Loading...
1/*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34#ifndef _TLS_OFFLOAD_H
35#define _TLS_OFFLOAD_H
36
37#include <linux/types.h>
38#include <asm/byteorder.h>
39#include <linux/crypto.h>
40#include <linux/socket.h>
41#include <linux/tcp.h>
42#include <linux/mutex.h>
43#include <linux/netdevice.h>
44#include <linux/rcupdate.h>
45
46#include <net/net_namespace.h>
47#include <net/tcp.h>
48#include <net/strparser.h>
49#include <crypto/aead.h>
50#include <uapi/linux/tls.h>
51
52struct tls_rec;
53
54/* Maximum data size carried in a TLS record */
55#define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14)
56
57#define TLS_HEADER_SIZE 5
58#define TLS_NONCE_OFFSET TLS_HEADER_SIZE
59
60#define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type)
61
62#define TLS_AAD_SPACE_SIZE 13
63
64#define TLS_MAX_IV_SIZE 16
65#define TLS_MAX_SALT_SIZE 4
66#define TLS_TAG_SIZE 16
67#define TLS_MAX_REC_SEQ_SIZE 8
68#define TLS_MAX_AAD_SIZE TLS_AAD_SPACE_SIZE
69
70/* For CCM mode, the full 16-bytes of IV is made of '4' fields of given sizes.
71 *
72 * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
73 *
74 * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
75 * Hence b0 contains (3 - 1) = 2.
76 */
77#define TLS_AES_CCM_IV_B0_BYTE 2
78#define TLS_SM4_CCM_IV_B0_BYTE 2
79
80enum {
81 TLS_BASE,
82 TLS_SW,
83 TLS_HW,
84 TLS_HW_RECORD,
85 TLS_NUM_CONFIG,
86};
87
88struct tx_work {
89 struct delayed_work work;
90 struct sock *sk;
91};
92
93struct tls_sw_context_tx {
94 struct crypto_aead *aead_send;
95 struct crypto_wait async_wait;
96 struct tx_work tx_work;
97 struct tls_rec *open_rec;
98 struct list_head tx_list;
99 atomic_t encrypt_pending;
100 u8 async_capable:1;
101
102#define BIT_TX_SCHEDULED 0
103#define BIT_TX_CLOSING 1
104 unsigned long tx_bitmask;
105};
106
107struct tls_strparser {
108 struct sock *sk;
109
110 u32 mark : 8;
111 u32 stopped : 1;
112 u32 copy_mode : 1;
113 u32 mixed_decrypted : 1;
114
115 bool msg_ready;
116
117 struct strp_msg stm;
118
119 struct sk_buff *anchor;
120 struct work_struct work;
121};
122
123struct tls_sw_context_rx {
124 struct crypto_aead *aead_recv;
125 struct crypto_wait async_wait;
126 struct sk_buff_head rx_list; /* list of decrypted 'data' records */
127 void (*saved_data_ready)(struct sock *sk);
128
129 u8 reader_present;
130 u8 async_capable:1;
131 u8 zc_capable:1;
132 u8 reader_contended:1;
133
134 struct tls_strparser strp;
135
136 atomic_t decrypt_pending;
137 struct sk_buff_head async_hold;
138 struct wait_queue_head wq;
139};
140
141struct tls_record_info {
142 struct list_head list;
143 u32 end_seq;
144 int len;
145 int num_frags;
146 skb_frag_t frags[MAX_SKB_FRAGS];
147};
148
149#define TLS_DRIVER_STATE_SIZE_TX 16
150struct tls_offload_context_tx {
151 struct crypto_aead *aead_send;
152 spinlock_t lock; /* protects records list */
153 struct list_head records_list;
154 struct tls_record_info *open_record;
155 struct tls_record_info *retransmit_hint;
156 u64 hint_record_sn;
157 u64 unacked_record_sn;
158
159 struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
160 void (*sk_destruct)(struct sock *sk);
161 struct work_struct destruct_work;
162 struct tls_context *ctx;
163 /* The TLS layer reserves room for driver specific state
164 * Currently the belief is that there is not enough
165 * driver specific state to justify another layer of indirection
166 */
167 u8 driver_state[TLS_DRIVER_STATE_SIZE_TX] __aligned(8);
168};
169
170enum tls_context_flags {
171 /* tls_device_down was called after the netdev went down, device state
172 * was released, and kTLS works in software, even though rx_conf is
173 * still TLS_HW (needed for transition).
