Linux Audio

Check our new training course

Loading...
v6.13.7
   1/*
   2 *  kernel/cpuset.c
   3 *
   4 *  Processor and Memory placement constraints for sets of tasks.
   5 *
   6 *  Copyright (C) 2003 BULL SA.
   7 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
   8 *  Copyright (C) 2006 Google, Inc
   9 *
  10 *  Portions derived from Patrick Mochel's sysfs code.
  11 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
  12 *
  13 *  2003-10-10 Written by Simon Derr.
  14 *  2003-10-22 Updates by Stephen Hemminger.
  15 *  2004 May-July Rework by Paul Jackson.
  16 *  2006 Rework by Paul Menage to use generic cgroups
  17 *  2008 Rework of the scheduler domains and CPU hotplug handling
  18 *       by Max Krasnyansky
  19 *
  20 *  This file is subject to the terms and conditions of the GNU General Public
  21 *  License.  See the file COPYING in the main directory of the Linux
  22 *  distribution for more details.
  23 */
  24#include "cgroup-internal.h"
  25#include "cpuset-internal.h"
  26
 
 
 
 
 
 
 
  27#include <linux/init.h>
  28#include <linux/interrupt.h>
  29#include <linux/kernel.h>
 
 
  30#include <linux/mempolicy.h>
  31#include <linux/mm.h>
  32#include <linux/memory.h>
  33#include <linux/export.h>
 
 
 
 
 
  34#include <linux/rcupdate.h>
  35#include <linux/sched.h>
  36#include <linux/sched/deadline.h>
  37#include <linux/sched/mm.h>
  38#include <linux/sched/task.h>
 
  39#include <linux/security.h>
 
 
 
 
 
 
 
 
  40#include <linux/oom.h>
  41#include <linux/sched/isolation.h>
 
 
 
 
  42#include <linux/wait.h>
  43#include <linux/workqueue.h>
  44
  45DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
  46DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
  47
  48/*
  49 * There could be abnormal cpuset configurations for cpu or memory
  50 * node binding, add this key to provide a quick low-cost judgment
  51 * of the situation.
  52 */
  53DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key);
  54
  55static const char * const perr_strings[] = {
  56	[PERR_INVCPUS]   = "Invalid cpu list in cpuset.cpus.exclusive",
  57	[PERR_INVPARENT] = "Parent is an invalid partition root",
  58	[PERR_NOTPART]   = "Parent is not a partition root",
  59	[PERR_NOTEXCL]   = "Cpu list in cpuset.cpus not exclusive",
  60	[PERR_NOCPUS]    = "Parent unable to distribute cpu downstream",
  61	[PERR_HOTPLUG]   = "No cpu available due to hotplug",
  62	[PERR_CPUSEMPTY] = "cpuset.cpus and cpuset.cpus.exclusive are empty",
  63	[PERR_HKEEPING]  = "partition config conflicts with housekeeping setup",
  64	[PERR_ACCESS]    = "Enable partition not permitted",
  65};
  66
  67/*
  68 * Exclusive CPUs distributed out to sub-partitions of top_cpuset
  69 */
  70static cpumask_var_t	subpartitions_cpus;
  71
  72/*
  73 * Exclusive CPUs in isolated partitions
  74 */
  75static cpumask_var_t	isolated_cpus;
  76
  77/*
  78 * Housekeeping (HK_TYPE_DOMAIN) CPUs at boot
  79 */
  80static cpumask_var_t	boot_hk_cpus;
  81static bool		have_boot_isolcpus;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  82
  83/* List of remote partition root children */
  84static struct list_head remote_children;
 
  85
  86/*
  87 * A flag to force sched domain rebuild at the end of an operation.
  88 * It can be set in
  89 *  - update_partition_sd_lb()
  90 *  - remote_partition_check()
  91 *  - update_cpumasks_hier()
  92 *  - cpuset_update_flag()
  93 *  - cpuset_hotplug_update_tasks()
  94 *  - cpuset_handle_hotplug()
  95 *
  96 * Protected by cpuset_mutex (with cpus_read_lock held) or cpus_write_lock.
  97 *
  98 * Note that update_relax_domain_level() in cpuset-v1.c can still call
  99 * rebuild_sched_domains_locked() directly without using this flag.
 100 */
 101static bool force_sd_rebuild;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 102
 103/*
 104 * Partition root states:
 105 *
 106 *   0 - member (not a partition root)
 
 107 *   1 - partition root
 108 *   2 - partition root without load balancing (isolated)
 109 *  -1 - invalid partition root
 110 *  -2 - invalid isolated partition root
 111 *
 112 *  There are 2 types of partitions - local or remote. Local partitions are
 113 *  those whose parents are partition root themselves. Setting of
 114 *  cpuset.cpus.exclusive are optional in setting up local partitions.
 115 *  Remote partitions are those whose parents are not partition roots. Passing
 116 *  down exclusive CPUs by setting cpuset.cpus.exclusive along its ancestor
 117 *  nodes are mandatory in creating a remote partition.
 118 *
 119 *  For simplicity, a local partition can be created under a local or remote
 120 *  partition but a remote partition cannot have any partition root in its
 121 *  ancestor chain except the cgroup root.
 122 */
 123#define PRS_MEMBER		0
 124#define PRS_ROOT		1
 125#define PRS_ISOLATED		2
 126#define PRS_INVALID_ROOT	-1
 127#define PRS_INVALID_ISOLATED	-2
 128
 129static inline bool is_prs_invalid(int prs_state)
 130{
 131	return prs_state < 0;
 132}
 133
 134/*
 135 * Temporary cpumasks for working with partitions that are passed among
 136 * functions to avoid memory allocation in inner functions.
 137 */
 138struct tmpmasks {
 139	cpumask_var_t addmask, delmask;	/* For partition root */
 140	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */
 141};
 142
 143void inc_dl_tasks_cs(struct task_struct *p)
 144{
 145	struct cpuset *cs = task_cs(p);
 
 146
 147	cs->nr_deadline_tasks++;
 
 
 
 148}
 149
 150void dec_dl_tasks_cs(struct task_struct *p)
 151{
 152	struct cpuset *cs = task_cs(p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 153
 154	cs->nr_deadline_tasks--;
 
 
 
 155}
 156
 157static inline int is_partition_valid(const struct cpuset *cs)
 158{
 159	return cs->partition_root_state > 0;
 160}
 161
 162static inline int is_partition_invalid(const struct cpuset *cs)
 163{
 164	return cs->partition_root_state < 0;
 165}
 166
 167/*
 168 * Callers should hold callback_lock to modify partition_root_state.
 169 */
 170static inline void make_partition_invalid(struct cpuset *cs)
 171{
 172	if (cs->partition_root_state > 0)
 173		cs->partition_root_state = -cs->partition_root_state;
 174}
 175
 176/*
 177 * Send notification event of whenever partition_root_state changes.
 178 */
 179static inline void notify_partition_change(struct cpuset *cs, int old_prs)
 180{
 181	if (old_prs == cs->partition_root_state)
 182		return;
 183	cgroup_file_notify(&cs->partition_file);
 184
 185	/* Reset prs_err if not invalid */
 186	if (is_partition_valid(cs))
 187		WRITE_ONCE(cs->prs_err, PERR_NONE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 188}
 189
 190static struct cpuset top_cpuset = {
 191	.flags = BIT(CS_ONLINE) | BIT(CS_CPU_EXCLUSIVE) |
 192		 BIT(CS_MEM_EXCLUSIVE) | BIT(CS_SCHED_LOAD_BALANCE),
 193	.partition_root_state = PRS_ROOT,
 194	.relax_domain_level = -1,
 195	.remote_sibling = LIST_HEAD_INIT(top_cpuset.remote_sibling),
 196};
 197
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 198/*
 199 * There are two global locks guarding cpuset structures - cpuset_mutex and
 200 * callback_lock. The cpuset code uses only cpuset_mutex. Other kernel
 201 * subsystems can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset
 202 * structures. Note that cpuset_mutex needs to be a mutex as it is used in
 203 * paths that rely on priority inheritance (e.g. scheduler - on RT) for
 204 * correctness.
 205 *
 206 * A task must hold both locks to modify cpusets.  If a task holds
 207 * cpuset_mutex, it blocks others, ensuring that it is the only task able to
 208 * also acquire callback_lock and be able to modify cpusets.  It can perform
 209 * various checks on the cpuset structure first, knowing nothing will change.
 210 * It can also allocate memory while just holding cpuset_mutex.  While it is
 211 * performing these checks, various callback routines can briefly acquire
 212 * callback_lock to query cpusets.  Once it is ready to make the changes, it
 213 * takes callback_lock, blocking everyone else.
 
 214 *
 215 * Calls to the kernel memory allocator can not be made while holding
 216 * callback_lock, as that would risk double tripping on callback_lock
 217 * from one of the callbacks into the cpuset code from within
 218 * __alloc_pages().
 219 *
 220 * If a task is only holding callback_lock, then it has read-only
 221 * access to cpusets.
 222 *
 223 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 224 * by other task, we use alloc_lock in the task_struct fields to protect
 225 * them.
 226 *
 227 * The cpuset_common_seq_show() handlers only hold callback_lock across
 228 * small pieces of code, such as when reading out possibly multi-word
 229 * cpumasks and nodemasks.
 
 
 
 230 */
 231
 232static DEFINE_MUTEX(cpuset_mutex);
 233
 234void cpuset_lock(void)
 235{
 236	mutex_lock(&cpuset_mutex);
 237}
 238
 239void cpuset_unlock(void)
 240{
 241	mutex_unlock(&cpuset_mutex);
 242}
 243
 244static DEFINE_SPINLOCK(callback_lock);
 245
 246void cpuset_callback_lock_irq(void)
 247{
 248	spin_lock_irq(&callback_lock);
 249}
 250
 251void cpuset_callback_unlock_irq(void)
 252{
 253	spin_unlock_irq(&callback_lock);
 254}
 255
 256static struct workqueue_struct *cpuset_migrate_mm_wq;
 257
 258static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
 259
 260static inline void check_insane_mems_config(nodemask_t *nodes)
 261{
 262	if (!cpusets_insane_config() &&
 263		movable_only_nodes(nodes)) {
 264		static_branch_enable(&cpusets_insane_config_key);
 265		pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n"
 266			"Cpuset allocations might fail even with a lot of memory available.\n",
 267			nodemask_pr_args(nodes));
 268	}
 269}
 270
 271/*
 272 * decrease cs->attach_in_progress.
 273 * wake_up cpuset_attach_wq if cs->attach_in_progress==0.
 274 */
 275static inline void dec_attach_in_progress_locked(struct cpuset *cs)
 276{
 277	lockdep_assert_held(&cpuset_mutex);
 278
 279	cs->attach_in_progress--;
 280	if (!cs->attach_in_progress)
 281		wake_up(&cpuset_attach_wq);
 282}
 283
 284static inline void dec_attach_in_progress(struct cpuset *cs)
 285{
 286	mutex_lock(&cpuset_mutex);
 287	dec_attach_in_progress_locked(cs);
 288	mutex_unlock(&cpuset_mutex);
 289}
 290
 291static inline bool cpuset_v2(void)
 292{
 293	return !IS_ENABLED(CONFIG_CPUSETS_V1) ||
 294		cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
 295}
 296
 297/*
 298 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
 299 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
 300 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
 301 * With v2 behavior, "cpus" and "mems" are always what the users have
 302 * requested and won't be changed by hotplug events. Only the effective
 303 * cpus or mems will be affected.
 304 */
 305static inline bool is_in_v2_mode(void)
 306{
 307	return cpuset_v2() ||
 308	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
 309}
 310
 311/**
 312 * partition_is_populated - check if partition has tasks
 313 * @cs: partition root to be checked
 314 * @excluded_child: a child cpuset to be excluded in task checking
 315 * Return: true if there are tasks, false otherwise
 316 *
 317 * It is assumed that @cs is a valid partition root. @excluded_child should
 318 * be non-NULL when this cpuset is going to become a partition itself.
 319 */
 320static inline bool partition_is_populated(struct cpuset *cs,
 321					  struct cpuset *excluded_child)
 322{
 323	struct cgroup_subsys_state *css;
 324	struct cpuset *child;
 325
 326	if (cs->css.cgroup->nr_populated_csets)
 327		return true;
 328	if (!excluded_child && !cs->nr_subparts)
 329		return cgroup_is_populated(cs->css.cgroup);
 330
 331	rcu_read_lock();
 332	cpuset_for_each_child(child, css, cs) {
 333		if (child == excluded_child)
 334			continue;
 335		if (is_partition_valid(child))
 336			continue;
 337		if (cgroup_is_populated(child->css.cgroup)) {
 338			rcu_read_unlock();
 339			return true;
 340		}
 341	}
 342	rcu_read_unlock();
 343	return false;
 344}
 345
 346/*
 347 * Return in pmask the portion of a task's cpusets's cpus_allowed that
 348 * are online and are capable of running the task.  If none are found,
 349 * walk up the cpuset hierarchy until we find one that does have some
 350 * appropriate cpus.
 351 *
 352 * One way or another, we guarantee to return some non-empty subset
 353 * of cpu_online_mask.
 354 *
 355 * Call with callback_lock or cpuset_mutex held.
 356 */
 357static void guarantee_online_cpus(struct task_struct *tsk,
 358				  struct cpumask *pmask)
 359{
 360	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
 361	struct cpuset *cs;
 362
 363	if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask)))
 364		cpumask_copy(pmask, cpu_online_mask);
 365
 366	rcu_read_lock();
 367	cs = task_cs(tsk);
 368
 369	while (!cpumask_intersects(cs->effective_cpus, pmask))
 370		cs = parent_cs(cs);
 371
 372	cpumask_and(pmask, pmask, cs->effective_cpus);
 373	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 374}
 375
 376/*
 377 * Return in *pmask the portion of a cpusets's mems_allowed that
 378 * are online, with memory.  If none are online with memory, walk
 379 * up the cpuset hierarchy until we find one that does have some
 380 * online mems.  The top cpuset always has some mems online.
 381 *
 382 * One way or another, we guarantee to return some non-empty subset
 383 * of node_states[N_MEMORY].
 384 *
 385 * Call with callback_lock or cpuset_mutex held.
 386 */
 387static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
 388{
 389	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
 390		cs = parent_cs(cs);
 391	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
 392}
 393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 394/**
 395 * alloc_cpumasks - allocate three cpumasks for cpuset
 396 * @cs:  the cpuset that have cpumasks to be allocated.
 397 * @tmp: the tmpmasks structure pointer
 398 * Return: 0 if successful, -ENOMEM otherwise.
 399 *
 400 * Only one of the two input arguments should be non-NULL.
 401 */
 402static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
 403{
 404	cpumask_var_t *pmask1, *pmask2, *pmask3, *pmask4;
 405
 406	if (cs) {
 407		pmask1 = &cs->cpus_allowed;
 408		pmask2 = &cs->effective_cpus;
 409		pmask3 = &cs->effective_xcpus;
 410		pmask4 = &cs->exclusive_cpus;
 411	} else {
 412		pmask1 = &tmp->new_cpus;
 413		pmask2 = &tmp->addmask;
 414		pmask3 = &tmp->delmask;
 415		pmask4 = NULL;
 416	}
 417
 418	if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
 419		return -ENOMEM;
 420
 421	if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
 422		goto free_one;
 423
 424	if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
 425		goto free_two;
 426
 427	if (pmask4 && !zalloc_cpumask_var(pmask4, GFP_KERNEL))
 428		goto free_three;
 429
 430
 431	return 0;
 432
 433free_three:
 434	free_cpumask_var(*pmask3);
 435free_two:
 436	free_cpumask_var(*pmask2);
 437free_one:
 438	free_cpumask_var(*pmask1);
 439	return -ENOMEM;
 440}
 441
 442/**
 443 * free_cpumasks - free cpumasks in a tmpmasks structure
 444 * @cs:  the cpuset that have cpumasks to be free.
 445 * @tmp: the tmpmasks structure pointer
 446 */
 447static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
 448{
 449	if (cs) {
 450		free_cpumask_var(cs->cpus_allowed);
 451		free_cpumask_var(cs->effective_cpus);
 452		free_cpumask_var(cs->effective_xcpus);
 453		free_cpumask_var(cs->exclusive_cpus);
 454	}
 455	if (tmp) {
 456		free_cpumask_var(tmp->new_cpus);
 457		free_cpumask_var(tmp->addmask);
 458		free_cpumask_var(tmp->delmask);
 459	}
 460}
 461
 462/**
 463 * alloc_trial_cpuset - allocate a trial cpuset
 464 * @cs: the cpuset that the trial cpuset duplicates
 465 */
 466static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
 467{
 468	struct cpuset *trial;
 469
 470	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
 471	if (!trial)
 472		return NULL;
 473
 474	if (alloc_cpumasks(trial, NULL)) {
 475		kfree(trial);
 476		return NULL;
 477	}
 478
 479	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
 480	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
 481	cpumask_copy(trial->effective_xcpus, cs->effective_xcpus);
 482	cpumask_copy(trial->exclusive_cpus, cs->exclusive_cpus);
 483	return trial;
 484}
 485
 486/**
 487 * free_cpuset - free the cpuset
 488 * @cs: the cpuset to be freed
 489 */
 490static inline void free_cpuset(struct cpuset *cs)
 491{
 492	free_cpumasks(cs, NULL);
 493	kfree(cs);
 494}
 495
 496/* Return user specified exclusive CPUs */
 497static inline struct cpumask *user_xcpus(struct cpuset *cs)
 498{
 499	return cpumask_empty(cs->exclusive_cpus) ? cs->cpus_allowed
 500						 : cs->exclusive_cpus;
 501}
 502
 503static inline bool xcpus_empty(struct cpuset *cs)
 504{
 505	return cpumask_empty(cs->cpus_allowed) &&
 506	       cpumask_empty(cs->exclusive_cpus);
 507}
 508
 509/*
 510 * cpusets_are_exclusive() - check if two cpusets are exclusive
 511 *
 512 * Return true if exclusive, false if not
 513 */
 514static inline bool cpusets_are_exclusive(struct cpuset *cs1, struct cpuset *cs2)
 515{
 516	struct cpumask *xcpus1 = user_xcpus(cs1);
 517	struct cpumask *xcpus2 = user_xcpus(cs2);
 518
 519	if (cpumask_intersects(xcpus1, xcpus2))
 520		return false;
 521	return true;
 522}
 523
 524/*
 525 * validate_change() - Used to validate that any proposed cpuset change
 526 *		       follows the structural rules for cpusets.
 527 *
 528 * If we replaced the flag and mask values of the current cpuset
 529 * (cur) with those values in the trial cpuset (trial), would
 530 * our various subset and exclusive rules still be valid?  Presumes
 531 * cpuset_mutex held.
 532 *
 533 * 'cur' is the address of an actual, in-use cpuset.  Operations
 534 * such as list traversal that depend on the actual address of the
 535 * cpuset in the list must use cur below, not trial.
 536 *
 537 * 'trial' is the address of bulk structure copy of cur, with
 538 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 539 * or flags changed to new, trial values.
 540 *
 541 * Return 0 if valid, -errno if not.
 542 */
 543
 544static int validate_change(struct cpuset *cur, struct cpuset *trial)
 545{
 546	struct cgroup_subsys_state *css;
 547	struct cpuset *c, *par;
 548	int ret = 0;
 549
 550	rcu_read_lock();
 551
 552	if (!is_in_v2_mode())
 553		ret = cpuset1_validate_change(cur, trial);
 554	if (ret)
 555		goto out;
 
 556
 557	/* Remaining checks don't apply to root cpuset */
 
 558	if (cur == &top_cpuset)
 559		goto out;
 560
 561	par = parent_cs(cur);
 562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 563	/*
 564	 * Cpusets with tasks - existing or newly being attached - can't
 565	 * be changed to have empty cpus_allowed or mems_allowed.
 566	 */
 567	ret = -ENOSPC;
 568	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
 569		if (!cpumask_empty(cur->cpus_allowed) &&
 570		    cpumask_empty(trial->cpus_allowed))
 571			goto out;
 572		if (!nodes_empty(cur->mems_allowed) &&
 573		    nodes_empty(trial->mems_allowed))
 574			goto out;
 575	}
 576
 577	/*
 578	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
 579	 * tasks. This check is not done when scheduling is disabled as the
 580	 * users should know what they are doing.
 581	 *
 582	 * For v1, effective_cpus == cpus_allowed & user_xcpus() returns
 583	 * cpus_allowed.
 584	 *
 585	 * For v2, is_cpu_exclusive() & is_sched_load_balance() are true only
 586	 * for non-isolated partition root. At this point, the target
 587	 * effective_cpus isn't computed yet. user_xcpus() is the best
 588	 * approximation.
 589	 *
 590	 * TBD: May need to precompute the real effective_cpus here in case
 591	 * incorrect scheduling of SCHED_DEADLINE tasks in a partition
 592	 * becomes an issue.
 593	 */
 594	ret = -EBUSY;
 595	if (is_cpu_exclusive(cur) && is_sched_load_balance(cur) &&
 596	    !cpuset_cpumask_can_shrink(cur->effective_cpus, user_xcpus(trial)))
 
 597		goto out;
 598
 599	/*
 600	 * If either I or some sibling (!= me) is exclusive, we can't
 601	 * overlap. exclusive_cpus cannot overlap with each other if set.
 602	 */
 603	ret = -EINVAL;
 604	cpuset_for_each_child(c, css, par) {
 605		bool txset, cxset;	/* Are exclusive_cpus set? */
 606
 607		if (c == cur)
 608			continue;
 609
 610		txset = !cpumask_empty(trial->exclusive_cpus);
 611		cxset = !cpumask_empty(c->exclusive_cpus);
 612		if (is_cpu_exclusive(trial) || is_cpu_exclusive(c) ||
 613		    (txset && cxset)) {
 614			if (!cpusets_are_exclusive(trial, c))
 615				goto out;
 616		} else if (txset || cxset) {
 617			struct cpumask *xcpus, *acpus;
 618
 619			/*
 620			 * When just one of the exclusive_cpus's is set,
 621			 * cpus_allowed of the other cpuset, if set, cannot be
 622			 * a subset of it or none of those CPUs will be
 623			 * available if these exclusive CPUs are activated.
 624			 */
 625			if (txset) {
 626				xcpus = trial->exclusive_cpus;
 627				acpus = c->cpus_allowed;
 628			} else {
 629				xcpus = c->exclusive_cpus;
 630				acpus = trial->cpus_allowed;
 631			}
 632			if (!cpumask_empty(acpus) && cpumask_subset(acpus, xcpus))
 633				goto out;
 634		}
 635		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
 636		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
 637			goto out;
 638	}
 639
 640	ret = 0;
 641out:
 642	rcu_read_unlock();
 643	return ret;
 644}
 645
 646#ifdef CONFIG_SMP
 647/*
 648 * Helper routine for generate_sched_domains().
 649 * Do cpusets a, b have overlapping effective cpus_allowed masks?
 650 */
 651static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
 652{
 653	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
 654}
 655
 656static void
 657update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
 658{
 659	if (dattr->relax_domain_level < c->relax_domain_level)
 660		dattr->relax_domain_level = c->relax_domain_level;
 661	return;
 662}
 663
 664static void update_domain_attr_tree(struct sched_domain_attr *dattr,
 665				    struct cpuset *root_cs)
 666{
 667	struct cpuset *cp;
 668	struct cgroup_subsys_state *pos_css;
 669
 670	rcu_read_lock();
 671	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
 672		/* skip the whole subtree if @cp doesn't have any CPU */
 673		if (cpumask_empty(cp->cpus_allowed)) {
 674			pos_css = css_rightmost_descendant(pos_css);
 675			continue;
 676		}
 677
 678		if (is_sched_load_balance(cp))
 679			update_domain_attr(dattr, cp);
 680	}
 681	rcu_read_unlock();
 682}
 683
 684/* Must be called with cpuset_mutex held.  */
 685static inline int nr_cpusets(void)
 686{
 687	/* jump label reference count + the top-level cpuset */
 688	return static_key_count(&cpusets_enabled_key.key) + 1;
 689}
 690
 691/*
 692 * generate_sched_domains()
 693 *
 694 * This function builds a partial partition of the systems CPUs
 695 * A 'partial partition' is a set of non-overlapping subsets whose
 696 * union is a subset of that set.
 697 * The output of this function needs to be passed to kernel/sched/core.c
 698 * partition_sched_domains() routine, which will rebuild the scheduler's
 699 * load balancing domains (sched domains) as specified by that partial
 700 * partition.
 701 *
 702 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
 703 * for a background explanation of this.
 704 *
 705 * Does not return errors, on the theory that the callers of this
 706 * routine would rather not worry about failures to rebuild sched
 707 * domains when operating in the severe memory shortage situations
 708 * that could cause allocation failures below.
 709 *
 710 * Must be called with cpuset_mutex held.
 711 *
 712 * The three key local variables below are:
 713 *    cp - cpuset pointer, used (together with pos_css) to perform a
 714 *	   top-down scan of all cpusets. For our purposes, rebuilding
 715 *	   the schedulers sched domains, we can ignore !is_sched_load_
 716 *	   balance cpusets.
 717 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 718 *	   that need to be load balanced, for convenient iterative
 719 *	   access by the subsequent code that finds the best partition,
 720 *	   i.e the set of domains (subsets) of CPUs such that the
 721 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 722 *	   is a subset of one of these domains, while there are as
 723 *	   many such domains as possible, each as small as possible.
 724 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
 725 *	   the kernel/sched/core.c routine partition_sched_domains() in a
 726 *	   convenient format, that can be easily compared to the prior
 727 *	   value to determine what partition elements (sched domains)
 728 *	   were changed (added or removed.)
 729 *
 730 * Finding the best partition (set of domains):
 731 *	The double nested loops below over i, j scan over the load
 732 *	balanced cpusets (using the array of cpuset pointers in csa[])
 733 *	looking for pairs of cpusets that have overlapping cpus_allowed
 734 *	and merging them using a union-find algorithm.
 735 *
 736 *	The union of the cpus_allowed masks from the set of all cpusets
 737 *	having the same root then form the one element of the partition
 738 *	(one sched domain) to be passed to partition_sched_domains().
 739 *
 
 
 
 740 */
 741static int generate_sched_domains(cpumask_var_t **domains,
 742			struct sched_domain_attr **attributes)
 743{
 744	struct cpuset *cp;	/* top-down scan of cpusets */
 745	struct cpuset **csa;	/* array of all cpuset ptrs */
 746	int csn;		/* how many cpuset ptrs in csa so far */
 747	int i, j;		/* indices for partition finding loops */
 748	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
 749	struct sched_domain_attr *dattr;  /* attributes for custom domains */
 750	int ndoms = 0;		/* number of sched domains in result */
 751	int nslot;		/* next empty doms[] struct cpumask slot */
 752	struct cgroup_subsys_state *pos_css;
 753	bool root_load_balance = is_sched_load_balance(&top_cpuset);
 754	bool cgrpv2 = cpuset_v2();
 755	int nslot_update;
 756
 757	doms = NULL;
 758	dattr = NULL;
 759	csa = NULL;
 760
 761	/* Special case for the 99% of systems with one, full, sched domain */
 762	if (root_load_balance && cpumask_empty(subpartitions_cpus)) {
 763single_root_domain:
 764		ndoms = 1;
 765		doms = alloc_sched_domains(ndoms);
 766		if (!doms)
 767			goto done;
 768
 769		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
 770		if (dattr) {
 771			*dattr = SD_ATTR_INIT;
 772			update_domain_attr_tree(dattr, &top_cpuset);
 773		}
 774		cpumask_and(doms[0], top_cpuset.effective_cpus,
 775			    housekeeping_cpumask(HK_TYPE_DOMAIN));
 776
 777		goto done;
 778	}
 779
 780	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
 781	if (!csa)
 782		goto done;
 783	csn = 0;
 784
 785	rcu_read_lock();
 786	if (root_load_balance)
 787		csa[csn++] = &top_cpuset;
 788	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
 789		if (cp == &top_cpuset)
 790			continue;
 791
 792		if (cgrpv2)
 793			goto v2;
 794
 795		/*
 796		 * v1:
 797		 * Continue traversing beyond @cp iff @cp has some CPUs and
 798		 * isn't load balancing.  The former is obvious.  The
 799		 * latter: All child cpusets contain a subset of the
 800		 * parent's cpus, so just skip them, and then we call
 801		 * update_domain_attr_tree() to calc relax_domain_level of
 802		 * the corresponding sched domain.
 
 
 
 803		 */
 804		if (!cpumask_empty(cp->cpus_allowed) &&
 805		    !(is_sched_load_balance(cp) &&
 806		      cpumask_intersects(cp->cpus_allowed,
 807					 housekeeping_cpumask(HK_TYPE_DOMAIN))))
 808			continue;
 809
 810		if (is_sched_load_balance(cp) &&
 811		    !cpumask_empty(cp->effective_cpus))
 812			csa[csn++] = cp;
 813
 814		/* skip @cp's subtree */
 815		pos_css = css_rightmost_descendant(pos_css);
 816		continue;
 817
 818v2:
 819		/*
 820		 * Only valid partition roots that are not isolated and with
 821		 * non-empty effective_cpus will be saved into csn[].
 822		 */
 823		if ((cp->partition_root_state == PRS_ROOT) &&
 824		    !cpumask_empty(cp->effective_cpus))
 825			csa[csn++] = cp;
 826
 827		/*
 828		 * Skip @cp's subtree if not a partition root and has no
 829		 * exclusive CPUs to be granted to child cpusets.
 830		 */
 831		if (!is_partition_valid(cp) && cpumask_empty(cp->exclusive_cpus))
 832			pos_css = css_rightmost_descendant(pos_css);
 833	}
 834	rcu_read_unlock();
 835
 836	/*
 837	 * If there are only isolated partitions underneath the cgroup root,
 838	 * we can optimize out unneeded sched domains scanning.
 839	 */
 840	if (root_load_balance && (csn == 1))
 841		goto single_root_domain;
 842
 843	for (i = 0; i < csn; i++)
 844		uf_node_init(&csa[i]->node);
 
 845
 846	/* Merge overlapping cpusets */
 
 847	for (i = 0; i < csn; i++) {
 848		for (j = i + 1; j < csn; j++) {
 849			if (cpusets_overlap(csa[i], csa[j])) {
 850				/*
 851				 * Cgroup v2 shouldn't pass down overlapping
 852				 * partition root cpusets.
 853				 */
 854				WARN_ON_ONCE(cgrpv2);
 855				uf_union(&csa[i]->node, &csa[j]->node);
 
 
 
 
 
 
 
 
 856			}
 857		}
 858	}
 859
 860	/* Count the total number of domains */
 861	for (i = 0; i < csn; i++) {
 862		if (uf_find(&csa[i]->node) == &csa[i]->node)
 863			ndoms++;
 864	}
 865
 866	/*
 867	 * Now we know how many domains to create.
 868	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
 869	 */
 870	doms = alloc_sched_domains(ndoms);
 871	if (!doms)
 872		goto done;
 873
 874	/*
 875	 * The rest of the code, including the scheduler, can deal with
 876	 * dattr==NULL case. No need to abort if alloc fails.
 877	 */
 878	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
 879			      GFP_KERNEL);
 880
 881	/*
 882	 * Cgroup v2 doesn't support domain attributes, just set all of them
 883	 * to SD_ATTR_INIT. Also non-isolating partition root CPUs are a
 884	 * subset of HK_TYPE_DOMAIN housekeeping CPUs.
 885	 */
 886	if (cgrpv2) {
 887		for (i = 0; i < ndoms; i++) {
 888			/*
 889			 * The top cpuset may contain some boot time isolated
 890			 * CPUs that need to be excluded from the sched domain.
 891			 */
 892			if (csa[i] == &top_cpuset)
 893				cpumask_and(doms[i], csa[i]->effective_cpus,
 894					    housekeeping_cpumask(HK_TYPE_DOMAIN));
 895			else
 896				cpumask_copy(doms[i], csa[i]->effective_cpus);
 897			if (dattr)
 898				dattr[i] = SD_ATTR_INIT;
 899		}
 900		goto done;
 901	}
 902
 903	for (nslot = 0, i = 0; i < csn; i++) {
 904		nslot_update = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 905		for (j = i; j < csn; j++) {
 906			if (uf_find(&csa[j]->node) == &csa[i]->node) {
 907				struct cpumask *dp = doms[nslot];
 908
 909				if (i == j) {
 910					nslot_update = 1;
 911					cpumask_clear(dp);
 912					if (dattr)
 913						*(dattr + nslot) = SD_ATTR_INIT;
 914				}
 915				cpumask_or(dp, dp, csa[j]->effective_cpus);
 916				cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN));
 917				if (dattr)
 918					update_domain_attr_tree(dattr + nslot, csa[j]);
 
 
 
