Loading...
1/* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6#include <linux/sched/mm.h>
7#include <linux/proc_fs.h>
8#include <linux/smp.h>
9#include <linux/init.h>
10#include <linux/notifier.h>
11#include <linux/sched/signal.h>
12#include <linux/sched/hotplug.h>
13#include <linux/sched/isolation.h>
14#include <linux/sched/task.h>
15#include <linux/sched/smt.h>
16#include <linux/unistd.h>
17#include <linux/cpu.h>
18#include <linux/oom.h>
19#include <linux/rcupdate.h>
20#include <linux/delay.h>
21#include <linux/export.h>
22#include <linux/bug.h>
23#include <linux/kthread.h>
24#include <linux/stop_machine.h>
25#include <linux/mutex.h>
26#include <linux/gfp.h>
27#include <linux/suspend.h>
28#include <linux/lockdep.h>
29#include <linux/tick.h>
30#include <linux/irq.h>
31#include <linux/nmi.h>
32#include <linux/smpboot.h>
33#include <linux/relay.h>
34#include <linux/slab.h>
35#include <linux/scs.h>
36#include <linux/percpu-rwsem.h>
37#include <linux/cpuset.h>
38#include <linux/random.h>
39#include <linux/cc_platform.h>
40
41#include <trace/events/power.h>
42#define CREATE_TRACE_POINTS
43#include <trace/events/cpuhp.h>
44
45#include "smpboot.h"
46
47/**
48 * struct cpuhp_cpu_state - Per cpu hotplug state storage
49 * @state: The current cpu state
50 * @target: The target state
51 * @fail: Current CPU hotplug callback state
52 * @thread: Pointer to the hotplug thread
53 * @should_run: Thread should execute
54 * @rollback: Perform a rollback
55 * @single: Single callback invocation
56 * @bringup: Single callback bringup or teardown selector
57 * @node: Remote CPU node; for multi-instance, do a
58 * single entry callback for install/remove
59 * @last: For multi-instance rollback, remember how far we got
60 * @cb_state: The state for a single callback (install/uninstall)
61 * @result: Result of the operation
62 * @ap_sync_state: State for AP synchronization
63 * @done_up: Signal completion to the issuer of the task for cpu-up
64 * @done_down: Signal completion to the issuer of the task for cpu-down
65 */
66struct cpuhp_cpu_state {
67 enum cpuhp_state state;
68 enum cpuhp_state target;
69 enum cpuhp_state fail;
70#ifdef CONFIG_SMP
71 struct task_struct *thread;
72 bool should_run;
73 bool rollback;
74 bool single;
75 bool bringup;
76 struct hlist_node *node;
77 struct hlist_node *last;
78 enum cpuhp_state cb_state;
79 int result;
80 atomic_t ap_sync_state;
81 struct completion done_up;
82 struct completion done_down;
83#endif
84};
85
86static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
87 .fail = CPUHP_INVALID,
88};
89
90#ifdef CONFIG_SMP
91cpumask_t cpus_booted_once_mask;
92#endif
93
94#if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
95static struct lockdep_map cpuhp_state_up_map =
96 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
97static struct lockdep_map cpuhp_state_down_map =
98 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
99
100
101static inline void cpuhp_lock_acquire(bool bringup)
102{
103 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
104}
105
106static inline void cpuhp_lock_release(bool bringup)
107{
108 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
109}
110#else
111
112static inline void cpuhp_lock_acquire(bool bringup) { }
113static inline void cpuhp_lock_release(bool bringup) { }
114
115#endif
116
117/**
118 * struct cpuhp_step - Hotplug state machine step
119 * @name: Name of the step
120 * @startup: Startup function of the step
121 * @teardown: Teardown function of the step
122 * @cant_stop: Bringup/teardown can't be stopped at this step
123 * @multi_instance: State has multiple instances which get added afterwards
124 */
125struct cpuhp_step {
126 const char *name;
127 union {
128 int (*single)(unsigned int cpu);
129 int (*multi)(unsigned int cpu,
130 struct hlist_node *node);
131 } startup;
132 union {
133 int (*single)(unsigned int cpu);
134 int (*multi)(unsigned int cpu,
135 struct hlist_node *node);
136 } teardown;
137 /* private: */
138 struct hlist_head list;
139 /* public: */
140 bool cant_stop;
141 bool multi_instance;
142};
143
144static DEFINE_MUTEX(cpuhp_state_mutex);
145static struct cpuhp_step cpuhp_hp_states[];
146
147static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
148{
149 return cpuhp_hp_states + state;
150}
151
152static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
153{
154 return bringup ? !step->startup.single : !step->teardown.single;
155}
156
157/**
158 * cpuhp_invoke_callback - Invoke the callbacks for a given state
159 * @cpu: The cpu for which the callback should be invoked
160 * @state: The state to do callbacks for
161 * @bringup: True if the bringup callback should be invoked
162 * @node: For multi-instance, do a single entry callback for install/remove
163 * @lastp: For multi-instance rollback, remember how far we got
164 *
165 * Called from cpu hotplug and from the state register machinery.
166 *
167 * Return: %0 on success or a negative errno code
168 */
169static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
170 bool bringup, struct hlist_node *node,
171 struct hlist_node **lastp)
172{
173 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
174 struct cpuhp_step *step = cpuhp_get_step(state);
175 int (*cbm)(unsigned int cpu, struct hlist_node *node);
176 int (*cb)(unsigned int cpu);
177 int ret, cnt;
178
179 if (st->fail == state) {
180 st->fail = CPUHP_INVALID;
181 return -EAGAIN;
182 }
183
184 if (cpuhp_step_empty(bringup, step)) {
185 WARN_ON_ONCE(1);
186 return 0;
187 }
188
189 if (!step->multi_instance) {
190 WARN_ON_ONCE(lastp && *lastp);
191 cb = bringup ? step->startup.single : step->teardown.single;
192
193 trace_cpuhp_enter(cpu, st->target, state, cb);
194 ret = cb(cpu);
195 trace_cpuhp_exit(cpu, st->state, state, ret);
196 return ret;
197 }
198 cbm = bringup ? step->startup.multi : step->teardown.multi;
199
200 /* Single invocation for instance add/remove */
201 if (node) {
202 WARN_ON_ONCE(lastp && *lastp);
203 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
204 ret = cbm(cpu, node);
205 trace_cpuhp_exit(cpu, st->state, state, ret);
206 return ret;
207 }
208
209 /* State transition. Invoke on all instances */
210 cnt = 0;
211 hlist_for_each(node, &step->list) {
212 if (lastp && node == *lastp)
213 break;
214
215 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
216 ret = cbm(cpu, node);
217 trace_cpuhp_exit(cpu, st->state, state, ret);
218 if (ret) {
219 if (!lastp)
220 goto err;
221
222 *lastp = node;
223 return ret;
224 }
225 cnt++;
226 }
227 if (lastp)
228 *lastp = NULL;
229 return 0;
230err:
231 /* Rollback the instances if one failed */
232 cbm = !bringup ? step->startup.multi : step->teardown.multi;
233 if (!cbm)
234 return ret;
235
236 hlist_for_each(node, &step->list) {
237 if (!cnt--)
238 break;
239
240 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
241 ret = cbm(cpu, node);
242 trace_cpuhp_exit(cpu, st->state, state, ret);
243 /*
244 * Rollback must not fail,
245 */
246 WARN_ON_ONCE(ret);
247 }
248 return ret;
249}
250
251#ifdef CONFIG_SMP
252static bool cpuhp_is_ap_state(enum cpuhp_state state)
253{
254 /*
255 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
256 * purposes as that state is handled explicitly in cpu_down.
257 */
258 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
259}
260
261static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
262{
263 struct completion *done = bringup ? &st->done_up : &st->done_down;
264 wait_for_completion(done);
265}
266
267static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
268{
269 struct completion *done = bringup ? &st->done_up : &st->done_down;
270 complete(done);
271}
272
273/*
274 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
275 */
276static bool cpuhp_is_atomic_state(enum cpuhp_state state)
277{
278 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
279}
280
281/* Synchronization state management */
282enum cpuhp_sync_state {
283 SYNC_STATE_DEAD,
284 SYNC_STATE_KICKED,
285 SYNC_STATE_SHOULD_DIE,
286 SYNC_STATE_ALIVE,
287 SYNC_STATE_SHOULD_ONLINE,
288 SYNC_STATE_ONLINE,
289};
290
291#ifdef CONFIG_HOTPLUG_CORE_SYNC
292/**
293 * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown
294 * @state: The synchronization state to set
295 *
296 * No synchronization point. Just update of the synchronization state, but implies
297 * a full barrier so that the AP changes are visible before the control CPU proceeds.
298 */
299static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)
300{
301 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
302
303 (void)atomic_xchg(st, state);
304}
305
306void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); }
307
308static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state,
309 enum cpuhp_sync_state next_state)
310{
311 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
312 ktime_t now, end, start = ktime_get();
313 int sync;
314
315 end = start + 10ULL * NSEC_PER_SEC;
316
317 sync = atomic_read(st);
318 while (1) {
319 if (sync == state) {
320 if (!atomic_try_cmpxchg(st, &sync, next_state))
321 continue;
322 return true;
323 }
324
325 now = ktime_get();
326 if (now > end) {
327 /* Timeout. Leave the state unchanged */
328 return false;
329 } else if (now - start < NSEC_PER_MSEC) {
330 /* Poll for one millisecond */
331 arch_cpuhp_sync_state_poll();
332 } else {
333 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
334 }
335 sync = atomic_read(st);
336 }
337 return true;
338}
339#else /* CONFIG_HOTPLUG_CORE_SYNC */
340static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { }
341#endif /* !CONFIG_HOTPLUG_CORE_SYNC */
342
343#ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
344/**
345 * cpuhp_ap_report_dead - Update synchronization state to DEAD
346 *
347 * No synchronization point. Just update of the synchronization state.
348 */
349void cpuhp_ap_report_dead(void)
350{
351 cpuhp_ap_update_sync_state(SYNC_STATE_DEAD);
352}
353
354void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { }
355
356/*
357 * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down
358 * because the AP cannot issue complete() at this stage.
359 */
360static void cpuhp_bp_sync_dead(unsigned int cpu)
361{
362 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
363 int sync = atomic_read(st);
364
365 do {
366 /* CPU can have reported dead already. Don't overwrite that! */
367 if (sync == SYNC_STATE_DEAD)
368 break;
369 } while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE));
370
371 if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) {
372 /* CPU reached dead state. Invoke the cleanup function */
373 arch_cpuhp_cleanup_dead_cpu(cpu);
374 return;
375 }
376
377 /* No further action possible. Emit message and give up. */
378 pr_err("CPU%u failed to report dead state\n", cpu);
379}
380#else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */
381static inline void cpuhp_bp_sync_dead(unsigned int cpu) { }
382#endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */
383
384#ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL
385/**
386 * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive
387 *
388 * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits
389 * for the BP to release it.
390 */
391void cpuhp_ap_sync_alive(void)
392{
393 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
394
395 cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE);
396
397 /* Wait for the control CPU to release it. */
398 while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE)
399 cpu_relax();
400}
401
402static bool cpuhp_can_boot_ap(unsigned int cpu)
403{
404 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
405 int sync = atomic_read(st);
406
407again:
408 switch (sync) {
409 case SYNC_STATE_DEAD:
410 /* CPU is properly dead */
411 break;
412 case SYNC_STATE_KICKED:
413 /* CPU did not come up in previous attempt */
414 break;
415 case SYNC_STATE_ALIVE:
416 /* CPU is stuck cpuhp_ap_sync_alive(). */
417 break;
418 default:
419 /* CPU failed to report online or dead and is in limbo state. */
420 return false;
421 }
422
423 /* Prepare for booting */
424 if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED))
425 goto again;
426
427 return true;
428}
429
430void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { }
431
432/*
433 * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up
434 * because the AP cannot issue complete() so early in the bringup.
435 */
436static int cpuhp_bp_sync_alive(unsigned int cpu)
437{
438 int ret = 0;
439
440 if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL))
441 return 0;
442
443 if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) {
444 pr_err("CPU%u failed to report alive state\n", cpu);
445 ret = -EIO;
446 }
447
448 /* Let the architecture cleanup the kick alive mechanics. */
449 arch_cpuhp_cleanup_kick_cpu(cpu);
450 return ret;
451}
452#else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */
453static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; }
454static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; }
455#endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */
456
457/* Serializes the updates to cpu_online_mask, cpu_present_mask */
458static DEFINE_MUTEX(cpu_add_remove_lock);
459bool cpuhp_tasks_frozen;
460EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
461
462/*
463 * The following two APIs (cpu_maps_update_begin/done) must be used when
464 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
465 */
466void cpu_maps_update_begin(void)
467{
468 mutex_lock(&cpu_add_remove_lock);
469}
470
471void cpu_maps_update_done(void)
472{
473 mutex_unlock(&cpu_add_remove_lock);
474}
475
476/*
477 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
478 * Should always be manipulated under cpu_add_remove_lock
479 */
480static int cpu_hotplug_disabled;
481
482#ifdef CONFIG_HOTPLUG_CPU
483
484DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
485
486static bool cpu_hotplug_offline_disabled __ro_after_init;
487
488void cpus_read_lock(void)
489{
490 percpu_down_read(&cpu_hotplug_lock);
491}
492EXPORT_SYMBOL_GPL(cpus_read_lock);
493
494int cpus_read_trylock(void)
495{
496 return percpu_down_read_trylock(&cpu_hotplug_lock);
497}
498EXPORT_SYMBOL_GPL(cpus_read_trylock);
499
500void cpus_read_unlock(void)
501{
502 percpu_up_read(&cpu_hotplug_lock);
503}
504EXPORT_SYMBOL_GPL(cpus_read_unlock);
505
506void cpus_write_lock(void)
507{
508 percpu_down_write(&cpu_hotplug_lock);
509}
510
511void cpus_write_unlock(void)
512{
513 percpu_up_write(&cpu_hotplug_lock);
514}
515
516void lockdep_assert_cpus_held(void)
517{
518 /*
519 * We can't have hotplug operations before userspace starts running,
520 * and some init codepaths will knowingly not take the hotplug lock.
521 * This is all valid, so mute lockdep until it makes sense to report
522 * unheld locks.
523 */
524 if (system_state < SYSTEM_RUNNING)
525 return;
526
527 percpu_rwsem_assert_held(&cpu_hotplug_lock);
528}
529
530#ifdef CONFIG_LOCKDEP
531int lockdep_is_cpus_held(void)
532{
533 return percpu_rwsem_is_held(&cpu_hotplug_lock);
534}
535#endif
536
537static void lockdep_acquire_cpus_lock(void)
538{
539 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
540}
541
542static void lockdep_release_cpus_lock(void)
543{
544 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
545}
546
547/* Declare CPU offlining not supported */
548void cpu_hotplug_disable_offlining(void)
549{
550 cpu_maps_update_begin();
551 cpu_hotplug_offline_disabled = true;
552 cpu_maps_update_done();
553}
554
555/*
556 * Wait for currently running CPU hotplug operations to complete (if any) and
557 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
558 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
559 * hotplug path before performing hotplug operations. So acquiring that lock
560 * guarantees mutual exclusion from any currently running hotplug operations.
561 */
562void cpu_hotplug_disable(void)
563{
564 cpu_maps_update_begin();
565 cpu_hotplug_disabled++;
566 cpu_maps_update_done();
567}
568EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
569
570static void __cpu_hotplug_enable(void)
571{
572 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
573 return;
574 cpu_hotplug_disabled--;
575}
576
577void cpu_hotplug_enable(void)
578{
579 cpu_maps_update_begin();
580 __cpu_hotplug_enable();
581 cpu_maps_update_done();
582}
583EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
584
585#else
586
587static void lockdep_acquire_cpus_lock(void)
588{
589}
590
591static void lockdep_release_cpus_lock(void)
592{
593}
594
595#endif /* CONFIG_HOTPLUG_CPU */
596
597/*
598 * Architectures that need SMT-specific errata handling during SMT hotplug
599 * should override this.
600 */
601void __weak arch_smt_update(void) { }
602
603#ifdef CONFIG_HOTPLUG_SMT
604
605enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
606static unsigned int cpu_smt_max_threads __ro_after_init;
607unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX;
608
609void __init cpu_smt_disable(bool force)
610{
611 if (!cpu_smt_possible())
612 return;
613
614 if (force) {
615 pr_info("SMT: Force disabled\n");
616 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
617 } else {
618 pr_info("SMT: disabled\n");
619 cpu_smt_control = CPU_SMT_DISABLED;
620 }
621 cpu_smt_num_threads = 1;
622}
623
624/*
625 * The decision whether SMT is supported can only be done after the full
626 * CPU identification. Called from architecture code.
627 */
628void __init cpu_smt_set_num_threads(unsigned int num_threads,
629 unsigned int max_threads)
630{
631 WARN_ON(!num_threads || (num_threads > max_threads));
632
633 if (max_threads == 1)
634 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
635
636 cpu_smt_max_threads = max_threads;
637
638 /*
639 * If SMT has been disabled via the kernel command line or SMT is
640 * not supported, set cpu_smt_num_threads to 1 for consistency.
641 * If enabled, take the architecture requested number of threads
642 * to bring up into account.
643 */
644 if (cpu_smt_control != CPU_SMT_ENABLED)
645 cpu_smt_num_threads = 1;
646 else if (num_threads < cpu_smt_num_threads)
647 cpu_smt_num_threads = num_threads;
648}
649
650static int __init smt_cmdline_disable(char *str)
651{
652 cpu_smt_disable(str && !strcmp(str, "force"));
653 return 0;
654}
655early_param("nosmt", smt_cmdline_disable);
656
657/*
658 * For Archicture supporting partial SMT states check if the thread is allowed.
659 * Otherwise this has already been checked through cpu_smt_max_threads when
660 * setting the SMT level.
661 */
662static inline bool cpu_smt_thread_allowed(unsigned int cpu)
663{
664#ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC
665 return topology_smt_thread_allowed(cpu);
666#else
667 return true;
668#endif
669}
670
671static inline bool cpu_bootable(unsigned int cpu)
672{
673 if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
674 return true;
675
676 /* All CPUs are bootable if controls are not configured */
677 if (cpu_smt_control == CPU_SMT_NOT_IMPLEMENTED)
678 return true;
679
680 /* All CPUs are bootable if CPU is not SMT capable */
681 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
682 return true;
683
684 if (topology_is_primary_thread(cpu))
685 return true;
686
687 /*
688 * On x86 it's required to boot all logical CPUs at least once so
689 * that the init code can get a chance to set CR4.MCE on each
690 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
691 * core will shutdown the machine.
692 */
693 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
694}
695
696/* Returns true if SMT is supported and not forcefully (irreversibly) disabled */
697bool cpu_smt_possible(void)
698{
699 return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
700 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
701}
702EXPORT_SYMBOL_GPL(cpu_smt_possible);
703
704#else
705static inline bool cpu_bootable(unsigned int cpu) { return true; }
706#endif
707
708static inline enum cpuhp_state
709cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
710{
711 enum cpuhp_state prev_state = st->state;
712 bool bringup = st->state < target;
713
714 st->rollback = false;
715 st->last = NULL;
716
717 st->target = target;
718 st->single = false;
719 st->bringup = bringup;
720 if (cpu_dying(cpu) != !bringup)
721 set_cpu_dying(cpu, !bringup);
722
723 return prev_state;
724}
725
726static inline void
727cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
728 enum cpuhp_state prev_state)
729{
730 bool bringup = !st->bringup;
731
732 st->target = prev_state;
733
734 /*
735 * Already rolling back. No need invert the bringup value or to change
736 * the current state.
737 */
738 if (st->rollback)
739 return;
740
741 st->rollback = true;
742
743 /*
744 * If we have st->last we need to undo partial multi_instance of this
745 * state first. Otherwise start undo at the previous state.
