Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Cryptographic API.
4 *
5 * s390 implementation of the AES Cipher Algorithm.
6 *
7 * s390 Version:
8 * Copyright IBM Corp. 2005, 2017
9 * Author(s): Jan Glauber (jang@de.ibm.com)
10 * Sebastian Siewior (sebastian@breakpoint.cc> SW-Fallback
11 * Patrick Steuer <patrick.steuer@de.ibm.com>
12 * Harald Freudenberger <freude@de.ibm.com>
13 *
14 * Derived from "crypto/aes_generic.c"
15 */
16
17#define KMSG_COMPONENT "aes_s390"
18#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
19
20#include <crypto/aes.h>
21#include <crypto/algapi.h>
22#include <crypto/ghash.h>
23#include <crypto/internal/aead.h>
24#include <crypto/internal/cipher.h>
25#include <crypto/internal/skcipher.h>
26#include <crypto/scatterwalk.h>
27#include <linux/err.h>
28#include <linux/module.h>
29#include <linux/cpufeature.h>
30#include <linux/init.h>
31#include <linux/mutex.h>
32#include <linux/fips.h>
33#include <linux/string.h>
34#include <crypto/xts.h>
35#include <asm/cpacf.h>
36
37static u8 *ctrblk;
38static DEFINE_MUTEX(ctrblk_lock);
39
40static cpacf_mask_t km_functions, kmc_functions, kmctr_functions,
41 kma_functions;
42
43struct s390_aes_ctx {
44 u8 key[AES_MAX_KEY_SIZE];
45 int key_len;
46 unsigned long fc;
47 union {
48 struct crypto_skcipher *skcipher;
49 struct crypto_cipher *cip;
50 } fallback;
51};
52
53struct s390_xts_ctx {
54 union {
55 u8 keys[64];
56 struct {
57 u8 key[32];
58 u8 pcc_key[32];
59 };
60 };
61 int key_len;
62 unsigned long fc;
63 struct crypto_skcipher *fallback;
64};
65
66struct gcm_sg_walk {
67 struct scatter_walk walk;
68 unsigned int walk_bytes;
69 u8 *walk_ptr;
70 unsigned int walk_bytes_remain;
71 u8 buf[AES_BLOCK_SIZE];
72 unsigned int buf_bytes;
73 u8 *ptr;
74 unsigned int nbytes;
75};
76
77static int setkey_fallback_cip(struct crypto_tfm *tfm, const u8 *in_key,
78 unsigned int key_len)
79{
80 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
81
82 sctx->fallback.cip->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
83 sctx->fallback.cip->base.crt_flags |= (tfm->crt_flags &
84 CRYPTO_TFM_REQ_MASK);
85
86 return crypto_cipher_setkey(sctx->fallback.cip, in_key, key_len);
87}
88
89static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
90 unsigned int key_len)
91{
92 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
93 unsigned long fc;
94
95 /* Pick the correct function code based on the key length */
96 fc = (key_len == 16) ? CPACF_KM_AES_128 :
97 (key_len == 24) ? CPACF_KM_AES_192 :
98 (key_len == 32) ? CPACF_KM_AES_256 : 0;
99
100 /* Check if the function code is available */
101 sctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
102 if (!sctx->fc)
103 return setkey_fallback_cip(tfm, in_key, key_len);
104
105 sctx->key_len = key_len;
106 memcpy(sctx->key, in_key, key_len);
107 return 0;
108}
109
110static void crypto_aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
111{
112 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
113
114 if (unlikely(!sctx->fc)) {
115 crypto_cipher_encrypt_one(sctx->fallback.cip, out, in);
116 return;
117 }
118 cpacf_km(sctx->fc, &sctx->key, out, in, AES_BLOCK_SIZE);
119}
120
121static void crypto_aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
122{
123 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
124
125 if (unlikely(!sctx->fc)) {
126 crypto_cipher_decrypt_one(sctx->fallback.cip, out, in);
127 return;
128 }
129 cpacf_km(sctx->fc | CPACF_DECRYPT,
130 &sctx->key, out, in, AES_BLOCK_SIZE);
131}
132
133static int fallback_init_cip(struct crypto_tfm *tfm)
134{
135 const char *name = tfm->__crt_alg->cra_name;
136 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
137
138 sctx->fallback.cip = crypto_alloc_cipher(name, 0,
139 CRYPTO_ALG_NEED_FALLBACK);
140
141 if (IS_ERR(sctx->fallback.cip)) {
142 pr_err("Allocating AES fallback algorithm %s failed\n",
143 name);
144 return PTR_ERR(sctx->fallback.cip);
145 }
146
147 return 0;
148}
149
150static void fallback_exit_cip(struct crypto_tfm *tfm)
151{
152 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
153
154 crypto_free_cipher(sctx->fallback.cip);
155 sctx->fallback.cip = NULL;
156}
157
158static struct crypto_alg aes_alg = {
159 .cra_name = "aes",
160 .cra_driver_name = "aes-s390",
161 .cra_priority = 300,
162 .cra_flags = CRYPTO_ALG_TYPE_CIPHER |
163 CRYPTO_ALG_NEED_FALLBACK,
164 .cra_blocksize = AES_BLOCK_SIZE,
165 .cra_ctxsize = sizeof(struct s390_aes_ctx),
166 .cra_module = THIS_MODULE,
167 .cra_init = fallback_init_cip,
168 .cra_exit = fallback_exit_cip,
169 .cra_u = {
170 .cipher = {
171 .cia_min_keysize = AES_MIN_KEY_SIZE,
172 .cia_max_keysize = AES_MAX_KEY_SIZE,
173 .cia_setkey = aes_set_key,
174 .cia_encrypt = crypto_aes_encrypt,
175 .cia_decrypt = crypto_aes_decrypt,
176 }
177 }
178};
179
180static int setkey_fallback_skcipher(struct crypto_skcipher *tfm, const u8 *key,
181 unsigned int len)
182{
183 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
184
185 crypto_skcipher_clear_flags(sctx->fallback.skcipher,
186 CRYPTO_TFM_REQ_MASK);
187 crypto_skcipher_set_flags(sctx->fallback.skcipher,
188 crypto_skcipher_get_flags(tfm) &
189 CRYPTO_TFM_REQ_MASK);
190 return crypto_skcipher_setkey(sctx->fallback.skcipher, key, len);
191}
192
193static int fallback_skcipher_crypt(struct s390_aes_ctx *sctx,
194 struct skcipher_request *req,
195 unsigned long modifier)
196{
197 struct skcipher_request *subreq = skcipher_request_ctx(req);
198
199 *subreq = *req;
200 skcipher_request_set_tfm(subreq, sctx->fallback.skcipher);
201 return (modifier & CPACF_DECRYPT) ?
202 crypto_skcipher_decrypt(subreq) :
203 crypto_skcipher_encrypt(subreq);
204}
205
206static int ecb_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
207 unsigned int key_len)
208{
209 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
210 unsigned long fc;
211
212 /* Pick the correct function code based on the key length */
213 fc = (key_len == 16) ? CPACF_KM_AES_128 :
214 (key_len == 24) ? CPACF_KM_AES_192 :
215 (key_len == 32) ? CPACF_KM_AES_256 : 0;
216
217 /* Check if the function code is available */
218 sctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
219 if (!sctx->fc)
220 return setkey_fallback_skcipher(tfm, in_key, key_len);
221
222 sctx->key_len = key_len;
223 memcpy(sctx->key, in_key, key_len);
224 return 0;
225}
226
227static int ecb_aes_crypt(struct skcipher_request *req, unsigned long modifier)
228{
229 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
230 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
231 struct skcipher_walk walk;
232 unsigned int nbytes, n;
233 int ret;
234
235 if (unlikely(!sctx->fc))
236 return fallback_skcipher_crypt(sctx, req, modifier);
237
238 ret = skcipher_walk_virt(&walk, req, false);
239 while ((nbytes = walk.nbytes) != 0) {
240 /* only use complete blocks */
241 n = nbytes & ~(AES_BLOCK_SIZE - 1);
242 cpacf_km(sctx->fc | modifier, sctx->key,
243 walk.dst.virt.addr, walk.src.virt.addr, n);
244 ret = skcipher_walk_done(&walk, nbytes - n);
245 }
246 return ret;
247}
248
249static int ecb_aes_encrypt(struct skcipher_request *req)
250{
251 return ecb_aes_crypt(req, 0);
252}
253
254static int ecb_aes_decrypt(struct skcipher_request *req)
255{
256 return ecb_aes_crypt(req, CPACF_DECRYPT);
257}
258
259static int fallback_init_skcipher(struct crypto_skcipher *tfm)
260{
261 const char *name = crypto_tfm_alg_name(&tfm->base);
262 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
263
264 sctx->fallback.skcipher = crypto_alloc_skcipher(name, 0,
265 CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC);
266
267 if (IS_ERR(sctx->fallback.skcipher)) {
268 pr_err("Allocating AES fallback algorithm %s failed\n",
269 name);
270 return PTR_ERR(sctx->fallback.skcipher);
271 }
272
273 crypto_skcipher_set_reqsize(tfm, sizeof(struct skcipher_request) +
274 crypto_skcipher_reqsize(sctx->fallback.skcipher));
275 return 0;
276}
277
278static void fallback_exit_skcipher(struct crypto_skcipher *tfm)
279{
280 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
281
282 crypto_free_skcipher(sctx->fallback.skcipher);
283}
284
285static struct skcipher_alg ecb_aes_alg = {
286 .base.cra_name = "ecb(aes)",
287 .base.cra_driver_name = "ecb-aes-s390",
288 .base.cra_priority = 401, /* combo: aes + ecb + 1 */
289 .base.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
290 .base.cra_blocksize = AES_BLOCK_SIZE,
291 .base.cra_ctxsize = sizeof(struct s390_aes_ctx),
292 .base.cra_module = THIS_MODULE,
293 .init = fallback_init_skcipher,
294 .exit = fallback_exit_skcipher,
295 .min_keysize = AES_MIN_KEY_SIZE,
296 .max_keysize = AES_MAX_KEY_SIZE,
297 .setkey = ecb_aes_set_key,
298 .encrypt = ecb_aes_encrypt,
299 .decrypt = ecb_aes_decrypt,
300};
301
302static int cbc_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
