Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.9.
  1// SPDX-License-Identifier: GPL-2.0
  2
  3// Copyright (C) 2024 Google LLC.
  4
  5//! A wrapper around `Arc` for linked lists.
  6
  7use crate::alloc::{AllocError, Flags};
  8use crate::prelude::*;
  9use crate::sync::{Arc, ArcBorrow, UniqueArc};
 10use core::marker::{PhantomPinned, Unsize};
 11use core::ops::Deref;
 12use core::pin::Pin;
 13use core::sync::atomic::{AtomicBool, Ordering};
 14
 15/// Declares that this type has some way to ensure that there is exactly one `ListArc` instance for
 16/// this id.
 17///
 18/// Types that implement this trait should include some kind of logic for keeping track of whether
 19/// a [`ListArc`] exists or not. We refer to this logic as "the tracking inside `T`".
 20///
 21/// We allow the case where the tracking inside `T` thinks that a [`ListArc`] exists, but actually,
 22/// there isn't a [`ListArc`]. However, we do not allow the opposite situation where a [`ListArc`]
 23/// exists, but the tracking thinks it doesn't. This is because the former can at most result in us
 24/// failing to create a [`ListArc`] when the operation could succeed, whereas the latter can result
 25/// in the creation of two [`ListArc`] references. Only the latter situation can lead to memory
 26/// safety issues.
 27///
 28/// A consequence of the above is that you may implement the tracking inside `T` by not actually
 29/// keeping track of anything. To do this, you always claim that a [`ListArc`] exists, even if
 30/// there isn't one. This implementation is allowed by the above rule, but it means that
 31/// [`ListArc`] references can only be created if you have ownership of *all* references to the
 32/// refcounted object, as you otherwise have no way of knowing whether a [`ListArc`] exists.
 33pub trait ListArcSafe<const ID: u64 = 0> {
 34    /// Informs the tracking inside this type that it now has a [`ListArc`] reference.
 35    ///
 36    /// This method may be called even if the tracking inside this type thinks that a `ListArc`
 37    /// reference exists. (But only if that's not actually the case.)
 38    ///
 39    /// # Safety
 40    ///
 41    /// Must not be called if a [`ListArc`] already exist for this value.
 42    unsafe fn on_create_list_arc_from_unique(self: Pin<&mut Self>);
 43
 44    /// Informs the tracking inside this type that there is no [`ListArc`] reference anymore.
 45    ///
 46    /// # Safety
 47    ///
 48    /// Must only be called if there is no [`ListArc`] reference, but the tracking thinks there is.
 49    unsafe fn on_drop_list_arc(&self);
 50}
 51
 52/// Declares that this type is able to safely attempt to create `ListArc`s at any time.
 53///
 54/// # Safety
 55///
 56/// The guarantees of `try_new_list_arc` must be upheld.
 57pub unsafe trait TryNewListArc<const ID: u64 = 0>: ListArcSafe<ID> {
 58    /// Attempts to convert an `Arc<Self>` into an `ListArc<Self>`. Returns `true` if the
 59    /// conversion was successful.
 60    ///
 61    /// This method should not be called directly. Use [`ListArc::try_from_arc`] instead.
 62    ///
 63    /// # Guarantees
 64    ///
 65    /// If this call returns `true`, then there is no [`ListArc`] pointing to this value.
 66    /// Additionally, this call will have transitioned the tracking inside `Self` from not thinking
 67    /// that a [`ListArc`] exists, to thinking that a [`ListArc`] exists.
 68    fn try_new_list_arc(&self) -> bool;
 69}
 70
 71/// Declares that this type supports [`ListArc`].
 72///
 73/// This macro supports a few different strategies for implementing the tracking inside the type:
 74///
 75/// * The `untracked` strategy does not actually keep track of whether a [`ListArc`] exists. When
 76///   using this strategy, the only way to create a [`ListArc`] is using a [`UniqueArc`].
 77/// * The `tracked_by` strategy defers the tracking to a field of the struct. The user much specify
 78///   which field to defer the tracking to. The field must implement [`ListArcSafe`]. If the field
 79///   implements [`TryNewListArc`], then the type will also implement [`TryNewListArc`].
 80///
 81/// The `tracked_by` strategy is usually used by deferring to a field of type
 82/// [`AtomicTracker`]. However, it is also possible to defer the tracking to another struct
 83/// using also using this macro.