746 */
747 if (!st->last) {
748 if (st->bringup)
749 st->state--;
750 else
751 st->state++;
752 }
753
754 st->bringup = bringup;
755 if (cpu_dying(cpu) != !bringup)
756 set_cpu_dying(cpu, !bringup);
757}
758
759/* Regular hotplug invocation of the AP hotplug thread */
760static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
761{
762 if (!st->single && st->state == st->target)
763 return;
764
765 st->result = 0;
766 /*
767 * Make sure the above stores are visible before should_run becomes
768 * true. Paired with the mb() above in cpuhp_thread_fun()
769 */
770 smp_mb();
771 st->should_run = true;
772 wake_up_process(st->thread);
773 wait_for_ap_thread(st, st->bringup);
774}
775
776static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
777 enum cpuhp_state target)
778{
779 enum cpuhp_state prev_state;
780 int ret;
781
782 prev_state = cpuhp_set_state(cpu, st, target);
783 __cpuhp_kick_ap(st);
784 if ((ret = st->result)) {
785 cpuhp_reset_state(cpu, st, prev_state);
786 __cpuhp_kick_ap(st);
787 }
788
789 return ret;
790}
791
792static int bringup_wait_for_ap_online(unsigned int cpu)
793{
794 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
795
796 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
797 wait_for_ap_thread(st, true);
798 if (WARN_ON_ONCE((!cpu_online(cpu))))
799 return -ECANCELED;
800
801 /* Unpark the hotplug thread of the target cpu */
802 kthread_unpark(st->thread);
803
804 /*
805 * SMT soft disabling on X86 requires to bring the CPU out of the
806 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
807 * CPU marked itself as booted_once in notify_cpu_starting() so the
808 * cpu_bootable() check will now return false if this is not the
809 * primary sibling.
810 */
811 if (!cpu_bootable(cpu))
812 return -ECANCELED;
813 return 0;
814}
815
816#ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
817static int cpuhp_kick_ap_alive(unsigned int cpu)
818{
819 if (!cpuhp_can_boot_ap(cpu))
820 return -EAGAIN;
821
822 return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu));
823}
824
825static int cpuhp_bringup_ap(unsigned int cpu)
826{
827 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
828 int ret;
829
830 /*
831 * Some architectures have to walk the irq descriptors to
832 * setup the vector space for the cpu which comes online.
833 * Prevent irq alloc/free across the bringup.
834 */
835 irq_lock_sparse();
836
837 ret = cpuhp_bp_sync_alive(cpu);
838 if (ret)
839 goto out_unlock;
840
841 ret = bringup_wait_for_ap_online(cpu);
842 if (ret)
843 goto out_unlock;
844
845 irq_unlock_sparse();
846
847 if (st->target <= CPUHP_AP_ONLINE_IDLE)
848 return 0;
849
850 return cpuhp_kick_ap(cpu, st, st->target);
851
852out_unlock:
853 irq_unlock_sparse();
854 return ret;
855}
856#else
857static int bringup_cpu(unsigned int cpu)
858{
859 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
860 struct task_struct *idle = idle_thread_get(cpu);
861 int ret;
862
863 if (!cpuhp_can_boot_ap(cpu))
864 return -EAGAIN;
865
866 /*
867 * Some architectures have to walk the irq descriptors to
868 * setup the vector space for the cpu which comes online.
869 *
870 * Prevent irq alloc/free across the bringup by acquiring the
871 * sparse irq lock. Hold it until the upcoming CPU completes the
872 * startup in cpuhp_online_idle() which allows to avoid
873 * intermediate synchronization points in the architecture code.
874 */
875 irq_lock_sparse();
876
877 ret = __cpu_up(cpu, idle);
878 if (ret)
879 goto out_unlock;
880
881 ret = cpuhp_bp_sync_alive(cpu);
882 if (ret)
883 goto out_unlock;
884
885 ret = bringup_wait_for_ap_online(cpu);
886 if (ret)
887 goto out_unlock;
888
889 irq_unlock_sparse();
890
891 if (st->target <= CPUHP_AP_ONLINE_IDLE)
892 return 0;
893
894 return cpuhp_kick_ap(cpu, st, st->target);
895
896out_unlock:
897 irq_unlock_sparse();
898 return ret;
899}
900#endif
901
902static int finish_cpu(unsigned int cpu)
903{
904 struct task_struct *idle = idle_thread_get(cpu);
905 struct mm_struct *mm = idle->active_mm;
906
907 /*
908 * idle_task_exit() will have switched to &init_mm, now
909 * clean up any remaining active_mm state.
910 */
911 if (mm != &init_mm)
912 idle->active_mm = &init_mm;
913 mmdrop_lazy_tlb(mm);
914 return 0;
915}
916
917/*
918 * Hotplug state machine related functions
919 */
920
921/*
922 * Get the next state to run. Empty ones will be skipped. Returns true if a
923 * state must be run.
924 *
925 * st->state will be modified ahead of time, to match state_to_run, as if it
926 * has already ran.
927 */
928static bool cpuhp_next_state(bool bringup,
929 enum cpuhp_state *state_to_run,
930 struct cpuhp_cpu_state *st,
931 enum cpuhp_state target)
932{
933 do {
934 if (bringup) {
935 if (st->state >= target)
936 return false;
937
938 *state_to_run = ++st->state;
939 } else {
940 if (st->state <= target)
941 return false;
942
943 *state_to_run = st->state--;
944 }
945
946 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
947 break;
948 } while (true);
949
950 return true;
951}
952
953static int __cpuhp_invoke_callback_range(bool bringup,
954 unsigned int cpu,
955 struct cpuhp_cpu_state *st,
956 enum cpuhp_state target,
957 bool nofail)
958{
959 enum cpuhp_state state;
960 int ret = 0;
961
962 while (cpuhp_next_state(bringup, &state, st, target)) {
963 int err;
964
965 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
966 if (!err)
967 continue;
968
969 if (nofail) {
970 pr_warn("CPU %u %s state %s (%d) failed (%d)\n",
971 cpu, bringup ? "UP" : "DOWN",
972 cpuhp_get_step(st->state)->name,
973 st->state, err);
974 ret = -1;
975 } else {
976 ret = err;
977 break;
978 }
979 }
980
981 return ret;
982}
983
984static inline int cpuhp_invoke_callback_range(bool bringup,
985 unsigned int cpu,
986 struct cpuhp_cpu_state *st,
987 enum cpuhp_state target)
988{
989 return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false);
990}
991
992static inline void cpuhp_invoke_callback_range_nofail(bool bringup,
993 unsigned int cpu,
994 struct cpuhp_cpu_state *st,
995 enum cpuhp_state target)
996{
997 __cpuhp_invoke_callback_range(bringup, cpu, st, target, true);
998}
999
1000static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
1001{
1002 if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
1003 return true;
1004 /*
1005 * When CPU hotplug is disabled, then taking the CPU down is not
1006 * possible because takedown_cpu() and the architecture and
1007 * subsystem specific mechanisms are not available. So the CPU
1008 * which would be completely unplugged again needs to stay around
1009 * in the current state.
1010 */
1011 return st->state <= CPUHP_BRINGUP_CPU;
1012}
1013
1014static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1015 enum cpuhp_state target)
1016{
1017 enum cpuhp_state prev_state = st->state;
1018 int ret = 0;
1019
1020 ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1021 if (ret) {
1022 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
1023 ret, cpu, cpuhp_get_step(st->state)->name,
1024 st->state);
1025
1026 cpuhp_reset_state(cpu, st, prev_state);
1027 if (can_rollback_cpu(st))
1028 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
1029 prev_state));
1030 }
1031 return ret;
1032}
1033
1034/*
1035 * The cpu hotplug threads manage the bringup and teardown of the cpus
1036 */
1037static int cpuhp_should_run(unsigned int cpu)
1038{
1039 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1040
1041 return st->should_run;
1042}
1043
1044/*
1045 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
1046 * callbacks when a state gets [un]installed at runtime.
1047 *
1048 * Each invocation of this function by the smpboot thread does a single AP
1049 * state callback.
1050 *
1051 * It has 3 modes of operation:
1052 * - single: runs st->cb_state
1053 * - up: runs ++st->state, while st->state < st->target
1054 * - down: runs st->state--, while st->state > st->target
1055 *
1056 * When complete or on error, should_run is cleared and the completion is fired.
1057 */
1058static void cpuhp_thread_fun(unsigned int cpu)
1059{
1060 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1061 bool bringup = st->bringup;
1062 enum cpuhp_state state;
1063
1064 if (WARN_ON_ONCE(!st->should_run))
1065 return;
1066
1067 /*
1068 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
1069 * that if we see ->should_run we also see the rest of the state.
1070 */
1071 smp_mb();
1072
1073 /*
1074 * The BP holds the hotplug lock, but we're now running on the AP,
1075 * ensure that anybody asserting the lock is held, will actually find
1076 * it so.
1077 */
1078 lockdep_acquire_cpus_lock();
1079 cpuhp_lock_acquire(bringup);
1080
1081 if (st->single) {
1082 state = st->cb_state;
1083 st->should_run = false;
1084 } else {
1085 st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
1086 if (!st->should_run)
1087 goto end;
1088 }
1089
1090 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
1091
1092 if (cpuhp_is_atomic_state(state)) {
1093 local_irq_disable();
1094 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1095 local_irq_enable();
1096
1097 /*
1098 * STARTING/DYING must not fail!
1099 */
1100 WARN_ON_ONCE(st->result);
1101 } else {
1102 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1103 }
1104
1105 if (st->result) {
1106 /*
1107 * If we fail on a rollback, we're up a creek without no
1108 * paddle, no way forward, no way back. We loose, thanks for
1109 * playing.
1110 */
1111 WARN_ON_ONCE(st->rollback);
1112 st->should_run = false;
1113 }
1114
1115end:
1116 cpuhp_lock_release(bringup);
1117 lockdep_release_cpus_lock();
1118
1119 if (!st->should_run)
1120 complete_ap_thread(st, bringup);
1121}
1122
1123/* Invoke a single callback on a remote cpu */
1124static int
1125cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
1126 struct hlist_node *node)
1127{
1128 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1129 int ret;
1130
1131 if (!cpu_online(cpu))
1132 return 0;
1133
1134 cpuhp_lock_acquire(false);
1135 cpuhp_lock_release(false);
1136
1137 cpuhp_lock_acquire(true);
1138 cpuhp_lock_release(true);
1139
1140 /*
1141 * If we are up and running, use the hotplug thread. For early calls
1142 * we invoke the thread function directly.
1143 */
1144 if (!st->thread)
1145 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1146
1147 st->rollback = false;
1148 st->last = NULL;
1149
1150 st->node = node;
1151 st->bringup = bringup;
1152 st->cb_state = state;
1153 st->single = true;
1154
1155 __cpuhp_kick_ap(st);
1156
1157 /*
1158 * If we failed and did a partial, do a rollback.
1159 */
1160 if ((ret = st->result) && st->last) {
1161 st->rollback = true;
1162 st->bringup = !bringup;
1163
1164 __cpuhp_kick_ap(st);
1165 }
1166
1167 /*
1168 * Clean up the leftovers so the next hotplug operation wont use stale
1169 * data.
1170 */
1171 st->node = st->last = NULL;
1172 return ret;
1173}
1174
1175static int cpuhp_kick_ap_work(unsigned int cpu)
1176{
1177 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1178 enum cpuhp_state prev_state = st->state;
1179 int ret;
1180
1181 cpuhp_lock_acquire(false);
1182 cpuhp_lock_release(false);
1183
1184 cpuhp_lock_acquire(true);
1185 cpuhp_lock_release(true);
1186
1187 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
1188 ret = cpuhp_kick_ap(cpu, st, st->target);
1189 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
1190
1191 return ret;
1192}
1193
1194static struct smp_hotplug_thread cpuhp_threads = {
1195 .store = &cpuhp_state.thread,
1196 .thread_should_run = cpuhp_should_run,
1197 .thread_fn = cpuhp_thread_fun,
1198 .thread_comm = "cpuhp/%u",
1199 .selfparking = true,
1200};
1201
1202static __init void cpuhp_init_state(void)
1203{
1204 struct cpuhp_cpu_state *st;
1205 int cpu;
1206
1207 for_each_possible_cpu(cpu) {
1208 st = per_cpu_ptr(&cpuhp_state, cpu);
1209 init_completion(&st->done_up);
1210 init_completion(&st->done_down);
1211 }
1212}
1213
1214void __init cpuhp_threads_init(void)
1215{
1216 cpuhp_init_state();
1217 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
1218 kthread_unpark(this_cpu_read(cpuhp_state.thread));
1219}
1220
1221#ifdef CONFIG_HOTPLUG_CPU
1222#ifndef arch_clear_mm_cpumask_cpu
1223#define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
1224#endif
1225
1226/**
1227 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
1228 * @cpu: a CPU id
1229 *
1230 * This function walks all processes, finds a valid mm struct for each one and
1231 * then clears a corresponding bit in mm's cpumask. While this all sounds
1232 * trivial, there are various non-obvious corner cases, which this function
1233 * tries to solve in a safe manner.
1234 *
1235 * Also note that the function uses a somewhat relaxed locking scheme, so it may
1236 * be called only for an already offlined CPU.
1237 */
1238void clear_tasks_mm_cpumask(int cpu)
1239{
1240 struct task_struct *p;
1241
1242 /*
1243 * This function is called after the cpu is taken down and marked
1244 * offline, so its not like new tasks will ever get this cpu set in
1245 * their mm mask. -- Peter Zijlstra
1246 * Thus, we may use rcu_read_lock() here, instead of grabbing
1247 * full-fledged tasklist_lock.
1248 */
1249 WARN_ON(cpu_online(cpu));
1250 rcu_read_lock();
1251 for_each_process(p) {
1252 struct task_struct *t;
1253
1254 /*
1255 * Main thread might exit, but other threads may still have
1256 * a valid mm. Find one.
1257 */
1258 t = find_lock_task_mm(p);
1259 if (!t)
1260 continue;
1261 arch_clear_mm_cpumask_cpu(cpu, t->mm);
1262 task_unlock(t);
1263 }
1264 rcu_read_unlock();
1265}
1266
1267/* Take this CPU down. */
1268static int take_cpu_down(void *_param)
1269{
1270 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1271 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
1272 int err, cpu = smp_processor_id();
1273
1274 /* Ensure this CPU doesn't handle any more interrupts. */
1275 err = __cpu_disable();
1276 if (err < 0)
1277 return err;
1278
1279 /*
1280 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1281 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1282 */
1283 WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1284
1285 /*
1286 * Invoke the former CPU_DYING callbacks. DYING must not fail!
1287 */
1288 cpuhp_invoke_callback_range_nofail(false, cpu, st, target);
1289
1290 /* Park the stopper thread */
1291 stop_machine_park(cpu);
1292 return 0;
1293}
1294
1295static int takedown_cpu(unsigned int cpu)
1296{
1297 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1298 int err;
1299
1300 /* Park the smpboot threads */
1301 kthread_park(st->thread);
1302
1303 /*
1304 * Prevent irq alloc/free while the dying cpu reorganizes the
1305 * interrupt affinities.
1306 */
1307 irq_lock_sparse();
1308
1309 /*
1310 * So now all preempt/rcu users must observe !cpu_active().
1311 */
1312 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1313 if (err) {
1314 /* CPU refused to die */
1315 irq_unlock_sparse();
1316 /* Unpark the hotplug thread so we can rollback there */
1317 kthread_unpark(st->thread);
1318 return err;
1319 }
1320 BUG_ON(cpu_online(cpu));
1321
1322 /*
1323 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1324 * all runnable tasks from the CPU, there's only the idle task left now
1325 * that the migration thread is done doing the stop_machine thing.
1326 *
1327 * Wait for the stop thread to go away.
1328 */
1329 wait_for_ap_thread(st, false);
1330 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1331
1332 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
1333 irq_unlock_sparse();
1334
1335 hotplug_cpu__broadcast_tick_pull(cpu);
1336 /* This actually kills the CPU. */
1337 __cpu_die(cpu);
1338
1339 cpuhp_bp_sync_dead(cpu);
1340
1341 lockdep_cleanup_dead_cpu(cpu, idle_thread_get(cpu));
1342
1343 /*
1344 * Callbacks must be re-integrated right away to the RCU state machine.
1345 * Otherwise an RCU callback could block a further teardown function
1346 * waiting for its completion.
1347 */
1348 rcutree_migrate_callbacks(cpu);
1349
1350 return 0;
1351}
1352
1353static void cpuhp_complete_idle_dead(void *arg)
1354{
1355 struct cpuhp_cpu_state *st = arg;
1356
1357 complete_ap_thread(st, false);
1358}
1359
1360void cpuhp_report_idle_dead(void)
1361{
1362 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1363
1364 BUG_ON(st->state != CPUHP_AP_OFFLINE);
1365 tick_assert_timekeeping_handover();
1366 rcutree_report_cpu_dead();
1367 st->state = CPUHP_AP_IDLE_DEAD;
1368 /*
1369 * We cannot call complete after rcutree_report_cpu_dead() so we delegate it
1370 * to an online cpu.
1371 */
1372 smp_call_function_single(cpumask_first(cpu_online_mask),
1373 cpuhp_complete_idle_dead, st, 0);
1374}
1375
1376static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1377 enum cpuhp_state target)
1378{
1379 enum cpuhp_state prev_state = st->state;
1380 int ret = 0;
1381
1382 ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1383 if (ret) {
1384 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1385 ret, cpu, cpuhp_get_step(st->state)->name,
1386 st->state);
1387
1388 cpuhp_reset_state(cpu, st, prev_state);
1389
1390 if (st->state < prev_state)
1391 WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1392 prev_state));
1393 }
1394
1395 return ret;
1396}
1397
1398/* Requires cpu_add_remove_lock to be held */
1399static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1400 enum cpuhp_state target)
1401{
1402 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1403 int prev_state, ret = 0;
1404
1405 if (num_online_cpus() == 1)
1406 return -EBUSY;
1407
1408 if (!cpu_present(cpu))
1409 return -EINVAL;
1410
1411 cpus_write_lock();
1412
1413 cpuhp_tasks_frozen = tasks_frozen;
1414
1415 prev_state = cpuhp_set_state(cpu, st, target);
1416 /*
1417 * If the current CPU state is in the range of the AP hotplug thread,
1418 * then we need to kick the thread.
1419 */
1420 if (st->state > CPUHP_TEARDOWN_CPU) {
1421 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1422 ret = cpuhp_kick_ap_work(cpu);
1423 /*
1424 * The AP side has done the error rollback already. Just
1425 * return the error code..
1426 */
1427 if (ret)
1428 goto out;
1429
1430 /*
1431 * We might have stopped still in the range of the AP hotplug
1432 * thread. Nothing to do anymore.
1433 */
1434 if (st->state > CPUHP_TEARDOWN_CPU)
1435 goto out;
1436
1437 st->target = target;
1438 }
1439 /*
1440 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1441 * to do the further cleanups.
1442 */
1443 ret = cpuhp_down_callbacks(cpu, st, target);
1444 if (ret && st->state < prev_state) {
1445 if (st->state == CPUHP_TEARDOWN_CPU) {
1446 cpuhp_reset_state(cpu, st, prev_state);
1447 __cpuhp_kick_ap(st);
1448 } else {
1449 WARN(1, "DEAD callback error for CPU%d", cpu);
1450 }
1451 }
1452
1453out:
1454 cpus_write_unlock();
1455 /*
1456 * Do post unplug cleanup. This is still protected against
1457 * concurrent CPU hotplug via cpu_add_remove_lock.
1458 */
1459 lockup_detector_cleanup();
1460 arch_smt_update();
1461 return ret;
1462}
1463
1464struct cpu_down_work {
1465 unsigned int cpu;
1466 enum cpuhp_state target;
1467};
1468
1469static long __cpu_down_maps_locked(void *arg)
1470{
1471 struct cpu_down_work *work = arg;
1472
1473 return _cpu_down(work->cpu, 0, work->target);
1474}
1475
1476static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1477{
1478 struct cpu_down_work work = { .cpu = cpu, .target = target, };
1479
1480 /*
1481 * If the platform does not support hotplug, report it explicitly to
1482 * differentiate it from a transient offlining failure.
1483 */
1484 if (cpu_hotplug_offline_disabled)
1485 return -EOPNOTSUPP;
1486 if (cpu_hotplug_disabled)
1487 return -EBUSY;
1488
1489 /*
1490 * Ensure that the control task does not run on the to be offlined
1491 * CPU to prevent a deadlock against cfs_b->period_timer.
1492 * Also keep at least one housekeeping cpu onlined to avoid generating
1493 * an empty sched_domain span.
1494 */
1495 for_each_cpu_and(cpu, cpu_online_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) {
1496 if (cpu != work.cpu)
1497 return work_on_cpu(cpu, __cpu_down_maps_locked, &work);
1498 }
1499 return -EBUSY;
1500}
1501
1502static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1503{
1504 int err;
1505
1506 cpu_maps_update_begin();
1507 err = cpu_down_maps_locked(cpu, target);
1508 cpu_maps_update_done();
1509 return err;
1510}
1511
1512/**
1513 * cpu_device_down - Bring down a cpu device
1514 * @dev: Pointer to the cpu device to offline
1515 *
1516 * This function is meant to be used by device core cpu subsystem only.
