barrier();
2256
2257 x2apic_setup();
2258
2259 intel_posted_msi_init();
2260 }
2261
2262 mmgrab(&init_mm);
2263 cur->active_mm = &init_mm;
2264 BUG_ON(cur->mm);
2265 initialize_tlbstate_and_flush();
2266 enter_lazy_tlb(&init_mm, cur);
2267
2268 /*
2269 * sp0 points to the entry trampoline stack regardless of what task
2270 * is running.
2271 */
2272 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2273
2274 load_mm_ldt(&init_mm);
2275
2276 clear_all_debug_regs();
2277 dbg_restore_debug_regs();
2278
2279 doublefault_init_cpu_tss();
2280
2281 if (is_uv_system())
2282 uv_cpu_init();
2283
2284 load_fixmap_gdt(cpu);
2285}
2286
2287#ifdef CONFIG_MICROCODE_LATE_LOADING
2288/**
2289 * store_cpu_caps() - Store a snapshot of CPU capabilities
2290 * @curr_info: Pointer where to store it
2291 *
2292 * Returns: None
2293 */
2294void store_cpu_caps(struct cpuinfo_x86 *curr_info)
2295{
2296 /* Reload CPUID max function as it might've changed. */
2297 curr_info->cpuid_level = cpuid_eax(0);
2298
2299 /* Copy all capability leafs and pick up the synthetic ones. */
2300 memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability,
2301 sizeof(curr_info->x86_capability));
2302
2303 /* Get the hardware CPUID leafs */
2304 get_cpu_cap(curr_info);
2305}
2306
2307/**
2308 * microcode_check() - Check if any CPU capabilities changed after an update.
2309 * @prev_info: CPU capabilities stored before an update.
2310 *
2311 * The microcode loader calls this upon late microcode load to recheck features,
2312 * only when microcode has been updated. Caller holds and CPU hotplug lock.
2313 *
2314 * Return: None
2315 */
2316void microcode_check(struct cpuinfo_x86 *prev_info)
2317{
2318 struct cpuinfo_x86 curr_info;
2319
2320 perf_check_microcode();
2321
2322 amd_check_microcode();
2323
2324 store_cpu_caps(&curr_info);
2325
2326 if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability,
2327 sizeof(prev_info->x86_capability)))
2328 return;
2329
2330 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2331 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2332}
2333#endif
2334
2335/*
2336 * Invoked from core CPU hotplug code after hotplug operations
2337 */
2338void arch_smt_update(void)
2339{
2340 /* Handle the speculative execution misfeatures */
2341 cpu_bugs_smt_update();
2342 /* Check whether IPI broadcasting can be enabled */
2343 apic_smt_update();
2344}
2345
2346void __init arch_cpu_finalize_init(void)
2347{
2348 struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info);
2349
2350 identify_boot_cpu();
2351
2352 select_idle_routine();
2353
2354 /*
2355 * identify_boot_cpu() initialized SMT support information, let the
2356 * core code know.
2357 */
2358 cpu_smt_set_num_threads(__max_threads_per_core, __max_threads_per_core);
2359
2360 if (!IS_ENABLED(CONFIG_SMP)) {
2361 pr_info("CPU: ");
2362 print_cpu_info(&boot_cpu_data);
2363 }
2364
2365 cpu_select_mitigations();
2366
2367 arch_smt_update();
2368
2369 if (IS_ENABLED(CONFIG_X86_32)) {
2370 /*
2371 * Check whether this is a real i386 which is not longer
2372 * supported and fixup the utsname.
2373 */
2374 if (boot_cpu_data.x86 < 4)
2375 panic("Kernel requires i486+ for 'invlpg' and other features");
2376
2377 init_utsname()->machine[1] =
2378 '0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
2379 }
2380
2381 /*
2382 * Must be before alternatives because it might set or clear
2383 * feature bits.
2384 */
2385 fpu__init_system();
2386 fpu__init_cpu();
2387
2388 /*
2389 * Ensure that access to the per CPU representation has the initial
2390 * boot CPU configuration.
2391 */
2392 *c = boot_cpu_data;
2393 c->initialized = true;
2394
2395 alternative_instructions();
2396
2397 if (IS_ENABLED(CONFIG_X86_64)) {
2398 unsigned long USER_PTR_MAX = TASK_SIZE_MAX;
2399
2400 /*
2401 * Enable this when LAM is gated on LASS support
2402 if (cpu_feature_enabled(X86_FEATURE_LAM))
2403 USER_PTR_MAX = (1ul << 63) - PAGE_SIZE;
2404 */
2405 runtime_const_init(ptr, USER_PTR_MAX);
2406
2407 /*
2408 * Make sure the first 2MB area is not mapped by huge pages
2409 * There are typically fixed size MTRRs in there and overlapping
2410 * MTRRs into large pages causes slow downs.
2411 *
2412 * Right now we don't do that with gbpages because there seems
2413 * very little benefit for that case.
2414 */
2415 if (!direct_gbpages)
2416 set_memory_4k((unsigned long)__va(0), 1);
2417 } else {
2418 fpu__init_check_bugs();
2419 }
2420
2421 /*
2422 * This needs to be called before any devices perform DMA
2423 * operations that might use the SWIOTLB bounce buffers. It will
2424 * mark the bounce buffers as decrypted so that their usage will
2425 * not cause "plain-text" data to be decrypted when accessed. It
2426 * must be called after late_time_init() so that Hyper-V x86/x64
2427 * hypercalls work when the SWIOTLB bounce buffers are decrypted.
2428 */
2429 mem_encrypt_init();
2430}
1// SPDX-License-Identifier: GPL-2.0-only
2/* cpu_feature_enabled() cannot be used this early */
3#define USE_EARLY_PGTABLE_L5
4
5#include <linux/memblock.h>
6#include <linux/linkage.h>
7#include <linux/bitops.h>
8#include <linux/kernel.h>
9#include <linux/export.h>
10#include <linux/percpu.h>
11#include <linux/string.h>
12#include <linux/ctype.h>
13#include <linux/delay.h>
14#include <linux/sched/mm.h>
15#include <linux/sched/clock.h>
16#include <linux/sched/task.h>
17#include <linux/sched/smt.h>
18#include <linux/init.h>
19#include <linux/kprobes.h>
20#include <linux/kgdb.h>
21#include <linux/smp.h>
22#include <linux/io.h>
23#include <linux/syscore_ops.h>
24#include <linux/pgtable.h>
25
26#include <asm/stackprotector.h>
27#include <asm/perf_event.h>
28#include <asm/mmu_context.h>
29#include <asm/doublefault.h>
30#include <asm/archrandom.h>
31#include <asm/hypervisor.h>
32#include <asm/processor.h>
33#include <asm/tlbflush.h>
34#include <asm/debugreg.h>
35#include <asm/sections.h>
36#include <asm/vsyscall.h>
37#include <linux/topology.h>
38#include <linux/cpumask.h>
39#include <linux/atomic.h>
40#include <asm/proto.h>
41#include <asm/setup.h>
42#include <asm/apic.h>
43#include <asm/desc.h>
44#include <asm/fpu/internal.h>
45#include <asm/mtrr.h>
46#include <asm/hwcap2.h>
47#include <linux/numa.h>
48#include <asm/numa.h>
49#include <asm/asm.h>
50#include <asm/bugs.h>
51#include <asm/cpu.h>
52#include <asm/mce.h>
53#include <asm/msr.h>
54#include <asm/memtype.h>
55#include <asm/microcode.h>
56#include <asm/microcode_intel.h>
57#include <asm/intel-family.h>
58#include <asm/cpu_device_id.h>
59#include <asm/uv/uv.h>
60
61#include "cpu.h"
62
63u32 elf_hwcap2 __read_mostly;
64
65/* all of these masks are initialized in setup_cpu_local_masks() */
66cpumask_var_t cpu_initialized_mask;
67cpumask_var_t cpu_callout_mask;
68cpumask_var_t cpu_callin_mask;
69
70/* representing cpus for which sibling maps can be computed */
71cpumask_var_t cpu_sibling_setup_mask;
72
73/* Number of siblings per CPU package */
74int smp_num_siblings = 1;
75EXPORT_SYMBOL(smp_num_siblings);
76
77/* Last level cache ID of each logical CPU */
78DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
79
80/* correctly size the local cpu masks */
81void __init setup_cpu_local_masks(void)
82{
83 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
84 alloc_bootmem_cpumask_var(&cpu_callin_mask);
85 alloc_bootmem_cpumask_var(&cpu_callout_mask);
86 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
87}
88
89static void default_init(struct cpuinfo_x86 *c)
90{
91#ifdef CONFIG_X86_64
92 cpu_detect_cache_sizes(c);
93#else
94 /* Not much we can do here... */
95 /* Check if at least it has cpuid */
96 if (c->cpuid_level == -1) {
97 /* No cpuid. It must be an ancient CPU */
98 if (c->x86 == 4)
99 strcpy(c->x86_model_id, "486");
100 else if (c->x86 == 3)
101 strcpy(c->x86_model_id, "386");
102 }
103#endif
104}
105
106static const struct cpu_dev default_cpu = {
107 .c_init = default_init,
108 .c_vendor = "Unknown",
109 .c_x86_vendor = X86_VENDOR_UNKNOWN,
110};
111
112static const struct cpu_dev *this_cpu = &default_cpu;
113
114DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
115#ifdef CONFIG_X86_64
116 /*
117 * We need valid kernel segments for data and code in long mode too
118 * IRET will check the segment types kkeil 2000/10/28
119 * Also sysret mandates a special GDT layout
120 *
121 * TLS descriptors are currently at a different place compared to i386.