 919			}
 920		}
 921		if (nslot_update)
 922			nslot++;
 923	}
 924	BUG_ON(nslot != ndoms);
 925
 926done:
 927	kfree(csa);
 928
 929	/*
 930	 * Fallback to the default domain if kmalloc() failed.
 931	 * See comments in partition_sched_domains().
 932	 */
 933	if (doms == NULL)
 934		ndoms = 1;
 935
 936	*domains    = doms;
 937	*attributes = dattr;
 938	return ndoms;
 939}
 940
 941static void dl_update_tasks_root_domain(struct cpuset *cs)
 942{
 943	struct css_task_iter it;
 944	struct task_struct *task;
 945
 946	if (cs->nr_deadline_tasks == 0)
 947		return;
 948
 949	css_task_iter_start(&cs->css, 0, &it);
 950
 951	while ((task = css_task_iter_next(&it)))
 952		dl_add_task_root_domain(task);
 953
 954	css_task_iter_end(&it);
 955}
 956
 957static void dl_rebuild_rd_accounting(void)
 958{
 959	struct cpuset *cs = NULL;
 960	struct cgroup_subsys_state *pos_css;
 961
 962	lockdep_assert_held(&cpuset_mutex);
 963	lockdep_assert_cpus_held();
 964	lockdep_assert_held(&sched_domains_mutex);
 965
 966	rcu_read_lock();
 967
 968	/*
 969	 * Clear default root domain DL accounting, it will be computed again
 970	 * if a task belongs to it.
 971	 */
 972	dl_clear_root_domain(&def_root_domain);
 973
 974	cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
 975
 976		if (cpumask_empty(cs->effective_cpus)) {
 977			pos_css = css_rightmost_descendant(pos_css);
 978			continue;
 979		}
 980
 981		css_get(&cs->css);
 982
 983		rcu_read_unlock();
 984
 985		dl_update_tasks_root_domain(cs);
 986
 987		rcu_read_lock();
 988		css_put(&cs->css);
 989	}
 990	rcu_read_unlock();
 991}
 992
 993static void
 994partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
 995				    struct sched_domain_attr *dattr_new)
 996{
 997	mutex_lock(&sched_domains_mutex);
 998	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
 999	dl_rebuild_rd_accounting();
1000	mutex_unlock(&sched_domains_mutex);
1001}
1002
1003/*
1004 * Rebuild scheduler domains.
1005 *
1006 * If the flag 'sched_load_balance' of any cpuset with non-empty
1007 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
1008 * which has that flag enabled, or if any cpuset with a non-empty
1009 * 'cpus' is removed, then call this routine to rebuild the
1010 * scheduler's dynamic sched domains.
1011 *
1012 * Call with cpuset_mutex held.  Takes cpus_read_lock().
1013 */
1014void rebuild_sched_domains_locked(void)
1015{
1016	struct cgroup_subsys_state *pos_css;
1017	struct sched_domain_attr *attr;
1018	cpumask_var_t *doms;
1019	struct cpuset *cs;
1020	int ndoms;
1021
1022	lockdep_assert_cpus_held();
1023	lockdep_assert_held(&cpuset_mutex);
1024	force_sd_rebuild = false;
1025
1026	/*
1027	 * If we have raced with CPU hotplug, return early to avoid
1028	 * passing doms with offlined cpu to partition_sched_domains().
1029	 * Anyways, cpuset_handle_hotplug() will rebuild sched domains.
1030	 *
1031	 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1032	 * should be the same as the active CPUs, so checking only top_cpuset
1033	 * is enough to detect racing CPU offlines.
1034	 */
1035	if (cpumask_empty(subpartitions_cpus) &&
1036	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1037		return;
1038
1039	/*
1040	 * With subpartition CPUs, however, the effective CPUs of a partition
1041	 * root should be only a subset of the active CPUs.  Since a CPU in any
1042	 * partition root could be offlined, all must be checked.
1043	 */
1044	if (!cpumask_empty(subpartitions_cpus)) {
1045		rcu_read_lock();
1046		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1047			if (!is_partition_valid(cs)) {
1048				pos_css = css_rightmost_descendant(pos_css);
1049				continue;
1050			}
1051			if (!cpumask_subset(cs->effective_cpus,
1052					    cpu_active_mask)) {
1053				rcu_read_unlock();
1054				return;
1055			}
1056		}
1057		rcu_read_unlock();
1058	}
1059
1060	/* Generate domain masks and attrs */
1061	ndoms = generate_sched_domains(&doms, &attr);
1062
1063	/* Have scheduler rebuild the domains */
1064	partition_and_rebuild_sched_domains(ndoms, doms, attr);
1065}
1066#else /* !CONFIG_SMP */
1067void rebuild_sched_domains_locked(void)
1068{
1069}
1070#endif /* CONFIG_SMP */
1071
1072static void rebuild_sched_domains_cpuslocked(void)
1073{
1074	mutex_lock(&cpuset_mutex);
1075	rebuild_sched_domains_locked();
1076	mutex_unlock(&cpuset_mutex);
1077}
1078
1079void rebuild_sched_domains(void)
1080{
1081	cpus_read_lock();
1082	rebuild_sched_domains_cpuslocked();
1083	cpus_read_unlock();
 
 
1084}
1085
1086/**
1087 * cpuset_update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1088 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1089 * @new_cpus: the temp variable for the new effective_cpus mask
1090 *
1091 * Iterate through each task of @cs updating its cpus_allowed to the
1092 * effective cpuset's.  As this function is called with cpuset_mutex held,
1093 * cpuset membership stays stable. For top_cpuset, task_cpu_possible_mask()
1094 * is used instead of effective_cpus to make sure all offline CPUs are also
1095 * included as hotplug code won't update cpumasks for tasks in top_cpuset.
1096 */
1097void cpuset_update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus)
1098{
1099	struct css_task_iter it;
1100	struct task_struct *task;
1101	bool top_cs = cs == &top_cpuset;
1102
1103	css_task_iter_start(&cs->css, 0, &it);
1104	while ((task = css_task_iter_next(&it))) {
1105		const struct cpumask *possible_mask = task_cpu_possible_mask(task);
1106
1107		if (top_cs) {
1108			/*
1109			 * Percpu kthreads in top_cpuset are ignored
1110			 */
1111			if (kthread_is_per_cpu(task))
1112				continue;
1113			cpumask_andnot(new_cpus, possible_mask, subpartitions_cpus);
1114		} else {
1115			cpumask_and(new_cpus, possible_mask, cs->effective_cpus);
1116		}
1117		set_cpus_allowed_ptr(task, new_cpus);
1118	}
1119	css_task_iter_end(&it);
1120}
1121
1122/**
1123 * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1124 * @new_cpus: the temp variable for the new effective_cpus mask
1125 * @cs: the cpuset the need to recompute the new effective_cpus mask
1126 * @parent: the parent cpuset
1127 *
1128 * The result is valid only if the given cpuset isn't a partition root.
 
 
 
1129 */
1130static void compute_effective_cpumask(struct cpumask *new_cpus,
1131				      struct cpuset *cs, struct cpuset *parent)
1132{
1133	cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1134}
1135
1136/*
1137 * Commands for update_parent_effective_cpumask
1138 */
1139enum partition_cmd {
1140	partcmd_enable,		/* Enable partition root	  */
1141	partcmd_enablei,	/* Enable isolated partition root */
1142	partcmd_disable,	/* Disable partition root	  */
1143	partcmd_update,		/* Update parent's effective_cpus */
1144	partcmd_invalidate,	/* Make partition invalid	  */
1145};
1146
1147static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1148				    struct tmpmasks *tmp);
1149
1150/*
1151 * Update partition exclusive flag
1152 *
1153 * Return: 0 if successful, an error code otherwise
1154 */
1155static int update_partition_exclusive(struct cpuset *cs, int new_prs)
1156{
1157	bool exclusive = (new_prs > PRS_MEMBER);
1158
1159	if (exclusive && !is_cpu_exclusive(cs)) {
1160		if (cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 1))
1161			return PERR_NOTEXCL;
1162	} else if (!exclusive && is_cpu_exclusive(cs)) {
1163		/* Turning off CS_CPU_EXCLUSIVE will not return error */
1164		cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1165	}
1166	return 0;
1167}
1168
1169/*
1170 * Update partition load balance flag and/or rebuild sched domain
1171 *
1172 * Changing load balance flag will automatically call
1173 * rebuild_sched_domains_locked().
1174 * This function is for cgroup v2 only.
1175 */
1176static void update_partition_sd_lb(struct cpuset *cs, int old_prs)
1177{
1178	int new_prs = cs->partition_root_state;
1179	bool rebuild_domains = (new_prs > 0) || (old_prs > 0);
1180	bool new_lb;
1181
1182	/*
1183	 * If cs is not a valid partition root, the load balance state
1184	 * will follow its parent.
1185	 */
1186	if (new_prs > 0) {
1187		new_lb = (new_prs != PRS_ISOLATED);
1188	} else {
1189		new_lb = is_sched_load_balance(parent_cs(cs));
1190	}
1191	if (new_lb != !!is_sched_load_balance(cs)) {
1192		rebuild_domains = true;
1193		if (new_lb)
1194			set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1195		else
1196			clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1197	}
1198
1199	if (rebuild_domains)
1200		cpuset_force_rebuild();
1201}
1202
1203/*
1204 * tasks_nocpu_error - Return true if tasks will have no effective_cpus
1205 */
1206static bool tasks_nocpu_error(struct cpuset *parent, struct cpuset *cs,
1207			      struct cpumask *xcpus)
1208{
1209	/*
1210	 * A populated partition (cs or parent) can't have empty effective_cpus
1211	 */
1212	return (cpumask_subset(parent->effective_cpus, xcpus) &&
1213		partition_is_populated(parent, cs)) ||
1214	       (!cpumask_intersects(xcpus, cpu_active_mask) &&
1215		partition_is_populated(cs, NULL));
1216}
1217
1218static void reset_partition_data(struct cpuset *cs)
1219{
1220	struct cpuset *parent = parent_cs(cs);
1221
1222	if (!cpuset_v2())
1223		return;
1224
1225	lockdep_assert_held(&callback_lock);
1226
1227	cs->nr_subparts = 0;
1228	if (cpumask_empty(cs->exclusive_cpus)) {
1229		cpumask_clear(cs->effective_xcpus);
1230		if (is_cpu_exclusive(cs))
1231			clear_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1232	}
1233	if (!cpumask_and(cs->effective_cpus, parent->effective_cpus, cs->cpus_allowed))
1234		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1235}
1236
1237/*
1238 * partition_xcpus_newstate - Exclusive CPUs state change
1239 * @old_prs: old partition_root_state
1240 * @new_prs: new partition_root_state
1241 * @xcpus: exclusive CPUs with state change
1242 */
1243static void partition_xcpus_newstate(int old_prs, int new_prs, struct cpumask *xcpus)
1244{
1245	WARN_ON_ONCE(old_prs == new_prs);
1246	if (new_prs == PRS_ISOLATED)
1247		cpumask_or(isolated_cpus, isolated_cpus, xcpus);
1248	else
1249		cpumask_andnot(isolated_cpus, isolated_cpus, xcpus);
1250}
1251
1252/*
1253 * partition_xcpus_add - Add new exclusive CPUs to partition
1254 * @new_prs: new partition_root_state
1255 * @parent: parent cpuset
1256 * @xcpus: exclusive CPUs to be added
1257 * Return: true if isolated_cpus modified, false otherwise
1258 *
1259 * Remote partition if parent == NULL
1260 */
1261static bool partition_xcpus_add(int new_prs, struct cpuset *parent,
1262				struct cpumask *xcpus)
1263{
1264	bool isolcpus_updated;
1265
1266	WARN_ON_ONCE(new_prs < 0);
1267	lockdep_assert_held(&callback_lock);
1268	if (!parent)
1269		parent = &top_cpuset;
1270
1271
1272	if (parent == &top_cpuset)
1273		cpumask_or(subpartitions_cpus, subpartitions_cpus, xcpus);
1274
1275	isolcpus_updated = (new_prs != parent->partition_root_state);
1276	if (isolcpus_updated)
1277		partition_xcpus_newstate(parent->partition_root_state, new_prs,
1278					 xcpus);
1279
1280	cpumask_andnot(parent->effective_cpus, parent->effective_cpus, xcpus);
1281	return isolcpus_updated;
1282}
1283
1284/*
1285 * partition_xcpus_del - Remove exclusive CPUs from partition
1286 * @old_prs: old partition_root_state
1287 * @parent: parent cpuset
1288 * @xcpus: exclusive CPUs to be removed
1289 * Return: true if isolated_cpus modified, false otherwise
1290 *
1291 * Remote partition if parent == NULL
1292 */
1293static bool partition_xcpus_del(int old_prs, struct cpuset *parent,
1294				struct cpumask *xcpus)
1295{
1296	bool isolcpus_updated;
1297
1298	WARN_ON_ONCE(old_prs < 0);
1299	lockdep_assert_held(&callback_lock);
1300	if (!parent)
1301		parent = &top_cpuset;
1302
1303	if (parent == &top_cpuset)
1304		cpumask_andnot(subpartitions_cpus, subpartitions_cpus, xcpus);
1305
1306	isolcpus_updated = (old_prs != parent->partition_root_state);
1307	if (isolcpus_updated)
1308		partition_xcpus_newstate(old_prs, parent->partition_root_state,
1309					 xcpus);
1310
1311	cpumask_and(xcpus, xcpus, cpu_active_mask);
1312	cpumask_or(parent->effective_cpus, parent->effective_cpus, xcpus);
1313	return isolcpus_updated;
1314}
1315
1316static void update_unbound_workqueue_cpumask(bool isolcpus_updated)
1317{
1318	int ret;
1319
1320	lockdep_assert_cpus_held();
1321
1322	if (!isolcpus_updated)
1323		return;
1324
1325	ret = workqueue_unbound_exclude_cpumask(isolated_cpus);
1326	WARN_ON_ONCE(ret < 0);
1327}
1328
1329/**
1330 * cpuset_cpu_is_isolated - Check if the given CPU is isolated
1331 * @cpu: the CPU number to be checked
1332 * Return: true if CPU is used in an isolated partition, false otherwise
1333 */
1334bool cpuset_cpu_is_isolated(int cpu)
1335{
1336	return cpumask_test_cpu(cpu, isolated_cpus);
1337}
1338EXPORT_SYMBOL_GPL(cpuset_cpu_is_isolated);
1339
1340/*
1341 * compute_effective_exclusive_cpumask - compute effective exclusive CPUs
1342 * @cs: cpuset
1343 * @xcpus: effective exclusive CPUs value to be set
1344 * Return: true if xcpus is not empty, false otherwise.
1345 *
1346 * Starting with exclusive_cpus (cpus_allowed if exclusive_cpus is not set),
1347 * it must be a subset of parent's effective_xcpus.
1348 */
1349static bool compute_effective_exclusive_cpumask(struct cpuset *cs,
1350						struct cpumask *xcpus)
1351{
1352	struct cpuset *parent = parent_cs(cs);
1353
1354	if (!xcpus)
1355		xcpus = cs->effective_xcpus;
1356
1357	return cpumask_and(xcpus, user_xcpus(cs), parent->effective_xcpus);
1358}
1359
1360static inline bool is_remote_partition(struct cpuset *cs)
1361{
1362	return !list_empty(&cs->remote_sibling);
1363}
1364
1365static inline bool is_local_partition(struct cpuset *cs)
1366{
1367	return is_partition_valid(cs) && !is_remote_partition(cs);
1368}
1369
1370/*
1371 * remote_partition_enable - Enable current cpuset as a remote partition root
1372 * @cs: the cpuset to update
1373 * @new_prs: new partition_root_state
1374 * @tmp: temporary masks
1375 * Return: 0 if successful, errcode if error
1376 *
1377 * Enable the current cpuset to become a remote partition root taking CPUs
1378 * directly from the top cpuset. cpuset_mutex must be held by the caller.
1379 */
1380static int remote_partition_enable(struct cpuset *cs, int new_prs,
1381				   struct tmpmasks *tmp)
1382{
1383	bool isolcpus_updated;
1384
1385	/*
1386	 * The user must have sysadmin privilege.
1387	 */
1388	if (!capable(CAP_SYS_ADMIN))
1389		return PERR_ACCESS;
1390
1391	/*
1392	 * The requested exclusive_cpus must not be allocated to other
1393	 * partitions and it can't use up all the root's effective_cpus.
1394	 *
1395	 * Note that if there is any local partition root above it or
1396	 * remote partition root underneath it, its exclusive_cpus must
1397	 * have overlapped with subpartitions_cpus.
1398	 */
1399	compute_effective_exclusive_cpumask(cs, tmp->new_cpus);
1400	if (cpumask_empty(tmp->new_cpus) ||
1401	    cpumask_intersects(tmp->new_cpus, subpartitions_cpus) ||
1402	    cpumask_subset(top_cpuset.effective_cpus, tmp->new_cpus))
1403		return PERR_INVCPUS;
1404
1405	spin_lock_irq(&callback_lock);
1406	isolcpus_updated = partition_xcpus_add(new_prs, NULL, tmp->new_cpus);
1407	list_add(&cs->remote_sibling, &remote_children);
1408	spin_unlock_irq(&callback_lock);
1409	update_unbound_workqueue_cpumask(isolcpus_updated);
1410
1411	/*
1412	 * Propagate changes in top_cpuset's effective_cpus down the hierarchy.
1413	 */
1414	cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1415	update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1416	return 0;
1417}
1418
1419/*
1420 * remote_partition_disable - Remove current cpuset from remote partition list
1421 * @cs: the cpuset to update
1422 * @tmp: temporary masks
1423 *
1424 * The effective_cpus is also updated.
1425 *
1426 * cpuset_mutex must be held by the caller.
1427 */
1428static void remote_partition_disable(struct cpuset *cs, struct tmpmasks *tmp)
1429{
1430	bool isolcpus_updated;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1431
1432	compute_effective_exclusive_cpumask(cs, tmp->new_cpus);
1433	WARN_ON_ONCE(!is_remote_partition(cs));
1434	WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, subpartitions_cpus));
1435
1436	spin_lock_irq(&callback_lock);
1437	list_del_init(&cs->remote_sibling);
1438	isolcpus_updated = partition_xcpus_del(cs->partition_root_state,
1439					       NULL, tmp->new_cpus);
1440	cs->partition_root_state = -cs->partition_root_state;
1441	if (!cs->prs_err)
1442		cs->prs_err = PERR_INVCPUS;
1443	reset_partition_data(cs);
1444	spin_unlock_irq(&callback_lock);
1445	update_unbound_workqueue_cpumask(isolcpus_updated);
1446
1447	/*
1448	 * Propagate changes in top_cpuset's effective_cpus down the hierarchy.
 
 
1449	 */
1450	cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1451	update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1452}
1453
1454/*
1455 * remote_cpus_update - cpus_exclusive change of remote partition
1456 * @cs: the cpuset to be updated
1457 * @newmask: the new effective_xcpus mask
1458 * @tmp: temporary masks
1459 *
1460 * top_cpuset and subpartitions_cpus will be updated or partition can be
1461 * invalidated.
1462 */
1463static void remote_cpus_update(struct cpuset *cs, struct cpumask *newmask,
1464			       struct tmpmasks *tmp)
1465{
1466	bool adding, deleting;
1467	int prs = cs->partition_root_state;
1468	int isolcpus_updated = 0;
1469
1470	if (WARN_ON_ONCE(!is_remote_partition(cs)))
1471		return;
1472
1473	WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus));
1474
1475	if (cpumask_empty(newmask))
1476		goto invalidate;
1477
1478	adding   = cpumask_andnot(tmp->addmask, newmask, cs->effective_xcpus);
1479	deleting = cpumask_andnot(tmp->delmask, cs->effective_xcpus, newmask);
1480
1481	/*
1482	 * Additions of remote CPUs is only allowed if those CPUs are
1483	 * not allocated to other partitions and there are effective_cpus
1484	 * left in the top cpuset.
1485	 */
1486	if (adding && (!capable(CAP_SYS_ADMIN) ||
1487		       cpumask_intersects(tmp->addmask, subpartitions_cpus) ||
1488		       cpumask_subset(top_cpuset.effective_cpus, tmp->addmask)))
1489		goto invalidate;
1490
1491	spin_lock_irq(&callback_lock);
1492	if (adding)
1493		isolcpus_updated += partition_xcpus_add(prs, NULL, tmp->addmask);
1494	if (deleting)
1495		isolcpus_updated += partition_xcpus_del(prs, NULL, tmp->delmask);
1496	spin_unlock_irq(&callback_lock);
1497	update_unbound_workqueue_cpumask(isolcpus_updated);
1498
1499	/*
1500	 * Propagate changes in top_cpuset's effective_cpus down the hierarchy.
 
 
1501	 */
1502	cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1503	update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1504	return;
1505
1506invalidate:
1507	remote_partition_disable(cs, tmp);
1508}
1509
1510/*
1511 * remote_partition_check - check if a child remote partition needs update
1512 * @cs: the cpuset to be updated
1513 * @newmask: the new effective_xcpus mask
1514 * @delmask: temporary mask for deletion (not in tmp)
1515 * @tmp: temporary masks
1516 *
1517 * This should be called before the given cs has updated its cpus_allowed
1518 * and/or effective_xcpus.
1519 */
1520static void remote_partition_check(struct cpuset *cs, struct cpumask *newmask,
1521				   struct cpumask *delmask, struct tmpmasks *tmp)
1522{
1523	struct cpuset *child, *next;
1524	int disable_cnt = 0;
1525
1526	/*
1527	 * Compute the effective exclusive CPUs that will be deleted.
1528	 */
1529	if (!cpumask_andnot(delmask, cs->effective_xcpus, newmask) ||
1530	    !cpumask_intersects(delmask, subpartitions_cpus))
1531		return;	/* No deletion of exclusive CPUs in partitions */
1532
1533	/*
1534	 * Searching the remote children list to look for those that will
1535	 * be impacted by the deletion of exclusive CPUs.
1536	 *
1537	 * Since a cpuset must be removed from the remote children list
1538	 * before it can go offline and holding cpuset_mutex will prevent
1539	 * any change in cpuset status. RCU read lock isn't needed.
1540	 */
1541	lockdep_assert_held(&cpuset_mutex);
1542	list_for_each_entry_safe(child, next, &remote_children, remote_sibling)
1543		if (cpumask_intersects(child->effective_cpus, delmask)) {
1544			remote_partition_disable(child, tmp);
1545			disable_cnt++;
1546		}
1547	if (disable_cnt)
1548		cpuset_force_rebuild();
1549}
1550
1551/*
1552 * prstate_housekeeping_conflict - check for partition & housekeeping conflicts
1553 * @prstate: partition root state to be checked
1554 * @new_cpus: cpu mask
1555 * Return: true if there is conflict, false otherwise
1556 *
1557 * CPUs outside of boot_hk_cpus, if defined, can only be used in an
1558 * isolated partition.
1559 */
1560static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus)
1561{
1562	if (!have_boot_isolcpus)
1563		return false;
1564
1565	if ((prstate != PRS_ISOLATED) && !cpumask_subset(new_cpus, boot_hk_cpus))
1566		return true;
1567
1568	return false;
1569}
1570
1571/**
1572 * update_parent_effective_cpumask - update effective_cpus mask of parent cpuset
1573 * @cs:      The cpuset that requests change in partition root state
1574 * @cmd:     Partition root state change command
1575 * @newmask: Optional new cpumask for partcmd_update
1576 * @tmp:     Temporary addmask and delmask
1577 * Return:   0 or a partition root state error code
1578 *
1579 * For partcmd_enable*, the cpuset is being transformed from a non-partition
1580 * root to a partition root. The effective_xcpus (cpus_allowed if
1581 * effective_xcpus not set) mask of the given cpuset will be taken away from
1582 * parent's effective_cpus. The function will return 0 if all the CPUs listed
1583 * in effective_xcpus can be granted or an error code will be returned.
1584 *
1585 * For partcmd_disable, the cpuset is being transformed from a partition
1586 * root back to a non-partition root. Any CPUs in effective_xcpus will be
1587 * given back to parent's effective_cpus. 0 will always be returned.
1588 *
1589 * For partcmd_update, if the optional newmask is specified, the cpu list is
1590 * to be changed from effective_xcpus to newmask. Otherwise, effective_xcpus is
1591 * assumed to remain the same. The cpuset should either be a valid or invalid
1592 * partition root. The partition root state may change from valid to invalid
1593 * or vice versa. An error code will be returned if transitioning from
1594 * invalid to valid violates the exclusivity rule.
1595 *
1596 * For partcmd_invalidate, the current partition will be made invalid.
1597 *
1598 * The partcmd_enable* and partcmd_disable commands are used by
1599 * update_prstate(). An error code may be returned and the caller will check
1600 * for error.
1601 *
1602 * The partcmd_update command is used by update_cpumasks_hier() with newmask
1603 * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used
1604 * by update_cpumask() with NULL newmask. In both cases, the callers won't
1605 * check for error and so partition_root_state and prs_error will be updated
1606 * directly.
1607 */
1608static int update_parent_effective_cpumask(struct cpuset *cs, int cmd,
1609					   struct cpumask *newmask,
1610					   struct tmpmasks *tmp)
1611{
1612	struct cpuset *parent = parent_cs(cs);
1613	int adding;	/* Adding cpus to parent's effective_cpus	*/
1614	int deleting;	/* Deleting cpus from parent's effective_cpus	*/
1615	int old_prs, new_prs;
1616	int part_error = PERR_NONE;	/* Partition error? */
1617	int subparts_delta = 0;
1618	struct cpumask *xcpus;		/* cs effective_xcpus */
1619	int isolcpus_updated = 0;
1620	bool nocpu;
1621
1622	lockdep_assert_held(&cpuset_mutex);
1623
1624	/*
1625	 * new_prs will only be changed for the partcmd_update and
1626	 * partcmd_invalidate commands.
1627	 */
1628	adding = deleting = false;
1629	old_prs = new_prs = cs->partition_root_state;
1630	xcpus = user_xcpus(cs);
1631
1632	if (cmd == partcmd_invalidate) {
1633		if (is_prs_invalid(old_prs))
1634			return 0;
1635
1636		/*
1637		 * Make the current partition invalid.
1638		 */
1639		if (is_partition_valid(parent))
1640			adding = cpumask_and(tmp->addmask,
1641					     xcpus, parent->effective_xcpus);
1642		if (old_prs > 0) {
1643			new_prs = -old_prs;
1644			subparts_delta--;
1645		}
1646		goto write_error;
1647	}
1648
1649	/*
1650	 * The parent must be a partition root.
1651	 * The new cpumask, if present, or the current cpus_allowed must
1652	 * not be empty.
1653	 */
1654	if (!is_partition_valid(parent)) {
1655		return is_partition_invalid(parent)
1656		       ? PERR_INVPARENT : PERR_NOTPART;
1657	}
1658	if (!newmask && xcpus_empty(cs))
1659		return PERR_CPUSEMPTY;
1660
1661	nocpu = tasks_nocpu_error(parent, cs, xcpus);
1662
1663	if ((cmd == partcmd_enable) || (cmd == partcmd_enablei)) {
1664		/*
1665		 * Enabling partition root is not allowed if its
1666		 * effective_xcpus is empty or doesn't overlap with
1667		 * parent's effective_xcpus.
1668		 */
1669		if (cpumask_empty(xcpus) ||
1670		    !cpumask_intersects(xcpus, parent->effective_xcpus))
1671			return PERR_INVCPUS;
1672
1673		if (prstate_housekeeping_conflict(new_prs, xcpus))
1674			return PERR_HKEEPING;
1675
1676		/*
1677		 * A parent can be left with no CPU as long as there is no
1678		 * task directly associated with the parent partition.
1679		 */
1680		if (nocpu)
1681			return PERR_NOCPUS;
1682
1683		cpumask_copy(tmp->delmask, xcpus);
1684		deleting = true;
1685		subparts_delta++;
1686		new_prs = (cmd == partcmd_enable) ? PRS_ROOT : PRS_ISOLATED;
1687	} else if (cmd == partcmd_disable) {
1688		/*
1689		 * May need to add cpus to parent's effective_cpus for
1690		 * valid partition root.
1691		 */
1692		adding = !is_prs_invalid(old_prs) &&
1693			  cpumask_and(tmp->addmask, xcpus, parent->effective_xcpus);
1694		if (adding)
1695			subparts_delta--;
1696		new_prs = PRS_MEMBER;
1697	} else if (newmask) {
1698		/*
1699		 * Empty cpumask is not allowed
1700		 */
1701		if (cpumask_empty(newmask)) {
1702			part_error = PERR_CPUSEMPTY;
1703			goto write_error;
1704		}
1705		/* Check newmask again, whether cpus are available for parent/cs */
1706		nocpu |= tasks_nocpu_error(parent, cs, newmask);
1707
1708		/*
1709		 * partcmd_update with newmask:
1710		 *
1711		 * Compute add/delete mask to/from effective_cpus
1712		 *
1713		 * For valid partition:
1714		 *   addmask = exclusive_cpus & ~newmask
1715		 *			      & parent->effective_xcpus
1716		 *   delmask = newmask & ~exclusive_cpus
1717		 *		       & parent->effective_xcpus
1718		 *
1719		 * For invalid partition:
1720		 *   delmask = newmask & parent->effective_xcpus
1721		 */
1722		if (is_prs_invalid(old_prs)) {
1723			adding = false;
1724			deleting = cpumask_and(tmp->delmask,
1725					newmask, parent->effective_xcpus);
1726		} else {
1727			cpumask_andnot(tmp->addmask, xcpus, newmask);
1728			adding = cpumask_and(tmp->addmask, tmp->addmask,
1729					     parent->effective_xcpus);
1730
1731			cpumask_andnot(tmp->delmask, newmask, xcpus);
1732			deleting = cpumask_and(tmp->delmask, tmp->delmask,
1733					       parent->effective_xcpus);
1734		}
1735		/*
1736		 * Make partition invalid if parent's effective_cpus could
1737		 * become empty and there are tasks in the parent.
1738		 */
1739		if (nocpu && (!adding ||
1740		    !cpumask_intersects(tmp->addmask, cpu_active_mask))) {
1741			part_error = PERR_NOCPUS;
1742			deleting = false;
1743			adding = cpumask_and(tmp->addmask,
1744					     xcpus, parent->effective_xcpus);
1745		}
1746	} else {
1747		/*
1748		 * partcmd_update w/o newmask
1749		 *
1750		 * delmask = effective_xcpus & parent->effective_cpus
1751		 *
1752		 * This can be called from:
1753		 * 1) update_cpumasks_hier()
1754		 * 2) cpuset_hotplug_update_tasks()
1755		 *
1756		 * Check to see if it can be transitioned from valid to
1757		 * invalid partition or vice versa.
1758		 *
1759		 * A partition error happens when parent has tasks and all
1760		 * its effective CPUs will have to be distributed out.
1761		 */
1762		WARN_ON_ONCE(!is_partition_valid(parent));
1763		if (nocpu) {
1764			part_error = PERR_NOCPUS;
1765			if (is_partition_valid(cs))
1766				adding = cpumask_and(tmp->addmask,
1767						xcpus, parent->effective_xcpus);
1768		} else if (is_partition_invalid(cs) &&
1769			   cpumask_subset(xcpus, parent->effective_xcpus)) {
1770			struct cgroup_subsys_state *css;
1771			struct cpuset *child;
1772			bool exclusive = true;
1773
1774			/*
1775			 * Convert invalid partition to valid has to
1776			 * pass the cpu exclusivity test.
1777			 */
1778			rcu_read_lock();
1779			cpuset_for_each_child(child, css, parent) {
1780				if (child == cs)
1781					continue;
1782				if (!cpusets_are_exclusive(cs, child)) {
1783					exclusive = false;
1784					break;
1785				}
1786			}
1787			rcu_read_unlock();
1788			if (exclusive)
1789				deleting = cpumask_and(tmp->delmask,
1790						xcpus, parent->effective_cpus);
1791			else
1792				part_error = PERR_NOTEXCL;
1793		}
1794	}
1795
1796write_error:
1797	if (part_error)
1798		WRITE_ONCE(cs->prs_err, part_error);
1799
1800	if (cmd == partcmd_update) {
 
 
1801		/*
1802		 * Check for possible transition between valid and invalid
1803		 * partition root.
1804		 */
1805		switch (cs->partition_root_state) {
1806		case PRS_ROOT:
1807		case PRS_ISOLATED:
1808			if (part_error) {
1809				new_prs = -old_prs;
1810				subparts_delta--;
1811			}
1812			break;
1813		case PRS_INVALID_ROOT:
1814		case PRS_INVALID_ISOLATED:
1815			if (!part_error) {
1816				new_prs = -old_prs;
1817				subparts_delta++;
1818			}
1819			break;
1820		}
 
 
 
 
1821	}
1822
1823	if (!adding && !deleting && (new_prs == old_prs))
1824		return 0;
1825
1826	/*
1827	 * Transitioning between invalid to valid or vice versa may require
1828	 * changing CS_CPU_EXCLUSIVE. In the case of partcmd_update,
1829	 * validate_change() has already been successfully called and
1830	 * CPU lists in cs haven't been updated yet. So defer it to later.
1831	 */
1832	if ((old_prs != new_prs) && (cmd != partcmd_update))  {
1833		int err = update_partition_exclusive(cs, new_prs);
1834
1835		if (err)
1836			return err;
1837	}
1838
 
 
 