1517 *
1518 * Other subsystems should use remove_cpu() instead.
1519 *
1520 * Return: %0 on success or a negative errno code
1521 */
1522int cpu_device_down(struct device *dev)
1523{
1524 return cpu_down(dev->id, CPUHP_OFFLINE);
1525}
1526
1527int remove_cpu(unsigned int cpu)
1528{
1529 int ret;
1530
1531 lock_device_hotplug();
1532 ret = device_offline(get_cpu_device(cpu));
1533 unlock_device_hotplug();
1534
1535 return ret;
1536}
1537EXPORT_SYMBOL_GPL(remove_cpu);
1538
1539void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1540{
1541 unsigned int cpu;
1542 int error;
1543
1544 cpu_maps_update_begin();
1545
1546 /*
1547 * Make certain the cpu I'm about to reboot on is online.
1548 *
1549 * This is inline to what migrate_to_reboot_cpu() already do.
1550 */
1551 if (!cpu_online(primary_cpu))
1552 primary_cpu = cpumask_first(cpu_online_mask);
1553
1554 for_each_online_cpu(cpu) {
1555 if (cpu == primary_cpu)
1556 continue;
1557
1558 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1559 if (error) {
1560 pr_err("Failed to offline CPU%d - error=%d",
1561 cpu, error);
1562 break;
1563 }
1564 }
1565
1566 /*
1567 * Ensure all but the reboot CPU are offline.
1568 */
1569 BUG_ON(num_online_cpus() > 1);
1570
1571 /*
1572 * Make sure the CPUs won't be enabled by someone else after this
1573 * point. Kexec will reboot to a new kernel shortly resetting
1574 * everything along the way.
1575 */
1576 cpu_hotplug_disabled++;
1577
1578 cpu_maps_update_done();
1579}
1580
1581#else
1582#define takedown_cpu NULL
1583#endif /*CONFIG_HOTPLUG_CPU*/
1584
1585/**
1586 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1587 * @cpu: cpu that just started
1588 *
1589 * It must be called by the arch code on the new cpu, before the new cpu
1590 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1591 */
1592void notify_cpu_starting(unsigned int cpu)
1593{
1594 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1595 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1596
1597 rcutree_report_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
1598 cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1599
1600 /*
1601 * STARTING must not fail!
1602 */
1603 cpuhp_invoke_callback_range_nofail(true, cpu, st, target);
1604}
1605
1606/*
1607 * Called from the idle task. Wake up the controlling task which brings the
1608 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1609 * online bringup to the hotplug thread.
1610 */
1611void cpuhp_online_idle(enum cpuhp_state state)
1612{
1613 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1614
1615 /* Happens for the boot cpu */
1616 if (state != CPUHP_AP_ONLINE_IDLE)
1617 return;
1618
1619 cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE);
1620
1621 /*
1622 * Unpark the stopper thread before we start the idle loop (and start
1623 * scheduling); this ensures the stopper task is always available.
1624 */
1625 stop_machine_unpark(smp_processor_id());
1626
1627 st->state = CPUHP_AP_ONLINE_IDLE;
1628 complete_ap_thread(st, true);
1629}
1630
1631/* Requires cpu_add_remove_lock to be held */
1632static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1633{
1634 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1635 struct task_struct *idle;
1636 int ret = 0;
1637
1638 cpus_write_lock();
1639
1640 if (!cpu_present(cpu)) {
1641 ret = -EINVAL;
1642 goto out;
1643 }
1644
1645 /*
1646 * The caller of cpu_up() might have raced with another
1647 * caller. Nothing to do.
1648 */
1649 if (st->state >= target)
1650 goto out;
1651
1652 if (st->state == CPUHP_OFFLINE) {
1653 /* Let it fail before we try to bring the cpu up */
1654 idle = idle_thread_get(cpu);
1655 if (IS_ERR(idle)) {
1656 ret = PTR_ERR(idle);
1657 goto out;
1658 }
1659
1660 /*
1661 * Reset stale stack state from the last time this CPU was online.
1662 */
1663 scs_task_reset(idle);
1664 kasan_unpoison_task_stack(idle);
1665 }
1666
1667 cpuhp_tasks_frozen = tasks_frozen;
1668
1669 cpuhp_set_state(cpu, st, target);
1670 /*
1671 * If the current CPU state is in the range of the AP hotplug thread,
1672 * then we need to kick the thread once more.
1673 */
1674 if (st->state > CPUHP_BRINGUP_CPU) {
1675 ret = cpuhp_kick_ap_work(cpu);
1676 /*
1677 * The AP side has done the error rollback already. Just
1678 * return the error code..
1679 */
1680 if (ret)
1681 goto out;
1682 }
1683
1684 /*
1685 * Try to reach the target state. We max out on the BP at
1686 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1687 * responsible for bringing it up to the target state.
1688 */
1689 target = min((int)target, CPUHP_BRINGUP_CPU);
1690 ret = cpuhp_up_callbacks(cpu, st, target);
1691out:
1692 cpus_write_unlock();
1693 arch_smt_update();
1694 return ret;
1695}
1696
1697static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1698{
1699 int err = 0;
1700
1701 if (!cpu_possible(cpu)) {
1702 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1703 cpu);
1704 return -EINVAL;
1705 }
1706
1707 err = try_online_node(cpu_to_node(cpu));
1708 if (err)
1709 return err;
1710
1711 cpu_maps_update_begin();
1712
1713 if (cpu_hotplug_disabled) {
1714 err = -EBUSY;
1715 goto out;
1716 }
1717 if (!cpu_bootable(cpu)) {
1718 err = -EPERM;
1719 goto out;
1720 }
1721
1722 err = _cpu_up(cpu, 0, target);
1723out:
1724 cpu_maps_update_done();
1725 return err;
1726}
1727
1728/**
1729 * cpu_device_up - Bring up a cpu device
1730 * @dev: Pointer to the cpu device to online
1731 *
1732 * This function is meant to be used by device core cpu subsystem only.
1733 *
1734 * Other subsystems should use add_cpu() instead.
1735 *
1736 * Return: %0 on success or a negative errno code
1737 */
1738int cpu_device_up(struct device *dev)
1739{
1740 return cpu_up(dev->id, CPUHP_ONLINE);
1741}
1742
1743int add_cpu(unsigned int cpu)
1744{
1745 int ret;
1746
1747 lock_device_hotplug();
1748 ret = device_online(get_cpu_device(cpu));
1749 unlock_device_hotplug();
1750
1751 return ret;
1752}
1753EXPORT_SYMBOL_GPL(add_cpu);
1754
1755/**
1756 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1757 * @sleep_cpu: The cpu we hibernated on and should be brought up.
1758 *
1759 * On some architectures like arm64, we can hibernate on any CPU, but on
1760 * wake up the CPU we hibernated on might be offline as a side effect of
1761 * using maxcpus= for example.
1762 *
1763 * Return: %0 on success or a negative errno code
1764 */
1765int bringup_hibernate_cpu(unsigned int sleep_cpu)
1766{
1767 int ret;
1768
1769 if (!cpu_online(sleep_cpu)) {
1770 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1771 ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1772 if (ret) {
1773 pr_err("Failed to bring hibernate-CPU up!\n");
1774 return ret;
1775 }
1776 }
1777 return 0;
1778}
1779
1780static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus,
1781 enum cpuhp_state target)
1782{
1783 unsigned int cpu;
1784
1785 for_each_cpu(cpu, mask) {
1786 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1787
1788 if (cpu_up(cpu, target) && can_rollback_cpu(st)) {
1789 /*
1790 * If this failed then cpu_up() might have only
1791 * rolled back to CPUHP_BP_KICK_AP for the final
1792 * online. Clean it up. NOOP if already rolled back.
1793 */
1794 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE));
1795 }
1796
1797 if (!--ncpus)
1798 break;
1799 }
1800}
1801
1802#ifdef CONFIG_HOTPLUG_PARALLEL
1803static bool __cpuhp_parallel_bringup __ro_after_init = true;
1804
1805static int __init parallel_bringup_parse_param(char *arg)
1806{
1807 return kstrtobool(arg, &__cpuhp_parallel_bringup);
1808}
1809early_param("cpuhp.parallel", parallel_bringup_parse_param);
1810
1811#ifdef CONFIG_HOTPLUG_SMT
1812static inline bool cpuhp_smt_aware(void)
1813{
1814 return cpu_smt_max_threads > 1;
1815}
1816
1817static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
1818{
1819 return cpu_primary_thread_mask;
1820}
1821#else
1822static inline bool cpuhp_smt_aware(void)
1823{
1824 return false;
1825}
1826static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
1827{
1828 return cpu_none_mask;
1829}
1830#endif
1831
1832bool __weak arch_cpuhp_init_parallel_bringup(void)
1833{
1834 return true;
1835}
1836
1837/*
1838 * On architectures which have enabled parallel bringup this invokes all BP
1839 * prepare states for each of the to be onlined APs first. The last state
1840 * sends the startup IPI to the APs. The APs proceed through the low level
1841 * bringup code in parallel and then wait for the control CPU to release
1842 * them one by one for the final onlining procedure.
1843 *
1844 * This avoids waiting for each AP to respond to the startup IPI in
1845 * CPUHP_BRINGUP_CPU.
1846 */
1847static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus)
1848{
1849 const struct cpumask *mask = cpu_present_mask;
1850
1851 if (__cpuhp_parallel_bringup)
1852 __cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup();
1853 if (!__cpuhp_parallel_bringup)
1854 return false;
1855
1856 if (cpuhp_smt_aware()) {
1857 const struct cpumask *pmask = cpuhp_get_primary_thread_mask();
1858 static struct cpumask tmp_mask __initdata;
1859
1860 /*
1861 * X86 requires to prevent that SMT siblings stopped while
1862 * the primary thread does a microcode update for various
1863 * reasons. Bring the primary threads up first.
1864 */
1865 cpumask_and(&tmp_mask, mask, pmask);
1866 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP);
1867 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE);
1868 /* Account for the online CPUs */
1869 ncpus -= num_online_cpus();
1870 if (!ncpus)
1871 return true;
1872 /* Create the mask for secondary CPUs */
1873 cpumask_andnot(&tmp_mask, mask, pmask);
1874 mask = &tmp_mask;
1875 }
1876
1877 /* Bring the not-yet started CPUs up */
1878 cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP);
1879 cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE);
1880 return true;
1881}
1882#else
1883static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; }
1884#endif /* CONFIG_HOTPLUG_PARALLEL */
1885
1886void __init bringup_nonboot_cpus(unsigned int max_cpus)
1887{
1888 if (!max_cpus)
1889 return;
1890
1891 /* Try parallel bringup optimization if enabled */
1892 if (cpuhp_bringup_cpus_parallel(max_cpus))
1893 return;
1894
1895 /* Full per CPU serialized bringup */
1896 cpuhp_bringup_mask(cpu_present_mask, max_cpus, CPUHP_ONLINE);
1897}
1898
1899#ifdef CONFIG_PM_SLEEP_SMP
1900static cpumask_var_t frozen_cpus;
1901
1902int freeze_secondary_cpus(int primary)
1903{
1904 int cpu, error = 0;
1905
1906 cpu_maps_update_begin();
1907 if (primary == -1) {
1908 primary = cpumask_first(cpu_online_mask);
1909 if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
1910 primary = housekeeping_any_cpu(HK_TYPE_TIMER);
1911 } else {
1912 if (!cpu_online(primary))
1913 primary = cpumask_first(cpu_online_mask);
1914 }
1915
1916 /*
1917 * We take down all of the non-boot CPUs in one shot to avoid races
1918 * with the userspace trying to use the CPU hotplug at the same time
1919 */
1920 cpumask_clear(frozen_cpus);
1921
1922 pr_info("Disabling non-boot CPUs ...\n");
1923 for (cpu = nr_cpu_ids - 1; cpu >= 0; cpu--) {
1924 if (!cpu_online(cpu) || cpu == primary)
1925 continue;
1926
1927 if (pm_wakeup_pending()) {
1928 pr_info("Wakeup pending. Abort CPU freeze\n");
1929 error = -EBUSY;
1930 break;
1931 }
1932
1933 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1934 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1935 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1936 if (!error)
1937 cpumask_set_cpu(cpu, frozen_cpus);
1938 else {
1939 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1940 break;
1941 }
1942 }
1943
1944 if (!error)
1945 BUG_ON(num_online_cpus() > 1);
1946 else
1947 pr_err("Non-boot CPUs are not disabled\n");
1948
1949 /*
1950 * Make sure the CPUs won't be enabled by someone else. We need to do
1951 * this even in case of failure as all freeze_secondary_cpus() users are
1952 * supposed to do thaw_secondary_cpus() on the failure path.
1953 */
1954 cpu_hotplug_disabled++;
1955
1956 cpu_maps_update_done();
1957 return error;
1958}
1959
1960void __weak arch_thaw_secondary_cpus_begin(void)
1961{
1962}
1963
1964void __weak arch_thaw_secondary_cpus_end(void)
1965{
1966}
1967
1968void thaw_secondary_cpus(void)
1969{
1970 int cpu, error;
1971
1972 /* Allow everyone to use the CPU hotplug again */
1973 cpu_maps_update_begin();
1974 __cpu_hotplug_enable();
1975 if (cpumask_empty(frozen_cpus))
1976 goto out;
1977
1978 pr_info("Enabling non-boot CPUs ...\n");
1979
1980 arch_thaw_secondary_cpus_begin();
1981
1982 for_each_cpu(cpu, frozen_cpus) {
1983 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1984 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1985 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1986 if (!error) {
1987 pr_info("CPU%d is up\n", cpu);
1988 continue;
1989 }
1990 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1991 }
1992
1993 arch_thaw_secondary_cpus_end();
1994
1995 cpumask_clear(frozen_cpus);
1996out:
1997 cpu_maps_update_done();
1998}
1999
2000static int __init alloc_frozen_cpus(void)
2001{
2002 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
2003 return -ENOMEM;
2004 return 0;
2005}
2006core_initcall(alloc_frozen_cpus);
2007
2008/*
2009 * When callbacks for CPU hotplug notifications are being executed, we must
2010 * ensure that the state of the system with respect to the tasks being frozen
2011 * or not, as reported by the notification, remains unchanged *throughout the
2012 * duration* of the execution of the callbacks.
2013 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
2014 *
2015 * This synchronization is implemented by mutually excluding regular CPU
2016 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
2017 * Hibernate notifications.
2018 */
2019static int
2020cpu_hotplug_pm_callback(struct notifier_block *nb,
2021 unsigned long action, void *ptr)
2022{
2023 switch (action) {
2024
2025 case PM_SUSPEND_PREPARE:
2026 case PM_HIBERNATION_PREPARE:
2027 cpu_hotplug_disable();
2028 break;
2029
2030 case PM_POST_SUSPEND:
2031 case PM_POST_HIBERNATION:
2032 cpu_hotplug_enable();
2033 break;
2034
2035 default:
2036 return NOTIFY_DONE;
2037 }
2038
2039 return NOTIFY_OK;
2040}
2041
2042
2043static int __init cpu_hotplug_pm_sync_init(void)
2044{
2045 /*
2046 * cpu_hotplug_pm_callback has higher priority than x86
2047 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
2048 * to disable cpu hotplug to avoid cpu hotplug race.
2049 */
2050 pm_notifier(cpu_hotplug_pm_callback, 0);
2051 return 0;
2052}
2053core_initcall(cpu_hotplug_pm_sync_init);
2054
2055#endif /* CONFIG_PM_SLEEP_SMP */
2056
2057int __boot_cpu_id;
2058
2059#endif /* CONFIG_SMP */
2060
2061/* Boot processor state steps */
2062static struct cpuhp_step cpuhp_hp_states[] = {
2063 [CPUHP_OFFLINE] = {
2064 .name = "offline",
2065 .startup.single = NULL,
2066 .teardown.single = NULL,
2067 },
2068#ifdef CONFIG_SMP
2069 [CPUHP_CREATE_THREADS]= {
2070 .name = "threads:prepare",
2071 .startup.single = smpboot_create_threads,
2072 .teardown.single = NULL,
2073 .cant_stop = true,
2074 },
2075 [CPUHP_PERF_PREPARE] = {
2076 .name = "perf:prepare",
2077 .startup.single = perf_event_init_cpu,
2078 .teardown.single = perf_event_exit_cpu,
2079 },
2080 [CPUHP_RANDOM_PREPARE] = {
2081 .name = "random:prepare",
2082 .startup.single = random_prepare_cpu,
2083 .teardown.single = NULL,
2084 },
2085 [CPUHP_WORKQUEUE_PREP] = {
2086 .name = "workqueue:prepare",
2087 .startup.single = workqueue_prepare_cpu,
2088 .teardown.single = NULL,
2089 },
2090 [CPUHP_HRTIMERS_PREPARE] = {
2091 .name = "hrtimers:prepare",
2092 .startup.single = hrtimers_prepare_cpu,
2093 .teardown.single = NULL,
2094 },
2095 [CPUHP_SMPCFD_PREPARE] = {
2096 .name = "smpcfd:prepare",
2097 .startup.single = smpcfd_prepare_cpu,
2098 .teardown.single = smpcfd_dead_cpu,
2099 },
2100 [CPUHP_RELAY_PREPARE] = {
2101 .name = "relay:prepare",
2102 .startup.single = relay_prepare_cpu,
2103 .teardown.single = NULL,
2104 },
2105 [CPUHP_RCUTREE_PREP] = {
2106 .name = "RCU/tree:prepare",
2107 .startup.single = rcutree_prepare_cpu,
2108 .teardown.single = rcutree_dead_cpu,
2109 },
2110 /*
2111 * On the tear-down path, timers_dead_cpu() must be invoked
2112 * before blk_mq_queue_reinit_notify() from notify_dead(),
2113 * otherwise a RCU stall occurs.
2114 */
2115 [CPUHP_TIMERS_PREPARE] = {
2116 .name = "timers:prepare",
2117 .startup.single = timers_prepare_cpu,
2118 .teardown.single = timers_dead_cpu,
2119 },
2120
2121#ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
2122 /*
2123 * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until
2124 * the next step will release it.
2125 */
2126 [CPUHP_BP_KICK_AP] = {
2127 .name = "cpu:kick_ap",
2128 .startup.single = cpuhp_kick_ap_alive,
2129 },
2130
2131 /*
2132 * Waits for the AP to reach cpuhp_ap_sync_alive() and then
2133 * releases it for the complete bringup.
2134 */
2135 [CPUHP_BRINGUP_CPU] = {
2136 .name = "cpu:bringup",
2137 .startup.single = cpuhp_bringup_ap,
2138 .teardown.single = finish_cpu,
2139 .cant_stop = true,
2140 },
2141#else
2142 /*
2143 * All-in-one CPU bringup state which includes the kick alive.
2144 */
2145 [CPUHP_BRINGUP_CPU] = {
2146 .name = "cpu:bringup",
2147 .startup.single = bringup_cpu,
2148 .teardown.single = finish_cpu,
2149 .cant_stop = true,
2150 },
2151#endif
2152 /* Final state before CPU kills itself */
2153 [CPUHP_AP_IDLE_DEAD] = {
2154 .name = "idle:dead",
2155 },
2156 /*
2157 * Last state before CPU enters the idle loop to die. Transient state
2158 * for synchronization.
2159 */
2160 [CPUHP_AP_OFFLINE] = {
2161 .name = "ap:offline",
2162 .cant_stop = true,
2163 },
2164 /* First state is scheduler control. Interrupts are disabled */
2165 [CPUHP_AP_SCHED_STARTING] = {
2166 .name = "sched:starting",
2167 .startup.single = sched_cpu_starting,
2168 .teardown.single = sched_cpu_dying,
2169 },
2170 [CPUHP_AP_RCUTREE_DYING] = {
2171 .name = "RCU/tree:dying",
2172 .startup.single = NULL,
2173 .teardown.single = rcutree_dying_cpu,
2174 },
2175 [CPUHP_AP_SMPCFD_DYING] = {
2176 .name = "smpcfd:dying",
2177 .startup.single = NULL,
2178 .teardown.single = smpcfd_dying_cpu,
2179 },
2180 [CPUHP_AP_HRTIMERS_DYING] = {
2181 .name = "hrtimers:dying",
2182 .startup.single = hrtimers_cpu_starting,
2183 .teardown.single = hrtimers_cpu_dying,
2184 },
2185 [CPUHP_AP_TICK_DYING] = {
2186 .name = "tick:dying",
2187 .startup.single = NULL,
2188 .teardown.single = tick_cpu_dying,
2189 },
2190 /* Entry state on starting. Interrupts enabled from here on. Transient
2191 * state for synchronsization */
2192 [CPUHP_AP_ONLINE] = {
2193 .name = "ap:online",
2194 },
2195 /*
2196 * Handled on control processor until the plugged processor manages
2197 * this itself.
