Loading...
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the AF_INET socket handler.
8 *
9 * Version: @(#)sock.h 1.0.4 05/13/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche <flla@stud.uni-sb.de>
15 *
16 * Fixes:
17 * Alan Cox : Volatiles in skbuff pointers. See
18 * skbuff comments. May be overdone,
19 * better to prove they can be removed
20 * than the reverse.
21 * Alan Cox : Added a zapped field for tcp to note
22 * a socket is reset and must stay shut up
23 * Alan Cox : New fields for options
24 * Pauline Middelink : identd support
25 * Alan Cox : Eliminate low level recv/recvfrom
26 * David S. Miller : New socket lookup architecture.
27 * Steve Whitehouse: Default routines for sock_ops
28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
29 * protinfo be just a void pointer, as the
30 * protocol specific parts were moved to
31 * respective headers and ipv4/v6, etc now
32 * use private slabcaches for its socks
33 * Pedro Hortas : New flags field for socket options
34 */
35#ifndef _SOCK_H
36#define _SOCK_H
37
38#include <linux/hardirq.h>
39#include <linux/kernel.h>
40#include <linux/list.h>
41#include <linux/list_nulls.h>
42#include <linux/timer.h>
43#include <linux/cache.h>
44#include <linux/bitops.h>
45#include <linux/lockdep.h>
46#include <linux/netdevice.h>
47#include <linux/skbuff.h> /* struct sk_buff */
48#include <linux/mm.h>
49#include <linux/security.h>
50#include <linux/slab.h>
51#include <linux/uaccess.h>
52#include <linux/page_counter.h>
53#include <linux/memcontrol.h>
54#include <linux/static_key.h>
55#include <linux/sched.h>
56#include <linux/wait.h>
57#include <linux/cgroup-defs.h>
58#include <linux/rbtree.h>
59#include <linux/rculist_nulls.h>
60#include <linux/poll.h>
61#include <linux/sockptr.h>
62#include <linux/indirect_call_wrapper.h>
63#include <linux/atomic.h>
64#include <linux/refcount.h>
65#include <linux/llist.h>
66#include <net/dst.h>
67#include <net/checksum.h>
68#include <net/tcp_states.h>
69#include <linux/net_tstamp.h>
70#include <net/l3mdev.h>
71#include <uapi/linux/socket.h>
72
73/*
74 * This structure really needs to be cleaned up.
75 * Most of it is for TCP, and not used by any of
76 * the other protocols.
77 */
78
79/* This is the per-socket lock. The spinlock provides a synchronization
80 * between user contexts and software interrupt processing, whereas the
81 * mini-semaphore synchronizes multiple users amongst themselves.
82 */
83typedef struct {
84 spinlock_t slock;
85 int owned;
86 wait_queue_head_t wq;
87 /*
88 * We express the mutex-alike socket_lock semantics
89 * to the lock validator by explicitly managing
90 * the slock as a lock variant (in addition to
91 * the slock itself):
92 */
93#ifdef CONFIG_DEBUG_LOCK_ALLOC
94 struct lockdep_map dep_map;
95#endif
96} socket_lock_t;
97
98struct sock;
99struct proto;
100struct net;
101
102typedef __u32 __bitwise __portpair;
103typedef __u64 __bitwise __addrpair;
104
105/**
106 * struct sock_common - minimal network layer representation of sockets
107 * @skc_daddr: Foreign IPv4 addr
108 * @skc_rcv_saddr: Bound local IPv4 addr
109 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
110 * @skc_hash: hash value used with various protocol lookup tables
111 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
112 * @skc_dport: placeholder for inet_dport/tw_dport
113 * @skc_num: placeholder for inet_num/tw_num
114 * @skc_portpair: __u32 union of @skc_dport & @skc_num
115 * @skc_family: network address family
116 * @skc_state: Connection state
117 * @skc_reuse: %SO_REUSEADDR setting
118 * @skc_reuseport: %SO_REUSEPORT setting
119 * @skc_ipv6only: socket is IPV6 only
120 * @skc_net_refcnt: socket is using net ref counting
121 * @skc_bound_dev_if: bound device index if != 0
122 * @skc_bind_node: bind hash linkage for various protocol lookup tables
123 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
124 * @skc_prot: protocol handlers inside a network family
125 * @skc_net: reference to the network namespace of this socket
126 * @skc_v6_daddr: IPV6 destination address
127 * @skc_v6_rcv_saddr: IPV6 source address
128 * @skc_cookie: socket's cookie value
129 * @skc_node: main hash linkage for various protocol lookup tables
130 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
131 * @skc_tx_queue_mapping: tx queue number for this connection
132 * @skc_rx_queue_mapping: rx queue number for this connection
133 * @skc_flags: place holder for sk_flags
134 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
135 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
136 * @skc_listener: connection request listener socket (aka rsk_listener)
137 * [union with @skc_flags]
138 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
139 * [union with @skc_flags]
140 * @skc_incoming_cpu: record/match cpu processing incoming packets
141 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
142 * [union with @skc_incoming_cpu]
143 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
144 * [union with @skc_incoming_cpu]
145 * @skc_refcnt: reference count
146 *
147 * This is the minimal network layer representation of sockets, the header
148 * for struct sock and struct inet_timewait_sock.
149 */
150struct sock_common {
151 union {
152 __addrpair skc_addrpair;
153 struct {
154 __be32 skc_daddr;
155 __be32 skc_rcv_saddr;
156 };
157 };
158 union {
159 unsigned int skc_hash;
160 __u16 skc_u16hashes[2];
161 };
162 /* skc_dport && skc_num must be grouped as well */
163 union {
164 __portpair skc_portpair;
165 struct {
166 __be16 skc_dport;
167 __u16 skc_num;
168 };
169 };
170
171 unsigned short skc_family;
172 volatile unsigned char skc_state;
173 unsigned char skc_reuse:4;
174 unsigned char skc_reuseport:1;
175 unsigned char skc_ipv6only:1;
176 unsigned char skc_net_refcnt:1;
177 int skc_bound_dev_if;
178 union {
179 struct hlist_node skc_bind_node;
180 struct hlist_node skc_portaddr_node;
181 };
182 struct proto *skc_prot;
183 possible_net_t skc_net;
184
185#if IS_ENABLED(CONFIG_IPV6)
186 struct in6_addr skc_v6_daddr;
187 struct in6_addr skc_v6_rcv_saddr;
188#endif
189
190 atomic64_t skc_cookie;
191
192 /* following fields are padding to force
193 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
194 * assuming IPV6 is enabled. We use this padding differently
195 * for different kind of 'sockets'
196 */
197 union {
198 unsigned long skc_flags;
199 struct sock *skc_listener; /* request_sock */
200 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
201 };
202 /*
203 * fields between dontcopy_begin/dontcopy_end
204 * are not copied in sock_copy()
205 */
206 /* private: */
207 int skc_dontcopy_begin[0];
208 /* public: */
209 union {
210 struct hlist_node skc_node;
211 struct hlist_nulls_node skc_nulls_node;
212 };
213 unsigned short skc_tx_queue_mapping;
214#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
215 unsigned short skc_rx_queue_mapping;
216#endif
217 union {
218 int skc_incoming_cpu;
219 u32 skc_rcv_wnd;
220 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
221 };
222
223 refcount_t skc_refcnt;
224 /* private: */
225 int skc_dontcopy_end[0];
226 union {
227 u32 skc_rxhash;
228 u32 skc_window_clamp;
229 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
230 };
231 /* public: */
232};
233
234struct bpf_local_storage;
235struct sk_filter;
236
237/**
238 * struct sock - network layer representation of sockets
239 * @__sk_common: shared layout with inet_timewait_sock
240 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
241 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
242 * @sk_lock: synchronizer
243 * @sk_kern_sock: True if sock is using kernel lock classes
244 * @sk_rcvbuf: size of receive buffer in bytes
245 * @sk_wq: sock wait queue and async head
246 * @sk_rx_dst: receive input route used by early demux
247 * @sk_rx_dst_ifindex: ifindex for @sk_rx_dst
248 * @sk_rx_dst_cookie: cookie for @sk_rx_dst
249 * @sk_dst_cache: destination cache
250 * @sk_dst_pending_confirm: need to confirm neighbour
251 * @sk_policy: flow policy
252 * @sk_receive_queue: incoming packets
253 * @sk_wmem_alloc: transmit queue bytes committed
254 * @sk_tsq_flags: TCP Small Queues flags
255 * @sk_write_queue: Packet sending queue
256 * @sk_omem_alloc: "o" is "option" or "other"
257 * @sk_wmem_queued: persistent queue size
258 * @sk_forward_alloc: space allocated forward
259 * @sk_reserved_mem: space reserved and non-reclaimable for the socket
260 * @sk_napi_id: id of the last napi context to receive data for sk
261 * @sk_ll_usec: usecs to busypoll when there is no data
262 * @sk_allocation: allocation mode
263 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
264 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
265 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
266 * @sk_sndbuf: size of send buffer in bytes
267 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
268 * @sk_no_check_rx: allow zero checksum in RX packets
269 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
270 * @sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
271 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
272 * @sk_gso_max_size: Maximum GSO segment size to build
273 * @sk_gso_max_segs: Maximum number of GSO segments
274 * @sk_pacing_shift: scaling factor for TCP Small Queues
275 * @sk_lingertime: %SO_LINGER l_linger setting
276 * @sk_backlog: always used with the per-socket spinlock held
277 * @sk_callback_lock: used with the callbacks in the end of this struct
278 * @sk_error_queue: rarely used
279 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
280 * IPV6_ADDRFORM for instance)
281 * @sk_err: last error
282 * @sk_err_soft: errors that don't cause failure but are the cause of a
283 * persistent failure not just 'timed out'
284 * @sk_drops: raw/udp drops counter
285 * @sk_ack_backlog: current listen backlog
286 * @sk_max_ack_backlog: listen backlog set in listen()
287 * @sk_uid: user id of owner
288 * @sk_prefer_busy_poll: prefer busypolling over softirq processing
289 * @sk_busy_poll_budget: napi processing budget when busypolling
290 * @sk_priority: %SO_PRIORITY setting
291 * @sk_type: socket type (%SOCK_STREAM, etc)
292 * @sk_protocol: which protocol this socket belongs in this network family
293 * @sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
294 * @sk_peer_pid: &struct pid for this socket's peer
295 * @sk_peer_cred: %SO_PEERCRED setting
296 * @sk_rcvlowat: %SO_RCVLOWAT setting
297 * @sk_rcvtimeo: %SO_RCVTIMEO setting
298 * @sk_sndtimeo: %SO_SNDTIMEO setting
299 * @sk_txhash: computed flow hash for use on transmit
300 * @sk_txrehash: enable TX hash rethink
301 * @sk_filter: socket filtering instructions
302 * @sk_timer: sock cleanup timer
303 * @sk_stamp: time stamp of last packet received
304 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
305 * @sk_tsflags: SO_TIMESTAMPING flags
306 * @sk_use_task_frag: allow sk_page_frag() to use current->task_frag.