174 */
175 TLS_RX_DEV_DEGRADED = 0,
176 /* Unlike RX where resync is driven entirely by the core in TX only
177 * the driver knows when things went out of sync, so we need the flag
178 * to be atomic.
179 */
180 TLS_TX_SYNC_SCHED = 1,
181 /* tls_dev_del was called for the RX side, device state was released,
182 * but tls_ctx->netdev might still be kept, because TX-side driver
183 * resources might not be released yet. Used to prevent the second
184 * tls_dev_del call in tls_device_down if it happens simultaneously.
185 */
186 TLS_RX_DEV_CLOSED = 2,
187};
188
189struct cipher_context {
190 char iv[TLS_MAX_IV_SIZE + TLS_MAX_SALT_SIZE];
191 char rec_seq[TLS_MAX_REC_SEQ_SIZE];
192};
193
194union tls_crypto_context {
195 struct tls_crypto_info info;
196 union {
197 struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
198 struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
199 struct tls12_crypto_info_chacha20_poly1305 chacha20_poly1305;
200 struct tls12_crypto_info_sm4_gcm sm4_gcm;
201 struct tls12_crypto_info_sm4_ccm sm4_ccm;
202 };
203};
204
205struct tls_prot_info {
206 u16 version;
207 u16 cipher_type;
208 u16 prepend_size;
209 u16 tag_size;
210 u16 overhead_size;
211 u16 iv_size;
212 u16 salt_size;
213 u16 rec_seq_size;
214 u16 aad_size;
215 u16 tail_size;
216};
217
218struct tls_context {
219 /* read-only cache line */
220 struct tls_prot_info prot_info;
221
222 u8 tx_conf:3;
223 u8 rx_conf:3;
224 u8 zerocopy_sendfile:1;
225 u8 rx_no_pad:1;
226
227 int (*push_pending_record)(struct sock *sk, int flags);
228 void (*sk_write_space)(struct sock *sk);
229
230 void *priv_ctx_tx;
231 void *priv_ctx_rx;
232
233 struct net_device __rcu *netdev;
234
235 /* rw cache line */
236 struct cipher_context tx;
237 struct cipher_context rx;
238
239 struct scatterlist *partially_sent_record;
240 u16 partially_sent_offset;
241
242 bool splicing_pages;
243 bool pending_open_record_frags;
244
245 struct mutex tx_lock; /* protects partially_sent_* fields and
246 * per-type TX fields
247 */
248 unsigned long flags;
249
250 /* cache cold stuff */
251 struct proto *sk_proto;
252 struct sock *sk;
253
254 void (*sk_destruct)(struct sock *sk);
255
256 union tls_crypto_context crypto_send;
257 union tls_crypto_context crypto_recv;
258
259 struct list_head list;
260 refcount_t refcount;
261 struct rcu_head rcu;
262};
263
264enum tls_offload_ctx_dir {
265 TLS_OFFLOAD_CTX_DIR_RX,
266 TLS_OFFLOAD_CTX_DIR_TX,
267};
268
269struct tlsdev_ops {
270 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
271 enum tls_offload_ctx_dir direction,
272 struct tls_crypto_info *crypto_info,
273 u32 start_offload_tcp_sn);
274 void (*tls_dev_del)(struct net_device *netdev,
275 struct tls_context *ctx,
276 enum tls_offload_ctx_dir direction);
277 int (*tls_dev_resync)(struct net_device *netdev,
278 struct sock *sk, u32 seq, u8 *rcd_sn,
279 enum tls_offload_ctx_dir direction);
280};
281
282enum tls_offload_sync_type {
283 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
284 TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
285 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC = 2,
286};
287
288#define TLS_DEVICE_RESYNC_NH_START_IVAL 2
289#define TLS_DEVICE_RESYNC_NH_MAX_IVAL 128
290
291#define TLS_DEVICE_RESYNC_ASYNC_LOGMAX 13
292struct tls_offload_resync_async {
293 atomic64_t req;
294 u16 loglen;
295 u16 rcd_delta;
296 u32 log[TLS_DEVICE_RESYNC_ASYNC_LOGMAX];
297};
298
299#define TLS_DRIVER_STATE_SIZE_RX 8
300struct tls_offload_context_rx {
301 /* sw must be the first member of tls_offload_context_rx */
302 struct tls_sw_context_rx sw;
303 enum tls_offload_sync_type resync_type;
304 /* this member is set regardless of resync_type, to avoid branches */
305 u8 resync_nh_reset:1;
306 /* CORE_NEXT_HINT-only member, but use the hole here */
307 u8 resync_nh_do_now:1;