303 unsigned int key_len)
304{
305 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
306 unsigned long fc;
307
308 /* Pick the correct function code based on the key length */
309 fc = (key_len == 16) ? CPACF_KMC_AES_128 :
310 (key_len == 24) ? CPACF_KMC_AES_192 :
311 (key_len == 32) ? CPACF_KMC_AES_256 : 0;
312
313 /* Check if the function code is available */
314 sctx->fc = (fc && cpacf_test_func(&kmc_functions, fc)) ? fc : 0;
315 if (!sctx->fc)
316 return setkey_fallback_skcipher(tfm, in_key, key_len);
317
318 sctx->key_len = key_len;
319 memcpy(sctx->key, in_key, key_len);
320 return 0;
321}
322
323static int cbc_aes_crypt(struct skcipher_request *req, unsigned long modifier)
324{
325 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
326 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
327 struct skcipher_walk walk;
328 unsigned int nbytes, n;
329 int ret;
330 struct {
331 u8 iv[AES_BLOCK_SIZE];
332 u8 key[AES_MAX_KEY_SIZE];
333 } param;
334
335 if (unlikely(!sctx->fc))
336 return fallback_skcipher_crypt(sctx, req, modifier);
337
338 ret = skcipher_walk_virt(&walk, req, false);
339 if (ret)
340 return ret;
341 memcpy(param.iv, walk.iv, AES_BLOCK_SIZE);
342 memcpy(param.key, sctx->key, sctx->key_len);
343 while ((nbytes = walk.nbytes) != 0) {
344 /* only use complete blocks */
345 n = nbytes & ~(AES_BLOCK_SIZE - 1);
346 cpacf_kmc(sctx->fc | modifier, ¶m,
347 walk.dst.virt.addr, walk.src.virt.addr, n);
348 memcpy(walk.iv, param.iv, AES_BLOCK_SIZE);
349 ret = skcipher_walk_done(&walk, nbytes - n);
350 }
351 memzero_explicit(¶m, sizeof(param));
352 return ret;
353}
354
355static int cbc_aes_encrypt(struct skcipher_request *req)
356{
357 return cbc_aes_crypt(req, 0);
358}
359
360static int cbc_aes_decrypt(struct skcipher_request *req)
361{
362 return cbc_aes_crypt(req, CPACF_DECRYPT);
363}
364
365static struct skcipher_alg cbc_aes_alg = {
366 .base.cra_name = "cbc(aes)",
367 .base.cra_driver_name = "cbc-aes-s390",
368 .base.cra_priority = 402, /* ecb-aes-s390 + 1 */
369 .base.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
370 .base.cra_blocksize = AES_BLOCK_SIZE,
371 .base.cra_ctxsize = sizeof(struct s390_aes_ctx),
372 .base.cra_module = THIS_MODULE,
373 .init = fallback_init_skcipher,
374 .exit = fallback_exit_skcipher,
375 .min_keysize = AES_MIN_KEY_SIZE,
376 .max_keysize = AES_MAX_KEY_SIZE,
377 .ivsize = AES_BLOCK_SIZE,
378 .setkey = cbc_aes_set_key,
379 .encrypt = cbc_aes_encrypt,
380 .decrypt = cbc_aes_decrypt,
381};
382
383static int xts_fallback_setkey(struct crypto_skcipher *tfm, const u8 *key,
384 unsigned int len)
385{
386 struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
387
388 crypto_skcipher_clear_flags(xts_ctx->fallback, CRYPTO_TFM_REQ_MASK);
389 crypto_skcipher_set_flags(xts_ctx->fallback,
390 crypto_skcipher_get_flags(tfm) &
391 CRYPTO_TFM_REQ_MASK);
392 return crypto_skcipher_setkey(xts_ctx->fallback, key, len);
393}
394
395static int xts_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
396 unsigned int key_len)
397{
398 struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
399 unsigned long fc;
400 int err;
401
402 err = xts_fallback_setkey(tfm, in_key, key_len);
403 if (err)
404 return err;
405
406 /* Pick the correct function code based on the key length */
407 fc = (key_len == 32) ? CPACF_KM_XTS_128 :
408 (key_len == 64) ? CPACF_KM_XTS_256 : 0;
409
410 /* Check if the function code is available */
411 xts_ctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
412 if (!xts_ctx->fc)
413 return 0;
414
415 /* Split the XTS key into the two subkeys */
416 key_len = key_len / 2;
417 xts_ctx->key_len = key_len;
418 memcpy(xts_ctx->key, in_key, key_len);
419 memcpy(xts_ctx->pcc_key, in_key + key_len, key_len);
420 return 0;
421}
422
423static int xts_aes_crypt(struct skcipher_request *req, unsigned long modifier)
424{
425 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
426 struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
427 struct skcipher_walk walk;
428 unsigned int offset, nbytes, n;
429 int ret;
430 struct {
431 u8 key[32];
432 u8 tweak[16];
433 u8 block[16];
434 u8 bit[16];
435 u8 xts[16];
436 } pcc_param;
437 struct {
438 u8 key[32];
439 u8 init[16];
440 } xts_param;
441
442 if (req->cryptlen < AES_BLOCK_SIZE)
443 return -EINVAL;
444
445 if (unlikely(!xts_ctx->fc || (req->cryptlen % AES_BLOCK_SIZE) != 0)) {
446 struct skcipher_request *subreq = skcipher_request_ctx(req);
447
448 *subreq = *req;
449 skcipher_request_set_tfm(subreq, xts_ctx->fallback);
450 return (modifier & CPACF_DECRYPT) ?
451 crypto_skcipher_decrypt(subreq) :
452 crypto_skcipher_encrypt(subreq);
453 }
454
455 ret = skcipher_walk_virt(&walk, req, false);
456 if (ret)
457 return ret;
458 offset = xts_ctx->key_len & 0x10;
459 memset(pcc_param.block, 0, sizeof(pcc_param.block));
460 memset(pcc_param.bit, 0, sizeof(pcc_param.bit));
461 memset(pcc_param.xts, 0, sizeof(pcc_param.xts));
462 memcpy(pcc_param.tweak, walk.iv, sizeof(pcc_param.tweak));
463 memcpy(pcc_param.key + offset, xts_ctx->pcc_key, xts_ctx->key_len);
464 cpacf_pcc(xts_ctx->fc, pcc_param.key + offset);
465
466 memcpy(xts_param.key + offset, xts_ctx->key, xts_ctx->key_len);
467 memcpy(xts_param.init, pcc_param.xts, 16);
468
469 while ((nbytes = walk.nbytes) != 0) {
470 /* only use complete blocks */
471 n = nbytes & ~(AES_BLOCK_SIZE - 1);
472 cpacf_km(xts_ctx->fc | modifier, xts_param.key + offset,
473 walk.dst.virt.addr, walk.src.virt.addr, n);
474 ret = skcipher_walk_done(&walk, nbytes - n);
475 }
476 memzero_explicit(&pcc_param, sizeof(pcc_param));
477 memzero_explicit(&xts_param, sizeof(xts_param));
478 return ret;
479}
480
481static int xts_aes_encrypt(struct skcipher_request *req)
482{
483 return xts_aes_crypt(req, 0);
484}
485
486static int xts_aes_decrypt(struct skcipher_request *req)
487{
488 return xts_aes_crypt(req, CPACF_DECRYPT);
489}
490
491static int xts_fallback_init(struct crypto_skcipher *tfm)
492{
493 const char *name = crypto_tfm_alg_name(&tfm->base);
494 struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
495
496 xts_ctx->fallback = crypto_alloc_skcipher(name, 0,
497 CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC);
498
499 if (IS_ERR(xts_ctx->fallback)) {
500 pr_err("Allocating XTS fallback algorithm %s failed\n",
501 name);
502 return PTR_ERR(xts_ctx->fallback);
503 }
504 crypto_skcipher_set_reqsize(tfm, sizeof(struct skcipher_request) +
505 crypto_skcipher_reqsize(xts_ctx->fallback));
506 return 0;
507}
508
509static void xts_fallback_exit(struct crypto_skcipher *tfm)
510{
511 struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
512
513 crypto_free_skcipher(xts_ctx->fallback);
514}
515
516static struct skcipher_alg xts_aes_alg = {
517 .base.cra_name = "xts(aes)",
518 .base.cra_driver_name = "xts-aes-s390",
519 .base.cra_priority = 402, /* ecb-aes-s390 + 1 */
520 .base.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
521 .base.cra_blocksize = AES_BLOCK_SIZE,
522 .base.cra_ctxsize = sizeof(struct s390_xts_ctx),
523 .base.cra_module = THIS_MODULE,
524 .init = xts_fallback_init,
525 .exit = xts_fallback_exit,
526 .min_keysize = 2 * AES_MIN_KEY_SIZE,
527 .max_keysize = 2 * AES_MAX_KEY_SIZE,
528 .ivsize = AES_BLOCK_SIZE,
529 .setkey = xts_aes_set_key,
530 .encrypt = xts_aes_encrypt,
531 .decrypt = xts_aes_decrypt,
532};
533
534static int fullxts_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
535 unsigned int key_len)
536{
537 struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
538 unsigned long fc;
539 int err;
540
541 err = xts_fallback_setkey(tfm, in_key, key_len);
542 if (err)
543 return err;
544
545 /* Pick the correct function code based on the key length */
546 fc = (key_len == 32) ? CPACF_KM_XTS_128_FULL :
547 (key_len == 64) ? CPACF_KM_XTS_256_FULL : 0;
548
549 /* Check if the function code is available */
550 xts_ctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
551 if (!xts_ctx->fc)
552 return 0;
553
554 /* Store double-key */
555 memcpy(xts_ctx->keys, in_key, key_len);
556 xts_ctx->key_len = key_len;
557 return 0;
558}
559
560static int fullxts_aes_crypt(struct skcipher_request *req, unsigned long modifier)
561{
562 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
563 struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
564 unsigned int offset, nbytes, n;
565 struct skcipher_walk walk;
566 int ret;
567 struct {
568 __u8 key[64];
569 __u8 tweak[16];
570 __u8 nap[16];
571 } fxts_param = {
572 .nap = {0},
573 };
574
575 if (req->cryptlen < AES_BLOCK_SIZE)
576 return -EINVAL;
577
578 if (unlikely(!xts_ctx->fc || (req->cryptlen % AES_BLOCK_SIZE) != 0)) {
579 struct skcipher_request *subreq = skcipher_request_ctx(req);
580
581 *subreq = *req;
582 skcipher_request_set_tfm(subreq, xts_ctx->fallback);
583 return (modifier & CPACF_DECRYPT) ?