1839	/*
1840	 * Change the parent's effective_cpus & effective_xcpus (top cpuset
1841	 * only).
1842	 *
1843	 * Newly added CPUs will be removed from effective_cpus and
1844	 * newly deleted ones will be added back to effective_cpus.
1845	 */
1846	spin_lock_irq(&callback_lock);
1847	if (old_prs != new_prs) {
1848		cs->partition_root_state = new_prs;
1849		if (new_prs <= 0)
1850			cs->nr_subparts = 0;
1851	}
1852	/*
1853	 * Adding to parent's effective_cpus means deletion CPUs from cs
1854	 * and vice versa.
1855	 */
1856	if (adding)
1857		isolcpus_updated += partition_xcpus_del(old_prs, parent,
1858							tmp->addmask);
1859	if (deleting)
1860		isolcpus_updated += partition_xcpus_add(new_prs, parent,
1861							tmp->delmask);
1862
1863	if (is_partition_valid(parent)) {
1864		parent->nr_subparts += subparts_delta;
1865		WARN_ON_ONCE(parent->nr_subparts < 0);
1866	}
1867	spin_unlock_irq(&callback_lock);
1868	update_unbound_workqueue_cpumask(isolcpus_updated);
1869
1870	if ((old_prs != new_prs) && (cmd == partcmd_update))
1871		update_partition_exclusive(cs, new_prs);
1872
1873	if (adding || deleting) {
1874		cpuset_update_tasks_cpumask(parent, tmp->addmask);
1875		update_sibling_cpumasks(parent, cs, tmp);
1876	}
1877
1878	/*
1879	 * For partcmd_update without newmask, it is being called from
1880	 * cpuset_handle_hotplug(). Update the load balance flag and
1881	 * scheduling domain accordingly.
1882	 */
1883	if ((cmd == partcmd_update) && !newmask)
1884		update_partition_sd_lb(cs, old_prs);
1885
1886	notify_partition_change(cs, old_prs);
1887	return 0;
1888}
1889
1890/**
1891 * compute_partition_effective_cpumask - compute effective_cpus for partition
1892 * @cs: partition root cpuset
1893 * @new_ecpus: previously computed effective_cpus to be updated
1894 *
1895 * Compute the effective_cpus of a partition root by scanning effective_xcpus
1896 * of child partition roots and excluding their effective_xcpus.
1897 *
1898 * This has the side effect of invalidating valid child partition roots,
1899 * if necessary. Since it is called from either cpuset_hotplug_update_tasks()
1900 * or update_cpumasks_hier() where parent and children are modified
1901 * successively, we don't need to call update_parent_effective_cpumask()
1902 * and the child's effective_cpus will be updated in later iterations.
1903 *
1904 * Note that rcu_read_lock() is assumed to be held.
1905 */
1906static void compute_partition_effective_cpumask(struct cpuset *cs,
1907						struct cpumask *new_ecpus)
1908{
1909	struct cgroup_subsys_state *css;
1910	struct cpuset *child;
1911	bool populated = partition_is_populated(cs, NULL);
1912
1913	/*
1914	 * Check child partition roots to see if they should be
1915	 * invalidated when
1916	 *  1) child effective_xcpus not a subset of new
1917	 *     excluisve_cpus
1918	 *  2) All the effective_cpus will be used up and cp
1919	 *     has tasks
1920	 */
1921	compute_effective_exclusive_cpumask(cs, new_ecpus);
1922	cpumask_and(new_ecpus, new_ecpus, cpu_active_mask);
1923
1924	rcu_read_lock();
1925	cpuset_for_each_child(child, css, cs) {
1926		if (!is_partition_valid(child))
1927			continue;
1928
1929		child->prs_err = 0;
1930		if (!cpumask_subset(child->effective_xcpus,
1931				    cs->effective_xcpus))
1932			child->prs_err = PERR_INVCPUS;
1933		else if (populated &&
1934			 cpumask_subset(new_ecpus, child->effective_xcpus))
1935			child->prs_err = PERR_NOCPUS;
1936
1937		if (child->prs_err) {
1938			int old_prs = child->partition_root_state;
1939
1940			/*
1941			 * Invalidate child partition
1942			 */
1943			spin_lock_irq(&callback_lock);
1944			make_partition_invalid(child);
1945			cs->nr_subparts--;
1946			child->nr_subparts = 0;
1947			spin_unlock_irq(&callback_lock);
1948			notify_partition_change(child, old_prs);
1949			continue;
1950		}
1951		cpumask_andnot(new_ecpus, new_ecpus,
1952			       child->effective_xcpus);
1953	}
1954	rcu_read_unlock();
1955}
1956
1957/*
1958 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1959 * @cs:  the cpuset to consider
1960 * @tmp: temp variables for calculating effective_cpus & partition setup
1961 * @force: don't skip any descendant cpusets if set
1962 *
1963 * When configured cpumask is changed, the effective cpumasks of this cpuset
1964 * and all its descendants need to be updated.
1965 *
1966 * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
1967 *
1968 * Called with cpuset_mutex held
1969 */
1970static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp,
1971				 bool force)
1972{
1973	struct cpuset *cp;
1974	struct cgroup_subsys_state *pos_css;
1975	bool need_rebuild_sched_domains = false;
1976	int old_prs, new_prs;
1977
1978	rcu_read_lock();
1979	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1980		struct cpuset *parent = parent_cs(cp);
1981		bool remote = is_remote_partition(cp);
1982		bool update_parent = false;
1983
1984		/*
1985		 * Skip descendent remote partition that acquires CPUs
1986		 * directly from top cpuset unless it is cs.
1987		 */
1988		if (remote && (cp != cs)) {
1989			pos_css = css_rightmost_descendant(pos_css);
1990			continue;
1991		}
1992
1993		/*
1994		 * Update effective_xcpus if exclusive_cpus set.
1995		 * The case when exclusive_cpus isn't set is handled later.
1996		 */
1997		if (!cpumask_empty(cp->exclusive_cpus) && (cp != cs)) {
1998			spin_lock_irq(&callback_lock);
1999			compute_effective_exclusive_cpumask(cp, NULL);
2000			spin_unlock_irq(&callback_lock);
2001		}
2002
2003		old_prs = new_prs = cp->partition_root_state;
2004		if (remote || (is_partition_valid(parent) &&
2005			       is_partition_valid(cp)))
2006			compute_partition_effective_cpumask(cp, tmp->new_cpus);
2007		else
2008			compute_effective_cpumask(tmp->new_cpus, cp, parent);
2009
2010		/*
2011		 * A partition with no effective_cpus is allowed as long as
2012		 * there is no task associated with it. Call
2013		 * update_parent_effective_cpumask() to check it.
2014		 */
2015		if (is_partition_valid(cp) && cpumask_empty(tmp->new_cpus)) {
2016			update_parent = true;
2017			goto update_parent_effective;
2018		}
2019
2020		/*
2021		 * If it becomes empty, inherit the effective mask of the
2022		 * parent, which is guaranteed to have some CPUs unless
2023		 * it is a partition root that has explicitly distributed
2024		 * out all its CPUs.
2025		 */
2026		if (is_in_v2_mode() && !remote && cpumask_empty(tmp->new_cpus))
2027			cpumask_copy(tmp->new_cpus, parent->effective_cpus);
2028
2029		if (remote)
2030			goto get_css;
 
 
 
 
 
 
2031
2032		/*
2033		 * Skip the whole subtree if
2034		 * 1) the cpumask remains the same,
2035		 * 2) has no partition root state,
2036		 * 3) force flag not set, and
2037		 * 4) for v2 load balance state same as its parent.
2038		 */
2039		if (!cp->partition_root_state && !force &&
2040		    cpumask_equal(tmp->new_cpus, cp->effective_cpus) &&
2041		    (!cpuset_v2() ||
2042		    (is_sched_load_balance(parent) == is_sched_load_balance(cp)))) {
2043			pos_css = css_rightmost_descendant(pos_css);
2044			continue;
2045		}
2046
2047update_parent_effective:
2048		/*
2049		 * update_parent_effective_cpumask() should have been called
2050		 * for cs already in update_cpumask(). We should also call
2051		 * cpuset_update_tasks_cpumask() again for tasks in the parent
2052		 * cpuset if the parent's effective_cpus changes.
2053		 */
2054		if ((cp != cs) && old_prs) {
2055			switch (parent->partition_root_state) {
2056			case PRS_ROOT:
2057			case PRS_ISOLATED:
2058				update_parent = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2059				break;
2060
2061			default:
2062				/*
2063				 * When parent is not a partition root or is
2064				 * invalid, child partition roots become
2065				 * invalid too.
2066				 */
2067				if (is_partition_valid(cp))
2068					new_prs = -cp->partition_root_state;
2069				WRITE_ONCE(cp->prs_err,
2070					   is_partition_invalid(parent)
2071					   ? PERR_INVPARENT : PERR_NOTPART);
2072				break;
2073			}
2074		}
2075get_css:
2076		if (!css_tryget_online(&cp->css))
2077			continue;
2078		rcu_read_unlock();
2079
2080		if (update_parent) {
2081			update_parent_effective_cpumask(cp, partcmd_update, NULL, tmp);
 
 
 
 
 
 
2082			/*
2083			 * The cpuset partition_root_state may become
2084			 * invalid. Capture it.
 
 
 
 
 
2085			 */
2086			new_prs = cp->partition_root_state;
 
 
 
 
 
 
 
 
 
 
 
 
2087		}
2088
2089		spin_lock_irq(&callback_lock);
2090		cpumask_copy(cp->effective_cpus, tmp->new_cpus);
2091		cp->partition_root_state = new_prs;
2092		/*
2093		 * Make sure effective_xcpus is properly set for a valid
2094		 * partition root.
2095		 */
2096		if ((new_prs > 0) && cpumask_empty(cp->exclusive_cpus))
2097			cpumask_and(cp->effective_xcpus,
2098				    cp->cpus_allowed, parent->effective_xcpus);
2099		else if (new_prs < 0)
2100			reset_partition_data(cp);
2101		spin_unlock_irq(&callback_lock);
2102
2103		notify_partition_change(cp, old_prs);
2104
2105		WARN_ON(!is_in_v2_mode() &&
2106			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
2107
2108		cpuset_update_tasks_cpumask(cp, cp->effective_cpus);
2109
2110		/*
2111		 * On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE
2112		 * from parent if current cpuset isn't a valid partition root
2113		 * and their load balance states differ.
2114		 */
2115		if (cpuset_v2() && !is_partition_valid(cp) &&
2116		    (is_sched_load_balance(parent) != is_sched_load_balance(cp))) {
2117			if (is_sched_load_balance(parent))
2118				set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
2119			else
2120				clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
2121		}
2122
2123		/*
2124		 * On legacy hierarchy, if the effective cpumask of any non-
2125		 * empty cpuset is changed, we need to rebuild sched domains.
2126		 * On default hierarchy, the cpuset needs to be a partition
2127		 * root as well.
2128		 */
2129		if (!cpumask_empty(cp->cpus_allowed) &&
2130		    is_sched_load_balance(cp) &&
2131		   (!cpuset_v2() || is_partition_valid(cp)))
 
2132			need_rebuild_sched_domains = true;
2133
2134		rcu_read_lock();
2135		css_put(&cp->css);
2136	}
2137	rcu_read_unlock();
2138
2139	if (need_rebuild_sched_domains)
2140		cpuset_force_rebuild();
2141}
2142
2143/**
2144 * update_sibling_cpumasks - Update siblings cpumasks
2145 * @parent:  Parent cpuset
2146 * @cs:      Current cpuset
2147 * @tmp:     Temp variables
2148 */
2149static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
2150				    struct tmpmasks *tmp)
2151{
2152	struct cpuset *sibling;
2153	struct cgroup_subsys_state *pos_css;
2154
2155	lockdep_assert_held(&cpuset_mutex);
2156
2157	/*
2158	 * Check all its siblings and call update_cpumasks_hier()
2159	 * if their effective_cpus will need to be changed.
2160	 *
2161	 * It is possible a change in parent's effective_cpus
2162	 * due to a change in a child partition's effective_xcpus will impact
2163	 * its siblings even if they do not inherit parent's effective_cpus
2164	 * directly.
2165	 *
2166	 * The update_cpumasks_hier() function may sleep. So we have to
2167	 * release the RCU read lock before calling it.
2168	 */
2169	rcu_read_lock();
2170	cpuset_for_each_child(sibling, pos_css, parent) {
2171		if (sibling == cs)
2172			continue;
2173		if (!is_partition_valid(sibling)) {
2174			compute_effective_cpumask(tmp->new_cpus, sibling,
2175						  parent);
2176			if (cpumask_equal(tmp->new_cpus, sibling->effective_cpus))
2177				continue;
2178		}
2179		if (!css_tryget_online(&sibling->css))
2180			continue;
2181
2182		rcu_read_unlock();
2183		update_cpumasks_hier(sibling, tmp, false);
2184		rcu_read_lock();
2185		css_put(&sibling->css);
2186	}
2187	rcu_read_unlock();
2188}
2189
2190/**
2191 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
2192 * @cs: the cpuset to consider
2193 * @trialcs: trial cpuset
2194 * @buf: buffer of cpu numbers written to this cpuset
2195 */
2196static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
2197			  const char *buf)
2198{
2199	int retval;
2200	struct tmpmasks tmp;
2201	struct cpuset *parent = parent_cs(cs);
2202	bool invalidate = false;
2203	bool force = false;
2204	int old_prs = cs->partition_root_state;
2205
2206	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
2207	if (cs == &top_cpuset)
2208		return -EACCES;
2209
2210	/*
2211	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
2212	 * Since cpulist_parse() fails on an empty mask, we special case
2213	 * that parsing.  The validate_change() call ensures that cpusets
2214	 * with tasks have cpus.
2215	 */
2216	if (!*buf) {
2217		cpumask_clear(trialcs->cpus_allowed);
2218		if (cpumask_empty(trialcs->exclusive_cpus))
2219			cpumask_clear(trialcs->effective_xcpus);
2220	} else {
2221		retval = cpulist_parse(buf, trialcs->cpus_allowed);
2222		if (retval < 0)
2223			return retval;
2224
2225		if (!cpumask_subset(trialcs->cpus_allowed,
2226				    top_cpuset.cpus_allowed))
2227			return -EINVAL;
2228
2229		/*
2230		 * When exclusive_cpus isn't explicitly set, it is constrained
2231		 * by cpus_allowed and parent's effective_xcpus. Otherwise,
2232		 * trialcs->effective_xcpus is used as a temporary cpumask
2233		 * for checking validity of the partition root.
2234		 */
2235		if (!cpumask_empty(trialcs->exclusive_cpus) || is_partition_valid(cs))
2236			compute_effective_exclusive_cpumask(trialcs, NULL);
2237	}
2238
2239	/* Nothing to do if the cpus didn't change */
2240	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
2241		return 0;
2242
2243	if (alloc_cpumasks(NULL, &tmp))
2244		return -ENOMEM;
2245
2246	if (old_prs) {
2247		if (is_partition_valid(cs) &&
2248		    cpumask_empty(trialcs->effective_xcpus)) {
2249			invalidate = true;
2250			cs->prs_err = PERR_INVCPUS;
2251		} else if (prstate_housekeeping_conflict(old_prs, trialcs->effective_xcpus)) {
2252			invalidate = true;
2253			cs->prs_err = PERR_HKEEPING;
2254		} else if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) {
2255			invalidate = true;
2256			cs->prs_err = PERR_NOCPUS;
2257		}
2258	}
2259
2260	/*
2261	 * Check all the descendants in update_cpumasks_hier() if
2262	 * effective_xcpus is to be changed.
2263	 */
2264	force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus);
2265
2266	retval = validate_change(cs, trialcs);
2267
2268	if ((retval == -EINVAL) && cpuset_v2()) {
2269		struct cgroup_subsys_state *css;
2270		struct cpuset *cp;
2271
2272		/*
2273		 * The -EINVAL error code indicates that partition sibling
2274		 * CPU exclusivity rule has been violated. We still allow
2275		 * the cpumask change to proceed while invalidating the
2276		 * partition. However, any conflicting sibling partitions
2277		 * have to be marked as invalid too.
2278		 */
2279		invalidate = true;
2280		rcu_read_lock();
2281		cpuset_for_each_child(cp, css, parent) {
2282			struct cpumask *xcpus = user_xcpus(trialcs);
2283
2284			if (is_partition_valid(cp) &&
2285			    cpumask_intersects(xcpus, cp->effective_xcpus)) {
2286				rcu_read_unlock();
2287				update_parent_effective_cpumask(cp, partcmd_invalidate, NULL, &tmp);
2288				rcu_read_lock();
2289			}
2290		}
2291		rcu_read_unlock();
2292		retval = 0;
2293	}
2294
2295	if (retval < 0)
2296		goto out_free;
2297
2298	if (is_partition_valid(cs) ||
2299	   (is_partition_invalid(cs) && !invalidate)) {
2300		struct cpumask *xcpus = trialcs->effective_xcpus;
2301
2302		if (cpumask_empty(xcpus) && is_partition_invalid(cs))
2303			xcpus = trialcs->cpus_allowed;
 
 
 
 
 
 
 
2304
2305		/*
2306		 * Call remote_cpus_update() to handle valid remote partition
2307		 */
2308		if (is_remote_partition(cs))
2309			remote_cpus_update(cs, xcpus, &tmp);
2310		else if (invalidate)
2311			update_parent_effective_cpumask(cs, partcmd_invalidate,
2312							NULL, &tmp);
2313		else
2314			update_parent_effective_cpumask(cs, partcmd_update,
2315							xcpus, &tmp);
2316	} else if (!cpumask_empty(cs->exclusive_cpus)) {
2317		/*
2318		 * Use trialcs->effective_cpus as a temp cpumask
2319		 */
2320		remote_partition_check(cs, trialcs->effective_xcpus,
2321				       trialcs->effective_cpus, &tmp);
2322	}
2323
2324	spin_lock_irq(&callback_lock);
2325	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
2326	cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
2327	if ((old_prs > 0) && !is_partition_valid(cs))
2328		reset_partition_data(cs);
2329	spin_unlock_irq(&callback_lock);
2330
2331	/* effective_cpus/effective_xcpus will be updated here */
2332	update_cpumasks_hier(cs, &tmp, force);
2333
2334	/* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
2335	if (cs->partition_root_state)
2336		update_partition_sd_lb(cs, old_prs);
2337out_free:
2338	free_cpumasks(NULL, &tmp);
2339	return retval;
2340}
2341
2342/**
2343 * update_exclusive_cpumask - update the exclusive_cpus mask of a cpuset
2344 * @cs: the cpuset to consider
2345 * @trialcs: trial cpuset
2346 * @buf: buffer of cpu numbers written to this cpuset
2347 *
2348 * The tasks' cpumask will be updated if cs is a valid partition root.
2349 */
2350static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs,
2351				    const char *buf)
2352{
2353	int retval;
2354	struct tmpmasks tmp;
2355	struct cpuset *parent = parent_cs(cs);
2356	bool invalidate = false;
2357	bool force = false;
2358	int old_prs = cs->partition_root_state;
2359
2360	if (!*buf) {
2361		cpumask_clear(trialcs->exclusive_cpus);
2362		cpumask_clear(trialcs->effective_xcpus);
2363	} else {
2364		retval = cpulist_parse(buf, trialcs->exclusive_cpus);
2365		if (retval < 0)
2366			return retval;
2367	}
2368
2369	/* Nothing to do if the CPUs didn't change */
2370	if (cpumask_equal(cs->exclusive_cpus, trialcs->exclusive_cpus))
2371		return 0;
2372
2373	if (*buf)
2374		compute_effective_exclusive_cpumask(trialcs, NULL);
2375
2376	/*
2377	 * Check all the descendants in update_cpumasks_hier() if
2378	 * effective_xcpus is to be changed.
2379	 */
2380	force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus);
2381
2382	retval = validate_change(cs, trialcs);
2383	if (retval)
2384		return retval;
 
2385
2386	if (alloc_cpumasks(NULL, &tmp))
2387		return -ENOMEM;
2388
2389	if (old_prs) {
2390		if (cpumask_empty(trialcs->effective_xcpus)) {
2391			invalidate = true;
2392			cs->prs_err = PERR_INVCPUS;
2393		} else if (prstate_housekeeping_conflict(old_prs, trialcs->effective_xcpus)) {
2394			invalidate = true;
2395			cs->prs_err = PERR_HKEEPING;
2396		} else if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) {
2397			invalidate = true;
2398			cs->prs_err = PERR_NOCPUS;
2399		}
2400
2401		if (is_remote_partition(cs)) {
2402			if (invalidate)
2403				remote_partition_disable(cs, &tmp);
2404			else
2405				remote_cpus_update(cs, trialcs->effective_xcpus,
2406						   &tmp);
2407		} else if (invalidate) {
2408			update_parent_effective_cpumask(cs, partcmd_invalidate,
2409							NULL, &tmp);
2410		} else {
2411			update_parent_effective_cpumask(cs, partcmd_update,
2412						trialcs->effective_xcpus, &tmp);
2413		}
2414	} else if (!cpumask_empty(trialcs->exclusive_cpus)) {
2415		/*
2416		 * Use trialcs->effective_cpus as a temp cpumask
 
2417		 */
2418		remote_partition_check(cs, trialcs->effective_xcpus,
2419				       trialcs->effective_cpus, &tmp);
2420	}
2421	spin_lock_irq(&callback_lock);
2422	cpumask_copy(cs->exclusive_cpus, trialcs->exclusive_cpus);
2423	cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
2424	if ((old_prs > 0) && !is_partition_valid(cs))
2425		reset_partition_data(cs);
2426	spin_unlock_irq(&callback_lock);
2427
2428	/*
2429	 * Call update_cpumasks_hier() to update effective_cpus/effective_xcpus
2430	 * of the subtree when it is a valid partition root or effective_xcpus
2431	 * is updated.
2432	 */
2433	if (is_partition_valid(cs) || force)
2434		update_cpumasks_hier(cs, &tmp, force);
2435
2436	/* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
2437	if (cs->partition_root_state)
2438		update_partition_sd_lb(cs, old_prs);
2439
2440	free_cpumasks(NULL, &tmp);
2441	return 0;
2442}
2443
2444/*
2445 * Migrate memory region from one set of nodes to another.  This is
2446 * performed asynchronously as it can be called from process migration path
2447 * holding locks involved in process management.  All mm migrations are
2448 * performed in the queued order and can be waited for by flushing
2449 * cpuset_migrate_mm_wq.
2450 */
2451
2452struct cpuset_migrate_mm_work {
2453	struct work_struct	work;
2454	struct mm_struct	*mm;
2455	nodemask_t		from;
2456	nodemask_t		to;
2457};
2458
2459static void cpuset_migrate_mm_workfn(struct work_struct *work)
2460{
2461	struct cpuset_migrate_mm_work *mwork =
2462		container_of(work, struct cpuset_migrate_mm_work, work);
2463
2464	/* on a wq worker, no need to worry about %current's mems_allowed */
2465	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
2466	mmput(mwork->mm);
2467	kfree(mwork);
2468}
2469
2470static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
2471							const nodemask_t *to)
2472{
2473	struct cpuset_migrate_mm_work *mwork;
2474
2475	if (nodes_equal(*from, *to)) {
2476		mmput(mm);
2477		return;
2478	}
2479
2480	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
2481	if (mwork) {
2482		mwork->mm = mm;
2483		mwork->from = *from;
2484		mwork->to = *to;
2485		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
2486		queue_work(cpuset_migrate_mm_wq, &mwork->work);
2487	} else {
2488		mmput(mm);
2489	}
2490}
2491
2492static void cpuset_post_attach(void)
2493{
2494	flush_workqueue(cpuset_migrate_mm_wq);
2495}
2496
2497/*
2498 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
2499 * @tsk: the task to change
2500 * @newmems: new nodes that the task will be set
2501 *
2502 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
2503 * and rebind an eventual tasks' mempolicy. If the task is allocating in
2504 * parallel, it might temporarily see an empty intersection, which results in
2505 * a seqlock check and retry before OOM or allocation failure.
2506 */
2507static void cpuset_change_task_nodemask(struct task_struct *tsk,
2508					nodemask_t *newmems)
2509{
2510	task_lock(tsk);
2511
2512	local_irq_disable();
2513	write_seqcount_begin(&tsk->mems_allowed_seq);
2514
2515	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
2516	mpol_rebind_task(tsk, newmems);
2517	tsk->mems_allowed = *newmems;
2518
2519	write_seqcount_end(&tsk->mems_allowed_seq);
2520	local_irq_enable();
2521
2522	task_unlock(tsk);
2523}
2524
2525static void *cpuset_being_rebound;
2526
2527/**
2528 * cpuset_update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
2529 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
2530 *
2531 * Iterate through each task of @cs updating its mems_allowed to the
2532 * effective cpuset's.  As this function is called with cpuset_mutex held,
2533 * cpuset membership stays stable.
2534 */
2535void cpuset_update_tasks_nodemask(struct cpuset *cs)
2536{
2537	static nodemask_t newmems;	/* protected by cpuset_mutex */
2538	struct css_task_iter it;
2539	struct task_struct *task;
2540
2541	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
2542
2543	guarantee_online_mems(cs, &newmems);
2544
2545	/*
2546	 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
2547	 * take while holding tasklist_lock.  Forks can happen - the
2548	 * mpol_dup() cpuset_being_rebound check will catch such forks,
2549	 * and rebind their vma mempolicies too.  Because we still hold
2550	 * the global cpuset_mutex, we know that no other rebind effort
2551	 * will be contending for the global variable cpuset_being_rebound.
2552	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
2553	 * is idempotent.  Also migrate pages in each mm to new nodes.
2554	 */
2555	css_task_iter_start(&cs->css, 0, &it);
2556	while ((task = css_task_iter_next(&it))) {
2557		struct mm_struct *mm;
2558		bool migrate;
2559
2560		cpuset_change_task_nodemask(task, &newmems);
2561
2562		mm = get_task_mm(task);
2563		if (!mm)
2564			continue;
2565
2566		migrate = is_memory_migrate(cs);
2567
2568		mpol_rebind_mm(mm, &cs->mems_allowed);
2569		if (migrate)
2570			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
2571		else
2572			mmput(mm);
2573	}
2574	css_task_iter_end(&it);
2575
2576	/*
2577	 * All the tasks' nodemasks have been updated, update
2578	 * cs->old_mems_allowed.
2579	 */
2580	cs->old_mems_allowed = newmems;
2581
2582	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
2583	cpuset_being_rebound = NULL;
2584}
2585
2586/*
2587 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
2588 * @cs: the cpuset to consider
2589 * @new_mems: a temp variable for calculating new effective_mems
2590 *
2591 * When configured nodemask is changed, the effective nodemasks of this cpuset
2592 * and all its descendants need to be updated.
2593 *
2594 * On legacy hierarchy, effective_mems will be the same with mems_allowed.
2595 *
2596 * Called with cpuset_mutex held
2597 */
2598static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
2599{
2600	struct cpuset *cp;
2601	struct cgroup_subsys_state *pos_css;
2602
2603	rcu_read_lock();
2604	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2605		struct cpuset *parent = parent_cs(cp);
2606
2607		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
2608
2609		/*
2610		 * If it becomes empty, inherit the effective mask of the
2611		 * parent, which is guaranteed to have some MEMs.
2612		 */
2613		if (is_in_v2_mode() && nodes_empty(*new_mems))
2614			*new_mems = parent->effective_mems;
2615
2616		/* Skip the whole subtree if the nodemask remains the same. */
2617		if (nodes_equal(*new_mems, cp->effective_mems)) {
2618			pos_css = css_rightmost_descendant(pos_css);
2619			continue;
2620		}
2621
2622		if (!css_tryget_online(&cp->css))
2623			continue;
2624		rcu_read_unlock();
2625
2626		spin_lock_irq(&callback_lock);
2627		cp->effective_mems = *new_mems;
2628		spin_unlock_irq(&callback_lock);
2629
2630		WARN_ON(!is_in_v2_mode() &&
2631			!nodes_equal(cp->mems_allowed, cp->effective_mems));
2632
2633		cpuset_update_tasks_nodemask(cp);
2634
2635		rcu_read_lock();
2636		css_put(&cp->css);
2637	}
2638	rcu_read_unlock();
2639}
2640
2641/*
2642 * Handle user request to change the 'mems' memory placement
2643 * of a cpuset.  Needs to validate the request, update the
2644 * cpusets mems_allowed, and for each task in the cpuset,
2645 * update mems_allowed and rebind task's mempolicy and any vma
2646 * mempolicies and if the cpuset is marked 'memory_migrate',
2647 * migrate the tasks pages to the new memory.
2648 *
2649 * Call with cpuset_mutex held. May take callback_lock during call.
2650 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
2651 * lock each such tasks mm->mmap_lock, scan its vma's and rebind
2652 * their mempolicies to the cpusets new mems_allowed.
2653 */
2654static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
2655			   const char *buf)
2656{
2657	int retval;
2658
2659	/*
2660	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
2661	 * it's read-only
2662	 */
2663	if (cs == &top_cpuset) {
2664		retval = -EACCES;
2665		goto done;
2666	}
2667
2668	/*
2669	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
2670	 * Since nodelist_parse() fails on an empty mask, we special case
2671	 * that parsing.  The validate_change() call ensures that cpusets
2672	 * with tasks have memory.
2673	 */
2674	if (!*buf) {
2675		nodes_clear(trialcs->mems_allowed);
2676	} else {
2677		retval = nodelist_parse(buf, trialcs->mems_allowed);
2678		if (retval < 0)
2679			goto done;
2680
2681		if (!nodes_subset(trialcs->mems_allowed,
2682				  top_cpuset.mems_allowed)) {
2683			retval = -EINVAL;
2684			goto done;
2685		}
2686	}
2687
2688	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
2689		retval = 0;		/* Too easy - nothing to do */
2690		goto done;
2691	}
2692	retval = validate_change(cs, trialcs);
2693	if (retval < 0)
2694		goto done;
2695
2696	check_insane_mems_config(&trialcs->mems_allowed);
2697
2698	spin_lock_irq(&callback_lock);
2699	cs->mems_allowed = trialcs->mems_allowed;
2700	spin_unlock_irq(&callback_lock);
2701
2702	/* use trialcs->mems_allowed as a temp variable */
2703	update_nodemasks_hier(cs, &trialcs->mems_allowed);
2704done:
2705	return retval;
2706}
2707
2708bool current_cpuset_is_being_rebound(void)
2709{
2710	bool ret;
2711
2712	rcu_read_lock();
2713	ret = task_cs(current) == cpuset_being_rebound;
2714	rcu_read_unlock();
2715
2716	return ret;
2717}
2718
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2719/*
2720 * cpuset_update_flag - read a 0 or a 1 in a file and update associated flag
2721 * bit:		the bit to update (see cpuset_flagbits_t)
2722 * cs:		the cpuset to update
2723 * turning_on: 	whether the flag is being set or cleared
2724 *
2725 * Call with cpuset_mutex held.
2726 */
2727
2728int cpuset_update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
2729		       int turning_on)
2730{
2731	struct cpuset *trialcs;
2732	int balance_flag_changed;
2733	int spread_flag_changed;
2734	int err;
2735
2736	trialcs = alloc_trial_cpuset(cs);
2737	if (!trialcs)
2738		return -ENOMEM;
2739
2740	if (turning_on)
2741		set_bit(bit, &trialcs->flags);
2742	else
2743		clear_bit(bit, &trialcs->flags);
2744
2745	err = validate_change(cs, trialcs);
2746	if (err < 0)
2747		goto out;
2748
2749	balance_flag_changed = (is_sched_load_balance(cs) !=
2750				is_sched_load_balance(trialcs));
2751
2752	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
2753			|| (is_spread_page(cs) != is_spread_page(trialcs)));
2754
2755	spin_lock_irq(&callback_lock);
2756	cs->flags = trialcs->flags;
2757	spin_unlock_irq(&callback_lock);
2758
2759	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) {
2760		if (cpuset_v2())
2761			cpuset_force_rebuild();
2762		else
2763			rebuild_sched_domains_locked();
2764	}
2765
2766	if (spread_flag_changed)
2767		cpuset1_update_tasks_flags(cs);
2768out:
2769	free_cpuset(trialcs);
2770	return err;
2771}
2772
2773/**
2774 * update_prstate - update partition_root_state
2775 * @cs: the cpuset to update
2776 * @new_prs: new partition root state
2777 * Return: 0 if successful, != 0 if error
2778 *
2779 * Call with cpuset_mutex held.
2780 */
2781static int update_prstate(struct cpuset *cs, int new_prs)
2782{
2783	int err = PERR_NONE, old_prs = cs->partition_root_state;
2784	struct cpuset *parent = parent_cs(cs);
2785	struct tmpmasks tmpmask;
2786	bool new_xcpus_state = false;
2787
2788	if (old_prs == new_prs)
 
 
2789		return 0;
2790
2791	/*
2792	 * Treat a previously invalid partition root as if it is a "member".
 
2793	 */
2794	if (new_prs && is_prs_invalid(old_prs))
2795		old_prs = PRS_MEMBER;
2796
2797	if (alloc_cpumasks(NULL, &tmpmask))
2798		return -ENOMEM;
2799
2800	/*
2801	 * Setup effective_xcpus if not properly set yet, it will be cleared
2802	 * later if partition becomes invalid.
2803	 */
2804	if ((new_prs > 0) && cpumask_empty(cs->exclusive_cpus)) {
2805		spin_lock_irq(&callback_lock);
2806		cpumask_and(cs->effective_xcpus,
2807			    cs->cpus_allowed, parent->effective_xcpus);
2808		spin_unlock_irq(&callback_lock);
2809	}
2810
2811	err = update_partition_exclusive(cs, new_prs);
2812	if (err)
2813		goto out;
2814
2815	if (!old_prs) {
2816		/*
2817		 * cpus_allowed and exclusive_cpus cannot be both empty.
 
