Linux Audio

Check our new training course

Loading...
v6.13.7
   1/* SPDX-License-Identifier: GPL-2.0+ */
   2/*
   3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
   4 * Internal non-public definitions that provide either classic
   5 * or preemptible semantics.
   6 *
   7 * Copyright Red Hat, 2009
   8 * Copyright IBM Corporation, 2009
   9 *
  10 * Author: Ingo Molnar <mingo@elte.hu>
  11 *	   Paul E. McKenney <paulmck@linux.ibm.com>
  12 */
  13
  14#include "../locking/rtmutex_common.h"
  15
  16static bool rcu_rdp_is_offloaded(struct rcu_data *rdp)
  17{
  18	/*
  19	 * In order to read the offloaded state of an rdp in a safe
  20	 * and stable way and prevent from its value to be changed
  21	 * under us, we must either hold the barrier mutex, the cpu
  22	 * hotplug lock (read or write) or the nocb lock. Local
  23	 * non-preemptible reads are also safe. NOCB kthreads and
  24	 * timers have their own means of synchronization against the
  25	 * offloaded state updaters.
  26	 */
  27	RCU_NOCB_LOCKDEP_WARN(
  28		!(lockdep_is_held(&rcu_state.barrier_mutex) ||
  29		  (IS_ENABLED(CONFIG_HOTPLUG_CPU) && lockdep_is_cpus_held()) ||
  30		  lockdep_is_held(&rdp->nocb_lock) ||
  31		  lockdep_is_held(&rcu_state.nocb_mutex) ||
  32		  (!(IS_ENABLED(CONFIG_PREEMPT_COUNT) && preemptible()) &&
  33		   rdp == this_cpu_ptr(&rcu_data)) ||
  34		  rcu_current_is_nocb_kthread(rdp)),
  35		"Unsafe read of RCU_NOCB offloaded state"
  36	);
  37
  38	return rcu_segcblist_is_offloaded(&rdp->cblist);
  39}
  40
  41/*
  42 * Check the RCU kernel configuration parameters and print informative
  43 * messages about anything out of the ordinary.
  44 */
  45static void __init rcu_bootup_announce_oddness(void)
  46{
  47	if (IS_ENABLED(CONFIG_RCU_TRACE))
  48		pr_info("\tRCU event tracing is enabled.\n");
  49	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
  50	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
  51		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
  52			RCU_FANOUT);
  53	if (rcu_fanout_exact)
  54		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
 
 
  55	if (IS_ENABLED(CONFIG_PROVE_RCU))
  56		pr_info("\tRCU lockdep checking is enabled.\n");
  57	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
  58		pr_info("\tRCU strict (and thus non-scalable) grace periods are enabled.\n");
  59	if (RCU_NUM_LVLS >= 4)
  60		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
  61	if (RCU_FANOUT_LEAF != 16)
  62		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
  63			RCU_FANOUT_LEAF);
  64	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
  65		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
  66			rcu_fanout_leaf);
  67	if (nr_cpu_ids != NR_CPUS)
  68		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
  69#ifdef CONFIG_RCU_BOOST
  70	pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
  71		kthread_prio, CONFIG_RCU_BOOST_DELAY);
  72#endif
  73	if (blimit != DEFAULT_RCU_BLIMIT)
  74		pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
  75	if (qhimark != DEFAULT_RCU_QHIMARK)
  76		pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
  77	if (qlowmark != DEFAULT_RCU_QLOMARK)
  78		pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
  79	if (qovld != DEFAULT_RCU_QOVLD)
  80		pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
  81	if (jiffies_till_first_fqs != ULONG_MAX)
  82		pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
  83	if (jiffies_till_next_fqs != ULONG_MAX)
  84		pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
  85	if (jiffies_till_sched_qs != ULONG_MAX)
  86		pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
  87	if (rcu_kick_kthreads)
  88		pr_info("\tKick kthreads if too-long grace period.\n");
  89	if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
  90		pr_info("\tRCU callback double-/use-after-free debug is enabled.\n");
  91	if (gp_preinit_delay)
  92		pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
  93	if (gp_init_delay)
  94		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
  95	if (gp_cleanup_delay)
  96		pr_info("\tRCU debug GP cleanup slowdown %d jiffies.\n", gp_cleanup_delay);
  97	if (nohz_full_patience_delay < 0) {
  98		pr_info("\tRCU NOCB CPU patience negative (%d), resetting to zero.\n", nohz_full_patience_delay);
  99		nohz_full_patience_delay = 0;
 100	} else if (nohz_full_patience_delay > 5 * MSEC_PER_SEC) {
 101		pr_info("\tRCU NOCB CPU patience too large (%d), resetting to %ld.\n", nohz_full_patience_delay, 5 * MSEC_PER_SEC);
 102		nohz_full_patience_delay = 5 * MSEC_PER_SEC;
 103	} else if (nohz_full_patience_delay) {
 104		pr_info("\tRCU NOCB CPU patience set to %d milliseconds.\n", nohz_full_patience_delay);
 105	}
 106	nohz_full_patience_delay_jiffies = msecs_to_jiffies(nohz_full_patience_delay);
 107	if (!use_softirq)
 108		pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
 109	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
 110		pr_info("\tRCU debug extended QS entry/exit.\n");
 111	rcupdate_announce_bootup_oddness();
 112}
 113
 114#ifdef CONFIG_PREEMPT_RCU
 115
 116static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
 117static void rcu_read_unlock_special(struct task_struct *t);
 118
 119/*
 120 * Tell them what RCU they are running.
 121 */
 122static void __init rcu_bootup_announce(void)
 123{
 124	pr_info("Preemptible hierarchical RCU implementation.\n");
 125	rcu_bootup_announce_oddness();
 126}
 127
 128/* Flags for rcu_preempt_ctxt_queue() decision table. */
 129#define RCU_GP_TASKS	0x8
 130#define RCU_EXP_TASKS	0x4
 131#define RCU_GP_BLKD	0x2
 132#define RCU_EXP_BLKD	0x1
 133
 134/*
 135 * Queues a task preempted within an RCU-preempt read-side critical
 136 * section into the appropriate location within the ->blkd_tasks list,
 137 * depending on the states of any ongoing normal and expedited grace
 138 * periods.  The ->gp_tasks pointer indicates which element the normal
 139 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
 140 * indicates which element the expedited grace period is waiting on (again,
 141 * NULL if none).  If a grace period is waiting on a given element in the
 142 * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
 143 * adding a task to the tail of the list blocks any grace period that is
 144 * already waiting on one of the elements.  In contrast, adding a task
 145 * to the head of the list won't block any grace period that is already
 146 * waiting on one of the elements.
 147 *
 148 * This queuing is imprecise, and can sometimes make an ongoing grace
 149 * period wait for a task that is not strictly speaking blocking it.
 150 * Given the choice, we needlessly block a normal grace period rather than
 151 * blocking an expedited grace period.
 152 *
 153 * Note that an endless sequence of expedited grace periods still cannot
 154 * indefinitely postpone a normal grace period.  Eventually, all of the
 155 * fixed number of preempted tasks blocking the normal grace period that are
 156 * not also blocking the expedited grace period will resume and complete
 157 * their RCU read-side critical sections.  At that point, the ->gp_tasks
 158 * pointer will equal the ->exp_tasks pointer, at which point the end of
 159 * the corresponding expedited grace period will also be the end of the
 160 * normal grace period.
 161 */
 162static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
 163	__releases(rnp->lock) /* But leaves rrupts disabled. */
 164{
 165	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
 166			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
 167			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
 168			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
 169	struct task_struct *t = current;
 170
 171	raw_lockdep_assert_held_rcu_node(rnp);
 172	WARN_ON_ONCE(rdp->mynode != rnp);
 173	WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
 174	/* RCU better not be waiting on newly onlined CPUs! */
 175	WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
 176		     rdp->grpmask);
 177
 178	/*
 179	 * Decide where to queue the newly blocked task.  In theory,
 180	 * this could be an if-statement.  In practice, when I tried
 181	 * that, it was quite messy.
 182	 */
 183	switch (blkd_state) {
 184	case 0:
 185	case                RCU_EXP_TASKS:
 186	case                RCU_EXP_TASKS | RCU_GP_BLKD:
 187	case RCU_GP_TASKS:
 188	case RCU_GP_TASKS | RCU_EXP_TASKS:
 189
 190		/*
 191		 * Blocking neither GP, or first task blocking the normal
 192		 * GP but not blocking the already-waiting expedited GP.
 193		 * Queue at the head of the list to avoid unnecessarily
 194		 * blocking the already-waiting GPs.
 195		 */
 196		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
 197		break;
 198
 199	case                                              RCU_EXP_BLKD:
 200	case                                RCU_GP_BLKD:
 201	case                                RCU_GP_BLKD | RCU_EXP_BLKD:
 202	case RCU_GP_TASKS |                               RCU_EXP_BLKD:
 203	case RCU_GP_TASKS |                 RCU_GP_BLKD | RCU_EXP_BLKD:
 204	case RCU_GP_TASKS | RCU_EXP_TASKS | RCU_GP_BLKD | RCU_EXP_BLKD:
 205
 206		/*
 207		 * First task arriving that blocks either GP, or first task
 208		 * arriving that blocks the expedited GP (with the normal
 209		 * GP already waiting), or a task arriving that blocks
 210		 * both GPs with both GPs already waiting.  Queue at the
 211		 * tail of the list to avoid any GP waiting on any of the
 212		 * already queued tasks that are not blocking it.
 213		 */
 214		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
 215		break;
 216
 217	case                RCU_EXP_TASKS |               RCU_EXP_BLKD:
 218	case                RCU_EXP_TASKS | RCU_GP_BLKD | RCU_EXP_BLKD:
 219	case RCU_GP_TASKS | RCU_EXP_TASKS |               RCU_EXP_BLKD:
 220
 221		/*
 222		 * Second or subsequent task blocking the expedited GP.
 223		 * The task either does not block the normal GP, or is the
 224		 * first task blocking the normal GP.  Queue just after
 225		 * the first task blocking the expedited GP.
 226		 */
 227		list_add(&t->rcu_node_entry, rnp->exp_tasks);
 228		break;
 229
 230	case RCU_GP_TASKS |                 RCU_GP_BLKD:
 231	case RCU_GP_TASKS | RCU_EXP_TASKS | RCU_GP_BLKD:
 232
 233		/*
 234		 * Second or subsequent task blocking the normal GP.
 235		 * The task does not block the expedited GP. Queue just
 236		 * after the first task blocking the normal GP.
 237		 */
 238		list_add(&t->rcu_node_entry, rnp->gp_tasks);
 239		break;
 240
 241	default:
 242
 243		/* Yet another exercise in excessive paranoia. */
 244		WARN_ON_ONCE(1);
 245		break;
 246	}
 247
 248	/*
 249	 * We have now queued the task.  If it was the first one to
 250	 * block either grace period, update the ->gp_tasks and/or
 251	 * ->exp_tasks pointers, respectively, to reference the newly
 252	 * blocked tasks.
 253	 */
 254	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
 255		WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
 256		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
 257	}
 258	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
 259		WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry);
 260	WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
 261		     !(rnp->qsmask & rdp->grpmask));
 262	WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
 263		     !(rnp->expmask & rdp->grpmask));
 264	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
 265
 266	/*
 267	 * Report the quiescent state for the expedited GP.  This expedited
 268	 * GP should not be able to end until we report, so there should be
 269	 * no need to check for a subsequent expedited GP.  (Though we are
 270	 * still in a quiescent state in any case.)
 271	 *
 272	 * Interrupts are disabled, so ->cpu_no_qs.b.exp cannot change.
 273	 */
 274	if (blkd_state & RCU_EXP_BLKD && rdp->cpu_no_qs.b.exp)
 275		rcu_report_exp_rdp(rdp);
 276	else
 277		WARN_ON_ONCE(rdp->cpu_no_qs.b.exp);
 278}
 279
 280/*
 281 * Record a preemptible-RCU quiescent state for the specified CPU.
 282 * Note that this does not necessarily mean that the task currently running
 283 * on the CPU is in a quiescent state:  Instead, it means that the current
 284 * grace period need not wait on any RCU read-side critical section that
 285 * starts later on this CPU.  It also means that if the current task is
 286 * in an RCU read-side critical section, it has already added itself to
 287 * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
 288 * current task, there might be any number of other tasks blocked while
 289 * in an RCU read-side critical section.
 290 *
 291 * Unlike non-preemptible-RCU, quiescent state reports for expedited
 292 * grace periods are handled separately via deferred quiescent states
 293 * and context switch events.
 294 *
 295 * Callers to this function must disable preemption.
 296 */
 297static void rcu_qs(void)
 298{
 299	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
 300	if (__this_cpu_read(rcu_data.cpu_no_qs.b.norm)) {
 301		trace_rcu_grace_period(TPS("rcu_preempt"),
 302				       __this_cpu_read(rcu_data.gp_seq),
 303				       TPS("cpuqs"));
 304		__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
 305		barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
 306		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
 307	}
 308}
 309
 310/*
 311 * We have entered the scheduler, and the current task might soon be
 312 * context-switched away from.  If this task is in an RCU read-side
 313 * critical section, we will no longer be able to rely on the CPU to
 314 * record that fact, so we enqueue the task on the blkd_tasks list.
 315 * The task will dequeue itself when it exits the outermost enclosing
 316 * RCU read-side critical section.  Therefore, the current grace period
 317 * cannot be permitted to complete until the blkd_tasks list entries
 318 * predating the current grace period drain, in other words, until
 319 * rnp->gp_tasks becomes NULL.
 320 *
 321 * Caller must disable interrupts.
 322 */
 323void rcu_note_context_switch(bool preempt)
 324{
 325	struct task_struct *t = current;
 326	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 327	struct rcu_node *rnp;
 328
 329	trace_rcu_utilization(TPS("Start context switch"));
 330	lockdep_assert_irqs_disabled();
 331	WARN_ONCE(!preempt && rcu_preempt_depth() > 0, "Voluntary context switch within RCU read-side critical section!");
 332	if (rcu_preempt_depth() > 0 &&
 333	    !t->rcu_read_unlock_special.b.blocked) {
 334
 335		/* Possibly blocking in an RCU read-side critical section. */
 336		rnp = rdp->mynode;
 337		raw_spin_lock_rcu_node(rnp);
 338		t->rcu_read_unlock_special.b.blocked = true;
 339		t->rcu_blocked_node = rnp;
 340
 341		/*
 342		 * Verify the CPU's sanity, trace the preemption, and
 343		 * then queue the task as required based on the states
 344		 * of any ongoing and expedited grace periods.
 345		 */
 346		WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp));
 347		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
 348		trace_rcu_preempt_task(rcu_state.name,
 349				       t->pid,
 350				       (rnp->qsmask & rdp->grpmask)
 351				       ? rnp->gp_seq
 352				       : rcu_seq_snap(&rnp->gp_seq));
 353		rcu_preempt_ctxt_queue(rnp, rdp);
 354	} else {
 355		rcu_preempt_deferred_qs(t);
 356	}
 357
 358	/*
 359	 * Either we were not in an RCU read-side critical section to
 360	 * begin with, or we have now recorded that critical section
 361	 * globally.  Either way, we can now note a quiescent state
 362	 * for this CPU.  Again, if we were in an RCU read-side critical
 363	 * section, and if that critical section was blocking the current
 364	 * grace period, then the fact that the task has been enqueued
 365	 * means that we continue to block the current grace period.
 366	 */
 367	rcu_qs();
 368	if (rdp->cpu_no_qs.b.exp)
 369		rcu_report_exp_rdp(rdp);
 370	rcu_tasks_qs(current, preempt);
 371	trace_rcu_utilization(TPS("End context switch"));
 372}
 373EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 374
 375/*
 376 * Check for preempted RCU readers blocking the current grace period
 377 * for the specified rcu_node structure.  If the caller needs a reliable
 378 * answer, it must hold the rcu_node's ->lock.
 379 */
 380static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 381{
 382	return READ_ONCE(rnp->gp_tasks) != NULL;
 383}
 384
 385/* limit value for ->rcu_read_lock_nesting. */
 386#define RCU_NEST_PMAX (INT_MAX / 2)
 387
 388static void rcu_preempt_read_enter(void)
 389{
 390	WRITE_ONCE(current->rcu_read_lock_nesting, READ_ONCE(current->rcu_read_lock_nesting) + 1);
 391}
 392
 393static int rcu_preempt_read_exit(void)
 394{
 395	int ret = READ_ONCE(current->rcu_read_lock_nesting) - 1;
 396
 397	WRITE_ONCE(current->rcu_read_lock_nesting, ret);
 398	return ret;
 399}
 400
 401static void rcu_preempt_depth_set(int val)
 402{
 403	WRITE_ONCE(current->rcu_read_lock_nesting, val);
 404}
 405
 406/*
 407 * Preemptible RCU implementation for rcu_read_lock().
 408 * Just increment ->rcu_read_lock_nesting, shared state will be updated
 409 * if we block.
 410 */
 411void __rcu_read_lock(void)
 412{
 413	rcu_preempt_read_enter();
 414	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
 415		WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
 416	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread)
 417		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true);
 418	barrier();  /* critical section after entry code. */
 419}
 420EXPORT_SYMBOL_GPL(__rcu_read_lock);
 421
 422/*
 423 * Preemptible RCU implementation for rcu_read_unlock().
 424 * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
 425 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
 426 * invoke rcu_read_unlock_special() to clean up after a context switch
 427 * in an RCU read-side critical section and other special cases.
 428 */
 429void __rcu_read_unlock(void)
 430{
 431	struct task_struct *t = current;
 432
 433	barrier();  // critical section before exit code.
 434	if (rcu_preempt_read_exit() == 0) {
 435		barrier();  // critical-section exit before .s check.
 436		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
 437			rcu_read_unlock_special(t);
 438	}
 439	if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
 440		int rrln = rcu_preempt_depth();
 441
 442		WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX);
 443	}
 444}
 445EXPORT_SYMBOL_GPL(__rcu_read_unlock);
 446
 447/*
 448 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 449 * returning NULL if at the end of the list.
 450 */
 451static struct list_head *rcu_next_node_entry(struct task_struct *t,
 452					     struct rcu_node *rnp)
 453{
 454	struct list_head *np;
 455
 456	np = t->rcu_node_entry.next;
 457	if (np == &rnp->blkd_tasks)
 458		np = NULL;
 459	return np;
 460}
 461
 462/*
 463 * Return true if the specified rcu_node structure has tasks that were
 464 * preempted within an RCU read-side critical section.
 465 */
 466static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
 467{
 468	return !list_empty(&rnp->blkd_tasks);
 469}
 470
 471/*
 472 * Report deferred quiescent states.  The deferral time can
 473 * be quite short, for example, in the case of the call from
 474 * rcu_read_unlock_special().
 475 */
 476static notrace void
 477rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
 478{
 479	bool empty_exp;
 480	bool empty_norm;
 481	bool empty_exp_now;
 482	struct list_head *np;
 483	bool drop_boost_mutex = false;
 484	struct rcu_data *rdp;
 485	struct rcu_node *rnp;
 486	union rcu_special special;
 487
 488	/*
 489	 * If RCU core is waiting for this CPU to exit its critical section,
 490	 * report the fact that it has exited.  Because irqs are disabled,
 491	 * t->rcu_read_unlock_special cannot change.
 492	 */
 493	special = t->rcu_read_unlock_special;
 494	rdp = this_cpu_ptr(&rcu_data);
 495	if (!special.s && !rdp->cpu_no_qs.b.exp) {
 496		local_irq_restore(flags);
 497		return;
 498	}
 499	t->rcu_read_unlock_special.s = 0;
 500	if (special.b.need_qs) {
 501		if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
 502			rdp->cpu_no_qs.b.norm = false;
 503			rcu_report_qs_rdp(rdp);
 504			udelay(rcu_unlock_delay);
 505		} else {
 506			rcu_qs();
 507		}
 508	}
 509
 510	/*
 511	 * Respond to a request by an expedited grace period for a
 512	 * quiescent state from this CPU.  Note that requests from
 513	 * tasks are handled when removing the task from the
 514	 * blocked-tasks list below.
 515	 */
 516	if (rdp->cpu_no_qs.b.exp)
 517		rcu_report_exp_rdp(rdp);
 518
 519	/* Clean up if blocked during RCU read-side critical section. */
 520	if (special.b.blocked) {
 521
 522		/*
 523		 * Remove this task from the list it blocked on.  The task
 524		 * now remains queued on the rcu_node corresponding to the
 525		 * CPU it first blocked on, so there is no longer any need
 526		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
 527		 */
 528		rnp = t->rcu_blocked_node;
 529		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
 530		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
 531		WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
 532		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
 533		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
 534			     (!empty_norm || rnp->qsmask));
 535		empty_exp = sync_rcu_exp_done(rnp);
 536		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
 537		np = rcu_next_node_entry(t, rnp);
 538		list_del_init(&t->rcu_node_entry);
 539		t->rcu_blocked_node = NULL;
 540		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
 541						rnp->gp_seq, t->pid);
 542		if (&t->rcu_node_entry == rnp->gp_tasks)
 543			WRITE_ONCE(rnp->gp_tasks, np);
 544		if (&t->rcu_node_entry == rnp->exp_tasks)
 545			WRITE_ONCE(rnp->exp_tasks, np);
 546		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
 547			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
 548			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx.rtmutex) == t;
 549			if (&t->rcu_node_entry == rnp->boost_tasks)
 550				WRITE_ONCE(rnp->boost_tasks, np);
 551		}
 552
 553		/*
 554		 * If this was the last task on the current list, and if
 555		 * we aren't waiting on any CPUs, report the quiescent state.
 556		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
 557		 * so we must take a snapshot of the expedited state.
 558		 */
 559		empty_exp_now = sync_rcu_exp_done(rnp);
 560		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
 561			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
 562							 rnp->gp_seq,
 563							 0, rnp->qsmask,
 564							 rnp->level,
 565							 rnp->grplo,
 566							 rnp->grphi,
 567							 !!rnp->gp_tasks);
 568			rcu_report_unblock_qs_rnp(rnp, flags);
 569		} else {
 570			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 571		}
 572
 