584 crypto_skcipher_decrypt(subreq) :
585 crypto_skcipher_encrypt(subreq);
586 }
587
588 ret = skcipher_walk_virt(&walk, req, false);
589 if (ret)
590 return ret;
591
592 offset = xts_ctx->key_len & 0x20;
593 memcpy(fxts_param.key + offset, xts_ctx->keys, xts_ctx->key_len);
594 memcpy(fxts_param.tweak, req->iv, AES_BLOCK_SIZE);
595 fxts_param.nap[0] = 0x01; /* initial alpha power (1, little-endian) */
596
597 while ((nbytes = walk.nbytes) != 0) {
598 /* only use complete blocks */
599 n = nbytes & ~(AES_BLOCK_SIZE - 1);
600 cpacf_km(xts_ctx->fc | modifier, fxts_param.key + offset,
601 walk.dst.virt.addr, walk.src.virt.addr, n);
602 ret = skcipher_walk_done(&walk, nbytes - n);
603 }
604 memzero_explicit(&fxts_param, sizeof(fxts_param));
605 return ret;
606}
607
608static int fullxts_aes_encrypt(struct skcipher_request *req)
609{
610 return fullxts_aes_crypt(req, 0);
611}
612
613static int fullxts_aes_decrypt(struct skcipher_request *req)
614{
615 return fullxts_aes_crypt(req, CPACF_DECRYPT);
616}
617
618static struct skcipher_alg fullxts_aes_alg = {
619 .base.cra_name = "xts(aes)",
620 .base.cra_driver_name = "full-xts-aes-s390",
621 .base.cra_priority = 403, /* aes-xts-s390 + 1 */
622 .base.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
623 .base.cra_blocksize = AES_BLOCK_SIZE,
624 .base.cra_ctxsize = sizeof(struct s390_xts_ctx),
625 .base.cra_module = THIS_MODULE,
626 .init = xts_fallback_init,
627 .exit = xts_fallback_exit,
628 .min_keysize = 2 * AES_MIN_KEY_SIZE,
629 .max_keysize = 2 * AES_MAX_KEY_SIZE,
630 .ivsize = AES_BLOCK_SIZE,
631 .setkey = fullxts_aes_set_key,
632 .encrypt = fullxts_aes_encrypt,
633 .decrypt = fullxts_aes_decrypt,
634};
635
636static int ctr_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
637 unsigned int key_len)
638{
639 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
640 unsigned long fc;
641
642 /* Pick the correct function code based on the key length */
643 fc = (key_len == 16) ? CPACF_KMCTR_AES_128 :
644 (key_len == 24) ? CPACF_KMCTR_AES_192 :
645 (key_len == 32) ? CPACF_KMCTR_AES_256 : 0;
646
647 /* Check if the function code is available */
648 sctx->fc = (fc && cpacf_test_func(&kmctr_functions, fc)) ? fc : 0;
649 if (!sctx->fc)
650 return setkey_fallback_skcipher(tfm, in_key, key_len);
651
652 sctx->key_len = key_len;
653 memcpy(sctx->key, in_key, key_len);
654 return 0;
655}
656
657static unsigned int __ctrblk_init(u8 *ctrptr, u8 *iv, unsigned int nbytes)
658{
659 unsigned int i, n;
660
661 /* only use complete blocks, max. PAGE_SIZE */
662 memcpy(ctrptr, iv, AES_BLOCK_SIZE);
663 n = (nbytes > PAGE_SIZE) ? PAGE_SIZE : nbytes & ~(AES_BLOCK_SIZE - 1);
664 for (i = (n / AES_BLOCK_SIZE) - 1; i > 0; i--) {
665 memcpy(ctrptr + AES_BLOCK_SIZE, ctrptr, AES_BLOCK_SIZE);
666 crypto_inc(ctrptr + AES_BLOCK_SIZE, AES_BLOCK_SIZE);
667 ctrptr += AES_BLOCK_SIZE;
668 }
669 return n;
670}
671
672static int ctr_aes_crypt(struct skcipher_request *req)
673{
674 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
675 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
676 u8 buf[AES_BLOCK_SIZE], *ctrptr;
677 struct skcipher_walk walk;
678 unsigned int n, nbytes;
679 int ret, locked;
680
681 if (unlikely(!sctx->fc))
682 return fallback_skcipher_crypt(sctx, req, 0);
683
684 locked = mutex_trylock(&ctrblk_lock);
685
686 ret = skcipher_walk_virt(&walk, req, false);
687 while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
688 n = AES_BLOCK_SIZE;
689
690 if (nbytes >= 2*AES_BLOCK_SIZE && locked)
691 n = __ctrblk_init(ctrblk, walk.iv, nbytes);
692 ctrptr = (n > AES_BLOCK_SIZE) ? ctrblk : walk.iv;
693 cpacf_kmctr(sctx->fc, sctx->key, walk.dst.virt.addr,
694 walk.src.virt.addr, n, ctrptr);
695 if (ctrptr == ctrblk)
696 memcpy(walk.iv, ctrptr + n - AES_BLOCK_SIZE,
697 AES_BLOCK_SIZE);
698 crypto_inc(walk.iv, AES_BLOCK_SIZE);
699 ret = skcipher_walk_done(&walk, nbytes - n);
700 }
701 if (locked)
702 mutex_unlock(&ctrblk_lock);
703 /*
704 * final block may be < AES_BLOCK_SIZE, copy only nbytes
705 */
706 if (nbytes) {
707 memset(buf, 0, AES_BLOCK_SIZE);
708 memcpy(buf, walk.src.virt.addr, nbytes);
709 cpacf_kmctr(sctx->fc, sctx->key, buf, buf,
710 AES_BLOCK_SIZE, walk.iv);
711 memcpy(walk.dst.virt.addr, buf, nbytes);
712 crypto_inc(walk.iv, AES_BLOCK_SIZE);
713 ret = skcipher_walk_done(&walk, 0);
714 }
715
716 return ret;
717}
718
719static struct skcipher_alg ctr_aes_alg = {
720 .base.cra_name = "ctr(aes)",
721 .base.cra_driver_name = "ctr-aes-s390",
722 .base.cra_priority = 402, /* ecb-aes-s390 + 1 */
723 .base.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
724 .base.cra_blocksize = 1,
725 .base.cra_ctxsize = sizeof(struct s390_aes_ctx),
726 .base.cra_module = THIS_MODULE,
727 .init = fallback_init_skcipher,
728 .exit = fallback_exit_skcipher,
729 .min_keysize = AES_MIN_KEY_SIZE,
730 .max_keysize = AES_MAX_KEY_SIZE,
731 .ivsize = AES_BLOCK_SIZE,
732 .setkey = ctr_aes_set_key,
733 .encrypt = ctr_aes_crypt,
734 .decrypt = ctr_aes_crypt,
735 .chunksize = AES_BLOCK_SIZE,
736};
737
738static int gcm_aes_setkey(struct crypto_aead *tfm, const u8 *key,
739 unsigned int keylen)
740{
741 struct s390_aes_ctx *ctx = crypto_aead_ctx(tfm);
742
743 switch (keylen) {
744 case AES_KEYSIZE_128:
745 ctx->fc = CPACF_KMA_GCM_AES_128;
746 break;
747 case AES_KEYSIZE_192:
748 ctx->fc = CPACF_KMA_GCM_AES_192;
749 break;
750 case AES_KEYSIZE_256:
751 ctx->fc = CPACF_KMA_GCM_AES_256;
752 break;
753 default:
754 return -EINVAL;
755 }
756
757 memcpy(ctx->key, key, keylen);
758 ctx->key_len = keylen;
759 return 0;
760}
761
762static int gcm_aes_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
763{
764 switch (authsize) {
765 case 4:
766 case 8:
767 case 12:
768 case 13:
769 case 14:
770 case 15:
771 case 16:
772 break;
773 default:
774 return -EINVAL;
775 }
776
777 return 0;
778}
779
780static void gcm_walk_start(struct gcm_sg_walk *gw, struct scatterlist *sg,
781 unsigned int len)
782{
783 memset(gw, 0, sizeof(*gw));
784 gw->walk_bytes_remain = len;
785 scatterwalk_start(&gw->walk, sg);
786}
787
788static inline unsigned int _gcm_sg_clamp_and_map(struct gcm_sg_walk *gw)
789{
790 struct scatterlist *nextsg;
791
792 gw->walk_bytes = scatterwalk_clamp(&gw->walk, gw->walk_bytes_remain);
793 while (!gw->walk_bytes) {
794 nextsg = sg_next(gw->walk.sg);
795 if (!nextsg)
796 return 0;
797 scatterwalk_start(&gw->walk, nextsg);
798 gw->walk_bytes = scatterwalk_clamp(&gw->walk,
799 gw->walk_bytes_remain);
800 }
801 gw->walk_ptr = scatterwalk_map(&gw->walk);
802 return gw->walk_bytes;
803}
804
805static inline void _gcm_sg_unmap_and_advance(struct gcm_sg_walk *gw,
806 unsigned int nbytes)
807{
808 gw->walk_bytes_remain -= nbytes;
809 scatterwalk_unmap(gw->walk_ptr);
810 scatterwalk_advance(&gw->walk, nbytes);
811 scatterwalk_done(&gw->walk, 0, gw->walk_bytes_remain);
812 gw->walk_ptr = NULL;
813}
814
815static int gcm_in_walk_go(struct gcm_sg_walk *gw, unsigned int minbytesneeded)
816{
817 int n;
818
819 if (gw->buf_bytes && gw->buf_bytes >= minbytesneeded) {
820 gw->ptr = gw->buf;
821 gw->nbytes = gw->buf_bytes;
822 goto out;
823 }
824
825 if (gw->walk_bytes_remain == 0) {
826 gw->ptr = NULL;
827 gw->nbytes = 0;
828 goto out;
829 }
830
831 if (!_gcm_sg_clamp_and_map(gw)) {
832 gw->ptr = NULL;
833 gw->nbytes = 0;
834 goto out;
835 }
836
837 if (!gw->buf_bytes && gw->walk_bytes >= minbytesneeded) {
838 gw->ptr = gw->walk_ptr;
839 gw->nbytes = gw->walk_bytes;
840 goto out;
841 }
842
843 while (1) {
844 n = min(gw->walk_bytes, AES_BLOCK_SIZE - gw->buf_bytes);
845 memcpy(gw->buf + gw->buf_bytes, gw->walk_ptr, n);
846 gw->buf_bytes += n;
847 _gcm_sg_unmap_and_advance(gw, n);
848 if (gw->buf_bytes >= minbytesneeded) {
849 gw->ptr = gw->buf;
850 gw->nbytes = gw->buf_bytes;
851 goto out;
852 }
853 if (!_gcm_sg_clamp_and_map(gw)) {
854 gw->ptr = NULL;
855 gw->nbytes = 0;
856 goto out;
857 }
858 }
859
860out:
861 return gw->nbytes;
862}
863
864static int gcm_out_walk_go(struct gcm_sg_walk *gw, unsigned int minbytesneeded)
865{
866 if (gw->walk_bytes_remain == 0) {
867 gw->ptr = NULL;
868 gw->nbytes = 0;
869 goto out;
870 }
871
872 if (!_gcm_sg_clamp_and_map(gw)) {
873 gw->ptr = NULL;
874 gw->nbytes = 0;
875 goto out;
876 }
877
878 if (gw->walk_bytes >= minbytesneeded) {
879 gw->ptr = gw->walk_ptr;
880 gw->nbytes = gw->walk_bytes;