 84#[macro_export]
 85macro_rules! impl_list_arc_safe {
 86    (impl$({$($generics:tt)*})? ListArcSafe<$num:tt> for $t:ty { untracked; } $($rest:tt)*) => {
 87        impl$(<$($generics)*>)? $crate::list::ListArcSafe<$num> for $t {
 88            unsafe fn on_create_list_arc_from_unique(self: ::core::pin::Pin<&mut Self>) {}
 89            unsafe fn on_drop_list_arc(&self) {}
 90        }
 91        $crate::list::impl_list_arc_safe! { $($rest)* }
 92    };
 93
 94    (impl$({$($generics:tt)*})? ListArcSafe<$num:tt> for $t:ty {
 95        tracked_by $field:ident : $fty:ty;
 96    } $($rest:tt)*) => {
 97        impl$(<$($generics)*>)? $crate::list::ListArcSafe<$num> for $t {
 98            unsafe fn on_create_list_arc_from_unique(self: ::core::pin::Pin<&mut Self>) {
 99                $crate::assert_pinned!($t, $field, $fty, inline);
100
101                // SAFETY: This field is structurally pinned as per the above assertion.
102                let field = unsafe {
103                    ::core::pin::Pin::map_unchecked_mut(self, |me| &mut me.$field)
104                };
105                // SAFETY: The caller promises that there is no `ListArc`.
106                unsafe {
107                    <$fty as $crate::list::ListArcSafe<$num>>::on_create_list_arc_from_unique(field)
108                };
109            }
110            unsafe fn on_drop_list_arc(&self) {
111                // SAFETY: The caller promises that there is no `ListArc` reference, and also
112                // promises that the tracking thinks there is a `ListArc` reference.
113                unsafe { <$fty as $crate::list::ListArcSafe<$num>>::on_drop_list_arc(&self.$field) };
114            }
115        }
116        unsafe impl$(<$($generics)*>)? $crate::list::TryNewListArc<$num> for $t
117        where
118            $fty: TryNewListArc<$num>,
119        {
120            fn try_new_list_arc(&self) -> bool {
121                <$fty as $crate::list::TryNewListArc<$num>>::try_new_list_arc(&self.$field)
122            }
123        }
124        $crate::list::impl_list_arc_safe! { $($rest)* }
125    };
126
127    () => {};
128}
129pub use impl_list_arc_safe;
130
131/// A wrapper around [`Arc`] that's guaranteed unique for the given id.
132///
133/// The `ListArc` type can be thought of as a special reference to a refcounted object that owns the
134/// permission to manipulate the `next`/`prev` pointers stored in the refcounted object. By ensuring
135/// that each object has only one `ListArc` reference, the owner of that reference is assured
136/// exclusive access to the `next`/`prev` pointers. When a `ListArc` is inserted into a [`List`],
137/// the [`List`] takes ownership of the `ListArc` reference.
138///
139/// There are various strategies to ensuring that a value has only one `ListArc` reference. The
140/// simplest is to convert a [`UniqueArc`] into a `ListArc`. However, the refcounted object could
141/// also keep track of whether a `ListArc` exists using a boolean, which could allow for the
142/// creation of new `ListArc` references from an [`Arc`] reference. Whatever strategy is used, the
143/// relevant tracking is referred to as "the tracking inside `T`", and the [`ListArcSafe`] trait
144/// (and its subtraits) are used to update the tracking when a `ListArc` is created or destroyed.
145///
146/// Note that we allow the case where the tracking inside `T` thinks that a `ListArc` exists, but
147/// actually, there isn't a `ListArc`. However, we do not allow the opposite situation where a
148/// `ListArc` exists, but the tracking thinks it doesn't. This is because the former can at most
149/// result in us failing to create a `ListArc` when the operation could succeed, whereas the latter
150/// can result in the creation of two `ListArc` references.
151///
152/// While this `ListArc` is unique for the given id, there still might exist normal `Arc`
153/// references to the object.
154///
155/// # Invariants
156///
157/// * Each reference counted object has at most one `ListArc` for each value of `ID`.
158/// * The tracking inside `T` is aware that a `ListArc` reference exists.
159///
160/// [`List`]: crate::list::List
161#[repr(transparent)]
162pub struct ListArc<T, const ID: u64 = 0>
163where
164    T: ListArcSafe<ID> + ?Sized,
165{
166    arc: Arc<T>,
167}
168
169impl<T: ListArcSafe<ID>, const ID: u64> ListArc<T, ID> {
170    /// Constructs a new reference counted instance of `T`.
171    #[inline]
172    pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> {
173        Ok(Self::from(UniqueArc::new(contents, flags)?))
174    }
175
176    /// Use the given initializer to in-place initialize a `T`.