308 union {
309 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
310 struct {
311 atomic64_t resync_req;
312 };
313 /* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
314 struct {
315 u32 decrypted_failed;
316 u32 decrypted_tgt;
317 } resync_nh;
318 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC */
319 struct {
320 struct tls_offload_resync_async *resync_async;
321 };
322 };
323 /* The TLS layer reserves room for driver specific state
324 * Currently the belief is that there is not enough
325 * driver specific state to justify another layer of indirection
326 */
327 u8 driver_state[TLS_DRIVER_STATE_SIZE_RX] __aligned(8);
328};
329
330struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
331 u32 seq, u64 *p_record_sn);
332
333static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
334{
335 return rec->len == 0;
336}
337
338static inline u32 tls_record_start_seq(struct tls_record_info *rec)
339{
340 return rec->end_seq - rec->len;
341}
342
343struct sk_buff *
344tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
345 struct sk_buff *skb);
346struct sk_buff *
347tls_validate_xmit_skb_sw(struct sock *sk, struct net_device *dev,
348 struct sk_buff *skb);
349
350static inline bool tls_is_skb_tx_device_offloaded(const struct sk_buff *skb)
351{
352#ifdef CONFIG_TLS_DEVICE
353 struct sock *sk = skb->sk;
354
355 return sk && sk_fullsock(sk) &&
356 (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
357 &tls_validate_xmit_skb);
358#else
359 return false;
360#endif
361}
362
363static inline struct tls_context *tls_get_ctx(const struct sock *sk)
364{
365 const struct inet_connection_sock *icsk = inet_csk(sk);
366
367 /* Use RCU on icsk_ulp_data only for sock diag code,
368 * TLS data path doesn't need rcu_dereference().
369 */
370 return (__force void *)icsk->icsk_ulp_data;
371}
372
373static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
374 const struct tls_context *tls_ctx)
375{
376 return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
377}
378
379static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
380 const struct tls_context *tls_ctx)
381{
382 return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
383}
384
385static inline struct tls_offload_context_tx *
386tls_offload_ctx_tx(const struct tls_context *tls_ctx)
387{
388 return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
389}
390
391static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
392{
393 struct tls_context *ctx;
394
395 if (!sk_is_inet(sk) || !inet_test_bit(IS_ICSK, sk))
396 return false;
397
398 ctx = tls_get_ctx(sk);
399 if (!ctx)
400 return false;
401 return !!tls_sw_ctx_tx(ctx);
402}
403
404static inline bool tls_sw_has_ctx_rx(const struct sock *sk)
405{
406 struct tls_context *ctx;
407
408 if (!sk_is_inet(sk) || !inet_test_bit(IS_ICSK, sk))
409 return false;
410
411 ctx = tls_get_ctx(sk);
412 if (!ctx)
413 return false;
414 return !!tls_sw_ctx_rx(ctx);
415}
416
417static inline struct tls_offload_context_rx *
418tls_offload_ctx_rx(const struct tls_context *tls_ctx)
419{
420 return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
421}
422
423static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
424 enum tls_offload_ctx_dir direction)
425{
426 if (direction == TLS_OFFLOAD_CTX_DIR_TX)
427 return tls_offload_ctx_tx(tls_ctx)->driver_state;
428 else
429 return tls_offload_ctx_rx(tls_ctx)->driver_state;
430}
431
432static inline void *
433tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
434{
435 return __tls_driver_ctx(tls_get_ctx(sk), direction);
436}
437
438#define RESYNC_REQ BIT(0)
439#define RESYNC_REQ_ASYNC BIT(1)
440/* The TLS context is valid until sk_destruct is called */
441static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
442{
443 struct tls_context *tls_ctx = tls_get_ctx(sk);