 
 
 
 573		/*
 574		 * If this was the last task on the expedited lists,
 575		 * then we need to report up the rcu_node hierarchy.
 576		 */
 577		if (!empty_exp && empty_exp_now)
 578			rcu_report_exp_rnp(rnp, true);
 579
 580		/* Unboost if we were boosted. */
 581		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
 582			rt_mutex_futex_unlock(&rnp->boost_mtx.rtmutex);
 583	} else {
 584		local_irq_restore(flags);
 585	}
 586}
 587
 588/*
 589 * Is a deferred quiescent-state pending, and are we also not in
 590 * an RCU read-side critical section?  It is the caller's responsibility
 591 * to ensure it is otherwise safe to report any deferred quiescent
 592 * states.  The reason for this is that it is safe to report a
 593 * quiescent state during context switch even though preemption
 594 * is disabled.  This function cannot be expected to understand these
 595 * nuances, so the caller must handle them.
 596 */
 597static notrace bool rcu_preempt_need_deferred_qs(struct task_struct *t)
 598{
 599	return (__this_cpu_read(rcu_data.cpu_no_qs.b.exp) ||
 600		READ_ONCE(t->rcu_read_unlock_special.s)) &&
 601	       rcu_preempt_depth() == 0;
 602}
 603
 604/*
 605 * Report a deferred quiescent state if needed and safe to do so.
 606 * As with rcu_preempt_need_deferred_qs(), "safe" involves only
 607 * not being in an RCU read-side critical section.  The caller must
 608 * evaluate safety in terms of interrupt, softirq, and preemption
 609 * disabling.
 610 */
 611notrace void rcu_preempt_deferred_qs(struct task_struct *t)
 612{
 613	unsigned long flags;
 614
 615	if (!rcu_preempt_need_deferred_qs(t))
 616		return;
 617	local_irq_save(flags);
 618	rcu_preempt_deferred_qs_irqrestore(t, flags);
 619}
 620
 621/*
 622 * Minimal handler to give the scheduler a chance to re-evaluate.
 623 */
 624static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
 625{
 626	struct rcu_data *rdp;
 627
 628	rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
 629	rdp->defer_qs_iw_pending = false;
 630}
 631
 632/*
 633 * Handle special cases during rcu_read_unlock(), such as needing to
 634 * notify RCU core processing or task having blocked during the RCU
 635 * read-side critical section.
 636 */
 637static void rcu_read_unlock_special(struct task_struct *t)
 638{
 639	unsigned long flags;
 640	bool irqs_were_disabled;
 641	bool preempt_bh_were_disabled =
 642			!!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
 
 643
 644	/* NMI handlers cannot block and cannot safely manipulate state. */
 645	if (in_nmi())
 646		return;
 647
 648	local_irq_save(flags);
 649	irqs_were_disabled = irqs_disabled_flags(flags);
 650	if (preempt_bh_were_disabled || irqs_were_disabled) {
 651		bool expboost; // Expedited GP in flight or possible boosting.
 652		struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 653		struct rcu_node *rnp = rdp->mynode;
 654
 655		expboost = (t->rcu_blocked_node && READ_ONCE(t->rcu_blocked_node->exp_tasks)) ||
 656			   (rdp->grpmask & READ_ONCE(rnp->expmask)) ||
 657			   (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) &&
 658			   ((rdp->grpmask & READ_ONCE(rnp->qsmask)) || t->rcu_blocked_node)) ||
 659			   (IS_ENABLED(CONFIG_RCU_BOOST) && irqs_were_disabled &&
 660			    t->rcu_blocked_node);
 661		// Need to defer quiescent state until everything is enabled.
 662		if (use_softirq && (in_hardirq() || (expboost && !irqs_were_disabled))) {
 663			// Using softirq, safe to awaken, and either the
 664			// wakeup is free or there is either an expedited
 665			// GP in flight or a potential need to deboost.
 666			raise_softirq_irqoff(RCU_SOFTIRQ);
 667		} else {
 668			// Enabling BH or preempt does reschedule, so...
 669			// Also if no expediting and no possible deboosting,
 670			// slow is OK.  Plus nohz_full CPUs eventually get
 671			// tick enabled.
 672			set_tsk_need_resched(current);
 673			set_preempt_need_resched();
 674			if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
 675			    expboost && !rdp->defer_qs_iw_pending && cpu_online(rdp->cpu)) {
 676				// Get scheduler to re-evaluate and call hooks.
 677				// If !IRQ_WORK, FQS scan will eventually IPI.
 678				if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) &&
 679				    IS_ENABLED(CONFIG_PREEMPT_RT))
 680					rdp->defer_qs_iw = IRQ_WORK_INIT_HARD(
 681								rcu_preempt_deferred_qs_handler);
 682				else
 683					init_irq_work(&rdp->defer_qs_iw,
 684						      rcu_preempt_deferred_qs_handler);
 685				rdp->defer_qs_iw_pending = true;
 686				irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
 687			}
 688		}
 689		local_irq_restore(flags);
 690		return;
 691	}
 692	rcu_preempt_deferred_qs_irqrestore(t, flags);
 693}
 694
 695/*
 696 * Check that the list of blocked tasks for the newly completed grace
 697 * period is in fact empty.  It is a serious bug to complete a grace
 698 * period that still has RCU readers blocked!  This function must be
 699 * invoked -before- updating this rnp's ->gp_seq.
 700 *
 701 * Also, if there are blocked tasks on the list, they automatically
 702 * block the newly created grace period, so set up ->gp_tasks accordingly.
 703 */
 704static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 705{
 706	struct task_struct *t;
 707
 708	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
 709	raw_lockdep_assert_held_rcu_node(rnp);
 710	if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
 711		dump_blkd_tasks(rnp, 10);
 712	if (rcu_preempt_has_tasks(rnp) &&
 713	    (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
 714		WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
 715		t = container_of(rnp->gp_tasks, struct task_struct,
 716				 rcu_node_entry);
 717		trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
 718						rnp->gp_seq, t->pid);
 719	}
 720	WARN_ON_ONCE(rnp->qsmask);
 721}
 722
 723/*
 724 * Check for a quiescent state from the current CPU, including voluntary
 725 * context switches for Tasks RCU.  When a task blocks, the task is
 726 * recorded in the corresponding CPU's rcu_node structure, which is checked
 727 * elsewhere, hence this function need only check for quiescent states
 728 * related to the current CPU, not to those related to tasks.
 729 */
 730static void rcu_flavor_sched_clock_irq(int user)
 731{
 732	struct task_struct *t = current;
 733
 734	lockdep_assert_irqs_disabled();
 
 
 735	if (rcu_preempt_depth() > 0 ||
 736	    (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
 737		/* No QS, force context switch if deferred. */
 738		if (rcu_preempt_need_deferred_qs(t)) {
 739			set_tsk_need_resched(t);
 740			set_preempt_need_resched();
 741		}
 742	} else if (rcu_preempt_need_deferred_qs(t)) {
 743		rcu_preempt_deferred_qs(t); /* Report deferred QS. */
 744		return;
 745	} else if (!WARN_ON_ONCE(rcu_preempt_depth())) {
 746		rcu_qs(); /* Report immediate QS. */
 747		return;
 748	}
 749
 750	/* If GP is oldish, ask for help from rcu_read_unlock_special(). */
 751	if (rcu_preempt_depth() > 0 &&
 752	    __this_cpu_read(rcu_data.core_needs_qs) &&
 753	    __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
 754	    !t->rcu_read_unlock_special.b.need_qs &&
 755	    time_after(jiffies, rcu_state.gp_start + HZ))
 756		t->rcu_read_unlock_special.b.need_qs = true;
 757}
 758
 759/*
 760 * Check for a task exiting while in a preemptible-RCU read-side
 761 * critical section, clean up if so.  No need to issue warnings, as
 762 * debug_check_no_locks_held() already does this if lockdep is enabled.
 763 * Besides, if this function does anything other than just immediately
 764 * return, there was a bug of some sort.  Spewing warnings from this
 765 * function is like as not to simply obscure important prior warnings.
 766 */
 767void exit_rcu(void)
 768{
 769	struct task_struct *t = current;
 770
 771	if (unlikely(!list_empty(&current->rcu_node_entry))) {
 772		rcu_preempt_depth_set(1);
 773		barrier();
 774		WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
 775	} else if (unlikely(rcu_preempt_depth())) {
 776		rcu_preempt_depth_set(1);
 777	} else {
 778		return;
 779	}
 780	__rcu_read_unlock();
 781	rcu_preempt_deferred_qs(current);
 782}
 783
 784/*
 785 * Dump the blocked-tasks state, but limit the list dump to the
 786 * specified number of elements.
 787 */
 788static void
 789dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
 790{
 791	int cpu;
 792	int i;
 793	struct list_head *lhp;
 
 794	struct rcu_data *rdp;
 795	struct rcu_node *rnp1;
 796
 797	raw_lockdep_assert_held_rcu_node(rnp);
 798	pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
 799		__func__, rnp->grplo, rnp->grphi, rnp->level,
 800		(long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
 801	for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
 802		pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
 803			__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
 804	pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
 805		__func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks),
 806		READ_ONCE(rnp->exp_tasks));
 807	pr_info("%s: ->blkd_tasks", __func__);
 808	i = 0;
 809	list_for_each(lhp, &rnp->blkd_tasks) {
 810		pr_cont(" %p", lhp);
 811		if (++i >= ncheck)
 812			break;
 813	}
 814	pr_cont("\n");
 815	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
 816		rdp = per_cpu_ptr(&rcu_data, cpu);
 