122 * Hopefully nobody expects them at a fixed place (Wine?)
123 */
124 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
125 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
126 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
127 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
128 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
129 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
130#else
131 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
132 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
133 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
134 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
135 /*
136 * Segments used for calling PnP BIOS have byte granularity.
137 * They code segments and data segments have fixed 64k limits,
138 * the transfer segment sizes are set at run time.
139 */
140 /* 32-bit code */
141 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
142 /* 16-bit code */
143 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
144 /* 16-bit data */
145 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
146 /* 16-bit data */
147 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
148 /* 16-bit data */
149 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
150 /*
151 * The APM segments have byte granularity and their bases
152 * are set at run time. All have 64k limits.
153 */
154 /* 32-bit code */
155 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
156 /* 16-bit code */
157 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
158 /* data */
159 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
160
161 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
162 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
163 GDT_STACK_CANARY_INIT
164#endif
165} };
166EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
167
168#ifdef CONFIG_X86_64
169static int __init x86_nopcid_setup(char *s)
170{
171 /* nopcid doesn't accept parameters */
172 if (s)
173 return -EINVAL;
174
175 /* do not emit a message if the feature is not present */
176 if (!boot_cpu_has(X86_FEATURE_PCID))
177 return 0;
178
179 setup_clear_cpu_cap(X86_FEATURE_PCID);
180 pr_info("nopcid: PCID feature disabled\n");
181 return 0;
182}
183early_param("nopcid", x86_nopcid_setup);
184#endif
185
186static int __init x86_noinvpcid_setup(char *s)
187{
188 /* noinvpcid doesn't accept parameters */
189 if (s)
190 return -EINVAL;
191
192 /* do not emit a message if the feature is not present */
193 if (!boot_cpu_has(X86_FEATURE_INVPCID))
194 return 0;
195
196 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
197 pr_info("noinvpcid: INVPCID feature disabled\n");
198 return 0;
199}
200early_param("noinvpcid", x86_noinvpcid_setup);
201
202#ifdef CONFIG_X86_32
203static int cachesize_override = -1;
204static int disable_x86_serial_nr = 1;
205
206static int __init cachesize_setup(char *str)
207{
208 get_option(&str, &cachesize_override);
209 return 1;
210}
211__setup("cachesize=", cachesize_setup);
212
213static int __init x86_sep_setup(char *s)
214{
215 setup_clear_cpu_cap(X86_FEATURE_SEP);
216 return 1;
217}
218__setup("nosep", x86_sep_setup);
219
220/* Standard macro to see if a specific flag is changeable */
221static inline int flag_is_changeable_p(u32 flag)
222{
223 u32 f1, f2;
224
225 /*
226 * Cyrix and IDT cpus allow disabling of CPUID
227 * so the code below may return different results
228 * when it is executed before and after enabling
229 * the CPUID. Add "volatile" to not allow gcc to
230 * optimize the subsequent calls to this function.
231 */
232 asm volatile ("pushfl \n\t"
233 "pushfl \n\t"
234 "popl %0 \n\t"
235 "movl %0, %1 \n\t"
236 "xorl %2, %0 \n\t"
237 "pushl %0 \n\t"
238 "popfl \n\t"
239 "pushfl \n\t"
240 "popl %0 \n\t"
241 "popfl \n\t"
242
243 : "=&r" (f1), "=&r" (f2)
244 : "ir" (flag));
245
246 return ((f1^f2) & flag) != 0;
247}
248
249/* Probe for the CPUID instruction */
250int have_cpuid_p(void)
251{
252 return flag_is_changeable_p(X86_EFLAGS_ID);
253}
254
255static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
256{
257 unsigned long lo, hi;
258
259 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
260 return;
261
262 /* Disable processor serial number: */
263
264 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
265 lo |= 0x200000;
266 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
267
268 pr_notice("CPU serial number disabled.\n");
269 clear_cpu_cap(c, X86_FEATURE_PN);
270
271 /* Disabling the serial number may affect the cpuid level */
272 c->cpuid_level = cpuid_eax(0);
273}
274
275static int __init x86_serial_nr_setup(char *s)
276{
277 disable_x86_serial_nr = 0;
278 return 1;
279}
280__setup("serialnumber", x86_serial_nr_setup);
281#else
282static inline int flag_is_changeable_p(u32 flag)
283{
284 return 1;
285}
286static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
287{
288}
289#endif
290
291static __init int setup_disable_smep(char *arg)
292{
293 setup_clear_cpu_cap(X86_FEATURE_SMEP);
294 return 1;
295}
296__setup("nosmep", setup_disable_smep);
297
298static __always_inline void setup_smep(struct cpuinfo_x86 *c)
299{
300 if (cpu_has(c, X86_FEATURE_SMEP))
301 cr4_set_bits(X86_CR4_SMEP);
302}
303
304static __init int setup_disable_smap(char *arg)
305{
306 setup_clear_cpu_cap(X86_FEATURE_SMAP);
307 return 1;
308}
309__setup("nosmap", setup_disable_smap);
310
311static __always_inline void setup_smap(struct cpuinfo_x86 *c)
312{
313 unsigned long eflags = native_save_fl();
314
315 /* This should have been cleared long ago */
316 BUG_ON(eflags & X86_EFLAGS_AC);
317
318 if (cpu_has(c, X86_FEATURE_SMAP)) {
319#ifdef CONFIG_X86_SMAP
320 cr4_set_bits(X86_CR4_SMAP);
321#else
322 cr4_clear_bits(X86_CR4_SMAP);
323#endif
324 }
325}
326
327static __always_inline void setup_umip(struct cpuinfo_x86 *c)
328{
329 /* Check the boot processor, plus build option for UMIP. */
330 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
331 goto out;
332
333 /* Check the current processor's cpuid bits. */
334 if (!cpu_has(c, X86_FEATURE_UMIP))
335 goto out;
336
337 cr4_set_bits(X86_CR4_UMIP);
338
339 pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
340
341 return;
342
343out:
344 /*
345 * Make sure UMIP is disabled in case it was enabled in a
346 * previous boot (e.g., via kexec).