307 * Sockets that can be used under memory reclaim should
308 * set this to false.
309 * @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
310 * for timestamping
311 * @sk_tskey: counter to disambiguate concurrent tstamp requests
312 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
313 * @sk_socket: Identd and reporting IO signals
314 * @sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
315 * @sk_frag: cached page frag
316 * @sk_peek_off: current peek_offset value
317 * @sk_send_head: front of stuff to transmit
318 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
319 * @sk_security: used by security modules
320 * @sk_mark: generic packet mark
321 * @sk_cgrp_data: cgroup data for this cgroup
322 * @sk_memcg: this socket's memory cgroup association
323 * @sk_write_pending: a write to stream socket waits to start
324 * @sk_disconnects: number of disconnect operations performed on this sock
325 * @sk_state_change: callback to indicate change in the state of the sock
326 * @sk_data_ready: callback to indicate there is data to be processed
327 * @sk_write_space: callback to indicate there is bf sending space available
328 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
329 * @sk_backlog_rcv: callback to process the backlog
330 * @sk_validate_xmit_skb: ptr to an optional validate function
331 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
332 * @sk_reuseport_cb: reuseport group container
333 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage
334 * @sk_rcu: used during RCU grace period
335 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
336 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
337 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME
338 * @sk_txtime_unused: unused txtime flags
339 * @ns_tracker: tracker for netns reference
340 * @sk_user_frags: xarray of pages the user is holding a reference on.
341 */
342struct sock {
343 /*
344 * Now struct inet_timewait_sock also uses sock_common, so please just
345 * don't add nothing before this first member (__sk_common) --acme
346 */
347 struct sock_common __sk_common;
348#define sk_node __sk_common.skc_node
349#define sk_nulls_node __sk_common.skc_nulls_node
350#define sk_refcnt __sk_common.skc_refcnt
351#define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
352#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
353#define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
354#endif
355
356#define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
357#define sk_dontcopy_end __sk_common.skc_dontcopy_end
358#define sk_hash __sk_common.skc_hash
359#define sk_portpair __sk_common.skc_portpair
360#define sk_num __sk_common.skc_num
361#define sk_dport __sk_common.skc_dport
362#define sk_addrpair __sk_common.skc_addrpair
363#define sk_daddr __sk_common.skc_daddr
364#define sk_rcv_saddr __sk_common.skc_rcv_saddr
365#define sk_family __sk_common.skc_family
366#define sk_state __sk_common.skc_state
367#define sk_reuse __sk_common.skc_reuse
368#define sk_reuseport __sk_common.skc_reuseport
369#define sk_ipv6only __sk_common.skc_ipv6only
370#define sk_net_refcnt __sk_common.skc_net_refcnt
371#define sk_bound_dev_if __sk_common.skc_bound_dev_if
372#define sk_bind_node __sk_common.skc_bind_node
373#define sk_prot __sk_common.skc_prot
374#define sk_net __sk_common.skc_net
375#define sk_v6_daddr __sk_common.skc_v6_daddr
376#define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
377#define sk_cookie __sk_common.skc_cookie
378#define sk_incoming_cpu __sk_common.skc_incoming_cpu
379#define sk_flags __sk_common.skc_flags
380#define sk_rxhash __sk_common.skc_rxhash
381
382 __cacheline_group_begin(sock_write_rx);
383
384 atomic_t sk_drops;
385 __s32 sk_peek_off;
386 struct sk_buff_head sk_error_queue;
387 struct sk_buff_head sk_receive_queue;
388 /*
389 * The backlog queue is special, it is always used with
390 * the per-socket spinlock held and requires low latency
391 * access. Therefore we special case it's implementation.
392 * Note : rmem_alloc is in this structure to fill a hole
393 * on 64bit arches, not because its logically part of
394 * backlog.
395 */
396 struct {
397 atomic_t rmem_alloc;
398 int len;
399 struct sk_buff *head;
400 struct sk_buff *tail;
401 } sk_backlog;
402#define sk_rmem_alloc sk_backlog.rmem_alloc
403
404 __cacheline_group_end(sock_write_rx);
405
406 __cacheline_group_begin(sock_read_rx);
407 /* early demux fields */
408 struct dst_entry __rcu *sk_rx_dst;
409 int sk_rx_dst_ifindex;
410 u32 sk_rx_dst_cookie;
411
412#ifdef CONFIG_NET_RX_BUSY_POLL
413 unsigned int sk_ll_usec;
414 unsigned int sk_napi_id;
415 u16 sk_busy_poll_budget;
416 u8 sk_prefer_busy_poll;
417#endif
418 u8 sk_userlocks;
419 int sk_rcvbuf;
420
421 struct sk_filter __rcu *sk_filter;
422 union {
423 struct socket_wq __rcu *sk_wq;
424 /* private: */
425 struct socket_wq *sk_wq_raw;
426 /* public: */
427 };
428
429 void (*sk_data_ready)(struct sock *sk);
430 long sk_rcvtimeo;
431 int sk_rcvlowat;
432 __cacheline_group_end(sock_read_rx);
433
434 __cacheline_group_begin(sock_read_rxtx);
435 int sk_err;
436 struct socket *sk_socket;
437 struct mem_cgroup *sk_memcg;
438#ifdef CONFIG_XFRM
439 struct xfrm_policy __rcu *sk_policy[2];
440#endif
441 __cacheline_group_end(sock_read_rxtx);
442
443 __cacheline_group_begin(sock_write_rxtx);
444 socket_lock_t sk_lock;
445 u32 sk_reserved_mem;
446 int sk_forward_alloc;
447 u32 sk_tsflags;
448 __cacheline_group_end(sock_write_rxtx);
449
450 __cacheline_group_begin(sock_write_tx);
451 int sk_write_pending;
452 atomic_t sk_omem_alloc;
453 int sk_sndbuf;
454
455 int sk_wmem_queued;
456 refcount_t sk_wmem_alloc;
457 unsigned long sk_tsq_flags;
458 union {
459 struct sk_buff *sk_send_head;
460 struct rb_root tcp_rtx_queue;
461 };
462 struct sk_buff_head sk_write_queue;
463 u32 sk_dst_pending_confirm;
464 u32 sk_pacing_status; /* see enum sk_pacing */
465 struct page_frag sk_frag;
466 struct timer_list sk_timer;
467
468 unsigned long sk_pacing_rate; /* bytes per second */
469 atomic_t sk_zckey;
470 atomic_t sk_tskey;
471 __cacheline_group_end(sock_write_tx);
472
473 __cacheline_group_begin(sock_read_tx);
474 unsigned long sk_max_pacing_rate;
475 long sk_sndtimeo;
476 u32 sk_priority;
477 u32 sk_mark;
478 struct dst_entry __rcu *sk_dst_cache;
479 netdev_features_t sk_route_caps;
480#ifdef CONFIG_SOCK_VALIDATE_XMIT
481 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk,
482 struct net_device *dev,
483 struct sk_buff *skb);
484#endif
485 u16 sk_gso_type;
486 u16 sk_gso_max_segs;
487 unsigned int sk_gso_max_size;
488 gfp_t sk_allocation;
489 u32 sk_txhash;
490 u8 sk_pacing_shift;
491 bool sk_use_task_frag;
492 __cacheline_group_end(sock_read_tx);
493
494 /*
495 * Because of non atomicity rules, all
496 * changes are protected by socket lock.
497 */
498 u8 sk_gso_disabled : 1,
499 sk_kern_sock : 1,
500 sk_no_check_tx : 1,
501 sk_no_check_rx : 1;
502 u8 sk_shutdown;
503 u16 sk_type;
504 u16 sk_protocol;
505 unsigned long sk_lingertime;
506 struct proto *sk_prot_creator;
507 rwlock_t sk_callback_lock;
508 int sk_err_soft;
509 u32 sk_ack_backlog;
510 u32 sk_max_ack_backlog;
511 kuid_t sk_uid;
512 spinlock_t sk_peer_lock;
513 int sk_bind_phc;
514 struct pid *sk_peer_pid;
515 const struct cred *sk_peer_cred;
516
517 ktime_t sk_stamp;
518#if BITS_PER_LONG==32
519 seqlock_t sk_stamp_seq;
520#endif
521 int sk_disconnects;
522
523 u8 sk_txrehash;
524 u8 sk_clockid;
525 u8 sk_txtime_deadline_mode : 1,
526 sk_txtime_report_errors : 1,
527 sk_txtime_unused : 6;
528
529 void *sk_user_data;
530#ifdef CONFIG_SECURITY
531 void *sk_security;
532#endif
533 struct sock_cgroup_data sk_cgrp_data;
534 void (*sk_state_change)(struct sock *sk);
535 void (*sk_write_space)(struct sock *sk);
536 void (*sk_error_report)(struct sock *sk);
537 int (*sk_backlog_rcv)(struct sock *sk,
538 struct sk_buff *skb);
539 void (*sk_destruct)(struct sock *sk);
540 struct sock_reuseport __rcu *sk_reuseport_cb;
541#ifdef CONFIG_BPF_SYSCALL
542 struct bpf_local_storage __rcu *sk_bpf_storage;
543#endif
544 struct rcu_head sk_rcu;
545 netns_tracker ns_tracker;
546 struct xarray sk_user_frags;
547};
548
549struct sock_bh_locked {
550 struct sock *sock;
551 local_lock_t bh_lock;
552};
553
554enum sk_pacing {
555 SK_PACING_NONE = 0,
556 SK_PACING_NEEDED = 1,
557 SK_PACING_FQ = 2,
558};
559
560/* flag bits in sk_user_data
561 *
562 * - SK_USER_DATA_NOCOPY: Pointer stored in sk_user_data might
563 * not be suitable for copying when cloning the socket. For instance,
564 * it can point to a reference counted object. sk_user_data bottom
565 * bit is set if pointer must not be copied.
566 *
567 * - SK_USER_DATA_BPF: Mark whether sk_user_data field is
568 * managed/owned by a BPF reuseport array. This bit should be set
569 * when sk_user_data's sk is added to the bpf's reuseport_array.
570 *
571 * - SK_USER_DATA_PSOCK: Mark whether pointer stored in
572 * sk_user_data points to psock type. This bit should be set
573 * when sk_user_data is assigned to a psock object.