881 goto out;
882 }
883
884 scatterwalk_unmap(gw->walk_ptr);
885 gw->walk_ptr = NULL;
886
887 gw->ptr = gw->buf;
888 gw->nbytes = sizeof(gw->buf);
889
890out:
891 return gw->nbytes;
892}
893
894static int gcm_in_walk_done(struct gcm_sg_walk *gw, unsigned int bytesdone)
895{
896 if (gw->ptr == NULL)
897 return 0;
898
899 if (gw->ptr == gw->buf) {
900 int n = gw->buf_bytes - bytesdone;
901 if (n > 0) {
902 memmove(gw->buf, gw->buf + bytesdone, n);
903 gw->buf_bytes = n;
904 } else
905 gw->buf_bytes = 0;
906 } else
907 _gcm_sg_unmap_and_advance(gw, bytesdone);
908
909 return bytesdone;
910}
911
912static int gcm_out_walk_done(struct gcm_sg_walk *gw, unsigned int bytesdone)
913{
914 int i, n;
915
916 if (gw->ptr == NULL)
917 return 0;
918
919 if (gw->ptr == gw->buf) {
920 for (i = 0; i < bytesdone; i += n) {
921 if (!_gcm_sg_clamp_and_map(gw))
922 return i;
923 n = min(gw->walk_bytes, bytesdone - i);
924 memcpy(gw->walk_ptr, gw->buf + i, n);
925 _gcm_sg_unmap_and_advance(gw, n);
926 }
927 } else
928 _gcm_sg_unmap_and_advance(gw, bytesdone);
929
930 return bytesdone;
931}
932
933static int gcm_aes_crypt(struct aead_request *req, unsigned int flags)
934{
935 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
936 struct s390_aes_ctx *ctx = crypto_aead_ctx(tfm);
937 unsigned int ivsize = crypto_aead_ivsize(tfm);
938 unsigned int taglen = crypto_aead_authsize(tfm);
939 unsigned int aadlen = req->assoclen;
940 unsigned int pclen = req->cryptlen;
941 int ret = 0;
942
943 unsigned int n, len, in_bytes, out_bytes,
944 min_bytes, bytes, aad_bytes, pc_bytes;
945 struct gcm_sg_walk gw_in, gw_out;
946 u8 tag[GHASH_DIGEST_SIZE];
947
948 struct {
949 u32 _[3]; /* reserved */
950 u32 cv; /* Counter Value */
951 u8 t[GHASH_DIGEST_SIZE];/* Tag */
952 u8 h[AES_BLOCK_SIZE]; /* Hash-subkey */
953 u64 taadl; /* Total AAD Length */
954 u64 tpcl; /* Total Plain-/Cipher-text Length */
955 u8 j0[GHASH_BLOCK_SIZE];/* initial counter value */
956 u8 k[AES_MAX_KEY_SIZE]; /* Key */
957 } param;
958
959 /*
960 * encrypt
961 * req->src: aad||plaintext
962 * req->dst: aad||ciphertext||tag
963 * decrypt
964 * req->src: aad||ciphertext||tag
965 * req->dst: aad||plaintext, return 0 or -EBADMSG
966 * aad, plaintext and ciphertext may be empty.
967 */
968 if (flags & CPACF_DECRYPT)
969 pclen -= taglen;
970 len = aadlen + pclen;
971
972 memset(¶m, 0, sizeof(param));
973 param.cv = 1;
974 param.taadl = aadlen * 8;
975 param.tpcl = pclen * 8;
976 memcpy(param.j0, req->iv, ivsize);
977 *(u32 *)(param.j0 + ivsize) = 1;
978 memcpy(param.k, ctx->key, ctx->key_len);
979
980 gcm_walk_start(&gw_in, req->src, len);
981 gcm_walk_start(&gw_out, req->dst, len);
982
983 do {
984 min_bytes = min_t(unsigned int,
985 aadlen > 0 ? aadlen : pclen, AES_BLOCK_SIZE);
986 in_bytes = gcm_in_walk_go(&gw_in, min_bytes);
987 out_bytes = gcm_out_walk_go(&gw_out, min_bytes);
988 bytes = min(in_bytes, out_bytes);
989
990 if (aadlen + pclen <= bytes) {
991 aad_bytes = aadlen;
992 pc_bytes = pclen;
993 flags |= CPACF_KMA_LAAD | CPACF_KMA_LPC;
994 } else {
995 if (aadlen <= bytes) {
996 aad_bytes = aadlen;
997 pc_bytes = (bytes - aadlen) &
998 ~(AES_BLOCK_SIZE - 1);
999 flags |= CPACF_KMA_LAAD;
1000 } else {
1001 aad_bytes = bytes & ~(AES_BLOCK_SIZE - 1);
1002 pc_bytes = 0;
1003 }
1004 }
1005
1006 if (aad_bytes > 0)
1007 memcpy(gw_out.ptr, gw_in.ptr, aad_bytes);
1008
1009 cpacf_kma(ctx->fc | flags, ¶m,
1010 gw_out.ptr + aad_bytes,
1011 gw_in.ptr + aad_bytes, pc_bytes,
1012 gw_in.ptr, aad_bytes);
1013
1014 n = aad_bytes + pc_bytes;
1015 if (gcm_in_walk_done(&gw_in, n) != n)
1016 return -ENOMEM;
1017 if (gcm_out_walk_done(&gw_out, n) != n)
1018 return -ENOMEM;
1019 aadlen -= aad_bytes;
1020 pclen -= pc_bytes;
1021 } while (aadlen + pclen > 0);
1022
1023 if (flags & CPACF_DECRYPT) {
1024 scatterwalk_map_and_copy(tag, req->src, len, taglen, 0);
1025 if (crypto_memneq(tag, param.t, taglen))
1026 ret = -EBADMSG;
1027 } else
1028 scatterwalk_map_and_copy(param.t, req->dst, len, taglen, 1);
1029
1030 memzero_explicit(¶m, sizeof(param));
1031 return ret;
1032}
1033
1034static int gcm_aes_encrypt(struct aead_request *req)
1035{
1036 return gcm_aes_crypt(req, CPACF_ENCRYPT);
1037}
1038
1039static int gcm_aes_decrypt(struct aead_request *req)
1040{
1041 return gcm_aes_crypt(req, CPACF_DECRYPT);
1042}
1043
1044static struct aead_alg gcm_aes_aead = {
1045 .setkey = gcm_aes_setkey,
1046 .setauthsize = gcm_aes_setauthsize,
1047 .encrypt = gcm_aes_encrypt,
1048 .decrypt = gcm_aes_decrypt,
1049
1050 .ivsize = GHASH_BLOCK_SIZE - sizeof(u32),
1051 .maxauthsize = GHASH_DIGEST_SIZE,
1052 .chunksize = AES_BLOCK_SIZE,
1053
1054 .base = {
1055 .cra_blocksize = 1,
1056 .cra_ctxsize = sizeof(struct s390_aes_ctx),
1057 .cra_priority = 900,
1058 .cra_name = "gcm(aes)",
1059 .cra_driver_name = "gcm-aes-s390",
1060 .cra_module = THIS_MODULE,
1061 },
1062};
1063
1064static struct crypto_alg *aes_s390_alg;
1065static struct skcipher_alg *aes_s390_skcipher_algs[5];
1066static int aes_s390_skciphers_num;
1067static struct aead_alg *aes_s390_aead_alg;
1068
1069static int aes_s390_register_skcipher(struct skcipher_alg *alg)
1070{
1071 int ret;
1072
1073 ret = crypto_register_skcipher(alg);
1074 if (!ret)
1075 aes_s390_skcipher_algs[aes_s390_skciphers_num++] = alg;
1076 return ret;
1077}
1078
1079static void aes_s390_fini(void)
1080{
1081 if (aes_s390_alg)
1082 crypto_unregister_alg(aes_s390_alg);
1083 while (aes_s390_skciphers_num--)
1084 crypto_unregister_skcipher(aes_s390_skcipher_algs[aes_s390_skciphers_num]);
1085 if (ctrblk)
1086 free_page((unsigned long) ctrblk);
1087
1088 if (aes_s390_aead_alg)
1089 crypto_unregister_aead(aes_s390_aead_alg);
1090}
1091
1092static int __init aes_s390_init(void)
1093{
1094 int ret;
1095
1096 /* Query available functions for KM, KMC, KMCTR and KMA */
1097 cpacf_query(CPACF_KM, &km_functions);
1098 cpacf_query(CPACF_KMC, &kmc_functions);
1099 cpacf_query(CPACF_KMCTR, &kmctr_functions);
1100 cpacf_query(CPACF_KMA, &kma_functions);
1101
1102 if (cpacf_test_func(&km_functions, CPACF_KM_AES_128) ||
1103 cpacf_test_func(&km_functions, CPACF_KM_AES_192) ||
1104 cpacf_test_func(&km_functions, CPACF_KM_AES_256)) {
1105 ret = crypto_register_alg(&aes_alg);
1106 if (ret)
1107 goto out_err;
1108 aes_s390_alg = &aes_alg;
1109 ret = aes_s390_register_skcipher(&ecb_aes_alg);
1110 if (ret)
1111 goto out_err;
1112 }
1113
1114 if (cpacf_test_func(&kmc_functions, CPACF_KMC_AES_128) ||
1115 cpacf_test_func(&kmc_functions, CPACF_KMC_AES_192) ||
1116 cpacf_test_func(&kmc_functions, CPACF_KMC_AES_256)) {
1117 ret = aes_s390_register_skcipher(&cbc_aes_alg);
1118 if (ret)
1119 goto out_err;
1120 }
1121
1122 if (cpacf_test_func(&km_functions, CPACF_KM_XTS_128_FULL) ||
1123 cpacf_test_func(&km_functions, CPACF_KM_XTS_256_FULL)) {
1124 ret = aes_s390_register_skcipher(&fullxts_aes_alg);
1125 if (ret)
1126 goto out_err;
1127 }
1128
1129 if (cpacf_test_func(&km_functions, CPACF_KM_XTS_128) ||
1130 cpacf_test_func(&km_functions, CPACF_KM_XTS_256)) {
1131 ret = aes_s390_register_skcipher(&xts_aes_alg);
1132 if (ret)
1133 goto out_err;
1134 }
1135
1136 if (cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_128) ||
1137 cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_192) ||
1138 cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_256)) {
1139 ctrblk = (u8 *) __get_free_page(GFP_KERNEL);
1140 if (!ctrblk) {
1141 ret = -ENOMEM;
1142 goto out_err;
1143 }
1144 ret = aes_s390_register_skcipher(&ctr_aes_alg);
1145 if (ret)
1146 goto out_err;
1147 }
1148
1149 if (cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_128) ||
1150 cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_192) ||
1151 cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_256)) {
1152 ret = crypto_register_aead(&gcm_aes_aead);
1153 if (ret)
1154 goto out_err;
1155 aes_s390_aead_alg = &gcm_aes_aead;
1156 }
1157
1158 return 0;
1159out_err:
1160 aes_s390_fini();
1161 return ret;
1162}
1163
1164module_cpu_feature_match(S390_CPU_FEATURE_MSA, aes_s390_init);
1165module_exit(aes_s390_fini);
1166
1167MODULE_ALIAS_CRYPTO("aes-all");
1168
1169MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
1170MODULE_LICENSE("GPL");
1171MODULE_IMPORT_NS("CRYPTO_INTERNAL");
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Cryptographic API.