 817		pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
 818			cpu, ".o"[rcu_rdp_cpu_online(rdp)],
 819			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_state,
 820			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_state);
 821	}
 822}
 823
 824#else /* #ifdef CONFIG_PREEMPT_RCU */
 825
 826/*
 827 * If strict grace periods are enabled, and if the calling
 828 * __rcu_read_unlock() marks the beginning of a quiescent state, immediately
 829 * report that quiescent state and, if requested, spin for a bit.
 830 */
 831void rcu_read_unlock_strict(void)
 832{
 833	struct rcu_data *rdp;
 834
 835	if (irqs_disabled() || preempt_count() || !rcu_state.gp_kthread)
 836		return;
 837	rdp = this_cpu_ptr(&rcu_data);
 838	rdp->cpu_no_qs.b.norm = false;
 839	rcu_report_qs_rdp(rdp);
 840	udelay(rcu_unlock_delay);
 841}
 842EXPORT_SYMBOL_GPL(rcu_read_unlock_strict);
 843
 844/*
 845 * Tell them what RCU they are running.
 846 */
 847static void __init rcu_bootup_announce(void)
 848{
 849	pr_info("Hierarchical RCU implementation.\n");
 850	rcu_bootup_announce_oddness();
 851}
 852
 853/*
 854 * Note a quiescent state for PREEMPTION=n.  Because we do not need to know
 855 * how many quiescent states passed, just if there was at least one since
 856 * the start of the grace period, this just sets a flag.  The caller must
 857 * have disabled preemption.
 858 */
 859static void rcu_qs(void)
 860{
 861	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
 862	if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
 863		return;
 864	trace_rcu_grace_period(TPS("rcu_sched"),
 865			       __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
 866	__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
 867	if (__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
 868		rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
 
 
 869}
 870
 871/*
 872 * Register an urgently needed quiescent state.  If there is an
 873 * emergency, invoke rcu_momentary_eqs() to do a heavy-weight
 874 * dyntick-idle quiescent state visible to other CPUs, which will in
 875 * some cases serve for expedited as well as normal grace periods.
 876 * Either way, register a lightweight quiescent state.
 877 */
 878void rcu_all_qs(void)
 879{
 880	unsigned long flags;
 881
 882	if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
 883		return;
 884	preempt_disable();  // For CONFIG_PREEMPT_COUNT=y kernels
 885	/* Load rcu_urgent_qs before other flags. */
 886	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
 887		preempt_enable();
 888		return;
 889	}
 890	this_cpu_write(rcu_data.rcu_urgent_qs, false);
 891	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
 892		local_irq_save(flags);
 893		rcu_momentary_eqs();
 894		local_irq_restore(flags);
 895	}
 896	rcu_qs();
 897	preempt_enable();
 898}
 899EXPORT_SYMBOL_GPL(rcu_all_qs);
 900
 901/*
 902 * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
 903 */
 904void rcu_note_context_switch(bool preempt)
 905{
 906	trace_rcu_utilization(TPS("Start context switch"));
 907	rcu_qs();
 908	/* Load rcu_urgent_qs before other flags. */
 909	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
 910		goto out;
 911	this_cpu_write(rcu_data.rcu_urgent_qs, false);
 912	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
 913		rcu_momentary_eqs();
 914out:
 915	rcu_tasks_qs(current, preempt);
 
 916	trace_rcu_utilization(TPS("End context switch"));
 917}
 918EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 919
 920/*
 921 * Because preemptible RCU does not exist, there are never any preempted
 922 * RCU readers.
 923 */
 924static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 925{
 926	return 0;
 927}
 928
 929/*
 930 * Because there is no preemptible RCU, there can be no readers blocked.
 931 */
 932static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
 933{
 934	return false;
 935}
 936
 937/*
 938 * Because there is no preemptible RCU, there can be no deferred quiescent
 939 * states.
 940 */
 941static notrace bool rcu_preempt_need_deferred_qs(struct task_struct *t)
 942{
 943	return false;
 944}
 945
 946// Except that we do need to respond to a request by an expedited
 947// grace period for a quiescent state from this CPU.  Note that in
 948// non-preemptible kernels, there can be no context switches within RCU
 949// read-side critical sections, which in turn means that the leaf rcu_node
 950// structure's blocked-tasks list is always empty.  is therefore no need to
 951// actually check it.  Instead, a quiescent state from this CPU suffices,
 952// and this function is only called from such a quiescent state.
 953notrace void rcu_preempt_deferred_qs(struct task_struct *t)
 954{
 955	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 956
 957	if (READ_ONCE(rdp->cpu_no_qs.b.exp))
 958		rcu_report_exp_rdp(rdp);
 959}
 960
 961/*
 962 * Because there is no preemptible RCU, there can be no readers blocked,
 963 * so there is no need to check for blocked tasks.  So check only for
 964 * bogus qsmask values.
 965 */
 966static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 967{
 968	WARN_ON_ONCE(rnp->qsmask);
 969}
 970
 971/*
 972 * Check to see if this CPU is in a non-context-switch quiescent state,
 973 * namely user mode and idle loop.
 974 */
 975static void rcu_flavor_sched_clock_irq(int user)
 976{
 977	if (user || rcu_is_cpu_rrupt_from_idle()) {
 978
 979		/*
 980		 * Get here if this CPU took its interrupt from user
 981		 * mode or from the idle loop, and if this is not a
 982		 * nested interrupt.  In this case, the CPU is in
 983		 * a quiescent state, so note it.
 984		 *
 985		 * No memory barrier is required here because rcu_qs()
 986		 * references only CPU-local variables that other CPUs
 987		 * neither access nor modify, at least not while the
 988		 * corresponding CPU is online.
 989		 */
 
 990		rcu_qs();
 991	}
 992}
 993
 994/*
 995 * Because preemptible RCU does not exist, tasks cannot possibly exit
 996 * while in preemptible RCU read-side critical sections.
 997 */
 998void exit_rcu(void)
 999{
1000}
1001
1002/*
1003 * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
1004 */
1005static void
1006dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
1007{
1008	WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
1009}
1010
1011#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
1012
1013/*
1014 * If boosting, set rcuc kthreads to realtime priority.
1015 */
1016static void rcu_cpu_kthread_setup(unsigned int cpu)
1017{
1018	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1019#ifdef CONFIG_RCU_BOOST
1020	struct sched_param sp;
1021
1022	sp.sched_priority = kthread_prio;
1023	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1024#endif /* #ifdef CONFIG_RCU_BOOST */
1025
1026	WRITE_ONCE(rdp->rcuc_activity, jiffies);
1027}
1028
1029static bool rcu_is_callbacks_nocb_kthread(struct rcu_data *rdp)
1030{
1031#ifdef CONFIG_RCU_NOCB_CPU
1032	return rdp->nocb_cb_kthread == current;
1033#else
1034	return false;
1035#endif
1036}
1037
1038/*
1039 * Is the current CPU running the RCU-callbacks kthread?
1040 * Caller must have preemption disabled.
1041 */
1042static bool rcu_is_callbacks_kthread(struct rcu_data *rdp)
1043{
1044	return rdp->rcu_cpu_kthread_task == current ||
1045			rcu_is_callbacks_nocb_kthread(rdp);
1046}
1047
1048#ifdef CONFIG_RCU_BOOST
1049
1050/*
1051 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1052 * or ->boost_tasks, advancing the pointer to the next task in the
1053 * ->blkd_tasks list.
1054 *
1055 * Note that irqs must be enabled: boosting the task can block.
1056 * Returns 1 if there are more tasks needing to be boosted.
1057 */
1058static int rcu_boost(struct rcu_node *rnp)
1059{
1060	unsigned long flags;
1061	struct task_struct *t;
1062	struct list_head *tb;
1063
1064	if (READ_ONCE(rnp->exp_tasks) == NULL &&
1065	    READ_ONCE(rnp->boost_tasks) == NULL)
1066		return 0;  /* Nothing left to boost. */
1067
1068	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1069
1070	/*
1071	 * Recheck under the lock: all tasks in need of boosting
1072	 * might exit their RCU read-side critical sections on their own.
1073	 */
1074	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1075		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1076		return 0;
1077	}
1078
1079	/*
1080	 * Preferentially boost tasks blocking expedited grace periods.
1081	 * This cannot starve the normal grace periods because a second
1082	 * expedited grace period must boost all blocked tasks, including
1083	 * those blocking the pre-existing normal grace period.
1084	 */
1085	if (rnp->exp_tasks != NULL)
1086		tb = rnp->exp_tasks;
1087	else
1088		tb = rnp->boost_tasks;
1089
1090	/*
1091	 * We boost task t by manufacturing an rt_mutex that appears to
1092	 * be held by task t.  We leave a pointer to that rt_mutex where
1093	 * task t can find it, and task t will release the mutex when it
1094	 * exits its outermost RCU read-side critical section.  Then
1095	 * simply acquiring this artificial rt_mutex will boost task
1096	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1097	 *
1098	 * Note that task t must acquire rnp->lock to remove itself from
1099	 * the ->blkd_tasks list, which it will do from exit() if from
1100	 * nowhere else.  We therefore are guaranteed that task t will
1101	 * stay around at least until we drop rnp->lock.  Note that
1102	 * rnp->lock also resolves races between our priority boosting
1103	 * and task t's exiting its outermost RCU read-side critical
1104	 * section.
1105	 */
1106	t = container_of(tb, struct task_struct, rcu_node_entry);
1107	rt_mutex_init_proxy_locked(&rnp->boost_mtx.rtmutex, t);
1108	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1109	/* Lock only for side effect: boosts task t's priority. */
1110	rt_mutex_lock(&rnp->boost_mtx);
1111	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1112	rnp->n_boosts++;
1113
1114	return READ_ONCE(rnp->exp_tasks) != NULL ||
1115	       READ_ONCE(rnp->boost_tasks) != NULL;
1116}
1117
1118/*
1119 * Priority-boosting kthread, one per leaf rcu_node.
1120 */
1121static int rcu_boost_kthread(void *arg)
1122{
1123	struct rcu_node *rnp = (struct rcu_node *)arg;
1124	int spincnt = 0;
1125	int more2boost;
1126
1127	trace_rcu_utilization(TPS("Start boost kthread@init"));
1128	for (;;) {
1129		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
1130		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1131		rcu_wait(READ_ONCE(rnp->boost_tasks) ||
1132			 READ_ONCE(rnp->exp_tasks));
1133		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1134		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
1135		more2boost = rcu_boost(rnp);
1136		if (more2boost)
1137			spincnt++;
1138		else
1139			spincnt = 0;
1140		if (spincnt > 10) {
1141			WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
1142			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1143			schedule_timeout_idle(2);
1144			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1145			spincnt = 0;
1146		}
1147	}
1148	/* NOTREACHED */
1149	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1150	return 0;
1151}
1152
1153/*
1154 * Check to see if it is time to start boosting RCU readers that are
1155 * blocking the current grace period, and, if so, tell the per-rcu_node
1156 * kthread to start boosting them.  If there is an expedited grace
1157 * period in progress, it is always time to boost.
1158 *
1159 * The caller must hold rnp->lock, which this function releases.
1160 * The ->boost_kthread_task is immortal, so we don't need to worry
1161 * about it going away.
1162 */
1163static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1164	__releases(rnp->lock)
1165{
1166	raw_lockdep_assert_held_rcu_node(rnp);
1167	if (!rnp->boost_kthread_task ||
1168	    (!rcu_preempt_blocked_readers_cgp(rnp) && !rnp->exp_tasks)) {
1169		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1170		return;
1171	}
1172	if (rnp->exp_tasks != NULL ||
1173	    (rnp->gp_tasks != NULL &&
1174	     rnp->boost_tasks == NULL &&
1175	     rnp->qsmask == 0 &&
1176	     (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld ||
1177	      IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)))) {
1178		if (rnp->exp_tasks == NULL)
1179			WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks);
1180		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1181		rcu_wake_cond(rnp->boost_kthread_task,
1182			      READ_ONCE(rnp->boost_kthread_status));
1183	} else {
1184		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1185	}
1186}
1187
 
 
 
 
 
 
 
 
 
1188#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1189
1190/*
1191 * Do priority-boost accounting for the start of a new grace period.
1192 */
1193static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1194{
1195	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1196}
1197
1198/*
1199 * Create an RCU-boost kthread for the specified node if one does not
1200 * already exist.  We only create this kthread for preemptible RCU.
 
1201 */
1202static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1203{
1204	unsigned long flags;
1205	int rnp_index = rnp - rcu_get_root();
 
1206	struct sched_param sp;
1207	struct task_struct *t;
1208
1209	if (rnp->boost_kthread_task)
 
 
 
 
 
 
 
 
1210		return;
1211
1212	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1213			   "rcub/%d", rnp_index);
1214	if (WARN_ON_ONCE(IS_ERR(t)))
1215		return;
1216
1217	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1218	rnp->boost_kthread_task = t;
1219	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1220	sp.sched_priority = kthread_prio;
1221	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1222	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1223}
1224
1225static struct task_struct *rcu_boost_task(struct rcu_node *rnp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1226{
1227	return READ_ONCE(rnp->boost_kthread_task);
 
 
 
 
 
 
 
 
 
 
 
 
 
1228}
1229
1230#else /* #ifdef CONFIG_RCU_BOOST */
1231
1232static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1233	__releases(rnp->lock)
1234{
1235	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1236}
1237
 
 
 
 
 
1238static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1239{
1240}
1241
1242static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1243{
1244}
1245
1246static struct task_struct *rcu_boost_task(struct rcu_node *rnp)
1247{
1248	return NULL;
1249}
 
 
 
 
 
1250#endif /* #else #ifdef CONFIG_RCU_BOOST */
1251
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1252/*
1253 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
1254 * grace-period kthread will do force_quiescent_state() processing?
1255 * The idea is to avoid waking up RCU core processing on such a
1256 * CPU unless the grace period has extended for too long.
1257 *
1258 * This code relies on the fact that all NO_HZ_FULL CPUs are also
1259 * RCU_NOCB_CPU CPUs.
1260 */
1261static bool rcu_nohz_full_cpu(void)
1262{
1263#ifdef CONFIG_NO_HZ_FULL
1264	if (tick_nohz_full_cpu(smp_processor_id()) &&
1265	    (!rcu_gp_in_progress() ||
1266	     time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
1267		return true;
1268#endif /* #ifdef CONFIG_NO_HZ_FULL */
1269	return false;
1270}
1271
1272/*
1273 * Bind the RCU grace-period kthreads to the housekeeping CPU.
1274 */
1275static void rcu_bind_gp_kthread(void)
1276{
1277	if (!tick_nohz_full_enabled())
1278		return;
1279	housekeeping_affine(current, HK_TYPE_RCU);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1280}
v5.9
   1/* SPDX-License-Identifier: GPL-2.0+ */
   2/*
   3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
   4 * Internal non-public definitions that provide either classic
   5 * or preemptible semantics.
   6 *
   7 * Copyright Red Hat, 2009
   8 * Copyright IBM Corporation, 2009
   9 *
  10 * Author: Ingo Molnar <mingo@elte.hu>
  11 *	   Paul E. McKenney <paulmck@linux.ibm.com>
  12 */
  13
  14#include "../locking/rtmutex_common.h"
  15
  16#ifdef CONFIG_RCU_NOCB_CPU
  17static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
  18static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
  19#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  20
  21/*
  22 * Check the RCU kernel configuration parameters and print informative
  23 * messages about anything out of the ordinary.
  24 */
  25static void __init rcu_bootup_announce_oddness(void)
  26{
  27	if (IS_ENABLED(CONFIG_RCU_TRACE))
  28		pr_info("\tRCU event tracing is enabled.\n");
  29	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
  30	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
  31		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
  32			RCU_FANOUT);
  33	if (rcu_fanout_exact)
  34		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
  35	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
  36		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
  37	if (IS_ENABLED(CONFIG_PROVE_RCU))
  38		pr_info("\tRCU lockdep checking is enabled.\n");
 
 
  39	if (RCU_NUM_LVLS >= 4)
  40		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
  41	if (RCU_FANOUT_LEAF != 16)
  42		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
  43			RCU_FANOUT_LEAF);
  44	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
  45		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
  46			rcu_fanout_leaf);
  47	if (nr_cpu_ids != NR_CPUS)
  48		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
  49#ifdef CONFIG_RCU_BOOST
  50	pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
  51		kthread_prio, CONFIG_RCU_BOOST_DELAY);
  52#endif
  53	if (blimit != DEFAULT_RCU_BLIMIT)
  54		pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
  55	if (qhimark != DEFAULT_RCU_QHIMARK)
  56		pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
  57	if (qlowmark != DEFAULT_RCU_QLOMARK)
  58		pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
  59	if (qovld != DEFAULT_RCU_QOVLD)
  60		pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
  61	if (jiffies_till_first_fqs != ULONG_MAX)
  62		pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
  63	if (jiffies_till_next_fqs != ULONG_MAX)
  64		pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
  65	if (jiffies_till_sched_qs != ULONG_MAX)
  66		pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
  67	if (rcu_kick_kthreads)
  68		pr_info("\tKick kthreads if too-long grace period.\n");
  69	if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
  70		pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
  71	if (gp_preinit_delay)
  72		pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
  73	if (gp_init_delay)
  74		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
  75	if (gp_cleanup_delay)
  76		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
 