574 */
575#define SK_USER_DATA_NOCOPY 1UL
576#define SK_USER_DATA_BPF 2UL
577#define SK_USER_DATA_PSOCK 4UL
578#define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
579 SK_USER_DATA_PSOCK)
580
581/**
582 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
583 * @sk: socket
584 */
585static inline bool sk_user_data_is_nocopy(const struct sock *sk)
586{
587 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
588}
589
590#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
591
592/**
593 * __locked_read_sk_user_data_with_flags - return the pointer
594 * only if argument flags all has been set in sk_user_data. Otherwise
595 * return NULL
596 *
597 * @sk: socket
598 * @flags: flag bits
599 *
600 * The caller must be holding sk->sk_callback_lock.
601 */
602static inline void *
603__locked_read_sk_user_data_with_flags(const struct sock *sk,
604 uintptr_t flags)
605{
606 uintptr_t sk_user_data =
607 (uintptr_t)rcu_dereference_check(__sk_user_data(sk),
608 lockdep_is_held(&sk->sk_callback_lock));
609
610 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
611
612 if ((sk_user_data & flags) == flags)
613 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
614 return NULL;
615}
616
617/**
618 * __rcu_dereference_sk_user_data_with_flags - return the pointer
619 * only if argument flags all has been set in sk_user_data. Otherwise
620 * return NULL
621 *
622 * @sk: socket
623 * @flags: flag bits
624 */
625static inline void *
626__rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
627 uintptr_t flags)
628{
629 uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
630
631 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
632
633 if ((sk_user_data & flags) == flags)
634 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
635 return NULL;
636}
637
638#define rcu_dereference_sk_user_data(sk) \
639 __rcu_dereference_sk_user_data_with_flags(sk, 0)
640#define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags) \
641({ \
642 uintptr_t __tmp1 = (uintptr_t)(ptr), \
643 __tmp2 = (uintptr_t)(flags); \
644 WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK); \
645 WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK); \
646 rcu_assign_pointer(__sk_user_data((sk)), \
647 __tmp1 | __tmp2); \
648})
649#define rcu_assign_sk_user_data(sk, ptr) \
650 __rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
651
652static inline
653struct net *sock_net(const struct sock *sk)
654{
655 return read_pnet(&sk->sk_net);
656}
657
658static inline
659void sock_net_set(struct sock *sk, struct net *net)
660{
661 write_pnet(&sk->sk_net, net);
662}
663
664/*
665 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
666 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
667 * on a socket means that the socket will reuse everybody else's port
668 * without looking at the other's sk_reuse value.
669 */
670
671#define SK_NO_REUSE 0
672#define SK_CAN_REUSE 1
673#define SK_FORCE_REUSE 2
674
675int sk_set_peek_off(struct sock *sk, int val);
676
677static inline int sk_peek_offset(const struct sock *sk, int flags)
678{
679 if (unlikely(flags & MSG_PEEK)) {
680 return READ_ONCE(sk->sk_peek_off);
681 }
682
683 return 0;
684}
685
686static inline void sk_peek_offset_bwd(struct sock *sk, int val)
687{
688 s32 off = READ_ONCE(sk->sk_peek_off);
689
690 if (unlikely(off >= 0)) {
691 off = max_t(s32, off - val, 0);
692 WRITE_ONCE(sk->sk_peek_off, off);
693 }
694}
695
696static inline void sk_peek_offset_fwd(struct sock *sk, int val)
697{
698 sk_peek_offset_bwd(sk, -val);
699}
700
701/*
702 * Hashed lists helper routines
703 */
704static inline struct sock *sk_entry(const struct hlist_node *node)
705{
706 return hlist_entry(node, struct sock, sk_node);
707}
708
709static inline struct sock *__sk_head(const struct hlist_head *head)
710{
711 return hlist_entry(head->first, struct sock, sk_node);
712}
713
714static inline struct sock *sk_head(const struct hlist_head *head)
715{
716 return hlist_empty(head) ? NULL : __sk_head(head);
717}
718
719static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
720{
721 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
722}
723
724static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
725{
726 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
727}
728
729static inline struct sock *sk_next(const struct sock *sk)
730{
731 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
732}
733
734static inline struct sock *sk_nulls_next(const struct sock *sk)
735{
736 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
737 hlist_nulls_entry(sk->sk_nulls_node.next,
738 struct sock, sk_nulls_node) :
739 NULL;
740}
741
742static inline bool sk_unhashed(const struct sock *sk)
743{
744 return hlist_unhashed(&sk->sk_node);
745}
746
747static inline bool sk_hashed(const struct sock *sk)
748{
749 return !sk_unhashed(sk);
750}
751
752static inline void sk_node_init(struct hlist_node *node)
753{
754 node->pprev = NULL;
755}
756
757static inline void __sk_del_node(struct sock *sk)
758{
759 __hlist_del(&sk->sk_node);
760}
761
762/* NB: equivalent to hlist_del_init_rcu */
763static inline bool __sk_del_node_init(struct sock *sk)
764{
765 if (sk_hashed(sk)) {
766 __sk_del_node(sk);
767 sk_node_init(&sk->sk_node);
768 return true;
769 }
770 return false;
771}
772
773/* Grab socket reference count. This operation is valid only
774 when sk is ALREADY grabbed f.e. it is found in hash table
775 or a list and the lookup is made under lock preventing hash table
776 modifications.
777 */
778
779static __always_inline void sock_hold(struct sock *sk)
780{
781 refcount_inc(&sk->sk_refcnt);
782}
783
784/* Ungrab socket in the context, which assumes that socket refcnt
785 cannot hit zero, f.e. it is true in context of any socketcall.
786 */
787static __always_inline void __sock_put(struct sock *sk)
788{
789 refcount_dec(&sk->sk_refcnt);
790}
791
792static inline bool sk_del_node_init(struct sock *sk)
793{
794 bool rc = __sk_del_node_init(sk);
795
796 if (rc) {
797 /* paranoid for a while -acme */
798 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
799 __sock_put(sk);
800 }
801 return rc;
802}
803#define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
804
805static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
806{
807 if (sk_hashed(sk)) {
808 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
809 return true;
810 }
811 return false;
812}
813
814static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
815{
816 bool rc = __sk_nulls_del_node_init_rcu(sk);
817
818 if (rc) {
819 /* paranoid for a while -acme */
820 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
821 __sock_put(sk);
822 }
823 return rc;
824}
825
826static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
827{
828 hlist_add_head(&sk->sk_node, list);
829}
830
831static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
832{
833 sock_hold(sk);
834 __sk_add_node(sk, list);
835}
836
837static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
838{
839 sock_hold(sk);
840 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
841 sk->sk_family == AF_INET6)
842 hlist_add_tail_rcu(&sk->sk_node, list);
843 else
844 hlist_add_head_rcu(&sk->sk_node, list);
845}
846
847static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
848{
849 sock_hold(sk);
850 hlist_add_tail_rcu(&sk->sk_node, list);
851}
852
853static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
854{
855 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
856}
857
858static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
859{
860 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
861}
862
863static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
864{
865 sock_hold(sk);
866 __sk_nulls_add_node_rcu(sk, list);
867}
868
869static inline void __sk_del_bind_node(struct sock *sk)
870{
871 __hlist_del(&sk->sk_bind_node);
872}
873
874static inline void sk_add_bind_node(struct sock *sk,
875 struct hlist_head *list)
876{
877 hlist_add_head(&sk->sk_bind_node, list);
878}
879
880#define sk_for_each(__sk, list) \
881 hlist_for_each_entry(__sk, list, sk_node)
882#define sk_for_each_rcu(__sk, list) \
883 hlist_for_each_entry_rcu(__sk, list, sk_node)
884#define sk_nulls_for_each(__sk, node, list) \
885 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
886#define sk_nulls_for_each_rcu(__sk, node, list) \
887 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
888#define sk_for_each_from(__sk) \
889 hlist_for_each_entry_from(__sk, sk_node)
890#define sk_nulls_for_each_from(__sk, node) \
891 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
892 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
893#define sk_for_each_safe(__sk, tmp, list) \
894 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
895#define sk_for_each_bound(__sk, list) \
896 hlist_for_each_entry(__sk, list, sk_bind_node)
897#define sk_for_each_bound_safe(__sk, tmp, list) \
898 hlist_for_each_entry_safe(__sk, tmp, list, sk_bind_node)
899
900/**
901 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
902 * @tpos: the type * to use as a loop cursor.
903 * @pos: the &struct hlist_node to use as a loop cursor.
904 * @head: the head for your list.
905 * @offset: offset of hlist_node within the struct.
906 *
907 */
908#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
909 for (pos = rcu_dereference(hlist_first_rcu(head)); \
910 pos != NULL && \
911 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
912 pos = rcu_dereference(hlist_next_rcu(pos)))
913
914static inline struct user_namespace *sk_user_ns(const struct sock *sk)
915{
916 /* Careful only use this in a context where these parameters
917 * can not change and must all be valid, such as recvmsg from
918 * userspace.
919 */
920 return sk->sk_socket->file->f_cred->user_ns;
921}
922
923/* Sock flags */
924enum sock_flags {
925 SOCK_DEAD,
926 SOCK_DONE,
927 SOCK_URGINLINE,
928 SOCK_KEEPOPEN,
929 SOCK_LINGER,
930 SOCK_DESTROY,
931 SOCK_BROADCAST,
932 SOCK_TIMESTAMP,
933 SOCK_ZAPPED,
934 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
935 SOCK_DBG, /* %SO_DEBUG setting */
936 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
937 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
938 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
939 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
940 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
941 SOCK_FASYNC, /* fasync() active */
942 SOCK_RXQ_OVFL,
943 SOCK_ZEROCOPY, /* buffers from userspace */
944 SOCK_WIFI_STATUS, /* push wifi status to userspace */
945 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
946 * Will use last 4 bytes of packet sent from
947 * user-space instead.