 
2818		 */
2819		if (xcpus_empty(cs)) {
2820			err = PERR_CPUSEMPTY;
2821			goto out;
2822		}
2823
2824		/*
2825		 * If parent is valid partition, enable local partiion.
2826		 * Otherwise, enable a remote partition.
2827		 */
2828		if (is_partition_valid(parent)) {
2829			enum partition_cmd cmd = (new_prs == PRS_ROOT)
2830					       ? partcmd_enable : partcmd_enablei;
2831
2832			err = update_parent_effective_cpumask(cs, cmd, NULL, &tmpmask);
2833		} else {
2834			err = remote_partition_enable(cs, new_prs, &tmpmask);
2835		}
2836	} else if (old_prs && new_prs) {
2837		/*
2838		 * A change in load balance state only, no change in cpumasks.
2839		 */
2840		new_xcpus_state = true;
2841	} else {
2842		/*
2843		 * Switching back to member is always allowed even if it
2844		 * disables child partitions.
2845		 */
2846		if (is_remote_partition(cs))
2847			remote_partition_disable(cs, &tmpmask);
2848		else
2849			update_parent_effective_cpumask(cs, partcmd_disable,
2850							NULL, &tmpmask);
 
2851
2852		/*
2853		 * Invalidation of child partitions will be done in
2854		 * update_cpumasks_hier().
2855		 */
 
 
 
 
 
2856	}
2857out:
2858	/*
2859	 * Make partition invalid & disable CS_CPU_EXCLUSIVE if an error
2860	 * happens.
2861	 */
2862	if (err) {
2863		new_prs = -new_prs;
2864		update_partition_exclusive(cs, new_prs);
2865	}
2866
2867	spin_lock_irq(&callback_lock);
2868	cs->partition_root_state = new_prs;
2869	WRITE_ONCE(cs->prs_err, err);
2870	if (!is_partition_valid(cs))
2871		reset_partition_data(cs);
2872	else if (new_xcpus_state)
2873		partition_xcpus_newstate(old_prs, new_prs, cs->effective_xcpus);
2874	spin_unlock_irq(&callback_lock);
2875	update_unbound_workqueue_cpumask(new_xcpus_state);
2876
2877	/* Force update if switching back to member */
2878	update_cpumasks_hier(cs, &tmpmask, !new_prs);
 
 
 
2879
2880	/* Update sched domains and load balance flag */
2881	update_partition_sd_lb(cs, old_prs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2882
2883	notify_partition_change(cs, old_prs);
2884	if (force_sd_rebuild)
2885		rebuild_sched_domains_locked();
2886	free_cpumasks(NULL, &tmpmask);
2887	return 0;
2888}
2889
2890static struct cpuset *cpuset_attach_old_cs;
 
2891
2892/*
2893 * Check to see if a cpuset can accept a new task
2894 * For v1, cpus_allowed and mems_allowed can't be empty.
2895 * For v2, effective_cpus can't be empty.
2896 * Note that in v1, effective_cpus = cpus_allowed.
2897 */
2898static int cpuset_can_attach_check(struct cpuset *cs)
2899{
2900	if (cpumask_empty(cs->effective_cpus) ||
2901	   (!is_in_v2_mode() && nodes_empty(cs->mems_allowed)))
2902		return -ENOSPC;
2903	return 0;
2904}
2905
2906static void reset_migrate_dl_data(struct cpuset *cs)
 
2907{
2908	cs->nr_migrate_dl_tasks = 0;
2909	cs->sum_migrate_dl_bw = 0;
 
 
2910}
2911
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2912/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
2913static int cpuset_can_attach(struct cgroup_taskset *tset)
2914{
2915	struct cgroup_subsys_state *css;
2916	struct cpuset *cs, *oldcs;
2917	struct task_struct *task;
2918	bool cpus_updated, mems_updated;
2919	int ret;
2920
2921	/* used later by cpuset_attach() */
2922	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2923	oldcs = cpuset_attach_old_cs;
2924	cs = css_cs(css);
2925
2926	mutex_lock(&cpuset_mutex);
2927
2928	/* Check to see if task is allowed in the cpuset */
2929	ret = cpuset_can_attach_check(cs);
2930	if (ret)
 
2931		goto out_unlock;
2932
2933	cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus);
2934	mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
2935
2936	cgroup_taskset_for_each(task, css, tset) {
2937		ret = task_can_attach(task);
2938		if (ret)
2939			goto out_unlock;
2940
2941		/*
2942		 * Skip rights over task check in v2 when nothing changes,
2943		 * migration permission derives from hierarchy ownership in
2944		 * cgroup_procs_write_permission()).
2945		 */
2946		if (!cpuset_v2() || (cpus_updated || mems_updated)) {
2947			ret = security_task_setscheduler(task);
2948			if (ret)
2949				goto out_unlock;
2950		}
2951
2952		if (dl_task(task)) {
2953			cs->nr_migrate_dl_tasks++;
2954			cs->sum_migrate_dl_bw += task->dl.dl_bw;
2955		}
2956	}
2957
2958	if (!cs->nr_migrate_dl_tasks)
2959		goto out_success;
2960
2961	if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) {
2962		int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus);
2963
2964		if (unlikely(cpu >= nr_cpu_ids)) {
2965			reset_migrate_dl_data(cs);
2966			ret = -EINVAL;
2967			goto out_unlock;
2968		}
2969
2970		ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw);
2971		if (ret) {
2972			reset_migrate_dl_data(cs);
2973			goto out_unlock;
2974		}
2975	}
2976
2977out_success:
2978	/*
2979	 * Mark attach is in progress.  This makes validate_change() fail
2980	 * changes which zero cpus/mems_allowed.
2981	 */
2982	cs->attach_in_progress++;
 
2983out_unlock:
2984	mutex_unlock(&cpuset_mutex);
2985	return ret;
2986}
2987
2988static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2989{
2990	struct cgroup_subsys_state *css;
2991	struct cpuset *cs;
2992
2993	cgroup_taskset_first(tset, &css);
2994	cs = css_cs(css);
2995
2996	mutex_lock(&cpuset_mutex);
2997	dec_attach_in_progress_locked(cs);
2998
2999	if (cs->nr_migrate_dl_tasks) {
3000		int cpu = cpumask_any(cs->effective_cpus);
3001
3002		dl_bw_free(cpu, cs->sum_migrate_dl_bw);
3003		reset_migrate_dl_data(cs);
3004	}
3005
3006	mutex_unlock(&cpuset_mutex);
3007}
3008
3009/*
3010 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task()
3011 * but we can't allocate it dynamically there.  Define it global and
3012 * allocate from cpuset_init().
3013 */
3014static cpumask_var_t cpus_attach;
3015static nodemask_t cpuset_attach_nodemask_to;
3016
3017static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task)
3018{
3019	lockdep_assert_held(&cpuset_mutex);
3020
3021	if (cs != &top_cpuset)
3022		guarantee_online_cpus(task, cpus_attach);
3023	else
3024		cpumask_andnot(cpus_attach, task_cpu_possible_mask(task),
3025			       subpartitions_cpus);
3026	/*
3027	 * can_attach beforehand should guarantee that this doesn't
3028	 * fail.  TODO: have a better way to handle failure here
3029	 */
3030	WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
3031
3032	cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
3033	cpuset1_update_task_spread_flags(cs, task);
3034}
3035
3036static void cpuset_attach(struct cgroup_taskset *tset)
3037{
 
 
3038	struct task_struct *task;
3039	struct task_struct *leader;
3040	struct cgroup_subsys_state *css;
3041	struct cpuset *cs;
3042	struct cpuset *oldcs = cpuset_attach_old_cs;
3043	bool cpus_updated, mems_updated;
3044
3045	cgroup_taskset_first(tset, &css);
3046	cs = css_cs(css);
3047
3048	lockdep_assert_cpus_held();	/* see cgroup_attach_lock() */
3049	mutex_lock(&cpuset_mutex);
3050	cpus_updated = !cpumask_equal(cs->effective_cpus,
3051				      oldcs->effective_cpus);
3052	mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
3053
3054	/*
3055	 * In the default hierarchy, enabling cpuset in the child cgroups
3056	 * will trigger a number of cpuset_attach() calls with no change
3057	 * in effective cpus and mems. In that case, we can optimize out
3058	 * by skipping the task iteration and update.
3059	 */
3060	if (cpuset_v2() && !cpus_updated && !mems_updated) {
3061		cpuset_attach_nodemask_to = cs->effective_mems;
3062		goto out;
3063	}
3064
3065	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
3066
3067	cgroup_taskset_for_each(task, css, tset)
3068		cpuset_attach_task(cs, task);
 
 
 
 
 
 
 
 
3069
3070	/*
3071	 * Change mm for all threadgroup leaders. This is expensive and may
3072	 * sleep and should be moved outside migration path proper. Skip it
3073	 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is
3074	 * not set.
3075	 */
3076	cpuset_attach_nodemask_to = cs->effective_mems;
3077	if (!is_memory_migrate(cs) && !mems_updated)
3078		goto out;
3079
3080	cgroup_taskset_for_each_leader(leader, css, tset) {
3081		struct mm_struct *mm = get_task_mm(leader);
3082
3083		if (mm) {
3084			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
3085
3086			/*
3087			 * old_mems_allowed is the same with mems_allowed
3088			 * here, except if this task is being moved
3089			 * automatically due to hotplug.  In that case
3090			 * @mems_allowed has been updated and is empty, so
3091			 * @old_mems_allowed is the right nodesets that we
3092			 * migrate mm from.
3093			 */
3094			if (is_memory_migrate(cs))
3095				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
3096						  &cpuset_attach_nodemask_to);
3097			else
3098				mmput(mm);
3099		}
3100	}
3101
3102out:
3103	cs->old_mems_allowed = cpuset_attach_nodemask_to;
3104
3105	if (cs->nr_migrate_dl_tasks) {
3106		cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks;
3107		oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks;
3108		reset_migrate_dl_data(cs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3109	}
3110
3111	dec_attach_in_progress_locked(cs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3112
3113	mutex_unlock(&cpuset_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3114}
3115
3116/*
3117 * Common handling for a write to a "cpus" or "mems" file.
3118 */
3119ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
3120				    char *buf, size_t nbytes, loff_t off)
3121{
3122	struct cpuset *cs = css_cs(of_css(of));
3123	struct cpuset *trialcs;
3124	int retval = -ENODEV;
3125
3126	buf = strstrip(buf);
3127	cpus_read_lock();
3128	mutex_lock(&cpuset_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3129	if (!is_cpuset_online(cs))
3130		goto out_unlock;
3131
3132	trialcs = alloc_trial_cpuset(cs);
3133	if (!trialcs) {
3134		retval = -ENOMEM;
3135		goto out_unlock;
3136	}
3137
3138	switch (of_cft(of)->private) {
3139	case FILE_CPULIST:
3140		retval = update_cpumask(cs, trialcs, buf);
3141		break;
3142	case FILE_EXCLUSIVE_CPULIST:
3143		retval = update_exclusive_cpumask(cs, trialcs, buf);
3144		break;
3145	case FILE_MEMLIST:
3146		retval = update_nodemask(cs, trialcs, buf);
3147		break;
3148	default:
3149		retval = -EINVAL;
3150		break;
3151	}
3152
3153	free_cpuset(trialcs);
3154	if (force_sd_rebuild)
3155		rebuild_sched_domains_locked();
3156out_unlock:
3157	mutex_unlock(&cpuset_mutex);
3158	cpus_read_unlock();
 
 
3159	flush_workqueue(cpuset_migrate_mm_wq);
3160	return retval ?: nbytes;
3161}
3162
3163/*
3164 * These ascii lists should be read in a single call, by using a user
3165 * buffer large enough to hold the entire map.  If read in smaller
3166 * chunks, there is no guarantee of atomicity.  Since the display format
3167 * used, list of ranges of sequential numbers, is variable length,
3168 * and since these maps can change value dynamically, one could read
3169 * gibberish by doing partial reads while a list was changing.
3170 */
3171int cpuset_common_seq_show(struct seq_file *sf, void *v)
3172{
3173	struct cpuset *cs = css_cs(seq_css(sf));
3174	cpuset_filetype_t type = seq_cft(sf)->private;
3175	int ret = 0;
3176
3177	spin_lock_irq(&callback_lock);
3178
3179	switch (type) {
3180	case FILE_CPULIST:
3181		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
3182		break;
3183	case FILE_MEMLIST:
3184		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
3185		break;
3186	case FILE_EFFECTIVE_CPULIST:
3187		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
3188		break;
3189	case FILE_EFFECTIVE_MEMLIST:
3190		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
3191		break;
3192	case FILE_EXCLUSIVE_CPULIST:
3193		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->exclusive_cpus));
3194		break;
3195	case FILE_EFFECTIVE_XCPULIST:
3196		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_xcpus));
3197		break;
3198	case FILE_SUBPARTS_CPULIST:
3199		seq_printf(sf, "%*pbl\n", cpumask_pr_args(subpartitions_cpus));
3200		break;
3201	case FILE_ISOLATED_CPULIST:
3202		seq_printf(sf, "%*pbl\n", cpumask_pr_args(isolated_cpus));
3203		break;
3204	default:
3205		ret = -EINVAL;
3206	}
3207
3208	spin_unlock_irq(&callback_lock);
3209	return ret;
3210}
3211
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3212static int sched_partition_show(struct seq_file *seq, void *v)
3213{
3214	struct cpuset *cs = css_cs(seq_css(seq));
3215	const char *err, *type = NULL;
3216
3217	switch (cs->partition_root_state) {
3218	case PRS_ROOT:
3219		seq_puts(seq, "root\n");
3220		break;
3221	case PRS_ISOLATED:
3222		seq_puts(seq, "isolated\n");
3223		break;
3224	case PRS_MEMBER:
3225		seq_puts(seq, "member\n");
3226		break;
3227	case PRS_INVALID_ROOT:
3228		type = "root";
3229		fallthrough;
3230	case PRS_INVALID_ISOLATED:
3231		if (!type)
3232			type = "isolated";
3233		err = perr_strings[READ_ONCE(cs->prs_err)];
3234		if (err)
3235			seq_printf(seq, "%s invalid (%s)\n", type, err);
3236		else
3237			seq_printf(seq, "%s invalid\n", type);
3238		break;
3239	}
3240	return 0;
3241}
3242
3243static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
3244				     size_t nbytes, loff_t off)
3245{
3246	struct cpuset *cs = css_cs(of_css(of));
3247	int val;
3248	int retval = -ENODEV;
3249
3250	buf = strstrip(buf);
3251
 
 
 
3252	if (!strcmp(buf, "root"))
3253		val = PRS_ROOT;
3254	else if (!strcmp(buf, "member"))
3255		val = PRS_MEMBER;
3256	else if (!strcmp(buf, "isolated"))
3257		val = PRS_ISOLATED;
3258	else
3259		return -EINVAL;
3260
3261	css_get(&cs->css);
3262	cpus_read_lock();
3263	mutex_lock(&cpuset_mutex);
3264	if (!is_cpuset_online(cs))
3265		goto out_unlock;
3266
3267	retval = update_prstate(cs, val);
3268out_unlock:
3269	mutex_unlock(&cpuset_mutex);
3270	cpus_read_unlock();
3271	css_put(&cs->css);
3272	return retval ?: nbytes;
3273}
3274
3275/*
3276 * This is currently a minimal set for the default hierarchy. It can be
3277 * expanded later on by migrating more features and control files from v1.
3278 */
3279static struct cftype dfl_files[] = {
 
3280	{
3281		.name = "cpus",
3282		.seq_show = cpuset_common_seq_show,
3283		.write = cpuset_write_resmask,
3284		.max_write_len = (100U + 6 * NR_CPUS),
3285		.private = FILE_CPULIST,
3286		.flags = CFTYPE_NOT_ON_ROOT,
3287	},
3288
3289	{
3290		.name = "mems",
3291		.seq_show = cpuset_common_seq_show,
3292		.write = cpuset_write_resmask,
3293		.max_write_len = (100U + 6 * MAX_NUMNODES),
3294		.private = FILE_MEMLIST,
3295		.flags = CFTYPE_NOT_ON_ROOT,
3296	},
3297
3298	{
3299		.name = "cpus.effective",
3300		.seq_show = cpuset_common_seq_show,
3301		.private = FILE_EFFECTIVE_CPULIST,
3302	},
3303
3304	{
3305		.name = "mems.effective",
3306		.seq_show = cpuset_common_seq_show,
3307		.private = FILE_EFFECTIVE_MEMLIST,
3308	},
3309
3310	{
3311		.name = "cpus.partition",
3312		.seq_show = sched_partition_show,
3313		.write = sched_partition_write,
3314		.private = FILE_PARTITION_ROOT,
3315		.flags = CFTYPE_NOT_ON_ROOT,
3316		.file_offset = offsetof(struct cpuset, partition_file),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3317	},
3318
 
 
 
 
 
 
 
 
3319	{
3320		.name = "cpus.exclusive",
3321		.seq_show = cpuset_common_seq_show,
3322		.write = cpuset_write_resmask,
3323		.max_write_len = (100U + 6 * NR_CPUS),
3324		.private = FILE_EXCLUSIVE_CPULIST,
3325		.flags = CFTYPE_NOT_ON_ROOT,
3326	},
3327
3328	{
3329		.name = "cpus.exclusive.effective",
3330		.seq_show = cpuset_common_seq_show,
3331		.private = FILE_EFFECTIVE_XCPULIST,
 
 
3332		.flags = CFTYPE_NOT_ON_ROOT,
3333	},
3334
3335	{
3336		.name = "cpus.subpartitions",
3337		.seq_show = cpuset_common_seq_show,
3338		.private = FILE_SUBPARTS_CPULIST,
3339		.flags = CFTYPE_ONLY_ON_ROOT | CFTYPE_DEBUG,
3340	},
3341
3342	{
3343		.name = "cpus.isolated",
3344		.seq_show = cpuset_common_seq_show,
3345		.private = FILE_ISOLATED_CPULIST,
3346		.flags = CFTYPE_ONLY_ON_ROOT,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3347	},
3348
3349	{ }	/* terminate */
3350};
3351
3352
3353/**
3354 * cpuset_css_alloc - Allocate a cpuset css
3355 * @parent_css: Parent css of the control group that the new cpuset will be
3356 *              part of
3357 * Return: cpuset css on success, -ENOMEM on failure.
3358 *
3359 * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return
3360 * top cpuset css otherwise.
3361 */
 
3362static struct cgroup_subsys_state *
3363cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
3364{
3365	struct cpuset *cs;
3366
3367	if (!parent_css)
3368		return &top_cpuset.css;
3369
3370	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
3371	if (!cs)
3372		return ERR_PTR(-ENOMEM);
3373
3374	if (alloc_cpumasks(cs, NULL)) {
3375		kfree(cs);
3376		return ERR_PTR(-ENOMEM);
3377	}
3378
3379	__set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
 
 
3380	fmeter_init(&cs->fmeter);
3381	cs->relax_domain_level = -1;
3382	INIT_LIST_HEAD(&cs->remote_sibling);
3383
3384	/* Set CS_MEMORY_MIGRATE for default hierarchy */
3385	if (cpuset_v2())
3386		__set_bit(CS_MEMORY_MIGRATE, &cs->flags);
3387
3388	return &cs->css;
3389}
3390
3391static int cpuset_css_online(struct cgroup_subsys_state *css)
3392{
3393	struct cpuset *cs = css_cs(css);
3394	struct cpuset *parent = parent_cs(cs);
3395	struct cpuset *tmp_cs;
3396	struct cgroup_subsys_state *pos_css;
3397
3398	if (!parent)
3399		return 0;
3400
3401	cpus_read_lock();
3402	mutex_lock(&cpuset_mutex);
3403
3404	set_bit(CS_ONLINE, &cs->flags);
3405	if (is_spread_page(parent))
3406		set_bit(CS_SPREAD_PAGE, &cs->flags);
3407	if (is_spread_slab(parent))
3408		set_bit(CS_SPREAD_SLAB, &cs->flags);
3409	/*
3410	 * For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated
3411	 */
3412	if (cpuset_v2() && !is_sched_load_balance(parent))
3413		clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
3414
3415	cpuset_inc();
3416
3417	spin_lock_irq(&callback_lock);
3418	if (is_in_v2_mode()) {
3419		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
3420		cs->effective_mems = parent->effective_mems;
 
 
3421	}
3422	spin_unlock_irq(&callback_lock);
3423
3424	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
3425		goto out_unlock;
3426
3427	/*
3428	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
3429	 * set.  This flag handling is implemented in cgroup core for
3430	 * historical reasons - the flag may be specified during mount.
3431	 *
3432	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
3433	 * refuse to clone the configuration - thereby refusing the task to
3434	 * be entered, and as a result refusing the sys_unshare() or
3435	 * clone() which initiated it.  If this becomes a problem for some
3436	 * users who wish to allow that scenario, then this could be
3437	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
3438	 * (and likewise for mems) to the new cgroup.
3439	 */
3440	rcu_read_lock();
3441	cpuset_for_each_child(tmp_cs, pos_css, parent) {
3442		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
3443			rcu_read_unlock();
3444			goto out_unlock;
3445		}
3446	}
3447	rcu_read_unlock();
3448
3449	spin_lock_irq(&callback_lock);
3450	cs->mems_allowed = parent->mems_allowed;
3451	cs->effective_mems = parent->mems_allowed;
3452	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
3453	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
3454	spin_unlock_irq(&callback_lock);
3455out_unlock:
3456	mutex_unlock(&cpuset_mutex);
3457	cpus_read_unlock();
3458	return 0;
3459}
3460
3461/*
3462 * If the cpuset being removed has its flag 'sched_load_balance'
3463 * enabled, then simulate turning sched_load_balance off, which
3464 * will call rebuild_sched_domains_locked(). That is not needed
3465 * in the default hierarchy where only changes in partition
3466 * will cause repartitioning.
3467 *
3468 * If the cpuset has the 'sched.partition' flag enabled, simulate
3469 * turning 'sched.partition" off.
3470 */
3471
3472static void cpuset_css_offline(struct cgroup_subsys_state *css)
3473{
3474	struct cpuset *cs = css_cs(css);
3475
3476	cpus_read_lock();
3477	mutex_lock(&cpuset_mutex);
3478
3479	if (is_partition_valid(cs))
3480		update_prstate(cs, 0);
3481
3482	if (!cpuset_v2() && is_sched_load_balance(cs))
3483		cpuset_update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
 
 
 
 
 
 
 
 
3484
3485	cpuset_dec();
3486	clear_bit(CS_ONLINE, &cs->flags);
3487
3488	mutex_unlock(&cpuset_mutex);
3489	cpus_read_unlock();
3490}
3491
3492static void cpuset_css_free(struct cgroup_subsys_state *css)
3493{
3494	struct cpuset *cs = css_cs(css);
3495
3496	free_cpuset(cs);
3497}
3498
3499static void cpuset_bind(struct cgroup_subsys_state *root_css)
3500{
3501	mutex_lock(&cpuset_mutex);
3502	spin_lock_irq(&callback_lock);
3503
3504	if (is_in_v2_mode()) {
3505		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
3506		cpumask_copy(top_cpuset.effective_xcpus, cpu_possible_mask);
3507		top_cpuset.mems_allowed = node_possible_map;
3508	} else {
3509		cpumask_copy(top_cpuset.cpus_allowed,
3510			     top_cpuset.effective_cpus);
3511		top_cpuset.mems_allowed = top_cpuset.effective_mems;
3512	}
3513
3514	spin_unlock_irq(&callback_lock);
3515	mutex_unlock(&cpuset_mutex);
3516}
3517
3518/*
3519 * In case the child is cloned into a cpuset different from its parent,
3520 * additional checks are done to see if the move is allowed.
3521 */
3522static int cpuset_can_fork(struct task_struct *task, struct css_set *cset)
3523{
3524	struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
3525	bool same_cs;
3526	int ret;
3527
3528	rcu_read_lock();
3529	same_cs = (cs == task_cs(current));
3530	rcu_read_unlock();
3531
3532	if (same_cs)
3533		return 0;
3534
3535	lockdep_assert_held(&cgroup_mutex);
3536	mutex_lock(&cpuset_mutex);
3537
3538	/* Check to see if task is allowed in the cpuset */
3539	ret = cpuset_can_attach_check(cs);
3540	if (ret)
3541		goto out_unlock;
3542
3543	ret = task_can_attach(task);
3544	if (ret)
3545		goto out_unlock;
3546
3547	ret = security_task_setscheduler(task);
3548	if (ret)
3549		goto out_unlock;
3550
3551	/*
3552	 * Mark attach is in progress.  This makes validate_change() fail
3553	 * changes which zero cpus/mems_allowed.
3554	 */
3555	cs->attach_in_progress++;
3556out_unlock:
3557	mutex_unlock(&cpuset_mutex);
3558	return ret;
3559}
3560
3561static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset)
3562{
3563	struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
3564	bool same_cs;
3565
3566	rcu_read_lock();
3567	same_cs = (cs == task_cs(current));
3568	rcu_read_unlock();
3569
3570	if (same_cs)
3571		return;
3572
3573	dec_attach_in_progress(cs);
3574}
3575
3576/*
3577 * Make sure the new task conform to the current state of its parent,
3578 * which could have been changed by cpuset just after it inherits the
3579 * state from the parent and before it sits on the cgroup's task list.
3580 */
3581static void cpuset_fork(struct task_struct *task)
3582{
3583	struct cpuset *cs;
3584	bool same_cs;
3585
3586	rcu_read_lock();
3587	cs = task_cs(task);
3588	same_cs = (cs == task_cs(current));
3589	rcu_read_unlock();
3590
3591	if (same_cs) {
3592		if (cs == &top_cpuset)
3593			return;
3594
3595		set_cpus_allowed_ptr(task, current->cpus_ptr);
3596		task->mems_allowed = current->mems_allowed;
3597		return;
3598	}
3599
3600	/* CLONE_INTO_CGROUP */
3601	mutex_lock(&cpuset_mutex);
3602	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
3603	cpuset_attach_task(cs, task);
3604
3605	dec_attach_in_progress_locked(cs);
3606	mutex_unlock(&cpuset_mutex);
3607}
3608
3609struct cgroup_subsys cpuset_cgrp_subsys = {
3610	.css_alloc	= cpuset_css_alloc,
3611	.css_online	= cpuset_css_online,
3612	.css_offline	= cpuset_css_offline,
3613	.css_free	= cpuset_css_free,
3614	.can_attach	= cpuset_can_attach,
3615	.cancel_attach	= cpuset_cancel_attach,
3616	.attach		= cpuset_attach,
3617	.post_attach	= cpuset_post_attach,
3618	.bind		= cpuset_bind,
3619	.can_fork	= cpuset_can_fork,
3620	.cancel_fork	= cpuset_cancel_fork,
3621	.fork		= cpuset_fork,
3622#ifdef CONFIG_CPUSETS_V1
3623	.legacy_cftypes	= cpuset1_files,
3624#endif
3625	.dfl_cftypes	= dfl_files,
3626	.early_init	= true,
3627	.threaded	= true,
3628};
3629
3630/**
3631 * cpuset_init - initialize cpusets at system boot
3632 *
3633 * Description: Initialize top_cpuset
3634 **/
3635
3636int __init cpuset_init(void)
3637{
 
 
3638	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
3639	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
3640	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_xcpus, GFP_KERNEL));
3641	BUG_ON(!alloc_cpumask_var(&top_cpuset.exclusive_cpus, GFP_KERNEL));
3642	BUG_ON(!zalloc_cpumask_var(&subpartitions_cpus, GFP_KERNEL));
3643	BUG_ON(!zalloc_cpumask_var(&isolated_cpus, GFP_KERNEL));
3644
3645	cpumask_setall(top_cpuset.cpus_allowed);
3646	nodes_setall(top_cpuset.mems_allowed);
3647	cpumask_setall(top_cpuset.effective_cpus);
3648	cpumask_setall(top_cpuset.effective_xcpus);
3649	cpumask_setall(top_cpuset.exclusive_cpus);
3650	nodes_setall(top_cpuset.effective_mems);
3651
3652	fmeter_init(&top_cpuset.fmeter);
3653	INIT_LIST_HEAD(&remote_children);
 
3654
3655	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
3656
3657	have_boot_isolcpus = housekeeping_enabled(HK_TYPE_DOMAIN);
3658	if (have_boot_isolcpus) {
3659		BUG_ON(!alloc_cpumask_var(&boot_hk_cpus, GFP_KERNEL));
3660		cpumask_copy(boot_hk_cpus, housekeeping_cpumask(HK_TYPE_DOMAIN));
3661		cpumask_andnot(isolated_cpus, cpu_possible_mask, boot_hk_cpus);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3662	}
 
3663
3664	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3665}
3666
3667static void
3668hotplug_update_tasks(struct cpuset *cs,
3669		     struct cpumask *new_cpus, nodemask_t *new_mems,
3670		     bool cpus_updated, bool mems_updated)
3671{
3672	/* A partition root is allowed to have empty effective cpus */
3673	if (cpumask_empty(new_cpus) && !is_partition_valid(cs))
3674		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3675	if (nodes_empty(*new_mems))
3676		*new_mems = parent_cs(cs)->effective_mems;
3677
3678	spin_lock_irq(&callback_lock);
3679	cpumask_copy(cs->effective_cpus, new_cpus);
3680	cs->effective_mems = *new_mems;
3681	spin_unlock_irq(&callback_lock);
3682
3683	if (cpus_updated)
3684		cpuset_update_tasks_cpumask(cs, new_cpus);
3685	if (mems_updated)
3686		cpuset_update_tasks_nodemask(cs);
3687}
3688
 
 
3689void cpuset_force_rebuild(void)
3690{
3691	force_sd_rebuild = true;
3692}
3693
3694/**
3695 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3696 * @cs: cpuset in interest
3697 * @tmp: the tmpmasks structure pointer
3698 *
3699 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3700 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
3701 * all its tasks are moved to the nearest ancestor with both resources.
3702 */
3703static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3704{
3705	static cpumask_t new_cpus;
3706	static nodemask_t new_mems;
3707	bool cpus_updated;
3708	bool mems_updated;
3709	bool remote;
3710	int partcmd = -1;
3711	struct cpuset *parent;
3712retry:
3713	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3714
3715	mutex_lock(&cpuset_mutex);
3716
3717	/*
3718	 * We have raced with task attaching. We wait until attaching
3719	 * is finished, so we won't attach a task to an empty cpuset.
3720	 */
3721	if (cs->attach_in_progress) {
3722		mutex_unlock(&cpuset_mutex);
3723		goto retry;
3724	}
3725
3726	parent = parent_cs(cs);
3727	compute_effective_cpumask(&new_cpus, cs, parent);
3728	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3729
 
 
 
 
 
 
 
3730	if (!tmp || !cs->partition_root_state)
3731		goto update_tasks;
3732
3733	/*
3734	 * Compute effective_cpus for valid partition root, may invalidate
3735	 * child partition roots if necessary.
3736	 */
3737	remote = is_remote_partition(cs);
3738	if (remote || (is_partition_valid(cs) && is_partition_valid(parent)))
3739		compute_partition_effective_cpumask(cs, &new_cpus);
3740
3741	if (remote && cpumask_empty(&new_cpus) &&
3742	    partition_is_populated(cs, NULL)) {
3743		remote_partition_disable(cs, tmp);
3744		compute_effective_cpumask(&new_cpus, cs, parent);
3745		remote = false;
 
 
 
 
 
 
 
 
 
 
 
 
3746		cpuset_force_rebuild();
3747	}
3748
3749	/*
3750	 * Force the partition to become invalid if either one of
3751	 * the following conditions hold:
3752	 * 1) empty effective cpus but not valid empty partition.
3753	 * 2) parent is invalid or doesn't grant any cpus to child
3754	 *    partitions.
3755	 */
3756	if (is_local_partition(cs) && (!is_partition_valid(parent) ||
3757				tasks_nocpu_error(parent, cs, &new_cpus)))
3758		partcmd = partcmd_invalidate;
3759	/*
3760	 * On the other hand, an invalid partition root may be transitioned
3761	 * back to a regular one.
3762	 */
3763	else if (is_partition_valid(parent) && is_partition_invalid(cs))
3764		partcmd = partcmd_update;
3765
3766	if (partcmd >= 0) {
3767		update_parent_effective_cpumask(cs, partcmd, NULL, tmp);
3768		if ((partcmd == partcmd_invalidate) || is_partition_valid(cs)) {
3769			compute_partition_effective_cpumask(cs, &new_cpus);
3770			cpuset_force_rebuild();
3771		}
3772	}
3773
3774update_tasks:
3775	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3776	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3777	if (!cpus_updated && !mems_updated)
3778		goto unlock;	/* Hotplug doesn't affect this cpuset */
3779
3780	if (mems_updated)
3781		check_insane_mems_config(&new_mems);
3782
3783	if (is_in_v2_mode())
3784		hotplug_update_tasks(cs, &new_cpus, &new_mems,
3785				     cpus_updated, mems_updated);
3786	else
3787		cpuset1_hotplug_update_tasks(cs, &new_cpus, &new_mems,
3788					    cpus_updated, mems_updated);
3789
3790unlock:
3791	mutex_unlock(&cpuset_mutex);
3792}
3793
3794/**
3795 * cpuset_handle_hotplug - handle CPU/memory hot{,un}plug for a cpuset
3796 *
3797 * This function is called after either CPU or memory configuration has
3798 * changed and updates cpuset accordingly.  The top_cpuset is always
3799 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3800 * order to make cpusets transparent (of no affect) on systems that are
3801 * actively using CPU hotplug but making no active use of cpusets.
3802 *
3803 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
3804 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3805 * all descendants.
3806 *
3807 * Note that CPU offlining during suspend is ignored.  We don't modify
3808 * cpusets across suspend/resume cycles at all.
3809 *
3810 * CPU / memory hotplug is handled synchronously.
3811 */
3812static void cpuset_handle_hotplug(void)
3813{
3814	static cpumask_t new_cpus;
3815	static nodemask_t new_mems;
3816	bool cpus_updated, mems_updated;
3817	bool on_dfl = is_in_v2_mode();
3818	struct tmpmasks tmp, *ptmp = NULL;
3819
3820	if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3821		ptmp = &tmp;
3822
3823	lockdep_assert_cpus_held();
3824	mutex_lock(&cpuset_mutex);
3825
3826	/* fetch the available cpus/mems and find out which changed how */
3827	cpumask_copy(&new_cpus, cpu_active_mask);
3828	new_mems = node_states[N_MEMORY];
3829
3830	/*
3831	 * If subpartitions_cpus is populated, it is likely that the check
3832	 * below will produce a false positive on cpus_updated when the cpu
3833	 * list isn't changed. It is extra work, but it is better to be safe.
3834	 */
3835	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus) ||
3836		       !cpumask_empty(subpartitions_cpus);
3837	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3838
3839	/* For v1, synchronize cpus_allowed to cpu_active_mask */
3840	if (cpus_updated) {
3841		cpuset_force_rebuild();
3842		spin_lock_irq(&callback_lock);
3843		if (!on_dfl)
3844			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3845		/*
3846		 * Make sure that CPUs allocated to child partitions
3847		 * do not show up in effective_cpus. If no CPU is left,
3848		 * we clear the subpartitions_cpus & let the child partitions
3849		 * fight for the CPUs again.
3850		 */
3851		if (!cpumask_empty(subpartitions_cpus)) {
3852			if (cpumask_subset(&new_cpus, subpartitions_cpus)) {
3853				top_cpuset.nr_subparts = 0;
3854				cpumask_clear(subpartitions_cpus);
 