2198 */
2199 [CPUHP_TEARDOWN_CPU] = {
2200 .name = "cpu:teardown",
2201 .startup.single = NULL,
2202 .teardown.single = takedown_cpu,
2203 .cant_stop = true,
2204 },
2205
2206 [CPUHP_AP_SCHED_WAIT_EMPTY] = {
2207 .name = "sched:waitempty",
2208 .startup.single = NULL,
2209 .teardown.single = sched_cpu_wait_empty,
2210 },
2211
2212 /* Handle smpboot threads park/unpark */
2213 [CPUHP_AP_SMPBOOT_THREADS] = {
2214 .name = "smpboot/threads:online",
2215 .startup.single = smpboot_unpark_threads,
2216 .teardown.single = smpboot_park_threads,
2217 },
2218 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
2219 .name = "irq/affinity:online",
2220 .startup.single = irq_affinity_online_cpu,
2221 .teardown.single = NULL,
2222 },
2223 [CPUHP_AP_PERF_ONLINE] = {
2224 .name = "perf:online",
2225 .startup.single = perf_event_init_cpu,
2226 .teardown.single = perf_event_exit_cpu,
2227 },
2228 [CPUHP_AP_WATCHDOG_ONLINE] = {
2229 .name = "lockup_detector:online",
2230 .startup.single = lockup_detector_online_cpu,
2231 .teardown.single = lockup_detector_offline_cpu,
2232 },
2233 [CPUHP_AP_WORKQUEUE_ONLINE] = {
2234 .name = "workqueue:online",
2235 .startup.single = workqueue_online_cpu,
2236 .teardown.single = workqueue_offline_cpu,
2237 },
2238 [CPUHP_AP_RANDOM_ONLINE] = {
2239 .name = "random:online",
2240 .startup.single = random_online_cpu,
2241 .teardown.single = NULL,
2242 },
2243 [CPUHP_AP_RCUTREE_ONLINE] = {
2244 .name = "RCU/tree:online",
2245 .startup.single = rcutree_online_cpu,
2246 .teardown.single = rcutree_offline_cpu,
2247 },
2248#endif
2249 /*
2250 * The dynamically registered state space is here
2251 */
2252
2253#ifdef CONFIG_SMP
2254 /* Last state is scheduler control setting the cpu active */
2255 [CPUHP_AP_ACTIVE] = {
2256 .name = "sched:active",
2257 .startup.single = sched_cpu_activate,
2258 .teardown.single = sched_cpu_deactivate,
2259 },
2260#endif
2261
2262 /* CPU is fully up and running. */
2263 [CPUHP_ONLINE] = {
2264 .name = "online",
2265 .startup.single = NULL,
2266 .teardown.single = NULL,
2267 },
2268};
2269
2270/* Sanity check for callbacks */
2271static int cpuhp_cb_check(enum cpuhp_state state)
2272{
2273 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
2274 return -EINVAL;
2275 return 0;
2276}
2277
2278/*
2279 * Returns a free for dynamic slot assignment of the Online state. The states
2280 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
2281 * by having no name assigned.
2282 */
2283static int cpuhp_reserve_state(enum cpuhp_state state)
2284{
2285 enum cpuhp_state i, end;
2286 struct cpuhp_step *step;
2287
2288 switch (state) {
2289 case CPUHP_AP_ONLINE_DYN:
2290 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
2291 end = CPUHP_AP_ONLINE_DYN_END;
2292 break;
2293 case CPUHP_BP_PREPARE_DYN:
2294 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
2295 end = CPUHP_BP_PREPARE_DYN_END;
2296 break;
2297 default:
2298 return -EINVAL;
2299 }
2300
2301 for (i = state; i <= end; i++, step++) {
2302 if (!step->name)
2303 return i;
2304 }
2305 WARN(1, "No more dynamic states available for CPU hotplug\n");
2306 return -ENOSPC;
2307}
2308
2309static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
2310 int (*startup)(unsigned int cpu),
2311 int (*teardown)(unsigned int cpu),
2312 bool multi_instance)
2313{
2314 /* (Un)Install the callbacks for further cpu hotplug operations */
2315 struct cpuhp_step *sp;
2316 int ret = 0;
2317
2318 /*
2319 * If name is NULL, then the state gets removed.
2320 *
2321 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
2322 * the first allocation from these dynamic ranges, so the removal
2323 * would trigger a new allocation and clear the wrong (already
2324 * empty) state, leaving the callbacks of the to be cleared state
2325 * dangling, which causes wreckage on the next hotplug operation.
2326 */
2327 if (name && (state == CPUHP_AP_ONLINE_DYN ||
2328 state == CPUHP_BP_PREPARE_DYN)) {
2329 ret = cpuhp_reserve_state(state);
2330 if (ret < 0)
2331 return ret;
2332 state = ret;
2333 }
2334 sp = cpuhp_get_step(state);
2335 if (name && sp->name)
2336 return -EBUSY;
2337
2338 sp->startup.single = startup;
2339 sp->teardown.single = teardown;
2340 sp->name = name;
2341 sp->multi_instance = multi_instance;
2342 INIT_HLIST_HEAD(&sp->list);
2343 return ret;
2344}
2345
2346static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
2347{
2348 return cpuhp_get_step(state)->teardown.single;
2349}
2350
2351/*
2352 * Call the startup/teardown function for a step either on the AP or
2353 * on the current CPU.
2354 */
2355static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
2356 struct hlist_node *node)
2357{
2358 struct cpuhp_step *sp = cpuhp_get_step(state);
2359 int ret;
2360
2361 /*
2362 * If there's nothing to do, we done.
2363 * Relies on the union for multi_instance.
2364 */
2365 if (cpuhp_step_empty(bringup, sp))
2366 return 0;
2367 /*
2368 * The non AP bound callbacks can fail on bringup. On teardown
2369 * e.g. module removal we crash for now.
2370 */
2371#ifdef CONFIG_SMP
2372 if (cpuhp_is_ap_state(state))
2373 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
2374 else
2375 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2376#else
2377 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2378#endif
2379 BUG_ON(ret && !bringup);
2380 return ret;
2381}
2382
2383/*
2384 * Called from __cpuhp_setup_state on a recoverable failure.
2385 *
2386 * Note: The teardown callbacks for rollback are not allowed to fail!
2387 */
2388static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
2389 struct hlist_node *node)
2390{
2391 int cpu;
2392
2393 /* Roll back the already executed steps on the other cpus */
2394 for_each_present_cpu(cpu) {
2395 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2396 int cpustate = st->state;
2397
2398 if (cpu >= failedcpu)
2399 break;
2400
2401 /* Did we invoke the startup call on that cpu ? */
2402 if (cpustate >= state)
2403 cpuhp_issue_call(cpu, state, false, node);
2404 }
2405}
2406
2407int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
2408 struct hlist_node *node,
2409 bool invoke)
2410{
2411 struct cpuhp_step *sp;
2412 int cpu;
2413 int ret;
2414
2415 lockdep_assert_cpus_held();
2416
2417 sp = cpuhp_get_step(state);
2418 if (sp->multi_instance == false)
2419 return -EINVAL;
2420
2421 mutex_lock(&cpuhp_state_mutex);
2422
2423 if (!invoke || !sp->startup.multi)
2424 goto add_node;
2425
2426 /*
2427 * Try to call the startup callback for each present cpu
2428 * depending on the hotplug state of the cpu.
2429 */
2430 for_each_present_cpu(cpu) {
2431 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2432 int cpustate = st->state;
2433
2434 if (cpustate < state)
2435 continue;
2436
2437 ret = cpuhp_issue_call(cpu, state, true, node);
2438 if (ret) {
2439 if (sp->teardown.multi)
2440 cpuhp_rollback_install(cpu, state, node);
2441 goto unlock;
2442 }
2443 }
2444add_node:
2445 ret = 0;
2446 hlist_add_head(node, &sp->list);
2447unlock:
2448 mutex_unlock(&cpuhp_state_mutex);
2449 return ret;
2450}
2451
2452int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2453 bool invoke)
2454{
2455 int ret;
2456
2457 cpus_read_lock();
2458 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2459 cpus_read_unlock();
2460 return ret;
2461}
2462EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2463
2464/**
2465 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2466 * @state: The state to setup
2467 * @name: Name of the step
2468 * @invoke: If true, the startup function is invoked for cpus where
2469 * cpu state >= @state
2470 * @startup: startup callback function
2471 * @teardown: teardown callback function
2472 * @multi_instance: State is set up for multiple instances which get
2473 * added afterwards.
2474 *
2475 * The caller needs to hold cpus read locked while calling this function.
2476 * Return:
2477 * On success:
2478 * Positive state number if @state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN;
2479 * 0 for all other states
2480 * On failure: proper (negative) error code
2481 */
2482int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2483 const char *name, bool invoke,
2484 int (*startup)(unsigned int cpu),
2485 int (*teardown)(unsigned int cpu),
2486 bool multi_instance)
2487{
2488 int cpu, ret = 0;
2489 bool dynstate;
2490
2491 lockdep_assert_cpus_held();
2492
2493 if (cpuhp_cb_check(state) || !name)
2494 return -EINVAL;
2495
2496 mutex_lock(&cpuhp_state_mutex);
2497
2498 ret = cpuhp_store_callbacks(state, name, startup, teardown,
2499 multi_instance);
2500
2501 dynstate = state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN;
2502 if (ret > 0 && dynstate) {
2503 state = ret;
2504 ret = 0;
2505 }
2506
2507 if (ret || !invoke || !startup)
2508 goto out;
2509
2510 /*
2511 * Try to call the startup callback for each present cpu
2512 * depending on the hotplug state of the cpu.
2513 */
2514 for_each_present_cpu(cpu) {
2515 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2516 int cpustate = st->state;
2517
2518 if (cpustate < state)
2519 continue;
2520
2521 ret = cpuhp_issue_call(cpu, state, true, NULL);
2522 if (ret) {
2523 if (teardown)
2524 cpuhp_rollback_install(cpu, state, NULL);
2525 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2526 goto out;
2527 }
2528 }
2529out:
2530 mutex_unlock(&cpuhp_state_mutex);
2531 /*
2532 * If the requested state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN,
2533 * return the dynamically allocated state in case of success.
2534 */
2535 if (!ret && dynstate)
2536 return state;
2537 return ret;
2538}
2539EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2540
2541int __cpuhp_setup_state(enum cpuhp_state state,
2542 const char *name, bool invoke,
2543 int (*startup)(unsigned int cpu),
2544 int (*teardown)(unsigned int cpu),
2545 bool multi_instance)
2546{
2547 int ret;
2548
2549 cpus_read_lock();
2550 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2551 teardown, multi_instance);
2552 cpus_read_unlock();
2553 return ret;
2554}
2555EXPORT_SYMBOL(__cpuhp_setup_state);
2556
2557int __cpuhp_state_remove_instance(enum cpuhp_state state,
2558 struct hlist_node *node, bool invoke)
2559{
2560 struct cpuhp_step *sp = cpuhp_get_step(state);
2561 int cpu;
2562
2563 BUG_ON(cpuhp_cb_check(state));
2564
2565 if (!sp->multi_instance)
2566 return -EINVAL;
2567
2568 cpus_read_lock();
2569 mutex_lock(&cpuhp_state_mutex);
2570
2571 if (!invoke || !cpuhp_get_teardown_cb(state))
2572 goto remove;
2573 /*
2574 * Call the teardown callback for each present cpu depending
2575 * on the hotplug state of the cpu. This function is not
2576 * allowed to fail currently!
2577 */
2578 for_each_present_cpu(cpu) {
2579 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2580 int cpustate = st->state;
2581
2582 if (cpustate >= state)
2583 cpuhp_issue_call(cpu, state, false, node);
2584 }
2585
2586remove:
2587 hlist_del(node);
2588 mutex_unlock(&cpuhp_state_mutex);
2589 cpus_read_unlock();
2590
2591 return 0;
2592}
2593EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2594
2595/**
2596 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2597 * @state: The state to remove
2598 * @invoke: If true, the teardown function is invoked for cpus where
2599 * cpu state >= @state
2600 *
2601 * The caller needs to hold cpus read locked while calling this function.
2602 * The teardown callback is currently not allowed to fail. Think
2603 * about module removal!
2604 */
2605void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2606{
2607 struct cpuhp_step *sp = cpuhp_get_step(state);
2608 int cpu;
2609
2610 BUG_ON(cpuhp_cb_check(state));
2611
2612 lockdep_assert_cpus_held();
2613
2614 mutex_lock(&cpuhp_state_mutex);
2615 if (sp->multi_instance) {
2616 WARN(!hlist_empty(&sp->list),
2617 "Error: Removing state %d which has instances left.\n",
2618 state);
2619 goto remove;
2620 }
2621
2622 if (!invoke || !cpuhp_get_teardown_cb(state))
2623 goto remove;
2624
2625 /*
2626 * Call the teardown callback for each present cpu depending
2627 * on the hotplug state of the cpu. This function is not
2628 * allowed to fail currently!
2629 */
2630 for_each_present_cpu(cpu) {
2631 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2632 int cpustate = st->state;
2633
2634 if (cpustate >= state)
2635 cpuhp_issue_call(cpu, state, false, NULL);
2636 }
2637remove:
2638 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2639 mutex_unlock(&cpuhp_state_mutex);
2640}
2641EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2642
2643void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2644{
2645 cpus_read_lock();
2646 __cpuhp_remove_state_cpuslocked(state, invoke);
2647 cpus_read_unlock();
2648}
2649EXPORT_SYMBOL(__cpuhp_remove_state);
2650
2651#ifdef CONFIG_HOTPLUG_SMT
2652static void cpuhp_offline_cpu_device(unsigned int cpu)
2653{
2654 struct device *dev = get_cpu_device(cpu);
2655
2656 dev->offline = true;
2657 /* Tell user space about the state change */
2658 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2659}
2660
2661static void cpuhp_online_cpu_device(unsigned int cpu)
2662{
2663 struct device *dev = get_cpu_device(cpu);
2664
2665 dev->offline = false;
2666 /* Tell user space about the state change */
2667 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2668}
2669
2670int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2671{
2672 int cpu, ret = 0;
2673
2674 cpu_maps_update_begin();
2675 for_each_online_cpu(cpu) {
2676 if (topology_is_primary_thread(cpu))
2677 continue;
2678 /*
2679 * Disable can be called with CPU_SMT_ENABLED when changing
2680 * from a higher to lower number of SMT threads per core.
2681 */
2682 if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
2683 continue;
2684 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2685 if (ret)
2686 break;
2687 /*
2688 * As this needs to hold the cpu maps lock it's impossible
2689 * to call device_offline() because that ends up calling
2690 * cpu_down() which takes cpu maps lock. cpu maps lock
2691 * needs to be held as this might race against in kernel
2692 * abusers of the hotplug machinery (thermal management).
2693 *
2694 * So nothing would update device:offline state. That would
2695 * leave the sysfs entry stale and prevent onlining after
2696 * smt control has been changed to 'off' again. This is
2697 * called under the sysfs hotplug lock, so it is properly
2698 * serialized against the regular offline usage.
2699 */
2700 cpuhp_offline_cpu_device(cpu);
2701 }
2702 if (!ret)
2703 cpu_smt_control = ctrlval;
2704 cpu_maps_update_done();
2705 return ret;
2706}
2707
2708/* Check if the core a CPU belongs to is online */
2709#if !defined(topology_is_core_online)
2710static inline bool topology_is_core_online(unsigned int cpu)
2711{
2712 return true;
2713}
2714#endif
2715
2716int cpuhp_smt_enable(void)
2717{
2718 int cpu, ret = 0;
2719
2720 cpu_maps_update_begin();
2721 cpu_smt_control = CPU_SMT_ENABLED;
2722 for_each_present_cpu(cpu) {
2723 /* Skip online CPUs and CPUs on offline nodes */
2724 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2725 continue;
2726 if (!cpu_smt_thread_allowed(cpu) || !topology_is_core_online(cpu))
2727 continue;
2728 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2729 if (ret)
2730 break;
2731 /* See comment in cpuhp_smt_disable() */
2732 cpuhp_online_cpu_device(cpu);
2733 }
2734 cpu_maps_update_done();
2735 return ret;
2736}
2737#endif
2738
2739#if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2740static ssize_t state_show(struct device *dev,
2741 struct device_attribute *attr, char *buf)
2742{
2743 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2744
2745 return sprintf(buf, "%d\n", st->state);
2746}
2747static DEVICE_ATTR_RO(state);
2748
2749static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2750 const char *buf, size_t count)
2751{
2752 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2753 struct cpuhp_step *sp;
2754 int target, ret;
2755
2756 ret = kstrtoint(buf, 10, &target);
2757 if (ret)
2758 return ret;
2759
2760#ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2761 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2762 return -EINVAL;
2763#else
2764 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2765 return -EINVAL;
2766#endif
2767
2768 ret = lock_device_hotplug_sysfs();
2769 if (ret)
2770 return ret;
2771
2772 mutex_lock(&cpuhp_state_mutex);
2773 sp = cpuhp_get_step(target);
2774 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2775 mutex_unlock(&cpuhp_state_mutex);
2776 if (ret)
2777 goto out;
2778
2779 if (st->state < target)
2780 ret = cpu_up(dev->id, target);
2781 else if (st->state > target)
2782 ret = cpu_down(dev->id, target);
2783 else if (WARN_ON(st->target != target))
2784 st->target = target;
2785out:
2786 unlock_device_hotplug();
2787 return ret ? ret : count;
2788}
2789
2790static ssize_t target_show(struct device *dev,
2791 struct device_attribute *attr, char *buf)
2792{
2793 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2794
2795 return sprintf(buf, "%d\n", st->target);
2796}
2797static DEVICE_ATTR_RW(target);
2798
2799static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2800 const char *buf, size_t count)
2801{
2802 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2803 struct cpuhp_step *sp;
2804 int fail, ret;
2805
2806 ret = kstrtoint(buf, 10, &fail);
2807 if (ret)
2808 return ret;
2809
2810 if (fail == CPUHP_INVALID) {
2811 st->fail = fail;
2812 return count;
2813 }
2814
2815 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2816 return -EINVAL;
2817
2818 /*
2819 * Cannot fail STARTING/DYING callbacks.
2820 */
2821 if (cpuhp_is_atomic_state(fail))
2822 return -EINVAL;
2823
2824 /*
2825 * DEAD callbacks cannot fail...
2826 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2827 * triggering STARTING callbacks, a failure in this state would
2828 * hinder rollback.
2829 */
2830 if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2831 return -EINVAL;
2832
2833 /*
2834 * Cannot fail anything that doesn't have callbacks.