948 */
949 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
950 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
951 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
952 SOCK_TXTIME,
953 SOCK_XDP, /* XDP is attached */
954 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
955 SOCK_RCVMARK, /* Receive SO_MARK ancillary data with packet */
956};
957
958#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
959/*
960 * The highest bit of sk_tsflags is reserved for kernel-internal
961 * SOCKCM_FLAG_TS_OPT_ID. There is a check in core/sock.c to control that
962 * SOF_TIMESTAMPING* values do not reach this reserved area
963 */
964#define SOCKCM_FLAG_TS_OPT_ID BIT(31)
965
966static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk)
967{
968 nsk->sk_flags = osk->sk_flags;
969}
970
971static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
972{
973 __set_bit(flag, &sk->sk_flags);
974}
975
976static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
977{
978 __clear_bit(flag, &sk->sk_flags);
979}
980
981static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
982 int valbool)
983{
984 if (valbool)
985 sock_set_flag(sk, bit);
986 else
987 sock_reset_flag(sk, bit);
988}
989
990static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
991{
992 return test_bit(flag, &sk->sk_flags);
993}
994
995#ifdef CONFIG_NET
996DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
997static inline int sk_memalloc_socks(void)
998{
999 return static_branch_unlikely(&memalloc_socks_key);
1000}
1001
1002void __receive_sock(struct file *file);
1003#else
1004
1005static inline int sk_memalloc_socks(void)
1006{
1007 return 0;
1008}
1009
1010static inline void __receive_sock(struct file *file)
1011{ }
1012#endif
1013
1014static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
1015{
1016 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
1017}
1018
1019static inline void sk_acceptq_removed(struct sock *sk)
1020{
1021 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
1022}
1023
1024static inline void sk_acceptq_added(struct sock *sk)
1025{
1026 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
1027}
1028
1029/* Note: If you think the test should be:
1030 * return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
1031 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
1032 */
1033static inline bool sk_acceptq_is_full(const struct sock *sk)
1034{
1035 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
1036}
1037
1038/*
1039 * Compute minimal free write space needed to queue new packets.
1040 */
1041static inline int sk_stream_min_wspace(const struct sock *sk)
1042{
1043 return READ_ONCE(sk->sk_wmem_queued) >> 1;
1044}
1045
1046static inline int sk_stream_wspace(const struct sock *sk)
1047{
1048 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
1049}
1050
1051static inline void sk_wmem_queued_add(struct sock *sk, int val)
1052{
1053 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
1054}
1055
1056static inline void sk_forward_alloc_add(struct sock *sk, int val)
1057{
1058 /* Paired with lockless reads of sk->sk_forward_alloc */
1059 WRITE_ONCE(sk->sk_forward_alloc, sk->sk_forward_alloc + val);
1060}
1061
1062void sk_stream_write_space(struct sock *sk);
1063
1064/* OOB backlog add */
1065static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
1066{
1067 /* dont let skb dst not refcounted, we are going to leave rcu lock */
1068 skb_dst_force(skb);
1069
1070 if (!sk->sk_backlog.tail)
1071 WRITE_ONCE(sk->sk_backlog.head, skb);
1072 else
1073 sk->sk_backlog.tail->next = skb;
1074
1075 WRITE_ONCE(sk->sk_backlog.tail, skb);
1076 skb->next = NULL;
1077}
1078
1079/*
1080 * Take into account size of receive queue and backlog queue
1081 * Do not take into account this skb truesize,
1082 * to allow even a single big packet to come.
1083 */
1084static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1085{
1086 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1087
1088 return qsize > limit;
1089}
1090
1091/* The per-socket spinlock must be held here. */
1092static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1093 unsigned int limit)
1094{
1095 if (sk_rcvqueues_full(sk, limit))
1096 return -ENOBUFS;
1097
1098 /*
1099 * If the skb was allocated from pfmemalloc reserves, only
1100 * allow SOCK_MEMALLOC sockets to use it as this socket is
1101 * helping free memory
1102 */
1103 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1104 return -ENOMEM;
1105
1106 __sk_add_backlog(sk, skb);
1107 sk->sk_backlog.len += skb->truesize;
1108 return 0;
1109}
1110
1111int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1112
1113INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1114INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1115
1116static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1117{
1118 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1119 return __sk_backlog_rcv(sk, skb);
1120
1121 return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1122 tcp_v6_do_rcv,
1123 tcp_v4_do_rcv,
1124 sk, skb);
1125}
1126
1127static inline void sk_incoming_cpu_update(struct sock *sk)
1128{
1129 int cpu = raw_smp_processor_id();
1130
1131 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1132 WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1133}
1134
1135
1136static inline void sock_rps_save_rxhash(struct sock *sk,
1137 const struct sk_buff *skb)
1138{
1139#ifdef CONFIG_RPS
1140 /* The following WRITE_ONCE() is paired with the READ_ONCE()
1141 * here, and another one in sock_rps_record_flow().
1142 */
1143 if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash))
1144 WRITE_ONCE(sk->sk_rxhash, skb->hash);
1145#endif
1146}
1147
1148static inline void sock_rps_reset_rxhash(struct sock *sk)
1149{
1150#ifdef CONFIG_RPS
1151 /* Paired with READ_ONCE() in sock_rps_record_flow() */
1152 WRITE_ONCE(sk->sk_rxhash, 0);
1153#endif
1154}
1155
1156#define sk_wait_event(__sk, __timeo, __condition, __wait) \
1157 ({ int __rc, __dis = __sk->sk_disconnects; \
1158 release_sock(__sk); \
1159 __rc = __condition; \
1160 if (!__rc) { \
1161 *(__timeo) = wait_woken(__wait, \
1162 TASK_INTERRUPTIBLE, \
1163 *(__timeo)); \
1164 } \
1165 sched_annotate_sleep(); \
1166 lock_sock(__sk); \
1167 __rc = __dis == __sk->sk_disconnects ? __condition : -EPIPE; \
1168 __rc; \
1169 })
1170
1171int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1172int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1173void sk_stream_wait_close(struct sock *sk, long timeo_p);
1174int sk_stream_error(struct sock *sk, int flags, int err);
1175void sk_stream_kill_queues(struct sock *sk);
1176void sk_set_memalloc(struct sock *sk);
1177void sk_clear_memalloc(struct sock *sk);
1178
1179void __sk_flush_backlog(struct sock *sk);
1180
1181static inline bool sk_flush_backlog(struct sock *sk)
1182{
1183 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1184 __sk_flush_backlog(sk);
1185 return true;
1186 }
1187 return false;
1188}
1189
1190int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1191
1192struct request_sock_ops;
1193struct timewait_sock_ops;
1194struct inet_hashinfo;
1195struct raw_hashinfo;
1196struct smc_hashinfo;
1197struct module;
1198struct sk_psock;
1199
1200/*
1201 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1202 * un-modified. Special care is taken when initializing object to zero.
1203 */
1204static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1205{
1206 if (offsetof(struct sock, sk_node.next) != 0)
1207 memset(sk, 0, offsetof(struct sock, sk_node.next));
1208 memset(&sk->sk_node.pprev, 0,
1209 size - offsetof(struct sock, sk_node.pprev));
1210}
1211
1212struct proto_accept_arg {
1213 int flags;
1214 int err;
1215 int is_empty;
1216 bool kern;
1217};
1218
1219/* Networking protocol blocks we attach to sockets.
1220 * socket layer -> transport layer interface
1221 */
1222struct proto {
1223 void (*close)(struct sock *sk,
1224 long timeout);
1225 int (*pre_connect)(struct sock *sk,
1226 struct sockaddr *uaddr,
1227 int addr_len);
1228 int (*connect)(struct sock *sk,
1229 struct sockaddr *uaddr,
1230 int addr_len);
1231 int (*disconnect)(struct sock *sk, int flags);
1232
1233 struct sock * (*accept)(struct sock *sk,
1234 struct proto_accept_arg *arg);
1235
1236 int (*ioctl)(struct sock *sk, int cmd,
1237 int *karg);
1238 int (*init)(struct sock *sk);
1239 void (*destroy)(struct sock *sk);
1240 void (*shutdown)(struct sock *sk, int how);
1241 int (*setsockopt)(struct sock *sk, int level,
1242 int optname, sockptr_t optval,
1243 unsigned int optlen);
1244 int (*getsockopt)(struct sock *sk, int level,
1245 int optname, char __user *optval,
1246 int __user *option);
1247 void (*keepalive)(struct sock *sk, int valbool);
1248#ifdef CONFIG_COMPAT
1249 int (*compat_ioctl)(struct sock *sk,
1250 unsigned int cmd, unsigned long arg);
1251#endif
1252 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1253 size_t len);
1254 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1255 size_t len, int flags, int *addr_len);
1256 void (*splice_eof)(struct socket *sock);
1257 int (*bind)(struct sock *sk,
1258 struct sockaddr *addr, int addr_len);
1259 int (*bind_add)(struct sock *sk,
1260 struct sockaddr *addr, int addr_len);
1261
1262 int (*backlog_rcv) (struct sock *sk,
1263 struct sk_buff *skb);
1264 bool (*bpf_bypass_getsockopt)(int level,
1265 int optname);
1266
1267 void (*release_cb)(struct sock *sk);
1268
1269 /* Keeping track of sk's, looking them up, and port selection methods. */
1270 int (*hash)(struct sock *sk);
1271 void (*unhash)(struct sock *sk);
1272 void (*rehash)(struct sock *sk);
1273 int (*get_port)(struct sock *sk, unsigned short snum);
1274 void (*put_port)(struct sock *sk);
1275#ifdef CONFIG_BPF_SYSCALL
1276 int (*psock_update_sk_prot)(struct sock *sk,
1277 struct sk_psock *psock,
1278 bool restore);
1279#endif
1280
1281 /* Keeping track of sockets in use */
1282#ifdef CONFIG_PROC_FS
1283 unsigned int inuse_idx;
1284#endif
1285
1286#if IS_ENABLED(CONFIG_MPTCP)
1287 int (*forward_alloc_get)(const struct sock *sk);
1288#endif
1289
1290 bool (*stream_memory_free)(const struct sock *sk, int wake);
1291 bool (*sock_is_readable)(struct sock *sk);
1292 /* Memory pressure */
1293 void (*enter_memory_pressure)(struct sock *sk);
1294 void (*leave_memory_pressure)(struct sock *sk);
1295 atomic_long_t *memory_allocated; /* Current allocated memory. */
1296 int __percpu *per_cpu_fw_alloc;
1297 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1298
1299 /*
1300 * Pressure flag: try to collapse.
1301 * Technical note: it is used by multiple contexts non atomically.
1302 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes.
1303 * All the __sk_mem_schedule() is of this nature: accounting
1304 * is strict, actions are advisory and have some latency.