444 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
445
446 atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | RESYNC_REQ);
447}
448
449/* Log all TLS record header TCP sequences in [seq, seq+len] */
450static inline void
451tls_offload_rx_resync_async_request_start(struct sock *sk, __be32 seq, u16 len)
452{
453 struct tls_context *tls_ctx = tls_get_ctx(sk);
454 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
455
456 atomic64_set(&rx_ctx->resync_async->req, ((u64)ntohl(seq) << 32) |
457 ((u64)len << 16) | RESYNC_REQ | RESYNC_REQ_ASYNC);
458 rx_ctx->resync_async->loglen = 0;
459 rx_ctx->resync_async->rcd_delta = 0;
460}
461
462static inline void
463tls_offload_rx_resync_async_request_end(struct sock *sk, __be32 seq)
464{
465 struct tls_context *tls_ctx = tls_get_ctx(sk);
466 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
467
468 atomic64_set(&rx_ctx->resync_async->req,
469 ((u64)ntohl(seq) << 32) | RESYNC_REQ);
470}
471
472static inline void
473tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
474{
475 struct tls_context *tls_ctx = tls_get_ctx(sk);
476
477 tls_offload_ctx_rx(tls_ctx)->resync_type = type;
478}
479
480/* Driver's seq tracking has to be disabled until resync succeeded */
481static inline bool tls_offload_tx_resync_pending(struct sock *sk)
482{
483 struct tls_context *tls_ctx = tls_get_ctx(sk);
484 bool ret;
485
486 ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
487 smp_mb__after_atomic();
488 return ret;
489}
490
491struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
492
493#ifdef CONFIG_TLS_DEVICE
494void tls_device_sk_destruct(struct sock *sk);
495void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq);
496
497static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk)
498{
499 if (!sk_fullsock(sk) ||
500 smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct)
501 return false;
502 return tls_get_ctx(sk)->rx_conf == TLS_HW;
503}
504#endif
505#endif /* _TLS_OFFLOAD_H */
1/*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34#ifndef _TLS_OFFLOAD_H
35#define _TLS_OFFLOAD_H
36
37#include <linux/types.h>
38#include <asm/byteorder.h>
39#include <linux/crypto.h>
40#include <linux/socket.h>
41#include <linux/tcp.h>
42#include <linux/skmsg.h>
43#include <linux/mutex.h>
44#include <linux/netdevice.h>
45#include <linux/rcupdate.h>
46
47#include <net/net_namespace.h>
48#include <net/tcp.h>
49#include <net/strparser.h>
50#include <crypto/aead.h>
51#include <uapi/linux/tls.h>
52
53
54/* Maximum data size carried in a TLS record */
55#define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14)
56
57#define TLS_HEADER_SIZE 5
58#define TLS_NONCE_OFFSET TLS_HEADER_SIZE
59
60#define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type)
61
62#define TLS_RECORD_TYPE_DATA 0x17
63
64#define TLS_AAD_SPACE_SIZE 13
65
66#define MAX_IV_SIZE 16
67#define TLS_MAX_REC_SEQ_SIZE 8
68
69/* For AES-CCM, the full 16-bytes of IV is made of '4' fields of given sizes.
70 *
71 * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
72 *
73 * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
74 * Hence b0 contains (3 - 1) = 2.
75 */
76#define TLS_AES_CCM_IV_B0_BYTE 2
77
78#define __TLS_INC_STATS(net, field) \
79 __SNMP_INC_STATS((net)->mib.tls_statistics, field)
80#define TLS_INC_STATS(net, field) \
81 SNMP_INC_STATS((net)->mib.tls_statistics, field)
82#define __TLS_DEC_STATS(net, field) \
83 __SNMP_DEC_STATS((net)->mib.tls_statistics, field)
84#define TLS_DEC_STATS(net, field) \
85 SNMP_DEC_STATS((net)->mib.tls_statistics, field)
86
87enum {
88 TLS_BASE,
89 TLS_SW,
90 TLS_HW,
91 TLS_HW_RECORD,
92 TLS_NUM_CONFIG,
93};
94
95/* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
96 * allocated or mapped for each TLS record. After encryption, the records are
97 * stores in a linked list.