2835 */
2836 mutex_lock(&cpuhp_state_mutex);
2837 sp = cpuhp_get_step(fail);
2838 if (!sp->startup.single && !sp->teardown.single)
2839 ret = -EINVAL;
2840 mutex_unlock(&cpuhp_state_mutex);
2841 if (ret)
2842 return ret;
2843
2844 st->fail = fail;
2845
2846 return count;
2847}
2848
2849static ssize_t fail_show(struct device *dev,
2850 struct device_attribute *attr, char *buf)
2851{
2852 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2853
2854 return sprintf(buf, "%d\n", st->fail);
2855}
2856
2857static DEVICE_ATTR_RW(fail);
2858
2859static struct attribute *cpuhp_cpu_attrs[] = {
2860 &dev_attr_state.attr,
2861 &dev_attr_target.attr,
2862 &dev_attr_fail.attr,
2863 NULL
2864};
2865
2866static const struct attribute_group cpuhp_cpu_attr_group = {
2867 .attrs = cpuhp_cpu_attrs,
2868 .name = "hotplug",
2869};
2870
2871static ssize_t states_show(struct device *dev,
2872 struct device_attribute *attr, char *buf)
2873{
2874 ssize_t cur, res = 0;
2875 int i;
2876
2877 mutex_lock(&cpuhp_state_mutex);
2878 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2879 struct cpuhp_step *sp = cpuhp_get_step(i);
2880
2881 if (sp->name) {
2882 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2883 buf += cur;
2884 res += cur;
2885 }
2886 }
2887 mutex_unlock(&cpuhp_state_mutex);
2888 return res;
2889}
2890static DEVICE_ATTR_RO(states);
2891
2892static struct attribute *cpuhp_cpu_root_attrs[] = {
2893 &dev_attr_states.attr,
2894 NULL
2895};
2896
2897static const struct attribute_group cpuhp_cpu_root_attr_group = {
2898 .attrs = cpuhp_cpu_root_attrs,
2899 .name = "hotplug",
2900};
2901
2902#ifdef CONFIG_HOTPLUG_SMT
2903
2904static bool cpu_smt_num_threads_valid(unsigned int threads)
2905{
2906 if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC))
2907 return threads >= 1 && threads <= cpu_smt_max_threads;
2908 return threads == 1 || threads == cpu_smt_max_threads;
2909}
2910
2911static ssize_t
2912__store_smt_control(struct device *dev, struct device_attribute *attr,
2913 const char *buf, size_t count)
2914{
2915 int ctrlval, ret, num_threads, orig_threads;
2916 bool force_off;
2917
2918 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2919 return -EPERM;
2920
2921 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2922 return -ENODEV;
2923
2924 if (sysfs_streq(buf, "on")) {
2925 ctrlval = CPU_SMT_ENABLED;
2926 num_threads = cpu_smt_max_threads;
2927 } else if (sysfs_streq(buf, "off")) {
2928 ctrlval = CPU_SMT_DISABLED;
2929 num_threads = 1;
2930 } else if (sysfs_streq(buf, "forceoff")) {
2931 ctrlval = CPU_SMT_FORCE_DISABLED;
2932 num_threads = 1;
2933 } else if (kstrtoint(buf, 10, &num_threads) == 0) {
2934 if (num_threads == 1)
2935 ctrlval = CPU_SMT_DISABLED;
2936 else if (cpu_smt_num_threads_valid(num_threads))
2937 ctrlval = CPU_SMT_ENABLED;
2938 else
2939 return -EINVAL;
2940 } else {
2941 return -EINVAL;
2942 }
2943
2944 ret = lock_device_hotplug_sysfs();
2945 if (ret)
2946 return ret;
2947
2948 orig_threads = cpu_smt_num_threads;
2949 cpu_smt_num_threads = num_threads;
2950
2951 force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED;
2952
2953 if (num_threads > orig_threads)
2954 ret = cpuhp_smt_enable();
2955 else if (num_threads < orig_threads || force_off)
2956 ret = cpuhp_smt_disable(ctrlval);
2957
2958 unlock_device_hotplug();
2959 return ret ? ret : count;
2960}
2961
2962#else /* !CONFIG_HOTPLUG_SMT */
2963static ssize_t
2964__store_smt_control(struct device *dev, struct device_attribute *attr,
2965 const char *buf, size_t count)
2966{
2967 return -ENODEV;
2968}
2969#endif /* CONFIG_HOTPLUG_SMT */
2970
2971static const char *smt_states[] = {
2972 [CPU_SMT_ENABLED] = "on",
2973 [CPU_SMT_DISABLED] = "off",
2974 [CPU_SMT_FORCE_DISABLED] = "forceoff",
2975 [CPU_SMT_NOT_SUPPORTED] = "notsupported",
2976 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented",
2977};
2978
2979static ssize_t control_show(struct device *dev,
2980 struct device_attribute *attr, char *buf)
2981{
2982 const char *state = smt_states[cpu_smt_control];
2983
2984#ifdef CONFIG_HOTPLUG_SMT
2985 /*
2986 * If SMT is enabled but not all threads are enabled then show the
2987 * number of threads. If all threads are enabled show "on". Otherwise
2988 * show the state name.
2989 */
2990 if (cpu_smt_control == CPU_SMT_ENABLED &&
2991 cpu_smt_num_threads != cpu_smt_max_threads)
2992 return sysfs_emit(buf, "%d\n", cpu_smt_num_threads);
2993#endif
2994
2995 return sysfs_emit(buf, "%s\n", state);
2996}
2997
2998static ssize_t control_store(struct device *dev, struct device_attribute *attr,
2999 const char *buf, size_t count)
3000{
3001 return __store_smt_control(dev, attr, buf, count);
3002}
3003static DEVICE_ATTR_RW(control);
3004
3005static ssize_t active_show(struct device *dev,
3006 struct device_attribute *attr, char *buf)
3007{
3008 return sysfs_emit(buf, "%d\n", sched_smt_active());
3009}
3010static DEVICE_ATTR_RO(active);
3011
3012static struct attribute *cpuhp_smt_attrs[] = {
3013 &dev_attr_control.attr,
3014 &dev_attr_active.attr,
3015 NULL
3016};
3017
3018static const struct attribute_group cpuhp_smt_attr_group = {
3019 .attrs = cpuhp_smt_attrs,
3020 .name = "smt",
3021};
3022
3023static int __init cpu_smt_sysfs_init(void)
3024{
3025 struct device *dev_root;
3026 int ret = -ENODEV;
3027
3028 dev_root = bus_get_dev_root(&cpu_subsys);
3029 if (dev_root) {
3030 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group);
3031 put_device(dev_root);
3032 }
3033 return ret;
3034}
3035
3036static int __init cpuhp_sysfs_init(void)
3037{
3038 struct device *dev_root;
3039 int cpu, ret;
3040
3041 ret = cpu_smt_sysfs_init();
3042 if (ret)
3043 return ret;
3044
3045 dev_root = bus_get_dev_root(&cpu_subsys);
3046 if (dev_root) {
3047 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group);
3048 put_device(dev_root);
3049 if (ret)
3050 return ret;
3051 }
3052
3053 for_each_possible_cpu(cpu) {
3054 struct device *dev = get_cpu_device(cpu);
3055
3056 if (!dev)
3057 continue;
3058 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
3059 if (ret)
3060 return ret;
3061 }
3062 return 0;
3063}
3064device_initcall(cpuhp_sysfs_init);
3065#endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
3066
3067/*
3068 * cpu_bit_bitmap[] is a special, "compressed" data structure that
3069 * represents all NR_CPUS bits binary values of 1<<nr.
3070 *
3071 * It is used by cpumask_of() to get a constant address to a CPU
3072 * mask value that has a single bit set only.
3073 */
3074
3075/* cpu_bit_bitmap[0] is empty - so we can back into it */
3076#define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
3077#define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
3078#define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
3079#define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
3080
3081const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
3082
3083 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
3084 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
3085#if BITS_PER_LONG > 32
3086 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
3087 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
3088#endif
3089};
3090EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
3091
3092const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
3093EXPORT_SYMBOL(cpu_all_bits);
3094
3095#ifdef CONFIG_INIT_ALL_POSSIBLE
3096struct cpumask __cpu_possible_mask __ro_after_init
3097 = {CPU_BITS_ALL};
3098#else
3099struct cpumask __cpu_possible_mask __ro_after_init;
3100#endif
3101EXPORT_SYMBOL(__cpu_possible_mask);
3102
3103struct cpumask __cpu_online_mask __read_mostly;
3104EXPORT_SYMBOL(__cpu_online_mask);
3105
3106struct cpumask __cpu_enabled_mask __read_mostly;
3107EXPORT_SYMBOL(__cpu_enabled_mask);
3108
3109struct cpumask __cpu_present_mask __read_mostly;
3110EXPORT_SYMBOL(__cpu_present_mask);
3111
3112struct cpumask __cpu_active_mask __read_mostly;
3113EXPORT_SYMBOL(__cpu_active_mask);
3114
3115struct cpumask __cpu_dying_mask __read_mostly;
3116EXPORT_SYMBOL(__cpu_dying_mask);
3117
3118atomic_t __num_online_cpus __read_mostly;
3119EXPORT_SYMBOL(__num_online_cpus);
3120
3121void init_cpu_present(const struct cpumask *src)
3122{
3123 cpumask_copy(&__cpu_present_mask, src);
3124}
3125
3126void init_cpu_possible(const struct cpumask *src)
3127{
3128 cpumask_copy(&__cpu_possible_mask, src);
3129}
3130
3131void init_cpu_online(const struct cpumask *src)
3132{
3133 cpumask_copy(&__cpu_online_mask, src);
3134}
3135
3136void set_cpu_online(unsigned int cpu, bool online)
3137{
3138 /*
3139 * atomic_inc/dec() is required to handle the horrid abuse of this
3140 * function by the reboot and kexec code which invoke it from
3141 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
3142 * regular CPU hotplug is properly serialized.
3143 *
3144 * Note, that the fact that __num_online_cpus is of type atomic_t
3145 * does not protect readers which are not serialized against
3146 * concurrent hotplug operations.
3147 */
3148 if (online) {
3149 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
3150 atomic_inc(&__num_online_cpus);
3151 } else {
3152 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
3153 atomic_dec(&__num_online_cpus);
3154 }
3155}
3156
3157/*
3158 * Activate the first processor.
3159 */
3160void __init boot_cpu_init(void)
3161{
3162 int cpu = smp_processor_id();
3163
3164 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
3165 set_cpu_online(cpu, true);
3166 set_cpu_active(cpu, true);
3167 set_cpu_present(cpu, true);
3168 set_cpu_possible(cpu, true);
3169
3170#ifdef CONFIG_SMP
3171 __boot_cpu_id = cpu;
3172#endif
3173}
3174
3175/*
3176 * Must be called _AFTER_ setting up the per_cpu areas
3177 */
3178void __init boot_cpu_hotplug_init(void)
3179{
3180#ifdef CONFIG_SMP
3181 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
3182 atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE);
3183#endif
3184 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
3185 this_cpu_write(cpuhp_state.target, CPUHP_ONLINE);
3186}
3187
3188#ifdef CONFIG_CPU_MITIGATIONS
3189/*
3190 * These are used for a global "mitigations=" cmdline option for toggling
3191 * optional CPU mitigations.
3192 */
3193enum cpu_mitigations {
3194 CPU_MITIGATIONS_OFF,
3195 CPU_MITIGATIONS_AUTO,
3196 CPU_MITIGATIONS_AUTO_NOSMT,
3197};
3198
3199static enum cpu_mitigations cpu_mitigations __ro_after_init = CPU_MITIGATIONS_AUTO;
3200
3201static int __init mitigations_parse_cmdline(char *arg)
3202{
3203 if (!strcmp(arg, "off"))
3204 cpu_mitigations = CPU_MITIGATIONS_OFF;
3205 else if (!strcmp(arg, "auto"))
3206 cpu_mitigations = CPU_MITIGATIONS_AUTO;
3207 else if (!strcmp(arg, "auto,nosmt"))
3208 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
3209 else
3210 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
3211 arg);
3212
3213 return 0;
3214}
3215
3216/* mitigations=off */
3217bool cpu_mitigations_off(void)
3218{
3219 return cpu_mitigations == CPU_MITIGATIONS_OFF;
3220}
3221EXPORT_SYMBOL_GPL(cpu_mitigations_off);
3222
3223/* mitigations=auto,nosmt */
3224bool cpu_mitigations_auto_nosmt(void)
3225{
3226 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
3227}
3228EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
3229#else
3230static int __init mitigations_parse_cmdline(char *arg)
3231{
3232 pr_crit("Kernel compiled without mitigations, ignoring 'mitigations'; system may still be vulnerable\n");
3233 return 0;
3234}
3235#endif
3236early_param("mitigations", mitigations_parse_cmdline);
1/* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6#include <linux/sched/mm.h>
7#include <linux/proc_fs.h>
8#include <linux/smp.h>
9#include <linux/init.h>
10#include <linux/notifier.h>
11#include <linux/sched/signal.h>
12#include <linux/sched/hotplug.h>
13#include <linux/sched/isolation.h>
14#include <linux/sched/task.h>
15#include <linux/sched/smt.h>
16#include <linux/unistd.h>
17#include <linux/cpu.h>
18#include <linux/oom.h>
19#include <linux/rcupdate.h>
20#include <linux/export.h>
21#include <linux/bug.h>
22#include <linux/kthread.h>
23#include <linux/stop_machine.h>
24#include <linux/mutex.h>
25#include <linux/gfp.h>
26#include <linux/suspend.h>
27#include <linux/lockdep.h>
28#include <linux/tick.h>
29#include <linux/irq.h>
30#include <linux/nmi.h>
31#include <linux/smpboot.h>
32#include <linux/relay.h>
33#include <linux/slab.h>
34#include <linux/percpu-rwsem.h>
35
36#include <trace/events/power.h>
37#define CREATE_TRACE_POINTS
38#include <trace/events/cpuhp.h>
39
40#include "smpboot.h"
41
42/**
43 * cpuhp_cpu_state - Per cpu hotplug state storage
44 * @state: The current cpu state
45 * @target: The target state
46 * @thread: Pointer to the hotplug thread
47 * @should_run: Thread should execute
48 * @rollback: Perform a rollback
49 * @single: Single callback invocation
50 * @bringup: Single callback bringup or teardown selector
51 * @cb_state: The state for a single callback (install/uninstall)
52 * @result: Result of the operation
53 * @done_up: Signal completion to the issuer of the task for cpu-up
54 * @done_down: Signal completion to the issuer of the task for cpu-down
55 */
56struct cpuhp_cpu_state {
57 enum cpuhp_state state;
58 enum cpuhp_state target;
59 enum cpuhp_state fail;
60#ifdef CONFIG_SMP
61 struct task_struct *thread;
62 bool should_run;
63 bool rollback;
64 bool single;
65 bool bringup;
66 struct hlist_node *node;
67 struct hlist_node *last;
68 enum cpuhp_state cb_state;
69 int result;
70 struct completion done_up;
71 struct completion done_down;
72#endif
73};
74
75static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
76 .fail = CPUHP_INVALID,
77};
78
79#ifdef CONFIG_SMP
80cpumask_t cpus_booted_once_mask;
81#endif
82
83#if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
84static struct lockdep_map cpuhp_state_up_map =
85 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
86static struct lockdep_map cpuhp_state_down_map =
87 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
88
89
90static inline void cpuhp_lock_acquire(bool bringup)
91{
92 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
93}
94
95static inline void cpuhp_lock_release(bool bringup)
96{
97 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
98}
99#else
100
101static inline void cpuhp_lock_acquire(bool bringup) { }
102static inline void cpuhp_lock_release(bool bringup) { }
103
104#endif
105
106/**
107 * cpuhp_step - Hotplug state machine step
108 * @name: Name of the step
109 * @startup: Startup function of the step
110 * @teardown: Teardown function of the step
111 * @cant_stop: Bringup/teardown can't be stopped at this step
112 */
113struct cpuhp_step {
114 const char *name;
115 union {
116 int (*single)(unsigned int cpu);
117 int (*multi)(unsigned int cpu,
118 struct hlist_node *node);
119 } startup;
120 union {
121 int (*single)(unsigned int cpu);
122 int (*multi)(unsigned int cpu,
123 struct hlist_node *node);
124 } teardown;
125 struct hlist_head list;
126 bool cant_stop;
127 bool multi_instance;
128};
129
130static DEFINE_MUTEX(cpuhp_state_mutex);
131static struct cpuhp_step cpuhp_hp_states[];
132
133static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
134{
135 return cpuhp_hp_states + state;
136}
137
138/**
139 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
140 * @cpu: The cpu for which the callback should be invoked
141 * @state: The state to do callbacks for
142 * @bringup: True if the bringup callback should be invoked
143 * @node: For multi-instance, do a single entry callback for install/remove
144 * @lastp: For multi-instance rollback, remember how far we got
145 *
146 * Called from cpu hotplug and from the state register machinery.
147 */
148static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
149 bool bringup, struct hlist_node *node,
150 struct hlist_node **lastp)
151{
152 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
153 struct cpuhp_step *step = cpuhp_get_step(state);
154 int (*cbm)(unsigned int cpu, struct hlist_node *node);
155 int (*cb)(unsigned int cpu);
156 int ret, cnt;
157
158 if (st->fail == state) {
159 st->fail = CPUHP_INVALID;
160
161 if (!(bringup ? step->startup.single : step->teardown.single))
162 return 0;
163
164 return -EAGAIN;
165 }
166
167 if (!step->multi_instance) {
168 WARN_ON_ONCE(lastp && *lastp);
169 cb = bringup ? step->startup.single : step->teardown.single;
170 if (!cb)
171 return 0;
172 trace_cpuhp_enter(cpu, st->target, state, cb);
173 ret = cb(cpu);
174 trace_cpuhp_exit(cpu, st->state, state, ret);
175 return ret;
176 }
177 cbm = bringup ? step->startup.multi : step->teardown.multi;
178 if (!cbm)
179 return 0;
180
181 /* Single invocation for instance add/remove */
182 if (node) {
183 WARN_ON_ONCE(lastp && *lastp);
184 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
185 ret = cbm(cpu, node);
186 trace_cpuhp_exit(cpu, st->state, state, ret);
187 return ret;
188 }
189
190 /* State transition. Invoke on all instances */
191 cnt = 0;
192 hlist_for_each(node, &step->list) {
193 if (lastp && node == *lastp)
194 break;
195
196 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
197 ret = cbm(cpu, node);
198 trace_cpuhp_exit(cpu, st->state, state, ret);
199 if (ret) {
200 if (!lastp)
201 goto err;
202
203 *lastp = node;
204 return ret;
205 }
206 cnt++;
207 }
208 if (lastp)
209 *lastp = NULL;
210 return 0;
211err:
212 /* Rollback the instances if one failed */
213 cbm = !bringup ? step->startup.multi : step->teardown.multi;
214 if (!cbm)
215 return ret;
216
217 hlist_for_each(node, &step->list) {
218 if (!cnt--)
219 break;
220
221 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
222 ret = cbm(cpu, node);
223 trace_cpuhp_exit(cpu, st->state, state, ret);
224 /*
225 * Rollback must not fail,
226 */
227 WARN_ON_ONCE(ret);
228 }
229 return ret;
230}
231
232#ifdef CONFIG_SMP
233static bool cpuhp_is_ap_state(enum cpuhp_state state)
234{
235 /*
236 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
237 * purposes as that state is handled explicitly in cpu_down.
238 */
239 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
240}
241
242static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
243{
244 struct completion *done = bringup ? &st->done_up : &st->done_down;
245 wait_for_completion(done);
246}
247
248static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
249{
250 struct completion *done = bringup ? &st->done_up : &st->done_down;
251 complete(done);
252}
253
254/*
255 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
256 */
257static bool cpuhp_is_atomic_state(enum cpuhp_state state)
258{
259 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
260}
261
262/* Serializes the updates to cpu_online_mask, cpu_present_mask */
263static DEFINE_MUTEX(cpu_add_remove_lock);
264bool cpuhp_tasks_frozen;
265EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
266
267/*
268 * The following two APIs (cpu_maps_update_begin/done) must be used when
269 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
270 */
271void cpu_maps_update_begin(void)
272{
273 mutex_lock(&cpu_add_remove_lock);
274}
275
276void cpu_maps_update_done(void)
277{
278 mutex_unlock(&cpu_add_remove_lock);
279}
280
281/*
282 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
283 * Should always be manipulated under cpu_add_remove_lock
284 */
285static int cpu_hotplug_disabled;
286
287#ifdef CONFIG_HOTPLUG_CPU
288
289DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
290
291void cpus_read_lock(void)
292{
293 percpu_down_read(&cpu_hotplug_lock);
294}
295EXPORT_SYMBOL_GPL(cpus_read_lock);
296
297int cpus_read_trylock(void)
298{
299 return percpu_down_read_trylock(&cpu_hotplug_lock);
300}
301EXPORT_SYMBOL_GPL(cpus_read_trylock);
302
303void cpus_read_unlock(void)
304{
305 percpu_up_read(&cpu_hotplug_lock);
306}
307EXPORT_SYMBOL_GPL(cpus_read_unlock);
308
309void cpus_write_lock(void)
310{
311 percpu_down_write(&cpu_hotplug_lock);
312}
313
314void cpus_write_unlock(void)
315{
316 percpu_up_write(&cpu_hotplug_lock);
317}
318
319void lockdep_assert_cpus_held(void)
320{
321 /*
322 * We can't have hotplug operations before userspace starts running,
323 * and some init codepaths will knowingly not take the hotplug lock.
324 * This is all valid, so mute lockdep until it makes sense to report
325 * unheld locks.
326 */
327 if (system_state < SYSTEM_RUNNING)
328 return;
329
330 percpu_rwsem_assert_held(&cpu_hotplug_lock);
331}
332
333static void lockdep_acquire_cpus_lock(void)
334{
335 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
336}
337
338static void lockdep_release_cpus_lock(void)
339{
340 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
341}
342
343/*
344 * Wait for currently running CPU hotplug operations to complete (if any) and
345 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
346 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
347 * hotplug path before performing hotplug operations. So acquiring that lock
348 * guarantees mutual exclusion from any currently running hotplug operations.