1305 */
1306 unsigned long *memory_pressure;
1307 long *sysctl_mem;
1308
1309 int *sysctl_wmem;
1310 int *sysctl_rmem;
1311 u32 sysctl_wmem_offset;
1312 u32 sysctl_rmem_offset;
1313
1314 int max_header;
1315 bool no_autobind;
1316
1317 struct kmem_cache *slab;
1318 unsigned int obj_size;
1319 unsigned int ipv6_pinfo_offset;
1320 slab_flags_t slab_flags;
1321 unsigned int useroffset; /* Usercopy region offset */
1322 unsigned int usersize; /* Usercopy region size */
1323
1324 unsigned int __percpu *orphan_count;
1325
1326 struct request_sock_ops *rsk_prot;
1327 struct timewait_sock_ops *twsk_prot;
1328
1329 union {
1330 struct inet_hashinfo *hashinfo;
1331 struct udp_table *udp_table;
1332 struct raw_hashinfo *raw_hash;
1333 struct smc_hashinfo *smc_hash;
1334 } h;
1335
1336 struct module *owner;
1337
1338 char name[32];
1339
1340 struct list_head node;
1341 int (*diag_destroy)(struct sock *sk, int err);
1342} __randomize_layout;
1343
1344int proto_register(struct proto *prot, int alloc_slab);
1345void proto_unregister(struct proto *prot);
1346int sock_load_diag_module(int family, int protocol);
1347
1348INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1349
1350static inline int sk_forward_alloc_get(const struct sock *sk)
1351{
1352#if IS_ENABLED(CONFIG_MPTCP)
1353 if (sk->sk_prot->forward_alloc_get)
1354 return sk->sk_prot->forward_alloc_get(sk);
1355#endif
1356 return READ_ONCE(sk->sk_forward_alloc);
1357}
1358
1359static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1360{
1361 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1362 return false;
1363
1364 return sk->sk_prot->stream_memory_free ?
1365 INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1366 tcp_stream_memory_free, sk, wake) : true;
1367}
1368
1369static inline bool sk_stream_memory_free(const struct sock *sk)
1370{
1371 return __sk_stream_memory_free(sk, 0);
1372}
1373
1374static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1375{
1376 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1377 __sk_stream_memory_free(sk, wake);
1378}
1379
1380static inline bool sk_stream_is_writeable(const struct sock *sk)
1381{
1382 return __sk_stream_is_writeable(sk, 0);
1383}
1384
1385static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1386 struct cgroup *ancestor)
1387{
1388#ifdef CONFIG_SOCK_CGROUP_DATA
1389 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1390 ancestor);
1391#else
1392 return -ENOTSUPP;
1393#endif
1394}
1395
1396#define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1397
1398static inline void sk_sockets_allocated_dec(struct sock *sk)
1399{
1400 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1401 SK_ALLOC_PERCPU_COUNTER_BATCH);
1402}
1403
1404static inline void sk_sockets_allocated_inc(struct sock *sk)
1405{
1406 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1407 SK_ALLOC_PERCPU_COUNTER_BATCH);
1408}
1409
1410static inline u64
1411sk_sockets_allocated_read_positive(struct sock *sk)
1412{
1413 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1414}
1415
1416static inline int
1417proto_sockets_allocated_sum_positive(struct proto *prot)
1418{
1419 return percpu_counter_sum_positive(prot->sockets_allocated);
1420}
1421
1422#ifdef CONFIG_PROC_FS
1423#define PROTO_INUSE_NR 64 /* should be enough for the first time */
1424struct prot_inuse {
1425 int all;
1426 int val[PROTO_INUSE_NR];
1427};
1428
1429static inline void sock_prot_inuse_add(const struct net *net,
1430 const struct proto *prot, int val)
1431{
1432 this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1433}
1434
1435static inline void sock_inuse_add(const struct net *net, int val)
1436{
1437 this_cpu_add(net->core.prot_inuse->all, val);
1438}
1439
1440int sock_prot_inuse_get(struct net *net, struct proto *proto);
1441int sock_inuse_get(struct net *net);
1442#else
1443static inline void sock_prot_inuse_add(const struct net *net,
1444 const struct proto *prot, int val)
1445{
1446}
1447
1448static inline void sock_inuse_add(const struct net *net, int val)
1449{
1450}
1451#endif
1452
1453
1454/* With per-bucket locks this operation is not-atomic, so that
1455 * this version is not worse.
1456 */
1457static inline int __sk_prot_rehash(struct sock *sk)
1458{
1459 sk->sk_prot->unhash(sk);
1460 return sk->sk_prot->hash(sk);
1461}
1462
1463/* About 10 seconds */
1464#define SOCK_DESTROY_TIME (10*HZ)
1465
1466/* Sockets 0-1023 can't be bound to unless you are superuser */
1467#define PROT_SOCK 1024
1468
1469#define SHUTDOWN_MASK 3
1470#define RCV_SHUTDOWN 1
1471#define SEND_SHUTDOWN 2
1472
1473#define SOCK_BINDADDR_LOCK 4
1474#define SOCK_BINDPORT_LOCK 8
1475
1476struct socket_alloc {
1477 struct socket socket;
1478 struct inode vfs_inode;
1479};
1480
1481static inline struct socket *SOCKET_I(struct inode *inode)
1482{
1483 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1484}
1485
1486static inline struct inode *SOCK_INODE(struct socket *socket)
1487{
1488 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1489}
1490
1491/*
1492 * Functions for memory accounting
1493 */
1494int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1495int __sk_mem_schedule(struct sock *sk, int size, int kind);
1496void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1497void __sk_mem_reclaim(struct sock *sk, int amount);
1498
1499#define SK_MEM_SEND 0
1500#define SK_MEM_RECV 1
1501
1502/* sysctl_mem values are in pages */
1503static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1504{
1505 return READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1506}
1507
1508static inline int sk_mem_pages(int amt)
1509{
1510 return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT;
1511}
1512
1513static inline bool sk_has_account(struct sock *sk)
1514{
1515 /* return true if protocol supports memory accounting */
1516 return !!sk->sk_prot->memory_allocated;
1517}
1518
1519static inline bool sk_wmem_schedule(struct sock *sk, int size)
1520{
1521 int delta;
1522
1523 if (!sk_has_account(sk))
1524 return true;
1525 delta = size - sk->sk_forward_alloc;
1526 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1527}
1528
1529static inline bool
1530__sk_rmem_schedule(struct sock *sk, int size, bool pfmemalloc)
1531{
1532 int delta;
1533
1534 if (!sk_has_account(sk))
1535 return true;
1536 delta = size - sk->sk_forward_alloc;
1537 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1538 pfmemalloc;
1539}
1540
1541static inline bool
1542sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1543{
1544 return __sk_rmem_schedule(sk, size, skb_pfmemalloc(skb));
1545}
1546
1547static inline int sk_unused_reserved_mem(const struct sock *sk)
1548{
1549 int unused_mem;
1550
1551 if (likely(!sk->sk_reserved_mem))
1552 return 0;
1553
1554 unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1555 atomic_read(&sk->sk_rmem_alloc);
1556
1557 return unused_mem > 0 ? unused_mem : 0;
1558}
1559
1560static inline void sk_mem_reclaim(struct sock *sk)
1561{
1562 int reclaimable;
1563
1564 if (!sk_has_account(sk))
1565 return;
1566
1567 reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1568
1569 if (reclaimable >= (int)PAGE_SIZE)
1570 __sk_mem_reclaim(sk, reclaimable);
1571}
1572
1573static inline void sk_mem_reclaim_final(struct sock *sk)
1574{
1575 sk->sk_reserved_mem = 0;
1576 sk_mem_reclaim(sk);
1577}
1578
1579static inline void sk_mem_charge(struct sock *sk, int size)
1580{
1581 if (!sk_has_account(sk))
1582 return;
1583 sk_forward_alloc_add(sk, -size);
1584}
1585
1586static inline void sk_mem_uncharge(struct sock *sk, int size)
1587{
1588 if (!sk_has_account(sk))
1589 return;
1590 sk_forward_alloc_add(sk, size);
1591 sk_mem_reclaim(sk);
1592}
1593
1594/*
1595 * Macro so as to not evaluate some arguments when
1596 * lockdep is not enabled.
1597 *
1598 * Mark both the sk_lock and the sk_lock.slock as a
1599 * per-address-family lock class.
1600 */
1601#define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1602do { \
1603 sk->sk_lock.owned = 0; \
1604 init_waitqueue_head(&sk->sk_lock.wq); \
1605 spin_lock_init(&(sk)->sk_lock.slock); \
1606 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1607 sizeof((sk)->sk_lock)); \
1608 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1609 (skey), (sname)); \
1610 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1611} while (0)
1612
1613static inline bool lockdep_sock_is_held(const struct sock *sk)
1614{
1615 return lockdep_is_held(&sk->sk_lock) ||
1616 lockdep_is_held(&sk->sk_lock.slock);
1617}
1618
1619void lock_sock_nested(struct sock *sk, int subclass);
1620
1621static inline void lock_sock(struct sock *sk)
1622{
1623 lock_sock_nested(sk, 0);
1624}
1625
1626void __lock_sock(struct sock *sk);
1627void __release_sock(struct sock *sk);
1628void release_sock(struct sock *sk);
1629
1630/* BH context may only use the following locking interface. */
1631#define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1632#define bh_lock_sock_nested(__sk) \
1633 spin_lock_nested(&((__sk)->sk_lock.slock), \
1634 SINGLE_DEPTH_NESTING)
1635#define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1636
1637bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1638
1639/**
1640 * lock_sock_fast - fast version of lock_sock
1641 * @sk: socket
1642 *
1643 * This version should be used for very small section, where process won't block
1644 * return false if fast path is taken:
1645 *
1646 * sk_lock.slock locked, owned = 0, BH disabled
1647 *
1648 * return true if slow path is taken:
1649 *
1650 * sk_lock.slock unlocked, owned = 1, BH enabled
1651 */
1652static inline bool lock_sock_fast(struct sock *sk)
1653{
1654 /* The sk_lock has mutex_lock() semantics here. */
1655 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1656
1657 return __lock_sock_fast(sk);
1658}
1659
1660/* fast socket lock variant for caller already holding a [different] socket lock */
1661static inline bool lock_sock_fast_nested(struct sock *sk)
1662{
1663 mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1664
1665 return __lock_sock_fast(sk);
1666}
1667
1668/**
1669 * unlock_sock_fast - complement of lock_sock_fast
1670 * @sk: socket
1671 * @slow: slow mode
1672 *
1673 * fast unlock socket for user context.
1674 * If slow mode is on, we call regular release_sock()
1675 */
1676static inline void unlock_sock_fast(struct sock *sk, bool slow)
1677 __releases(&sk->sk_lock.slock)
1678{
1679 if (slow) {
1680 release_sock(sk);
1681 __release(&sk->sk_lock.slock);
1682 } else {
1683 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1684 spin_unlock_bh(&sk->sk_lock.slock);
1685 }
1686}
1687
1688void sockopt_lock_sock(struct sock *sk);
1689void sockopt_release_sock(struct sock *sk);
1690bool sockopt_ns_capable(struct user_namespace *ns, int cap);
1691bool sockopt_capable(int cap);
1692
1693/* Used by processes to "lock" a socket state, so that
1694 * interrupts and bottom half handlers won't change it
1695 * from under us. It essentially blocks any incoming
1696 * packets, so that we won't get any new data or any
1697 * packets that change the state of the socket.