98 */
99struct tls_rec {
100 struct list_head list;
101 int tx_ready;
102 int tx_flags;
103
104 struct sk_msg msg_plaintext;
105 struct sk_msg msg_encrypted;
106
107 /* AAD | msg_plaintext.sg.data | sg_tag */
108 struct scatterlist sg_aead_in[2];
109 /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */
110 struct scatterlist sg_aead_out[2];
111
112 char content_type;
113 struct scatterlist sg_content_type;
114
115 char aad_space[TLS_AAD_SPACE_SIZE];
116 u8 iv_data[MAX_IV_SIZE];
117 struct aead_request aead_req;
118 u8 aead_req_ctx[];
119};
120
121struct tls_msg {
122 struct strp_msg rxm;
123 u8 control;
124};
125
126struct tx_work {
127 struct delayed_work work;
128 struct sock *sk;
129};
130
131struct tls_sw_context_tx {
132 struct crypto_aead *aead_send;
133 struct crypto_wait async_wait;
134 struct tx_work tx_work;
135 struct tls_rec *open_rec;
136 struct list_head tx_list;
137 atomic_t encrypt_pending;
138 /* protect crypto_wait with encrypt_pending */
139 spinlock_t encrypt_compl_lock;
140 int async_notify;
141 u8 async_capable:1;
142
143#define BIT_TX_SCHEDULED 0
144#define BIT_TX_CLOSING 1
145 unsigned long tx_bitmask;
146};
147
148struct tls_sw_context_rx {
149 struct crypto_aead *aead_recv;
150 struct crypto_wait async_wait;
151 struct strparser strp;
152 struct sk_buff_head rx_list; /* list of decrypted 'data' records */
153 void (*saved_data_ready)(struct sock *sk);
154
155 struct sk_buff *recv_pkt;
156 u8 control;
157 u8 async_capable:1;
158 u8 decrypted:1;
159 atomic_t decrypt_pending;
160 /* protect crypto_wait with decrypt_pending*/
161 spinlock_t decrypt_compl_lock;
162 bool async_notify;
163};
164
165struct tls_record_info {
166 struct list_head list;
167 u32 end_seq;
168 int len;
169 int num_frags;
170 skb_frag_t frags[MAX_SKB_FRAGS];
171};
172
173struct tls_offload_context_tx {
174 struct crypto_aead *aead_send;
175 spinlock_t lock; /* protects records list */
176 struct list_head records_list;
177 struct tls_record_info *open_record;
178 struct tls_record_info *retransmit_hint;
179 u64 hint_record_sn;
180 u64 unacked_record_sn;
181
182 struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
183 void (*sk_destruct)(struct sock *sk);
184 u8 driver_state[] __aligned(8);
185 /* The TLS layer reserves room for driver specific state
186 * Currently the belief is that there is not enough
187 * driver specific state to justify another layer of indirection
188 */
189#define TLS_DRIVER_STATE_SIZE_TX 16
190};
191
192#define TLS_OFFLOAD_CONTEXT_SIZE_TX \
193 (sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX)
194
195enum tls_context_flags {
196 TLS_RX_SYNC_RUNNING = 0,
197 /* Unlike RX where resync is driven entirely by the core in TX only
198 * the driver knows when things went out of sync, so we need the flag
199 * to be atomic.
200 */
201 TLS_TX_SYNC_SCHED = 1,
202};
203
204struct cipher_context {
205 char *iv;
206 char *rec_seq;
207};
208
209union tls_crypto_context {
210 struct tls_crypto_info info;
211 union {
212 struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
213 struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
214 };
215};
216
217struct tls_prot_info {
218 u16 version;
219 u16 cipher_type;
220 u16 prepend_size;
221 u16 tag_size;
222 u16 overhead_size;
223 u16 iv_size;
224 u16 salt_size;
225 u16 rec_seq_size;
226 u16 aad_size;
227 u16 tail_size;
228};
229
230struct tls_context {
231 /* read-only cache line */
232 struct tls_prot_info prot_info;
233
234 u8 tx_conf:3;
235 u8 rx_conf:3;
236
237 int (*push_pending_record)(struct sock *sk, int flags);
238 void (*sk_write_space)(struct sock *sk);
239
240 void *priv_ctx_tx;
241 void *priv_ctx_rx;
242
243 struct net_device *netdev;
244
245 /* rw cache line */
246 struct cipher_context tx;
247 struct cipher_context rx;
248
249 struct scatterlist *partially_sent_record;
250 u16 partially_sent_offset;
251
252 bool in_tcp_sendpages;
253 bool pending_open_record_frags;
254
255 struct mutex tx_lock; /* protects partially_sent_* fields and
256 * per-type TX fields
257 */
258 unsigned long flags;
259
260 /* cache cold stuff */
261 struct proto *sk_proto;
262
263 void (*sk_destruct)(struct sock *sk);
264
265 union tls_crypto_context crypto_send;
266 union tls_crypto_context crypto_recv;
267
268 struct list_head list;
269 refcount_t refcount;
270 struct rcu_head rcu;
271};
272
273enum tls_offload_ctx_dir {
274 TLS_OFFLOAD_CTX_DIR_RX,
275 TLS_OFFLOAD_CTX_DIR_TX,
276};
277
278struct tlsdev_ops {
279 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
280 enum tls_offload_ctx_dir direction,
281 struct tls_crypto_info *crypto_info,
282 u32 start_offload_tcp_sn);
283 void (*tls_dev_del)(struct net_device *netdev,
284 struct tls_context *ctx,
285 enum tls_offload_ctx_dir direction);
286 int (*tls_dev_resync)(struct net_device *netdev,
287 struct sock *sk, u32 seq, u8 *rcd_sn,
288 enum tls_offload_ctx_dir direction);
289};
290
291enum tls_offload_sync_type {
292 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
293 TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
294 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC = 2,
295};
296
297#define TLS_DEVICE_RESYNC_NH_START_IVAL 2
298#define TLS_DEVICE_RESYNC_NH_MAX_IVAL 128
299
300#define TLS_DEVICE_RESYNC_ASYNC_LOGMAX 13
301struct tls_offload_resync_async {
302 atomic64_t req;
303 u32 loglen;
304 u32 log[TLS_DEVICE_RESYNC_ASYNC_LOGMAX];
305};
306