347 */
348 cr4_clear_bits(X86_CR4_UMIP);
349}
350
351/* These bits should not change their value after CPU init is finished. */
352static const unsigned long cr4_pinned_mask =
353 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP | X86_CR4_FSGSBASE;
354static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
355static unsigned long cr4_pinned_bits __ro_after_init;
356
357void native_write_cr0(unsigned long val)
358{
359 unsigned long bits_missing = 0;
360
361set_register:
362 asm volatile("mov %0,%%cr0": "+r" (val), "+m" (__force_order));
363
364 if (static_branch_likely(&cr_pinning)) {
365 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
366 bits_missing = X86_CR0_WP;
367 val |= bits_missing;
368 goto set_register;
369 }
370 /* Warn after we've set the missing bits. */
371 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
372 }
373}
374EXPORT_SYMBOL(native_write_cr0);
375
376void native_write_cr4(unsigned long val)
377{
378 unsigned long bits_changed = 0;
379
380set_register:
381 asm volatile("mov %0,%%cr4": "+r" (val), "+m" (cr4_pinned_bits));
382
383 if (static_branch_likely(&cr_pinning)) {
384 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
385 bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
386 val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
387 goto set_register;
388 }
389 /* Warn after we've corrected the changed bits. */
390 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
391 bits_changed);
392 }
393}
394#if IS_MODULE(CONFIG_LKDTM)
395EXPORT_SYMBOL_GPL(native_write_cr4);
396#endif
397
398void cr4_update_irqsoff(unsigned long set, unsigned long clear)
399{
400 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
401
402 lockdep_assert_irqs_disabled();
403
404 newval = (cr4 & ~clear) | set;
405 if (newval != cr4) {
406 this_cpu_write(cpu_tlbstate.cr4, newval);
407 __write_cr4(newval);
408 }
409}
410EXPORT_SYMBOL(cr4_update_irqsoff);
411
412/* Read the CR4 shadow. */
413unsigned long cr4_read_shadow(void)
414{
415 return this_cpu_read(cpu_tlbstate.cr4);
416}
417EXPORT_SYMBOL_GPL(cr4_read_shadow);
418
419void cr4_init(void)
420{
421 unsigned long cr4 = __read_cr4();
422
423 if (boot_cpu_has(X86_FEATURE_PCID))
424 cr4 |= X86_CR4_PCIDE;
425 if (static_branch_likely(&cr_pinning))
426 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
427
428 __write_cr4(cr4);
429
430 /* Initialize cr4 shadow for this CPU. */
431 this_cpu_write(cpu_tlbstate.cr4, cr4);
432}
433
434/*
435 * Once CPU feature detection is finished (and boot params have been
436 * parsed), record any of the sensitive CR bits that are set, and
437 * enable CR pinning.
438 */
439static void __init setup_cr_pinning(void)
440{
441 cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
442 static_key_enable(&cr_pinning.key);
443}
444
445static __init int x86_nofsgsbase_setup(char *arg)
446{
447 /* Require an exact match without trailing characters. */
448 if (strlen(arg))
449 return 0;
450
451 /* Do not emit a message if the feature is not present. */
452 if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
453 return 1;
454
455 setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
456 pr_info("FSGSBASE disabled via kernel command line\n");
457 return 1;
458}
459__setup("nofsgsbase", x86_nofsgsbase_setup);
460
461/*
462 * Protection Keys are not available in 32-bit mode.
463 */
464static bool pku_disabled;
465
466static __always_inline void setup_pku(struct cpuinfo_x86 *c)
467{
468 struct pkru_state *pk;
469
470 /* check the boot processor, plus compile options for PKU: */
471 if (!cpu_feature_enabled(X86_FEATURE_PKU))
472 return;
473 /* checks the actual processor's cpuid bits: */
474 if (!cpu_has(c, X86_FEATURE_PKU))
475 return;
476 if (pku_disabled)
477 return;
478
479 cr4_set_bits(X86_CR4_PKE);
480 pk = get_xsave_addr(&init_fpstate.xsave, XFEATURE_PKRU);
481 if (pk)
482 pk->pkru = init_pkru_value;
483 /*
484 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
485 * cpuid bit to be set. We need to ensure that we
486 * update that bit in this CPU's "cpu_info".
487 */
488 set_cpu_cap(c, X86_FEATURE_OSPKE);
489}
490
491#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
492static __init int setup_disable_pku(char *arg)
493{
494 /*
495 * Do not clear the X86_FEATURE_PKU bit. All of the
496 * runtime checks are against OSPKE so clearing the
497 * bit does nothing.
498 *
499 * This way, we will see "pku" in cpuinfo, but not
500 * "ospke", which is exactly what we want. It shows
501 * that the CPU has PKU, but the OS has not enabled it.
502 * This happens to be exactly how a system would look
503 * if we disabled the config option.
504 */
505 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
506 pku_disabled = true;
507 return 1;
508}
509__setup("nopku", setup_disable_pku);
510#endif /* CONFIG_X86_64 */
511
512/*
513 * Some CPU features depend on higher CPUID levels, which may not always
514 * be available due to CPUID level capping or broken virtualization
515 * software. Add those features to this table to auto-disable them.
516 */
517struct cpuid_dependent_feature {
518 u32 feature;
519 u32 level;
520};
521
522static const struct cpuid_dependent_feature
523cpuid_dependent_features[] = {
524 { X86_FEATURE_MWAIT, 0x00000005 },
525 { X86_FEATURE_DCA, 0x00000009 },
526 { X86_FEATURE_XSAVE, 0x0000000d },
527 { 0, 0 }
528};
529
530static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
531{
532 const struct cpuid_dependent_feature *df;
533
534 for (df = cpuid_dependent_features; df->feature; df++) {
535
536 if (!cpu_has(c, df->feature))
537 continue;
538 /*
539 * Note: cpuid_level is set to -1 if unavailable, but
540 * extended_extended_level is set to 0 if unavailable
541 * and the legitimate extended levels are all negative
542 * when signed; hence the weird messing around with
543 * signs here...
544 */
545 if (!((s32)df->level < 0 ?
546 (u32)df->level > (u32)c->extended_cpuid_level :
547 (s32)df->level > (s32)c->cpuid_level))
548 continue;
549
550 clear_cpu_cap(c, df->feature);
551 if (!warn)
552 continue;
553
554 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
555 x86_cap_flag(df->feature), df->level);
556 }
557}
558
559/*
560 * Naming convention should be: <Name> [(<Codename>)]
561 * This table only is used unless init_<vendor>() below doesn't set it;
562 * in particular, if CPUID levels 0x80000002..4 are supported, this
563 * isn't used
564 */
565
566/* Look up CPU names by table lookup. */
567static const char *table_lookup_model(struct cpuinfo_x86 *c)
568{
569#ifdef CONFIG_X86_32
570 const struct legacy_cpu_model_info *info;
571
572 if (c->x86_model >= 16)
573 return NULL; /* Range check */
574
575 if (!this_cpu)
576 return NULL;
577
578 info = this_cpu->legacy_models;
579
580 while (info->family) {
581 if (info->family == c->x86)
582 return info->model_names[c->x86_model];
583 info++;
584 }
585#endif
586 return NULL; /* Not found */
587}
588
589/* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
590__u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
591__u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
592
593void load_percpu_segment(int cpu)
594{
595#ifdef CONFIG_X86_32
596 loadsegment(fs, __KERNEL_PERCPU);
597#else
598 __loadsegment_simple(gs, 0);
599 wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
600#endif
601 load_stack_canary_segment();
602}
603
604#ifdef CONFIG_X86_32
605/* The 32-bit entry code needs to find cpu_entry_area. */
606DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
607#endif
608
609/* Load the original GDT from the per-cpu structure */
610void load_direct_gdt(int cpu)
611{
612 struct desc_ptr gdt_descr;
613
614 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
615 gdt_descr.size = GDT_SIZE - 1;
616 load_gdt(&gdt_descr);
617}
618EXPORT_SYMBOL_GPL(load_direct_gdt);
619
620/* Load a fixmap remapping of the per-cpu GDT */
621void load_fixmap_gdt(int cpu)
622{
623 struct desc_ptr gdt_descr;
624
625 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
626 gdt_descr.size = GDT_SIZE - 1;
627 load_gdt(&gdt_descr);
628}
629EXPORT_SYMBOL_GPL(load_fixmap_gdt);
630
631/*
632 * Current gdt points %fs at the "master" per-cpu area: after this,
633 * it's on the real one.