1698 *
1699 * While locked, BH processing will add new packets to
1700 * the backlog queue. This queue is processed by the
1701 * owner of the socket lock right before it is released.
1702 *
1703 * Since ~2.3.5 it is also exclusive sleep lock serializing
1704 * accesses from user process context.
1705 */
1706
1707static inline void sock_owned_by_me(const struct sock *sk)
1708{
1709#ifdef CONFIG_LOCKDEP
1710 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1711#endif
1712}
1713
1714static inline void sock_not_owned_by_me(const struct sock *sk)
1715{
1716#ifdef CONFIG_LOCKDEP
1717 WARN_ON_ONCE(lockdep_sock_is_held(sk) && debug_locks);
1718#endif
1719}
1720
1721static inline bool sock_owned_by_user(const struct sock *sk)
1722{
1723 sock_owned_by_me(sk);
1724 return sk->sk_lock.owned;
1725}
1726
1727static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1728{
1729 return sk->sk_lock.owned;
1730}
1731
1732static inline void sock_release_ownership(struct sock *sk)
1733{
1734 DEBUG_NET_WARN_ON_ONCE(!sock_owned_by_user_nocheck(sk));
1735 sk->sk_lock.owned = 0;
1736
1737 /* The sk_lock has mutex_unlock() semantics: */
1738 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1739}
1740
1741/* no reclassification while locks are held */
1742static inline bool sock_allow_reclassification(const struct sock *csk)
1743{
1744 struct sock *sk = (struct sock *)csk;
1745
1746 return !sock_owned_by_user_nocheck(sk) &&
1747 !spin_is_locked(&sk->sk_lock.slock);
1748}
1749
1750struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1751 struct proto *prot, int kern);
1752void sk_free(struct sock *sk);
1753void sk_net_refcnt_upgrade(struct sock *sk);
1754void sk_destruct(struct sock *sk);
1755struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1756void sk_free_unlock_clone(struct sock *sk);
1757
1758struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1759 gfp_t priority);
1760void __sock_wfree(struct sk_buff *skb);
1761void sock_wfree(struct sk_buff *skb);
1762struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1763 gfp_t priority);
1764void skb_orphan_partial(struct sk_buff *skb);
1765void sock_rfree(struct sk_buff *skb);
1766void sock_efree(struct sk_buff *skb);
1767#ifdef CONFIG_INET
1768void sock_edemux(struct sk_buff *skb);
1769void sock_pfree(struct sk_buff *skb);
1770
1771static inline void skb_set_owner_edemux(struct sk_buff *skb, struct sock *sk)
1772{
1773 skb_orphan(skb);
1774 if (refcount_inc_not_zero(&sk->sk_refcnt)) {
1775 skb->sk = sk;
1776 skb->destructor = sock_edemux;
1777 }
1778}
1779#else
1780#define sock_edemux sock_efree
1781#endif
1782
1783int sk_setsockopt(struct sock *sk, int level, int optname,
1784 sockptr_t optval, unsigned int optlen);
1785int sock_setsockopt(struct socket *sock, int level, int op,
1786 sockptr_t optval, unsigned int optlen);
1787int do_sock_setsockopt(struct socket *sock, bool compat, int level,
1788 int optname, sockptr_t optval, int optlen);
1789int do_sock_getsockopt(struct socket *sock, bool compat, int level,
1790 int optname, sockptr_t optval, sockptr_t optlen);
1791
1792int sk_getsockopt(struct sock *sk, int level, int optname,
1793 sockptr_t optval, sockptr_t optlen);
1794int sock_gettstamp(struct socket *sock, void __user *userstamp,
1795 bool timeval, bool time32);
1796struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1797 unsigned long data_len, int noblock,
1798 int *errcode, int max_page_order);
1799
1800static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1801 unsigned long size,
1802 int noblock, int *errcode)
1803{
1804 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1805}
1806
1807void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1808void sock_kfree_s(struct sock *sk, void *mem, int size);
1809void sock_kzfree_s(struct sock *sk, void *mem, int size);
1810void sk_send_sigurg(struct sock *sk);
1811
1812static inline void sock_replace_proto(struct sock *sk, struct proto *proto)
1813{
1814 if (sk->sk_socket)
1815 clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1816 WRITE_ONCE(sk->sk_prot, proto);
1817}
1818
1819struct sockcm_cookie {
1820 u64 transmit_time;
1821 u32 mark;
1822 u32 tsflags;
1823 u32 ts_opt_id;
1824};
1825
1826static inline void sockcm_init(struct sockcm_cookie *sockc,
1827 const struct sock *sk)
1828{
1829 *sockc = (struct sockcm_cookie) {
1830 .tsflags = READ_ONCE(sk->sk_tsflags)
1831 };
1832}
1833
1834int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
1835 struct sockcm_cookie *sockc);
1836int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1837 struct sockcm_cookie *sockc);
1838
1839/*
1840 * Functions to fill in entries in struct proto_ops when a protocol
1841 * does not implement a particular function.
1842 */
1843int sock_no_bind(struct socket *, struct sockaddr *, int);
1844int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1845int sock_no_socketpair(struct socket *, struct socket *);
1846int sock_no_accept(struct socket *, struct socket *, struct proto_accept_arg *);
1847int sock_no_getname(struct socket *, struct sockaddr *, int);
1848int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1849int sock_no_listen(struct socket *, int);
1850int sock_no_shutdown(struct socket *, int);
1851int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1852int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1853int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1854int sock_no_mmap(struct file *file, struct socket *sock,
1855 struct vm_area_struct *vma);
1856
1857/*
1858 * Functions to fill in entries in struct proto_ops when a protocol
1859 * uses the inet style.
1860 */
1861int sock_common_getsockopt(struct socket *sock, int level, int optname,
1862 char __user *optval, int __user *optlen);
1863int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1864 int flags);
1865int sock_common_setsockopt(struct socket *sock, int level, int optname,
1866 sockptr_t optval, unsigned int optlen);
1867
1868void sk_common_release(struct sock *sk);
1869
1870/*
1871 * Default socket callbacks and setup code
1872 */
1873
1874/* Initialise core socket variables using an explicit uid. */
1875void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid);
1876
1877/* Initialise core socket variables.
1878 * Assumes struct socket *sock is embedded in a struct socket_alloc.
1879 */
1880void sock_init_data(struct socket *sock, struct sock *sk);
1881
1882/*
1883 * Socket reference counting postulates.
1884 *
1885 * * Each user of socket SHOULD hold a reference count.
1886 * * Each access point to socket (an hash table bucket, reference from a list,
1887 * running timer, skb in flight MUST hold a reference count.
1888 * * When reference count hits 0, it means it will never increase back.
1889 * * When reference count hits 0, it means that no references from
1890 * outside exist to this socket and current process on current CPU
1891 * is last user and may/should destroy this socket.
1892 * * sk_free is called from any context: process, BH, IRQ. When
1893 * it is called, socket has no references from outside -> sk_free
1894 * may release descendant resources allocated by the socket, but
1895 * to the time when it is called, socket is NOT referenced by any
1896 * hash tables, lists etc.
1897 * * Packets, delivered from outside (from network or from another process)
1898 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1899 * when they sit in queue. Otherwise, packets will leak to hole, when
1900 * socket is looked up by one cpu and unhasing is made by another CPU.
1901 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1902 * (leak to backlog). Packet socket does all the processing inside
1903 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1904 * use separate SMP lock, so that they are prone too.
1905 */
1906
1907/* Ungrab socket and destroy it, if it was the last reference. */
1908static inline void sock_put(struct sock *sk)
1909{
1910 if (refcount_dec_and_test(&sk->sk_refcnt))
1911 sk_free(sk);
1912}
1913/* Generic version of sock_put(), dealing with all sockets
1914 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1915 */
1916void sock_gen_put(struct sock *sk);
1917
1918int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1919 unsigned int trim_cap, bool refcounted);
1920static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1921 const int nested)
1922{
1923 return __sk_receive_skb(sk, skb, nested, 1, true);
1924}
1925
1926static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1927{
1928 /* sk_tx_queue_mapping accept only upto a 16-bit value */
1929 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1930 return;
1931 /* Paired with READ_ONCE() in sk_tx_queue_get() and
1932 * other WRITE_ONCE() because socket lock might be not held.
1933 */
1934 WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue);
1935}
1936
1937#define NO_QUEUE_MAPPING USHRT_MAX
1938
1939static inline void sk_tx_queue_clear(struct sock *sk)
1940{
1941 /* Paired with READ_ONCE() in sk_tx_queue_get() and
1942 * other WRITE_ONCE() because socket lock might be not held.
1943 */
1944 WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING);
1945}
1946
1947static inline int sk_tx_queue_get(const struct sock *sk)
1948{
1949 if (sk) {
1950 /* Paired with WRITE_ONCE() in sk_tx_queue_clear()
1951 * and sk_tx_queue_set().
1952 */
1953 int val = READ_ONCE(sk->sk_tx_queue_mapping);
1954
1955 if (val != NO_QUEUE_MAPPING)
1956 return val;
1957 }
1958 return -1;
1959}
1960
1961static inline void __sk_rx_queue_set(struct sock *sk,
1962 const struct sk_buff *skb,
1963 bool force_set)
1964{
1965#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1966 if (skb_rx_queue_recorded(skb)) {
1967 u16 rx_queue = skb_get_rx_queue(skb);
1968
1969 if (force_set ||
1970 unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
1971 WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
1972 }
1973#endif
1974}
1975
1976static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1977{
1978 __sk_rx_queue_set(sk, skb, true);
1979}
1980
1981static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
1982{
1983 __sk_rx_queue_set(sk, skb, false);
1984}
1985
1986static inline void sk_rx_queue_clear(struct sock *sk)
1987{
1988#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1989 WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
1990#endif
1991}
1992
1993static inline int sk_rx_queue_get(const struct sock *sk)
1994{
1995#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1996 if (sk) {
1997 int res = READ_ONCE(sk->sk_rx_queue_mapping);
1998
1999 if (res != NO_QUEUE_MAPPING)
2000 return res;
2001 }
2002#endif
2003
2004 return -1;
2005}
2006
2007static inline void sk_set_socket(struct sock *sk, struct socket *sock)
2008{
2009 sk->sk_socket = sock;
2010}
2011
2012static inline wait_queue_head_t *sk_sleep(struct sock *sk)
2013{
2014 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
2015 return &rcu_dereference_raw(sk->sk_wq)->wait;
2016}
2017/* Detach socket from process context.