307struct tls_offload_context_rx {
308 /* sw must be the first member of tls_offload_context_rx */
309 struct tls_sw_context_rx sw;
310 enum tls_offload_sync_type resync_type;
311 /* this member is set regardless of resync_type, to avoid branches */
312 u8 resync_nh_reset:1;
313 /* CORE_NEXT_HINT-only member, but use the hole here */
314 u8 resync_nh_do_now:1;
315 union {
316 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
317 struct {
318 atomic64_t resync_req;
319 };
320 /* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
321 struct {
322 u32 decrypted_failed;
323 u32 decrypted_tgt;
324 } resync_nh;
325 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC */
326 struct {
327 struct tls_offload_resync_async *resync_async;
328 };
329 };
330 u8 driver_state[] __aligned(8);
331 /* The TLS layer reserves room for driver specific state
332 * Currently the belief is that there is not enough
333 * driver specific state to justify another layer of indirection
334 */
335#define TLS_DRIVER_STATE_SIZE_RX 8
336};
337
338#define TLS_OFFLOAD_CONTEXT_SIZE_RX \
339 (sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX)
340
341struct tls_context *tls_ctx_create(struct sock *sk);
342void tls_ctx_free(struct sock *sk, struct tls_context *ctx);
343void update_sk_prot(struct sock *sk, struct tls_context *ctx);
344
345int wait_on_pending_writer(struct sock *sk, long *timeo);
346int tls_sk_query(struct sock *sk, int optname, char __user *optval,
347 int __user *optlen);
348int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
349 unsigned int optlen);
350
351int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
352void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx);
353void tls_sw_strparser_done(struct tls_context *tls_ctx);
354int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
355int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
356 int offset, size_t size, int flags);
357int tls_sw_sendpage(struct sock *sk, struct page *page,
358 int offset, size_t size, int flags);
359void tls_sw_cancel_work_tx(struct tls_context *tls_ctx);
360void tls_sw_release_resources_tx(struct sock *sk);
361void tls_sw_free_ctx_tx(struct tls_context *tls_ctx);
362void tls_sw_free_resources_rx(struct sock *sk);
363void tls_sw_release_resources_rx(struct sock *sk);
364void tls_sw_free_ctx_rx(struct tls_context *tls_ctx);
365int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
366 int nonblock, int flags, int *addr_len);
367bool tls_sw_stream_read(const struct sock *sk);
368ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
369 struct pipe_inode_info *pipe,
370 size_t len, unsigned int flags);
371
372int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
373int tls_device_sendpage(struct sock *sk, struct page *page,
374 int offset, size_t size, int flags);
375int tls_tx_records(struct sock *sk, int flags);
376
377struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
378 u32 seq, u64 *p_record_sn);
379
380static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
381{
382 return rec->len == 0;
383}
384
385static inline u32 tls_record_start_seq(struct tls_record_info *rec)
386{
387 return rec->end_seq - rec->len;
388}
389
390int tls_push_sg(struct sock *sk, struct tls_context *ctx,
391 struct scatterlist *sg, u16 first_offset,
392 int flags);
393int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
394 int flags);
395void tls_free_partial_record(struct sock *sk, struct tls_context *ctx);
396
397static inline struct tls_msg *tls_msg(struct sk_buff *skb)
398{
399 return (struct tls_msg *)strp_msg(skb);
400}
401
402static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
403{
404 return !!ctx->partially_sent_record;
405}
406
407static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
408{
409 return tls_ctx->pending_open_record_frags;
410}
411
412static inline bool is_tx_ready(struct tls_sw_context_tx *ctx)
413{
414 struct tls_rec *rec;
415
416 rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
417 if (!rec)
418 return false;
419
420 return READ_ONCE(rec->tx_ready);
421}
422
423static inline u16 tls_user_config(struct tls_context *ctx, bool tx)
424{
425 u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
426
427 switch (config) {
428 case TLS_BASE:
429 return TLS_CONF_BASE;
430 case TLS_SW:
431 return TLS_CONF_SW;
432 case TLS_HW:
433 return TLS_CONF_HW;
434 case TLS_HW_RECORD:
435 return TLS_CONF_HW_RECORD;
436 }
437 return 0;
438}
439
440struct sk_buff *
441tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
442 struct sk_buff *skb);
443
444static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
445{
446#ifdef CONFIG_SOCK_VALIDATE_XMIT
447 return sk_fullsock(sk) &&
448 (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
449 &tls_validate_xmit_skb);
450#else
451 return false;
452#endif
453}
454
455static inline void tls_err_abort(struct sock *sk, int err)
456{
457 sk->sk_err = err;
458 sk->sk_error_report(sk);
459}
460
461static inline bool tls_bigint_increment(unsigned char *seq, int len)
462{
463 int i;
464
465 for (i = len - 1; i >= 0; i--) {
466 ++seq[i];
467 if (seq[i] != 0)
468 break;
469 }
470
471 return (i == -1);
472}
473
474static inline struct tls_context *tls_get_ctx(const struct sock *sk)
475{
476 struct inet_connection_sock *icsk = inet_csk(sk);
477
478 /* Use RCU on icsk_ulp_data only for sock diag code,
479 * TLS data path doesn't need rcu_dereference().