4 *
5 * s390 implementation of the AES Cipher Algorithm.
6 *
7 * s390 Version:
8 * Copyright IBM Corp. 2005, 2017
9 * Author(s): Jan Glauber (jang@de.ibm.com)
10 * Sebastian Siewior (sebastian@breakpoint.cc> SW-Fallback
11 * Patrick Steuer <patrick.steuer@de.ibm.com>
12 * Harald Freudenberger <freude@de.ibm.com>
13 *
14 * Derived from "crypto/aes_generic.c"
15 */
16
17#define KMSG_COMPONENT "aes_s390"
18#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
19
20#include <crypto/aes.h>
21#include <crypto/algapi.h>
22#include <crypto/ghash.h>
23#include <crypto/internal/aead.h>
24#include <crypto/internal/skcipher.h>
25#include <crypto/scatterwalk.h>
26#include <linux/err.h>
27#include <linux/module.h>
28#include <linux/cpufeature.h>
29#include <linux/init.h>
30#include <linux/mutex.h>
31#include <linux/fips.h>
32#include <linux/string.h>
33#include <crypto/xts.h>
34#include <asm/cpacf.h>
35
36static u8 *ctrblk;
37static DEFINE_MUTEX(ctrblk_lock);
38
39static cpacf_mask_t km_functions, kmc_functions, kmctr_functions,
40 kma_functions;
41
42struct s390_aes_ctx {
43 u8 key[AES_MAX_KEY_SIZE];
44 int key_len;
45 unsigned long fc;
46 union {
47 struct crypto_skcipher *skcipher;
48 struct crypto_cipher *cip;
49 } fallback;
50};
51
52struct s390_xts_ctx {
53 u8 key[32];
54 u8 pcc_key[32];
55 int key_len;
56 unsigned long fc;
57 struct crypto_skcipher *fallback;
58};
59
60struct gcm_sg_walk {
61 struct scatter_walk walk;
62 unsigned int walk_bytes;
63 u8 *walk_ptr;
64 unsigned int walk_bytes_remain;
65 u8 buf[AES_BLOCK_SIZE];
66 unsigned int buf_bytes;
67 u8 *ptr;
68 unsigned int nbytes;
69};
70
71static int setkey_fallback_cip(struct crypto_tfm *tfm, const u8 *in_key,
72 unsigned int key_len)
73{
74 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
75
76 sctx->fallback.cip->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
77 sctx->fallback.cip->base.crt_flags |= (tfm->crt_flags &
78 CRYPTO_TFM_REQ_MASK);
79
80 return crypto_cipher_setkey(sctx->fallback.cip, in_key, key_len);
81}
82
83static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
84 unsigned int key_len)
85{
86 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
87 unsigned long fc;
88
89 /* Pick the correct function code based on the key length */
90 fc = (key_len == 16) ? CPACF_KM_AES_128 :
91 (key_len == 24) ? CPACF_KM_AES_192 :
92 (key_len == 32) ? CPACF_KM_AES_256 : 0;
93
94 /* Check if the function code is available */
95 sctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
96 if (!sctx->fc)
97 return setkey_fallback_cip(tfm, in_key, key_len);
98
99 sctx->key_len = key_len;
100 memcpy(sctx->key, in_key, key_len);
101 return 0;
102}
103
104static void crypto_aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
105{
106 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
107
108 if (unlikely(!sctx->fc)) {
109 crypto_cipher_encrypt_one(sctx->fallback.cip, out, in);
110 return;
111 }
112 cpacf_km(sctx->fc, &sctx->key, out, in, AES_BLOCK_SIZE);
113}
114
115static void crypto_aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
116{
117 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
118
119 if (unlikely(!sctx->fc)) {
120 crypto_cipher_decrypt_one(sctx->fallback.cip, out, in);
121 return;
122 }
123 cpacf_km(sctx->fc | CPACF_DECRYPT,
124 &sctx->key, out, in, AES_BLOCK_SIZE);
125}
126
127static int fallback_init_cip(struct crypto_tfm *tfm)
128{
129 const char *name = tfm->__crt_alg->cra_name;
130 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
131
132 sctx->fallback.cip = crypto_alloc_cipher(name, 0,
133 CRYPTO_ALG_NEED_FALLBACK);
134
135 if (IS_ERR(sctx->fallback.cip)) {
136 pr_err("Allocating AES fallback algorithm %s failed\n",
137 name);
138 return PTR_ERR(sctx->fallback.cip);
139 }
140
141 return 0;
142}
143
144static void fallback_exit_cip(struct crypto_tfm *tfm)
145{
146 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
147
148 crypto_free_cipher(sctx->fallback.cip);
149 sctx->fallback.cip = NULL;
150}
151
152static struct crypto_alg aes_alg = {
153 .cra_name = "aes",
154 .cra_driver_name = "aes-s390",
155 .cra_priority = 300,
156 .cra_flags = CRYPTO_ALG_TYPE_CIPHER |
157 CRYPTO_ALG_NEED_FALLBACK,
158 .cra_blocksize = AES_BLOCK_SIZE,
159 .cra_ctxsize = sizeof(struct s390_aes_ctx),
160 .cra_module = THIS_MODULE,
161 .cra_init = fallback_init_cip,
162 .cra_exit = fallback_exit_cip,
163 .cra_u = {
164 .cipher = {
165 .cia_min_keysize = AES_MIN_KEY_SIZE,
166 .cia_max_keysize = AES_MAX_KEY_SIZE,
167 .cia_setkey = aes_set_key,
168 .cia_encrypt = crypto_aes_encrypt,
169 .cia_decrypt = crypto_aes_decrypt,
170 }
171 }
172};
173
174static int setkey_fallback_skcipher(struct crypto_skcipher *tfm, const u8 *key,
175 unsigned int len)
176{
177 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
178
179 crypto_skcipher_clear_flags(sctx->fallback.skcipher,
180 CRYPTO_TFM_REQ_MASK);
181 crypto_skcipher_set_flags(sctx->fallback.skcipher,
182 crypto_skcipher_get_flags(tfm) &
183 CRYPTO_TFM_REQ_MASK);
184 return crypto_skcipher_setkey(sctx->fallback.skcipher, key, len);
185}
186
187static int fallback_skcipher_crypt(struct s390_aes_ctx *sctx,
188 struct skcipher_request *req,
189 unsigned long modifier)
190{
191 struct skcipher_request *subreq = skcipher_request_ctx(req);
192
193 *subreq = *req;
194 skcipher_request_set_tfm(subreq, sctx->fallback.skcipher);
195 return (modifier & CPACF_DECRYPT) ?