349 */
350void cpu_hotplug_disable(void)
351{
352 cpu_maps_update_begin();
353 cpu_hotplug_disabled++;
354 cpu_maps_update_done();
355}
356EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
357
358static void __cpu_hotplug_enable(void)
359{
360 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
361 return;
362 cpu_hotplug_disabled--;
363}
364
365void cpu_hotplug_enable(void)
366{
367 cpu_maps_update_begin();
368 __cpu_hotplug_enable();
369 cpu_maps_update_done();
370}
371EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
372
373#else
374
375static void lockdep_acquire_cpus_lock(void)
376{
377}
378
379static void lockdep_release_cpus_lock(void)
380{
381}
382
383#endif /* CONFIG_HOTPLUG_CPU */
384
385/*
386 * Architectures that need SMT-specific errata handling during SMT hotplug
387 * should override this.
388 */
389void __weak arch_smt_update(void) { }
390
391#ifdef CONFIG_HOTPLUG_SMT
392enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
393
394void __init cpu_smt_disable(bool force)
395{
396 if (!cpu_smt_possible())
397 return;
398
399 if (force) {
400 pr_info("SMT: Force disabled\n");
401 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
402 } else {
403 pr_info("SMT: disabled\n");
404 cpu_smt_control = CPU_SMT_DISABLED;
405 }
406}
407
408/*
409 * The decision whether SMT is supported can only be done after the full
410 * CPU identification. Called from architecture code.
411 */
412void __init cpu_smt_check_topology(void)
413{
414 if (!topology_smt_supported())
415 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
416}
417
418static int __init smt_cmdline_disable(char *str)
419{
420 cpu_smt_disable(str && !strcmp(str, "force"));
421 return 0;
422}
423early_param("nosmt", smt_cmdline_disable);
424
425static inline bool cpu_smt_allowed(unsigned int cpu)
426{
427 if (cpu_smt_control == CPU_SMT_ENABLED)
428 return true;
429
430 if (topology_is_primary_thread(cpu))
431 return true;
432
433 /*
434 * On x86 it's required to boot all logical CPUs at least once so
435 * that the init code can get a chance to set CR4.MCE on each
436 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
437 * core will shutdown the machine.
438 */
439 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
440}
441
442/* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
443bool cpu_smt_possible(void)
444{
445 return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
446 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
447}
448EXPORT_SYMBOL_GPL(cpu_smt_possible);
449#else
450static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
451#endif
452
453static inline enum cpuhp_state
454cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
455{
456 enum cpuhp_state prev_state = st->state;
457
458 st->rollback = false;
459 st->last = NULL;
460
461 st->target = target;
462 st->single = false;
463 st->bringup = st->state < target;
464
465 return prev_state;
466}
467
468static inline void
469cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
470{
471 st->rollback = true;
472
473 /*
474 * If we have st->last we need to undo partial multi_instance of this
475 * state first. Otherwise start undo at the previous state.
476 */
477 if (!st->last) {
478 if (st->bringup)
479 st->state--;
480 else
481 st->state++;
482 }
483
484 st->target = prev_state;
485 st->bringup = !st->bringup;
486}
487
488/* Regular hotplug invocation of the AP hotplug thread */
489static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
490{
491 if (!st->single && st->state == st->target)
492 return;
493
494 st->result = 0;
495 /*
496 * Make sure the above stores are visible before should_run becomes
497 * true. Paired with the mb() above in cpuhp_thread_fun()
498 */
499 smp_mb();
500 st->should_run = true;
501 wake_up_process(st->thread);
502 wait_for_ap_thread(st, st->bringup);
503}
504
505static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
506{
507 enum cpuhp_state prev_state;
508 int ret;
509
510 prev_state = cpuhp_set_state(st, target);
511 __cpuhp_kick_ap(st);
512 if ((ret = st->result)) {
513 cpuhp_reset_state(st, prev_state);
514 __cpuhp_kick_ap(st);
515 }
516
517 return ret;
518}
519
520static int bringup_wait_for_ap(unsigned int cpu)
521{
522 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
523
524 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
525 wait_for_ap_thread(st, true);
526 if (WARN_ON_ONCE((!cpu_online(cpu))))
527 return -ECANCELED;
528
529 /* Unpark the hotplug thread of the target cpu */
530 kthread_unpark(st->thread);
531
532 /*
533 * SMT soft disabling on X86 requires to bring the CPU out of the
534 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
535 * CPU marked itself as booted_once in notify_cpu_starting() so the
536 * cpu_smt_allowed() check will now return false if this is not the
537 * primary sibling.
538 */
539 if (!cpu_smt_allowed(cpu))
540 return -ECANCELED;
541
542 if (st->target <= CPUHP_AP_ONLINE_IDLE)
543 return 0;
544
545 return cpuhp_kick_ap(st, st->target);
546}
547
548static int bringup_cpu(unsigned int cpu)
549{
550 struct task_struct *idle = idle_thread_get(cpu);
551 int ret;
552
553 /*
554 * Some architectures have to walk the irq descriptors to
555 * setup the vector space for the cpu which comes online.
556 * Prevent irq alloc/free across the bringup.
557 */
558 irq_lock_sparse();
559
560 /* Arch-specific enabling code. */
561 ret = __cpu_up(cpu, idle);
562 irq_unlock_sparse();
563 if (ret)
564 return ret;
565 return bringup_wait_for_ap(cpu);
566}
567
568static int finish_cpu(unsigned int cpu)
569{
570 struct task_struct *idle = idle_thread_get(cpu);
571 struct mm_struct *mm = idle->active_mm;
572
573 /*
574 * idle_task_exit() will have switched to &init_mm, now
575 * clean up any remaining active_mm state.
576 */
577 if (mm != &init_mm)
578 idle->active_mm = &init_mm;
579 mmdrop(mm);
580 return 0;
581}
582
583/*
584 * Hotplug state machine related functions
585 */
586
587static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
588{
589 for (st->state--; st->state > st->target; st->state--)
590 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
591}
592
593static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
594{
595 if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
596 return true;
597 /*
598 * When CPU hotplug is disabled, then taking the CPU down is not
599 * possible because takedown_cpu() and the architecture and
600 * subsystem specific mechanisms are not available. So the CPU
601 * which would be completely unplugged again needs to stay around
602 * in the current state.
603 */
604 return st->state <= CPUHP_BRINGUP_CPU;
605}
606
607static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
608 enum cpuhp_state target)
609{
610 enum cpuhp_state prev_state = st->state;
611 int ret = 0;
612
613 while (st->state < target) {
614 st->state++;
615 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
616 if (ret) {
617 if (can_rollback_cpu(st)) {
618 st->target = prev_state;
619 undo_cpu_up(cpu, st);
620 }
621 break;
622 }
623 }
624 return ret;
625}
626
627/*
628 * The cpu hotplug threads manage the bringup and teardown of the cpus
629 */
630static void cpuhp_create(unsigned int cpu)
631{
632 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
633
634 init_completion(&st->done_up);
635 init_completion(&st->done_down);
636}
637
638static int cpuhp_should_run(unsigned int cpu)
639{
640 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
641
642 return st->should_run;
643}
644
645/*
646 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
647 * callbacks when a state gets [un]installed at runtime.
648 *
649 * Each invocation of this function by the smpboot thread does a single AP
650 * state callback.
651 *
652 * It has 3 modes of operation:
653 * - single: runs st->cb_state
654 * - up: runs ++st->state, while st->state < st->target
655 * - down: runs st->state--, while st->state > st->target
656 *
657 * When complete or on error, should_run is cleared and the completion is fired.
658 */
659static void cpuhp_thread_fun(unsigned int cpu)
660{
661 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
662 bool bringup = st->bringup;
663 enum cpuhp_state state;
664
665 if (WARN_ON_ONCE(!st->should_run))
666 return;
667
668 /*
669 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
670 * that if we see ->should_run we also see the rest of the state.
671 */
672 smp_mb();
673
674 /*
675 * The BP holds the hotplug lock, but we're now running on the AP,
676 * ensure that anybody asserting the lock is held, will actually find
677 * it so.
678 */
679 lockdep_acquire_cpus_lock();
680 cpuhp_lock_acquire(bringup);
681
682 if (st->single) {
683 state = st->cb_state;
684 st->should_run = false;
685 } else {
686 if (bringup) {
687 st->state++;
688 state = st->state;
689 st->should_run = (st->state < st->target);
690 WARN_ON_ONCE(st->state > st->target);
691 } else {
692 state = st->state;
693 st->state--;
694 st->should_run = (st->state > st->target);
695 WARN_ON_ONCE(st->state < st->target);
696 }
697 }
698
699 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
700
701 if (cpuhp_is_atomic_state(state)) {
702 local_irq_disable();
703 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
704 local_irq_enable();
705
706 /*
707 * STARTING/DYING must not fail!
708 */
709 WARN_ON_ONCE(st->result);
710 } else {
711 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
712 }
713
714 if (st->result) {
715 /*
716 * If we fail on a rollback, we're up a creek without no
717 * paddle, no way forward, no way back. We loose, thanks for
718 * playing.
719 */
720 WARN_ON_ONCE(st->rollback);
721 st->should_run = false;
722 }
723
724 cpuhp_lock_release(bringup);
725 lockdep_release_cpus_lock();
726
727 if (!st->should_run)
728 complete_ap_thread(st, bringup);
729}
730
731/* Invoke a single callback on a remote cpu */
732static int
733cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
734 struct hlist_node *node)
735{
736 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
737 int ret;
738
739 if (!cpu_online(cpu))
740 return 0;
741
742 cpuhp_lock_acquire(false);
743 cpuhp_lock_release(false);
744
745 cpuhp_lock_acquire(true);
746 cpuhp_lock_release(true);
747
748 /*
749 * If we are up and running, use the hotplug thread. For early calls
750 * we invoke the thread function directly.
751 */
752 if (!st->thread)
753 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
754
755 st->rollback = false;
756 st->last = NULL;
757
758 st->node = node;
759 st->bringup = bringup;
760 st->cb_state = state;
761 st->single = true;
762
763 __cpuhp_kick_ap(st);
764
765 /*
766 * If we failed and did a partial, do a rollback.
767 */
768 if ((ret = st->result) && st->last) {
769 st->rollback = true;
770 st->bringup = !bringup;
771
772 __cpuhp_kick_ap(st);
773 }
774
775 /*
776 * Clean up the leftovers so the next hotplug operation wont use stale
777 * data.
778 */
779 st->node = st->last = NULL;
780 return ret;
781}
782
783static int cpuhp_kick_ap_work(unsigned int cpu)
784{
785 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
786 enum cpuhp_state prev_state = st->state;
787 int ret;
788
789 cpuhp_lock_acquire(false);
790 cpuhp_lock_release(false);
791
792 cpuhp_lock_acquire(true);
793 cpuhp_lock_release(true);
794
795 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
796 ret = cpuhp_kick_ap(st, st->target);
797 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
798
799 return ret;
800}
801
802static struct smp_hotplug_thread cpuhp_threads = {
803 .store = &cpuhp_state.thread,
804 .create = &cpuhp_create,
805 .thread_should_run = cpuhp_should_run,
806 .thread_fn = cpuhp_thread_fun,
807 .thread_comm = "cpuhp/%u",
808 .selfparking = true,
809};
810
811void __init cpuhp_threads_init(void)
812{
813 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
814 kthread_unpark(this_cpu_read(cpuhp_state.thread));
815}
816
817#ifdef CONFIG_HOTPLUG_CPU
818/**
819 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
820 * @cpu: a CPU id
821 *
822 * This function walks all processes, finds a valid mm struct for each one and
823 * then clears a corresponding bit in mm's cpumask. While this all sounds
824 * trivial, there are various non-obvious corner cases, which this function
825 * tries to solve in a safe manner.
826 *
827 * Also note that the function uses a somewhat relaxed locking scheme, so it may
828 * be called only for an already offlined CPU.
829 */
830void clear_tasks_mm_cpumask(int cpu)
831{
832 struct task_struct *p;
833
834 /*
835 * This function is called after the cpu is taken down and marked
836 * offline, so its not like new tasks will ever get this cpu set in
837 * their mm mask. -- Peter Zijlstra
838 * Thus, we may use rcu_read_lock() here, instead of grabbing
839 * full-fledged tasklist_lock.
840 */
841 WARN_ON(cpu_online(cpu));
842 rcu_read_lock();
843 for_each_process(p) {
844 struct task_struct *t;
845
846 /*
847 * Main thread might exit, but other threads may still have
848 * a valid mm. Find one.
849 */
850 t = find_lock_task_mm(p);
851 if (!t)
852 continue;
853 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
854 task_unlock(t);
855 }
856 rcu_read_unlock();
857}
858
859/* Take this CPU down. */
860static int take_cpu_down(void *_param)
861{
862 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
863 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
864 int err, cpu = smp_processor_id();
865 int ret;
866
867 /* Ensure this CPU doesn't handle any more interrupts. */
868 err = __cpu_disable();
869 if (err < 0)
870 return err;
871
872 /*
873 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
874 * do this step again.
875 */
876 WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
877 st->state--;
878 /* Invoke the former CPU_DYING callbacks */
879 for (; st->state > target; st->state--) {
880 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
881 /*
882 * DYING must not fail!
883 */
884 WARN_ON_ONCE(ret);
885 }
886
887 /* Give up timekeeping duties */
888 tick_handover_do_timer();
889 /* Remove CPU from timer broadcasting */
890 tick_offline_cpu(cpu);
891 /* Park the stopper thread */
892 stop_machine_park(cpu);
893 return 0;
894}
895
896static int takedown_cpu(unsigned int cpu)
897{
898 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
899 int err;
900
901 /* Park the smpboot threads */
902 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
903
904 /*
905 * Prevent irq alloc/free while the dying cpu reorganizes the
906 * interrupt affinities.
907 */
908 irq_lock_sparse();
909
910 /*
911 * So now all preempt/rcu users must observe !cpu_active().
912 */
913 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
914 if (err) {
915 /* CPU refused to die */
916 irq_unlock_sparse();
917 /* Unpark the hotplug thread so we can rollback there */
918 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
919 return err;
920 }
921 BUG_ON(cpu_online(cpu));
922
923 /*
924 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
925 * all runnable tasks from the CPU, there's only the idle task left now
926 * that the migration thread is done doing the stop_machine thing.
927 *
928 * Wait for the stop thread to go away.
929 */
930 wait_for_ap_thread(st, false);
931 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
932
933 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
934 irq_unlock_sparse();
935
936 hotplug_cpu__broadcast_tick_pull(cpu);
937 /* This actually kills the CPU. */
938 __cpu_die(cpu);
939
940 tick_cleanup_dead_cpu(cpu);
941 rcutree_migrate_callbacks(cpu);
942 return 0;
943}
944
945static void cpuhp_complete_idle_dead(void *arg)
946{
947 struct cpuhp_cpu_state *st = arg;
948
949 complete_ap_thread(st, false);
950}
951
952void cpuhp_report_idle_dead(void)
953{
954 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
955
956 BUG_ON(st->state != CPUHP_AP_OFFLINE);
957 rcu_report_dead(smp_processor_id());
958 st->state = CPUHP_AP_IDLE_DEAD;
959 /*
960 * We cannot call complete after rcu_report_dead() so we delegate it
961 * to an online cpu.
962 */
963 smp_call_function_single(cpumask_first(cpu_online_mask),
964 cpuhp_complete_idle_dead, st, 0);
965}
966
967static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
968{
969 for (st->state++; st->state < st->target; st->state++)
970 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
971}
972
973static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
974 enum cpuhp_state target)
975{
976 enum cpuhp_state prev_state = st->state;
977 int ret = 0;
978
979 for (; st->state > target; st->state--) {
980 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
981 if (ret) {
982 st->target = prev_state;
983 if (st->state < prev_state)
984 undo_cpu_down(cpu, st);
985 break;
986 }
987 }
988 return ret;
989}
990
991/* Requires cpu_add_remove_lock to be held */
992static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
993 enum cpuhp_state target)
994{
995 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
996 int prev_state, ret = 0;
997
998 if (num_online_cpus() == 1)
999 return -EBUSY;
1000
1001 if (!cpu_present(cpu))
1002 return -EINVAL;
1003
1004 cpus_write_lock();
1005
1006 cpuhp_tasks_frozen = tasks_frozen;
1007
1008 prev_state = cpuhp_set_state(st, target);
1009 /*
1010 * If the current CPU state is in the range of the AP hotplug thread,
1011 * then we need to kick the thread.
1012 */
1013 if (st->state > CPUHP_TEARDOWN_CPU) {
1014 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1015 ret = cpuhp_kick_ap_work(cpu);
1016 /*
1017 * The AP side has done the error rollback already. Just
1018 * return the error code..
1019 */
1020 if (ret)
1021 goto out;
1022
1023 /*
1024 * We might have stopped still in the range of the AP hotplug
1025 * thread. Nothing to do anymore.
1026 */
1027 if (st->state > CPUHP_TEARDOWN_CPU)
1028 goto out;
1029
1030 st->target = target;
1031 }
1032 /*
1033 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1034 * to do the further cleanups.
1035 */
1036 ret = cpuhp_down_callbacks(cpu, st, target);
1037 if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
1038 cpuhp_reset_state(st, prev_state);
1039 __cpuhp_kick_ap(st);
1040 }
1041
1042out:
1043 cpus_write_unlock();
1044 /*
1045 * Do post unplug cleanup. This is still protected against
1046 * concurrent CPU hotplug via cpu_add_remove_lock.
1047 */
1048 lockup_detector_cleanup();
1049 arch_smt_update();
1050 return ret;
1051}
1052
1053static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1054{
1055 if (cpu_hotplug_disabled)
1056 return -EBUSY;
1057 return _cpu_down(cpu, 0, target);
1058}
1059
1060static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1061{
1062 int err;
1063
1064 cpu_maps_update_begin();
1065 err = cpu_down_maps_locked(cpu, target);
1066 cpu_maps_update_done();
1067 return err;
1068}
1069
1070/**
1071 * cpu_device_down - Bring down a cpu device
1072 * @dev: Pointer to the cpu device to offline
1073 *
1074 * This function is meant to be used by device core cpu subsystem only.
1075 *
1076 * Other subsystems should use remove_cpu() instead.
1077 */
1078int cpu_device_down(struct device *dev)
1079{
1080 return cpu_down(dev->id, CPUHP_OFFLINE);
1081}
1082
1083int remove_cpu(unsigned int cpu)
1084{
1085 int ret;
1086
1087 lock_device_hotplug();
1088 ret = device_offline(get_cpu_device(cpu));
1089 unlock_device_hotplug();
1090
1091 return ret;
1092}
1093EXPORT_SYMBOL_GPL(remove_cpu);
1094
1095void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1096{
1097 unsigned int cpu;
1098 int error;
1099
1100 cpu_maps_update_begin();
1101
1102 /*
1103 * Make certain the cpu I'm about to reboot on is online.
1104 *
1105 * This is inline to what migrate_to_reboot_cpu() already do.
1106 */
1107 if (!cpu_online(primary_cpu))
1108 primary_cpu = cpumask_first(cpu_online_mask);
1109
1110 for_each_online_cpu(cpu) {
1111 if (cpu == primary_cpu)
1112 continue;
1113
1114 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1115 if (error) {
1116 pr_err("Failed to offline CPU%d - error=%d",
1117 cpu, error);
1118 break;
1119 }
1120 }
1121
1122 /*
1123 * Ensure all but the reboot CPU are offline.
1124 */
1125 BUG_ON(num_online_cpus() > 1);
1126
1127 /*
1128 * Make sure the CPUs won't be enabled by someone else after this
1129 * point. Kexec will reboot to a new kernel shortly resetting
1130 * everything along the way.
1131 */
1132 cpu_hotplug_disabled++;
1133
1134 cpu_maps_update_done();
1135}
1136
1137#else
1138#define takedown_cpu NULL
1139#endif /*CONFIG_HOTPLUG_CPU*/
1140
1141/**
1142 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1143 * @cpu: cpu that just started
1144 *
1145 * It must be called by the arch code on the new cpu, before the new cpu
1146 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1147 */
1148void notify_cpu_starting(unsigned int cpu)
1149{
1150 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1151 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1152 int ret;
1153
1154 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
1155 cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1156 while (st->state < target) {
1157 st->state++;
1158 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1159 /*
1160 * STARTING must not fail!