3855			} else {
3856				cpumask_andnot(&new_cpus, &new_cpus,
3857					       subpartitions_cpus);
3858			}
3859		}
3860		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3861		spin_unlock_irq(&callback_lock);
3862		/* we don't mess with cpumasks of tasks in top_cpuset */
3863	}
3864
3865	/* synchronize mems_allowed to N_MEMORY */
3866	if (mems_updated) {
3867		spin_lock_irq(&callback_lock);
3868		if (!on_dfl)
3869			top_cpuset.mems_allowed = new_mems;
3870		top_cpuset.effective_mems = new_mems;
3871		spin_unlock_irq(&callback_lock);
3872		cpuset_update_tasks_nodemask(&top_cpuset);
3873	}
3874
3875	mutex_unlock(&cpuset_mutex);
3876
3877	/* if cpus or mems changed, we need to propagate to descendants */
3878	if (cpus_updated || mems_updated) {
3879		struct cpuset *cs;
3880		struct cgroup_subsys_state *pos_css;
3881
3882		rcu_read_lock();
3883		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3884			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3885				continue;
3886			rcu_read_unlock();
3887
3888			cpuset_hotplug_update_tasks(cs, ptmp);
3889
3890			rcu_read_lock();
3891			css_put(&cs->css);
3892		}
3893		rcu_read_unlock();
3894	}
3895
3896	/* rebuild sched domains if necessary */
3897	if (force_sd_rebuild)
3898		rebuild_sched_domains_cpuslocked();
 
 
3899
3900	free_cpumasks(NULL, ptmp);
3901}
3902
3903void cpuset_update_active_cpus(void)
3904{
3905	/*
3906	 * We're inside cpu hotplug critical region which usually nests
3907	 * inside cgroup synchronization.  Bounce actual hotplug processing
3908	 * to a work item to avoid reverse locking order.
3909	 */
3910	cpuset_handle_hotplug();
 
 
 
 
 
3911}
3912
3913/*
3914 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3915 * Call this routine anytime after node_states[N_MEMORY] changes.
3916 * See cpuset_update_active_cpus() for CPU hotplug handling.
3917 */
3918static int cpuset_track_online_nodes(struct notifier_block *self,
3919				unsigned long action, void *arg)
3920{
3921	cpuset_handle_hotplug();
3922	return NOTIFY_OK;
3923}
3924
 
 
 
 
 
3925/**
3926 * cpuset_init_smp - initialize cpus_allowed
3927 *
3928 * Description: Finish top cpuset after cpu, node maps are initialized
3929 */
3930void __init cpuset_init_smp(void)
3931{
3932	/*
3933	 * cpus_allowd/mems_allowed set to v2 values in the initial
3934	 * cpuset_bind() call will be reset to v1 values in another
3935	 * cpuset_bind() call when v1 cpuset is mounted.
3936	 */
3937	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3938
3939	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3940	top_cpuset.effective_mems = node_states[N_MEMORY];
3941
3942	hotplug_memory_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI);
3943
3944	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3945	BUG_ON(!cpuset_migrate_mm_wq);
3946}
3947
3948/**
3949 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3950 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3951 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3952 *
3953 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3954 * attached to the specified @tsk.  Guaranteed to return some non-empty
3955 * subset of cpu_online_mask, even if this means going outside the
3956 * tasks cpuset, except when the task is in the top cpuset.
3957 **/
3958
3959void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3960{
3961	unsigned long flags;
3962	struct cpuset *cs;
3963
3964	spin_lock_irqsave(&callback_lock, flags);
3965	rcu_read_lock();
3966
3967	cs = task_cs(tsk);
3968	if (cs != &top_cpuset)
3969		guarantee_online_cpus(tsk, pmask);
3970	/*
3971	 * Tasks in the top cpuset won't get update to their cpumasks
3972	 * when a hotplug online/offline event happens. So we include all
3973	 * offline cpus in the allowed cpu list.
3974	 */
3975	if ((cs == &top_cpuset) || cpumask_empty(pmask)) {
3976		const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
3977
3978		/*
3979		 * We first exclude cpus allocated to partitions. If there is no
3980		 * allowable online cpu left, we fall back to all possible cpus.
3981		 */
3982		cpumask_andnot(pmask, possible_mask, subpartitions_cpus);
3983		if (!cpumask_intersects(pmask, cpu_online_mask))
3984			cpumask_copy(pmask, possible_mask);
3985	}
3986
3987	rcu_read_unlock();
3988	spin_unlock_irqrestore(&callback_lock, flags);
3989}
3990
3991/**
3992 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3993 * @tsk: pointer to task_struct with which the scheduler is struggling
3994 *
3995 * Description: In the case that the scheduler cannot find an allowed cpu in
3996 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3997 * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3998 * which will not contain a sane cpumask during cases such as cpu hotplugging.
3999 * This is the absolute last resort for the scheduler and it is only used if
4000 * _every_ other avenue has been traveled.
4001 *
4002 * Returns true if the affinity of @tsk was changed, false otherwise.
4003 **/
4004
4005bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
4006{
4007	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
4008	const struct cpumask *cs_mask;
4009	bool changed = false;
4010
4011	rcu_read_lock();
4012	cs_mask = task_cs(tsk)->cpus_allowed;
4013	if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
4014		do_set_cpus_allowed(tsk, cs_mask);
4015		changed = true;
4016	}
4017	rcu_read_unlock();
4018
4019	/*
4020	 * We own tsk->cpus_allowed, nobody can change it under us.
4021	 *
4022	 * But we used cs && cs->cpus_allowed lockless and thus can
4023	 * race with cgroup_attach_task() or update_cpumask() and get
4024	 * the wrong tsk->cpus_allowed. However, both cases imply the
4025	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
4026	 * which takes task_rq_lock().
4027	 *
4028	 * If we are called after it dropped the lock we must see all
4029	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
4030	 * set any mask even if it is not right from task_cs() pov,
4031	 * the pending set_cpus_allowed_ptr() will fix things.
4032	 *
4033	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
4034	 * if required.
4035	 */
4036	return changed;
4037}
4038
4039void __init cpuset_init_current_mems_allowed(void)
4040{
4041	nodes_setall(current->mems_allowed);
4042}
4043
4044/**
4045 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
4046 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
4047 *
4048 * Description: Returns the nodemask_t mems_allowed of the cpuset
4049 * attached to the specified @tsk.  Guaranteed to return some non-empty
4050 * subset of node_states[N_MEMORY], even if this means going outside the
4051 * tasks cpuset.
4052 **/
4053
4054nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
4055{
4056	nodemask_t mask;
4057	unsigned long flags;
4058
4059	spin_lock_irqsave(&callback_lock, flags);
4060	rcu_read_lock();
4061	guarantee_online_mems(task_cs(tsk), &mask);
4062	rcu_read_unlock();
4063	spin_unlock_irqrestore(&callback_lock, flags);
4064
4065	return mask;
4066}
4067
4068/**
4069 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
4070 * @nodemask: the nodemask to be checked
4071 *
4072 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
4073 */
4074int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
4075{
4076	return nodes_intersects(*nodemask, current->mems_allowed);
4077}
4078
4079/*
4080 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
4081 * mem_hardwall ancestor to the specified cpuset.  Call holding
4082 * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
4083 * (an unusual configuration), then returns the root cpuset.
4084 */
4085static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
4086{
4087	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
4088		cs = parent_cs(cs);
4089	return cs;
4090}
4091
4092/*
4093 * cpuset_node_allowed - Can we allocate on a memory node?
4094 * @node: is this an allowed node?
4095 * @gfp_mask: memory allocation flags
4096 *
4097 * If we're in interrupt, yes, we can always allocate.  If @node is set in
4098 * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
4099 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
4100 * yes.  If current has access to memory reserves as an oom victim, yes.
4101 * Otherwise, no.
4102 *
4103 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
4104 * and do not allow allocations outside the current tasks cpuset
4105 * unless the task has been OOM killed.
4106 * GFP_KERNEL allocations are not so marked, so can escape to the
4107 * nearest enclosing hardwalled ancestor cpuset.
4108 *
4109 * Scanning up parent cpusets requires callback_lock.  The
4110 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
4111 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
4112 * current tasks mems_allowed came up empty on the first pass over
4113 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
4114 * cpuset are short of memory, might require taking the callback_lock.
4115 *
4116 * The first call here from mm/page_alloc:get_page_from_freelist()
4117 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
4118 * so no allocation on a node outside the cpuset is allowed (unless
4119 * in interrupt, of course).
4120 *
4121 * The second pass through get_page_from_freelist() doesn't even call
4122 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
4123 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
4124 * in alloc_flags.  That logic and the checks below have the combined
4125 * affect that:
4126 *	in_interrupt - any node ok (current task context irrelevant)
4127 *	GFP_ATOMIC   - any node ok
4128 *	tsk_is_oom_victim   - any node ok
4129 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
4130 *	GFP_USER     - only nodes in current tasks mems allowed ok.
4131 */
4132bool cpuset_node_allowed(int node, gfp_t gfp_mask)
4133{
4134	struct cpuset *cs;		/* current cpuset ancestors */
4135	bool allowed;			/* is allocation in zone z allowed? */
4136	unsigned long flags;
4137
4138	if (in_interrupt())
4139		return true;
4140	if (node_isset(node, current->mems_allowed))
4141		return true;
4142	/*
4143	 * Allow tasks that have access to memory reserves because they have
4144	 * been OOM killed to get memory anywhere.
4145	 */
4146	if (unlikely(tsk_is_oom_victim(current)))
4147		return true;
4148	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
4149		return false;
4150
4151	if (current->flags & PF_EXITING) /* Let dying task have memory */
4152		return true;
4153
4154	/* Not hardwall and node outside mems_allowed: scan up cpusets */
4155	spin_lock_irqsave(&callback_lock, flags);
4156
4157	rcu_read_lock();
4158	cs = nearest_hardwall_ancestor(task_cs(current));
4159	allowed = node_isset(node, cs->mems_allowed);
4160	rcu_read_unlock();
4161
4162	spin_unlock_irqrestore(&callback_lock, flags);
4163	return allowed;
4164}
4165
4166/**
4167 * cpuset_spread_node() - On which node to begin search for a page
4168 * @rotor: round robin rotor
4169 *
4170 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
4171 * tasks in a cpuset with is_spread_page or is_spread_slab set),
4172 * and if the memory allocation used cpuset_mem_spread_node()
4173 * to determine on which node to start looking, as it will for
4174 * certain page cache or slab cache pages such as used for file
4175 * system buffers and inode caches, then instead of starting on the
4176 * local node to look for a free page, rather spread the starting
4177 * node around the tasks mems_allowed nodes.
4178 *
4179 * We don't have to worry about the returned node being offline
4180 * because "it can't happen", and even if it did, it would be ok.
4181 *
4182 * The routines calling guarantee_online_mems() are careful to
4183 * only set nodes in task->mems_allowed that are online.  So it
4184 * should not be possible for the following code to return an
4185 * offline node.  But if it did, that would be ok, as this routine
4186 * is not returning the node where the allocation must be, only
4187 * the node where the search should start.  The zonelist passed to
4188 * __alloc_pages() will include all nodes.  If the slab allocator
4189 * is passed an offline node, it will fall back to the local node.
4190 * See kmem_cache_alloc_node().
4191 */
 
4192static int cpuset_spread_node(int *rotor)
4193{
4194	return *rotor = next_node_in(*rotor, current->mems_allowed);
4195}
4196
4197/**
4198 * cpuset_mem_spread_node() - On which node to begin search for a file page
4199 */
4200int cpuset_mem_spread_node(void)
4201{
4202	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
4203		current->cpuset_mem_spread_rotor =
4204			node_random(&current->mems_allowed);
4205
4206	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
4207}
4208
 
 
 
 
 
 
 
 
 
 
 
4209/**
4210 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
4211 * @tsk1: pointer to task_struct of some task.
4212 * @tsk2: pointer to task_struct of some other task.
4213 *
4214 * Description: Return true if @tsk1's mems_allowed intersects the
4215 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
4216 * one of the task's memory usage might impact the memory available
4217 * to the other.
4218 **/
4219
4220int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
4221				   const struct task_struct *tsk2)
4222{
4223	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
4224}
4225
4226/**
4227 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
4228 *
4229 * Description: Prints current's name, cpuset name, and cached copy of its
4230 * mems_allowed to the kernel log.
4231 */
4232void cpuset_print_current_mems_allowed(void)
4233{
4234	struct cgroup *cgrp;
4235
4236	rcu_read_lock();
4237
4238	cgrp = task_cs(current)->css.cgroup;
4239	pr_cont(",cpuset=");
4240	pr_cont_cgroup_name(cgrp);
4241	pr_cont(",mems_allowed=%*pbl",
4242		nodemask_pr_args(&current->mems_allowed));
4243
4244	rcu_read_unlock();
4245}
4246
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4247#ifdef CONFIG_PROC_PID_CPUSET
4248/*
4249 * proc_cpuset_show()
4250 *  - Print tasks cpuset path into seq_file.
4251 *  - Used for /proc/<pid>/cpuset.
4252 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
4253 *    doesn't really matter if tsk->cpuset changes after we read it,
4254 *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
4255 *    anyway.
4256 */
4257int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
4258		     struct pid *pid, struct task_struct *tsk)
4259{
4260	char *buf;
4261	struct cgroup_subsys_state *css;
4262	int retval;
4263
4264	retval = -ENOMEM;
4265	buf = kmalloc(PATH_MAX, GFP_KERNEL);
4266	if (!buf)
4267		goto out;
4268
4269	rcu_read_lock();
4270	spin_lock_irq(&css_set_lock);
4271	css = task_css(tsk, cpuset_cgrp_id);
4272	retval = cgroup_path_ns_locked(css->cgroup, buf, PATH_MAX,
4273				       current->nsproxy->cgroup_ns);
4274	spin_unlock_irq(&css_set_lock);
4275	rcu_read_unlock();
4276
4277	if (retval == -E2BIG)
4278		retval = -ENAMETOOLONG;
4279	if (retval < 0)
4280		goto out_free;
4281	seq_puts(m, buf);
4282	seq_putc(m, '\n');
4283	retval = 0;
4284out_free:
4285	kfree(buf);
4286out:
4287	return retval;
4288}
4289#endif /* CONFIG_PROC_PID_CPUSET */
4290
4291/* Display task mems_allowed in /proc/<pid>/status file. */
4292void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
4293{
4294	seq_printf(m, "Mems_allowed:\t%*pb\n",
4295		   nodemask_pr_args(&task->mems_allowed));
4296	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
4297		   nodemask_pr_args(&task->mems_allowed));
4298}
v5.9
   1/*
   2 *  kernel/cpuset.c
   3 *
   4 *  Processor and Memory placement constraints for sets of tasks.
   5 *
   6 *  Copyright (C) 2003 BULL SA.
   7 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
   8 *  Copyright (C) 2006 Google, Inc
   9 *
  10 *  Portions derived from Patrick Mochel's sysfs code.
  11 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
  12 *
  13 *  2003-10-10 Written by Simon Derr.
  14 *  2003-10-22 Updates by Stephen Hemminger.
  15 *  2004 May-July Rework by Paul Jackson.
  16 *  2006 Rework by Paul Menage to use generic cgroups
  17 *  2008 Rework of the scheduler domains and CPU hotplug handling
  18 *       by Max Krasnyansky
  19 *
  20 *  This file is subject to the terms and conditions of the GNU General Public
  21 *  License.  See the file COPYING in the main directory of the Linux
  22 *  distribution for more details.
  23 */
 
 
  24
  25#include <linux/cpu.h>
  26#include <linux/cpumask.h>
  27#include <linux/cpuset.h>
  28#include <linux/err.h>
  29#include <linux/errno.h>
  30#include <linux/file.h>
  31#include <linux/fs.h>
  32#include <linux/init.h>
  33#include <linux/interrupt.h>
  34#include <linux/kernel.h>
  35#include <linux/kmod.h>
  36#include <linux/list.h>
  37#include <linux/mempolicy.h>
  38#include <linux/mm.h>
  39#include <linux/memory.h>
  40#include <linux/export.h>
  41#include <linux/mount.h>
  42#include <linux/fs_context.h>
  43#include <linux/namei.h>
  44#include <linux/pagemap.h>
  45#include <linux/proc_fs.h>
  46#include <linux/rcupdate.h>
  47#include <linux/sched.h>
  48#include <linux/sched/deadline.h>
  49#include <linux/sched/mm.h>
  50#include <linux/sched/task.h>
  51#include <linux/seq_file.h>
  52#include <linux/security.h>
  53#include <linux/slab.h>
  54#include <linux/spinlock.h>
  55#include <linux/stat.h>
  56#include <linux/string.h>
  57#include <linux/time.h>
  58#include <linux/time64.h>
  59#include <linux/backing-dev.h>
  60#include <linux/sort.h>
  61#include <linux/oom.h>
  62#include <linux/sched/isolation.h>
  63#include <linux/uaccess.h>
  64#include <linux/atomic.h>
  65#include <linux/mutex.h>
  66#include <linux/cgroup.h>
  67#include <linux/wait.h>
 
  68
  69DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
  70DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
  71
  72/* See "Frequency meter" comments, below. */
  73
  74struct fmeter {
  75	int cnt;		/* unprocessed events count */
  76	int val;		/* most recent output value */
  77	time64_t time;		/* clock (secs) when val computed */
  78	spinlock_t lock;	/* guards read or write of above */
 
 
 
 
 
 
 
 
 
 
  79};
  80
  81struct cpuset {
  82	struct cgroup_subsys_state css;
 
 
  83
  84	unsigned long flags;		/* "unsigned long" so bitops work */
 
 
 
  85
  86	/*
  87	 * On default hierarchy:
  88	 *
  89	 * The user-configured masks can only be changed by writing to
  90	 * cpuset.cpus and cpuset.mems, and won't be limited by the
  91	 * parent masks.
  92	 *
  93	 * The effective masks is the real masks that apply to the tasks
  94	 * in the cpuset. They may be changed if the configured masks are
  95	 * changed or hotplug happens.
  96	 *
  97	 * effective_mask == configured_mask & parent's effective_mask,
  98	 * and if it ends up empty, it will inherit the parent's mask.
  99	 *
 100	 *
 101	 * On legacy hierachy:
 102	 *
 103	 * The user-configured masks are always the same with effective masks.
 104	 */
 105
 106	/* user-configured CPUs and Memory Nodes allow to tasks */
 107	cpumask_var_t cpus_allowed;
 108	nodemask_t mems_allowed;
 109
 110	/* effective CPUs and Memory Nodes allow to tasks */
 111	cpumask_var_t effective_cpus;
 112	nodemask_t effective_mems;
 113
 114	/*
 115	 * CPUs allocated to child sub-partitions (default hierarchy only)
 116	 * - CPUs granted by the parent = effective_cpus U subparts_cpus
 117	 * - effective_cpus and subparts_cpus are mutually exclusive.
 118	 *
 119	 * effective_cpus contains only onlined CPUs, but subparts_cpus
 120	 * may have offlined ones.
 121	 */
 122	cpumask_var_t subparts_cpus;
 123
 124	/*
 125	 * This is old Memory Nodes tasks took on.
 126	 *
 127	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
 128	 * - A new cpuset's old_mems_allowed is initialized when some
 129	 *   task is moved into it.
 130	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
 131	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
 132	 *   then old_mems_allowed is updated to mems_allowed.
 133	 */
 134	nodemask_t old_mems_allowed;
 135
 136	struct fmeter fmeter;		/* memory_pressure filter */
 137
 138	/*
 139	 * Tasks are being attached to this cpuset.  Used to prevent
 140	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
 141	 */
 142	int attach_in_progress;
 143
 144	/* partition number for rebuild_sched_domains() */
 145	int pn;
 146
 147	/* for custom sched domain */
 148	int relax_domain_level;
 149
 150	/* number of CPUs in subparts_cpus */
 151	int nr_subparts_cpus;
 152
 153	/* partition root state */
 154	int partition_root_state;
 155
 156	/*
 157	 * Default hierarchy only:
 158	 * use_parent_ecpus - set if using parent's effective_cpus
 159	 * child_ecpus_count - # of children with use_parent_ecpus set
 160	 */
 161	int use_parent_ecpus;
 162	int child_ecpus_count;
 163};
 164
 165/*
 166 * Partition root states:
 167 *
 168 *   0 - not a partition root
 169 *
 170 *   1 - partition root
 
 
 
 171 *
 172 *  -1 - invalid partition root
 173 *       None of the cpus in cpus_allowed can be put into the parent's
 174 *       subparts_cpus. In this case, the cpuset is not a real partition
 175 *       root anymore.  However, the CPU_EXCLUSIVE bit will still be set
 176 *       and the cpuset can be restored back to a partition root if the
 177 *       parent cpuset can give more CPUs back to this child cpuset.
 178 */
 179#define PRS_DISABLED		0
 180#define PRS_ENABLED		1
 181#define PRS_ERROR		-1
 
 
 
 
 
 
 
 
 
 
 
 182
 183/*
 184 * Temporary cpumasks for working with partitions that are passed among
 185 * functions to avoid memory allocation in inner functions.
 186 */
 187struct tmpmasks {
 188	cpumask_var_t addmask, delmask;	/* For partition root */
 189	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */
 190};
 191
 192static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
 193{
 194	return css ? container_of(css, struct cpuset, css) : NULL;
 195}
 196
 197/* Retrieve the cpuset for a task */
 198static inline struct cpuset *task_cs(struct task_struct *task)
 199{
 200	return css_cs(task_css(task, cpuset_cgrp_id));
 201}
 202
 203static inline struct cpuset *parent_cs(struct cpuset *cs)
 204{
 205	return css_cs(cs->css.parent);
 206}
 207
 208/* bits in struct cpuset flags field */
 209typedef enum {
 210	CS_ONLINE,
 211	CS_CPU_EXCLUSIVE,
 212	CS_MEM_EXCLUSIVE,
 213	CS_MEM_HARDWALL,
 214	CS_MEMORY_MIGRATE,
 215	CS_SCHED_LOAD_BALANCE,
 216	CS_SPREAD_PAGE,
 217	CS_SPREAD_SLAB,
 218} cpuset_flagbits_t;
 219
 220/* convenient tests for these bits */
 221static inline bool is_cpuset_online(struct cpuset *cs)
 222{
 223	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
 224}
 225
 226static inline int is_cpu_exclusive(const struct cpuset *cs)
 227{
 228	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
 229}
 230
 231static inline int is_mem_exclusive(const struct cpuset *cs)
 232{
 233	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
 234}
 235
 236static inline int is_mem_hardwall(const struct cpuset *cs)
 
 
 
 237{
 238	return test_bit(CS_MEM_HARDWALL, &cs->flags);
 
 239}
 240
 241static inline int is_sched_load_balance(const struct cpuset *cs)
 
 
 
 242{
 243	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
 244}
 
 245
 246static inline int is_memory_migrate(const struct cpuset *cs)
 247{
 248	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
 249}
 250
 251static inline int is_spread_page(const struct cpuset *cs)
 252{
 253	return test_bit(CS_SPREAD_PAGE, &cs->flags);
 254}
 255
 256static inline int is_spread_slab(const struct cpuset *cs)
 257{
 258	return test_bit(CS_SPREAD_SLAB, &cs->flags);
 259}
 260
 261static inline int is_partition_root(const struct cpuset *cs)
 262{
 263	return cs->partition_root_state > 0;
 264}
 265
 266static struct cpuset top_cpuset = {
 267	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
 268		  (1 << CS_MEM_EXCLUSIVE)),
 269	.partition_root_state = PRS_ENABLED,
 
 
 270};
 271
 272/**
 273 * cpuset_for_each_child - traverse online children of a cpuset
 274 * @child_cs: loop cursor pointing to the current child
 275 * @pos_css: used for iteration
 276 * @parent_cs: target cpuset to walk children of
 277 *
 278 * Walk @child_cs through the online children of @parent_cs.  Must be used
 279 * with RCU read locked.
 280 */
 281#define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
 282	css_for_each_child((pos_css), &(parent_cs)->css)		\
 283		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
 284
 285/**
 286 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 287 * @des_cs: loop cursor pointing to the current descendant
 288 * @pos_css: used for iteration
 289 * @root_cs: target cpuset to walk ancestor of
 290 *
 291 * Walk @des_cs through the online descendants of @root_cs.  Must be used
 292 * with RCU read locked.  The caller may modify @pos_css by calling
 293 * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
 294 * iteration and the first node to be visited.
 295 */
 296#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
 297	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
 298		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
 299
 300/*
 301 * There are two global locks guarding cpuset structures - cpuset_mutex and
 302 * callback_lock. We also require taking task_lock() when dereferencing a
 303 * task's cpuset pointer. See "The task_lock() exception", at the end of this
 304 * comment.
 
 
 305 *
 306 * A task must hold both locks to modify cpusets.  If a task holds
 307 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
 308 * is the only task able to also acquire callback_lock and be able to
 309 * modify cpusets.  It can perform various checks on the cpuset structure
 310 * first, knowing nothing will change.  It can also allocate memory while
 311 * just holding cpuset_mutex.  While it is performing these checks, various
 312 * callback routines can briefly acquire callback_lock to query cpusets.
 313 * Once it is ready to make the changes, it takes callback_lock, blocking
 314 * everyone else.
 315 *
 316 * Calls to the kernel memory allocator can not be made while holding
 317 * callback_lock, as that would risk double tripping on callback_lock
 318 * from one of the callbacks into the cpuset code from within
 319 * __alloc_pages().
 320 *
 321 * If a task is only holding callback_lock, then it has read-only
 322 * access to cpusets.
 323 *
 324 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 325 * by other task, we use alloc_lock in the task_struct fields to protect
 326 * them.
 327 *
 328 * The cpuset_common_file_read() handlers only hold callback_lock across
 329 * small pieces of code, such as when reading out possibly multi-word
 330 * cpumasks and nodemasks.
 331 *
 332 * Accessing a task's cpuset should be done in accordance with the
 333 * guidelines for accessing subsystem state in kernel/cgroup.c
 334 */
 335
 336DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem);
 337
 338void cpuset_read_lock(void)
 339{
 340	percpu_down_read(&cpuset_rwsem);
 341}
 342
 343void cpuset_read_unlock(void)
 344{
 345	percpu_up_read(&cpuset_rwsem);
 346}
 347
 348static DEFINE_SPINLOCK(callback_lock);
 349
 
 
 
 
 
 
 
 
 
 
 350static struct workqueue_struct *cpuset_migrate_mm_wq;
 351
 
 
 
 
 
 
 
 
 
 
 
 
 
 352/*
 353 * CPU / memory hotplug is handled asynchronously.
 
 354 */
 355static void cpuset_hotplug_workfn(struct work_struct *work);
 356static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
 
 
 
 
 
 
 357
 358static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
 
 
 
 
 
 
 
 
 
 
 
 359
 360/*
 361 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
 362 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
 363 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
 364 * With v2 behavior, "cpus" and "mems" are always what the users have
 365 * requested and won't be changed by hotplug events. Only the effective
 366 * cpus or mems will be affected.
 367 */
 368static inline bool is_in_v2_mode(void)
 369{
 370	return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
 371	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
 372}
 373
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 374/*
 375 * Return in pmask the portion of a cpusets's cpus_allowed that
 376 * are online.  If none are online, walk up the cpuset hierarchy
 377 * until we find one that does have some online cpus.
 
 378 *
 379 * One way or another, we guarantee to return some non-empty subset
 380 * of cpu_online_mask.
 381 *
 382 * Call with callback_lock or cpuset_mutex held.
 383 */
 384static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
 
 385{
 386	while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
 
 
 
 
 
 
 
 
 
 387		cs = parent_cs(cs);
 388		if (unlikely(!cs)) {
 389			/*
 390			 * The top cpuset doesn't have any online cpu as a
 391			 * consequence of a race between cpuset_hotplug_work
 392			 * and cpu hotplug notifier.  But we know the top
 393			 * cpuset's effective_cpus is on its way to to be
 394			 * identical to cpu_online_mask.
 395			 */
 396			cpumask_copy(pmask, cpu_online_mask);
 397			return;
 398		}
 399	}
 400	cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
 401}
 402
 403/*
 404 * Return in *pmask the portion of a cpusets's mems_allowed that
 405 * are online, with memory.  If none are online with memory, walk
 406 * up the cpuset hierarchy until we find one that does have some
 407 * online mems.  The top cpuset always has some mems online.
 408 *
 409 * One way or another, we guarantee to return some non-empty subset
 410 * of node_states[N_MEMORY].
 411 *
 412 * Call with callback_lock or cpuset_mutex held.
 413 */
 414static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
 415{
 416	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
 417		cs = parent_cs(cs);
 418	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
 419}
 420
 421/*
 422 * update task's spread flag if cpuset's page/slab spread flag is set
 423 *
 424 * Call with callback_lock or cpuset_mutex held.
 425 */
 426static void cpuset_update_task_spread_flag(struct cpuset *cs,
 427					struct task_struct *tsk)
 428{
 429	if (is_spread_page(cs))
 430		task_set_spread_page(tsk);
 431	else
 432		task_clear_spread_page(tsk);
 433
 434	if (is_spread_slab(cs))
 435		task_set_spread_slab(tsk);
 436	else
 437		task_clear_spread_slab(tsk);
 438}
 439
 440/*
 441 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 442 *
 443 * One cpuset is a subset of another if all its allowed CPUs and
 444 * Memory Nodes are a subset of the other, and its exclusive flags
 445 * are only set if the other's are set.  Call holding cpuset_mutex.
 446 */
 447
 448static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
 449{
 450	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
 451		nodes_subset(p->mems_allowed, q->mems_allowed) &&
 452		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
 453		is_mem_exclusive(p) <= is_mem_exclusive(q);
 454}
 455
 456/**
 457 * alloc_cpumasks - allocate three cpumasks for cpuset
 458 * @cs:  the cpuset that have cpumasks to be allocated.
 459 * @tmp: the tmpmasks structure pointer
 460 * Return: 0 if successful, -ENOMEM otherwise.
 461 *
 462 * Only one of the two input arguments should be non-NULL.
 463 */
 464static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
 465{
 466	cpumask_var_t *pmask1, *pmask2, *pmask3;
 467
 468	if (cs) {
 469		pmask1 = &cs->cpus_allowed;
 470		pmask2 = &cs->effective_cpus;
 471		pmask3 = &cs->subparts_cpus;
 
 472	} else {
 473		pmask1 = &tmp->new_cpus;
 474		pmask2 = &tmp->addmask;
 475		pmask3 = &tmp->delmask;
 
 476	}
 477
 478	if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
 479		return -ENOMEM;
 480
 481	if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
 482		goto free_one;
 483
 484	if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
 485		goto free_two;
 486
 
 
 
 
 487	return 0;
 488
 
 
 489free_two:
 490	free_cpumask_var(*pmask2);
 491free_one:
 492	free_cpumask_var(*pmask1);
 493	return -ENOMEM;
 494}
 495
 496/**
 497 * free_cpumasks - free cpumasks in a tmpmasks structure
 498 * @cs:  the cpuset that have cpumasks to be free.
 499 * @tmp: the tmpmasks structure pointer
 500 */
 501static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
 502{
 503	if (cs) {
 504		free_cpumask_var(cs->cpus_allowed);
 505		free_cpumask_var(cs->effective_cpus);
 506		free_cpumask_var(cs->subparts_cpus);
 
 507	}
 508	if (tmp) {
 509		free_cpumask_var(tmp->new_cpus);
 510		free_cpumask_var(tmp->addmask);
 511		free_cpumask_var(tmp->delmask);
 512	}
 513}
 514
 515/**
 516 * alloc_trial_cpuset - allocate a trial cpuset
 517 * @cs: the cpuset that the trial cpuset duplicates
 518 */
 519static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
 520{
 521	struct cpuset *trial;
 522
 523	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
 524	if (!trial)
 525		return NULL;
 526
 527	if (alloc_cpumasks(trial, NULL)) {
 528		kfree(trial);
 529		return NULL;
 530	}
 531
 532	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
 533	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
 
 
 534	return trial;
 535}
 536
 537/**
 538 * free_cpuset - free the cpuset
 539 * @cs: the cpuset to be freed
 540 */
 541static inline void free_cpuset(struct cpuset *cs)
 542{
 543	free_cpumasks(cs, NULL);
 544	kfree(cs);
 545}
 546
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 547/*
 548 * validate_change() - Used to validate that any proposed cpuset change
 549 *		       follows the structural rules for cpusets.
 550 *
 551 * If we replaced the flag and mask values of the current cpuset
 552 * (cur) with those values in the trial cpuset (trial), would
 553 * our various subset and exclusive rules still be valid?  Presumes
 554 * cpuset_mutex held.
 555 *
 556 * 'cur' is the address of an actual, in-use cpuset.  Operations
 557 * such as list traversal that depend on the actual address of the
 558 * cpuset in the list must use cur below, not trial.
 559 *
 560 * 'trial' is the address of bulk structure copy of cur, with
 561 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 562 * or flags changed to new, trial values.
 563 *
 564 * Return 0 if valid, -errno if not.
 565 */
 566
 567static int validate_change(struct cpuset *cur, struct cpuset *trial)
 568{
 569	struct cgroup_subsys_state *css;
 570	struct cpuset *c, *par;
 571	int ret;
 572
 573	rcu_read_lock();
 574
 575	/* Each of our child cpusets must be a subset of us */
 576	ret = -EBUSY;
 577	cpuset_for_each_child(c, css, cur)
 578		if (!is_cpuset_subset(c, trial))
 579			goto out;
 580
 581	/* Remaining checks don't apply to root cpuset */
 582	ret = 0;
 583	if (cur == &top_cpuset)
 584		goto out;
 585
 586	par = parent_cs(cur);
 587
 588	/* On legacy hiearchy, we must be a subset of our parent cpuset. */
 589	ret = -EACCES;
 590	if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
 591		goto out;
 592
 593	/*
 594	 * If either I or some sibling (!= me) is exclusive, we can't
 595	 * overlap
 596	 */
 597	ret = -EINVAL;
 598	cpuset_for_each_child(c, css, par) {
 599		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
 600		    c != cur &&
 601		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
 602			goto out;
 603		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
 604		    c != cur &&
 605		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
 606			goto out;
 607	}
 608
 609	/*
 610	 * Cpusets with tasks - existing or newly being attached - can't
 611	 * be changed to have empty cpus_allowed or mems_allowed.
 612	 */
 613	ret = -ENOSPC;
 614	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
 615		if (!cpumask_empty(cur->cpus_allowed) &&
 616		    cpumask_empty(trial->cpus_allowed))
 617			goto out;
 618		if (!nodes_empty(cur->mems_allowed) &&
 619		    nodes_empty(trial->mems_allowed))
 620			goto out;
 621	}
 622
 623	/*
 624	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
 625	 * tasks.
 