196 crypto_skcipher_decrypt(subreq) :
197 crypto_skcipher_encrypt(subreq);
198}
199
200static int ecb_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
201 unsigned int key_len)
202{
203 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
204 unsigned long fc;
205
206 /* Pick the correct function code based on the key length */
207 fc = (key_len == 16) ? CPACF_KM_AES_128 :
208 (key_len == 24) ? CPACF_KM_AES_192 :
209 (key_len == 32) ? CPACF_KM_AES_256 : 0;
210
211 /* Check if the function code is available */
212 sctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
213 if (!sctx->fc)
214 return setkey_fallback_skcipher(tfm, in_key, key_len);
215
216 sctx->key_len = key_len;
217 memcpy(sctx->key, in_key, key_len);
218 return 0;
219}
220
221static int ecb_aes_crypt(struct skcipher_request *req, unsigned long modifier)
222{
223 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
224 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
225 struct skcipher_walk walk;
226 unsigned int nbytes, n;
227 int ret;
228
229 if (unlikely(!sctx->fc))
230 return fallback_skcipher_crypt(sctx, req, modifier);
231
232 ret = skcipher_walk_virt(&walk, req, false);
233 while ((nbytes = walk.nbytes) != 0) {
234 /* only use complete blocks */
235 n = nbytes & ~(AES_BLOCK_SIZE - 1);
236 cpacf_km(sctx->fc | modifier, sctx->key,
237 walk.dst.virt.addr, walk.src.virt.addr, n);
238 ret = skcipher_walk_done(&walk, nbytes - n);
239 }
240 return ret;
241}
242
243static int ecb_aes_encrypt(struct skcipher_request *req)
244{
245 return ecb_aes_crypt(req, 0);
246}
247
248static int ecb_aes_decrypt(struct skcipher_request *req)
249{
250 return ecb_aes_crypt(req, CPACF_DECRYPT);
251}
252
253static int fallback_init_skcipher(struct crypto_skcipher *tfm)
254{
255 const char *name = crypto_tfm_alg_name(&tfm->base);
256 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
257
258 sctx->fallback.skcipher = crypto_alloc_skcipher(name, 0,
259 CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC);
260
261 if (IS_ERR(sctx->fallback.skcipher)) {
262 pr_err("Allocating AES fallback algorithm %s failed\n",
263 name);
264 return PTR_ERR(sctx->fallback.skcipher);
265 }
266
267 crypto_skcipher_set_reqsize(tfm, sizeof(struct skcipher_request) +
268 crypto_skcipher_reqsize(sctx->fallback.skcipher));
269 return 0;
270}
271
272static void fallback_exit_skcipher(struct crypto_skcipher *tfm)
273{
274 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
275
276 crypto_free_skcipher(sctx->fallback.skcipher);
277}
278
279static struct skcipher_alg ecb_aes_alg = {
280 .base.cra_name = "ecb(aes)",
281 .base.cra_driver_name = "ecb-aes-s390",
282 .base.cra_priority = 401, /* combo: aes + ecb + 1 */
283 .base.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
284 .base.cra_blocksize = AES_BLOCK_SIZE,
285 .base.cra_ctxsize = sizeof(struct s390_aes_ctx),
286 .base.cra_module = THIS_MODULE,
287 .init = fallback_init_skcipher,
288 .exit = fallback_exit_skcipher,
289 .min_keysize = AES_MIN_KEY_SIZE,
290 .max_keysize = AES_MAX_KEY_SIZE,
291 .setkey = ecb_aes_set_key,
292 .encrypt = ecb_aes_encrypt,
293 .decrypt = ecb_aes_decrypt,
294};
295
296static int cbc_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
297 unsigned int key_len)
298{
299 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
300 unsigned long fc;
301
302 /* Pick the correct function code based on the key length */
303 fc = (key_len == 16) ? CPACF_KMC_AES_128 :
304 (key_len == 24) ? CPACF_KMC_AES_192 :
305 (key_len == 32) ? CPACF_KMC_AES_256 : 0;
306
307 /* Check if the function code is available */
308 sctx->fc = (fc && cpacf_test_func(&kmc_functions, fc)) ? fc : 0;
309 if (!sctx->fc)
310 return setkey_fallback_skcipher(tfm, in_key, key_len);
311
312 sctx->key_len = key_len;
313 memcpy(sctx->key, in_key, key_len);
314 return 0;
315}
316
317static int cbc_aes_crypt(struct skcipher_request *req, unsigned long modifier)
318{
319 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
320 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
321 struct skcipher_walk walk;
322 unsigned int nbytes, n;
323 int ret;
324 struct {
325 u8 iv[AES_BLOCK_SIZE];
326 u8 key[AES_MAX_KEY_SIZE];
327 } param;
328
329 if (unlikely(!sctx->fc))
330 return fallback_skcipher_crypt(sctx, req, modifier);
331
332 ret = skcipher_walk_virt(&walk, req, false);
333 if (ret)
334 return ret;
335 memcpy(param.iv, walk.iv, AES_BLOCK_SIZE);
336 memcpy(param.key, sctx->key, sctx->key_len);
337 while ((nbytes = walk.nbytes) != 0) {
338 /* only use complete blocks */
339 n = nbytes & ~(AES_BLOCK_SIZE - 1);
340 cpacf_kmc(sctx->fc | modifier, ¶m,
341 walk.dst.virt.addr, walk.src.virt.addr, n);
342 memcpy(walk.iv, param.iv, AES_BLOCK_SIZE);
343 ret = skcipher_walk_done(&walk, nbytes - n);
344 }
345 memzero_explicit(¶m, sizeof(param));
346 return ret;
347}
348
349static int cbc_aes_encrypt(struct skcipher_request *req)
350{
351 return cbc_aes_crypt(req, 0);
352}
353
354static int cbc_aes_decrypt(struct skcipher_request *req)
355{
356 return cbc_aes_crypt(req, CPACF_DECRYPT);
357}
358
359static struct skcipher_alg cbc_aes_alg = {
360 .base.cra_name = "cbc(aes)",
361 .base.cra_driver_name = "cbc-aes-s390",
362 .base.cra_priority = 402, /* ecb-aes-s390 + 1 */
363 .base.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
364 .base.cra_blocksize = AES_BLOCK_SIZE,
365 .base.cra_ctxsize = sizeof(struct s390_aes_ctx),
366 .base.cra_module = THIS_MODULE,
367 .init = fallback_init_skcipher,
368 .exit = fallback_exit_skcipher,
369 .min_keysize = AES_MIN_KEY_SIZE,
370 .max_keysize = AES_MAX_KEY_SIZE,
371 .ivsize = AES_BLOCK_SIZE,
372 .setkey = cbc_aes_set_key,
373 .encrypt = cbc_aes_encrypt,
374 .decrypt = cbc_aes_decrypt,
375};
376
377static int xts_fallback_setkey(struct crypto_skcipher *tfm, const u8 *key,
378 unsigned int len)
379{
380 struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
381
382 crypto_skcipher_clear_flags(xts_ctx->fallback, CRYPTO_TFM_REQ_MASK);
383 crypto_skcipher_set_flags(xts_ctx->fallback,
384 crypto_skcipher_get_flags(tfm) &
385 CRYPTO_TFM_REQ_MASK);
386 return crypto_skcipher_setkey(xts_ctx->fallback, key, len);
387}
388
389static int xts_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
390 unsigned int key_len)
391{
392 struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
393 unsigned long fc;
394 int err;
395
396 err = xts_fallback_setkey(tfm, in_key, key_len);
397 if (err)
398 return err;
399
400 /* In fips mode only 128 bit or 256 bit keys are valid */
401 if (fips_enabled && key_len != 32 && key_len != 64)
402 return -EINVAL;
403
404 /* Pick the correct function code based on the key length */
405 fc = (key_len == 32) ? CPACF_KM_XTS_128 :
406 (key_len == 64) ? CPACF_KM_XTS_256 : 0;
407
408 /* Check if the function code is available */
409 xts_ctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
410 if (!xts_ctx->fc)
411 return 0;
412
413 /* Split the XTS key into the two subkeys */
414 key_len = key_len / 2;
415 xts_ctx->key_len = key_len;
416 memcpy(xts_ctx->key, in_key, key_len);
417 memcpy(xts_ctx->pcc_key, in_key + key_len, key_len);
418 return 0;
419}
420
421static int xts_aes_crypt(struct skcipher_request *req, unsigned long modifier)
422{
423 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
424 struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
425 struct skcipher_walk walk;
426 unsigned int offset, nbytes, n;
427 int ret;
428 struct {
429 u8 key[32];
430 u8 tweak[16];
431 u8 block[16];
432 u8 bit[16];
433 u8 xts[16];
434 } pcc_param;
435 struct {
436 u8 key[32];
437 u8 init[16];
438 } xts_param;
439
440 if (req->cryptlen < AES_BLOCK_SIZE)
441 return -EINVAL;
442
443 if (unlikely(!xts_ctx->fc || (req->cryptlen % AES_BLOCK_SIZE) != 0)) {
444 struct skcipher_request *subreq = skcipher_request_ctx(req);
445
446 *subreq = *req;
447 skcipher_request_set_tfm(subreq, xts_ctx->fallback);
448 return (modifier & CPACF_DECRYPT) ?