1161 */
1162 WARN_ON_ONCE(ret);
1163 }
1164}
1165
1166/*
1167 * Called from the idle task. Wake up the controlling task which brings the
1168 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1169 * online bringup to the hotplug thread.
1170 */
1171void cpuhp_online_idle(enum cpuhp_state state)
1172{
1173 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1174
1175 /* Happens for the boot cpu */
1176 if (state != CPUHP_AP_ONLINE_IDLE)
1177 return;
1178
1179 /*
1180 * Unpart the stopper thread before we start the idle loop (and start
1181 * scheduling); this ensures the stopper task is always available.
1182 */
1183 stop_machine_unpark(smp_processor_id());
1184
1185 st->state = CPUHP_AP_ONLINE_IDLE;
1186 complete_ap_thread(st, true);
1187}
1188
1189/* Requires cpu_add_remove_lock to be held */
1190static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1191{
1192 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1193 struct task_struct *idle;
1194 int ret = 0;
1195
1196 cpus_write_lock();
1197
1198 if (!cpu_present(cpu)) {
1199 ret = -EINVAL;
1200 goto out;
1201 }
1202
1203 /*
1204 * The caller of cpu_up() might have raced with another
1205 * caller. Nothing to do.
1206 */
1207 if (st->state >= target)
1208 goto out;
1209
1210 if (st->state == CPUHP_OFFLINE) {
1211 /* Let it fail before we try to bring the cpu up */
1212 idle = idle_thread_get(cpu);
1213 if (IS_ERR(idle)) {
1214 ret = PTR_ERR(idle);
1215 goto out;
1216 }
1217 }
1218
1219 cpuhp_tasks_frozen = tasks_frozen;
1220
1221 cpuhp_set_state(st, target);
1222 /*
1223 * If the current CPU state is in the range of the AP hotplug thread,
1224 * then we need to kick the thread once more.
1225 */
1226 if (st->state > CPUHP_BRINGUP_CPU) {
1227 ret = cpuhp_kick_ap_work(cpu);
1228 /*
1229 * The AP side has done the error rollback already. Just
1230 * return the error code..
1231 */
1232 if (ret)
1233 goto out;
1234 }
1235
1236 /*
1237 * Try to reach the target state. We max out on the BP at
1238 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1239 * responsible for bringing it up to the target state.
1240 */
1241 target = min((int)target, CPUHP_BRINGUP_CPU);
1242 ret = cpuhp_up_callbacks(cpu, st, target);
1243out:
1244 cpus_write_unlock();
1245 arch_smt_update();
1246 return ret;
1247}
1248
1249static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1250{
1251 int err = 0;
1252
1253 if (!cpu_possible(cpu)) {
1254 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1255 cpu);
1256#if defined(CONFIG_IA64)
1257 pr_err("please check additional_cpus= boot parameter\n");
1258#endif
1259 return -EINVAL;
1260 }
1261
1262 err = try_online_node(cpu_to_node(cpu));
1263 if (err)
1264 return err;
1265
1266 cpu_maps_update_begin();
1267
1268 if (cpu_hotplug_disabled) {
1269 err = -EBUSY;
1270 goto out;
1271 }
1272 if (!cpu_smt_allowed(cpu)) {
1273 err = -EPERM;
1274 goto out;
1275 }
1276
1277 err = _cpu_up(cpu, 0, target);
1278out:
1279 cpu_maps_update_done();
1280 return err;
1281}
1282
1283/**
1284 * cpu_device_up - Bring up a cpu device
1285 * @dev: Pointer to the cpu device to online
1286 *
1287 * This function is meant to be used by device core cpu subsystem only.
1288 *
1289 * Other subsystems should use add_cpu() instead.
1290 */
1291int cpu_device_up(struct device *dev)
1292{
1293 return cpu_up(dev->id, CPUHP_ONLINE);
1294}
1295
1296int add_cpu(unsigned int cpu)
1297{
1298 int ret;
1299
1300 lock_device_hotplug();
1301 ret = device_online(get_cpu_device(cpu));
1302 unlock_device_hotplug();
1303
1304 return ret;
1305}
1306EXPORT_SYMBOL_GPL(add_cpu);
1307
1308/**
1309 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1310 * @sleep_cpu: The cpu we hibernated on and should be brought up.
1311 *
1312 * On some architectures like arm64, we can hibernate on any CPU, but on
1313 * wake up the CPU we hibernated on might be offline as a side effect of
1314 * using maxcpus= for example.
1315 */
1316int bringup_hibernate_cpu(unsigned int sleep_cpu)
1317{
1318 int ret;
1319
1320 if (!cpu_online(sleep_cpu)) {
1321 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1322 ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1323 if (ret) {
1324 pr_err("Failed to bring hibernate-CPU up!\n");
1325 return ret;
1326 }
1327 }
1328 return 0;
1329}
1330
1331void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1332{
1333 unsigned int cpu;
1334
1335 for_each_present_cpu(cpu) {
1336 if (num_online_cpus() >= setup_max_cpus)
1337 break;
1338 if (!cpu_online(cpu))
1339 cpu_up(cpu, CPUHP_ONLINE);
1340 }
1341}
1342
1343#ifdef CONFIG_PM_SLEEP_SMP
1344static cpumask_var_t frozen_cpus;
1345
1346int freeze_secondary_cpus(int primary)
1347{
1348 int cpu, error = 0;
1349
1350 cpu_maps_update_begin();
1351 if (primary == -1) {
1352 primary = cpumask_first(cpu_online_mask);
1353 if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1354 primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1355 } else {
1356 if (!cpu_online(primary))
1357 primary = cpumask_first(cpu_online_mask);
1358 }
1359
1360 /*
1361 * We take down all of the non-boot CPUs in one shot to avoid races
1362 * with the userspace trying to use the CPU hotplug at the same time
1363 */
1364 cpumask_clear(frozen_cpus);
1365
1366 pr_info("Disabling non-boot CPUs ...\n");
1367 for_each_online_cpu(cpu) {
1368 if (cpu == primary)
1369 continue;
1370
1371 if (pm_wakeup_pending()) {
1372 pr_info("Wakeup pending. Abort CPU freeze\n");
1373 error = -EBUSY;
1374 break;
1375 }
1376
1377 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1378 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1379 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1380 if (!error)
1381 cpumask_set_cpu(cpu, frozen_cpus);
1382 else {
1383 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1384 break;
1385 }
1386 }
1387
1388 if (!error)
1389 BUG_ON(num_online_cpus() > 1);
1390 else
1391 pr_err("Non-boot CPUs are not disabled\n");
1392
1393 /*
1394 * Make sure the CPUs won't be enabled by someone else. We need to do
1395 * this even in case of failure as all freeze_secondary_cpus() users are
1396 * supposed to do thaw_secondary_cpus() on the failure path.
1397 */
1398 cpu_hotplug_disabled++;
1399
1400 cpu_maps_update_done();
1401 return error;
1402}
1403
1404void __weak arch_thaw_secondary_cpus_begin(void)
1405{
1406}
1407
1408void __weak arch_thaw_secondary_cpus_end(void)
1409{
1410}
1411
1412void thaw_secondary_cpus(void)
1413{
1414 int cpu, error;
1415
1416 /* Allow everyone to use the CPU hotplug again */
1417 cpu_maps_update_begin();
1418 __cpu_hotplug_enable();
1419 if (cpumask_empty(frozen_cpus))
1420 goto out;
1421
1422 pr_info("Enabling non-boot CPUs ...\n");
1423
1424 arch_thaw_secondary_cpus_begin();
1425
1426 for_each_cpu(cpu, frozen_cpus) {
1427 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1428 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1429 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1430 if (!error) {
1431 pr_info("CPU%d is up\n", cpu);
1432 continue;
1433 }
1434 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1435 }
1436
1437 arch_thaw_secondary_cpus_end();
1438
1439 cpumask_clear(frozen_cpus);
1440out:
1441 cpu_maps_update_done();
1442}
1443
1444static int __init alloc_frozen_cpus(void)
1445{
1446 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1447 return -ENOMEM;
1448 return 0;
1449}
1450core_initcall(alloc_frozen_cpus);
1451
1452/*
1453 * When callbacks for CPU hotplug notifications are being executed, we must
1454 * ensure that the state of the system with respect to the tasks being frozen
1455 * or not, as reported by the notification, remains unchanged *throughout the
1456 * duration* of the execution of the callbacks.
1457 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1458 *
1459 * This synchronization is implemented by mutually excluding regular CPU
1460 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1461 * Hibernate notifications.
1462 */
1463static int
1464cpu_hotplug_pm_callback(struct notifier_block *nb,
1465 unsigned long action, void *ptr)
1466{
1467 switch (action) {
1468
1469 case PM_SUSPEND_PREPARE:
1470 case PM_HIBERNATION_PREPARE:
1471 cpu_hotplug_disable();
1472 break;
1473
1474 case PM_POST_SUSPEND:
1475 case PM_POST_HIBERNATION:
1476 cpu_hotplug_enable();
1477 break;
1478
1479 default:
1480 return NOTIFY_DONE;
1481 }
1482
1483 return NOTIFY_OK;
1484}
1485
1486
1487static int __init cpu_hotplug_pm_sync_init(void)
1488{
1489 /*
1490 * cpu_hotplug_pm_callback has higher priority than x86
1491 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1492 * to disable cpu hotplug to avoid cpu hotplug race.
1493 */
1494 pm_notifier(cpu_hotplug_pm_callback, 0);
1495 return 0;
1496}
1497core_initcall(cpu_hotplug_pm_sync_init);
1498
1499#endif /* CONFIG_PM_SLEEP_SMP */
1500
1501int __boot_cpu_id;
1502
1503#endif /* CONFIG_SMP */
1504
1505/* Boot processor state steps */
1506static struct cpuhp_step cpuhp_hp_states[] = {
1507 [CPUHP_OFFLINE] = {
1508 .name = "offline",
1509 .startup.single = NULL,
1510 .teardown.single = NULL,
1511 },
1512#ifdef CONFIG_SMP
1513 [CPUHP_CREATE_THREADS]= {
1514 .name = "threads:prepare",
1515 .startup.single = smpboot_create_threads,
1516 .teardown.single = NULL,
1517 .cant_stop = true,
1518 },
1519 [CPUHP_PERF_PREPARE] = {
1520 .name = "perf:prepare",
1521 .startup.single = perf_event_init_cpu,
1522 .teardown.single = perf_event_exit_cpu,
1523 },
1524 [CPUHP_WORKQUEUE_PREP] = {
1525 .name = "workqueue:prepare",
1526 .startup.single = workqueue_prepare_cpu,
1527 .teardown.single = NULL,
1528 },
1529 [CPUHP_HRTIMERS_PREPARE] = {
1530 .name = "hrtimers:prepare",
1531 .startup.single = hrtimers_prepare_cpu,
1532 .teardown.single = hrtimers_dead_cpu,
1533 },
1534 [CPUHP_SMPCFD_PREPARE] = {
1535 .name = "smpcfd:prepare",
1536 .startup.single = smpcfd_prepare_cpu,
1537 .teardown.single = smpcfd_dead_cpu,
1538 },
1539 [CPUHP_RELAY_PREPARE] = {
1540 .name = "relay:prepare",
1541 .startup.single = relay_prepare_cpu,
1542 .teardown.single = NULL,
1543 },
1544 [CPUHP_SLAB_PREPARE] = {
1545 .name = "slab:prepare",
1546 .startup.single = slab_prepare_cpu,
1547 .teardown.single = slab_dead_cpu,
1548 },
1549 [CPUHP_RCUTREE_PREP] = {
1550 .name = "RCU/tree:prepare",
1551 .startup.single = rcutree_prepare_cpu,
1552 .teardown.single = rcutree_dead_cpu,
1553 },
1554 /*
1555 * On the tear-down path, timers_dead_cpu() must be invoked
1556 * before blk_mq_queue_reinit_notify() from notify_dead(),
1557 * otherwise a RCU stall occurs.
1558 */
1559 [CPUHP_TIMERS_PREPARE] = {
1560 .name = "timers:prepare",
1561 .startup.single = timers_prepare_cpu,
1562 .teardown.single = timers_dead_cpu,
1563 },
1564 /* Kicks the plugged cpu into life */
1565 [CPUHP_BRINGUP_CPU] = {
1566 .name = "cpu:bringup",
1567 .startup.single = bringup_cpu,
1568 .teardown.single = finish_cpu,
1569 .cant_stop = true,
1570 },
1571 /* Final state before CPU kills itself */
1572 [CPUHP_AP_IDLE_DEAD] = {
1573 .name = "idle:dead",
1574 },
1575 /*
1576 * Last state before CPU enters the idle loop to die. Transient state
1577 * for synchronization.
1578 */
1579 [CPUHP_AP_OFFLINE] = {
1580 .name = "ap:offline",
1581 .cant_stop = true,
1582 },
1583 /* First state is scheduler control. Interrupts are disabled */
1584 [CPUHP_AP_SCHED_STARTING] = {
1585 .name = "sched:starting",
1586 .startup.single = sched_cpu_starting,
1587 .teardown.single = sched_cpu_dying,
1588 },
1589 [CPUHP_AP_RCUTREE_DYING] = {
1590 .name = "RCU/tree:dying",
1591 .startup.single = NULL,
1592 .teardown.single = rcutree_dying_cpu,
1593 },
1594 [CPUHP_AP_SMPCFD_DYING] = {
1595 .name = "smpcfd:dying",
1596 .startup.single = NULL,
1597 .teardown.single = smpcfd_dying_cpu,
1598 },
1599 /* Entry state on starting. Interrupts enabled from here on. Transient
1600 * state for synchronsization */
1601 [CPUHP_AP_ONLINE] = {
1602 .name = "ap:online",
1603 },
1604 /*
1605 * Handled on controll processor until the plugged processor manages
1606 * this itself.
1607 */
1608 [CPUHP_TEARDOWN_CPU] = {
1609 .name = "cpu:teardown",
1610 .startup.single = NULL,
1611 .teardown.single = takedown_cpu,
1612 .cant_stop = true,
1613 },
1614 /* Handle smpboot threads park/unpark */
1615 [CPUHP_AP_SMPBOOT_THREADS] = {
1616 .name = "smpboot/threads:online",
1617 .startup.single = smpboot_unpark_threads,
1618 .teardown.single = smpboot_park_threads,
1619 },
1620 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1621 .name = "irq/affinity:online",
1622 .startup.single = irq_affinity_online_cpu,
1623 .teardown.single = NULL,
1624 },
1625 [CPUHP_AP_PERF_ONLINE] = {
1626 .name = "perf:online",
1627 .startup.single = perf_event_init_cpu,
1628 .teardown.single = perf_event_exit_cpu,
1629 },
1630 [CPUHP_AP_WATCHDOG_ONLINE] = {
1631 .name = "lockup_detector:online",
1632 .startup.single = lockup_detector_online_cpu,
1633 .teardown.single = lockup_detector_offline_cpu,
1634 },
1635 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1636 .name = "workqueue:online",
1637 .startup.single = workqueue_online_cpu,
1638 .teardown.single = workqueue_offline_cpu,
1639 },
1640 [CPUHP_AP_RCUTREE_ONLINE] = {
1641 .name = "RCU/tree:online",
1642 .startup.single = rcutree_online_cpu,
1643 .teardown.single = rcutree_offline_cpu,
1644 },
1645#endif
1646 /*
1647 * The dynamically registered state space is here
1648 */
1649
1650#ifdef CONFIG_SMP
1651 /* Last state is scheduler control setting the cpu active */
1652 [CPUHP_AP_ACTIVE] = {
1653 .name = "sched:active",
1654 .startup.single = sched_cpu_activate,
1655 .teardown.single = sched_cpu_deactivate,
1656 },
1657#endif
1658
1659 /* CPU is fully up and running. */
1660 [CPUHP_ONLINE] = {
1661 .name = "online",
1662 .startup.single = NULL,
1663 .teardown.single = NULL,
1664 },
1665};
1666
1667/* Sanity check for callbacks */
1668static int cpuhp_cb_check(enum cpuhp_state state)
1669{
1670 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1671 return -EINVAL;
1672 return 0;
1673}
1674
1675/*
1676 * Returns a free for dynamic slot assignment of the Online state. The states
1677 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1678 * by having no name assigned.
1679 */
1680static int cpuhp_reserve_state(enum cpuhp_state state)
1681{
1682 enum cpuhp_state i, end;
1683 struct cpuhp_step *step;
1684
1685 switch (state) {
1686 case CPUHP_AP_ONLINE_DYN:
1687 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1688 end = CPUHP_AP_ONLINE_DYN_END;
1689 break;
1690 case CPUHP_BP_PREPARE_DYN:
1691 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1692 end = CPUHP_BP_PREPARE_DYN_END;
1693 break;
1694 default:
1695 return -EINVAL;
1696 }
1697
1698 for (i = state; i <= end; i++, step++) {
1699 if (!step->name)
1700 return i;
1701 }
1702 WARN(1, "No more dynamic states available for CPU hotplug\n");
1703 return -ENOSPC;
1704}
1705
1706static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1707 int (*startup)(unsigned int cpu),
1708 int (*teardown)(unsigned int cpu),
1709 bool multi_instance)
1710{
1711 /* (Un)Install the callbacks for further cpu hotplug operations */
1712 struct cpuhp_step *sp;
1713 int ret = 0;
1714
1715 /*
1716 * If name is NULL, then the state gets removed.
1717 *
1718 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1719 * the first allocation from these dynamic ranges, so the removal
1720 * would trigger a new allocation and clear the wrong (already
1721 * empty) state, leaving the callbacks of the to be cleared state
1722 * dangling, which causes wreckage on the next hotplug operation.
1723 */
1724 if (name && (state == CPUHP_AP_ONLINE_DYN ||
1725 state == CPUHP_BP_PREPARE_DYN)) {
1726 ret = cpuhp_reserve_state(state);
1727 if (ret < 0)
1728 return ret;
1729 state = ret;
1730 }
1731 sp = cpuhp_get_step(state);
1732 if (name && sp->name)
1733 return -EBUSY;
1734
1735 sp->startup.single = startup;
1736 sp->teardown.single = teardown;
1737 sp->name = name;
1738 sp->multi_instance = multi_instance;
1739 INIT_HLIST_HEAD(&sp->list);
1740 return ret;
1741}
1742
1743static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1744{
1745 return cpuhp_get_step(state)->teardown.single;
1746}
1747
1748/*
1749 * Call the startup/teardown function for a step either on the AP or
1750 * on the current CPU.
1751 */
1752static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1753 struct hlist_node *node)
1754{
1755 struct cpuhp_step *sp = cpuhp_get_step(state);
1756 int ret;
1757
1758 /*
1759 * If there's nothing to do, we done.
1760 * Relies on the union for multi_instance.
1761 */
1762 if ((bringup && !sp->startup.single) ||
1763 (!bringup && !sp->teardown.single))
1764 return 0;
1765 /*
1766 * The non AP bound callbacks can fail on bringup. On teardown
1767 * e.g. module removal we crash for now.
1768 */
1769#ifdef CONFIG_SMP
1770 if (cpuhp_is_ap_state(state))
1771 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1772 else
1773 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1774#else
1775 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1776#endif
1777 BUG_ON(ret && !bringup);
1778 return ret;
1779}
1780
1781/*
1782 * Called from __cpuhp_setup_state on a recoverable failure.
1783 *
1784 * Note: The teardown callbacks for rollback are not allowed to fail!
1785 */
1786static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1787 struct hlist_node *node)
1788{
1789 int cpu;
1790
1791 /* Roll back the already executed steps on the other cpus */
1792 for_each_present_cpu(cpu) {
1793 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1794 int cpustate = st->state;
1795
1796 if (cpu >= failedcpu)
1797 break;
1798
1799 /* Did we invoke the startup call on that cpu ? */
1800 if (cpustate >= state)
1801 cpuhp_issue_call(cpu, state, false, node);
1802 }
1803}
1804
1805int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1806 struct hlist_node *node,
1807 bool invoke)
1808{
1809 struct cpuhp_step *sp;
1810 int cpu;
1811 int ret;
1812
1813 lockdep_assert_cpus_held();
1814
1815 sp = cpuhp_get_step(state);
1816 if (sp->multi_instance == false)
1817 return -EINVAL;
1818
1819 mutex_lock(&cpuhp_state_mutex);
1820
1821 if (!invoke || !sp->startup.multi)
1822 goto add_node;
1823
1824 /*
1825 * Try to call the startup callback for each present cpu
1826 * depending on the hotplug state of the cpu.