634 */
635void switch_to_new_gdt(int cpu)
636{
637 /* Load the original GDT */
638 load_direct_gdt(cpu);
639 /* Reload the per-cpu base */
640 load_percpu_segment(cpu);
641}
642
643static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
644
645static void get_model_name(struct cpuinfo_x86 *c)
646{
647 unsigned int *v;
648 char *p, *q, *s;
649
650 if (c->extended_cpuid_level < 0x80000004)
651 return;
652
653 v = (unsigned int *)c->x86_model_id;
654 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
655 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
656 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
657 c->x86_model_id[48] = 0;
658
659 /* Trim whitespace */
660 p = q = s = &c->x86_model_id[0];
661
662 while (*p == ' ')
663 p++;
664
665 while (*p) {
666 /* Note the last non-whitespace index */
667 if (!isspace(*p))
668 s = q;
669
670 *q++ = *p++;
671 }
672
673 *(s + 1) = '\0';
674}
675
676void detect_num_cpu_cores(struct cpuinfo_x86 *c)
677{
678 unsigned int eax, ebx, ecx, edx;
679
680 c->x86_max_cores = 1;
681 if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
682 return;
683
684 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
685 if (eax & 0x1f)
686 c->x86_max_cores = (eax >> 26) + 1;
687}
688
689void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
690{
691 unsigned int n, dummy, ebx, ecx, edx, l2size;
692
693 n = c->extended_cpuid_level;
694
695 if (n >= 0x80000005) {
696 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
697 c->x86_cache_size = (ecx>>24) + (edx>>24);
698#ifdef CONFIG_X86_64
699 /* On K8 L1 TLB is inclusive, so don't count it */
700 c->x86_tlbsize = 0;
701#endif
702 }
703
704 if (n < 0x80000006) /* Some chips just has a large L1. */
705 return;
706
707 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
708 l2size = ecx >> 16;
709
710#ifdef CONFIG_X86_64
711 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
712#else
713 /* do processor-specific cache resizing */
714 if (this_cpu->legacy_cache_size)
715 l2size = this_cpu->legacy_cache_size(c, l2size);
716
717 /* Allow user to override all this if necessary. */
718 if (cachesize_override != -1)
719 l2size = cachesize_override;
720
721 if (l2size == 0)
722 return; /* Again, no L2 cache is possible */
723#endif
724
725 c->x86_cache_size = l2size;
726}
727
728u16 __read_mostly tlb_lli_4k[NR_INFO];
729u16 __read_mostly tlb_lli_2m[NR_INFO];
730u16 __read_mostly tlb_lli_4m[NR_INFO];
731u16 __read_mostly tlb_lld_4k[NR_INFO];
732u16 __read_mostly tlb_lld_2m[NR_INFO];
733u16 __read_mostly tlb_lld_4m[NR_INFO];
734u16 __read_mostly tlb_lld_1g[NR_INFO];
735
736static void cpu_detect_tlb(struct cpuinfo_x86 *c)
737{
738 if (this_cpu->c_detect_tlb)
739 this_cpu->c_detect_tlb(c);
740
741 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
742 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
743 tlb_lli_4m[ENTRIES]);
744
745 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
746 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
747 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
748}
749
750int detect_ht_early(struct cpuinfo_x86 *c)
751{
752#ifdef CONFIG_SMP
753 u32 eax, ebx, ecx, edx;
754
755 if (!cpu_has(c, X86_FEATURE_HT))
756 return -1;
757
758 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
759 return -1;
760
761 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
762 return -1;
763
764 cpuid(1, &eax, &ebx, &ecx, &edx);
765
766 smp_num_siblings = (ebx & 0xff0000) >> 16;
767 if (smp_num_siblings == 1)
768 pr_info_once("CPU0: Hyper-Threading is disabled\n");
769#endif
770 return 0;
771}
772
773void detect_ht(struct cpuinfo_x86 *c)
774{
775#ifdef CONFIG_SMP
776 int index_msb, core_bits;
777
778 if (detect_ht_early(c) < 0)
779 return;
780
781 index_msb = get_count_order(smp_num_siblings);
782 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
783
784 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
785
786 index_msb = get_count_order(smp_num_siblings);
787
788 core_bits = get_count_order(c->x86_max_cores);
789
790 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
791 ((1 << core_bits) - 1);
792#endif
793}
794
795static void get_cpu_vendor(struct cpuinfo_x86 *c)
796{
797 char *v = c->x86_vendor_id;
798 int i;
799
800 for (i = 0; i < X86_VENDOR_NUM; i++) {
801 if (!cpu_devs[i])
802 break;
803
804 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
805 (cpu_devs[i]->c_ident[1] &&
806 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
807
808 this_cpu = cpu_devs[i];
809 c->x86_vendor = this_cpu->c_x86_vendor;
810 return;
811 }
812 }
813
814 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
815 "CPU: Your system may be unstable.\n", v);
816
817 c->x86_vendor = X86_VENDOR_UNKNOWN;
818 this_cpu = &default_cpu;
819}
820
821void cpu_detect(struct cpuinfo_x86 *c)
822{
823 /* Get vendor name */
824 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
825 (unsigned int *)&c->x86_vendor_id[0],
826 (unsigned int *)&c->x86_vendor_id[8],
827 (unsigned int *)&c->x86_vendor_id[4]);
828
829 c->x86 = 4;
830 /* Intel-defined flags: level 0x00000001 */
831 if (c->cpuid_level >= 0x00000001) {
832 u32 junk, tfms, cap0, misc;
833
834 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
835 c->x86 = x86_family(tfms);
836 c->x86_model = x86_model(tfms);
837 c->x86_stepping = x86_stepping(tfms);
838
839 if (cap0 & (1<<19)) {
840 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
841 c->x86_cache_alignment = c->x86_clflush_size;
842 }
843 }
844}
845
846static void apply_forced_caps(struct cpuinfo_x86 *c)
847{
848 int i;
849
850 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
851 c->x86_capability[i] &= ~cpu_caps_cleared[i];
852 c->x86_capability[i] |= cpu_caps_set[i];
853 }
854}
855
856static void init_speculation_control(struct cpuinfo_x86 *c)
857{
858 /*
859 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
860 * and they also have a different bit for STIBP support. Also,
861 * a hypervisor might have set the individual AMD bits even on
862 * Intel CPUs, for finer-grained selection of what's available.
863 */
864 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
865 set_cpu_cap(c, X86_FEATURE_IBRS);
866 set_cpu_cap(c, X86_FEATURE_IBPB);
867 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
868 }
869
870 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
871 set_cpu_cap(c, X86_FEATURE_STIBP);
872
873 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
874 cpu_has(c, X86_FEATURE_VIRT_SSBD))
875 set_cpu_cap(c, X86_FEATURE_SSBD);
876
877 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
878 set_cpu_cap(c, X86_FEATURE_IBRS);
879 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
880 }
881
882 if (cpu_has(c, X86_FEATURE_AMD_IBPB))
883 set_cpu_cap(c, X86_FEATURE_IBPB);
884
885 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
886 set_cpu_cap(c, X86_FEATURE_STIBP);
887 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
888 }
889
890 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
891 set_cpu_cap(c, X86_FEATURE_SSBD);
892 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
893 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
894 }
895}
896
897void get_cpu_cap(struct cpuinfo_x86 *c)
898{
899 u32 eax, ebx, ecx, edx;
900
901 /* Intel-defined flags: level 0x00000001 */
902 if (c->cpuid_level >= 0x00000001) {
903 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
904
905 c->x86_capability[CPUID_1_ECX] = ecx;
906 c->x86_capability[CPUID_1_EDX] = edx;
907 }
908
909 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
910 if (c->cpuid_level >= 0x00000006)
911 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
912
913 /* Additional Intel-defined flags: level 0x00000007 */
914 if (c->cpuid_level >= 0x00000007) {
915 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
916 c->x86_capability[CPUID_7_0_EBX] = ebx;
917 c->x86_capability[CPUID_7_ECX] = ecx;
918 c->x86_capability[CPUID_7_EDX] = edx;
919
920 /* Check valid sub-leaf index before accessing it */
921 if (eax >= 1) {
922 cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
923 c->x86_capability[CPUID_7_1_EAX] = eax;
924 }
925 }
926
927 /* Extended state features: level 0x0000000d */
928 if (c->cpuid_level >= 0x0000000d) {
929 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
930
931 c->x86_capability[CPUID_D_1_EAX] = eax;
932 }
933
934 /* AMD-defined flags: level 0x80000001 */
935 eax = cpuid_eax(0x80000000);
936 c->extended_cpuid_level = eax;
937
938 if ((eax & 0xffff0000) == 0x80000000) {
939 if (eax >= 0x80000001) {
940 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
941
942 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
943 c->x86_capability[CPUID_8000_0001_EDX] = edx;
944 }
945 }
946
947 if (c->extended_cpuid_level >= 0x80000007) {
948 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
949
950 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
951 c->x86_power = edx;
952 }
953
954 if (c->extended_cpuid_level >= 0x80000008) {
955 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
956 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
957 }
958
959 if (c->extended_cpuid_level >= 0x8000000a)
960 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
961
962 init_scattered_cpuid_features(c);
963 init_speculation_control(c);
964
965 /*
966 * Clear/Set all flags overridden by options, after probe.