 
 
 
 
 
 
 
 
 
  77	if (!use_softirq)
  78		pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
  79	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
  80		pr_info("\tRCU debug extended QS entry/exit.\n");
  81	rcupdate_announce_bootup_oddness();
  82}
  83
  84#ifdef CONFIG_PREEMPT_RCU
  85
  86static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
  87static void rcu_read_unlock_special(struct task_struct *t);
  88
  89/*
  90 * Tell them what RCU they are running.
  91 */
  92static void __init rcu_bootup_announce(void)
  93{
  94	pr_info("Preemptible hierarchical RCU implementation.\n");
  95	rcu_bootup_announce_oddness();
  96}
  97
  98/* Flags for rcu_preempt_ctxt_queue() decision table. */
  99#define RCU_GP_TASKS	0x8
 100#define RCU_EXP_TASKS	0x4
 101#define RCU_GP_BLKD	0x2
 102#define RCU_EXP_BLKD	0x1
 103
 104/*
 105 * Queues a task preempted within an RCU-preempt read-side critical
 106 * section into the appropriate location within the ->blkd_tasks list,
 107 * depending on the states of any ongoing normal and expedited grace
 108 * periods.  The ->gp_tasks pointer indicates which element the normal
 109 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
 110 * indicates which element the expedited grace period is waiting on (again,
 111 * NULL if none).  If a grace period is waiting on a given element in the
 112 * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
 113 * adding a task to the tail of the list blocks any grace period that is
 114 * already waiting on one of the elements.  In contrast, adding a task
 115 * to the head of the list won't block any grace period that is already
 116 * waiting on one of the elements.
 117 *
 118 * This queuing is imprecise, and can sometimes make an ongoing grace
 119 * period wait for a task that is not strictly speaking blocking it.
 120 * Given the choice, we needlessly block a normal grace period rather than
 121 * blocking an expedited grace period.
 122 *
 123 * Note that an endless sequence of expedited grace periods still cannot
 124 * indefinitely postpone a normal grace period.  Eventually, all of the
 125 * fixed number of preempted tasks blocking the normal grace period that are
 126 * not also blocking the expedited grace period will resume and complete
 127 * their RCU read-side critical sections.  At that point, the ->gp_tasks
 128 * pointer will equal the ->exp_tasks pointer, at which point the end of
 129 * the corresponding expedited grace period will also be the end of the
 130 * normal grace period.
 131 */
 132static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
 133	__releases(rnp->lock) /* But leaves rrupts disabled. */
 134{
 135	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
 136			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
 137			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
 138			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
 139	struct task_struct *t = current;
 140
 141	raw_lockdep_assert_held_rcu_node(rnp);
 142	WARN_ON_ONCE(rdp->mynode != rnp);
 143	WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
 144	/* RCU better not be waiting on newly onlined CPUs! */
 145	WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
 146		     rdp->grpmask);
 147
 148	/*
 149	 * Decide where to queue the newly blocked task.  In theory,
 150	 * this could be an if-statement.  In practice, when I tried
 151	 * that, it was quite messy.
 152	 */
 153	switch (blkd_state) {
 154	case 0:
 155	case                RCU_EXP_TASKS:
 156	case                RCU_EXP_TASKS + RCU_GP_BLKD:
 157	case RCU_GP_TASKS:
 158	case RCU_GP_TASKS + RCU_EXP_TASKS:
 159
 160		/*
 161		 * Blocking neither GP, or first task blocking the normal
 162		 * GP but not blocking the already-waiting expedited GP.
 163		 * Queue at the head of the list to avoid unnecessarily
 164		 * blocking the already-waiting GPs.
 165		 */
 166		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
 167		break;
 168
 169	case                                              RCU_EXP_BLKD:
 170	case                                RCU_GP_BLKD:
 171	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
 172	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
 173	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
 174	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
 175
 176		/*
 177		 * First task arriving that blocks either GP, or first task
 178		 * arriving that blocks the expedited GP (with the normal
 179		 * GP already waiting), or a task arriving that blocks
 180		 * both GPs with both GPs already waiting.  Queue at the
 181		 * tail of the list to avoid any GP waiting on any of the
 182		 * already queued tasks that are not blocking it.
 183		 */
 184		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
 185		break;
 186
 187	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
 188	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
 189	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
 190
 191		/*
 192		 * Second or subsequent task blocking the expedited GP.
 193		 * The task either does not block the normal GP, or is the
 194		 * first task blocking the normal GP.  Queue just after
 195		 * the first task blocking the expedited GP.
 196		 */
 197		list_add(&t->rcu_node_entry, rnp->exp_tasks);
 198		break;
 199
 200	case RCU_GP_TASKS +                 RCU_GP_BLKD:
 201	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
 202
 203		/*
 204		 * Second or subsequent task blocking the normal GP.
 205		 * The task does not block the expedited GP. Queue just
 206		 * after the first task blocking the normal GP.
 207		 */
 208		list_add(&t->rcu_node_entry, rnp->gp_tasks);
 209		break;
 210
 211	default:
 212
 213		/* Yet another exercise in excessive paranoia. */
 214		WARN_ON_ONCE(1);
 215		break;
 216	}
 217
 218	/*
 219	 * We have now queued the task.  If it was the first one to
 220	 * block either grace period, update the ->gp_tasks and/or
 221	 * ->exp_tasks pointers, respectively, to reference the newly
 222	 * blocked tasks.
 223	 */
 224	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
 225		WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
 226		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
 227	}
 228	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
 229		WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry);
 230	WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
 231		     !(rnp->qsmask & rdp->grpmask));
 232	WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
 233		     !(rnp->expmask & rdp->grpmask));
 234	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
 235
 236	/*
 237	 * Report the quiescent state for the expedited GP.  This expedited
 238	 * GP should not be able to end until we report, so there should be
 239	 * no need to check for a subsequent expedited GP.  (Though we are
 240	 * still in a quiescent state in any case.)
 
 
 241	 */
 242	if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
 243		rcu_report_exp_rdp(rdp);
 244	else
 245		WARN_ON_ONCE(rdp->exp_deferred_qs);
 246}
 247
 248/*
 249 * Record a preemptible-RCU quiescent state for the specified CPU.
 250 * Note that this does not necessarily mean that the task currently running
 251 * on the CPU is in a quiescent state:  Instead, it means that the current
 252 * grace period need not wait on any RCU read-side critical section that
 253 * starts later on this CPU.  It also means that if the current task is
 254 * in an RCU read-side critical section, it has already added itself to
 255 * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
 256 * current task, there might be any number of other tasks blocked while
 257 * in an RCU read-side critical section.
 258 *
 
 
 
 
 259 * Callers to this function must disable preemption.
 260 */
 261static void rcu_qs(void)
 262{
 263	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
 264	if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
 265		trace_rcu_grace_period(TPS("rcu_preempt"),
 266				       __this_cpu_read(rcu_data.gp_seq),
 267				       TPS("cpuqs"));
 268		__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
 269		barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
 270		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
 271	}
 272}
 273
 274/*
 275 * We have entered the scheduler, and the current task might soon be
 276 * context-switched away from.  If this task is in an RCU read-side
 277 * critical section, we will no longer be able to rely on the CPU to
 278 * record that fact, so we enqueue the task on the blkd_tasks list.
 279 * The task will dequeue itself when it exits the outermost enclosing
 280 * RCU read-side critical section.  Therefore, the current grace period
 281 * cannot be permitted to complete until the blkd_tasks list entries
 282 * predating the current grace period drain, in other words, until
 283 * rnp->gp_tasks becomes NULL.
 284 *
 285 * Caller must disable interrupts.
 286 */
 287void rcu_note_context_switch(bool preempt)
 288{
 289	struct task_struct *t = current;
 290	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 291	struct rcu_node *rnp;
 292
 293	trace_rcu_utilization(TPS("Start context switch"));
 294	lockdep_assert_irqs_disabled();
 295	WARN_ON_ONCE(!preempt && rcu_preempt_depth() > 0);
 296	if (rcu_preempt_depth() > 0 &&
 297	    !t->rcu_read_unlock_special.b.blocked) {
 298
 299		/* Possibly blocking in an RCU read-side critical section. */
 300		rnp = rdp->mynode;
 301		raw_spin_lock_rcu_node(rnp);
 302		t->rcu_read_unlock_special.b.blocked = true;
 303		t->rcu_blocked_node = rnp;
 304
 305		/*
 306		 * Verify the CPU's sanity, trace the preemption, and
 307		 * then queue the task as required based on the states
 308		 * of any ongoing and expedited grace periods.
 309		 */
 310		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
 311		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
 312		trace_rcu_preempt_task(rcu_state.name,
 313				       t->pid,
 314				       (rnp->qsmask & rdp->grpmask)
 315				       ? rnp->gp_seq
 316				       : rcu_seq_snap(&rnp->gp_seq));
 317		rcu_preempt_ctxt_queue(rnp, rdp);
 318	} else {
 319		rcu_preempt_deferred_qs(t);
 320	}
 321
 322	/*
 323	 * Either we were not in an RCU read-side critical section to
 324	 * begin with, or we have now recorded that critical section
 325	 * globally.  Either way, we can now note a quiescent state
 326	 * for this CPU.  Again, if we were in an RCU read-side critical
 327	 * section, and if that critical section was blocking the current
 328	 * grace period, then the fact that the task has been enqueued
 329	 * means that we continue to block the current grace period.
 330	 */
 331	rcu_qs();
 332	if (rdp->exp_deferred_qs)
 333		rcu_report_exp_rdp(rdp);
 334	rcu_tasks_qs(current, preempt);
 335	trace_rcu_utilization(TPS("End context switch"));
 336}
 337EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 338
 339/*
 340 * Check for preempted RCU readers blocking the current grace period
 341 * for the specified rcu_node structure.  If the caller needs a reliable
 342 * answer, it must hold the rcu_node's ->lock.
 343 */
 344static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 345{
 346	return READ_ONCE(rnp->gp_tasks) != NULL;
 347}
 348
 349/* limit value for ->rcu_read_lock_nesting. */
 350#define RCU_NEST_PMAX (INT_MAX / 2)
 351
 352static void rcu_preempt_read_enter(void)
 353{
 354	current->rcu_read_lock_nesting++;
 355}
 356
 357static int rcu_preempt_read_exit(void)
 358{
 359	return --current->rcu_read_lock_nesting;
 
 
 
 360}
 361
 362static void rcu_preempt_depth_set(int val)
 363{
 364	current->rcu_read_lock_nesting = val;
 365}
 366
 367/*
 368 * Preemptible RCU implementation for rcu_read_lock().
 369 * Just increment ->rcu_read_lock_nesting, shared state will be updated
 370 * if we block.
 371 */
 372void __rcu_read_lock(void)
 373{
 374	rcu_preempt_read_enter();
 375	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
 376		WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
 
 
 377	barrier();  /* critical section after entry code. */
 378}
 379EXPORT_SYMBOL_GPL(__rcu_read_lock);
 380
 381/*
 382 * Preemptible RCU implementation for rcu_read_unlock().
 383 * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
 384 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
 385 * invoke rcu_read_unlock_special() to clean up after a context switch
 386 * in an RCU read-side critical section and other special cases.
 387 */
 388void __rcu_read_unlock(void)
 389{
 390	struct task_struct *t = current;
 391
 
 392	if (rcu_preempt_read_exit() == 0) {
 393		barrier();  /* critical section before exit code. */
 394		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
 395			rcu_read_unlock_special(t);
 396	}
 397	if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
 398		int rrln = rcu_preempt_depth();
 399
 400		WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX);
 401	}
 402}
 403EXPORT_SYMBOL_GPL(__rcu_read_unlock);
 404
 405/*
 406 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 407 * returning NULL if at the end of the list.
 408 */
 409static struct list_head *rcu_next_node_entry(struct task_struct *t,
 410					     struct rcu_node *rnp)
 411{
 412	struct list_head *np;
 413
 414	np = t->rcu_node_entry.next;
 415	if (np == &rnp->blkd_tasks)
 416		np = NULL;
 417	return np;
 418}
 419
 420/*
 421 * Return true if the specified rcu_node structure has tasks that were
 422 * preempted within an RCU read-side critical section.
 423 */
 424static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
 425{
 426	return !list_empty(&rnp->blkd_tasks);
 427}
 428
 429/*
 430 * Report deferred quiescent states.  The deferral time can
 431 * be quite short, for example, in the case of the call from
 432 * rcu_read_unlock_special().
 433 */
 434static void
 435rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
 436{
 437	bool empty_exp;
 438	bool empty_norm;
 439	bool empty_exp_now;
 440	struct list_head *np;
 441	bool drop_boost_mutex = false;
 442	struct rcu_data *rdp;
 443	struct rcu_node *rnp;
 444	union rcu_special special;
 445
 446	/*
 447	 * If RCU core is waiting for this CPU to exit its critical section,
 448	 * report the fact that it has exited.  Because irqs are disabled,
 449	 * t->rcu_read_unlock_special cannot change.
 450	 */
 451	special = t->rcu_read_unlock_special;
 452	rdp = this_cpu_ptr(&rcu_data);
 453	if (!special.s && !rdp->exp_deferred_qs) {
 454		local_irq_restore(flags);
 455		return;
 456	}
 457	t->rcu_read_unlock_special.s = 0;
 458	if (special.b.need_qs)
 459		rcu_qs();
 
 
 
 
 
 
 
 460
 461	/*
 462	 * Respond to a request by an expedited grace period for a
 463	 * quiescent state from this CPU.  Note that requests from
 464	 * tasks are handled when removing the task from the
 465	 * blocked-tasks list below.
 466	 */
 467	if (rdp->exp_deferred_qs)
 468		rcu_report_exp_rdp(rdp);
 469
 470	/* Clean up if blocked during RCU read-side critical section. */
 471	if (special.b.blocked) {
 472
 473		/*
 474		 * Remove this task from the list it blocked on.  The task
 475		 * now remains queued on the rcu_node corresponding to the
 476		 * CPU it first blocked on, so there is no longer any need
 477		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
 478		 */
 479		rnp = t->rcu_blocked_node;
 480		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
 481		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
 482		WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
 483		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
 484		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
 485			     (!empty_norm || rnp->qsmask));
 486		empty_exp = sync_rcu_exp_done(rnp);
 487		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
 488		np = rcu_next_node_entry(t, rnp);
 489		list_del_init(&t->rcu_node_entry);
 490		t->rcu_blocked_node = NULL;
 491		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
 492						rnp->gp_seq, t->pid);
 493		if (&t->rcu_node_entry == rnp->gp_tasks)
 494			WRITE_ONCE(rnp->gp_tasks, np);
 495		if (&t->rcu_node_entry == rnp->exp_tasks)
 496			WRITE_ONCE(rnp->exp_tasks, np);
 497		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
 498			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
 499			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
 500			if (&t->rcu_node_entry == rnp->boost_tasks)
 501				WRITE_ONCE(rnp->boost_tasks, np);
 502		}
 503
 504		/*
 505		 * If this was the last task on the current list, and if
 506		 * we aren't waiting on any CPUs, report the quiescent state.
 507		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
 508		 * so we must take a snapshot of the expedited state.
 509		 */
 510		empty_exp_now = sync_rcu_exp_done(rnp);
 511		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
 512			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
 513							 rnp->gp_seq,
 514							 0, rnp->qsmask,
 515							 rnp->level,
 516							 rnp->grplo,
 517							 rnp->grphi,
 518							 !!rnp->gp_tasks);
 519			rcu_report_unblock_qs_rnp(rnp, flags);
 520		} else {
 521			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 522		}
 523
 524		/* Unboost if we were boosted. */
 525		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
 526			rt_mutex_futex_unlock(&rnp->boost_mtx);
 527
 528		/*
 529		 * If this was the last task on the expedited lists,
 530		 * then we need to report up the rcu_node hierarchy.
 531		 */
 532		if (!empty_exp && empty_exp_now)
 533			rcu_report_exp_rnp(rnp, true);
 
 
 