1827 */
1828 for_each_present_cpu(cpu) {
1829 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1830 int cpustate = st->state;
1831
1832 if (cpustate < state)
1833 continue;
1834
1835 ret = cpuhp_issue_call(cpu, state, true, node);
1836 if (ret) {
1837 if (sp->teardown.multi)
1838 cpuhp_rollback_install(cpu, state, node);
1839 goto unlock;
1840 }
1841 }
1842add_node:
1843 ret = 0;
1844 hlist_add_head(node, &sp->list);
1845unlock:
1846 mutex_unlock(&cpuhp_state_mutex);
1847 return ret;
1848}
1849
1850int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1851 bool invoke)
1852{
1853 int ret;
1854
1855 cpus_read_lock();
1856 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1857 cpus_read_unlock();
1858 return ret;
1859}
1860EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1861
1862/**
1863 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1864 * @state: The state to setup
1865 * @invoke: If true, the startup function is invoked for cpus where
1866 * cpu state >= @state
1867 * @startup: startup callback function
1868 * @teardown: teardown callback function
1869 * @multi_instance: State is set up for multiple instances which get
1870 * added afterwards.
1871 *
1872 * The caller needs to hold cpus read locked while calling this function.
1873 * Returns:
1874 * On success:
1875 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1876 * 0 for all other states
1877 * On failure: proper (negative) error code
1878 */
1879int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1880 const char *name, bool invoke,
1881 int (*startup)(unsigned int cpu),
1882 int (*teardown)(unsigned int cpu),
1883 bool multi_instance)
1884{
1885 int cpu, ret = 0;
1886 bool dynstate;
1887
1888 lockdep_assert_cpus_held();
1889
1890 if (cpuhp_cb_check(state) || !name)
1891 return -EINVAL;
1892
1893 mutex_lock(&cpuhp_state_mutex);
1894
1895 ret = cpuhp_store_callbacks(state, name, startup, teardown,
1896 multi_instance);
1897
1898 dynstate = state == CPUHP_AP_ONLINE_DYN;
1899 if (ret > 0 && dynstate) {
1900 state = ret;
1901 ret = 0;
1902 }
1903
1904 if (ret || !invoke || !startup)
1905 goto out;
1906
1907 /*
1908 * Try to call the startup callback for each present cpu
1909 * depending on the hotplug state of the cpu.
1910 */
1911 for_each_present_cpu(cpu) {
1912 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1913 int cpustate = st->state;
1914
1915 if (cpustate < state)
1916 continue;
1917
1918 ret = cpuhp_issue_call(cpu, state, true, NULL);
1919 if (ret) {
1920 if (teardown)
1921 cpuhp_rollback_install(cpu, state, NULL);
1922 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1923 goto out;
1924 }
1925 }
1926out:
1927 mutex_unlock(&cpuhp_state_mutex);
1928 /*
1929 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1930 * dynamically allocated state in case of success.
1931 */
1932 if (!ret && dynstate)
1933 return state;
1934 return ret;
1935}
1936EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1937
1938int __cpuhp_setup_state(enum cpuhp_state state,
1939 const char *name, bool invoke,
1940 int (*startup)(unsigned int cpu),
1941 int (*teardown)(unsigned int cpu),
1942 bool multi_instance)
1943{
1944 int ret;
1945
1946 cpus_read_lock();
1947 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1948 teardown, multi_instance);
1949 cpus_read_unlock();
1950 return ret;
1951}
1952EXPORT_SYMBOL(__cpuhp_setup_state);
1953
1954int __cpuhp_state_remove_instance(enum cpuhp_state state,
1955 struct hlist_node *node, bool invoke)
1956{
1957 struct cpuhp_step *sp = cpuhp_get_step(state);
1958 int cpu;
1959
1960 BUG_ON(cpuhp_cb_check(state));
1961
1962 if (!sp->multi_instance)
1963 return -EINVAL;
1964
1965 cpus_read_lock();
1966 mutex_lock(&cpuhp_state_mutex);
1967
1968 if (!invoke || !cpuhp_get_teardown_cb(state))
1969 goto remove;
1970 /*
1971 * Call the teardown callback for each present cpu depending
1972 * on the hotplug state of the cpu. This function is not
1973 * allowed to fail currently!
1974 */
1975 for_each_present_cpu(cpu) {
1976 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1977 int cpustate = st->state;
1978
1979 if (cpustate >= state)
1980 cpuhp_issue_call(cpu, state, false, node);
1981 }
1982
1983remove:
1984 hlist_del(node);
1985 mutex_unlock(&cpuhp_state_mutex);
1986 cpus_read_unlock();
1987
1988 return 0;
1989}
1990EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1991
1992/**
1993 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1994 * @state: The state to remove
1995 * @invoke: If true, the teardown function is invoked for cpus where
1996 * cpu state >= @state
1997 *
1998 * The caller needs to hold cpus read locked while calling this function.
1999 * The teardown callback is currently not allowed to fail. Think
2000 * about module removal!
2001 */
2002void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2003{
2004 struct cpuhp_step *sp = cpuhp_get_step(state);
2005 int cpu;
2006
2007 BUG_ON(cpuhp_cb_check(state));
2008
2009 lockdep_assert_cpus_held();
2010
2011 mutex_lock(&cpuhp_state_mutex);
2012 if (sp->multi_instance) {
2013 WARN(!hlist_empty(&sp->list),
2014 "Error: Removing state %d which has instances left.\n",
2015 state);
2016 goto remove;
2017 }
2018
2019 if (!invoke || !cpuhp_get_teardown_cb(state))
2020 goto remove;
2021
2022 /*
2023 * Call the teardown callback for each present cpu depending
2024 * on the hotplug state of the cpu. This function is not
2025 * allowed to fail currently!
2026 */
2027 for_each_present_cpu(cpu) {
2028 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2029 int cpustate = st->state;
2030
2031 if (cpustate >= state)
2032 cpuhp_issue_call(cpu, state, false, NULL);
2033 }
2034remove:
2035 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2036 mutex_unlock(&cpuhp_state_mutex);
2037}
2038EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2039
2040void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2041{
2042 cpus_read_lock();
2043 __cpuhp_remove_state_cpuslocked(state, invoke);
2044 cpus_read_unlock();
2045}
2046EXPORT_SYMBOL(__cpuhp_remove_state);
2047
2048#ifdef CONFIG_HOTPLUG_SMT
2049static void cpuhp_offline_cpu_device(unsigned int cpu)
2050{
2051 struct device *dev = get_cpu_device(cpu);
2052
2053 dev->offline = true;
2054 /* Tell user space about the state change */
2055 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2056}
2057
2058static void cpuhp_online_cpu_device(unsigned int cpu)
2059{
2060 struct device *dev = get_cpu_device(cpu);
2061
2062 dev->offline = false;
2063 /* Tell user space about the state change */
2064 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2065}
2066
2067int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2068{
2069 int cpu, ret = 0;
2070
2071 cpu_maps_update_begin();
2072 for_each_online_cpu(cpu) {
2073 if (topology_is_primary_thread(cpu))
2074 continue;
2075 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2076 if (ret)
2077 break;
2078 /*
2079 * As this needs to hold the cpu maps lock it's impossible
2080 * to call device_offline() because that ends up calling
2081 * cpu_down() which takes cpu maps lock. cpu maps lock
2082 * needs to be held as this might race against in kernel
2083 * abusers of the hotplug machinery (thermal management).
2084 *
2085 * So nothing would update device:offline state. That would
2086 * leave the sysfs entry stale and prevent onlining after
2087 * smt control has been changed to 'off' again. This is
2088 * called under the sysfs hotplug lock, so it is properly
2089 * serialized against the regular offline usage.
2090 */
2091 cpuhp_offline_cpu_device(cpu);
2092 }
2093 if (!ret)
2094 cpu_smt_control = ctrlval;
2095 cpu_maps_update_done();
2096 return ret;
2097}
2098
2099int cpuhp_smt_enable(void)
2100{
2101 int cpu, ret = 0;
2102
2103 cpu_maps_update_begin();
2104 cpu_smt_control = CPU_SMT_ENABLED;
2105 for_each_present_cpu(cpu) {
2106 /* Skip online CPUs and CPUs on offline nodes */
2107 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2108 continue;
2109 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2110 if (ret)
2111 break;
2112 /* See comment in cpuhp_smt_disable() */
2113 cpuhp_online_cpu_device(cpu);
2114 }
2115 cpu_maps_update_done();
2116 return ret;
2117}
2118#endif
2119
2120#if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2121static ssize_t show_cpuhp_state(struct device *dev,
2122 struct device_attribute *attr, char *buf)
2123{
2124 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2125
2126 return sprintf(buf, "%d\n", st->state);
2127}
2128static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
2129
2130static ssize_t write_cpuhp_target(struct device *dev,
2131 struct device_attribute *attr,
2132 const char *buf, size_t count)
2133{
2134 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2135 struct cpuhp_step *sp;
2136 int target, ret;
2137
2138 ret = kstrtoint(buf, 10, &target);
2139 if (ret)
2140 return ret;
2141
2142#ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2143 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2144 return -EINVAL;
2145#else
2146 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2147 return -EINVAL;
2148#endif
2149
2150 ret = lock_device_hotplug_sysfs();
2151 if (ret)
2152 return ret;
2153
2154 mutex_lock(&cpuhp_state_mutex);
2155 sp = cpuhp_get_step(target);
2156 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2157 mutex_unlock(&cpuhp_state_mutex);
2158 if (ret)
2159 goto out;
2160
2161 if (st->state < target)
2162 ret = cpu_up(dev->id, target);
2163 else
2164 ret = cpu_down(dev->id, target);
2165out:
2166 unlock_device_hotplug();
2167 return ret ? ret : count;
2168}
2169
2170static ssize_t show_cpuhp_target(struct device *dev,
2171 struct device_attribute *attr, char *buf)
2172{
2173 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2174
2175 return sprintf(buf, "%d\n", st->target);
2176}
2177static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
2178
2179
2180static ssize_t write_cpuhp_fail(struct device *dev,
2181 struct device_attribute *attr,
2182 const char *buf, size_t count)
2183{
2184 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2185 struct cpuhp_step *sp;
2186 int fail, ret;
2187
2188 ret = kstrtoint(buf, 10, &fail);
2189 if (ret)
2190 return ret;
2191
2192 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2193 return -EINVAL;
2194
2195 /*
2196 * Cannot fail STARTING/DYING callbacks.
2197 */
2198 if (cpuhp_is_atomic_state(fail))
2199 return -EINVAL;
2200
2201 /*
2202 * Cannot fail anything that doesn't have callbacks.
2203 */
2204 mutex_lock(&cpuhp_state_mutex);
2205 sp = cpuhp_get_step(fail);
2206 if (!sp->startup.single && !sp->teardown.single)
2207 ret = -EINVAL;
2208 mutex_unlock(&cpuhp_state_mutex);
2209 if (ret)
2210 return ret;
2211
2212 st->fail = fail;
2213
2214 return count;
2215}
2216
2217static ssize_t show_cpuhp_fail(struct device *dev,
2218 struct device_attribute *attr, char *buf)
2219{
2220 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2221
2222 return sprintf(buf, "%d\n", st->fail);
2223}
2224
2225static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
2226
2227static struct attribute *cpuhp_cpu_attrs[] = {
2228 &dev_attr_state.attr,
2229 &dev_attr_target.attr,
2230 &dev_attr_fail.attr,
2231 NULL
2232};
2233
2234static const struct attribute_group cpuhp_cpu_attr_group = {
2235 .attrs = cpuhp_cpu_attrs,
2236 .name = "hotplug",
2237 NULL
2238};
2239
2240static ssize_t show_cpuhp_states(struct device *dev,
2241 struct device_attribute *attr, char *buf)
2242{
2243 ssize_t cur, res = 0;
2244 int i;
2245
2246 mutex_lock(&cpuhp_state_mutex);
2247 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2248 struct cpuhp_step *sp = cpuhp_get_step(i);
2249
2250 if (sp->name) {
2251 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2252 buf += cur;
2253 res += cur;
2254 }
2255 }
2256 mutex_unlock(&cpuhp_state_mutex);
2257 return res;
2258}
2259static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2260
2261static struct attribute *cpuhp_cpu_root_attrs[] = {
2262 &dev_attr_states.attr,
2263 NULL
2264};
2265
2266static const struct attribute_group cpuhp_cpu_root_attr_group = {
2267 .attrs = cpuhp_cpu_root_attrs,
2268 .name = "hotplug",
2269 NULL
2270};
2271
2272#ifdef CONFIG_HOTPLUG_SMT
2273
2274static ssize_t
2275__store_smt_control(struct device *dev, struct device_attribute *attr,
2276 const char *buf, size_t count)
2277{
2278 int ctrlval, ret;
2279
2280 if (sysfs_streq(buf, "on"))
2281 ctrlval = CPU_SMT_ENABLED;
2282 else if (sysfs_streq(buf, "off"))
2283 ctrlval = CPU_SMT_DISABLED;
2284 else if (sysfs_streq(buf, "forceoff"))
2285 ctrlval = CPU_SMT_FORCE_DISABLED;
2286 else
2287 return -EINVAL;
2288
2289 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2290 return -EPERM;
2291
2292 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2293 return -ENODEV;
2294
2295 ret = lock_device_hotplug_sysfs();
2296 if (ret)
2297 return ret;
2298
2299 if (ctrlval != cpu_smt_control) {
2300 switch (ctrlval) {
2301 case CPU_SMT_ENABLED:
2302 ret = cpuhp_smt_enable();
2303 break;
2304 case CPU_SMT_DISABLED:
2305 case CPU_SMT_FORCE_DISABLED:
2306 ret = cpuhp_smt_disable(ctrlval);
2307 break;
2308 }
2309 }
2310
2311 unlock_device_hotplug();
2312 return ret ? ret : count;
2313}
2314
2315#else /* !CONFIG_HOTPLUG_SMT */
2316static ssize_t
2317__store_smt_control(struct device *dev, struct device_attribute *attr,
2318 const char *buf, size_t count)
2319{
2320 return -ENODEV;
2321}
2322#endif /* CONFIG_HOTPLUG_SMT */
2323
2324static const char *smt_states[] = {
2325 [CPU_SMT_ENABLED] = "on",
2326 [CPU_SMT_DISABLED] = "off",
2327 [CPU_SMT_FORCE_DISABLED] = "forceoff",
2328 [CPU_SMT_NOT_SUPPORTED] = "notsupported",
2329 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented",
2330};
2331
2332static ssize_t
2333show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2334{
2335 const char *state = smt_states[cpu_smt_control];
2336
2337 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2338}
2339
2340static ssize_t
2341store_smt_control(struct device *dev, struct device_attribute *attr,
2342 const char *buf, size_t count)
2343{
2344 return __store_smt_control(dev, attr, buf, count);
2345}
2346static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2347
2348static ssize_t
2349show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2350{
2351 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2352}
2353static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2354
2355static struct attribute *cpuhp_smt_attrs[] = {
2356 &dev_attr_control.attr,
2357 &dev_attr_active.attr,
2358 NULL
2359};
2360
2361static const struct attribute_group cpuhp_smt_attr_group = {
2362 .attrs = cpuhp_smt_attrs,
2363 .name = "smt",
2364 NULL
2365};
2366
2367static int __init cpu_smt_sysfs_init(void)
2368{
2369 return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2370 &cpuhp_smt_attr_group);
2371}
2372
2373static int __init cpuhp_sysfs_init(void)
2374{
2375 int cpu, ret;
2376
2377 ret = cpu_smt_sysfs_init();
2378 if (ret)
2379 return ret;
2380
2381 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2382 &cpuhp_cpu_root_attr_group);
2383 if (ret)
2384 return ret;
2385
2386 for_each_possible_cpu(cpu) {
2387 struct device *dev = get_cpu_device(cpu);
2388
2389 if (!dev)
2390 continue;
2391 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2392 if (ret)
2393 return ret;
2394 }
2395 return 0;
2396}
2397device_initcall(cpuhp_sysfs_init);
2398#endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2399
2400/*
2401 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2402 * represents all NR_CPUS bits binary values of 1<<nr.
2403 *
2404 * It is used by cpumask_of() to get a constant address to a CPU
2405 * mask value that has a single bit set only.
2406 */
2407
2408/* cpu_bit_bitmap[0] is empty - so we can back into it */
2409#define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
2410#define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2411#define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2412#define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2413
2414const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2415
2416 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
2417 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
2418#if BITS_PER_LONG > 32
2419 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
2420 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
2421#endif
2422};
2423EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2424
2425const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2426EXPORT_SYMBOL(cpu_all_bits);
2427
2428#ifdef CONFIG_INIT_ALL_POSSIBLE
2429struct cpumask __cpu_possible_mask __read_mostly
2430 = {CPU_BITS_ALL};
2431#else
2432struct cpumask __cpu_possible_mask __read_mostly;
2433#endif
2434EXPORT_SYMBOL(__cpu_possible_mask);
2435
2436struct cpumask __cpu_online_mask __read_mostly;
2437EXPORT_SYMBOL(__cpu_online_mask);
2438
2439struct cpumask __cpu_present_mask __read_mostly;
2440EXPORT_SYMBOL(__cpu_present_mask);
2441
2442struct cpumask __cpu_active_mask __read_mostly;
2443EXPORT_SYMBOL(__cpu_active_mask);
2444
2445atomic_t __num_online_cpus __read_mostly;
2446EXPORT_SYMBOL(__num_online_cpus);
2447
2448void init_cpu_present(const struct cpumask *src)
2449{
2450 cpumask_copy(&__cpu_present_mask, src);
2451}
2452
2453void init_cpu_possible(const struct cpumask *src)
2454{
2455 cpumask_copy(&__cpu_possible_mask, src);
2456}
2457
2458void init_cpu_online(const struct cpumask *src)
2459{
2460 cpumask_copy(&__cpu_online_mask, src);
2461}
2462
2463void set_cpu_online(unsigned int cpu, bool online)
2464{
2465 /*
2466 * atomic_inc/dec() is required to handle the horrid abuse of this
2467 * function by the reboot and kexec code which invoke it from
2468 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2469 * regular CPU hotplug is properly serialized.
2470 *
2471 * Note, that the fact that __num_online_cpus is of type atomic_t
2472 * does not protect readers which are not serialized against
2473 * concurrent hotplug operations.
2474 */
2475 if (online) {
2476 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2477 atomic_inc(&__num_online_cpus);
2478 } else {
2479 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2480 atomic_dec(&__num_online_cpus);
2481 }
2482}
2483
2484/*
2485 * Activate the first processor.
2486 */
2487void __init boot_cpu_init(void)
2488{
2489 int cpu = smp_processor_id();
2490
2491 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2492 set_cpu_online(cpu, true);
2493 set_cpu_active(cpu, true);
2494 set_cpu_present(cpu, true);
2495 set_cpu_possible(cpu, true);
2496
2497#ifdef CONFIG_SMP
2498 __boot_cpu_id = cpu;
2499#endif
2500}
2501
2502/*
2503 * Must be called _AFTER_ setting up the per_cpu areas
2504 */
2505void __init boot_cpu_hotplug_init(void)
2506{
2507#ifdef CONFIG_SMP
2508 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2509#endif
2510 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2511}
2512
2513/*
2514 * These are used for a global "mitigations=" cmdline option for toggling
2515 * optional CPU mitigations.
2516 */
2517enum cpu_mitigations {
2518 CPU_MITIGATIONS_OFF,
2519 CPU_MITIGATIONS_AUTO,
2520 CPU_MITIGATIONS_AUTO_NOSMT,
2521};
2522
2523static enum cpu_mitigations cpu_mitigations __ro_after_init =
2524 CPU_MITIGATIONS_AUTO;
2525
2526static int __init mitigations_parse_cmdline(char *arg)
2527{
2528 if (!strcmp(arg, "off"))
2529 cpu_mitigations = CPU_MITIGATIONS_OFF;
2530 else if (!strcmp(arg, "auto"))
2531 cpu_mitigations = CPU_MITIGATIONS_AUTO;
2532 else if (!strcmp(arg, "auto,nosmt"))
2533 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2534 else
2535 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2536 arg);
2537
2538 return 0;
2539}
2540early_param("mitigations", mitigations_parse_cmdline);
2541
2542/* mitigations=off */
2543bool cpu_mitigations_off(void)
2544{
2545 return cpu_mitigations == CPU_MITIGATIONS_OFF;
2546}
2547EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2548
2549/* mitigations=auto,nosmt */
2550bool cpu_mitigations_auto_nosmt(void)
2551{
2552 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2553}
2554EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);