967 * This needs to happen each time we re-probe, which may happen
968 * several times during CPU initialization.
969 */
970 apply_forced_caps(c);
971}
972
973void get_cpu_address_sizes(struct cpuinfo_x86 *c)
974{
975 u32 eax, ebx, ecx, edx;
976
977 if (c->extended_cpuid_level >= 0x80000008) {
978 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
979
980 c->x86_virt_bits = (eax >> 8) & 0xff;
981 c->x86_phys_bits = eax & 0xff;
982 }
983#ifdef CONFIG_X86_32
984 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
985 c->x86_phys_bits = 36;
986#endif
987 c->x86_cache_bits = c->x86_phys_bits;
988}
989
990static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
991{
992#ifdef CONFIG_X86_32
993 int i;
994
995 /*
996 * First of all, decide if this is a 486 or higher
997 * It's a 486 if we can modify the AC flag
998 */
999 if (flag_is_changeable_p(X86_EFLAGS_AC))
1000 c->x86 = 4;
1001 else
1002 c->x86 = 3;
1003
1004 for (i = 0; i < X86_VENDOR_NUM; i++)
1005 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1006 c->x86_vendor_id[0] = 0;
1007 cpu_devs[i]->c_identify(c);
1008 if (c->x86_vendor_id[0]) {
1009 get_cpu_vendor(c);
1010 break;
1011 }
1012 }
1013#endif
1014}
1015
1016#define NO_SPECULATION BIT(0)
1017#define NO_MELTDOWN BIT(1)
1018#define NO_SSB BIT(2)
1019#define NO_L1TF BIT(3)
1020#define NO_MDS BIT(4)
1021#define MSBDS_ONLY BIT(5)
1022#define NO_SWAPGS BIT(6)
1023#define NO_ITLB_MULTIHIT BIT(7)
1024#define NO_SPECTRE_V2 BIT(8)
1025
1026#define VULNWL(vendor, family, model, whitelist) \
1027 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1028
1029#define VULNWL_INTEL(model, whitelist) \
1030 VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1031
1032#define VULNWL_AMD(family, whitelist) \
1033 VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1034
1035#define VULNWL_HYGON(family, whitelist) \
1036 VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1037
1038static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1039 VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
1040 VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
1041 VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
1042 VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
1043
1044 /* Intel Family 6 */
1045 VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1046 VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
1047 VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1048 VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1049 VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1050
1051 VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1052 VULNWL_INTEL(ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1053 VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1054 VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1055 VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1056 VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1057
1058 VULNWL_INTEL(CORE_YONAH, NO_SSB),
1059
1060 VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1061 VULNWL_INTEL(ATOM_AIRMONT_NP, NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1062
1063 VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1064 VULNWL_INTEL(ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1065 VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1066
1067 /*
1068 * Technically, swapgs isn't serializing on AMD (despite it previously
1069 * being documented as such in the APM). But according to AMD, %gs is
1070 * updated non-speculatively, and the issuing of %gs-relative memory
1071 * operands will be blocked until the %gs update completes, which is
1072 * good enough for our purposes.
1073 */
1074
1075 VULNWL_INTEL(ATOM_TREMONT_D, NO_ITLB_MULTIHIT),
1076
1077 /* AMD Family 0xf - 0x12 */
1078 VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1079 VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1080 VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1081 VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1082
1083 /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1084 VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1085 VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1086
1087 /* Zhaoxin Family 7 */
1088 VULNWL(CENTAUR, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS),
1089 VULNWL(ZHAOXIN, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS),
1090 {}
1091};
1092
1093#define VULNBL_INTEL_STEPPINGS(model, steppings, issues) \
1094 X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6, \
1095 INTEL_FAM6_##model, steppings, \
1096 X86_FEATURE_ANY, issues)
1097
1098#define SRBDS BIT(0)
1099
1100static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1101 VULNBL_INTEL_STEPPINGS(IVYBRIDGE, X86_STEPPING_ANY, SRBDS),
1102 VULNBL_INTEL_STEPPINGS(HASWELL, X86_STEPPING_ANY, SRBDS),
1103 VULNBL_INTEL_STEPPINGS(HASWELL_L, X86_STEPPING_ANY, SRBDS),
1104 VULNBL_INTEL_STEPPINGS(HASWELL_G, X86_STEPPING_ANY, SRBDS),
1105 VULNBL_INTEL_STEPPINGS(BROADWELL_G, X86_STEPPING_ANY, SRBDS),
1106 VULNBL_INTEL_STEPPINGS(BROADWELL, X86_STEPPING_ANY, SRBDS),
1107 VULNBL_INTEL_STEPPINGS(SKYLAKE_L, X86_STEPPING_ANY, SRBDS),
1108 VULNBL_INTEL_STEPPINGS(SKYLAKE, X86_STEPPING_ANY, SRBDS),
1109 VULNBL_INTEL_STEPPINGS(KABYLAKE_L, X86_STEPPINGS(0x0, 0xC), SRBDS),
1110 VULNBL_INTEL_STEPPINGS(KABYLAKE, X86_STEPPINGS(0x0, 0xD), SRBDS),
1111 {}
1112};
1113
1114static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1115{
1116 const struct x86_cpu_id *m = x86_match_cpu(table);
1117
1118 return m && !!(m->driver_data & which);
1119}
1120
1121u64 x86_read_arch_cap_msr(void)
1122{
1123 u64 ia32_cap = 0;
1124
1125 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1126 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1127
1128 return ia32_cap;
1129}
1130
1131static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1132{
1133 u64 ia32_cap = x86_read_arch_cap_msr();
1134
1135 /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1136 if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1137 !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1138 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1139
1140 if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1141 return;
1142
1143 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1144
1145 if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1146 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1147
1148 if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1149 !(ia32_cap & ARCH_CAP_SSB_NO) &&
1150 !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1151 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1152
1153 if (ia32_cap & ARCH_CAP_IBRS_ALL)
1154 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1155
1156 if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1157 !(ia32_cap & ARCH_CAP_MDS_NO)) {
1158 setup_force_cpu_bug(X86_BUG_MDS);
1159 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1160 setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1161 }
1162
1163 if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1164 setup_force_cpu_bug(X86_BUG_SWAPGS);
1165
1166 /*
1167 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1168 * - TSX is supported or
1169 * - TSX_CTRL is present
1170 *
1171 * TSX_CTRL check is needed for cases when TSX could be disabled before
1172 * the kernel boot e.g. kexec.
1173 * TSX_CTRL check alone is not sufficient for cases when the microcode
1174 * update is not present or running as guest that don't get TSX_CTRL.