 
 
 
 
 
 
 
 
 
 
 
 
 626	 */
 627	ret = -EBUSY;
 628	if (is_cpu_exclusive(cur) &&
 629	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
 630				       trial->cpus_allowed))
 631		goto out;
 632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 633	ret = 0;
 634out:
 635	rcu_read_unlock();
 636	return ret;
 637}
 638
 639#ifdef CONFIG_SMP
 640/*
 641 * Helper routine for generate_sched_domains().
 642 * Do cpusets a, b have overlapping effective cpus_allowed masks?
 643 */
 644static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
 645{
 646	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
 647}
 648
 649static void
 650update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
 651{
 652	if (dattr->relax_domain_level < c->relax_domain_level)
 653		dattr->relax_domain_level = c->relax_domain_level;
 654	return;
 655}
 656
 657static void update_domain_attr_tree(struct sched_domain_attr *dattr,
 658				    struct cpuset *root_cs)
 659{
 660	struct cpuset *cp;
 661	struct cgroup_subsys_state *pos_css;
 662
 663	rcu_read_lock();
 664	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
 665		/* skip the whole subtree if @cp doesn't have any CPU */
 666		if (cpumask_empty(cp->cpus_allowed)) {
 667			pos_css = css_rightmost_descendant(pos_css);
 668			continue;
 669		}
 670
 671		if (is_sched_load_balance(cp))
 672			update_domain_attr(dattr, cp);
 673	}
 674	rcu_read_unlock();
 675}
 676
 677/* Must be called with cpuset_mutex held.  */
 678static inline int nr_cpusets(void)
 679{
 680	/* jump label reference count + the top-level cpuset */
 681	return static_key_count(&cpusets_enabled_key.key) + 1;
 682}
 683
 684/*
 685 * generate_sched_domains()
 686 *
 687 * This function builds a partial partition of the systems CPUs
 688 * A 'partial partition' is a set of non-overlapping subsets whose
 689 * union is a subset of that set.
 690 * The output of this function needs to be passed to kernel/sched/core.c
 691 * partition_sched_domains() routine, which will rebuild the scheduler's
 692 * load balancing domains (sched domains) as specified by that partial
 693 * partition.
 694 *
 695 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
 696 * for a background explanation of this.
 697 *
 698 * Does not return errors, on the theory that the callers of this
 699 * routine would rather not worry about failures to rebuild sched
 700 * domains when operating in the severe memory shortage situations
 701 * that could cause allocation failures below.
 702 *
 703 * Must be called with cpuset_mutex held.
 704 *
 705 * The three key local variables below are:
 706 *    cp - cpuset pointer, used (together with pos_css) to perform a
 707 *	   top-down scan of all cpusets. For our purposes, rebuilding
 708 *	   the schedulers sched domains, we can ignore !is_sched_load_
 709 *	   balance cpusets.
 710 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 711 *	   that need to be load balanced, for convenient iterative
 712 *	   access by the subsequent code that finds the best partition,
 713 *	   i.e the set of domains (subsets) of CPUs such that the
 714 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 715 *	   is a subset of one of these domains, while there are as
 716 *	   many such domains as possible, each as small as possible.
 717 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
 718 *	   the kernel/sched/core.c routine partition_sched_domains() in a
 719 *	   convenient format, that can be easily compared to the prior
 720 *	   value to determine what partition elements (sched domains)
 721 *	   were changed (added or removed.)
 722 *
 723 * Finding the best partition (set of domains):
 724 *	The triple nested loops below over i, j, k scan over the
 725 *	load balanced cpusets (using the array of cpuset pointers in
 726 *	csa[]) looking for pairs of cpusets that have overlapping
 727 *	cpus_allowed, but which don't have the same 'pn' partition
 728 *	number and gives them in the same partition number.  It keeps
 729 *	looping on the 'restart' label until it can no longer find
 730 *	any such pairs.
 731 *
 732 *	The union of the cpus_allowed masks from the set of
 733 *	all cpusets having the same 'pn' value then form the one
 734 *	element of the partition (one sched domain) to be passed to
 735 *	partition_sched_domains().
 736 */
 737static int generate_sched_domains(cpumask_var_t **domains,
 738			struct sched_domain_attr **attributes)
 739{
 740	struct cpuset *cp;	/* top-down scan of cpusets */
 741	struct cpuset **csa;	/* array of all cpuset ptrs */
 742	int csn;		/* how many cpuset ptrs in csa so far */
 743	int i, j, k;		/* indices for partition finding loops */
 744	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
 745	struct sched_domain_attr *dattr;  /* attributes for custom domains */
 746	int ndoms = 0;		/* number of sched domains in result */
 747	int nslot;		/* next empty doms[] struct cpumask slot */
 748	struct cgroup_subsys_state *pos_css;
 749	bool root_load_balance = is_sched_load_balance(&top_cpuset);
 
 
 750
 751	doms = NULL;
 752	dattr = NULL;
 753	csa = NULL;
 754
 755	/* Special case for the 99% of systems with one, full, sched domain */
 756	if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
 
 757		ndoms = 1;
 758		doms = alloc_sched_domains(ndoms);
 759		if (!doms)
 760			goto done;
 761
 762		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
 763		if (dattr) {
 764			*dattr = SD_ATTR_INIT;
 765			update_domain_attr_tree(dattr, &top_cpuset);
 766		}
 767		cpumask_and(doms[0], top_cpuset.effective_cpus,
 768			    housekeeping_cpumask(HK_FLAG_DOMAIN));
 769
 770		goto done;
 771	}
 772
 773	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
 774	if (!csa)
 775		goto done;
 776	csn = 0;
 777
 778	rcu_read_lock();
 779	if (root_load_balance)
 780		csa[csn++] = &top_cpuset;
 781	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
 782		if (cp == &top_cpuset)
 783			continue;
 
 
 
 
 784		/*
 
 785		 * Continue traversing beyond @cp iff @cp has some CPUs and
 786		 * isn't load balancing.  The former is obvious.  The
 787		 * latter: All child cpusets contain a subset of the
 788		 * parent's cpus, so just skip them, and then we call
 789		 * update_domain_attr_tree() to calc relax_domain_level of
 790		 * the corresponding sched domain.
 791		 *
 792		 * If root is load-balancing, we can skip @cp if it
 793		 * is a subset of the root's effective_cpus.
 794		 */
 795		if (!cpumask_empty(cp->cpus_allowed) &&
 796		    !(is_sched_load_balance(cp) &&
 797		      cpumask_intersects(cp->cpus_allowed,
 798					 housekeeping_cpumask(HK_FLAG_DOMAIN))))
 799			continue;
 800
 801		if (root_load_balance &&
 802		    cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
 803			continue;
 
 
 
 
 804
 805		if (is_sched_load_balance(cp) &&
 
 
 
 
 
 806		    !cpumask_empty(cp->effective_cpus))
 807			csa[csn++] = cp;
 808
 809		/* skip @cp's subtree if not a partition root */
 810		if (!is_partition_root(cp))
 
 
 
 811			pos_css = css_rightmost_descendant(pos_css);
 812	}
 813	rcu_read_unlock();
 814
 
 
 
 
 
 
 
 815	for (i = 0; i < csn; i++)
 816		csa[i]->pn = i;
 817	ndoms = csn;
 818
 819restart:
 820	/* Find the best partition (set of sched domains) */
 821	for (i = 0; i < csn; i++) {
 822		struct cpuset *a = csa[i];
 823		int apn = a->pn;
 824
 825		for (j = 0; j < csn; j++) {
 826			struct cpuset *b = csa[j];
 827			int bpn = b->pn;
 828
 829			if (apn != bpn && cpusets_overlap(a, b)) {
 830				for (k = 0; k < csn; k++) {
 831					struct cpuset *c = csa[k];
 832
 833					if (c->pn == bpn)
 834						c->pn = apn;
 835				}
 836				ndoms--;	/* one less element */
 837				goto restart;
 838			}
 839		}
 840	}
 841
 
 
 
 
 
 
 842	/*
 843	 * Now we know how many domains to create.
 844	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
 845	 */
 846	doms = alloc_sched_domains(ndoms);
 847	if (!doms)
 848		goto done;
 849
 850	/*
 851	 * The rest of the code, including the scheduler, can deal with
 852	 * dattr==NULL case. No need to abort if alloc fails.
 853	 */
 854	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
 855			      GFP_KERNEL);
 856
 857	for (nslot = 0, i = 0; i < csn; i++) {
 858		struct cpuset *a = csa[i];
 859		struct cpumask *dp;
 860		int apn = a->pn;
 861
 862		if (apn < 0) {
 863			/* Skip completed partitions */
 864			continue;
 
 
 
 
 
 
 
 
 
 
 865		}
 
 
 866
 867		dp = doms[nslot];
 868
 869		if (nslot == ndoms) {
 870			static int warnings = 10;
 871			if (warnings) {
 872				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
 873					nslot, ndoms, csn, i, apn);
 874				warnings--;
 875			}
 876			continue;
 877		}
 878
 879		cpumask_clear(dp);
 880		if (dattr)
 881			*(dattr + nslot) = SD_ATTR_INIT;
 882		for (j = i; j < csn; j++) {
 883			struct cpuset *b = csa[j];
 
 884
 885			if (apn == b->pn) {
 886				cpumask_or(dp, dp, b->effective_cpus);
 887				cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
 
 
 
 
 
 888				if (dattr)
 889					update_domain_attr_tree(dattr + nslot, b);
 890
 891				/* Done with this partition */
 892				b->pn = -1;
 893			}
 894		}
 895		nslot++;
 
 896	}
 897	BUG_ON(nslot != ndoms);
 898
 899done:
 900	kfree(csa);
 901
 902	/*
 903	 * Fallback to the default domain if kmalloc() failed.
 904	 * See comments in partition_sched_domains().
 905	 */
 906	if (doms == NULL)
 907		ndoms = 1;
 908
 909	*domains    = doms;
 910	*attributes = dattr;
 911	return ndoms;
 912}
 913
 914static void update_tasks_root_domain(struct cpuset *cs)
 915{
 916	struct css_task_iter it;
 917	struct task_struct *task;
 918
 
 
 
 919	css_task_iter_start(&cs->css, 0, &it);
 920
 921	while ((task = css_task_iter_next(&it)))
 922		dl_add_task_root_domain(task);
 923
 924	css_task_iter_end(&it);
 925}
 926
 927static void rebuild_root_domains(void)
 928{
 929	struct cpuset *cs = NULL;
 930	struct cgroup_subsys_state *pos_css;
 931
 932	percpu_rwsem_assert_held(&cpuset_rwsem);
 933	lockdep_assert_cpus_held();
 934	lockdep_assert_held(&sched_domains_mutex);
 935
 936	rcu_read_lock();
 937
 938	/*
 939	 * Clear default root domain DL accounting, it will be computed again
 940	 * if a task belongs to it.
 941	 */
 942	dl_clear_root_domain(&def_root_domain);
 943
 944	cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
 945
 946		if (cpumask_empty(cs->effective_cpus)) {
 947			pos_css = css_rightmost_descendant(pos_css);
 948			continue;
 949		}
 950
 951		css_get(&cs->css);
 952
 953		rcu_read_unlock();
 954
 955		update_tasks_root_domain(cs);
 956
 957		rcu_read_lock();
 958		css_put(&cs->css);
 959	}
 960	rcu_read_unlock();
 961}
 962
 963static void
 964partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
 965				    struct sched_domain_attr *dattr_new)
 966{
 967	mutex_lock(&sched_domains_mutex);
 968	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
 969	rebuild_root_domains();
 970	mutex_unlock(&sched_domains_mutex);
 971}
 972
 973/*
 974 * Rebuild scheduler domains.
 975 *
 976 * If the flag 'sched_load_balance' of any cpuset with non-empty
 977 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 978 * which has that flag enabled, or if any cpuset with a non-empty
 979 * 'cpus' is removed, then call this routine to rebuild the
 980 * scheduler's dynamic sched domains.
 981 *
 982 * Call with cpuset_mutex held.  Takes get_online_cpus().
 983 */
 984static void rebuild_sched_domains_locked(void)
 985{
 
 986	struct sched_domain_attr *attr;
 987	cpumask_var_t *doms;
 
 988	int ndoms;
 989
 990	lockdep_assert_cpus_held();
 991	percpu_rwsem_assert_held(&cpuset_rwsem);
 
 992
 993	/*
 994	 * We have raced with CPU hotplug. Don't do anything to avoid
 995	 * passing doms with offlined cpu to partition_sched_domains().
 996	 * Anyways, hotplug work item will rebuild sched domains.
 
 
 
 
 997	 */
 998	if (!top_cpuset.nr_subparts_cpus &&
 999	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1000		return;
1001
1002	if (top_cpuset.nr_subparts_cpus &&
1003	   !cpumask_subset(top_cpuset.effective_cpus, cpu_active_mask))
1004		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1005
1006	/* Generate domain masks and attrs */
1007	ndoms = generate_sched_domains(&doms, &attr);
1008
1009	/* Have scheduler rebuild the domains */
1010	partition_and_rebuild_sched_domains(ndoms, doms, attr);
1011}
1012#else /* !CONFIG_SMP */
1013static void rebuild_sched_domains_locked(void)
1014{
1015}
1016#endif /* CONFIG_SMP */
1017
 
 
 
 
 
 
 
1018void rebuild_sched_domains(void)
1019{
1020	get_online_cpus();
1021	percpu_down_write(&cpuset_rwsem);
1022	rebuild_sched_domains_locked();
1023	percpu_up_write(&cpuset_rwsem);
1024	put_online_cpus();
1025}
1026
1027/**
1028 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1029 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
 
1030 *
1031 * Iterate through each task of @cs updating its cpus_allowed to the
1032 * effective cpuset's.  As this function is called with cpuset_mutex held,
1033 * cpuset membership stays stable.
 
 
1034 */
1035static void update_tasks_cpumask(struct cpuset *cs)
1036{
1037	struct css_task_iter it;
1038	struct task_struct *task;
 
1039
1040	css_task_iter_start(&cs->css, 0, &it);
1041	while ((task = css_task_iter_next(&it)))
1042		set_cpus_allowed_ptr(task, cs->effective_cpus);
 
 
 
 
 
 
 
 
 
 
 
 
 
1043	css_task_iter_end(&it);
1044}
1045
1046/**
1047 * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1048 * @new_cpus: the temp variable for the new effective_cpus mask
1049 * @cs: the cpuset the need to recompute the new effective_cpus mask
1050 * @parent: the parent cpuset
1051 *
1052 * If the parent has subpartition CPUs, include them in the list of
1053 * allowable CPUs in computing the new effective_cpus mask. Since offlined
1054 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1055 * to mask those out.
1056 */
1057static void compute_effective_cpumask(struct cpumask *new_cpus,
1058				      struct cpuset *cs, struct cpuset *parent)
1059{
1060	if (parent->nr_subparts_cpus) {
1061		cpumask_or(new_cpus, parent->effective_cpus,
1062			   parent->subparts_cpus);
1063		cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
1064		cpumask_and(new_cpus, new_cpus, cpu_active_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1065	} else {
1066		cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
 
 
 
 
 
 
 
1067	}
 
 
 
1068}
1069
1070/*
1071 * Commands for update_parent_subparts_cpumask
1072 */
1073enum subparts_cmd {
1074	partcmd_enable,		/* Enable partition root	 */
1075	partcmd_disable,	/* Disable partition root	 */
1076	partcmd_update,		/* Update parent's subparts_cpus */
1077};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1078
1079/**
1080 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1081 * @cpuset:  The cpuset that requests change in partition root state
1082 * @cmd:     Partition root state change command
1083 * @newmask: Optional new cpumask for partcmd_update
1084 * @tmp:     Temporary addmask and delmask
1085 * Return:   0, 1 or an error code
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1086 *
1087 * For partcmd_enable, the cpuset is being transformed from a non-partition
1088 * root to a partition root. The cpus_allowed mask of the given cpuset will
1089 * be put into parent's subparts_cpus and taken away from parent's
1090 * effective_cpus. The function will return 0 if all the CPUs listed in
1091 * cpus_allowed can be granted or an error code will be returned.
1092 *
1093 * For partcmd_disable, the cpuset is being transofrmed from a partition
1094 * root back to a non-partition root. any CPUs in cpus_allowed that are in
1095 * parent's subparts_cpus will be taken away from that cpumask and put back
1096 * into parent's effective_cpus. 0 should always be returned.
1097 *
1098 * For partcmd_update, if the optional newmask is specified, the cpu
1099 * list is to be changed from cpus_allowed to newmask. Otherwise,
1100 * cpus_allowed is assumed to remain the same. The cpuset should either
1101 * be a partition root or an invalid partition root. The partition root
1102 * state may change if newmask is NULL and none of the requested CPUs can
1103 * be granted by the parent. The function will return 1 if changes to
1104 * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1105 * Error code should only be returned when newmask is non-NULL.
1106 *
1107 * The partcmd_enable and partcmd_disable commands are used by
1108 * update_prstate(). The partcmd_update command is used by
1109 * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1110 * newmask set.
1111 *
1112 * The checking is more strict when enabling partition root than the
1113 * other two commands.
1114 *
1115 * Because of the implicit cpu exclusive nature of a partition root,
1116 * cpumask changes that violates the cpu exclusivity rule will not be
1117 * permitted when checked by validate_change(). The validate_change()
1118 * function will also prevent any changes to the cpu list if it is not
1119 * a superset of children's cpu lists.
1120 */
1121static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
1122					  struct cpumask *newmask,
1123					  struct tmpmasks *tmp)
1124{
1125	struct cpuset *parent = parent_cs(cpuset);
1126	int adding;	/* Moving cpus from effective_cpus to subparts_cpus */
1127	int deleting;	/* Moving cpus from subparts_cpus to effective_cpus */
1128	bool part_error = false;	/* Partition error? */
1129
1130	percpu_rwsem_assert_held(&cpuset_rwsem);
 
 
 
 
 
 
 
 
 
 
 
 
 
1131
1132	/*
1133	 * The parent must be a partition root.
1134	 * The new cpumask, if present, or the current cpus_allowed must
1135	 * not be empty.
1136	 */
1137	if (!is_partition_root(parent) ||
1138	   (newmask && cpumask_empty(newmask)) ||
1139	   (!newmask && cpumask_empty(cpuset->cpus_allowed)))
1140		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1141
1142	/*
1143	 * Enabling/disabling partition root is not allowed if there are
1144	 * online children.
 
1145	 */
1146	if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css))
1147		return -EBUSY;
 
 
 
 
 
 
 
 
 
 
1148
1149	/*
1150	 * Enabling partition root is not allowed if not all the CPUs
1151	 * can be granted from parent's effective_cpus or at least one
1152	 * CPU will be left after that.
1153	 */
1154	if ((cmd == partcmd_enable) &&
1155	   (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) ||
1156	     cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus)))
1157		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1158
1159	/*
1160	 * A cpumask update cannot make parent's effective_cpus become empty.
 
1161	 */
1162	adding = deleting = false;
1163	if (cmd == partcmd_enable) {
1164		cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
1165		adding = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1166	} else if (cmd == partcmd_disable) {
1167		deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1168				       parent->subparts_cpus);
 
 
 
 
 
 
 
1169	} else if (newmask) {
1170		/*
 
 
 
 
 
 
 
 
 
 
1171		 * partcmd_update with newmask:
1172		 *
1173		 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1174		 * addmask = newmask & parent->effective_cpus
1175		 *		     & ~parent->subparts_cpus
1176		 */
1177		cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask);
1178		deleting = cpumask_and(tmp->delmask, tmp->delmask,
1179				       parent->subparts_cpus);
1180
1181		cpumask_and(tmp->addmask, newmask, parent->effective_cpus);
1182		adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1183					parent->subparts_cpus);
1184		/*
1185		 * Return error if the new effective_cpus could become empty.
1186		 */
1187		if (adding &&
1188		    cpumask_equal(parent->effective_cpus, tmp->addmask)) {
1189			if (!deleting)
1190				return -EINVAL;
1191			/*
1192			 * As some of the CPUs in subparts_cpus might have
1193			 * been offlined, we need to compute the real delmask
1194			 * to confirm that.
1195			 */
1196			if (!cpumask_and(tmp->addmask, tmp->delmask,
1197					 cpu_active_mask))
1198				return -EINVAL;
1199			cpumask_copy(tmp->addmask, parent->effective_cpus);
 
 
 
 
 
 
 
1200		}
1201	} else {
1202		/*
1203		 * partcmd_update w/o newmask:
 
 
 
 
 
 
1204		 *
1205		 * addmask = cpus_allowed & parent->effectiveb_cpus
 
1206		 *
1207		 * Note that parent's subparts_cpus may have been
1208		 * pre-shrunk in case there is a change in the cpu list.
1209		 * So no deletion is needed.
1210		 */
1211		adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed,
1212				     parent->effective_cpus);
1213		part_error = cpumask_equal(tmp->addmask,
1214					   parent->effective_cpus);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1215	}
1216
 
 
 
 
1217	if (cmd == partcmd_update) {
1218		int prev_prs = cpuset->partition_root_state;
1219
1220		/*
1221		 * Check for possible transition between PRS_ENABLED
1222		 * and PRS_ERROR.
1223		 */
1224		switch (cpuset->partition_root_state) {
1225		case PRS_ENABLED:
1226			if (part_error)
1227				cpuset->partition_root_state = PRS_ERROR;
 
 
 
1228			break;
1229		case PRS_ERROR:
1230			if (!part_error)
1231				cpuset->partition_root_state = PRS_ENABLED;
 
 
 
1232			break;
1233		}
1234		/*
1235		 * Set part_error if previously in invalid state.
1236		 */
1237		part_error = (prev_prs == PRS_ERROR);
1238	}
1239
1240	if (!part_error && (cpuset->partition_root_state == PRS_ERROR))
1241		return 0;	/* Nothing need to be done */
1242
1243	if (cpuset->partition_root_state == PRS_ERROR) {
1244		/*
1245		 * Remove all its cpus from parent's subparts_cpus.
1246		 */
1247		adding = false;
1248		deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1249				       parent->subparts_cpus);
 
 
 
 
1250	}
1251
1252	if (!adding && !deleting)
1253		return 0;
1254
1255	/*
1256	 * Change the parent's subparts_cpus.
 
 
1257	 * Newly added CPUs will be removed from effective_cpus and
1258	 * newly deleted ones will be added back to effective_cpus.
1259	 */
1260	spin_lock_irq(&callback_lock);
1261	if (adding) {
1262		cpumask_or(parent->subparts_cpus,
1263			   parent->subparts_cpus, tmp->addmask);
1264		cpumask_andnot(parent->effective_cpus,
1265			       parent->effective_cpus, tmp->addmask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1266	}
1267	if (deleting) {
1268		cpumask_andnot(parent->subparts_cpus,
1269			       parent->subparts_cpus, tmp->delmask);
1270		/*
1271		 * Some of the CPUs in subparts_cpus might have been offlined.
1272		 */
1273		cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1274		cpumask_or(parent->effective_cpus,
1275			   parent->effective_cpus, tmp->delmask);
1276	}
1277
1278	parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1279	spin_unlock_irq(&callback_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1280
1281	return cmd == partcmd_update;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1282}
1283
1284/*
1285 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1286 * @cs:  the cpuset to consider
1287 * @tmp: temp variables for calculating effective_cpus & partition setup
 
1288 *
1289 * When congifured cpumask is changed, the effective cpumasks of this cpuset
1290 * and all its descendants need to be updated.
1291 *
1292 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
1293 *
1294 * Called with cpuset_mutex held
1295 */
1296static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
 
1297{
1298	struct cpuset *cp;
1299	struct cgroup_subsys_state *pos_css;
1300	bool need_rebuild_sched_domains = false;
 
1301
1302	rcu_read_lock();
1303	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1304		struct cpuset *parent = parent_cs(cp);
 
 
1305
1306		compute_effective_cpumask(tmp->new_cpus, cp, parent);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1307
1308		/*
1309		 * If it becomes empty, inherit the effective mask of the
1310		 * parent, which is guaranteed to have some CPUs.
 
 
1311		 */
1312		if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1313			cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1314			if (!cp->use_parent_ecpus) {
1315				cp->use_parent_ecpus = true;
1316				parent->child_ecpus_count++;
1317			}
1318		} else if (cp->use_parent_ecpus) {
1319			cp->use_parent_ecpus = false;
1320			WARN_ON_ONCE(!parent->child_ecpus_count);
1321			parent->child_ecpus_count--;
1322		}
1323
1324		/*
1325		 * Skip the whole subtree if the cpumask remains the same
1326		 * and has no partition root state.
 
 
 
1327		 */
1328		if (!cp->partition_root_state &&
1329		    cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
 
 
1330			pos_css = css_rightmost_descendant(pos_css);
1331			continue;
1332		}
1333
 
1334		/*
1335		 * update_parent_subparts_cpumask() should have been called
1336		 * for cs already in update_cpumask(). We should also call
1337		 * update_tasks_cpumask() again for tasks in the parent
1338		 * cpuset if the parent's subparts_cpus changes.
1339		 */
1340		if ((cp != cs) && cp->partition_root_state) {
1341			switch (parent->partition_root_state) {
1342			case PRS_DISABLED:
1343				/*
1344				 * If parent is not a partition root or an
1345				 * invalid partition root, clear the state
1346				 * state and the CS_CPU_EXCLUSIVE flag.
1347				 */
1348				WARN_ON_ONCE(cp->partition_root_state
1349					     != PRS_ERROR);
1350				cp->partition_root_state = 0;
1351
1352				/*
1353				 * clear_bit() is an atomic operation and
1354				 * readers aren't interested in the state
1355				 * of CS_CPU_EXCLUSIVE anyway. So we can
1356				 * just update the flag without holding
1357				 * the callback_lock.
1358				 */
1359				clear_bit(CS_CPU_EXCLUSIVE, &cp->flags);
1360				break;
1361
1362			case PRS_ENABLED:
1363				if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp))
1364					update_tasks_cpumask(parent);
1365				break;
1366
1367			case PRS_ERROR:
1368				/*
1369				 * When parent is invalid, it has to be too.
 
 
1370				 */
1371				cp->partition_root_state = PRS_ERROR;
1372				if (cp->nr_subparts_cpus) {
1373					cp->nr_subparts_cpus = 0;
1374					cpumask_clear(cp->subparts_cpus);
1375				}
1376				break;
1377			}
1378		}
1379
1380		if (!css_tryget_online(&cp->css))
1381			continue;
1382		rcu_read_unlock();
1383
1384		spin_lock_irq(&callback_lock);
1385
1386		cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1387		if (cp->nr_subparts_cpus &&
1388		   (cp->partition_root_state != PRS_ENABLED)) {
1389			cp->nr_subparts_cpus = 0;
1390			cpumask_clear(cp->subparts_cpus);
1391		} else if (cp->nr_subparts_cpus) {
1392			/*
1393			 * Make sure that effective_cpus & subparts_cpus
1394			 * are mutually exclusive.
1395			 *
1396			 * In the unlikely event that effective_cpus
1397			 * becomes empty. we clear cp->nr_subparts_cpus and
1398			 * let its child partition roots to compete for
1399			 * CPUs again.
1400			 */
1401			cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1402				       cp->subparts_cpus);
1403			if (cpumask_empty(cp->effective_cpus)) {
1404				cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1405				cpumask_clear(cp->subparts_cpus);
1406				cp->nr_subparts_cpus = 0;
1407			} else if (!cpumask_subset(cp->subparts_cpus,
1408						   tmp->new_cpus)) {
1409				cpumask_andnot(cp->subparts_cpus,
1410					cp->subparts_cpus, tmp->new_cpus);
1411				cp->nr_subparts_cpus
1412					= cpumask_weight(cp->subparts_cpus);
1413			}
1414		}
 
 
 
 
 
 
 
 
 
 
 
 
 
1415		spin_unlock_irq(&callback_lock);
1416
 
 
1417		WARN_ON(!is_in_v2_mode() &&
1418			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1419
1420		update_tasks_cpumask(cp);
 
 
 
 
 
 
 
 
 
 
 
 
 
1421
1422		/*
1423		 * On legacy hierarchy, if the effective cpumask of any non-
1424		 * empty cpuset is changed, we need to rebuild sched domains.
1425		 * On default hierarchy, the cpuset needs to be a partition
1426		 * root as well.
1427		 */
1428		if (!cpumask_empty(cp->cpus_allowed) &&
1429		    is_sched_load_balance(cp) &&
1430		   (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1431		    is_partition_root(cp)))
1432			need_rebuild_sched_domains = true;
1433
1434		rcu_read_lock();
1435		css_put(&cp->css);
1436	}
1437	rcu_read_unlock();
1438
1439	if (need_rebuild_sched_domains)
1440		rebuild_sched_domains_locked();
1441}
1442
1443/**
1444 * update_sibling_cpumasks - Update siblings cpumasks
1445 * @parent:  Parent cpuset
1446 * @cs:      Current cpuset
1447 * @tmp:     Temp variables
1448 */
1449static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1450				    struct tmpmasks *tmp)
1451{
1452	struct cpuset *sibling;
1453	struct cgroup_subsys_state *pos_css;
1454
 
 
1455	/*
1456	 * Check all its siblings and call update_cpumasks_hier()
1457	 * if their use_parent_ecpus flag is set in order for them
1458	 * to use the right effective_cpus value.
 
 
 
 
 
 
 
1459	 */
1460	rcu_read_lock();
1461	cpuset_for_each_child(sibling, pos_css, parent) {
1462		if (sibling == cs)
1463			continue;
1464		if (!sibling->use_parent_ecpus)
 
 
 
 
 
 
1465			continue;
1466
1467		update_cpumasks_hier(sibling, tmp);
 
 
 
1468	}
1469	rcu_read_unlock();
1470}
1471
1472/**
1473 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1474 * @cs: the cpuset to consider
1475 * @trialcs: trial cpuset
1476 * @buf: buffer of cpu numbers written to this cpuset
1477 */
1478static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1479			  const char *buf)
1480{
1481	int retval;
1482	struct tmpmasks tmp;
 
 
 
 
1483
1484	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1485	if (cs == &top_cpuset)
1486		return -EACCES;
1487
1488	/*
1489	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
1490	 * Since cpulist_parse() fails on an empty mask, we special case
1491	 * that parsing.  The validate_change() call ensures that cpusets
1492	 * with tasks have cpus.
1493	 */
1494	if (!*buf) {
1495		cpumask_clear(trialcs->cpus_allowed);
 
 
1496	} else {
1497		retval = cpulist_parse(buf, trialcs->cpus_allowed);
1498		if (retval < 0)
1499			return retval;
1500
1501		if (!cpumask_subset(trialcs->cpus_allowed,
1502				    top_cpuset.cpus_allowed))
1503			return -EINVAL;
 
 
 
 
 
 
 
 
 
1504	}
1505
1506	/* Nothing to do if the cpus didn't change */
1507	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
1508		return 0;
1509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1510	retval = validate_change(cs, trialcs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1511	if (retval < 0)
1512		return retval;
 
 
 
 
1513
1514#ifdef CONFIG_CPUMASK_OFFSTACK
1515	/*
1516	 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1517	 * to allocated cpumasks.
1518	 */
1519	tmp.addmask  = trialcs->subparts_cpus;
1520	tmp.delmask  = trialcs->effective_cpus;
1521	tmp.new_cpus = trialcs->cpus_allowed;
1522#endif
1523
1524	if (cs->partition_root_state) {
1525		/* Cpumask of a partition root cannot be empty */
1526		if (cpumask_empty(trialcs->cpus_allowed))
1527			return -EINVAL;
1528		if (update_parent_subparts_cpumask(cs, partcmd_update,
1529					trialcs->cpus_allowed, &tmp) < 0)
1530			return -EINVAL;
 
 
 
 
 
 
 
 
 
 
1531	}
1532
1533	spin_lock_irq(&callback_lock);
1534	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1535
1536	/*
1537	 * Make sure that subparts_cpus is a subset of cpus_allowed.
 