 
 534	} else {
 535		local_irq_restore(flags);
 536	}
 537}
 538
 539/*
 540 * Is a deferred quiescent-state pending, and are we also not in
 541 * an RCU read-side critical section?  It is the caller's responsibility
 542 * to ensure it is otherwise safe to report any deferred quiescent
 543 * states.  The reason for this is that it is safe to report a
 544 * quiescent state during context switch even though preemption
 545 * is disabled.  This function cannot be expected to understand these
 546 * nuances, so the caller must handle them.
 547 */
 548static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
 549{
 550	return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
 551		READ_ONCE(t->rcu_read_unlock_special.s)) &&
 552	       rcu_preempt_depth() == 0;
 553}
 554
 555/*
 556 * Report a deferred quiescent state if needed and safe to do so.
 557 * As with rcu_preempt_need_deferred_qs(), "safe" involves only
 558 * not being in an RCU read-side critical section.  The caller must
 559 * evaluate safety in terms of interrupt, softirq, and preemption
 560 * disabling.
 561 */
 562static void rcu_preempt_deferred_qs(struct task_struct *t)
 563{
 564	unsigned long flags;
 565
 566	if (!rcu_preempt_need_deferred_qs(t))
 567		return;
 568	local_irq_save(flags);
 569	rcu_preempt_deferred_qs_irqrestore(t, flags);
 570}
 571
 572/*
 573 * Minimal handler to give the scheduler a chance to re-evaluate.
 574 */
 575static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
 576{
 577	struct rcu_data *rdp;
 578
 579	rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
 580	rdp->defer_qs_iw_pending = false;
 581}
 582
 583/*
 584 * Handle special cases during rcu_read_unlock(), such as needing to
 585 * notify RCU core processing or task having blocked during the RCU
 586 * read-side critical section.
 587 */
 588static void rcu_read_unlock_special(struct task_struct *t)
 589{
 590	unsigned long flags;
 
 591	bool preempt_bh_were_disabled =
 592			!!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
 593	bool irqs_were_disabled;
 594
 595	/* NMI handlers cannot block and cannot safely manipulate state. */
 596	if (in_nmi())
 597		return;
 598
 599	local_irq_save(flags);
 600	irqs_were_disabled = irqs_disabled_flags(flags);
 601	if (preempt_bh_were_disabled || irqs_were_disabled) {
 602		bool exp;
 603		struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 604		struct rcu_node *rnp = rdp->mynode;
 605
 606		exp = (t->rcu_blocked_node &&
 607		       READ_ONCE(t->rcu_blocked_node->exp_tasks)) ||
 608		      (rdp->grpmask & READ_ONCE(rnp->expmask));
 
 
 
 609		// Need to defer quiescent state until everything is enabled.
 610		if (use_softirq && (in_irq() || (exp && !irqs_were_disabled))) {
 611			// Using softirq, safe to awaken, and either the
 612			// wakeup is free or there is an expedited GP.
 
 613			raise_softirq_irqoff(RCU_SOFTIRQ);
 614		} else {
 615			// Enabling BH or preempt does reschedule, so...
 616			// Also if no expediting, slow is OK.
 617			// Plus nohz_full CPUs eventually get tick enabled.
 
 618			set_tsk_need_resched(current);
 619			set_preempt_need_resched();
 620			if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
 621			    !rdp->defer_qs_iw_pending && exp) {
 622				// Get scheduler to re-evaluate and call hooks.
 623				// If !IRQ_WORK, FQS scan will eventually IPI.
 624				init_irq_work(&rdp->defer_qs_iw,
 625					      rcu_preempt_deferred_qs_handler);
 
 
 
 
 
 626				rdp->defer_qs_iw_pending = true;
 627				irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
 628			}
 629		}
 630		local_irq_restore(flags);
 631		return;
 632	}
 633	rcu_preempt_deferred_qs_irqrestore(t, flags);
 634}
 635
 636/*
 637 * Check that the list of blocked tasks for the newly completed grace
 638 * period is in fact empty.  It is a serious bug to complete a grace
 639 * period that still has RCU readers blocked!  This function must be
 640 * invoked -before- updating this rnp's ->gp_seq.
 641 *
 642 * Also, if there are blocked tasks on the list, they automatically
 643 * block the newly created grace period, so set up ->gp_tasks accordingly.
 644 */
 645static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 646{
 647	struct task_struct *t;
 648
 649	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
 650	raw_lockdep_assert_held_rcu_node(rnp);
 651	if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
 652		dump_blkd_tasks(rnp, 10);
 653	if (rcu_preempt_has_tasks(rnp) &&
 654	    (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
 655		WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
 656		t = container_of(rnp->gp_tasks, struct task_struct,
 657				 rcu_node_entry);
 658		trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
 659						rnp->gp_seq, t->pid);
 660	}
 661	WARN_ON_ONCE(rnp->qsmask);
 662}
 663
 664/*
 665 * Check for a quiescent state from the current CPU, including voluntary
 666 * context switches for Tasks RCU.  When a task blocks, the task is
 667 * recorded in the corresponding CPU's rcu_node structure, which is checked
 668 * elsewhere, hence this function need only check for quiescent states
 669 * related to the current CPU, not to those related to tasks.
 670 */
 671static void rcu_flavor_sched_clock_irq(int user)
 672{
 673	struct task_struct *t = current;
 674
 675	if (user || rcu_is_cpu_rrupt_from_idle()) {
 676		rcu_note_voluntary_context_switch(current);
 677	}
 678	if (rcu_preempt_depth() > 0 ||
 679	    (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
 680		/* No QS, force context switch if deferred. */
 681		if (rcu_preempt_need_deferred_qs(t)) {
 682			set_tsk_need_resched(t);
 683			set_preempt_need_resched();
 684		}
 685	} else if (rcu_preempt_need_deferred_qs(t)) {
 686		rcu_preempt_deferred_qs(t); /* Report deferred QS. */
 687		return;
 688	} else if (!WARN_ON_ONCE(rcu_preempt_depth())) {
 689		rcu_qs(); /* Report immediate QS. */
 690		return;
 691	}
 692
 693	/* If GP is oldish, ask for help from rcu_read_unlock_special(). */
 694	if (rcu_preempt_depth() > 0 &&
 695	    __this_cpu_read(rcu_data.core_needs_qs) &&
 696	    __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
 697	    !t->rcu_read_unlock_special.b.need_qs &&
 698	    time_after(jiffies, rcu_state.gp_start + HZ))
 699		t->rcu_read_unlock_special.b.need_qs = true;
 700}
 701
 702/*
 703 * Check for a task exiting while in a preemptible-RCU read-side
 704 * critical section, clean up if so.  No need to issue warnings, as
 705 * debug_check_no_locks_held() already does this if lockdep is enabled.
 706 * Besides, if this function does anything other than just immediately
 707 * return, there was a bug of some sort.  Spewing warnings from this
 708 * function is like as not to simply obscure important prior warnings.
 709 */
 710void exit_rcu(void)
 711{
 712	struct task_struct *t = current;
 713
 714	if (unlikely(!list_empty(&current->rcu_node_entry))) {
 715		rcu_preempt_depth_set(1);
 716		barrier();
 717		WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
 718	} else if (unlikely(rcu_preempt_depth())) {
 719		rcu_preempt_depth_set(1);
 720	} else {
 721		return;
 722	}
 723	__rcu_read_unlock();
 724	rcu_preempt_deferred_qs(current);
 725}
 726
 727/*
 728 * Dump the blocked-tasks state, but limit the list dump to the
 729 * specified number of elements.
 730 */
 731static void
 732dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
 733{
 734	int cpu;
 735	int i;
 736	struct list_head *lhp;
 737	bool onl;
 738	struct rcu_data *rdp;
 739	struct rcu_node *rnp1;
 740
 741	raw_lockdep_assert_held_rcu_node(rnp);
 742	pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
 743		__func__, rnp->grplo, rnp->grphi, rnp->level,
 744		(long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
 745	for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
 746		pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
 747			__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
 748	pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
 749		__func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks),
 750		READ_ONCE(rnp->exp_tasks));
 751	pr_info("%s: ->blkd_tasks", __func__);
 752	i = 0;
 753	list_for_each(lhp, &rnp->blkd_tasks) {
 754		pr_cont(" %p", lhp);
 755		if (++i >= ncheck)
 756			break;
 757	}
 758	pr_cont("\n");
 759	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
 760		rdp = per_cpu_ptr(&rcu_data, cpu);
 761		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
 762		pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
 763			cpu, ".o"[onl],
 764			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
 765			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
 766	}
 767}
 768
 769#else /* #ifdef CONFIG_PREEMPT_RCU */
 770
 771/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 772 * Tell them what RCU they are running.
 773 */
 774static void __init rcu_bootup_announce(void)
 775{
 776	pr_info("Hierarchical RCU implementation.\n");
 777	rcu_bootup_announce_oddness();
 778}
 779
 780/*
 781 * Note a quiescent state for PREEMPTION=n.  Because we do not need to know
 782 * how many quiescent states passed, just if there was at least one since
 783 * the start of the grace period, this just sets a flag.  The caller must
 784 * have disabled preemption.
 785 */
 786static void rcu_qs(void)
 787{
 788	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
 789	if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
 790		return;
 791	trace_rcu_grace_period(TPS("rcu_sched"),
 792			       __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
 793	__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
 794	if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
 795		return;
 796	__this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
 797	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
 798}
 799
 800/*
 801 * Register an urgently needed quiescent state.  If there is an
 802 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 803 * dyntick-idle quiescent state visible to other CPUs, which will in
 804 * some cases serve for expedited as well as normal grace periods.
 805 * Either way, register a lightweight quiescent state.
 806 */
 807void rcu_all_qs(void)
 808{
 809	unsigned long flags;
 810
 811	if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
 812		return;
 813	preempt_disable();
 814	/* Load rcu_urgent_qs before other flags. */
 815	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
 816		preempt_enable();
 817		return;
 818	}
 819	this_cpu_write(rcu_data.rcu_urgent_qs, false);
 820	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
 821		local_irq_save(flags);
 822		rcu_momentary_dyntick_idle();
 823		local_irq_restore(flags);
 824	}
 825	rcu_qs();
 826	preempt_enable();
 827}
 828EXPORT_SYMBOL_GPL(rcu_all_qs);
 829
 830/*
 831 * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
 832 */
 833void rcu_note_context_switch(bool preempt)
 834{
 835	trace_rcu_utilization(TPS("Start context switch"));
 836	rcu_qs();
 837	/* Load rcu_urgent_qs before other flags. */
 838	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
 839		goto out;
 840	this_cpu_write(rcu_data.rcu_urgent_qs, false);
 841	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
 842		rcu_momentary_dyntick_idle();
 
 843	rcu_tasks_qs(current, preempt);
 844out:
 845	trace_rcu_utilization(TPS("End context switch"));
 846}
 847EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 848
 849/*
 850 * Because preemptible RCU does not exist, there are never any preempted
 851 * RCU readers.
 852 */
 853static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 854{
 855	return 0;
 856}
 857
 858/*
 859 * Because there is no preemptible RCU, there can be no readers blocked.
 860 */
 861static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
 862{
 863	return false;
 864}
 865
 866/*
 867 * Because there is no preemptible RCU, there can be no deferred quiescent
 868 * states.
 869 */
 870static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
 871{
 872	return false;
 873}
 874static void rcu_preempt_deferred_qs(struct task_struct *t) { }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 875
 876/*
 877 * Because there is no preemptible RCU, there can be no readers blocked,
 878 * so there is no need to check for blocked tasks.  So check only for
 879 * bogus qsmask values.
 880 */
 881static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 882{
 883	WARN_ON_ONCE(rnp->qsmask);
 884}
 885
 886/*
 887 * Check to see if this CPU is in a non-context-switch quiescent state,
 888 * namely user mode and idle loop.
 889 */
 890static void rcu_flavor_sched_clock_irq(int user)
 891{
 892	if (user || rcu_is_cpu_rrupt_from_idle()) {
 893
 894		/*
 895		 * Get here if this CPU took its interrupt from user
 896		 * mode or from the idle loop, and if this is not a
 897		 * nested interrupt.  In this case, the CPU is in
 898		 * a quiescent state, so note it.
 899		 *
 900		 * No memory barrier is required here because rcu_qs()
 901		 * references only CPU-local variables that other CPUs
 902		 * neither access nor modify, at least not while the
 903		 * corresponding CPU is online.
 904		 */
 905
 906		rcu_qs();
 907	}
 908}
 909
 910/*
 911 * Because preemptible RCU does not exist, tasks cannot possibly exit
 912 * while in preemptible RCU read-side critical sections.
 913 */
 914void exit_rcu(void)
 915{
 916}
 917
 918/*
 919 * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
 920 */
 921static void
 922dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
 923{
 924	WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
 925}
 926
 927#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
 928
 929/*
 930 * If boosting, set rcuc kthreads to realtime priority.
 931 */
 932static void rcu_cpu_kthread_setup(unsigned int cpu)
 933{
 
 934#ifdef CONFIG_RCU_BOOST
 935	struct sched_param sp;
 936
 937	sp.sched_priority = kthread_prio;
 938	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
 939#endif /* #ifdef CONFIG_RCU_BOOST */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 940}
 941
 942#ifdef CONFIG_RCU_BOOST
 943
 944/*
 945 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
 946 * or ->boost_tasks, advancing the pointer to the next task in the
 947 * ->blkd_tasks list.
 948 *
 949 * Note that irqs must be enabled: boosting the task can block.
 950 * Returns 1 if there are more tasks needing to be boosted.
 951 */
 952static int rcu_boost(struct rcu_node *rnp)
 953{
 954	unsigned long flags;
 955	struct task_struct *t;
 956	struct list_head *tb;
 957
 958	if (READ_ONCE(rnp->exp_tasks) == NULL &&
 959	    READ_ONCE(rnp->boost_tasks) == NULL)
 960		return 0;  /* Nothing left to boost. */
 961
 962	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 963
 964	/*
 965	 * Recheck under the lock: all tasks in need of boosting
 966	 * might exit their RCU read-side critical sections on their own.
 967	 */
 968	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
 969		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 970		return 0;
 971	}
 972
 973	/*
 974	 * Preferentially boost tasks blocking expedited grace periods.
 975	 * This cannot starve the normal grace periods because a second
 976	 * expedited grace period must boost all blocked tasks, including
 977	 * those blocking the pre-existing normal grace period.
 978	 */
 979	if (rnp->exp_tasks != NULL)
 980		tb = rnp->exp_tasks;
 981	else
 982		tb = rnp->boost_tasks;
 983
 984	/*
 985	 * We boost task t by manufacturing an rt_mutex that appears to
 986	 * be held by task t.  We leave a pointer to that rt_mutex where
 987	 * task t can find it, and task t will release the mutex when it
 988	 * exits its outermost RCU read-side critical section.  Then
 989	 * simply acquiring this artificial rt_mutex will boost task
 990	 * t's priority.  (Thanks to tglx for suggesting this approach!)
 991	 *
 992	 * Note that task t must acquire rnp->lock to remove itself from
 993	 * the ->blkd_tasks list, which it will do from exit() if from
 994	 * nowhere else.  We therefore are guaranteed that task t will
 995	 * stay around at least until we drop rnp->lock.  Note that
 996	 * rnp->lock also resolves races between our priority boosting
 997	 * and task t's exiting its outermost RCU read-side critical
 998	 * section.
 999	 */
1000	t = container_of(tb, struct task_struct, rcu_node_entry);
1001	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1002	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1003	/* Lock only for side effect: boosts task t's priority. */
1004	rt_mutex_lock(&rnp->boost_mtx);
1005	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
 