177    ///
178    /// If `T: !Unpin` it will not be able to move afterwards.
179    // We don't implement `InPlaceInit` because `ListArc` is implicitly pinned. This is similar to
180    // what we do for `Arc`.
181    #[inline]
182    pub fn pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self, E>
183    where
184        E: From<AllocError>,
185    {
186        Ok(Self::from(UniqueArc::try_pin_init(init, flags)?))
187    }
188
189    /// Use the given initializer to in-place initialize a `T`.
190    ///
191    /// This is equivalent to [`ListArc<T>::pin_init`], since a [`ListArc`] is always pinned.
192    #[inline]
193    pub fn init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
194    where
195        E: From<AllocError>,
196    {
197        Ok(Self::from(UniqueArc::try_init(init, flags)?))
198    }
199}
200
201impl<T, const ID: u64> From<UniqueArc<T>> for ListArc<T, ID>
202where
203    T: ListArcSafe<ID> + ?Sized,
204{
205    /// Convert a [`UniqueArc`] into a [`ListArc`].
206    #[inline]
207    fn from(unique: UniqueArc<T>) -> Self {
208        Self::from(Pin::from(unique))
209    }
210}
211
212impl<T, const ID: u64> From<Pin<UniqueArc<T>>> for ListArc<T, ID>
213where
214    T: ListArcSafe<ID> + ?Sized,
215{
216    /// Convert a pinned [`UniqueArc`] into a [`ListArc`].
217    #[inline]
218    fn from(mut unique: Pin<UniqueArc<T>>) -> Self {
219        // SAFETY: We have a `UniqueArc`, so there is no `ListArc`.
220        unsafe { T::on_create_list_arc_from_unique(unique.as_mut()) };
221        let arc = Arc::from(unique);
222        // SAFETY: We just called `on_create_list_arc_from_unique` on an arc without a `ListArc`,
223        // so we can create a `ListArc`.
224        unsafe { Self::transmute_from_arc(arc) }
225    }
226}
227
228impl<T, const ID: u64> ListArc<T, ID>
229where
230    T: ListArcSafe<ID> + ?Sized,
231{
232    /// Creates two `ListArc`s from a [`UniqueArc`].
233    ///
234    /// The two ids must be different.
235    #[inline]
236    pub fn pair_from_unique<const ID2: u64>(unique: UniqueArc<T>) -> (Self, ListArc<T, ID2>)
237    where
238        T: ListArcSafe<ID2>,
239    {
240        Self::pair_from_pin_unique(Pin::from(unique))
241    }
242
243    /// Creates two `ListArc`s from a pinned [`UniqueArc`].
244    ///
245    /// The two ids must be different.
246    #[inline]
247    pub fn pair_from_pin_unique<const ID2: u64>(
248        mut unique: Pin<UniqueArc<T>>,
249    ) -> (Self, ListArc<T, ID2>)
250    where
251        T: ListArcSafe<ID2>,
252    {
253        build_assert!(ID != ID2);
254
255        // SAFETY: We have a `UniqueArc`, so there is no `ListArc`.
256        unsafe { <T as ListArcSafe<ID>>::on_create_list_arc_from_unique(unique.as_mut()) };
257        // SAFETY: We have a `UniqueArc`, so there is no `ListArc`.
258        unsafe { <T as ListArcSafe<ID2>>::on_create_list_arc_from_unique(unique.as_mut()) };
259
260        let arc1 = Arc::from(unique);
261        let arc2 = Arc::clone(&arc1);
262
263        // SAFETY: We just called `on_create_list_arc_from_unique` on an arc without a `ListArc`
264        // for both IDs (which are different), so we can create two `ListArc`s.
265        unsafe {
266            (
267                Self::transmute_from_arc(arc1),
268                ListArc::transmute_from_arc(arc2),
269            )
270        }
271    }
272
273    /// Try to create a new `ListArc`.
274    ///
275    /// This fails if this value already has a `ListArc`.
276    pub fn try_from_arc(arc: Arc<T>) -> Result<Self, Arc<T>>
277    where
278        T: TryNewListArc<ID>,
279    {
280        if arc.try_new_list_arc() {
281            // SAFETY: The `try_new_list_arc` method returned true, so we made the tracking think
282            // that a `ListArc` exists. This lets us create a `ListArc`.
283            Ok(unsafe { Self::transmute_from_arc(arc) })
284        } else {
285            Err(arc)
286        }
287    }
288
289    /// Try to create a new `ListArc`.