480 */
481 return (__force void *)icsk->icsk_ulp_data;
482}
483
484static inline void tls_advance_record_sn(struct sock *sk,
485 struct tls_prot_info *prot,
486 struct cipher_context *ctx)
487{
488 if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size))
489 tls_err_abort(sk, EBADMSG);
490
491 if (prot->version != TLS_1_3_VERSION)
492 tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
493 prot->iv_size);
494}
495
496static inline void tls_fill_prepend(struct tls_context *ctx,
497 char *buf,
498 size_t plaintext_len,
499 unsigned char record_type,
500 int version)
501{
502 struct tls_prot_info *prot = &ctx->prot_info;
503 size_t pkt_len, iv_size = prot->iv_size;
504
505 pkt_len = plaintext_len + prot->tag_size;
506 if (version != TLS_1_3_VERSION) {
507 pkt_len += iv_size;
508
509 memcpy(buf + TLS_NONCE_OFFSET,
510 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size);
511 }
512
513 /* we cover nonce explicit here as well, so buf should be of
514 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
515 */
516 buf[0] = version == TLS_1_3_VERSION ?
517 TLS_RECORD_TYPE_DATA : record_type;
518 /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */
519 buf[1] = TLS_1_2_VERSION_MINOR;
520 buf[2] = TLS_1_2_VERSION_MAJOR;
521 /* we can use IV for nonce explicit according to spec */
522 buf[3] = pkt_len >> 8;
523 buf[4] = pkt_len & 0xFF;
524}
525
526static inline void tls_make_aad(char *buf,
527 size_t size,
528 char *record_sequence,
529 int record_sequence_size,
530 unsigned char record_type,
531 int version)
532{
533 if (version != TLS_1_3_VERSION) {
534 memcpy(buf, record_sequence, record_sequence_size);
535 buf += 8;
536 } else {
537 size += TLS_CIPHER_AES_GCM_128_TAG_SIZE;
538 }
539
540 buf[0] = version == TLS_1_3_VERSION ?