1006
1007	return READ_ONCE(rnp->exp_tasks) != NULL ||
1008	       READ_ONCE(rnp->boost_tasks) != NULL;
1009}
1010
1011/*
1012 * Priority-boosting kthread, one per leaf rcu_node.
1013 */
1014static int rcu_boost_kthread(void *arg)
1015{
1016	struct rcu_node *rnp = (struct rcu_node *)arg;
1017	int spincnt = 0;
1018	int more2boost;
1019
1020	trace_rcu_utilization(TPS("Start boost kthread@init"));
1021	for (;;) {
1022		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
1023		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1024		rcu_wait(READ_ONCE(rnp->boost_tasks) ||
1025			 READ_ONCE(rnp->exp_tasks));
1026		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1027		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
1028		more2boost = rcu_boost(rnp);
1029		if (more2boost)
1030			spincnt++;
1031		else
1032			spincnt = 0;
1033		if (spincnt > 10) {
1034			WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
1035			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1036			schedule_timeout_idle(2);
1037			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1038			spincnt = 0;
1039		}
1040	}
1041	/* NOTREACHED */
1042	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1043	return 0;
1044}
1045
1046/*
1047 * Check to see if it is time to start boosting RCU readers that are
1048 * blocking the current grace period, and, if so, tell the per-rcu_node
1049 * kthread to start boosting them.  If there is an expedited grace
1050 * period in progress, it is always time to boost.
1051 *
1052 * The caller must hold rnp->lock, which this function releases.
1053 * The ->boost_kthread_task is immortal, so we don't need to worry
1054 * about it going away.
1055 */
1056static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1057	__releases(rnp->lock)
1058{
1059	raw_lockdep_assert_held_rcu_node(rnp);
1060	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
 
1061		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1062		return;
1063	}
1064	if (rnp->exp_tasks != NULL ||
1065	    (rnp->gp_tasks != NULL &&
1066	     rnp->boost_tasks == NULL &&
1067	     rnp->qsmask == 0 &&
1068	     (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld))) {
 
1069		if (rnp->exp_tasks == NULL)
1070			WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks);
1071		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1072		rcu_wake_cond(rnp->boost_kthread_task,
1073			      READ_ONCE(rnp->boost_kthread_status));
1074	} else {
1075		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1076	}
1077}
1078
1079/*
1080 * Is the current CPU running the RCU-callbacks kthread?
1081 * Caller must have preemption disabled.
1082 */
1083static bool rcu_is_callbacks_kthread(void)
1084{
1085	return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
1086}
1087
1088#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1089
1090/*
1091 * Do priority-boost accounting for the start of a new grace period.
1092 */
1093static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1094{
1095	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1096}
1097
1098/*
1099 * Create an RCU-boost kthread for the specified node if one does not
1100 * already exist.  We only create this kthread for preemptible RCU.
1101 * Returns zero if all is well, a negated errno otherwise.
1102 */
1103static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1104{
 
1105	int rnp_index = rnp - rcu_get_root();
1106	unsigned long flags;
1107	struct sched_param sp;
1108	struct task_struct *t;
1109
1110	if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
1111		return;
1112
1113	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1114		return;
1115
1116	rcu_state.boost = 1;
1117
1118	if (rnp->boost_kthread_task != NULL)
1119		return;
1120
1121	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1122			   "rcub/%d", rnp_index);
1123	if (WARN_ON_ONCE(IS_ERR(t)))
1124		return;
1125
1126	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1127	rnp->boost_kthread_task = t;
1128	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1129	sp.sched_priority = kthread_prio;
1130	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1131	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1132}
1133
1134/*
1135 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1136 * served by the rcu_node in question.  The CPU hotplug lock is still
1137 * held, so the value of rnp->qsmaskinit will be stable.
1138 *
1139 * We don't include outgoingcpu in the affinity set, use -1 if there is
1140 * no outgoing CPU.  If there are no CPUs left in the affinity set,
1141 * this function allows the kthread to execute on any CPU.
1142 */
1143static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1144{
1145	struct task_struct *t = rnp->boost_kthread_task;
1146	unsigned long mask = rcu_rnp_online_cpus(rnp);
1147	cpumask_var_t cm;
1148	int cpu;
1149
1150	if (!t)
1151		return;
1152	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1153		return;
1154	for_each_leaf_node_possible_cpu(rnp, cpu)
1155		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1156		    cpu != outgoingcpu)
1157			cpumask_set_cpu(cpu, cm);
1158	if (cpumask_weight(cm) == 0)
1159		cpumask_setall(cm);
1160	set_cpus_allowed_ptr(t, cm);
1161	free_cpumask_var(cm);
1162}
1163
1164/*
1165 * Spawn boost kthreads -- called as soon as the scheduler is running.
1166 */
1167static void __init rcu_spawn_boost_kthreads(void)
1168{
1169	struct rcu_node *rnp;
1170
1171	rcu_for_each_leaf_node(rnp)
1172		rcu_spawn_one_boost_kthread(rnp);
1173}
1174
1175static void rcu_prepare_kthreads(int cpu)
1176{
1177	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1178	struct rcu_node *rnp = rdp->mynode;
1179
1180	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1181	if (rcu_scheduler_fully_active)
1182		rcu_spawn_one_boost_kthread(rnp);
1183}
1184
1185#else /* #ifdef CONFIG_RCU_BOOST */
1186
1187static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1188	__releases(rnp->lock)
1189{
1190	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1191}
1192
1193static bool rcu_is_callbacks_kthread(void)
1194{
1195	return false;
1196}
1197
1198static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1199{
1200}
1201
1202static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1203{
1204}
1205
1206static void __init rcu_spawn_boost_kthreads(void)
1207{
 