290    ///
291    /// This fails if this value already has a `ListArc`.
292    pub fn try_from_arc_borrow(arc: ArcBorrow<'_, T>) -> Option<Self>
293    where
294        T: TryNewListArc<ID>,
295    {
296        if arc.try_new_list_arc() {
297            // SAFETY: The `try_new_list_arc` method returned true, so we made the tracking think
298            // that a `ListArc` exists. This lets us create a `ListArc`.
299            Some(unsafe { Self::transmute_from_arc(Arc::from(arc)) })
300        } else {
301            None
302        }
303    }
304
305    /// Try to create a new `ListArc`.
306    ///
307    /// If it's not possible to create a new `ListArc`, then the `Arc` is dropped. This will never
308    /// run the destructor of the value.
309    pub fn try_from_arc_or_drop(arc: Arc<T>) -> Option<Self>
310    where
311        T: TryNewListArc<ID>,
312    {
313        match Self::try_from_arc(arc) {
314            Ok(list_arc) => Some(list_arc),
315            Err(arc) => Arc::into_unique_or_drop(arc).map(Self::from),
316        }
317    }
318
319    /// Transmutes an [`Arc`] into a `ListArc` without updating the tracking inside `T`.
320    ///
321    /// # Safety
322    ///
323    /// * The value must not already have a `ListArc` reference.
324    /// * The tracking inside `T` must think that there is a `ListArc` reference.
325    #[inline]
326    unsafe fn transmute_from_arc(arc: Arc<T>) -> Self {
327        // INVARIANT: By the safety requirements, the invariants on `ListArc` are satisfied.
328        Self { arc }
329    }
330
331    /// Transmutes a `ListArc` into an [`Arc`] without updating the tracking inside `T`.
332    ///
333    /// After this call, the tracking inside `T` will still think that there is a `ListArc`
334    /// reference.
335    #[inline]
336    fn transmute_to_arc(self) -> Arc<T> {
337        // Use a transmute to skip destructor.
338        //
339        // SAFETY: ListArc is repr(transparent).
340        unsafe { core::mem::transmute(self) }
341    }
342
343    /// Convert ownership of this `ListArc` into a raw pointer.
344    ///
345    /// The returned pointer is indistinguishable from pointers returned by [`Arc::into_raw`]. The
346    /// tracking inside `T` will still think that a `ListArc` exists after this call.
347    #[inline]
348    pub fn into_raw(self) -> *const T {
349        Arc::into_raw(Self::transmute_to_arc(self))
350    }
351
352    /// Take ownership of the `ListArc` from a raw pointer.
353    ///
354    /// # Safety
355    ///
356    /// * `ptr` must satisfy the safety requirements of [`Arc::from_raw`].
357    /// * The value must not already have a `ListArc` reference.
358    /// * The tracking inside `T` must think that there is a `ListArc` reference.
359    #[inline]
360    pub unsafe fn from_raw(ptr: *const T) -> Self {
361        // SAFETY: The pointer satisfies the safety requirements for `Arc::from_raw`.
362        let arc = unsafe { Arc::from_raw(ptr) };
363        // SAFETY: The value doesn't already have a `ListArc` reference, but the tracking thinks it
364        // does.
365        unsafe { Self::transmute_from_arc(arc) }
366    }
367
368    /// Converts the `ListArc` into an [`Arc`].
369    #[inline]
370    pub fn into_arc(self) -> Arc<T> {
371        let arc = Self::transmute_to_arc(self);
372        // SAFETY: There is no longer a `ListArc`, but the tracking thinks there is.
373        unsafe { T::on_drop_list_arc(&arc) };
374        arc
375    }
376
377    /// Clone a `ListArc` into an [`Arc`].
378    #[inline]
379    pub fn clone_arc(&self) -> Arc<T> {
380        self.arc.clone()
381    }
382
383    /// Returns a reference to an [`Arc`] from the given [`ListArc`].
384    ///
385    /// This is useful when the argument of a function call is an [`&Arc`] (e.g., in a method
386    /// receiver), but we have a [`ListArc`] instead.
387    ///
388    /// [`&Arc`]: Arc
389    #[inline]
390    pub fn as_arc(&self) -> &Arc<T> {
391        &self.arc
392    }
393
394    /// Returns an [`ArcBorrow`] from the given [`ListArc`].
395    ///
396    /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method
397    /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised.
398    #[inline]
399    pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> {
400        self.arc.as_arc_borrow()
401    }
402
403    /// Compare whether two [`ListArc`] pointers reference the same underlying object.