449 crypto_skcipher_decrypt(subreq) :
450 crypto_skcipher_encrypt(subreq);
451 }
452
453 ret = skcipher_walk_virt(&walk, req, false);
454 if (ret)
455 return ret;
456 offset = xts_ctx->key_len & 0x10;
457 memset(pcc_param.block, 0, sizeof(pcc_param.block));
458 memset(pcc_param.bit, 0, sizeof(pcc_param.bit));
459 memset(pcc_param.xts, 0, sizeof(pcc_param.xts));
460 memcpy(pcc_param.tweak, walk.iv, sizeof(pcc_param.tweak));
461 memcpy(pcc_param.key + offset, xts_ctx->pcc_key, xts_ctx->key_len);
462 cpacf_pcc(xts_ctx->fc, pcc_param.key + offset);
463
464 memcpy(xts_param.key + offset, xts_ctx->key, xts_ctx->key_len);
465 memcpy(xts_param.init, pcc_param.xts, 16);
466
467 while ((nbytes = walk.nbytes) != 0) {
468 /* only use complete blocks */
469 n = nbytes & ~(AES_BLOCK_SIZE - 1);
470 cpacf_km(xts_ctx->fc | modifier, xts_param.key + offset,
471 walk.dst.virt.addr, walk.src.virt.addr, n);
472 ret = skcipher_walk_done(&walk, nbytes - n);
473 }
474 memzero_explicit(&pcc_param, sizeof(pcc_param));
475 memzero_explicit(&xts_param, sizeof(xts_param));
476 return ret;
477}
478
479static int xts_aes_encrypt(struct skcipher_request *req)
480{
481 return xts_aes_crypt(req, 0);
482}
483
484static int xts_aes_decrypt(struct skcipher_request *req)
485{
486 return xts_aes_crypt(req, CPACF_DECRYPT);
487}
488
489static int xts_fallback_init(struct crypto_skcipher *tfm)
490{
491 const char *name = crypto_tfm_alg_name(&tfm->base);
492 struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
493
494 xts_ctx->fallback = crypto_alloc_skcipher(name, 0,
495 CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC);
496
497 if (IS_ERR(xts_ctx->fallback)) {
498 pr_err("Allocating XTS fallback algorithm %s failed\n",
499 name);
500 return PTR_ERR(xts_ctx->fallback);
501 }
502 crypto_skcipher_set_reqsize(tfm, sizeof(struct skcipher_request) +
503 crypto_skcipher_reqsize(xts_ctx->fallback));
504 return 0;
505}
506
507static void xts_fallback_exit(struct crypto_skcipher *tfm)
508{
509 struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
510
511 crypto_free_skcipher(xts_ctx->fallback);
512}
513
514static struct skcipher_alg xts_aes_alg = {
515 .base.cra_name = "xts(aes)",
516 .base.cra_driver_name = "xts-aes-s390",
517 .base.cra_priority = 402, /* ecb-aes-s390 + 1 */
518 .base.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
519 .base.cra_blocksize = AES_BLOCK_SIZE,
520 .base.cra_ctxsize = sizeof(struct s390_xts_ctx),
521 .base.cra_module = THIS_MODULE,
522 .init = xts_fallback_init,
523 .exit = xts_fallback_exit,
524 .min_keysize = 2 * AES_MIN_KEY_SIZE,
525 .max_keysize = 2 * AES_MAX_KEY_SIZE,
526 .ivsize = AES_BLOCK_SIZE,
527 .setkey = xts_aes_set_key,
528 .encrypt = xts_aes_encrypt,
529 .decrypt = xts_aes_decrypt,
530};
531
532static int ctr_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
533 unsigned int key_len)
534{
535 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
536 unsigned long fc;
537
538 /* Pick the correct function code based on the key length */
539 fc = (key_len == 16) ? CPACF_KMCTR_AES_128 :
540 (key_len == 24) ? CPACF_KMCTR_AES_192 :
541 (key_len == 32) ? CPACF_KMCTR_AES_256 : 0;
542
543 /* Check if the function code is available */
544 sctx->fc = (fc && cpacf_test_func(&kmctr_functions, fc)) ? fc : 0;
545 if (!sctx->fc)
546 return setkey_fallback_skcipher(tfm, in_key, key_len);
547
548 sctx->key_len = key_len;
549 memcpy(sctx->key, in_key, key_len);
550 return 0;
551}
552
553static unsigned int __ctrblk_init(u8 *ctrptr, u8 *iv, unsigned int nbytes)
554{
555 unsigned int i, n;
556
557 /* only use complete blocks, max. PAGE_SIZE */
558 memcpy(ctrptr, iv, AES_BLOCK_SIZE);
559 n = (nbytes > PAGE_SIZE) ? PAGE_SIZE : nbytes & ~(AES_BLOCK_SIZE - 1);
560 for (i = (n / AES_BLOCK_SIZE) - 1; i > 0; i--) {
561 memcpy(ctrptr + AES_BLOCK_SIZE, ctrptr, AES_BLOCK_SIZE);
562 crypto_inc(ctrptr + AES_BLOCK_SIZE, AES_BLOCK_SIZE);
563 ctrptr += AES_BLOCK_SIZE;
564 }
565 return n;
566}
567
568static int ctr_aes_crypt(struct skcipher_request *req)
569{
570 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
571 struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
572 u8 buf[AES_BLOCK_SIZE], *ctrptr;
573 struct skcipher_walk walk;
574 unsigned int n, nbytes;
575 int ret, locked;
576
577 if (unlikely(!sctx->fc))
578 return fallback_skcipher_crypt(sctx, req, 0);
579
580 locked = mutex_trylock(&ctrblk_lock);
581
582 ret = skcipher_walk_virt(&walk, req, false);
583 while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
584 n = AES_BLOCK_SIZE;
585
586 if (nbytes >= 2*AES_BLOCK_SIZE && locked)
587 n = __ctrblk_init(ctrblk, walk.iv, nbytes);
588 ctrptr = (n > AES_BLOCK_SIZE) ? ctrblk : walk.iv;
589 cpacf_kmctr(sctx->fc, sctx->key, walk.dst.virt.addr,
590 walk.src.virt.addr, n, ctrptr);
591 if (ctrptr == ctrblk)
592 memcpy(walk.iv, ctrptr + n - AES_BLOCK_SIZE,
593 AES_BLOCK_SIZE);
594 crypto_inc(walk.iv, AES_BLOCK_SIZE);
595 ret = skcipher_walk_done(&walk, nbytes - n);
596 }
597 if (locked)
598 mutex_unlock(&ctrblk_lock);
599 /*
600 * final block may be < AES_BLOCK_SIZE, copy only nbytes
601 */
602 if (nbytes) {
603 cpacf_kmctr(sctx->fc, sctx->key, buf, walk.src.virt.addr,
604 AES_BLOCK_SIZE, walk.iv);
605 memcpy(walk.dst.virt.addr, buf, nbytes);
606 crypto_inc(walk.iv, AES_BLOCK_SIZE);
607 ret = skcipher_walk_done(&walk, 0);
608 }
609
610 return ret;
611}
612
613static struct skcipher_alg ctr_aes_alg = {
614 .base.cra_name = "ctr(aes)",
615 .base.cra_driver_name = "ctr-aes-s390",
616 .base.cra_priority = 402, /* ecb-aes-s390 + 1 */
617 .base.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
618 .base.cra_blocksize = 1,
619 .base.cra_ctxsize = sizeof(struct s390_aes_ctx),
620 .base.cra_module = THIS_MODULE,
621 .init = fallback_init_skcipher,
622 .exit = fallback_exit_skcipher,
623 .min_keysize = AES_MIN_KEY_SIZE,
624 .max_keysize = AES_MAX_KEY_SIZE,
625 .ivsize = AES_BLOCK_SIZE,
626 .setkey = ctr_aes_set_key,
627 .encrypt = ctr_aes_crypt,
628 .decrypt = ctr_aes_crypt,
629 .chunksize = AES_BLOCK_SIZE,
630};
631
632static int gcm_aes_setkey(struct crypto_aead *tfm, const u8 *key,
633 unsigned int keylen)
634{
635 struct s390_aes_ctx *ctx = crypto_aead_ctx(tfm);
636
637 switch (keylen) {
638 case AES_KEYSIZE_128:
639 ctx->fc = CPACF_KMA_GCM_AES_128;
640 break;
641 case AES_KEYSIZE_192:
642 ctx->fc = CPACF_KMA_GCM_AES_192;
643 break;
644 case AES_KEYSIZE_256:
645 ctx->fc = CPACF_KMA_GCM_AES_256;
646 break;
647 default:
648 return -EINVAL;
649 }
650
651 memcpy(ctx->key, key, keylen);
652 ctx->key_len = keylen;
653 return 0;
654}
655
656static int gcm_aes_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
657{
658 switch (authsize) {
659 case 4:
660 case 8:
661 case 12:
662 case 13:
663 case 14:
664 case 15:
665 case 16:
666 break;
667 default:
668 return -EINVAL;
669 }
670
671 return 0;
672}
673
674static void gcm_walk_start(struct gcm_sg_walk *gw, struct scatterlist *sg,
675 unsigned int len)
676{
677 memset(gw, 0, sizeof(*gw));
678 gw->walk_bytes_remain = len;
679 scatterwalk_start(&gw->walk, sg);
680}
681
682static inline unsigned int _gcm_sg_clamp_and_map(struct gcm_sg_walk *gw)
683{
684 struct scatterlist *nextsg;
685
686 gw->walk_bytes = scatterwalk_clamp(&gw->walk, gw->walk_bytes_remain);
687 while (!gw->walk_bytes) {
688 nextsg = sg_next(gw->walk.sg);
689 if (!nextsg)
690 return 0;
691 scatterwalk_start(&gw->walk, nextsg);
692 gw->walk_bytes = scatterwalk_clamp(&gw->walk,
693 gw->walk_bytes_remain);
694 }
695 gw->walk_ptr = scatterwalk_map(&gw->walk);
696 return gw->walk_bytes;
697}
698
699static inline void _gcm_sg_unmap_and_advance(struct gcm_sg_walk *gw,
700 unsigned int nbytes)
701{
702 gw->walk_bytes_remain -= nbytes;
703 scatterwalk_unmap(&gw->walk);
704 scatterwalk_advance(&gw->walk, nbytes);
705 scatterwalk_done(&gw->walk, 0, gw->walk_bytes_remain);
706 gw->walk_ptr = NULL;
707}
708
709static int gcm_in_walk_go(struct gcm_sg_walk *gw, unsigned int minbytesneeded)
710{
711 int n;
712
713 if (gw->buf_bytes && gw->buf_bytes >= minbytesneeded) {
714 gw->ptr = gw->buf;
715 gw->nbytes = gw->buf_bytes;
716 goto out;
717 }
718
719 if (gw->walk_bytes_remain == 0) {
720 gw->ptr = NULL;
721 gw->nbytes = 0;
722 goto out;
723 }
724
725 if (!_gcm_sg_clamp_and_map(gw)) {
726 gw->ptr = NULL;
727 gw->nbytes = 0;
728 goto out;
729 }
730
731 if (!gw->buf_bytes && gw->walk_bytes >= minbytesneeded) {
732 gw->ptr = gw->walk_ptr;
733 gw->nbytes = gw->walk_bytes;
734 goto out;
735 }
736
737 while (1) {
738 n = min(gw->walk_bytes, AES_BLOCK_SIZE - gw->buf_bytes);
739 memcpy(gw->buf + gw->buf_bytes, gw->walk_ptr, n);
740 gw->buf_bytes += n;
741 _gcm_sg_unmap_and_advance(gw, n);
742 if (gw->buf_bytes >= minbytesneeded) {
743 gw->ptr = gw->buf;
744 gw->nbytes = gw->buf_bytes;
745 goto out;
746 }
747 if (!_gcm_sg_clamp_and_map(gw)) {
748 gw->ptr = NULL;
749 gw->nbytes = 0;
750 goto out;
751 }
752 }
753
754out:
755 return gw->nbytes;
756}
757
758static int gcm_out_walk_go(struct gcm_sg_walk *gw, unsigned int minbytesneeded)
759{
760 if (gw->walk_bytes_remain == 0) {
761 gw->ptr = NULL;
762 gw->nbytes = 0;
763 goto out;
764 }
765
766 if (!_gcm_sg_clamp_and_map(gw)) {
767 gw->ptr = NULL;
768 gw->nbytes = 0;
769 goto out;
770 }
771
772 if (gw->walk_bytes >= minbytesneeded) {
773 gw->ptr = gw->walk_ptr;
774 gw->nbytes = gw->walk_bytes;
775 goto out;
776 }
777
778 scatterwalk_unmap(&gw->walk);
779 gw->walk_ptr = NULL;
780
781 gw->ptr = gw->buf;
782 gw->nbytes = sizeof(gw->buf);
783
784out:
785 return gw->nbytes;
786}
787
788static int gcm_in_walk_done(struct gcm_sg_walk *gw, unsigned int bytesdone)
789{
790 if (gw->ptr == NULL)
791 return 0;
792
793 if (gw->ptr == gw->buf) {
794 int n = gw->buf_bytes - bytesdone;
795 if (n > 0) {
796 memmove(gw->buf, gw->buf + bytesdone, n);
797 gw->buf_bytes = n;
798 } else
799 gw->buf_bytes = 0;
800 } else
801 _gcm_sg_unmap_and_advance(gw, bytesdone);
802
803 return bytesdone;
804}
805
806static int gcm_out_walk_done(struct gcm_sg_walk *gw, unsigned int bytesdone)
807{
808 int i, n;
809
810 if (gw->ptr == NULL)
811 return 0;
812
813 if (gw->ptr == gw->buf) {
814 for (i = 0; i < bytesdone; i += n) {
815 if (!_gcm_sg_clamp_and_map(gw))
816 return i;
817 n = min(gw->walk_bytes, bytesdone - i);
818 memcpy(gw->walk_ptr, gw->buf + i, n);
819 _gcm_sg_unmap_and_advance(gw, n);
820 }
821 } else
822 _gcm_sg_unmap_and_advance(gw, bytesdone);
823
824 return bytesdone;
825}
826
827static int gcm_aes_crypt(struct aead_request *req, unsigned int flags)
828{
829 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
830 struct s390_aes_ctx *ctx = crypto_aead_ctx(tfm);
831 unsigned int ivsize = crypto_aead_ivsize(tfm);
832 unsigned int taglen = crypto_aead_authsize(tfm);
833 unsigned int aadlen = req->assoclen;
834 unsigned int pclen = req->cryptlen;
835 int ret = 0;
836
837 unsigned int n, len, in_bytes, out_bytes,
838 min_bytes, bytes, aad_bytes, pc_bytes;
839 struct gcm_sg_walk gw_in, gw_out;
840 u8 tag[GHASH_DIGEST_SIZE];
841
842 struct {
843 u32 _[3]; /* reserved */
844 u32 cv; /* Counter Value */
845 u8 t[GHASH_DIGEST_SIZE];/* Tag */
846 u8 h[AES_BLOCK_SIZE]; /* Hash-subkey */
847 u64 taadl; /* Total AAD Length */
848 u64 tpcl; /* Total Plain-/Cipher-text Length */
849 u8 j0[GHASH_BLOCK_SIZE];/* initial counter value */
850 u8 k[AES_MAX_KEY_SIZE]; /* Key */
851 } param;
852
853 /*
854 * encrypt
855 * req->src: aad||plaintext
856 * req->dst: aad||ciphertext||tag
857 * decrypt
858 * req->src: aad||ciphertext||tag
859 * req->dst: aad||plaintext, return 0 or -EBADMSG
860 * aad, plaintext and ciphertext may be empty.