541 TLS_RECORD_TYPE_DATA : record_type;
542 buf[1] = TLS_1_2_VERSION_MAJOR;
543 buf[2] = TLS_1_2_VERSION_MINOR;
544 buf[3] = size >> 8;
545 buf[4] = size & 0xFF;
546}
547
548static inline void xor_iv_with_seq(int version, char *iv, char *seq)
549{
550 int i;
551
552 if (version == TLS_1_3_VERSION) {
553 for (i = 0; i < 8; i++)
554 iv[i + 4] ^= seq[i];
555 }
556}
557
558
559static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
560 const struct tls_context *tls_ctx)
561{
562 return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
563}
564
565static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
566 const struct tls_context *tls_ctx)
567{
568 return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
569}
570
571static inline struct tls_offload_context_tx *
572tls_offload_ctx_tx(const struct tls_context *tls_ctx)
573{
574 return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
575}
576
577static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
578{
579 struct tls_context *ctx = tls_get_ctx(sk);
580
581 if (!ctx)
582 return false;
583 return !!tls_sw_ctx_tx(ctx);
584}
585
586static inline bool tls_sw_has_ctx_rx(const struct sock *sk)
587{
588 struct tls_context *ctx = tls_get_ctx(sk);
589
590 if (!ctx)
591 return false;
592 return !!tls_sw_ctx_rx(ctx);
593}
594
595void tls_sw_write_space(struct sock *sk, struct tls_context *ctx);
596void tls_device_write_space(struct sock *sk, struct tls_context *ctx);
597
598static inline struct tls_offload_context_rx *
599tls_offload_ctx_rx(const struct tls_context *tls_ctx)
600{
601 return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
602}
603
604#if IS_ENABLED(CONFIG_TLS_DEVICE)
605static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
606 enum tls_offload_ctx_dir direction)
607{
608 if (direction == TLS_OFFLOAD_CTX_DIR_TX)
609 return tls_offload_ctx_tx(tls_ctx)->driver_state;
610 else
611 return tls_offload_ctx_rx(tls_ctx)->driver_state;
612}
613
614static inline void *
615tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
616{
617 return __tls_driver_ctx(tls_get_ctx(sk), direction);
618}
619#endif
620
621#define RESYNC_REQ BIT(0)
622#define RESYNC_REQ_ASYNC BIT(1)
623/* The TLS context is valid until sk_destruct is called */
624static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
625{
626 struct tls_context *tls_ctx = tls_get_ctx(sk);
627 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
628
629 atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | RESYNC_REQ);
630}
631
632/* Log all TLS record header TCP sequences in [seq, seq+len] */
633static inline void
634tls_offload_rx_resync_async_request_start(struct sock *sk, __be32 seq, u16 len)
635{
636 struct tls_context *tls_ctx = tls_get_ctx(sk);
637 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
638
639 atomic64_set(&rx_ctx->resync_async->req, ((u64)ntohl(seq) << 32) |
640 ((u64)len << 16) | RESYNC_REQ | RESYNC_REQ_ASYNC);
641 rx_ctx->resync_async->loglen = 0;
642}
643
644static inline void
645tls_offload_rx_resync_async_request_end(struct sock *sk, __be32 seq)
646{
647 struct tls_context *tls_ctx = tls_get_ctx(sk);
648 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
649
650 atomic64_set(&rx_ctx->resync_async->req,
651 ((u64)ntohl(seq) << 32) | RESYNC_REQ);
652}
653
654static inline void
655tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
656{
657 struct tls_context *tls_ctx = tls_get_ctx(sk);
658
659 tls_offload_ctx_rx(tls_ctx)->resync_type = type;
660}
661
662/* Driver's seq tracking has to be disabled until resync succeeded */
663static inline bool tls_offload_tx_resync_pending(struct sock *sk)
664{
665 struct tls_context *tls_ctx = tls_get_ctx(sk);
666 bool ret;
667
668 ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
669 smp_mb__after_atomic();
670 return ret;
671}
672
673int __net_init tls_proc_init(struct net *net);
674void __net_exit tls_proc_fini(struct net *net);
675
676int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
677 unsigned char *record_type);
678int decrypt_skb(struct sock *sk, struct sk_buff *skb,
679 struct scatterlist *sgout);
680struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
681
682struct sk_buff *tls_validate_xmit_skb(struct sock *sk,
683 struct net_device *dev,
684 struct sk_buff *skb);
685
686int tls_sw_fallback_init(struct sock *sk,
687 struct tls_offload_context_tx *offload_ctx,
688 struct tls_crypto_info *crypto_info);
689
690#ifdef CONFIG_TLS_DEVICE
691void tls_device_init(void);
692void tls_device_cleanup(void);
693void tls_device_sk_destruct(struct sock *sk);
694int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
695void tls_device_free_resources_tx(struct sock *sk);
696int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
697void tls_device_offload_cleanup_rx(struct sock *sk);
698void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq);
699void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq);
700int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
701 struct sk_buff *skb, struct strp_msg *rxm);
702
703static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk)
704{
705 if (!sk_fullsock(sk) ||
706 smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct)
707 return false;
708 return tls_get_ctx(sk)->rx_conf == TLS_HW;
709}
710#else
711static inline void tls_device_init(void) {}
712static inline void tls_device_cleanup(void) {}
713
714static inline int
715tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
716{
717 return -EOPNOTSUPP;
718}
719
720static inline void tls_device_free_resources_tx(struct sock *sk) {}
721
722static inline int
723tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
724{
725 return -EOPNOTSUPP;
726}
727
728static inline void tls_device_offload_cleanup_rx(struct sock *sk) {}
729static inline void
730tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {}
731
732static inline int
733tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
734 struct sk_buff *skb, struct strp_msg *rxm)
735{
736 return 0;
737}
738#endif
739#endif /* _TLS_OFFLOAD_H */