1175 */
1176 if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1177 (cpu_has(c, X86_FEATURE_RTM) ||
1178 (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1179 setup_force_cpu_bug(X86_BUG_TAA);
1180
1181 /*
1182 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1183 * in the vulnerability blacklist.
1184 */
1185 if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1186 cpu_has(c, X86_FEATURE_RDSEED)) &&
1187 cpu_matches(cpu_vuln_blacklist, SRBDS))
1188 setup_force_cpu_bug(X86_BUG_SRBDS);
1189
1190 if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1191 return;
1192
1193 /* Rogue Data Cache Load? No! */
1194 if (ia32_cap & ARCH_CAP_RDCL_NO)
1195 return;
1196
1197 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1198
1199 if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1200 return;
1201
1202 setup_force_cpu_bug(X86_BUG_L1TF);
1203}
1204
1205/*
1206 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1207 * unfortunately, that's not true in practice because of early VIA
1208 * chips and (more importantly) broken virtualizers that are not easy
1209 * to detect. In the latter case it doesn't even *fail* reliably, so
1210 * probing for it doesn't even work. Disable it completely on 32-bit
1211 * unless we can find a reliable way to detect all the broken cases.
1212 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1213 */
1214static void detect_nopl(void)
1215{
1216#ifdef CONFIG_X86_32
1217 setup_clear_cpu_cap(X86_FEATURE_NOPL);
1218#else
1219 setup_force_cpu_cap(X86_FEATURE_NOPL);
1220#endif
1221}
1222
1223/*
1224 * Do minimum CPU detection early.
1225 * Fields really needed: vendor, cpuid_level, family, model, mask,
1226 * cache alignment.
1227 * The others are not touched to avoid unwanted side effects.
1228 *
1229 * WARNING: this function is only called on the boot CPU. Don't add code
1230 * here that is supposed to run on all CPUs.
1231 */
1232static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1233{
1234#ifdef CONFIG_X86_64
1235 c->x86_clflush_size = 64;
1236 c->x86_phys_bits = 36;
1237 c->x86_virt_bits = 48;
1238#else
1239 c->x86_clflush_size = 32;
1240 c->x86_phys_bits = 32;
1241 c->x86_virt_bits = 32;
1242#endif
1243 c->x86_cache_alignment = c->x86_clflush_size;
1244
1245 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1246 c->extended_cpuid_level = 0;
1247
1248 if (!have_cpuid_p())
1249 identify_cpu_without_cpuid(c);
1250
1251 /* cyrix could have cpuid enabled via c_identify()*/
1252 if (have_cpuid_p()) {
1253 cpu_detect(c);
1254 get_cpu_vendor(c);
1255 get_cpu_cap(c);
1256 get_cpu_address_sizes(c);
1257 setup_force_cpu_cap(X86_FEATURE_CPUID);
1258
1259 if (this_cpu->c_early_init)
1260 this_cpu->c_early_init(c);
1261
1262 c->cpu_index = 0;
1263 filter_cpuid_features(c, false);
1264
1265 if (this_cpu->c_bsp_init)
1266 this_cpu->c_bsp_init(c);
1267 } else {
1268 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1269 }
1270
1271 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1272
1273 cpu_set_bug_bits(c);
1274
1275 cpu_set_core_cap_bits(c);
1276
1277 fpu__init_system(c);
1278
1279#ifdef CONFIG_X86_32
1280 /*
1281 * Regardless of whether PCID is enumerated, the SDM says
1282 * that it can't be enabled in 32-bit mode.
1283 */
1284 setup_clear_cpu_cap(X86_FEATURE_PCID);
1285#endif
1286
1287 /*
1288 * Later in the boot process pgtable_l5_enabled() relies on
1289 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1290 * enabled by this point we need to clear the feature bit to avoid
1291 * false-positives at the later stage.
1292 *
1293 * pgtable_l5_enabled() can be false here for several reasons:
1294 * - 5-level paging is disabled compile-time;
1295 * - it's 32-bit kernel;
1296 * - machine doesn't support 5-level paging;
1297 * - user specified 'no5lvl' in kernel command line.
1298 */
1299 if (!pgtable_l5_enabled())
1300 setup_clear_cpu_cap(X86_FEATURE_LA57);
1301
1302 detect_nopl();
1303}
1304
1305void __init early_cpu_init(void)
1306{
1307 const struct cpu_dev *const *cdev;
1308 int count = 0;
1309
1310#ifdef CONFIG_PROCESSOR_SELECT
1311 pr_info("KERNEL supported cpus:\n");
1312#endif
1313
1314 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1315 const struct cpu_dev *cpudev = *cdev;
1316
1317 if (count >= X86_VENDOR_NUM)
1318 break;
1319 cpu_devs[count] = cpudev;
1320 count++;
1321
1322#ifdef CONFIG_PROCESSOR_SELECT
1323 {
1324 unsigned int j;
1325
1326 for (j = 0; j < 2; j++) {
1327 if (!cpudev->c_ident[j])
1328 continue;
1329 pr_info(" %s %s\n", cpudev->c_vendor,
1330 cpudev->c_ident[j]);
1331 }
1332 }
1333#endif
1334 }
1335 early_identify_cpu(&boot_cpu_data);
1336}
1337
1338static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1339{
1340#ifdef CONFIG_X86_64
1341 /*
1342 * Empirically, writing zero to a segment selector on AMD does
1343 * not clear the base, whereas writing zero to a segment
1344 * selector on Intel does clear the base. Intel's behavior
1345 * allows slightly faster context switches in the common case
1346 * where GS is unused by the prev and next threads.
1347 *
1348 * Since neither vendor documents this anywhere that I can see,
1349 * detect it directly instead of hardcoding the choice by
1350 * vendor.
1351 *
1352 * I've designated AMD's behavior as the "bug" because it's
1353 * counterintuitive and less friendly.
1354 */
1355
1356 unsigned long old_base, tmp;
1357 rdmsrl(MSR_FS_BASE, old_base);
1358 wrmsrl(MSR_FS_BASE, 1);
1359 loadsegment(fs, 0);
1360 rdmsrl(MSR_FS_BASE, tmp);
1361 if (tmp != 0)
1362 set_cpu_bug(c, X86_BUG_NULL_SEG);
1363 wrmsrl(MSR_FS_BASE, old_base);
1364#endif
1365}
1366
1367static void generic_identify(struct cpuinfo_x86 *c)
1368{
1369 c->extended_cpuid_level = 0;
1370
1371 if (!have_cpuid_p())
1372 identify_cpu_without_cpuid(c);
1373
1374 /* cyrix could have cpuid enabled via c_identify()*/
1375 if (!have_cpuid_p())
1376 return;
1377
1378 cpu_detect(c);
1379
1380 get_cpu_vendor(c);
1381
1382 get_cpu_cap(c);
1383
1384 get_cpu_address_sizes(c);
1385
1386 if (c->cpuid_level >= 0x00000001) {
1387 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1388#ifdef CONFIG_X86_32
1389# ifdef CONFIG_SMP
1390 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1391# else
1392 c->apicid = c->initial_apicid;
1393# endif
1394#endif
1395 c->phys_proc_id = c->initial_apicid;
1396 }
1397
1398 get_model_name(c); /* Default name */
1399
1400 detect_null_seg_behavior(c);
1401
1402 /*
1403 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1404 * systems that run Linux at CPL > 0 may or may not have the
1405 * issue, but, even if they have the issue, there's absolutely
1406 * nothing we can do about it because we can't use the real IRET
1407 * instruction.
1408 *
1409 * NB: For the time being, only 32-bit kernels support
1410 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1411 * whether to apply espfix using paravirt hooks. If any
1412 * non-paravirt system ever shows up that does *not* have the
1413 * ESPFIX issue, we can change this.
1414 */
1415#ifdef CONFIG_X86_32
1416# ifdef CONFIG_PARAVIRT_XXL
1417 do {
1418 extern void native_iret(void);
1419 if (pv_ops.cpu.iret == native_iret)
1420 set_cpu_bug(c, X86_BUG_ESPFIX);
1421 } while (0);
1422# else
1423 set_cpu_bug(c, X86_BUG_ESPFIX);
1424# endif
1425#endif
1426}
1427
1428/*
1429 * Validate that ACPI/mptables have the same information about the
1430 * effective APIC id and update the package map.