2018 * Announce socket dead, detach it from wait queue and inode.
2019 * Note that parent inode held reference count on this struct sock,
2020 * we do not release it in this function, because protocol
2021 * probably wants some additional cleanups or even continuing
2022 * to work with this socket (TCP).
2023 */
2024static inline void sock_orphan(struct sock *sk)
2025{
2026 write_lock_bh(&sk->sk_callback_lock);
2027 sock_set_flag(sk, SOCK_DEAD);
2028 sk_set_socket(sk, NULL);
2029 sk->sk_wq = NULL;
2030 write_unlock_bh(&sk->sk_callback_lock);
2031}
2032
2033static inline void sock_graft(struct sock *sk, struct socket *parent)
2034{
2035 WARN_ON(parent->sk);
2036 write_lock_bh(&sk->sk_callback_lock);
2037 rcu_assign_pointer(sk->sk_wq, &parent->wq);
2038 parent->sk = sk;
2039 sk_set_socket(sk, parent);
2040 sk->sk_uid = SOCK_INODE(parent)->i_uid;
2041 security_sock_graft(sk, parent);
2042 write_unlock_bh(&sk->sk_callback_lock);
2043}
2044
2045kuid_t sock_i_uid(struct sock *sk);
2046unsigned long __sock_i_ino(struct sock *sk);
2047unsigned long sock_i_ino(struct sock *sk);
2048
2049static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2050{
2051 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2052}
2053
2054static inline u32 net_tx_rndhash(void)
2055{
2056 u32 v = get_random_u32();
2057
2058 return v ?: 1;
2059}
2060
2061static inline void sk_set_txhash(struct sock *sk)
2062{
2063 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2064 WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2065}
2066
2067static inline bool sk_rethink_txhash(struct sock *sk)
2068{
2069 if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2070 sk_set_txhash(sk);
2071 return true;
2072 }
2073 return false;
2074}
2075
2076static inline struct dst_entry *
2077__sk_dst_get(const struct sock *sk)
2078{
2079 return rcu_dereference_check(sk->sk_dst_cache,
2080 lockdep_sock_is_held(sk));
2081}
2082
2083static inline struct dst_entry *
2084sk_dst_get(const struct sock *sk)
2085{
2086 struct dst_entry *dst;
2087
2088 rcu_read_lock();
2089 dst = rcu_dereference(sk->sk_dst_cache);
2090 if (dst && !rcuref_get(&dst->__rcuref))
2091 dst = NULL;
2092 rcu_read_unlock();
2093 return dst;
2094}
2095
2096static inline void __dst_negative_advice(struct sock *sk)
2097{
2098 struct dst_entry *dst = __sk_dst_get(sk);
2099
2100 if (dst && dst->ops->negative_advice)
2101 dst->ops->negative_advice(sk, dst);
2102}
2103
2104static inline void dst_negative_advice(struct sock *sk)
2105{
2106 sk_rethink_txhash(sk);
2107 __dst_negative_advice(sk);
2108}
2109
2110static inline void
2111__sk_dst_set(struct sock *sk, struct dst_entry *dst)
2112{
2113 struct dst_entry *old_dst;
2114
2115 sk_tx_queue_clear(sk);
2116 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2117 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2118 lockdep_sock_is_held(sk));
2119 rcu_assign_pointer(sk->sk_dst_cache, dst);
2120 dst_release(old_dst);
2121}
2122
2123static inline void
2124sk_dst_set(struct sock *sk, struct dst_entry *dst)
2125{
2126 struct dst_entry *old_dst;
2127
2128 sk_tx_queue_clear(sk);
2129 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2130 old_dst = unrcu_pointer(xchg(&sk->sk_dst_cache, RCU_INITIALIZER(dst)));
2131 dst_release(old_dst);
2132}
2133
2134static inline void
2135__sk_dst_reset(struct sock *sk)
2136{
2137 __sk_dst_set(sk, NULL);
2138}
2139
2140static inline void
2141sk_dst_reset(struct sock *sk)
2142{
2143 sk_dst_set(sk, NULL);
2144}
2145
2146struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2147
2148struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2149
2150static inline void sk_dst_confirm(struct sock *sk)
2151{
2152 if (!READ_ONCE(sk->sk_dst_pending_confirm))
2153 WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2154}
2155
2156static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2157{
2158 if (skb_get_dst_pending_confirm(skb)) {
2159 struct sock *sk = skb->sk;
2160
2161 if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2162 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2163 neigh_confirm(n);
2164 }
2165}
2166
2167bool sk_mc_loop(const struct sock *sk);
2168
2169static inline bool sk_can_gso(const struct sock *sk)
2170{
2171 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2172}
2173
2174void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2175
2176static inline void sk_gso_disable(struct sock *sk)
2177{
2178 sk->sk_gso_disabled = 1;
2179 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2180}
2181
2182static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2183 struct iov_iter *from, char *to,
2184 int copy, int offset)
2185{
2186 if (skb->ip_summed == CHECKSUM_NONE) {
2187 __wsum csum = 0;
2188 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2189 return -EFAULT;
2190 skb->csum = csum_block_add(skb->csum, csum, offset);
2191 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2192 if (!copy_from_iter_full_nocache(to, copy, from))
2193 return -EFAULT;
2194 } else if (!copy_from_iter_full(to, copy, from))
2195 return -EFAULT;
2196
2197 return 0;
2198}
2199
2200static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2201 struct iov_iter *from, int copy)
2202{
2203 int err, offset = skb->len;
2204
2205 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2206 copy, offset);
2207 if (err)
2208 __skb_trim(skb, offset);
2209
2210 return err;
2211}
2212
2213static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2214 struct sk_buff *skb,
2215 struct page *page,
2216 int off, int copy)
2217{
2218 int err;
2219
2220 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2221 copy, skb->len);
2222 if (err)
2223 return err;
2224
2225 skb_len_add(skb, copy);
2226 sk_wmem_queued_add(sk, copy);
2227 sk_mem_charge(sk, copy);
2228 return 0;
2229}
2230
2231/**
2232 * sk_wmem_alloc_get - returns write allocations
2233 * @sk: socket
2234 *
2235 * Return: sk_wmem_alloc minus initial offset of one
2236 */
2237static inline int sk_wmem_alloc_get(const struct sock *sk)
2238{
2239 return refcount_read(&sk->sk_wmem_alloc) - 1;
2240}
2241
2242/**
2243 * sk_rmem_alloc_get - returns read allocations
2244 * @sk: socket
2245 *
2246 * Return: sk_rmem_alloc
2247 */
2248static inline int sk_rmem_alloc_get(const struct sock *sk)
2249{
2250 return atomic_read(&sk->sk_rmem_alloc);
2251}
2252
2253/**
2254 * sk_has_allocations - check if allocations are outstanding
2255 * @sk: socket
2256 *
2257 * Return: true if socket has write or read allocations
2258 */
2259static inline bool sk_has_allocations(const struct sock *sk)
2260{
2261 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2262}
2263
2264/**
2265 * skwq_has_sleeper - check if there are any waiting processes
2266 * @wq: struct socket_wq
2267 *
2268 * Return: true if socket_wq has waiting processes
2269 *
2270 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2271 * barrier call. They were added due to the race found within the tcp code.
2272 *
2273 * Consider following tcp code paths::
2274 *
2275 * CPU1 CPU2
2276 * sys_select receive packet
2277 * ... ...
2278 * __add_wait_queue update tp->rcv_nxt
2279 * ... ...
2280 * tp->rcv_nxt check sock_def_readable
2281 * ... {
2282 * schedule rcu_read_lock();
2283 * wq = rcu_dereference(sk->sk_wq);
2284 * if (wq && waitqueue_active(&wq->wait))
2285 * wake_up_interruptible(&wq->wait)
2286 * ...
2287 * }
2288 *
2289 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2290 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
2291 * could then endup calling schedule and sleep forever if there are no more
2292 * data on the socket.
2293 *
2294 */
2295static inline bool skwq_has_sleeper(struct socket_wq *wq)
2296{
2297 return wq && wq_has_sleeper(&wq->wait);
2298}
2299
2300/**
2301 * sock_poll_wait - wrapper for the poll_wait call.
2302 * @filp: file
2303 * @sock: socket to wait on
2304 * @p: poll_table
2305 *
2306 * See the comments in the wq_has_sleeper function.
2307 */
2308static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2309 poll_table *p)
2310{
2311 /* Provides a barrier we need to be sure we are in sync
2312 * with the socket flags modification.
2313 *
2314 * This memory barrier is paired in the wq_has_sleeper.
2315 */
2316 poll_wait(filp, &sock->wq.wait, p);
2317}
2318
2319static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2320{
2321 /* This pairs with WRITE_ONCE() in sk_set_txhash() */
2322 u32 txhash = READ_ONCE(sk->sk_txhash);
2323
2324 if (txhash) {
2325 skb->l4_hash = 1;
2326 skb->hash = txhash;
2327 }
2328}
2329
2330void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2331
2332/*
2333 * Queue a received datagram if it will fit. Stream and sequenced
2334 * protocols can't normally use this as they need to fit buffers in
2335 * and play with them.
2336 *
2337 * Inlined as it's very short and called for pretty much every
2338 * packet ever received.
2339 */
2340static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2341{
2342 skb_orphan(skb);
2343 skb->sk = sk;
2344 skb->destructor = sock_rfree;
2345 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2346 sk_mem_charge(sk, skb->truesize);
2347}
2348
2349static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2350{
2351 if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2352 skb_orphan(skb);
2353 skb->destructor = sock_efree;
2354 skb->sk = sk;
2355 return true;
2356 }
2357 return false;
2358}
2359
2360static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk)
2361{
2362 skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC));
2363 if (skb) {
2364 if (sk_rmem_schedule(sk, skb, skb->truesize)) {
2365 skb_set_owner_r(skb, sk);
2366 return skb;
2367 }
2368 __kfree_skb(skb);
2369 }
2370 return NULL;
2371}
2372
2373static inline void skb_prepare_for_gro(struct sk_buff *skb)
2374{
2375 if (skb->destructor != sock_wfree) {
2376 skb_orphan(skb);
2377 return;
2378 }
2379 skb->slow_gro = 1;
2380}
2381
2382void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2383 unsigned long expires);
2384
2385void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2386
2387void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2388
2389int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2390 struct sk_buff *skb, unsigned int flags,
2391 void (*destructor)(struct sock *sk,
2392 struct sk_buff *skb));
2393int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2394
2395int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2396 enum skb_drop_reason *reason);
2397
2398static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2399{
2400 return sock_queue_rcv_skb_reason(sk, skb, NULL);
2401}
2402
2403int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2404struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2405
2406/*
2407 * Recover an error report and clear atomically
2408 */
2409
2410static inline int sock_error(struct sock *sk)
2411{
2412 int err;
2413
2414 /* Avoid an atomic operation for the common case.