1538	 */
1539	if (cs->nr_subparts_cpus) {
1540		cpumask_andnot(cs->subparts_cpus, cs->subparts_cpus,
1541			       cs->cpus_allowed);
1542		cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1543	}
1544	spin_unlock_irq(&callback_lock);
1545
1546	update_cpumasks_hier(cs, &tmp);
 
1547
1548	if (cs->partition_root_state) {
1549		struct cpuset *parent = parent_cs(cs);
 
 
 
 
 
 
 
 
 
1550
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1551		/*
1552		 * For partition root, update the cpumasks of sibling
1553		 * cpusets if they use parent's effective_cpus.
1554		 */
1555		if (parent->child_ecpus_count)
1556			update_sibling_cpumasks(parent, cs, &tmp);
1557	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1558	return 0;
1559}
1560
1561/*
1562 * Migrate memory region from one set of nodes to another.  This is
1563 * performed asynchronously as it can be called from process migration path
1564 * holding locks involved in process management.  All mm migrations are
1565 * performed in the queued order and can be waited for by flushing
1566 * cpuset_migrate_mm_wq.
1567 */
1568
1569struct cpuset_migrate_mm_work {
1570	struct work_struct	work;
1571	struct mm_struct	*mm;
1572	nodemask_t		from;
1573	nodemask_t		to;
1574};
1575
1576static void cpuset_migrate_mm_workfn(struct work_struct *work)
1577{
1578	struct cpuset_migrate_mm_work *mwork =
1579		container_of(work, struct cpuset_migrate_mm_work, work);
1580
1581	/* on a wq worker, no need to worry about %current's mems_allowed */
1582	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1583	mmput(mwork->mm);
1584	kfree(mwork);
1585}
1586
1587static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1588							const nodemask_t *to)
1589{
1590	struct cpuset_migrate_mm_work *mwork;
1591
 
 
 
 
 
1592	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1593	if (mwork) {
1594		mwork->mm = mm;
1595		mwork->from = *from;
1596		mwork->to = *to;
1597		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1598		queue_work(cpuset_migrate_mm_wq, &mwork->work);
1599	} else {
1600		mmput(mm);
1601	}
1602}
1603
1604static void cpuset_post_attach(void)
1605{
1606	flush_workqueue(cpuset_migrate_mm_wq);
1607}
1608
1609/*
1610 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1611 * @tsk: the task to change
1612 * @newmems: new nodes that the task will be set
1613 *
1614 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1615 * and rebind an eventual tasks' mempolicy. If the task is allocating in
1616 * parallel, it might temporarily see an empty intersection, which results in
1617 * a seqlock check and retry before OOM or allocation failure.
1618 */
1619static void cpuset_change_task_nodemask(struct task_struct *tsk,
1620					nodemask_t *newmems)
1621{
1622	task_lock(tsk);
1623
1624	local_irq_disable();
1625	write_seqcount_begin(&tsk->mems_allowed_seq);
1626
1627	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1628	mpol_rebind_task(tsk, newmems);
1629	tsk->mems_allowed = *newmems;
1630
1631	write_seqcount_end(&tsk->mems_allowed_seq);
1632	local_irq_enable();
1633
1634	task_unlock(tsk);
1635}
1636
1637static void *cpuset_being_rebound;
1638
1639/**
1640 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1641 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1642 *
1643 * Iterate through each task of @cs updating its mems_allowed to the
1644 * effective cpuset's.  As this function is called with cpuset_mutex held,
1645 * cpuset membership stays stable.
1646 */
1647static void update_tasks_nodemask(struct cpuset *cs)
1648{
1649	static nodemask_t newmems;	/* protected by cpuset_mutex */
1650	struct css_task_iter it;
1651	struct task_struct *task;
1652
1653	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1654
1655	guarantee_online_mems(cs, &newmems);
1656
1657	/*
1658	 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
1659	 * take while holding tasklist_lock.  Forks can happen - the
1660	 * mpol_dup() cpuset_being_rebound check will catch such forks,
1661	 * and rebind their vma mempolicies too.  Because we still hold
1662	 * the global cpuset_mutex, we know that no other rebind effort
1663	 * will be contending for the global variable cpuset_being_rebound.
1664	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1665	 * is idempotent.  Also migrate pages in each mm to new nodes.
1666	 */
1667	css_task_iter_start(&cs->css, 0, &it);
1668	while ((task = css_task_iter_next(&it))) {
1669		struct mm_struct *mm;
1670		bool migrate;
1671
1672		cpuset_change_task_nodemask(task, &newmems);
1673
1674		mm = get_task_mm(task);
1675		if (!mm)
1676			continue;
1677
1678		migrate = is_memory_migrate(cs);
1679
1680		mpol_rebind_mm(mm, &cs->mems_allowed);
1681		if (migrate)
1682			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1683		else
1684			mmput(mm);
1685	}
1686	css_task_iter_end(&it);
1687
1688	/*
1689	 * All the tasks' nodemasks have been updated, update
1690	 * cs->old_mems_allowed.
1691	 */
1692	cs->old_mems_allowed = newmems;
1693
1694	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1695	cpuset_being_rebound = NULL;
1696}
1697
1698/*
1699 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1700 * @cs: the cpuset to consider
1701 * @new_mems: a temp variable for calculating new effective_mems
1702 *
1703 * When configured nodemask is changed, the effective nodemasks of this cpuset
1704 * and all its descendants need to be updated.
1705 *
1706 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1707 *
1708 * Called with cpuset_mutex held
1709 */
1710static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1711{
1712	struct cpuset *cp;
1713	struct cgroup_subsys_state *pos_css;
1714
1715	rcu_read_lock();
1716	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1717		struct cpuset *parent = parent_cs(cp);
1718
1719		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1720
1721		/*
1722		 * If it becomes empty, inherit the effective mask of the
1723		 * parent, which is guaranteed to have some MEMs.
1724		 */
1725		if (is_in_v2_mode() && nodes_empty(*new_mems))
1726			*new_mems = parent->effective_mems;
1727
1728		/* Skip the whole subtree if the nodemask remains the same. */
1729		if (nodes_equal(*new_mems, cp->effective_mems)) {
1730			pos_css = css_rightmost_descendant(pos_css);
1731			continue;
1732		}
1733
1734		if (!css_tryget_online(&cp->css))
1735			continue;
1736		rcu_read_unlock();
1737
1738		spin_lock_irq(&callback_lock);
1739		cp->effective_mems = *new_mems;
1740		spin_unlock_irq(&callback_lock);
1741
1742		WARN_ON(!is_in_v2_mode() &&
1743			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1744
1745		update_tasks_nodemask(cp);
1746
1747		rcu_read_lock();
1748		css_put(&cp->css);
1749	}
1750	rcu_read_unlock();
1751}
1752
1753/*
1754 * Handle user request to change the 'mems' memory placement
1755 * of a cpuset.  Needs to validate the request, update the
1756 * cpusets mems_allowed, and for each task in the cpuset,
1757 * update mems_allowed and rebind task's mempolicy and any vma
1758 * mempolicies and if the cpuset is marked 'memory_migrate',
1759 * migrate the tasks pages to the new memory.
1760 *
1761 * Call with cpuset_mutex held. May take callback_lock during call.
1762 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1763 * lock each such tasks mm->mmap_lock, scan its vma's and rebind
1764 * their mempolicies to the cpusets new mems_allowed.
1765 */
1766static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1767			   const char *buf)
1768{
1769	int retval;
1770
1771	/*
1772	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1773	 * it's read-only
1774	 */
1775	if (cs == &top_cpuset) {
1776		retval = -EACCES;
1777		goto done;
1778	}
1779
1780	/*
1781	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1782	 * Since nodelist_parse() fails on an empty mask, we special case
1783	 * that parsing.  The validate_change() call ensures that cpusets
1784	 * with tasks have memory.
1785	 */
1786	if (!*buf) {
1787		nodes_clear(trialcs->mems_allowed);
1788	} else {
1789		retval = nodelist_parse(buf, trialcs->mems_allowed);
1790		if (retval < 0)
1791			goto done;
1792
1793		if (!nodes_subset(trialcs->mems_allowed,
1794				  top_cpuset.mems_allowed)) {
1795			retval = -EINVAL;
1796			goto done;
1797		}
1798	}
1799
1800	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1801		retval = 0;		/* Too easy - nothing to do */
1802		goto done;
1803	}
1804	retval = validate_change(cs, trialcs);
1805	if (retval < 0)
1806		goto done;
1807
 
 
1808	spin_lock_irq(&callback_lock);
1809	cs->mems_allowed = trialcs->mems_allowed;
1810	spin_unlock_irq(&callback_lock);
1811
1812	/* use trialcs->mems_allowed as a temp variable */
1813	update_nodemasks_hier(cs, &trialcs->mems_allowed);
1814done:
1815	return retval;
1816}
1817
1818bool current_cpuset_is_being_rebound(void)
1819{
1820	bool ret;
1821
1822	rcu_read_lock();
1823	ret = task_cs(current) == cpuset_being_rebound;
1824	rcu_read_unlock();
1825
1826	return ret;
1827}
1828
1829static int update_relax_domain_level(struct cpuset *cs, s64 val)
1830{
1831#ifdef CONFIG_SMP
1832	if (val < -1 || val >= sched_domain_level_max)
1833		return -EINVAL;
1834#endif
1835
1836	if (val != cs->relax_domain_level) {
1837		cs->relax_domain_level = val;
1838		if (!cpumask_empty(cs->cpus_allowed) &&
1839		    is_sched_load_balance(cs))
1840			rebuild_sched_domains_locked();
1841	}
1842
1843	return 0;
1844}
1845
1846/**
1847 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1848 * @cs: the cpuset in which each task's spread flags needs to be changed
1849 *
1850 * Iterate through each task of @cs updating its spread flags.  As this
1851 * function is called with cpuset_mutex held, cpuset membership stays
1852 * stable.
1853 */
1854static void update_tasks_flags(struct cpuset *cs)
1855{
1856	struct css_task_iter it;
1857	struct task_struct *task;
1858
1859	css_task_iter_start(&cs->css, 0, &it);
1860	while ((task = css_task_iter_next(&it)))
1861		cpuset_update_task_spread_flag(cs, task);
1862	css_task_iter_end(&it);
1863}
1864
1865/*
1866 * update_flag - read a 0 or a 1 in a file and update associated flag
1867 * bit:		the bit to update (see cpuset_flagbits_t)
1868 * cs:		the cpuset to update
1869 * turning_on: 	whether the flag is being set or cleared
1870 *
1871 * Call with cpuset_mutex held.
1872 */
1873
1874static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1875		       int turning_on)
1876{
1877	struct cpuset *trialcs;
1878	int balance_flag_changed;
1879	int spread_flag_changed;
1880	int err;
1881
1882	trialcs = alloc_trial_cpuset(cs);
1883	if (!trialcs)
1884		return -ENOMEM;
1885
1886	if (turning_on)
1887		set_bit(bit, &trialcs->flags);
1888	else
1889		clear_bit(bit, &trialcs->flags);
1890
1891	err = validate_change(cs, trialcs);
1892	if (err < 0)
1893		goto out;
1894
1895	balance_flag_changed = (is_sched_load_balance(cs) !=
1896				is_sched_load_balance(trialcs));
1897
1898	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1899			|| (is_spread_page(cs) != is_spread_page(trialcs)));
1900
1901	spin_lock_irq(&callback_lock);
1902	cs->flags = trialcs->flags;
1903	spin_unlock_irq(&callback_lock);
1904
1905	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1906		rebuild_sched_domains_locked();
 
 
 
 
1907
1908	if (spread_flag_changed)
1909		update_tasks_flags(cs);
1910out:
1911	free_cpuset(trialcs);
1912	return err;
1913}
1914
1915/*
1916 * update_prstate - update partititon_root_state
1917 * cs:	the cpuset to update
1918 * val: 0 - disabled, 1 - enabled
 
1919 *
1920 * Call with cpuset_mutex held.
1921 */
1922static int update_prstate(struct cpuset *cs, int val)
1923{
1924	int err;
1925	struct cpuset *parent = parent_cs(cs);
1926	struct tmpmasks tmp;
 
1927
1928	if ((val != 0) && (val != 1))
1929		return -EINVAL;
1930	if (val == cs->partition_root_state)
1931		return 0;
1932
1933	/*
1934	 * Cannot force a partial or invalid partition root to a full
1935	 * partition root.
1936	 */
1937	if (val && cs->partition_root_state)
1938		return -EINVAL;
1939
1940	if (alloc_cpumasks(NULL, &tmp))
1941		return -ENOMEM;
1942
1943	err = -EINVAL;
1944	if (!cs->partition_root_state) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1945		/*
1946		 * Turning on partition root requires setting the
1947		 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
1948		 * cannot be NULL.
1949		 */
1950		if (cpumask_empty(cs->cpus_allowed))
 
1951			goto out;
 
1952
1953		err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
1954		if (err)
1955			goto out;
1956
1957		err = update_parent_subparts_cpumask(cs, partcmd_enable,
1958						     NULL, &tmp);
1959		if (err) {
1960			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1961			goto out;
 
 
1962		}
1963		cs->partition_root_state = PRS_ENABLED;
 
 
 
 
1964	} else {
1965		/*
1966		 * Turning off partition root will clear the
1967		 * CS_CPU_EXCLUSIVE bit.
1968		 */
1969		if (cs->partition_root_state == PRS_ERROR) {
1970			cs->partition_root_state = 0;
1971			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1972			err = 0;
1973			goto out;
1974		}
1975
1976		err = update_parent_subparts_cpumask(cs, partcmd_disable,
1977						     NULL, &tmp);
1978		if (err)
1979			goto out;
1980
1981		cs->partition_root_state = 0;
1982
1983		/* Turning off CS_CPU_EXCLUSIVE will not return error */
1984		update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1985	}
1986
1987	/*
1988	 * Update cpumask of parent's tasks except when it is the top
1989	 * cpuset as some system daemons cannot be mapped to other CPUs.
1990	 */
1991	if (parent != &top_cpuset)
1992		update_tasks_cpumask(parent);
 
 
1993
1994	if (parent->child_ecpus_count)
1995		update_sibling_cpumasks(parent, cs, &tmp);
 
 
 
 
 
 
 
1996
1997	rebuild_sched_domains_locked();
1998out:
1999	free_cpumasks(NULL, &tmp);
2000	return err;
2001}
2002
2003/*
2004 * Frequency meter - How fast is some event occurring?
2005 *
2006 * These routines manage a digitally filtered, constant time based,
2007 * event frequency meter.  There are four routines:
2008 *   fmeter_init() - initialize a frequency meter.
2009 *   fmeter_markevent() - called each time the event happens.
2010 *   fmeter_getrate() - returns the recent rate of such events.
2011 *   fmeter_update() - internal routine used to update fmeter.
2012 *
2013 * A common data structure is passed to each of these routines,
2014 * which is used to keep track of the state required to manage the
2015 * frequency meter and its digital filter.
2016 *
2017 * The filter works on the number of events marked per unit time.
2018 * The filter is single-pole low-pass recursive (IIR).  The time unit
2019 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
2020 * simulate 3 decimal digits of precision (multiplied by 1000).
2021 *
2022 * With an FM_COEF of 933, and a time base of 1 second, the filter
2023 * has a half-life of 10 seconds, meaning that if the events quit
2024 * happening, then the rate returned from the fmeter_getrate()
2025 * will be cut in half each 10 seconds, until it converges to zero.
2026 *
2027 * It is not worth doing a real infinitely recursive filter.  If more
2028 * than FM_MAXTICKS ticks have elapsed since the last filter event,
2029 * just compute FM_MAXTICKS ticks worth, by which point the level
2030 * will be stable.
2031 *
2032 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2033 * arithmetic overflow in the fmeter_update() routine.
2034 *
2035 * Given the simple 32 bit integer arithmetic used, this meter works
2036 * best for reporting rates between one per millisecond (msec) and
2037 * one per 32 (approx) seconds.  At constant rates faster than one
2038 * per msec it maxes out at values just under 1,000,000.  At constant
2039 * rates between one per msec, and one per second it will stabilize
2040 * to a value N*1000, where N is the rate of events per second.
2041 * At constant rates between one per second and one per 32 seconds,
2042 * it will be choppy, moving up on the seconds that have an event,
2043 * and then decaying until the next event.  At rates slower than
2044 * about one in 32 seconds, it decays all the way back to zero between
2045 * each event.
2046 */
2047
2048#define FM_COEF 933		/* coefficient for half-life of 10 secs */
2049#define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
2050#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
2051#define FM_SCALE 1000		/* faux fixed point scale */
2052
2053/* Initialize a frequency meter */
2054static void fmeter_init(struct fmeter *fmp)
2055{
2056	fmp->cnt = 0;
2057	fmp->val = 0;
2058	fmp->time = 0;
2059	spin_lock_init(&fmp->lock);
2060}
2061
2062/* Internal meter update - process cnt events and update value */
2063static void fmeter_update(struct fmeter *fmp)
2064{
2065	time64_t now;
2066	u32 ticks;
2067
2068	now = ktime_get_seconds();
2069	ticks = now - fmp->time;
 
 
 
 
2070
2071	if (ticks == 0)
2072		return;
2073
2074	ticks = min(FM_MAXTICKS, ticks);
2075	while (ticks-- > 0)
2076		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2077	fmp->time = now;
2078
2079	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2080	fmp->cnt = 0;
 
 
 
 
 
2081}
2082
2083/* Process any previous ticks, then bump cnt by one (times scale). */
2084static void fmeter_markevent(struct fmeter *fmp)
2085{
2086	spin_lock(&fmp->lock);
2087	fmeter_update(fmp);
2088	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2089	spin_unlock(&fmp->lock);
2090}
2091
2092/* Process any previous ticks, then return current value. */
2093static int fmeter_getrate(struct fmeter *fmp)
2094{
2095	int val;
2096
2097	spin_lock(&fmp->lock);
2098	fmeter_update(fmp);
2099	val = fmp->val;
2100	spin_unlock(&fmp->lock);
2101	return val;
2102}
2103
2104static struct cpuset *cpuset_attach_old_cs;
2105
2106/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
2107static int cpuset_can_attach(struct cgroup_taskset *tset)
2108{
2109	struct cgroup_subsys_state *css;
2110	struct cpuset *cs;
2111	struct task_struct *task;
 
2112	int ret;
2113
2114	/* used later by cpuset_attach() */
2115	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
 
2116	cs = css_cs(css);
2117
2118	percpu_down_write(&cpuset_rwsem);
2119
2120	/* allow moving tasks into an empty cpuset if on default hierarchy */
2121	ret = -ENOSPC;
2122	if (!is_in_v2_mode() &&
2123	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2124		goto out_unlock;
2125
 
 
 
2126	cgroup_taskset_for_each(task, css, tset) {
2127		ret = task_can_attach(task, cs->cpus_allowed);
2128		if (ret)
2129			goto out_unlock;
2130		ret = security_task_setscheduler(task);
2131		if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2132			goto out_unlock;
 
2133	}
2134
 
2135	/*
2136	 * Mark attach is in progress.  This makes validate_change() fail
2137	 * changes which zero cpus/mems_allowed.
2138	 */
2139	cs->attach_in_progress++;
2140	ret = 0;
2141out_unlock:
2142	percpu_up_write(&cpuset_rwsem);
2143	return ret;
2144}
2145
2146static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2147{
2148	struct cgroup_subsys_state *css;
 
2149
2150	cgroup_taskset_first(tset, &css);
 
 
 
 
2151
2152	percpu_down_write(&cpuset_rwsem);
2153	css_cs(css)->attach_in_progress--;
2154	percpu_up_write(&cpuset_rwsem);
 
 
 
 
 
2155}
2156
2157/*
2158 * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
2159 * but we can't allocate it dynamically there.  Define it global and
2160 * allocate from cpuset_init().
2161 */
2162static cpumask_var_t cpus_attach;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2163
2164static void cpuset_attach(struct cgroup_taskset *tset)
2165{
2166	/* static buf protected by cpuset_mutex */
2167	static nodemask_t cpuset_attach_nodemask_to;
2168	struct task_struct *task;
2169	struct task_struct *leader;
2170	struct cgroup_subsys_state *css;
2171	struct cpuset *cs;
2172	struct cpuset *oldcs = cpuset_attach_old_cs;
 
2173
2174	cgroup_taskset_first(tset, &css);
2175	cs = css_cs(css);
2176
2177	percpu_down_write(&cpuset_rwsem);
 
 
 
 
2178
2179	/* prepare for attach */
2180	if (cs == &top_cpuset)
2181		cpumask_copy(cpus_attach, cpu_possible_mask);
2182	else
2183		guarantee_online_cpus(cs, cpus_attach);
 
 
 
 
 
2184
2185	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2186
2187	cgroup_taskset_for_each(task, css, tset) {
2188		/*
2189		 * can_attach beforehand should guarantee that this doesn't
2190		 * fail.  TODO: have a better way to handle failure here
2191		 */
2192		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2193
2194		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2195		cpuset_update_task_spread_flag(cs, task);
2196	}
2197
2198	/*
2199	 * Change mm for all threadgroup leaders. This is expensive and may
2200	 * sleep and should be moved outside migration path proper.
 
 
2201	 */
2202	cpuset_attach_nodemask_to = cs->effective_mems;
 
 
 
2203	cgroup_taskset_for_each_leader(leader, css, tset) {
2204		struct mm_struct *mm = get_task_mm(leader);
2205
2206		if (mm) {
2207			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2208
2209			/*
2210			 * old_mems_allowed is the same with mems_allowed
2211			 * here, except if this task is being moved
2212			 * automatically due to hotplug.  In that case
2213			 * @mems_allowed has been updated and is empty, so
2214			 * @old_mems_allowed is the right nodesets that we
2215			 * migrate mm from.
2216			 */
2217			if (is_memory_migrate(cs))
2218				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2219						  &cpuset_attach_nodemask_to);
2220			else
2221				mmput(mm);
2222		}
2223	}
2224
 
2225	cs->old_mems_allowed = cpuset_attach_nodemask_to;
2226
2227	cs->attach_in_progress--;
2228	if (!cs->attach_in_progress)
2229		wake_up(&cpuset_attach_wq);
2230
2231	percpu_up_write(&cpuset_rwsem);
2232}
2233
2234/* The various types of files and directories in a cpuset file system */
2235
2236typedef enum {
2237	FILE_MEMORY_MIGRATE,
2238	FILE_CPULIST,
2239	FILE_MEMLIST,
2240	FILE_EFFECTIVE_CPULIST,
2241	FILE_EFFECTIVE_MEMLIST,
2242	FILE_SUBPARTS_CPULIST,
2243	FILE_CPU_EXCLUSIVE,
2244	FILE_MEM_EXCLUSIVE,
2245	FILE_MEM_HARDWALL,
2246	FILE_SCHED_LOAD_BALANCE,
2247	FILE_PARTITION_ROOT,
2248	FILE_SCHED_RELAX_DOMAIN_LEVEL,
2249	FILE_MEMORY_PRESSURE_ENABLED,
2250	FILE_MEMORY_PRESSURE,
2251	FILE_SPREAD_PAGE,
2252	FILE_SPREAD_SLAB,
2253} cpuset_filetype_t;
2254
2255static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2256			    u64 val)
2257{
2258	struct cpuset *cs = css_cs(css);
2259	cpuset_filetype_t type = cft->private;
2260	int retval = 0;
2261
2262	get_online_cpus();
2263	percpu_down_write(&cpuset_rwsem);
2264	if (!is_cpuset_online(cs)) {
2265		retval = -ENODEV;
2266		goto out_unlock;
2267	}
2268
2269	switch (type) {
2270	case FILE_CPU_EXCLUSIVE:
2271		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2272		break;
2273	case FILE_MEM_EXCLUSIVE:
2274		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2275		break;
2276	case FILE_MEM_HARDWALL:
2277		retval = update_flag(CS_MEM_HARDWALL, cs, val);
2278		break;
2279	case FILE_SCHED_LOAD_BALANCE:
2280		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2281		break;
2282	case FILE_MEMORY_MIGRATE:
2283		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2284		break;
2285	case FILE_MEMORY_PRESSURE_ENABLED:
2286		cpuset_memory_pressure_enabled = !!val;
2287		break;
2288	case FILE_SPREAD_PAGE:
2289		retval = update_flag(CS_SPREAD_PAGE, cs, val);
2290		break;
2291	case FILE_SPREAD_SLAB:
2292		retval = update_flag(CS_SPREAD_SLAB, cs, val);
2293		break;
2294	default:
2295		retval = -EINVAL;
2296		break;
2297	}
2298out_unlock:
2299	percpu_up_write(&cpuset_rwsem);
2300	put_online_cpus();
2301	return retval;
2302}
2303
2304static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2305			    s64 val)
2306{
2307	struct cpuset *cs = css_cs(css);
2308	cpuset_filetype_t type = cft->private;
2309	int retval = -ENODEV;
2310
2311	get_online_cpus();
2312	percpu_down_write(&cpuset_rwsem);
2313	if (!is_cpuset_online(cs))
2314		goto out_unlock;
2315
2316	switch (type) {
2317	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2318		retval = update_relax_domain_level(cs, val);
2319		break;
2320	default:
2321		retval = -EINVAL;
2322		break;
2323	}
2324out_unlock:
2325	percpu_up_write(&cpuset_rwsem);
2326	put_online_cpus();
2327	return retval;
2328}
2329
2330/*
2331 * Common handling for a write to a "cpus" or "mems" file.
2332 */
2333static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2334				    char *buf, size_t nbytes, loff_t off)
2335{
2336	struct cpuset *cs = css_cs(of_css(of));
2337	struct cpuset *trialcs;
2338	int retval = -ENODEV;
2339
2340	buf = strstrip(buf);
2341
2342	/*
2343	 * CPU or memory hotunplug may leave @cs w/o any execution
2344	 * resources, in which case the hotplug code asynchronously updates
2345	 * configuration and transfers all tasks to the nearest ancestor
2346	 * which can execute.
2347	 *
2348	 * As writes to "cpus" or "mems" may restore @cs's execution
2349	 * resources, wait for the previously scheduled operations before
2350	 * proceeding, so that we don't end up keep removing tasks added
2351	 * after execution capability is restored.
2352	 *
2353	 * cpuset_hotplug_work calls back into cgroup core via
2354	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2355	 * operation like this one can lead to a deadlock through kernfs
2356	 * active_ref protection.  Let's break the protection.  Losing the
2357	 * protection is okay as we check whether @cs is online after
2358	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
2359	 * hierarchies.
2360	 */
2361	css_get(&cs->css);
2362	kernfs_break_active_protection(of->kn);
2363	flush_work(&cpuset_hotplug_work);
2364
2365	get_online_cpus();
2366	percpu_down_write(&cpuset_rwsem);
2367	if (!is_cpuset_online(cs))
2368		goto out_unlock;
2369
2370	trialcs = alloc_trial_cpuset(cs);
2371	if (!trialcs) {
2372		retval = -ENOMEM;
2373		goto out_unlock;
2374	}
2375
2376	switch (of_cft(of)->private) {
2377	case FILE_CPULIST:
2378		retval = update_cpumask(cs, trialcs, buf);
2379		break;
 
 
 
2380	case FILE_MEMLIST:
2381		retval = update_nodemask(cs, trialcs, buf);
2382		break;
2383	default:
2384		retval = -EINVAL;
2385		break;
2386	}
2387
2388	free_cpuset(trialcs);
 
 
2389out_unlock:
2390	percpu_up_write(&cpuset_rwsem);
2391	put_online_cpus();
2392	kernfs_unbreak_active_protection(of->kn);
2393	css_put(&cs->css);
2394	flush_workqueue(cpuset_migrate_mm_wq);
2395	return retval ?: nbytes;
2396}
2397
2398/*
2399 * These ascii lists should be read in a single call, by using a user
2400 * buffer large enough to hold the entire map.  If read in smaller
2401 * chunks, there is no guarantee of atomicity.  Since the display format
2402 * used, list of ranges of sequential numbers, is variable length,
2403 * and since these maps can change value dynamically, one could read
2404 * gibberish by doing partial reads while a list was changing.
2405 */
2406static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2407{
2408	struct cpuset *cs = css_cs(seq_css(sf));
2409	cpuset_filetype_t type = seq_cft(sf)->private;
2410	int ret = 0;
2411
2412	spin_lock_irq(&callback_lock);
2413
2414	switch (type) {
2415	case FILE_CPULIST:
2416		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
2417		break;
2418	case FILE_MEMLIST:
2419		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2420		break;
2421	case FILE_EFFECTIVE_CPULIST:
2422		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2423		break;
2424	case FILE_EFFECTIVE_MEMLIST:
2425		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2426		break;
 
 
 
 
 
 
2427	case FILE_SUBPARTS_CPULIST:
2428		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
 
 
 
2429		break;
2430	default:
2431		ret = -EINVAL;
2432	}
2433
2434	spin_unlock_irq(&callback_lock);
2435	return ret;
2436}
2437
2438static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2439{
2440	struct cpuset *cs = css_cs(css);
2441	cpuset_filetype_t type = cft->private;
2442	switch (type) {
2443	case FILE_CPU_EXCLUSIVE:
2444		return is_cpu_exclusive(cs);
2445	case FILE_MEM_EXCLUSIVE:
2446		return is_mem_exclusive(cs);
2447	case FILE_MEM_HARDWALL:
2448		return is_mem_hardwall(cs);
2449	case FILE_SCHED_LOAD_BALANCE:
2450		return is_sched_load_balance(cs);
2451	case FILE_MEMORY_MIGRATE:
2452		return is_memory_migrate(cs);
2453	case FILE_MEMORY_PRESSURE_ENABLED:
2454		return cpuset_memory_pressure_enabled;
2455	case FILE_MEMORY_PRESSURE:
2456		return fmeter_getrate(&cs->fmeter);
2457	case FILE_SPREAD_PAGE:
2458		return is_spread_page(cs);
2459	case FILE_SPREAD_SLAB:
2460		return is_spread_slab(cs);
2461	default:
2462		BUG();
2463	}
2464
2465	/* Unreachable but makes gcc happy */
2466	return 0;
2467}
2468
2469static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2470{
2471	struct cpuset *cs = css_cs(css);
2472	cpuset_filetype_t type = cft->private;
2473	switch (type) {
2474	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2475		return cs->relax_domain_level;
2476	default:
2477		BUG();
2478	}
2479
2480	/* Unrechable but makes gcc happy */
2481	return 0;
2482}
2483
2484static int sched_partition_show(struct seq_file *seq, void *v)
2485{
2486	struct cpuset *cs = css_cs(seq_css(seq));
 
2487
2488	switch (cs->partition_root_state) {
2489	case PRS_ENABLED:
2490		seq_puts(seq, "root\n");
2491		break;
2492	case PRS_DISABLED:
 
 
 
2493		seq_puts(seq, "member\n");
2494		break;
2495	case PRS_ERROR:
2496		seq_puts(seq, "root invalid\n");
 
 
 
 
 
 
 
 
 
2497		break;
2498	}
2499	return 0;
2500}
2501
2502static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2503				     size_t nbytes, loff_t off)
2504{
2505	struct cpuset *cs = css_cs(of_css(of));
2506	int val;
2507	int retval = -ENODEV;
2508
2509	buf = strstrip(buf);
2510
2511	/*
2512	 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2513	 */
2514	if (!strcmp(buf, "root"))
2515		val = PRS_ENABLED;
2516	else if (!strcmp(buf, "member"))
2517		val = PRS_DISABLED;
 
 
2518	else
2519		return -EINVAL;
2520
2521	css_get(&cs->css);
2522	get_online_cpus();
2523	percpu_down_write(&cpuset_rwsem);
2524	if (!is_cpuset_online(cs))
2525		goto out_unlock;
2526
2527	retval = update_prstate(cs, val);
2528out_unlock:
2529	percpu_up_write(&cpuset_rwsem);
2530	put_online_cpus();
2531	css_put(&cs->css);
2532	return retval ?: nbytes;
2533}
2534
2535/*
2536 * for the common functions, 'private' gives the type of file
 
2537 */
2538
2539static struct cftype legacy_files[] = {
2540	{
2541		.name = "cpus",
2542		.seq_show = cpuset_common_seq_show,
2543		.write = cpuset_write_resmask,
2544		.max_write_len = (100U + 6 * NR_CPUS),
2545		.private = FILE_CPULIST,
 
2546	},
2547
2548	{
2549		.name = "mems",
2550		.seq_show = cpuset_common_seq_show,
2551		.write = cpuset_write_resmask,
2552		.max_write_len = (100U + 6 * MAX_NUMNODES),
2553		.private = FILE_MEMLIST,
 