861 */
862 if (flags & CPACF_DECRYPT)
863 pclen -= taglen;
864 len = aadlen + pclen;
865
866 memset(¶m, 0, sizeof(param));
867 param.cv = 1;
868 param.taadl = aadlen * 8;
869 param.tpcl = pclen * 8;
870 memcpy(param.j0, req->iv, ivsize);
871 *(u32 *)(param.j0 + ivsize) = 1;
872 memcpy(param.k, ctx->key, ctx->key_len);
873
874 gcm_walk_start(&gw_in, req->src, len);
875 gcm_walk_start(&gw_out, req->dst, len);
876
877 do {
878 min_bytes = min_t(unsigned int,
879 aadlen > 0 ? aadlen : pclen, AES_BLOCK_SIZE);
880 in_bytes = gcm_in_walk_go(&gw_in, min_bytes);
881 out_bytes = gcm_out_walk_go(&gw_out, min_bytes);
882 bytes = min(in_bytes, out_bytes);
883
884 if (aadlen + pclen <= bytes) {
885 aad_bytes = aadlen;
886 pc_bytes = pclen;
887 flags |= CPACF_KMA_LAAD | CPACF_KMA_LPC;
888 } else {
889 if (aadlen <= bytes) {
890 aad_bytes = aadlen;
891 pc_bytes = (bytes - aadlen) &
892 ~(AES_BLOCK_SIZE - 1);
893 flags |= CPACF_KMA_LAAD;
894 } else {
895 aad_bytes = bytes & ~(AES_BLOCK_SIZE - 1);
896 pc_bytes = 0;
897 }
898 }
899
900 if (aad_bytes > 0)
901 memcpy(gw_out.ptr, gw_in.ptr, aad_bytes);
902
903 cpacf_kma(ctx->fc | flags, ¶m,
904 gw_out.ptr + aad_bytes,
905 gw_in.ptr + aad_bytes, pc_bytes,
906 gw_in.ptr, aad_bytes);
907
908 n = aad_bytes + pc_bytes;
909 if (gcm_in_walk_done(&gw_in, n) != n)
910 return -ENOMEM;
911 if (gcm_out_walk_done(&gw_out, n) != n)
912 return -ENOMEM;
913 aadlen -= aad_bytes;
914 pclen -= pc_bytes;
915 } while (aadlen + pclen > 0);
916
917 if (flags & CPACF_DECRYPT) {
918 scatterwalk_map_and_copy(tag, req->src, len, taglen, 0);
919 if (crypto_memneq(tag, param.t, taglen))
920 ret = -EBADMSG;
921 } else
922 scatterwalk_map_and_copy(param.t, req->dst, len, taglen, 1);
923
924 memzero_explicit(¶m, sizeof(param));
925 return ret;
926}
927
928static int gcm_aes_encrypt(struct aead_request *req)
929{
930 return gcm_aes_crypt(req, CPACF_ENCRYPT);
931}
932
933static int gcm_aes_decrypt(struct aead_request *req)
934{
935 return gcm_aes_crypt(req, CPACF_DECRYPT);
936}
937
938static struct aead_alg gcm_aes_aead = {
939 .setkey = gcm_aes_setkey,
940 .setauthsize = gcm_aes_setauthsize,
941 .encrypt = gcm_aes_encrypt,
942 .decrypt = gcm_aes_decrypt,
943
944 .ivsize = GHASH_BLOCK_SIZE - sizeof(u32),
945 .maxauthsize = GHASH_DIGEST_SIZE,
946 .chunksize = AES_BLOCK_SIZE,
947
948 .base = {
949 .cra_blocksize = 1,
950 .cra_ctxsize = sizeof(struct s390_aes_ctx),
951 .cra_priority = 900,
952 .cra_name = "gcm(aes)",
953 .cra_driver_name = "gcm-aes-s390",
954 .cra_module = THIS_MODULE,
955 },
956};
957
958static struct crypto_alg *aes_s390_alg;
959static struct skcipher_alg *aes_s390_skcipher_algs[4];
960static int aes_s390_skciphers_num;
961static struct aead_alg *aes_s390_aead_alg;
962
963static int aes_s390_register_skcipher(struct skcipher_alg *alg)
964{
965 int ret;
966
967 ret = crypto_register_skcipher(alg);
968 if (!ret)
969 aes_s390_skcipher_algs[aes_s390_skciphers_num++] = alg;
970 return ret;
971}
972
973static void aes_s390_fini(void)
974{
975 if (aes_s390_alg)
976 crypto_unregister_alg(aes_s390_alg);
977 while (aes_s390_skciphers_num--)
978 crypto_unregister_skcipher(aes_s390_skcipher_algs[aes_s390_skciphers_num]);
979 if (ctrblk)
980 free_page((unsigned long) ctrblk);
981
982 if (aes_s390_aead_alg)
983 crypto_unregister_aead(aes_s390_aead_alg);
984}
985
986static int __init aes_s390_init(void)
987{
988 int ret;
989
990 /* Query available functions for KM, KMC, KMCTR and KMA */
991 cpacf_query(CPACF_KM, &km_functions);
992 cpacf_query(CPACF_KMC, &kmc_functions);
993 cpacf_query(CPACF_KMCTR, &kmctr_functions);
994 cpacf_query(CPACF_KMA, &kma_functions);
995
996 if (cpacf_test_func(&km_functions, CPACF_KM_AES_128) ||
997 cpacf_test_func(&km_functions, CPACF_KM_AES_192) ||
998 cpacf_test_func(&km_functions, CPACF_KM_AES_256)) {
999 ret = crypto_register_alg(&aes_alg);
1000 if (ret)
1001 goto out_err;
1002 aes_s390_alg = &aes_alg;
1003 ret = aes_s390_register_skcipher(&ecb_aes_alg);
1004 if (ret)
1005 goto out_err;
1006 }
1007
1008 if (cpacf_test_func(&kmc_functions, CPACF_KMC_AES_128) ||
1009 cpacf_test_func(&kmc_functions, CPACF_KMC_AES_192) ||
1010 cpacf_test_func(&kmc_functions, CPACF_KMC_AES_256)) {
1011 ret = aes_s390_register_skcipher(&cbc_aes_alg);
1012 if (ret)
1013 goto out_err;
1014 }
1015
1016 if (cpacf_test_func(&km_functions, CPACF_KM_XTS_128) ||
1017 cpacf_test_func(&km_functions, CPACF_KM_XTS_256)) {
1018 ret = aes_s390_register_skcipher(&xts_aes_alg);
1019 if (ret)
1020 goto out_err;
1021 }
1022
1023 if (cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_128) ||
1024 cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_192) ||
1025 cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_256)) {
1026 ctrblk = (u8 *) __get_free_page(GFP_KERNEL);
1027 if (!ctrblk) {
1028 ret = -ENOMEM;
1029 goto out_err;
1030 }
1031 ret = aes_s390_register_skcipher(&ctr_aes_alg);
1032 if (ret)
1033 goto out_err;
1034 }
1035
1036 if (cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_128) ||
1037 cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_192) ||
1038 cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_256)) {
1039 ret = crypto_register_aead(&gcm_aes_aead);
1040 if (ret)
1041 goto out_err;
1042 aes_s390_aead_alg = &gcm_aes_aead;
1043 }
1044
1045 return 0;
1046out_err:
1047 aes_s390_fini();
1048 return ret;
1049}
1050
1051module_cpu_feature_match(MSA, aes_s390_init);
1052module_exit(aes_s390_fini);
1053
1054MODULE_ALIAS_CRYPTO("aes-all");
1055
1056MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
1057MODULE_LICENSE("GPL");