1431 */
1432static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1433{
1434#ifdef CONFIG_SMP
1435 unsigned int apicid, cpu = smp_processor_id();
1436
1437 apicid = apic->cpu_present_to_apicid(cpu);
1438
1439 if (apicid != c->apicid) {
1440 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1441 cpu, apicid, c->initial_apicid);
1442 }
1443 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1444 BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1445#else
1446 c->logical_proc_id = 0;
1447#endif
1448}
1449
1450/*
1451 * This does the hard work of actually picking apart the CPU stuff...
1452 */
1453static void identify_cpu(struct cpuinfo_x86 *c)
1454{
1455 int i;
1456
1457 c->loops_per_jiffy = loops_per_jiffy;
1458 c->x86_cache_size = 0;
1459 c->x86_vendor = X86_VENDOR_UNKNOWN;
1460 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1461 c->x86_vendor_id[0] = '\0'; /* Unset */
1462 c->x86_model_id[0] = '\0'; /* Unset */
1463 c->x86_max_cores = 1;
1464 c->x86_coreid_bits = 0;
1465 c->cu_id = 0xff;
1466#ifdef CONFIG_X86_64
1467 c->x86_clflush_size = 64;
1468 c->x86_phys_bits = 36;
1469 c->x86_virt_bits = 48;
1470#else
1471 c->cpuid_level = -1; /* CPUID not detected */
1472 c->x86_clflush_size = 32;
1473 c->x86_phys_bits = 32;
1474 c->x86_virt_bits = 32;
1475#endif
1476 c->x86_cache_alignment = c->x86_clflush_size;
1477 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1478#ifdef CONFIG_X86_VMX_FEATURE_NAMES
1479 memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1480#endif
1481
1482 generic_identify(c);
1483
1484 if (this_cpu->c_identify)
1485 this_cpu->c_identify(c);
1486
1487 /* Clear/Set all flags overridden by options, after probe */
1488 apply_forced_caps(c);
1489
1490#ifdef CONFIG_X86_64
1491 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1492#endif
1493
1494 /*
1495 * Vendor-specific initialization. In this section we
1496 * canonicalize the feature flags, meaning if there are
1497 * features a certain CPU supports which CPUID doesn't
1498 * tell us, CPUID claiming incorrect flags, or other bugs,
1499 * we handle them here.
1500 *
1501 * At the end of this section, c->x86_capability better
1502 * indicate the features this CPU genuinely supports!
1503 */
1504 if (this_cpu->c_init)
1505 this_cpu->c_init(c);
1506
1507 /* Disable the PN if appropriate */
1508 squash_the_stupid_serial_number(c);
1509
1510 /* Set up SMEP/SMAP/UMIP */
1511 setup_smep(c);
1512 setup_smap(c);
1513 setup_umip(c);
1514
1515 /* Enable FSGSBASE instructions if available. */
1516 if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1517 cr4_set_bits(X86_CR4_FSGSBASE);
1518 elf_hwcap2 |= HWCAP2_FSGSBASE;
1519 }
1520
1521 /*
1522 * The vendor-specific functions might have changed features.
1523 * Now we do "generic changes."
1524 */
1525
1526 /* Filter out anything that depends on CPUID levels we don't have */
1527 filter_cpuid_features(c, true);
1528
1529 /* If the model name is still unset, do table lookup. */
1530 if (!c->x86_model_id[0]) {
1531 const char *p;
1532 p = table_lookup_model(c);
1533 if (p)
1534 strcpy(c->x86_model_id, p);
1535 else
1536 /* Last resort... */
1537 sprintf(c->x86_model_id, "%02x/%02x",
1538 c->x86, c->x86_model);
1539 }
1540
1541#ifdef CONFIG_X86_64
1542 detect_ht(c);
1543#endif
1544
1545 x86_init_rdrand(c);
1546 setup_pku(c);
1547
1548 /*
1549 * Clear/Set all flags overridden by options, need do it
1550 * before following smp all cpus cap AND.
1551 */
1552 apply_forced_caps(c);
1553
1554 /*
1555 * On SMP, boot_cpu_data holds the common feature set between
1556 * all CPUs; so make sure that we indicate which features are
1557 * common between the CPUs. The first time this routine gets
1558 * executed, c == &boot_cpu_data.
1559 */
1560 if (c != &boot_cpu_data) {
1561 /* AND the already accumulated flags with these */
1562 for (i = 0; i < NCAPINTS; i++)
1563 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1564
1565 /* OR, i.e. replicate the bug flags */
1566 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1567 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1568 }
1569
1570 /* Init Machine Check Exception if available. */
1571 mcheck_cpu_init(c);
1572
1573 select_idle_routine(c);
1574
1575#ifdef CONFIG_NUMA
1576 numa_add_cpu(smp_processor_id());
1577#endif
1578}
1579
1580/*
1581 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1582 * on 32-bit kernels:
1583 */
1584#ifdef CONFIG_X86_32
1585void enable_sep_cpu(void)
1586{
1587 struct tss_struct *tss;
1588 int cpu;
1589
1590 if (!boot_cpu_has(X86_FEATURE_SEP))
1591 return;
1592
1593 cpu = get_cpu();
1594 tss = &per_cpu(cpu_tss_rw, cpu);
1595
1596 /*
1597 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1598 * see the big comment in struct x86_hw_tss's definition.
1599 */
1600
1601 tss->x86_tss.ss1 = __KERNEL_CS;
1602 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1603 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1604 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1605
1606 put_cpu();
1607}
1608#endif
1609
1610void __init identify_boot_cpu(void)
1611{
1612 identify_cpu(&boot_cpu_data);
1613#ifdef CONFIG_X86_32
1614 sysenter_setup();
1615 enable_sep_cpu();
1616#endif
1617 cpu_detect_tlb(&boot_cpu_data);
1618 setup_cr_pinning();
1619
1620 tsx_init();
1621}
1622
1623void identify_secondary_cpu(struct cpuinfo_x86 *c)
1624{
1625 BUG_ON(c == &boot_cpu_data);
1626 identify_cpu(c);
1627#ifdef CONFIG_X86_32
1628 enable_sep_cpu();
1629#endif
1630 mtrr_ap_init();
1631 validate_apic_and_package_id(c);
1632 x86_spec_ctrl_setup_ap();
1633 update_srbds_msr();
1634}
1635
1636static __init int setup_noclflush(char *arg)
1637{
1638 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1639 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1640 return 1;
1641}
1642__setup("noclflush", setup_noclflush);
1643
1644void print_cpu_info(struct cpuinfo_x86 *c)
1645{
1646 const char *vendor = NULL;
1647
1648 if (c->x86_vendor < X86_VENDOR_NUM) {
1649 vendor = this_cpu->c_vendor;
1650 } else {
1651 if (c->cpuid_level >= 0)
1652 vendor = c->x86_vendor_id;
1653 }
1654
1655 if (vendor && !strstr(c->x86_model_id, vendor))
1656 pr_cont("%s ", vendor);
1657
1658 if (c->x86_model_id[0])
1659 pr_cont("%s", c->x86_model_id);
1660 else
1661 pr_cont("%d86", c->x86);
1662
1663 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1664
1665 if (c->x86_stepping || c->cpuid_level >= 0)
1666 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1667 else
1668 pr_cont(")\n");
1669}
1670
1671/*
1672 * clearcpuid= was already parsed in fpu__init_parse_early_param.
1673 * But we need to keep a dummy __setup around otherwise it would
1674 * show up as an environment variable for init.
1675 */
1676static __init int setup_clearcpuid(char *arg)
1677{
1678 return 1;
1679}
1680__setup("clearcpuid=", setup_clearcpuid);
1681
1682#ifdef CONFIG_X86_64
1683DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1684 fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1685EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1686
1687/*
1688 * The following percpu variables are hot. Align current_task to
1689 * cacheline size such that they fall in the same cacheline.