1208}
1209
1210static void rcu_prepare_kthreads(int cpu)
1211{
1212}
1213
1214#endif /* #else #ifdef CONFIG_RCU_BOOST */
1215
1216#if !defined(CONFIG_RCU_FAST_NO_HZ)
1217
1218/*
1219 * Check to see if any future non-offloaded RCU-related work will need
1220 * to be done by the current CPU, even if none need be done immediately,
1221 * returning 1 if so.  This function is part of the RCU implementation;
1222 * it is -not- an exported member of the RCU API.
1223 *
1224 * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1225 * CPU has RCU callbacks queued.
1226 */
1227int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1228{
1229	*nextevt = KTIME_MAX;
1230	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1231	       !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist);
1232}
1233
1234/*
1235 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1236 * after it.
1237 */
1238static void rcu_cleanup_after_idle(void)
1239{
1240}
1241
1242/*
1243 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1244 * is nothing.
1245 */
1246static void rcu_prepare_for_idle(void)
1247{
1248}
1249
1250#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1251
1252/*
1253 * This code is invoked when a CPU goes idle, at which point we want
1254 * to have the CPU do everything required for RCU so that it can enter
1255 * the energy-efficient dyntick-idle mode.
1256 *
1257 * The following preprocessor symbol controls this:
1258 *
1259 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1260 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1261 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1262 *	benchmarkers who might otherwise be tempted to set this to a large
1263 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1264 *	system.  And if you are -that- concerned about energy efficiency,
1265 *	just power the system down and be done with it!
1266 *
1267 * The value below works well in practice.  If future workloads require
1268 * adjustment, they can be converted into kernel config parameters, though
1269 * making the state machine smarter might be a better option.
1270 */
1271#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1272
1273static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1274module_param(rcu_idle_gp_delay, int, 0644);
1275
1276/*
1277 * Try to advance callbacks on the current CPU, but only if it has been
1278 * awhile since the last time we did so.  Afterwards, if there are any
1279 * callbacks ready for immediate invocation, return true.
1280 */
1281static bool __maybe_unused rcu_try_advance_all_cbs(void)
1282{
1283	bool cbs_ready = false;
1284	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1285	struct rcu_node *rnp;
1286
1287	/* Exit early if we advanced recently. */
1288	if (jiffies == rdp->last_advance_all)
1289		return false;
1290	rdp->last_advance_all = jiffies;
1291
1292	rnp = rdp->mynode;
1293
1294	/*
1295	 * Don't bother checking unless a grace period has
1296	 * completed since we last checked and there are
1297	 * callbacks not yet ready to invoke.
1298	 */
1299	if ((rcu_seq_completed_gp(rdp->gp_seq,
1300				  rcu_seq_current(&rnp->gp_seq)) ||
1301	     unlikely(READ_ONCE(rdp->gpwrap))) &&
1302	    rcu_segcblist_pend_cbs(&rdp->cblist))
1303		note_gp_changes(rdp);
1304
1305	if (rcu_segcblist_ready_cbs(&rdp->cblist))
1306		cbs_ready = true;
1307	return cbs_ready;
1308}
1309
1310/*
1311 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1312 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1313 * caller about what to set the timeout.
1314 *
1315 * The caller must have disabled interrupts.
1316 */
1317int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1318{
1319	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1320	unsigned long dj;
1321
1322	lockdep_assert_irqs_disabled();
1323
1324	/* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1325	if (rcu_segcblist_empty(&rdp->cblist) ||
1326	    rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) {
1327		*nextevt = KTIME_MAX;
1328		return 0;
1329	}
1330
1331	/* Attempt to advance callbacks. */
1332	if (rcu_try_advance_all_cbs()) {
1333		/* Some ready to invoke, so initiate later invocation. */
1334		invoke_rcu_core();
1335		return 1;
1336	}
1337	rdp->last_accelerate = jiffies;
1338
1339	/* Request timer and round. */
1340	dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies;
1341
1342	*nextevt = basemono + dj * TICK_NSEC;
1343	return 0;
1344}
1345
1346/*
1347 * Prepare a CPU for idle from an RCU perspective.  The first major task is to
1348 * sense whether nohz mode has been enabled or disabled via sysfs.  The second
1349 * major task is to accelerate (that is, assign grace-period numbers to) any
1350 * recently arrived callbacks.
1351 *
1352 * The caller must have disabled interrupts.
1353 */
1354static void rcu_prepare_for_idle(void)
1355{
1356	bool needwake;
1357	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1358	struct rcu_node *rnp;
1359	int tne;
1360
1361	lockdep_assert_irqs_disabled();
1362	if (rcu_segcblist_is_offloaded(&rdp->cblist))
1363		return;
1364
1365	/* Handle nohz enablement switches conservatively. */
1366	tne = READ_ONCE(tick_nohz_active);
1367	if (tne != rdp->tick_nohz_enabled_snap) {
1368		if (!rcu_segcblist_empty(&rdp->cblist))
1369			invoke_rcu_core(); /* force nohz to see update. */
1370		rdp->tick_nohz_enabled_snap = tne;
1371		return;
1372	}
1373	if (!tne)
1374		return;
1375
1376	/*
1377	 * If we have not yet accelerated this jiffy, accelerate all
1378	 * callbacks on this CPU.
1379	 */
1380	if (rdp->last_accelerate == jiffies)
1381		return;
1382	rdp->last_accelerate = jiffies;
1383	if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
1384		rnp = rdp->mynode;
1385		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1386		needwake = rcu_accelerate_cbs(rnp, rdp);
1387		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1388		if (needwake)
1389			rcu_gp_kthread_wake();
1390	}
1391}
1392
1393/*
1394 * Clean up for exit from idle.  Attempt to advance callbacks based on
1395 * any grace periods that elapsed while the CPU was idle, and if any
1396 * callbacks are now ready to invoke, initiate invocation.
1397 */
1398static void rcu_cleanup_after_idle(void)
1399{
1400	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1401
1402	lockdep_assert_irqs_disabled();
1403	if (rcu_segcblist_is_offloaded(&rdp->cblist))
1404		return;
1405	if (rcu_try_advance_all_cbs())
1406		invoke_rcu_core();
1407}
1408
1409#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1410
1411#ifdef CONFIG_RCU_NOCB_CPU
1412
1413/*
1414 * Offload callback processing from the boot-time-specified set of CPUs
1415 * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
1416 * created that pull the callbacks from the corresponding CPU, wait for
1417 * a grace period to elapse, and invoke the callbacks.  These kthreads
1418 * are organized into GP kthreads, which manage incoming callbacks, wait for
1419 * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1420 * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
1421 * do a wake_up() on their GP kthread when they insert a callback into any
1422 * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1423 * in which case each kthread actively polls its CPU.  (Which isn't so great
1424 * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
1425 *
1426 * This is intended to be used in conjunction with Frederic Weisbecker's
1427 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1428 * running CPU-bound user-mode computations.
1429 *
1430 * Offloading of callbacks can also be used as an energy-efficiency
1431 * measure because CPUs with no RCU callbacks queued are more aggressive
1432 * about entering dyntick-idle mode.
1433 */
1434
1435
1436/*
1437 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1438 * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1439 * comma-separated list of CPUs and/or CPU ranges.  If an invalid list is
1440 * given, a warning is emitted and all CPUs are offloaded.
1441 */
1442static int __init rcu_nocb_setup(char *str)
1443{
1444	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1445	if (!strcasecmp(str, "all"))
1446		cpumask_setall(rcu_nocb_mask);
1447	else
1448		if (cpulist_parse(str, rcu_nocb_mask)) {
1449			pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1450			cpumask_setall(rcu_nocb_mask);
1451		}
1452	return 1;
1453}
1454__setup("rcu_nocbs=", rcu_nocb_setup);
1455
1456static int __init parse_rcu_nocb_poll(char *arg)
1457{
1458	rcu_nocb_poll = true;
1459	return 0;
1460}
1461early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1462
1463/*
1464 * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1465 * After all, the main point of bypassing is to avoid lock contention
1466 * on ->nocb_lock, which only can happen at high call_rcu() rates.
1467 */
1468int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
1469module_param(nocb_nobypass_lim_per_jiffy, int, 0);
1470
1471/*
1472 * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
1473 * lock isn't immediately available, increment ->nocb_lock_contended to
1474 * flag the contention.
1475 */
1476static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
1477	__acquires(&rdp->nocb_bypass_lock)
1478{
1479	lockdep_assert_irqs_disabled();
1480	if (raw_spin_trylock(&rdp->nocb_bypass_lock))
1481		return;
1482	atomic_inc(&rdp->nocb_lock_contended);
1483	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1484	smp_mb__after_atomic(); /* atomic_inc() before lock. */
1485	raw_spin_lock(&rdp->nocb_bypass_lock);
1486	smp_mb__before_atomic(); /* atomic_dec() after lock. */
1487	atomic_dec(&rdp->nocb_lock_contended);
1488}
1489
1490/*
1491 * Spinwait until the specified rcu_data structure's ->nocb_lock is
1492 * not contended.  Please note that this is extremely special-purpose,
1493 * relying on the fact that at most two kthreads and one CPU contend for
1494 * this lock, and also that the two kthreads are guaranteed to have frequent
1495 * grace-period-duration time intervals between successive acquisitions
1496 * of the lock.  This allows us to use an extremely simple throttling
1497 * mechanism, and further to apply it only to the CPU doing floods of
1498 * call_rcu() invocations.  Don't try this at home!
1499 */
1500static void rcu_nocb_wait_contended(struct rcu_data *rdp)
1501{
1502	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1503	while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
1504		cpu_relax();
1505}
1506
1507/*
1508 * Conditionally acquire the specified rcu_data structure's
1509 * ->nocb_bypass_lock.
1510 */
1511static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
1512{
1513	lockdep_assert_irqs_disabled();
1514	return raw_spin_trylock(&rdp->nocb_bypass_lock);
1515}
1516
1517/*
1518 * Release the specified rcu_data structure's ->nocb_bypass_lock.
1519 */
1520static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
1521	__releases(&rdp->nocb_bypass_lock)
1522{
1523	lockdep_assert_irqs_disabled();
1524	raw_spin_unlock(&rdp->nocb_bypass_lock);
1525}
1526
1527/*
1528 * Acquire the specified rcu_data structure's ->nocb_lock, but only
1529 * if it corresponds to a no-CBs CPU.
1530 */
1531static void rcu_nocb_lock(struct rcu_data *rdp)
1532{
1533	lockdep_assert_irqs_disabled();
1534	if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1535		return;
1536	raw_spin_lock(&rdp->nocb_lock);
1537}
1538
1539/*
1540 * Release the specified rcu_data structure's ->nocb_lock, but only
1541 * if it corresponds to a no-CBs CPU.
1542 */
1543static void rcu_nocb_unlock(struct rcu_data *rdp)
1544{
1545	if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1546		lockdep_assert_irqs_disabled();
1547		raw_spin_unlock(&rdp->nocb_lock);
1548	}
1549}
1550
1551/*
1552 * Release the specified rcu_data structure's ->nocb_lock and restore
1553 * interrupts, but only if it corresponds to a no-CBs CPU.
1554 */
1555static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1556				       unsigned long flags)
1557{
1558	if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1559		lockdep_assert_irqs_disabled();
1560		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1561	} else {
1562		local_irq_restore(flags);
1563	}
1564}
1565
1566/* Lockdep check that ->cblist may be safely accessed. */
1567static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1568{
1569	lockdep_assert_irqs_disabled();
1570	if (rcu_segcblist_is_offloaded(&rdp->cblist))
1571		lockdep_assert_held(&rdp->nocb_lock);
1572}
1573
1574/*
1575 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1576 * grace period.
1577 */
1578static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1579{
1580	swake_up_all(sq);
1581}
1582
1583static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1584{
1585	return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
1586}
1587
1588static void rcu_init_one_nocb(struct rcu_node *rnp)
1589{
1590	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1591	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1592}
1593
1594/* Is the specified CPU a no-CBs CPU? */
1595bool rcu_is_nocb_cpu(int cpu)
1596{
1597	if (cpumask_available(rcu_nocb_mask))
1598		return cpumask_test_cpu(cpu, rcu_nocb_mask);
1599	return false;
1600}
1601
1602/*
1603 * Kick the GP kthread for this NOCB group.  Caller holds ->nocb_lock
1604 * and this function releases it.
1605 */
1606static void wake_nocb_gp(struct rcu_data *rdp, bool force,
1607			   unsigned long flags)
1608	__releases(rdp->nocb_lock)
1609{
1610	bool needwake = false;
1611	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1612
1613	lockdep_assert_held(&rdp->nocb_lock);
1614	if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
1615		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1616				    TPS("AlreadyAwake"));
1617		rcu_nocb_unlock_irqrestore(rdp, flags);
1618		return;
1619	}
1620	del_timer(&rdp->nocb_timer);
1621	rcu_nocb_unlock_irqrestore(rdp, flags);
1622	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1623	if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
1624		WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
1625		needwake = true;
1626		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
1627	}
1628	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1629	if (needwake)
1630		wake_up_process(rdp_gp->nocb_gp_kthread);
1631}
1632
1633/*
1634 * Arrange to wake the GP kthread for this NOCB group at some future
1635 * time when it is safe to do so.
1636 */
1637static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
1638			       const char *reason)
1639{
1640	if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1641		mod_timer(&rdp->nocb_timer, jiffies + 1);
1642	if (rdp->nocb_defer_wakeup < waketype)
1643		WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1644	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
1645}
1646
1647/*
1648 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1649 * However, if there is a callback to be enqueued and if ->nocb_bypass
1650 * proves to be initially empty, just return false because the no-CB GP
1651 * kthread may need to be awakened in this case.
1652 *
1653 * Note that this function always returns true if rhp is NULL.
1654 */
1655static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1656				     unsigned long j)
1657{
1658	struct rcu_cblist rcl;
1659
1660	WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist));
1661	rcu_lockdep_assert_cblist_protected(rdp);
1662	lockdep_assert_held(&rdp->nocb_bypass_lock);
1663	if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
1664		raw_spin_unlock(&rdp->nocb_bypass_lock);
1665		return false;
1666	}
1667	/* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1668	if (rhp)
1669		rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1670	rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
1671	rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
1672	WRITE_ONCE(rdp->nocb_bypass_first, j);
1673	rcu_nocb_bypass_unlock(rdp);
1674	return true;
1675}
1676
1677/*
1678 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1679 * However, if there is a callback to be enqueued and if ->nocb_bypass
1680 * proves to be initially empty, just return false because the no-CB GP
1681 * kthread may need to be awakened in this case.
1682 *
1683 * Note that this function always returns true if rhp is NULL.
1684 */
1685static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1686				  unsigned long j)
1687{
1688	if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1689		return true;
1690	rcu_lockdep_assert_cblist_protected(rdp);
1691	rcu_nocb_bypass_lock(rdp);
1692	return rcu_nocb_do_flush_bypass(rdp, rhp, j);
1693}
1694
1695/*
1696 * If the ->nocb_bypass_lock is immediately available, flush the
1697 * ->nocb_bypass queue into ->cblist.
1698 */
1699static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
1700{
1701	rcu_lockdep_assert_cblist_protected(rdp);
1702	if (!rcu_segcblist_is_offloaded(&rdp->cblist) ||
1703	    !rcu_nocb_bypass_trylock(rdp))
1704		return;
1705	WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
1706}
1707
1708/*
1709 * See whether it is appropriate to use the ->nocb_bypass list in order
1710 * to control contention on ->nocb_lock.  A limited number of direct
1711 * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
1712 * is non-empty, further callbacks must be placed into ->nocb_bypass,
1713 * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
1714 * back to direct use of ->cblist.  However, ->nocb_bypass should not be
1715 * used if ->cblist is empty, because otherwise callbacks can be stranded
1716 * on ->nocb_bypass because we cannot count on the current CPU ever again
1717 * invoking call_rcu().  The general rule is that if ->nocb_bypass is
1718 * non-empty, the corresponding no-CBs grace-period kthread must not be
1719 * in an indefinite sleep state.
1720 *
1721 * Finally, it is not permitted to use the bypass during early boot,
1722 * as doing so would confuse the auto-initialization code.  Besides
1723 * which, there is no point in worrying about lock contention while
1724 * there is only one CPU in operation.
1725 */
1726static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1727				bool *was_alldone, unsigned long flags)
1728{
1729	unsigned long c;
1730	unsigned long cur_gp_seq;
1731	unsigned long j = jiffies;
1732	long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1733
1734	if (!rcu_segcblist_is_offloaded(&rdp->cblist)) {
1735		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1736		return false; /* Not offloaded, no bypassing. */
1737	}
1738	lockdep_assert_irqs_disabled();
1739
1740	// Don't use ->nocb_bypass during early boot.
1741	if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
1742		rcu_nocb_lock(rdp);
1743		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1744		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1745		return false;
1746	}
1747
1748	// If we have advanced to a new jiffy, reset counts to allow
1749	// moving back from ->nocb_bypass to ->cblist.
1750	if (j == rdp->nocb_nobypass_last) {
1751		c = rdp->nocb_nobypass_count + 1;
1752	} else {
1753		WRITE_ONCE(rdp->nocb_nobypass_last, j);
1754		c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
1755		if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
1756				 nocb_nobypass_lim_per_jiffy))
1757			c = 0;
1758		else if (c > nocb_nobypass_lim_per_jiffy)
1759			c = nocb_nobypass_lim_per_jiffy;
1760	}
1761	WRITE_ONCE(rdp->nocb_nobypass_count, c);
1762
1763	// If there hasn't yet been all that many ->cblist enqueues
1764	// this jiffy, tell the caller to enqueue onto ->cblist.  But flush
1765	// ->nocb_bypass first.
1766	if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
1767		rcu_nocb_lock(rdp);
1768		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1769		if (*was_alldone)
1770			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1771					    TPS("FirstQ"));
1772		WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
1773		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1774		return false; // Caller must enqueue the callback.
1775	}
1776
1777	// If ->nocb_bypass has been used too long or is too full,
1778	// flush ->nocb_bypass to ->cblist.
1779	if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
1780	    ncbs >= qhimark) {
1781		rcu_nocb_lock(rdp);
1782		if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
1783			*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1784			if (*was_alldone)
1785				trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1786						    TPS("FirstQ"));
1787			WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1788			return false; // Caller must enqueue the callback.
1789		}
1790		if (j != rdp->nocb_gp_adv_time &&
1791		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1792		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1793			rcu_advance_cbs_nowake(rdp->mynode, rdp);
1794			rdp->nocb_gp_adv_time = j;
1795		}
1796		rcu_nocb_unlock_irqrestore(rdp, flags);
1797		return true; // Callback already enqueued.
1798	}
1799
1800	// We need to use the bypass.
1801	rcu_nocb_wait_contended(rdp);
1802	rcu_nocb_bypass_lock(rdp);
1803	ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1804	rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1805	rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
1806	if (!ncbs) {
1807		WRITE_ONCE(rdp->nocb_bypass_first, j);
1808		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
1809	}
1810	rcu_nocb_bypass_unlock(rdp);
1811	smp_mb(); /* Order enqueue before wake. */
1812	if (ncbs) {
1813		local_irq_restore(flags);
1814	} else {
1815		// No-CBs GP kthread might be indefinitely asleep, if so, wake.
1816		rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
1817		if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
1818			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1819					    TPS("FirstBQwake"));
1820			__call_rcu_nocb_wake(rdp, true, flags);
1821		} else {
1822			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1823					    TPS("FirstBQnoWake"));
1824			rcu_nocb_unlock_irqrestore(rdp, flags);
1825		}
1826	}
1827	return true; // Callback already enqueued.
1828}
1829
1830/*
1831 * Awaken the no-CBs grace-period kthead if needed, either due to it
1832 * legitimately being asleep or due to overload conditions.
1833 *
1834 * If warranted, also wake up the kthread servicing this CPUs queues.
1835 */
1836static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
1837				 unsigned long flags)
1838				 __releases(rdp->nocb_lock)
1839{
1840	unsigned long cur_gp_seq;
1841	unsigned long j;
1842	long len;
1843	struct task_struct *t;
1844
1845	// If we are being polled or there is no kthread, just leave.
1846	t = READ_ONCE(rdp->nocb_gp_kthread);
1847	if (rcu_nocb_poll || !t) {
1848		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1849				    TPS("WakeNotPoll"));
1850		rcu_nocb_unlock_irqrestore(rdp, flags);
1851		return;
1852	}
1853	// Need to actually to a wakeup.
1854	len = rcu_segcblist_n_cbs(&rdp->cblist);
1855	if (was_alldone) {
1856		rdp->qlen_last_fqs_check = len;
1857		if (!irqs_disabled_flags(flags)) {
1858			/* ... if queue was empty ... */
1859			wake_nocb_gp(rdp, false, flags);
1860			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1861					    TPS("WakeEmpty"));
1862		} else {
1863			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
1864					   TPS("WakeEmptyIsDeferred"));
1865			rcu_nocb_unlock_irqrestore(rdp, flags);
1866		}
1867	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1868		/* ... or if many callbacks queued. */
1869		rdp->qlen_last_fqs_check = len;