404    #[inline]
405    pub fn ptr_eq(this: &Self, other: &Self) -> bool {
406        Arc::ptr_eq(&this.arc, &other.arc)
407    }
408}
409
410impl<T, const ID: u64> Deref for ListArc<T, ID>
411where
412    T: ListArcSafe<ID> + ?Sized,
413{
414    type Target = T;
415
416    #[inline]
417    fn deref(&self) -> &Self::Target {
418        self.arc.deref()
419    }
420}
421
422impl<T, const ID: u64> Drop for ListArc<T, ID>
423where
424    T: ListArcSafe<ID> + ?Sized,
425{
426    #[inline]
427    fn drop(&mut self) {
428        // SAFETY: There is no longer a `ListArc`, but the tracking thinks there is by the type
429        // invariants on `Self`.
430        unsafe { T::on_drop_list_arc(&self.arc) };
431    }
432}
433
434impl<T, const ID: u64> AsRef<Arc<T>> for ListArc<T, ID>
435where
436    T: ListArcSafe<ID> + ?Sized,
437{
438    #[inline]
439    fn as_ref(&self) -> &Arc<T> {
440        self.as_arc()
441    }
442}
443
444// This is to allow coercion from `ListArc<T>` to `ListArc<U>` if `T` can be converted to the
445// dynamically-sized type (DST) `U`.
446impl<T, U, const ID: u64> core::ops::CoerceUnsized<ListArc<U, ID>> for ListArc<T, ID>
447where
448    T: ListArcSafe<ID> + Unsize<U> + ?Sized,
449    U: ListArcSafe<ID> + ?Sized,
450{
451}
452
453// This is to allow `ListArc<U>` to be dispatched on when `ListArc<T>` can be coerced into
454// `ListArc<U>`.
455impl<T, U, const ID: u64> core::ops::DispatchFromDyn<ListArc<U, ID>> for ListArc<T, ID>
456where
457    T: ListArcSafe<ID> + Unsize<U> + ?Sized,
458    U: ListArcSafe<ID> + ?Sized,
459{
460}
461
462/// A utility for tracking whether a [`ListArc`] exists using an atomic.
463///
464/// # Invariant
465///
466/// If the boolean is `false`, then there is no [`ListArc`] for this value.
467#[repr(transparent)]
468pub struct AtomicTracker<const ID: u64 = 0> {
469    inner: AtomicBool,
470    // This value needs to be pinned to justify the INVARIANT: comment in `AtomicTracker::new`.
471    _pin: PhantomPinned,
472}
473
474impl<const ID: u64> AtomicTracker<ID> {
475    /// Creates a new initializer for this type.
476    pub fn new() -> impl PinInit<Self> {
477        // INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will
478        // not be constructed in an `Arc` that already has a `ListArc`.
479        Self {
480            inner: AtomicBool::new(false),
481            _pin: PhantomPinned,
482        }
483    }
484
485    fn project_inner(self: Pin<&mut Self>) -> &mut AtomicBool {
486        // SAFETY: The `inner` field is not structurally pinned, so we may obtain a mutable
487        // reference to it even if we only have a pinned reference to `self`.
488        unsafe { &mut Pin::into_inner_unchecked(self).inner }
489    }
490}
491
492impl<const ID: u64> ListArcSafe<ID> for AtomicTracker<ID> {
493    unsafe fn on_create_list_arc_from_unique(self: Pin<&mut Self>) {
494        // INVARIANT: We just created a ListArc, so the boolean should be true.
495        *self.project_inner().get_mut() = true;
496    }
497
498    unsafe fn on_drop_list_arc(&self) {
499        // INVARIANT: We just dropped a ListArc, so the boolean should be false.
500        self.inner.store(false, Ordering::Release);
501    }
502}
503
504// SAFETY: If this method returns `true`, then by the type invariant there is no `ListArc` before
505// this call, so it is okay to create a new `ListArc`.
506//
507// The acquire ordering will synchronize with the release store from the destruction of any
508// previous `ListArc`, so if there was a previous `ListArc`, then the destruction of the previous
509// `ListArc` happens-before the creation of the new `ListArc`.
510unsafe impl<const ID: u64> TryNewListArc<ID> for AtomicTracker<ID> {
511    fn try_new_list_arc(&self) -> bool {
512        // INVARIANT: If this method returns true, then the boolean used to be false, and is no
513        // longer false, so it is okay for the caller to create a new [`ListArc`].
514        self.inner
515            .compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed)
516            .is_ok()
517    }
518}