2554	},
2555
2556	{
2557		.name = "effective_cpus",
2558		.seq_show = cpuset_common_seq_show,
2559		.private = FILE_EFFECTIVE_CPULIST,
2560	},
2561
2562	{
2563		.name = "effective_mems",
2564		.seq_show = cpuset_common_seq_show,
2565		.private = FILE_EFFECTIVE_MEMLIST,
2566	},
2567
2568	{
2569		.name = "cpu_exclusive",
2570		.read_u64 = cpuset_read_u64,
2571		.write_u64 = cpuset_write_u64,
2572		.private = FILE_CPU_EXCLUSIVE,
2573	},
2574
2575	{
2576		.name = "mem_exclusive",
2577		.read_u64 = cpuset_read_u64,
2578		.write_u64 = cpuset_write_u64,
2579		.private = FILE_MEM_EXCLUSIVE,
2580	},
2581
2582	{
2583		.name = "mem_hardwall",
2584		.read_u64 = cpuset_read_u64,
2585		.write_u64 = cpuset_write_u64,
2586		.private = FILE_MEM_HARDWALL,
2587	},
2588
2589	{
2590		.name = "sched_load_balance",
2591		.read_u64 = cpuset_read_u64,
2592		.write_u64 = cpuset_write_u64,
2593		.private = FILE_SCHED_LOAD_BALANCE,
2594	},
2595
2596	{
2597		.name = "sched_relax_domain_level",
2598		.read_s64 = cpuset_read_s64,
2599		.write_s64 = cpuset_write_s64,
2600		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2601	},
2602
2603	{
2604		.name = "memory_migrate",
2605		.read_u64 = cpuset_read_u64,
2606		.write_u64 = cpuset_write_u64,
2607		.private = FILE_MEMORY_MIGRATE,
2608	},
2609
2610	{
2611		.name = "memory_pressure",
2612		.read_u64 = cpuset_read_u64,
2613		.private = FILE_MEMORY_PRESSURE,
2614	},
2615
2616	{
2617		.name = "memory_spread_page",
2618		.read_u64 = cpuset_read_u64,
2619		.write_u64 = cpuset_write_u64,
2620		.private = FILE_SPREAD_PAGE,
2621	},
2622
2623	{
2624		.name = "memory_spread_slab",
2625		.read_u64 = cpuset_read_u64,
2626		.write_u64 = cpuset_write_u64,
2627		.private = FILE_SPREAD_SLAB,
2628	},
2629
2630	{
2631		.name = "memory_pressure_enabled",
2632		.flags = CFTYPE_ONLY_ON_ROOT,
2633		.read_u64 = cpuset_read_u64,
2634		.write_u64 = cpuset_write_u64,
2635		.private = FILE_MEMORY_PRESSURE_ENABLED,
2636	},
2637
2638	{ }	/* terminate */
2639};
2640
2641/*
2642 * This is currently a minimal set for the default hierarchy. It can be
2643 * expanded later on by migrating more features and control files from v1.
2644 */
2645static struct cftype dfl_files[] = {
2646	{
2647		.name = "cpus",
2648		.seq_show = cpuset_common_seq_show,
2649		.write = cpuset_write_resmask,
2650		.max_write_len = (100U + 6 * NR_CPUS),
2651		.private = FILE_CPULIST,
2652		.flags = CFTYPE_NOT_ON_ROOT,
2653	},
2654
2655	{
2656		.name = "mems",
2657		.seq_show = cpuset_common_seq_show,
2658		.write = cpuset_write_resmask,
2659		.max_write_len = (100U + 6 * MAX_NUMNODES),
2660		.private = FILE_MEMLIST,
2661		.flags = CFTYPE_NOT_ON_ROOT,
2662	},
2663
2664	{
2665		.name = "cpus.effective",
2666		.seq_show = cpuset_common_seq_show,
2667		.private = FILE_EFFECTIVE_CPULIST,
 
2668	},
2669
2670	{
2671		.name = "mems.effective",
2672		.seq_show = cpuset_common_seq_show,
2673		.private = FILE_EFFECTIVE_MEMLIST,
2674	},
2675
2676	{
2677		.name = "cpus.partition",
2678		.seq_show = sched_partition_show,
2679		.write = sched_partition_write,
2680		.private = FILE_PARTITION_ROOT,
2681		.flags = CFTYPE_NOT_ON_ROOT,
2682	},
2683
2684	{
2685		.name = "cpus.subpartitions",
2686		.seq_show = cpuset_common_seq_show,
2687		.private = FILE_SUBPARTS_CPULIST,
2688		.flags = CFTYPE_DEBUG,
2689	},
2690
2691	{ }	/* terminate */
2692};
2693
2694
2695/*
2696 *	cpuset_css_alloc - allocate a cpuset css
2697 *	cgrp:	control group that the new cpuset will be part of
 
 
 
 
 
2698 */
2699
2700static struct cgroup_subsys_state *
2701cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
2702{
2703	struct cpuset *cs;
2704
2705	if (!parent_css)
2706		return &top_cpuset.css;
2707
2708	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
2709	if (!cs)
2710		return ERR_PTR(-ENOMEM);
2711
2712	if (alloc_cpumasks(cs, NULL)) {
2713		kfree(cs);
2714		return ERR_PTR(-ENOMEM);
2715	}
2716
2717	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
2718	nodes_clear(cs->mems_allowed);
2719	nodes_clear(cs->effective_mems);
2720	fmeter_init(&cs->fmeter);
2721	cs->relax_domain_level = -1;
 
 
 
 
 
2722
2723	return &cs->css;
2724}
2725
2726static int cpuset_css_online(struct cgroup_subsys_state *css)
2727{
2728	struct cpuset *cs = css_cs(css);
2729	struct cpuset *parent = parent_cs(cs);
2730	struct cpuset *tmp_cs;
2731	struct cgroup_subsys_state *pos_css;
2732
2733	if (!parent)
2734		return 0;
2735
2736	get_online_cpus();
2737	percpu_down_write(&cpuset_rwsem);
2738
2739	set_bit(CS_ONLINE, &cs->flags);
2740	if (is_spread_page(parent))
2741		set_bit(CS_SPREAD_PAGE, &cs->flags);
2742	if (is_spread_slab(parent))
2743		set_bit(CS_SPREAD_SLAB, &cs->flags);
 
 
 
 
 
2744
2745	cpuset_inc();
2746
2747	spin_lock_irq(&callback_lock);
2748	if (is_in_v2_mode()) {
2749		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2750		cs->effective_mems = parent->effective_mems;
2751		cs->use_parent_ecpus = true;
2752		parent->child_ecpus_count++;
2753	}
2754	spin_unlock_irq(&callback_lock);
2755
2756	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2757		goto out_unlock;
2758
2759	/*
2760	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2761	 * set.  This flag handling is implemented in cgroup core for
2762	 * histrical reasons - the flag may be specified during mount.
2763	 *
2764	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2765	 * refuse to clone the configuration - thereby refusing the task to
2766	 * be entered, and as a result refusing the sys_unshare() or
2767	 * clone() which initiated it.  If this becomes a problem for some
2768	 * users who wish to allow that scenario, then this could be
2769	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2770	 * (and likewise for mems) to the new cgroup.
2771	 */
2772	rcu_read_lock();
2773	cpuset_for_each_child(tmp_cs, pos_css, parent) {
2774		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2775			rcu_read_unlock();
2776			goto out_unlock;
2777		}
2778	}
2779	rcu_read_unlock();
2780
2781	spin_lock_irq(&callback_lock);
2782	cs->mems_allowed = parent->mems_allowed;
2783	cs->effective_mems = parent->mems_allowed;
2784	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2785	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2786	spin_unlock_irq(&callback_lock);
2787out_unlock:
2788	percpu_up_write(&cpuset_rwsem);
2789	put_online_cpus();
2790	return 0;
2791}
2792
2793/*
2794 * If the cpuset being removed has its flag 'sched_load_balance'
2795 * enabled, then simulate turning sched_load_balance off, which
2796 * will call rebuild_sched_domains_locked(). That is not needed
2797 * in the default hierarchy where only changes in partition
2798 * will cause repartitioning.
2799 *
2800 * If the cpuset has the 'sched.partition' flag enabled, simulate
2801 * turning 'sched.partition" off.
2802 */
2803
2804static void cpuset_css_offline(struct cgroup_subsys_state *css)
2805{
2806	struct cpuset *cs = css_cs(css);
2807
2808	get_online_cpus();
2809	percpu_down_write(&cpuset_rwsem);
2810
2811	if (is_partition_root(cs))
2812		update_prstate(cs, 0);
2813
2814	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2815	    is_sched_load_balance(cs))
2816		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2817
2818	if (cs->use_parent_ecpus) {
2819		struct cpuset *parent = parent_cs(cs);
2820
2821		cs->use_parent_ecpus = false;
2822		parent->child_ecpus_count--;
2823	}
2824
2825	cpuset_dec();
2826	clear_bit(CS_ONLINE, &cs->flags);
2827
2828	percpu_up_write(&cpuset_rwsem);
2829	put_online_cpus();
2830}
2831
2832static void cpuset_css_free(struct cgroup_subsys_state *css)
2833{
2834	struct cpuset *cs = css_cs(css);
2835
2836	free_cpuset(cs);
2837}
2838
2839static void cpuset_bind(struct cgroup_subsys_state *root_css)
2840{
2841	percpu_down_write(&cpuset_rwsem);
2842	spin_lock_irq(&callback_lock);
2843
2844	if (is_in_v2_mode()) {
2845		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
 
2846		top_cpuset.mems_allowed = node_possible_map;
2847	} else {
2848		cpumask_copy(top_cpuset.cpus_allowed,
2849			     top_cpuset.effective_cpus);
2850		top_cpuset.mems_allowed = top_cpuset.effective_mems;
2851	}
2852
2853	spin_unlock_irq(&callback_lock);
2854	percpu_up_write(&cpuset_rwsem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2855}
2856
2857/*
2858 * Make sure the new task conform to the current state of its parent,
2859 * which could have been changed by cpuset just after it inherits the
2860 * state from the parent and before it sits on the cgroup's task list.
2861 */
2862static void cpuset_fork(struct task_struct *task)
2863{
2864	if (task_css_is_root(task, cpuset_cgrp_id))
 
 
 
 
 
 
 
 
 
 
 
 
 
2865		return;
 
2866
2867	set_cpus_allowed_ptr(task, current->cpus_ptr);
2868	task->mems_allowed = current->mems_allowed;
 
 
 
 
 
2869}
2870
2871struct cgroup_subsys cpuset_cgrp_subsys = {
2872	.css_alloc	= cpuset_css_alloc,
2873	.css_online	= cpuset_css_online,
2874	.css_offline	= cpuset_css_offline,
2875	.css_free	= cpuset_css_free,
2876	.can_attach	= cpuset_can_attach,
2877	.cancel_attach	= cpuset_cancel_attach,
2878	.attach		= cpuset_attach,
2879	.post_attach	= cpuset_post_attach,
2880	.bind		= cpuset_bind,
 
 
2881	.fork		= cpuset_fork,
2882	.legacy_cftypes	= legacy_files,
 
 
2883	.dfl_cftypes	= dfl_files,
2884	.early_init	= true,
2885	.threaded	= true,
2886};
2887
2888/**
2889 * cpuset_init - initialize cpusets at system boot
2890 *
2891 * Description: Initialize top_cpuset
2892 **/
2893
2894int __init cpuset_init(void)
2895{
2896	BUG_ON(percpu_init_rwsem(&cpuset_rwsem));
2897
2898	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2899	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2900	BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
 
 
 
2901
2902	cpumask_setall(top_cpuset.cpus_allowed);
2903	nodes_setall(top_cpuset.mems_allowed);
2904	cpumask_setall(top_cpuset.effective_cpus);
 
 
2905	nodes_setall(top_cpuset.effective_mems);
2906
2907	fmeter_init(&top_cpuset.fmeter);
2908	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2909	top_cpuset.relax_domain_level = -1;
2910
2911	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2912
2913	return 0;
2914}
2915
2916/*
2917 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2918 * or memory nodes, we need to walk over the cpuset hierarchy,
2919 * removing that CPU or node from all cpusets.  If this removes the
2920 * last CPU or node from a cpuset, then move the tasks in the empty
2921 * cpuset to its next-highest non-empty parent.
2922 */
2923static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2924{
2925	struct cpuset *parent;
2926
2927	/*
2928	 * Find its next-highest non-empty parent, (top cpuset
2929	 * has online cpus, so can't be empty).
2930	 */
2931	parent = parent_cs(cs);
2932	while (cpumask_empty(parent->cpus_allowed) ||
2933			nodes_empty(parent->mems_allowed))
2934		parent = parent_cs(parent);
2935
2936	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2937		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2938		pr_cont_cgroup_name(cs->css.cgroup);
2939		pr_cont("\n");
2940	}
2941}
2942
2943static void
2944hotplug_update_tasks_legacy(struct cpuset *cs,
2945			    struct cpumask *new_cpus, nodemask_t *new_mems,
2946			    bool cpus_updated, bool mems_updated)
2947{
2948	bool is_empty;
2949
2950	spin_lock_irq(&callback_lock);
2951	cpumask_copy(cs->cpus_allowed, new_cpus);
2952	cpumask_copy(cs->effective_cpus, new_cpus);
2953	cs->mems_allowed = *new_mems;
2954	cs->effective_mems = *new_mems;
2955	spin_unlock_irq(&callback_lock);
2956
2957	/*
2958	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2959	 * as the tasks will be migratecd to an ancestor.
2960	 */
2961	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2962		update_tasks_cpumask(cs);
2963	if (mems_updated && !nodes_empty(cs->mems_allowed))
2964		update_tasks_nodemask(cs);
2965
2966	is_empty = cpumask_empty(cs->cpus_allowed) ||
2967		   nodes_empty(cs->mems_allowed);
2968
2969	percpu_up_write(&cpuset_rwsem);
2970
2971	/*
2972	 * Move tasks to the nearest ancestor with execution resources,
2973	 * This is full cgroup operation which will also call back into
2974	 * cpuset. Should be done outside any lock.
2975	 */
2976	if (is_empty)
2977		remove_tasks_in_empty_cpuset(cs);
2978
2979	percpu_down_write(&cpuset_rwsem);
2980}
2981
2982static void
2983hotplug_update_tasks(struct cpuset *cs,
2984		     struct cpumask *new_cpus, nodemask_t *new_mems,
2985		     bool cpus_updated, bool mems_updated)
2986{
2987	if (cpumask_empty(new_cpus))
 
2988		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2989	if (nodes_empty(*new_mems))
2990		*new_mems = parent_cs(cs)->effective_mems;
2991
2992	spin_lock_irq(&callback_lock);
2993	cpumask_copy(cs->effective_cpus, new_cpus);
2994	cs->effective_mems = *new_mems;
2995	spin_unlock_irq(&callback_lock);
2996
2997	if (cpus_updated)
2998		update_tasks_cpumask(cs);
2999	if (mems_updated)
3000		update_tasks_nodemask(cs);
3001}
3002
3003static bool force_rebuild;
3004
3005void cpuset_force_rebuild(void)
3006{
3007	force_rebuild = true;
3008}
3009
3010/**
3011 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3012 * @cs: cpuset in interest
3013 * @tmp: the tmpmasks structure pointer
3014 *
3015 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3016 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
3017 * all its tasks are moved to the nearest ancestor with both resources.
3018 */
3019static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3020{
3021	static cpumask_t new_cpus;
3022	static nodemask_t new_mems;
3023	bool cpus_updated;
3024	bool mems_updated;
 
 
3025	struct cpuset *parent;
3026retry:
3027	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3028
3029	percpu_down_write(&cpuset_rwsem);
3030
3031	/*
3032	 * We have raced with task attaching. We wait until attaching
3033	 * is finished, so we won't attach a task to an empty cpuset.
3034	 */
3035	if (cs->attach_in_progress) {
3036		percpu_up_write(&cpuset_rwsem);
3037		goto retry;
3038	}
3039
3040	parent =  parent_cs(cs);
3041	compute_effective_cpumask(&new_cpus, cs, parent);
3042	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3043
3044	if (cs->nr_subparts_cpus)
3045		/*
3046		 * Make sure that CPUs allocated to child partitions
3047		 * do not show up in effective_cpus.
3048		 */
3049		cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3050
3051	if (!tmp || !cs->partition_root_state)
3052		goto update_tasks;
3053
3054	/*
3055	 * In the unlikely event that a partition root has empty
3056	 * effective_cpus or its parent becomes erroneous, we have to
3057	 * transition it to the erroneous state.
3058	 */
3059	if (is_partition_root(cs) && (cpumask_empty(&new_cpus) ||
3060	   (parent->partition_root_state == PRS_ERROR))) {
3061		if (cs->nr_subparts_cpus) {
3062			cs->nr_subparts_cpus = 0;
3063			cpumask_clear(cs->subparts_cpus);
3064			compute_effective_cpumask(&new_cpus, cs, parent);
3065		}
3066
3067		/*
3068		 * If the effective_cpus is empty because the child
3069		 * partitions take away all the CPUs, we can keep
3070		 * the current partition and let the child partitions
3071		 * fight for available CPUs.
3072		 */
3073		if ((parent->partition_root_state == PRS_ERROR) ||
3074		     cpumask_empty(&new_cpus)) {
3075			update_parent_subparts_cpumask(cs, partcmd_disable,
3076						       NULL, tmp);
3077			cs->partition_root_state = PRS_ERROR;
3078		}
3079		cpuset_force_rebuild();
3080	}
3081
3082	/*
3083	 * On the other hand, an erroneous partition root may be transitioned
3084	 * back to a regular one or a partition root with no CPU allocated
3085	 * from the parent may change to erroneous.
3086	 */
3087	if (is_partition_root(parent) &&
3088	   ((cs->partition_root_state == PRS_ERROR) ||
3089	    !cpumask_intersects(&new_cpus, parent->subparts_cpus)) &&
3090	     update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp))
3091		cpuset_force_rebuild();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3092
3093update_tasks:
3094	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3095	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
 
 
 
 
 
3096
3097	if (is_in_v2_mode())
3098		hotplug_update_tasks(cs, &new_cpus, &new_mems,
3099				     cpus_updated, mems_updated);
3100	else
3101		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3102					    cpus_updated, mems_updated);
3103
3104	percpu_up_write(&cpuset_rwsem);
 
3105}
3106
3107/**
3108 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3109 *
3110 * This function is called after either CPU or memory configuration has
3111 * changed and updates cpuset accordingly.  The top_cpuset is always
3112 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3113 * order to make cpusets transparent (of no affect) on systems that are
3114 * actively using CPU hotplug but making no active use of cpusets.
3115 *
3116 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
3117 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3118 * all descendants.
3119 *
3120 * Note that CPU offlining during suspend is ignored.  We don't modify
3121 * cpusets across suspend/resume cycles at all.
 
 
3122 */
3123static void cpuset_hotplug_workfn(struct work_struct *work)
3124{
3125	static cpumask_t new_cpus;
3126	static nodemask_t new_mems;
3127	bool cpus_updated, mems_updated;
3128	bool on_dfl = is_in_v2_mode();
3129	struct tmpmasks tmp, *ptmp = NULL;
3130
3131	if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3132		ptmp = &tmp;
3133
3134	percpu_down_write(&cpuset_rwsem);
 
3135
3136	/* fetch the available cpus/mems and find out which changed how */
3137	cpumask_copy(&new_cpus, cpu_active_mask);
3138	new_mems = node_states[N_MEMORY];
3139
3140	/*
3141	 * If subparts_cpus is populated, it is likely that the check below
3142	 * will produce a false positive on cpus_updated when the cpu list
3143	 * isn't changed. It is extra work, but it is better to be safe.
3144	 */
3145	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
 
3146	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3147
3148	/* synchronize cpus_allowed to cpu_active_mask */
3149	if (cpus_updated) {
 
3150		spin_lock_irq(&callback_lock);
3151		if (!on_dfl)
3152			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3153		/*
3154		 * Make sure that CPUs allocated to child partitions
3155		 * do not show up in effective_cpus. If no CPU is left,
3156		 * we clear the subparts_cpus & let the child partitions
3157		 * fight for the CPUs again.
3158		 */
3159		if (top_cpuset.nr_subparts_cpus) {
3160			if (cpumask_subset(&new_cpus,
3161					   top_cpuset.subparts_cpus)) {
3162				top_cpuset.nr_subparts_cpus = 0;
3163				cpumask_clear(top_cpuset.subparts_cpus);
3164			} else {
3165				cpumask_andnot(&new_cpus, &new_cpus,
3166					       top_cpuset.subparts_cpus);
3167			}
3168		}
3169		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3170		spin_unlock_irq(&callback_lock);
3171		/* we don't mess with cpumasks of tasks in top_cpuset */
3172	}
3173
3174	/* synchronize mems_allowed to N_MEMORY */
3175	if (mems_updated) {
3176		spin_lock_irq(&callback_lock);
3177		if (!on_dfl)
3178			top_cpuset.mems_allowed = new_mems;
3179		top_cpuset.effective_mems = new_mems;
3180		spin_unlock_irq(&callback_lock);
3181		update_tasks_nodemask(&top_cpuset);
3182	}
3183
3184	percpu_up_write(&cpuset_rwsem);
3185
3186	/* if cpus or mems changed, we need to propagate to descendants */
3187	if (cpus_updated || mems_updated) {
3188		struct cpuset *cs;
3189		struct cgroup_subsys_state *pos_css;
3190
3191		rcu_read_lock();
3192		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3193			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3194				continue;
3195			rcu_read_unlock();
3196
3197			cpuset_hotplug_update_tasks(cs, ptmp);
3198
3199			rcu_read_lock();
3200			css_put(&cs->css);
3201		}
3202		rcu_read_unlock();
3203	}
3204
3205	/* rebuild sched domains if cpus_allowed has changed */
3206	if (cpus_updated || force_rebuild) {
3207		force_rebuild = false;
3208		rebuild_sched_domains();
3209	}
3210
3211	free_cpumasks(NULL, ptmp);
3212}
3213
3214void cpuset_update_active_cpus(void)
3215{
3216	/*
3217	 * We're inside cpu hotplug critical region which usually nests
3218	 * inside cgroup synchronization.  Bounce actual hotplug processing
3219	 * to a work item to avoid reverse locking order.
3220	 */
3221	schedule_work(&cpuset_hotplug_work);
3222}
3223
3224void cpuset_wait_for_hotplug(void)
3225{
3226	flush_work(&cpuset_hotplug_work);
3227}
3228
3229/*
3230 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3231 * Call this routine anytime after node_states[N_MEMORY] changes.
3232 * See cpuset_update_active_cpus() for CPU hotplug handling.
3233 */
3234static int cpuset_track_online_nodes(struct notifier_block *self,
3235				unsigned long action, void *arg)
3236{
3237	schedule_work(&cpuset_hotplug_work);
3238	return NOTIFY_OK;
3239}
3240
3241static struct notifier_block cpuset_track_online_nodes_nb = {
3242	.notifier_call = cpuset_track_online_nodes,
3243	.priority = 10,		/* ??! */
3244};
3245
3246/**
3247 * cpuset_init_smp - initialize cpus_allowed
3248 *
3249 * Description: Finish top cpuset after cpu, node maps are initialized
3250 */
3251void __init cpuset_init_smp(void)
3252{
3253	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
3254	top_cpuset.mems_allowed = node_states[N_MEMORY];
 
 
 
3255	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3256
3257	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3258	top_cpuset.effective_mems = node_states[N_MEMORY];
3259
3260	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
3261
3262	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3263	BUG_ON(!cpuset_migrate_mm_wq);
3264}
3265
3266/**
3267 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3268 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3269 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3270 *
3271 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3272 * attached to the specified @tsk.  Guaranteed to return some non-empty
3273 * subset of cpu_online_mask, even if this means going outside the
3274 * tasks cpuset.
3275 **/
3276
3277void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3278{
3279	unsigned long flags;
 
3280
3281	spin_lock_irqsave(&callback_lock, flags);
3282	rcu_read_lock();
3283	guarantee_online_cpus(task_cs(tsk), pmask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3284	rcu_read_unlock();
3285	spin_unlock_irqrestore(&callback_lock, flags);
3286}
3287
3288/**
3289 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3290 * @tsk: pointer to task_struct with which the scheduler is struggling
3291 *
3292 * Description: In the case that the scheduler cannot find an allowed cpu in
3293 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3294 * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3295 * which will not contain a sane cpumask during cases such as cpu hotplugging.
3296 * This is the absolute last resort for the scheduler and it is only used if
3297 * _every_ other avenue has been traveled.
 
 
3298 **/
3299
3300void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3301{
 
 
 
 
3302	rcu_read_lock();
3303	do_set_cpus_allowed(tsk, is_in_v2_mode() ?
3304		task_cs(tsk)->cpus_allowed : cpu_possible_mask);
 
 
 
3305	rcu_read_unlock();
3306
3307	/*
3308	 * We own tsk->cpus_allowed, nobody can change it under us.
3309	 *
3310	 * But we used cs && cs->cpus_allowed lockless and thus can
3311	 * race with cgroup_attach_task() or update_cpumask() and get
3312	 * the wrong tsk->cpus_allowed. However, both cases imply the
3313	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3314	 * which takes task_rq_lock().
3315	 *
3316	 * If we are called after it dropped the lock we must see all
3317	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3318	 * set any mask even if it is not right from task_cs() pov,
3319	 * the pending set_cpus_allowed_ptr() will fix things.
3320	 *
3321	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3322	 * if required.
3323	 */
 
3324}
3325
3326void __init cpuset_init_current_mems_allowed(void)
3327{
3328	nodes_setall(current->mems_allowed);
3329}
3330
3331/**
3332 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3333 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3334 *
3335 * Description: Returns the nodemask_t mems_allowed of the cpuset
3336 * attached to the specified @tsk.  Guaranteed to return some non-empty
3337 * subset of node_states[N_MEMORY], even if this means going outside the
3338 * tasks cpuset.
3339 **/
3340
3341nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3342{
3343	nodemask_t mask;
3344	unsigned long flags;
3345
3346	spin_lock_irqsave(&callback_lock, flags);
3347	rcu_read_lock();
3348	guarantee_online_mems(task_cs(tsk), &mask);
3349	rcu_read_unlock();
3350	spin_unlock_irqrestore(&callback_lock, flags);
3351
3352	return mask;
3353}
3354
3355/**
3356 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
3357 * @nodemask: the nodemask to be checked
3358 *
3359 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3360 */
3361int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3362{
3363	return nodes_intersects(*nodemask, current->mems_allowed);
3364}
3365
3366/*
3367 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3368 * mem_hardwall ancestor to the specified cpuset.  Call holding
3369 * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
3370 * (an unusual configuration), then returns the root cpuset.
3371 */
3372static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3373{
3374	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3375		cs = parent_cs(cs);
3376	return cs;
3377}
3378
3379/**
3380 * cpuset_node_allowed - Can we allocate on a memory node?
3381 * @node: is this an allowed node?
3382 * @gfp_mask: memory allocation flags
3383 *
3384 * If we're in interrupt, yes, we can always allocate.  If @node is set in
3385 * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
3386 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3387 * yes.  If current has access to memory reserves as an oom victim, yes.
3388 * Otherwise, no.
3389 *
3390 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3391 * and do not allow allocations outside the current tasks cpuset
3392 * unless the task has been OOM killed.
3393 * GFP_KERNEL allocations are not so marked, so can escape to the
3394 * nearest enclosing hardwalled ancestor cpuset.
3395 *
3396 * Scanning up parent cpusets requires callback_lock.  The
3397 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3398 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3399 * current tasks mems_allowed came up empty on the first pass over
3400 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
3401 * cpuset are short of memory, might require taking the callback_lock.
3402 *
3403 * The first call here from mm/page_alloc:get_page_from_freelist()
3404 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3405 * so no allocation on a node outside the cpuset is allowed (unless
3406 * in interrupt, of course).
3407 *
3408 * The second pass through get_page_from_freelist() doesn't even call
3409 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
3410 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3411 * in alloc_flags.  That logic and the checks below have the combined
3412 * affect that:
3413 *	in_interrupt - any node ok (current task context irrelevant)
3414 *	GFP_ATOMIC   - any node ok
3415 *	tsk_is_oom_victim   - any node ok
3416 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
3417 *	GFP_USER     - only nodes in current tasks mems allowed ok.
3418 */
3419bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3420{
3421	struct cpuset *cs;		/* current cpuset ancestors */
3422	int allowed;			/* is allocation in zone z allowed? */
3423	unsigned long flags;
3424
3425	if (in_interrupt())
3426		return true;
3427	if (node_isset(node, current->mems_allowed))
3428		return true;
3429	/*
3430	 * Allow tasks that have access to memory reserves because they have
3431	 * been OOM killed to get memory anywhere.
3432	 */
3433	if (unlikely(tsk_is_oom_victim(current)))
3434		return true;
3435	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
3436		return false;
3437
3438	if (current->flags & PF_EXITING) /* Let dying task have memory */
3439		return true;
3440
3441	/* Not hardwall and node outside mems_allowed: scan up cpusets */
3442	spin_lock_irqsave(&callback_lock, flags);
3443
3444	rcu_read_lock();
3445	cs = nearest_hardwall_ancestor(task_cs(current));
3446	allowed = node_isset(node, cs->mems_allowed);
3447	rcu_read_unlock();
3448
3449	spin_unlock_irqrestore(&callback_lock, flags);
3450	return allowed;
3451}
3452
3453/**
3454 * cpuset_mem_spread_node() - On which node to begin search for a file page
3455 * cpuset_slab_spread_node() - On which node to begin search for a slab page
3456 *
3457 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3458 * tasks in a cpuset with is_spread_page or is_spread_slab set),
3459 * and if the memory allocation used cpuset_mem_spread_node()
3460 * to determine on which node to start looking, as it will for
3461 * certain page cache or slab cache pages such as used for file
3462 * system buffers and inode caches, then instead of starting on the
3463 * local node to look for a free page, rather spread the starting
3464 * node around the tasks mems_allowed nodes.
3465 *
3466 * We don't have to worry about the returned node being offline
3467 * because "it can't happen", and even if it did, it would be ok.
3468 *
3469 * The routines calling guarantee_online_mems() are careful to
3470 * only set nodes in task->mems_allowed that are online.  So it
3471 * should not be possible for the following code to return an
3472 * offline node.  But if it did, that would be ok, as this routine
3473 * is not returning the node where the allocation must be, only
3474 * the node where the search should start.  The zonelist passed to
3475 * __alloc_pages() will include all nodes.  If the slab allocator
3476 * is passed an offline node, it will fall back to the local node.
3477 * See kmem_cache_alloc_node().
3478 */
3479
3480static int cpuset_spread_node(int *rotor)
3481{
3482	return *rotor = next_node_in(*rotor, current->mems_allowed);
3483}
3484
 
 
 
3485int cpuset_mem_spread_node(void)
3486{
3487	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3488		current->cpuset_mem_spread_rotor =
3489			node_random(&current->mems_allowed);
3490
3491	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
3492}
3493
3494int cpuset_slab_spread_node(void)
3495{
3496	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3497		current->cpuset_slab_spread_rotor =
3498			node_random(&current->mems_allowed);
3499
3500	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
3501}
3502
3503EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3504
3505/**
3506 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3507 * @tsk1: pointer to task_struct of some task.
3508 * @tsk2: pointer to task_struct of some other task.
3509 *
3510 * Description: Return true if @tsk1's mems_allowed intersects the
3511 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
3512 * one of the task's memory usage might impact the memory available
3513 * to the other.
3514 **/
3515
3516int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3517				   const struct task_struct *tsk2)
3518{
3519	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3520}
3521
3522/**
3523 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3524 *
3525 * Description: Prints current's name, cpuset name, and cached copy of its
3526 * mems_allowed to the kernel log.
3527 */
3528void cpuset_print_current_mems_allowed(void)
3529{
3530	struct cgroup *cgrp;
3531
3532	rcu_read_lock();
3533
3534	cgrp = task_cs(current)->css.cgroup;
3535	pr_cont(",cpuset=");
3536	pr_cont_cgroup_name(cgrp);
3537	pr_cont(",mems_allowed=%*pbl",
3538		nodemask_pr_args(&current->mems_allowed));
3539
3540	rcu_read_unlock();
3541}
3542
3543/*
3544 * Collection of memory_pressure is suppressed unless
3545 * this flag is enabled by writing "1" to the special
3546 * cpuset file 'memory_pressure_enabled' in the root cpuset.
3547 */
3548
3549int cpuset_memory_pressure_enabled __read_mostly;
3550
3551/**
3552 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3553 *
3554 * Keep a running average of the rate of synchronous (direct)
3555 * page reclaim efforts initiated by tasks in each cpuset.
3556 *
3557 * This represents the rate at which some task in the cpuset
3558 * ran low on memory on all nodes it was allowed to use, and
3559 * had to enter the kernels page reclaim code in an effort to
3560 * create more free memory by tossing clean pages or swapping
3561 * or writing dirty pages.
3562 *
3563 * Display to user space in the per-cpuset read-only file
3564 * "memory_pressure".  Value displayed is an integer
3565 * representing the recent rate of entry into the synchronous
3566 * (direct) page reclaim by any task attached to the cpuset.
3567 **/
3568
3569void __cpuset_memory_pressure_bump(void)
3570{
3571	rcu_read_lock();
3572	fmeter_markevent(&task_cs(current)->fmeter);
3573	rcu_read_unlock();
3574}
3575
3576#ifdef CONFIG_PROC_PID_CPUSET
3577/*
3578 * proc_cpuset_show()
3579 *  - Print tasks cpuset path into seq_file.
3580 *  - Used for /proc/<pid>/cpuset.
3581 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3582 *    doesn't really matter if tsk->cpuset changes after we read it,
3583 *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
3584 *    anyway.
3585 */
3586int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
3587		     struct pid *pid, struct task_struct *tsk)
3588{
3589	char *buf;
3590	struct cgroup_subsys_state *css;
3591	int retval;
3592
3593	retval = -ENOMEM;
3594	buf = kmalloc(PATH_MAX, GFP_KERNEL);
3595	if (!buf)
3596		goto out;
3597
3598	css = task_get_css(tsk, cpuset_cgrp_id);
3599	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
3600				current->nsproxy->cgroup_ns);
3601	css_put(css);
3602	if (retval >= PATH_MAX)
 
 
 
 
3603		retval = -ENAMETOOLONG;
3604	if (retval < 0)
3605		goto out_free;
3606	seq_puts(m, buf);
3607	seq_putc(m, '\n');
3608	retval = 0;
3609out_free:
3610	kfree(buf);
3611out:
3612	return retval;
3613}
3614#endif /* CONFIG_PROC_PID_CPUSET */
3615
3616/* Display task mems_allowed in /proc/<pid>/status file. */
3617void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
3618{
3619	seq_printf(m, "Mems_allowed:\t%*pb\n",
3620		   nodemask_pr_args(&task->mems_allowed));
3621	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
3622		   nodemask_pr_args(&task->mems_allowed));
3623}