1690 */
1691DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1692 &init_task;
1693EXPORT_PER_CPU_SYMBOL(current_task);
1694
1695DEFINE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
1696DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1697
1698DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1699EXPORT_PER_CPU_SYMBOL(__preempt_count);
1700
1701/* May not be marked __init: used by software suspend */
1702void syscall_init(void)
1703{
1704 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1705 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1706
1707#ifdef CONFIG_IA32_EMULATION
1708 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1709 /*
1710 * This only works on Intel CPUs.
1711 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1712 * This does not cause SYSENTER to jump to the wrong location, because
1713 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1714 */
1715 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1716 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1717 (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1718 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1719#else
1720 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1721 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1722 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1723 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1724#endif
1725
1726 /* Flags to clear on syscall */
1727 wrmsrl(MSR_SYSCALL_MASK,
1728 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1729 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1730}
1731
1732#else /* CONFIG_X86_64 */
1733
1734DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1735EXPORT_PER_CPU_SYMBOL(current_task);
1736DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1737EXPORT_PER_CPU_SYMBOL(__preempt_count);
1738
1739/*
1740 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1741 * the top of the kernel stack. Use an extra percpu variable to track the
1742 * top of the kernel stack directly.
1743 */
1744DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1745 (unsigned long)&init_thread_union + THREAD_SIZE;
1746EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1747
1748#ifdef CONFIG_STACKPROTECTOR
1749DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1750#endif
1751
1752#endif /* CONFIG_X86_64 */
1753
1754/*
1755 * Clear all 6 debug registers:
1756 */
1757static void clear_all_debug_regs(void)
1758{
1759 int i;
1760
1761 for (i = 0; i < 8; i++) {
1762 /* Ignore db4, db5 */
1763 if ((i == 4) || (i == 5))
1764 continue;
1765
1766 set_debugreg(0, i);
1767 }
1768}
1769
1770#ifdef CONFIG_KGDB
1771/*
1772 * Restore debug regs if using kgdbwait and you have a kernel debugger
1773 * connection established.
1774 */
1775static void dbg_restore_debug_regs(void)
1776{
1777 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1778 arch_kgdb_ops.correct_hw_break();
1779}
1780#else /* ! CONFIG_KGDB */
1781#define dbg_restore_debug_regs()
1782#endif /* ! CONFIG_KGDB */
1783
1784static void wait_for_master_cpu(int cpu)
1785{
1786#ifdef CONFIG_SMP
1787 /*
1788 * wait for ACK from master CPU before continuing
1789 * with AP initialization
1790 */
1791 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1792 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1793 cpu_relax();
1794#endif
1795}
1796
1797#ifdef CONFIG_X86_64
1798static inline void setup_getcpu(int cpu)
1799{
1800 unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1801 struct desc_struct d = { };
1802
1803 if (boot_cpu_has(X86_FEATURE_RDTSCP))
1804 write_rdtscp_aux(cpudata);
1805
1806 /* Store CPU and node number in limit. */
1807 d.limit0 = cpudata;
1808 d.limit1 = cpudata >> 16;
1809
1810 d.type = 5; /* RO data, expand down, accessed */
1811 d.dpl = 3; /* Visible to user code */
1812 d.s = 1; /* Not a system segment */
1813 d.p = 1; /* Present */
1814 d.d = 1; /* 32-bit */
1815
1816 write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1817}
1818
1819static inline void ucode_cpu_init(int cpu)
1820{
1821 if (cpu)
1822 load_ucode_ap();
1823}
1824
1825static inline void tss_setup_ist(struct tss_struct *tss)
1826{
1827 /* Set up the per-CPU TSS IST stacks */
1828 tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1829 tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1830 tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1831 tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1832}
1833
1834#else /* CONFIG_X86_64 */
1835
1836static inline void setup_getcpu(int cpu) { }
1837
1838static inline void ucode_cpu_init(int cpu)
1839{
1840 show_ucode_info_early();
1841}
1842
1843static inline void tss_setup_ist(struct tss_struct *tss) { }
1844
1845#endif /* !CONFIG_X86_64 */
1846
1847static inline void tss_setup_io_bitmap(struct tss_struct *tss)
1848{
1849 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
1850
1851#ifdef CONFIG_X86_IOPL_IOPERM
1852 tss->io_bitmap.prev_max = 0;
1853 tss->io_bitmap.prev_sequence = 0;
1854 memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
1855 /*
1856 * Invalidate the extra array entry past the end of the all
1857 * permission bitmap as required by the hardware.
1858 */
1859 tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
1860#endif
1861}
1862
1863/*
1864 * cpu_init() initializes state that is per-CPU. Some data is already
1865 * initialized (naturally) in the bootstrap process, such as the GDT
1866 * and IDT. We reload them nevertheless, this function acts as a
1867 * 'CPU state barrier', nothing should get across.
1868 */
1869void cpu_init(void)
1870{
1871 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1872 struct task_struct *cur = current;
1873 int cpu = raw_smp_processor_id();
1874
1875 wait_for_master_cpu(cpu);
1876
1877 ucode_cpu_init(cpu);
1878
1879#ifdef CONFIG_NUMA
1880 if (this_cpu_read(numa_node) == 0 &&
1881 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1882 set_numa_node(early_cpu_to_node(cpu));
1883#endif
1884 setup_getcpu(cpu);
1885
1886 pr_debug("Initializing CPU#%d\n", cpu);
1887
1888 if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
1889 boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
1890 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1891
1892 /*
1893 * Initialize the per-CPU GDT with the boot GDT,
1894 * and set up the GDT descriptor:
1895 */
1896 switch_to_new_gdt(cpu);
1897 load_current_idt();
1898
1899 if (IS_ENABLED(CONFIG_X86_64)) {
1900 loadsegment(fs, 0);
1901 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1902 syscall_init();
1903
1904 wrmsrl(MSR_FS_BASE, 0);
1905 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1906 barrier();
1907
1908 x2apic_setup();
1909 }
1910
1911 mmgrab(&init_mm);
1912 cur->active_mm = &init_mm;
1913 BUG_ON(cur->mm);
1914 initialize_tlbstate_and_flush();
1915 enter_lazy_tlb(&init_mm, cur);
1916
1917 /* Initialize the TSS. */
1918 tss_setup_ist(tss);
1919 tss_setup_io_bitmap(tss);
1920 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1921
1922 load_TR_desc();
1923 /*
1924 * sp0 points to the entry trampoline stack regardless of what task
1925 * is running.
1926 */
1927 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1928
1929 load_mm_ldt(&init_mm);
1930
1931 clear_all_debug_regs();
1932 dbg_restore_debug_regs();
1933
1934 doublefault_init_cpu_tss();
1935
1936 fpu__init_cpu();
1937
1938 if (is_uv_system())
1939 uv_cpu_init();
1940
1941 load_fixmap_gdt(cpu);
1942}
1943
1944/*
1945 * The microcode loader calls this upon late microcode load to recheck features,
1946 * only when microcode has been updated. Caller holds microcode_mutex and CPU
1947 * hotplug lock.
1948 */
1949void microcode_check(void)
1950{
1951 struct cpuinfo_x86 info;
1952
1953 perf_check_microcode();
1954
1955 /* Reload CPUID max function as it might've changed. */
1956 info.cpuid_level = cpuid_eax(0);
1957
1958 /*
1959 * Copy all capability leafs to pick up the synthetic ones so that
1960 * memcmp() below doesn't fail on that. The ones coming from CPUID will
1961 * get overwritten in get_cpu_cap().
1962 */
1963 memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
1964
1965 get_cpu_cap(&info);
1966
1967 if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
1968 return;
1969
1970 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
1971 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
1972}
1973
1974/*
1975 * Invoked from core CPU hotplug code after hotplug operations
1976 */
1977void arch_smt_update(void)
1978{
1979 /* Handle the speculative execution misfeatures */
1980 cpu_bugs_smt_update();
1981 /* Check whether IPI broadcasting can be enabled */
1982 apic_smt_update();
1983}