1870		j = jiffies;
1871		if (j != rdp->nocb_gp_adv_time &&
1872		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1873		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1874			rcu_advance_cbs_nowake(rdp->mynode, rdp);
1875			rdp->nocb_gp_adv_time = j;
1876		}
1877		smp_mb(); /* Enqueue before timer_pending(). */
1878		if ((rdp->nocb_cb_sleep ||
1879		     !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
1880		    !timer_pending(&rdp->nocb_bypass_timer))
1881			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
1882					   TPS("WakeOvfIsDeferred"));
1883		rcu_nocb_unlock_irqrestore(rdp, flags);
1884	} else {
1885		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
1886		rcu_nocb_unlock_irqrestore(rdp, flags);
1887	}
1888	return;
1889}
1890
1891/* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */
1892static void do_nocb_bypass_wakeup_timer(struct timer_list *t)
1893{
1894	unsigned long flags;
1895	struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer);
1896
1897	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1898	rcu_nocb_lock_irqsave(rdp, flags);
1899	smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1900	__call_rcu_nocb_wake(rdp, true, flags);
1901}
1902
1903/*
1904 * No-CBs GP kthreads come here to wait for additional callbacks to show up
1905 * or for grace periods to end.
1906 */
1907static void nocb_gp_wait(struct rcu_data *my_rdp)
1908{
1909	bool bypass = false;
1910	long bypass_ncbs;
1911	int __maybe_unused cpu = my_rdp->cpu;
1912	unsigned long cur_gp_seq;
1913	unsigned long flags;
1914	bool gotcbs = false;
1915	unsigned long j = jiffies;
1916	bool needwait_gp = false; // This prevents actual uninitialized use.
1917	bool needwake;
1918	bool needwake_gp;
1919	struct rcu_data *rdp;
1920	struct rcu_node *rnp;
1921	unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
1922	bool wasempty = false;
1923
1924	/*
1925	 * Each pass through the following loop checks for CBs and for the
1926	 * nearest grace period (if any) to wait for next.  The CB kthreads
1927	 * and the global grace-period kthread are awakened if needed.
1928	 */
1929	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
1930		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
1931		rcu_nocb_lock_irqsave(rdp, flags);
1932		bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1933		if (bypass_ncbs &&
1934		    (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
1935		     bypass_ncbs > 2 * qhimark)) {
1936			// Bypass full or old, so flush it.
1937			(void)rcu_nocb_try_flush_bypass(rdp, j);
1938			bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1939		} else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
1940			rcu_nocb_unlock_irqrestore(rdp, flags);
1941			continue; /* No callbacks here, try next. */
1942		}
1943		if (bypass_ncbs) {
1944			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1945					    TPS("Bypass"));
1946			bypass = true;
1947		}
1948		rnp = rdp->mynode;
1949		if (bypass) {  // Avoid race with first bypass CB.
1950			WRITE_ONCE(my_rdp->nocb_defer_wakeup,
1951				   RCU_NOCB_WAKE_NOT);
1952			del_timer(&my_rdp->nocb_timer);
1953		}
1954		// Advance callbacks if helpful and low contention.
1955		needwake_gp = false;
1956		if (!rcu_segcblist_restempty(&rdp->cblist,
1957					     RCU_NEXT_READY_TAIL) ||
1958		    (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1959		     rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
1960			raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
1961			needwake_gp = rcu_advance_cbs(rnp, rdp);
1962			wasempty = rcu_segcblist_restempty(&rdp->cblist,
1963							   RCU_NEXT_READY_TAIL);
1964			raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
1965		}
1966		// Need to wait on some grace period?
1967		WARN_ON_ONCE(wasempty &&
1968			     !rcu_segcblist_restempty(&rdp->cblist,
1969						      RCU_NEXT_READY_TAIL));
1970		if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
1971			if (!needwait_gp ||
1972			    ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
1973				wait_gp_seq = cur_gp_seq;
1974			needwait_gp = true;
1975			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1976					    TPS("NeedWaitGP"));
1977		}
1978		if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
1979			needwake = rdp->nocb_cb_sleep;
1980			WRITE_ONCE(rdp->nocb_cb_sleep, false);
1981			smp_mb(); /* CB invocation -after- GP end. */
1982		} else {
1983			needwake = false;
1984		}
1985		rcu_nocb_unlock_irqrestore(rdp, flags);
1986		if (needwake) {
1987			swake_up_one(&rdp->nocb_cb_wq);
1988			gotcbs = true;
1989		}
1990		if (needwake_gp)
1991			rcu_gp_kthread_wake();
1992	}
1993
1994	my_rdp->nocb_gp_bypass = bypass;
1995	my_rdp->nocb_gp_gp = needwait_gp;
1996	my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
1997	if (bypass && !rcu_nocb_poll) {
1998		// At least one child with non-empty ->nocb_bypass, so set
1999		// timer in order to avoid stranding its callbacks.
2000		raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2001		mod_timer(&my_rdp->nocb_bypass_timer, j + 2);
2002		raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2003	}
2004	if (rcu_nocb_poll) {
2005		/* Polling, so trace if first poll in the series. */
2006		if (gotcbs)
2007			trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
2008		schedule_timeout_idle(1);
2009	} else if (!needwait_gp) {
2010		/* Wait for callbacks to appear. */
2011		trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
2012		swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
2013				!READ_ONCE(my_rdp->nocb_gp_sleep));
2014		trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
2015	} else {
2016		rnp = my_rdp->mynode;
2017		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
2018		swait_event_interruptible_exclusive(
2019			rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
2020			rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
2021			!READ_ONCE(my_rdp->nocb_gp_sleep));
2022		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
2023	}
2024	if (!rcu_nocb_poll) {
2025		raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2026		if (bypass)
2027			del_timer(&my_rdp->nocb_bypass_timer);
2028		WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
2029		raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2030	}
2031	my_rdp->nocb_gp_seq = -1;
2032	WARN_ON(signal_pending(current));
2033}
2034
2035/*
2036 * No-CBs grace-period-wait kthread.  There is one of these per group
2037 * of CPUs, but only once at least one CPU in that group has come online
2038 * at least once since boot.  This kthread checks for newly posted
2039 * callbacks from any of the CPUs it is responsible for, waits for a
2040 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2041 * that then have callback-invocation work to do.
2042 */
2043static int rcu_nocb_gp_kthread(void *arg)
2044{
2045	struct rcu_data *rdp = arg;
2046
2047	for (;;) {
2048		WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
2049		nocb_gp_wait(rdp);
2050		cond_resched_tasks_rcu_qs();
2051	}
2052	return 0;
2053}
2054
2055/*
2056 * Invoke any ready callbacks from the corresponding no-CBs CPU,
2057 * then, if there are no more, wait for more to appear.
2058 */
2059static void nocb_cb_wait(struct rcu_data *rdp)
2060{
2061	unsigned long cur_gp_seq;
2062	unsigned long flags;
2063	bool needwake_gp = false;
2064	struct rcu_node *rnp = rdp->mynode;
2065
2066	local_irq_save(flags);
2067	rcu_momentary_dyntick_idle();
2068	local_irq_restore(flags);
2069	local_bh_disable();
2070	rcu_do_batch(rdp);
2071	local_bh_enable();
2072	lockdep_assert_irqs_enabled();
2073	rcu_nocb_lock_irqsave(rdp, flags);
2074	if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
2075	    rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
2076	    raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
2077		needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
2078		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2079	}
2080	if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2081		rcu_nocb_unlock_irqrestore(rdp, flags);
2082		if (needwake_gp)
2083			rcu_gp_kthread_wake();
2084		return;
2085	}
2086
2087	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
2088	WRITE_ONCE(rdp->nocb_cb_sleep, true);
2089	rcu_nocb_unlock_irqrestore(rdp, flags);
2090	if (needwake_gp)
2091		rcu_gp_kthread_wake();
2092	swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
2093				 !READ_ONCE(rdp->nocb_cb_sleep));
2094	if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */
2095		/* ^^^ Ensure CB invocation follows _sleep test. */
2096		return;
2097	}
2098	WARN_ON(signal_pending(current));
2099	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
2100}
2101
2102/*
2103 * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
2104 * nocb_cb_wait() to do the dirty work.
2105 */
2106static int rcu_nocb_cb_kthread(void *arg)
2107{
2108	struct rcu_data *rdp = arg;
2109
2110	// Each pass through this loop does one callback batch, and,
2111	// if there are no more ready callbacks, waits for them.
2112	for (;;) {
2113		nocb_cb_wait(rdp);
2114		cond_resched_tasks_rcu_qs();
2115	}
2116	return 0;
2117}
2118
2119/* Is a deferred wakeup of rcu_nocb_kthread() required? */
2120static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2121{
2122	return READ_ONCE(rdp->nocb_defer_wakeup);
2123}
2124
2125/* Do a deferred wakeup of rcu_nocb_kthread(). */
2126static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2127{
2128	unsigned long flags;
2129	int ndw;
2130
2131	rcu_nocb_lock_irqsave(rdp, flags);
2132	if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2133		rcu_nocb_unlock_irqrestore(rdp, flags);
2134		return;
2135	}
2136	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2137	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2138	wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2139	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
2140}
2141
2142/* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2143static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2144{
2145	struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2146
2147	do_nocb_deferred_wakeup_common(rdp);
2148}
2149
2150/*
2151 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2152 * This means we do an inexact common-case check.  Note that if
2153 * we miss, ->nocb_timer will eventually clean things up.
2154 */
2155static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2156{
2157	if (rcu_nocb_need_deferred_wakeup(rdp))
2158		do_nocb_deferred_wakeup_common(rdp);
2159}
2160
2161void __init rcu_init_nohz(void)
2162{
2163	int cpu;
2164	bool need_rcu_nocb_mask = false;
2165	struct rcu_data *rdp;
2166
2167#if defined(CONFIG_NO_HZ_FULL)
2168	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2169		need_rcu_nocb_mask = true;
2170#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2171
2172	if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2173		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2174			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2175			return;
2176		}
2177	}
2178	if (!cpumask_available(rcu_nocb_mask))
2179		return;
2180
2181#if defined(CONFIG_NO_HZ_FULL)
2182	if (tick_nohz_full_running)
2183		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2184#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2185
2186	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2187		pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2188		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2189			    rcu_nocb_mask);
2190	}
2191	if (cpumask_empty(rcu_nocb_mask))
2192		pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2193	else
2194		pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2195			cpumask_pr_args(rcu_nocb_mask));
2196	if (rcu_nocb_poll)
2197		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2198
2199	for_each_cpu(cpu, rcu_nocb_mask) {
2200		rdp = per_cpu_ptr(&rcu_data, cpu);
2201		if (rcu_segcblist_empty(&rdp->cblist))
2202			rcu_segcblist_init(&rdp->cblist);
2203		rcu_segcblist_offload(&rdp->cblist);
2204	}
2205	rcu_organize_nocb_kthreads();
2206}
2207
2208/* Initialize per-rcu_data variables for no-CBs CPUs. */
2209static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2210{
2211	init_swait_queue_head(&rdp->nocb_cb_wq);
2212	init_swait_queue_head(&rdp->nocb_gp_wq);
2213	raw_spin_lock_init(&rdp->nocb_lock);
2214	raw_spin_lock_init(&rdp->nocb_bypass_lock);
2215	raw_spin_lock_init(&rdp->nocb_gp_lock);
2216	timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2217	timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0);
2218	rcu_cblist_init(&rdp->nocb_bypass);
2219}
2220
2221/*
2222 * If the specified CPU is a no-CBs CPU that does not already have its
2223 * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
2224 * for this CPU's group has not yet been created, spawn it as well.
2225 */
2226static void rcu_spawn_one_nocb_kthread(int cpu)
2227{
2228	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2229	struct rcu_data *rdp_gp;
2230	struct task_struct *t;
2231
2232	/*
2233	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2234	 * then nothing to do.
2235	 */
2236	if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
2237		return;
2238
2239	/* If we didn't spawn the GP kthread first, reorganize! */
2240	rdp_gp = rdp->nocb_gp_rdp;
2241	if (!rdp_gp->nocb_gp_kthread) {
2242		t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
2243				"rcuog/%d", rdp_gp->cpu);
2244		if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
2245			return;
2246		WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
2247	}
2248
2249	/* Spawn the kthread for this CPU. */
2250	t = kthread_run(rcu_nocb_cb_kthread, rdp,
2251			"rcuo%c/%d", rcu_state.abbr, cpu);
2252	if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
2253		return;
2254	WRITE_ONCE(rdp->nocb_cb_kthread, t);
2255	WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
2256}
2257
2258/*
2259 * If the specified CPU is a no-CBs CPU that does not already have its
2260 * rcuo kthread, spawn it.
2261 */
2262static void rcu_spawn_cpu_nocb_kthread(int cpu)
2263{
2264	if (rcu_scheduler_fully_active)
2265		rcu_spawn_one_nocb_kthread(cpu);
2266}
2267
2268/*
2269 * Once the scheduler is running, spawn rcuo kthreads for all online
2270 * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2271 * non-boot CPUs come online -- if this changes, we will need to add
2272 * some mutual exclusion.
2273 */
2274static void __init rcu_spawn_nocb_kthreads(void)
2275{
2276	int cpu;
2277
2278	for_each_online_cpu(cpu)
2279		rcu_spawn_cpu_nocb_kthread(cpu);
2280}
2281
2282/* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
2283static int rcu_nocb_gp_stride = -1;
2284module_param(rcu_nocb_gp_stride, int, 0444);
2285
2286/*
2287 * Initialize GP-CB relationships for all no-CBs CPU.
2288 */
2289static void __init rcu_organize_nocb_kthreads(void)
2290{
2291	int cpu;
2292	bool firsttime = true;
2293	bool gotnocbs = false;
2294	bool gotnocbscbs = true;
2295	int ls = rcu_nocb_gp_stride;
2296	int nl = 0;  /* Next GP kthread. */
2297	struct rcu_data *rdp;
2298	struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
2299	struct rcu_data *rdp_prev = NULL;
2300
2301	if (!cpumask_available(rcu_nocb_mask))
2302		return;
2303	if (ls == -1) {
2304		ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
2305		rcu_nocb_gp_stride = ls;
2306	}
2307
2308	/*
2309	 * Each pass through this loop sets up one rcu_data structure.
2310	 * Should the corresponding CPU come online in the future, then
2311	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2312	 */
2313	for_each_cpu(cpu, rcu_nocb_mask) {
2314		rdp = per_cpu_ptr(&rcu_data, cpu);
2315		if (rdp->cpu >= nl) {
2316			/* New GP kthread, set up for CBs & next GP. */
2317			gotnocbs = true;
2318			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2319			rdp->nocb_gp_rdp = rdp;
2320			rdp_gp = rdp;
2321			if (dump_tree) {
2322				if (!firsttime)
2323					pr_cont("%s\n", gotnocbscbs
2324							? "" : " (self only)");
2325				gotnocbscbs = false;
2326				firsttime = false;
2327				pr_alert("%s: No-CB GP kthread CPU %d:",
2328					 __func__, cpu);
2329			}
2330		} else {
2331			/* Another CB kthread, link to previous GP kthread. */
2332			gotnocbscbs = true;
2333			rdp->nocb_gp_rdp = rdp_gp;
2334			rdp_prev->nocb_next_cb_rdp = rdp;
2335			if (dump_tree)
2336				pr_cont(" %d", cpu);
2337		}
2338		rdp_prev = rdp;
2339	}
2340	if (gotnocbs && dump_tree)
2341		pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
2342}
2343
2344/*
2345 * Bind the current task to the offloaded CPUs.  If there are no offloaded
2346 * CPUs, leave the task unbound.  Splat if the bind attempt fails.
2347 */
2348void rcu_bind_current_to_nocb(void)
2349{
2350	if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2351		WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2352}
2353EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2354
2355/*
2356 * Dump out nocb grace-period kthread state for the specified rcu_data
2357 * structure.
2358 */
2359static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
2360{
2361	struct rcu_node *rnp = rdp->mynode;
2362
2363	pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n",
2364		rdp->cpu,
2365		"kK"[!!rdp->nocb_gp_kthread],
2366		"lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
2367		"dD"[!!rdp->nocb_defer_wakeup],
2368		"tT"[timer_pending(&rdp->nocb_timer)],
2369		"bB"[timer_pending(&rdp->nocb_bypass_timer)],
2370		"sS"[!!rdp->nocb_gp_sleep],
2371		".W"[swait_active(&rdp->nocb_gp_wq)],
2372		".W"[swait_active(&rnp->nocb_gp_wq[0])],
2373		".W"[swait_active(&rnp->nocb_gp_wq[1])],
2374		".B"[!!rdp->nocb_gp_bypass],
2375		".G"[!!rdp->nocb_gp_gp],
2376		(long)rdp->nocb_gp_seq,
2377		rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops));
2378}
2379
2380/* Dump out nocb kthread state for the specified rcu_data structure. */
2381static void show_rcu_nocb_state(struct rcu_data *rdp)
2382{
2383	struct rcu_segcblist *rsclp = &rdp->cblist;
2384	bool waslocked;
2385	bool wastimer;
2386	bool wassleep;
2387
2388	if (rdp->nocb_gp_rdp == rdp)
2389		show_rcu_nocb_gp_state(rdp);
2390
2391	pr_info("   CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n",
2392		rdp->cpu, rdp->nocb_gp_rdp->cpu,
2393		"kK"[!!rdp->nocb_cb_kthread],
2394		"bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
2395		"cC"[!!atomic_read(&rdp->nocb_lock_contended)],
2396		"lL"[raw_spin_is_locked(&rdp->nocb_lock)],
2397		"sS"[!!rdp->nocb_cb_sleep],
2398		".W"[swait_active(&rdp->nocb_cb_wq)],
2399		jiffies - rdp->nocb_bypass_first,
2400		jiffies - rdp->nocb_nobypass_last,
2401		rdp->nocb_nobypass_count,
2402		".D"[rcu_segcblist_ready_cbs(rsclp)],
2403		".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)],
2404		".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)],
2405		".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)],
2406		".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
2407		rcu_segcblist_n_cbs(&rdp->cblist));
2408
2409	/* It is OK for GP kthreads to have GP state. */
2410	if (rdp->nocb_gp_rdp == rdp)
2411		return;
2412
2413	waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
2414	wastimer = timer_pending(&rdp->nocb_timer);
2415	wassleep = swait_active(&rdp->nocb_gp_wq);
2416	if (!rdp->nocb_defer_wakeup && !rdp->nocb_gp_sleep &&
2417	    !waslocked && !wastimer && !wassleep)
2418		return;  /* Nothing untowards. */
2419
2420	pr_info("   !!! %c%c%c%c %c\n",
2421		"lL"[waslocked],
2422		"dD"[!!rdp->nocb_defer_wakeup],
2423		"tT"[wastimer],
2424		"sS"[!!rdp->nocb_gp_sleep],
2425		".W"[wassleep]);
2426}
2427
2428#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2429
2430/* No ->nocb_lock to acquire.  */
2431static void rcu_nocb_lock(struct rcu_data *rdp)
2432{
2433}
2434
2435/* No ->nocb_lock to release.  */
2436static void rcu_nocb_unlock(struct rcu_data *rdp)
2437{
2438}
2439
2440/* No ->nocb_lock to release.  */
2441static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
2442				       unsigned long flags)
2443{
2444	local_irq_restore(flags);
2445}
2446
2447/* Lockdep check that ->cblist may be safely accessed. */
2448static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
2449{
2450	lockdep_assert_irqs_disabled();
2451}
2452
2453static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2454{
2455}
2456
2457static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2458{
2459	return NULL;
2460}
2461
2462static void rcu_init_one_nocb(struct rcu_node *rnp)
2463{
2464}
2465
2466static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2467				  unsigned long j)
2468{
2469	return true;
2470}
2471
2472static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2473				bool *was_alldone, unsigned long flags)
2474{
2475	return false;
2476}
2477
2478static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
2479				 unsigned long flags)
2480{
2481	WARN_ON_ONCE(1);  /* Should be dead code! */
2482}
2483
2484static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2485{
2486}
2487
2488static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2489{
2490	return false;
2491}
2492
2493static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2494{
2495}
2496
2497static void rcu_spawn_cpu_nocb_kthread(int cpu)
2498{
2499}
2500
2501static void __init rcu_spawn_nocb_kthreads(void)
2502{
2503}
2504
2505static void show_rcu_nocb_state(struct rcu_data *rdp)
2506{
2507}
2508
2509#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2510
2511/*
2512 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2513 * grace-period kthread will do force_quiescent_state() processing?
2514 * The idea is to avoid waking up RCU core processing on such a
2515 * CPU unless the grace period has extended for too long.
2516 *
2517 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2518 * CONFIG_RCU_NOCB_CPU CPUs.
2519 */
2520static bool rcu_nohz_full_cpu(void)
2521{
2522#ifdef CONFIG_NO_HZ_FULL
2523	if (tick_nohz_full_cpu(smp_processor_id()) &&
2524	    (!rcu_gp_in_progress() ||
2525	     time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
2526		return true;
2527#endif /* #ifdef CONFIG_NO_HZ_FULL */
2528	return false;
2529}
2530
2531/*
2532 * Bind the RCU grace-period kthreads to the housekeeping CPU.
2533 */
2534static void rcu_bind_gp_kthread(void)
2535{
2536	if (!tick_nohz_full_enabled())
2537		return;
2538	housekeeping_affine(current, HK_FLAG_RCU);
2539}
2540
2541/* Record the current task on dyntick-idle entry. */
2542static void noinstr rcu_dynticks_task_enter(void)
2543{
2544#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2545	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2546#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2547}
2548
2549/* Record no current task on dyntick-idle exit. */
2550static void noinstr rcu_dynticks_task_exit(void)
2551{
2552#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2553	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2554#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2555}
2556
2557/* Turn on heavyweight RCU tasks trace readers on idle/user entry. */
2558static void rcu_dynticks_task_trace_enter(void)
2559{
2560#ifdef CONFIG_TASKS_RCU_TRACE
2561	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
2562		current->trc_reader_special.b.need_mb = true;
2563#endif /* #ifdef CONFIG_TASKS_RCU_TRACE */
2564}
2565
2566/* Turn off heavyweight RCU tasks trace readers on idle/user exit. */
2567static void rcu_dynticks_task_trace_exit(void)
2568{
2569#ifdef CONFIG_TASKS_RCU_TRACE
2570	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
2571		current->trc_reader_special.b.need_mb = false;
2572#endif /* #ifdef CONFIG_TASKS_RCU_TRACE */
2573}