2415 * This is racy since another cpu/thread can change sk_err under us.
2416 */
2417 if (likely(data_race(!sk->sk_err)))
2418 return 0;
2419
2420 err = xchg(&sk->sk_err, 0);
2421 return -err;
2422}
2423
2424void sk_error_report(struct sock *sk);
2425
2426static inline unsigned long sock_wspace(struct sock *sk)
2427{
2428 int amt = 0;
2429
2430 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2431 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2432 if (amt < 0)
2433 amt = 0;
2434 }
2435 return amt;
2436}
2437
2438/* Note:
2439 * We use sk->sk_wq_raw, from contexts knowing this
2440 * pointer is not NULL and cannot disappear/change.
2441 */
2442static inline void sk_set_bit(int nr, struct sock *sk)
2443{
2444 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2445 !sock_flag(sk, SOCK_FASYNC))
2446 return;
2447
2448 set_bit(nr, &sk->sk_wq_raw->flags);
2449}
2450
2451static inline void sk_clear_bit(int nr, struct sock *sk)
2452{
2453 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2454 !sock_flag(sk, SOCK_FASYNC))
2455 return;
2456
2457 clear_bit(nr, &sk->sk_wq_raw->flags);
2458}
2459
2460static inline void sk_wake_async(const struct sock *sk, int how, int band)
2461{
2462 if (sock_flag(sk, SOCK_FASYNC)) {
2463 rcu_read_lock();
2464 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2465 rcu_read_unlock();
2466 }
2467}
2468
2469static inline void sk_wake_async_rcu(const struct sock *sk, int how, int band)
2470{
2471 if (unlikely(sock_flag(sk, SOCK_FASYNC)))
2472 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2473}
2474
2475/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2476 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2477 * Note: for send buffers, TCP works better if we can build two skbs at
2478 * minimum.
2479 */
2480#define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2481
2482#define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2483#define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2484
2485static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2486{
2487 u32 val;
2488
2489 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2490 return;
2491
2492 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2493 val = max_t(u32, val, sk_unused_reserved_mem(sk));
2494
2495 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2496}
2497
2498/**
2499 * sk_page_frag - return an appropriate page_frag
2500 * @sk: socket
2501 *
2502 * Use the per task page_frag instead of the per socket one for
2503 * optimization when we know that we're in process context and own
2504 * everything that's associated with %current.
2505 *
2506 * Both direct reclaim and page faults can nest inside other
2507 * socket operations and end up recursing into sk_page_frag()
2508 * while it's already in use: explicitly avoid task page_frag
2509 * when users disable sk_use_task_frag.
2510 *
2511 * Return: a per task page_frag if context allows that,
2512 * otherwise a per socket one.
2513 */
2514static inline struct page_frag *sk_page_frag(struct sock *sk)
2515{
2516 if (sk->sk_use_task_frag)
2517 return ¤t->task_frag;
2518
2519 return &sk->sk_frag;
2520}
2521
2522bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2523
2524/*
2525 * Default write policy as shown to user space via poll/select/SIGIO
2526 */
2527static inline bool sock_writeable(const struct sock *sk)
2528{
2529 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2530}
2531
2532static inline gfp_t gfp_any(void)
2533{
2534 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2535}
2536
2537static inline gfp_t gfp_memcg_charge(void)
2538{
2539 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2540}
2541
2542static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2543{
2544 return noblock ? 0 : sk->sk_rcvtimeo;
2545}
2546
2547static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2548{
2549 return noblock ? 0 : sk->sk_sndtimeo;
2550}
2551
2552static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2553{
2554 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2555
2556 return v ?: 1;
2557}
2558
2559/* Alas, with timeout socket operations are not restartable.
2560 * Compare this to poll().
2561 */
2562static inline int sock_intr_errno(long timeo)
2563{
2564 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2565}
2566
2567struct sock_skb_cb {
2568 u32 dropcount;
2569};
2570
2571/* Store sock_skb_cb at the end of skb->cb[] so protocol families
2572 * using skb->cb[] would keep using it directly and utilize its
2573 * alignment guarantee.
2574 */
2575#define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2576 sizeof(struct sock_skb_cb)))
2577
2578#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2579 SOCK_SKB_CB_OFFSET))
2580
2581#define sock_skb_cb_check_size(size) \
2582 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2583
2584static inline void
2585sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2586{
2587 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2588 atomic_read(&sk->sk_drops) : 0;
2589}
2590
2591static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2592{
2593 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2594
2595 atomic_add(segs, &sk->sk_drops);
2596}
2597
2598static inline ktime_t sock_read_timestamp(struct sock *sk)
2599{
2600#if BITS_PER_LONG==32
2601 unsigned int seq;
2602 ktime_t kt;
2603
2604 do {
2605 seq = read_seqbegin(&sk->sk_stamp_seq);
2606 kt = sk->sk_stamp;
2607 } while (read_seqretry(&sk->sk_stamp_seq, seq));
2608
2609 return kt;
2610#else
2611 return READ_ONCE(sk->sk_stamp);
2612#endif
2613}
2614
2615static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2616{
2617#if BITS_PER_LONG==32
2618 write_seqlock(&sk->sk_stamp_seq);
2619 sk->sk_stamp = kt;
2620 write_sequnlock(&sk->sk_stamp_seq);
2621#else
2622 WRITE_ONCE(sk->sk_stamp, kt);
2623#endif
2624}
2625
2626void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2627 struct sk_buff *skb);
2628void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2629 struct sk_buff *skb);
2630
2631static inline void
2632sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2633{
2634 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2635 u32 tsflags = READ_ONCE(sk->sk_tsflags);
2636 ktime_t kt = skb->tstamp;
2637 /*
2638 * generate control messages if
2639 * - receive time stamping in software requested
2640 * - software time stamp available and wanted
2641 * - hardware time stamps available and wanted
2642 */
2643 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2644 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2645 (kt && tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2646 (hwtstamps->hwtstamp &&
2647 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2648 __sock_recv_timestamp(msg, sk, skb);
2649 else
2650 sock_write_timestamp(sk, kt);
2651
2652 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb_wifi_acked_valid(skb))
2653 __sock_recv_wifi_status(msg, sk, skb);
2654}
2655
2656void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2657 struct sk_buff *skb);
2658
2659#define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2660static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2661 struct sk_buff *skb)
2662{
2663#define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL) | \
2664 (1UL << SOCK_RCVTSTAMP) | \
2665 (1UL << SOCK_RCVMARK))
2666#define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2667 SOF_TIMESTAMPING_RAW_HARDWARE)
2668
2669 if (sk->sk_flags & FLAGS_RECV_CMSGS ||
2670 READ_ONCE(sk->sk_tsflags) & TSFLAGS_ANY)
2671 __sock_recv_cmsgs(msg, sk, skb);
2672 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2673 sock_write_timestamp(sk, skb->tstamp);
2674 else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP))
2675 sock_write_timestamp(sk, 0);
2676}
2677
2678void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags);
2679
2680/**
2681 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2682 * @sk: socket sending this packet
2683 * @sockc: pointer to socket cmsg cookie to get timestamping info
2684 * @tx_flags: completed with instructions for time stamping
2685 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno)
2686 *
2687 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2688 */
2689static inline void _sock_tx_timestamp(struct sock *sk,
2690 const struct sockcm_cookie *sockc,
2691 __u8 *tx_flags, __u32 *tskey)
2692{
2693 __u32 tsflags = sockc->tsflags;
2694
2695 if (unlikely(tsflags)) {
2696 __sock_tx_timestamp(tsflags, tx_flags);
2697 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2698 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) {
2699 if (tsflags & SOCKCM_FLAG_TS_OPT_ID)
2700 *tskey = sockc->ts_opt_id;
2701 else
2702 *tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2703 }
2704 }
2705 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2706 *tx_flags |= SKBTX_WIFI_STATUS;
2707}
2708
2709static inline void sock_tx_timestamp(struct sock *sk,
2710 const struct sockcm_cookie *sockc,
2711 __u8 *tx_flags)
2712{
2713 _sock_tx_timestamp(sk, sockc, tx_flags, NULL);
2714}
2715
2716static inline void skb_setup_tx_timestamp(struct sk_buff *skb,
2717 const struct sockcm_cookie *sockc)
2718{
2719 _sock_tx_timestamp(skb->sk, sockc, &skb_shinfo(skb)->tx_flags,
2720 &skb_shinfo(skb)->tskey);
2721}
2722
2723static inline bool sk_is_inet(const struct sock *sk)
2724{
2725 int family = READ_ONCE(sk->sk_family);
2726
2727 return family == AF_INET || family == AF_INET6;
2728}
2729
2730static inline bool sk_is_tcp(const struct sock *sk)
2731{
2732 return sk_is_inet(sk) &&
2733 sk->sk_type == SOCK_STREAM &&
2734 sk->sk_protocol == IPPROTO_TCP;
2735}
2736
2737static inline bool sk_is_udp(const struct sock *sk)
2738{
2739 return sk_is_inet(sk) &&
2740 sk->sk_type == SOCK_DGRAM &&
2741 sk->sk_protocol == IPPROTO_UDP;
2742}
2743
2744static inline bool sk_is_stream_unix(const struct sock *sk)
2745{
2746 return sk->sk_family == AF_UNIX && sk->sk_type == SOCK_STREAM;
2747}
2748
2749static inline bool sk_is_vsock(const struct sock *sk)
2750{
2751 return sk->sk_family == AF_VSOCK;
2752}
2753
2754/**
2755 * sk_eat_skb - Release a skb if it is no longer needed
2756 * @sk: socket to eat this skb from
2757 * @skb: socket buffer to eat
2758 *
2759 * This routine must be called with interrupts disabled or with the socket
2760 * locked so that the sk_buff queue operation is ok.
2761*/
2762static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2763{
2764 __skb_unlink(skb, &sk->sk_receive_queue);
2765 __kfree_skb(skb);
2766}
2767
2768static inline bool
2769skb_sk_is_prefetched(struct sk_buff *skb)
2770{
2771#ifdef CONFIG_INET
2772 return skb->destructor == sock_pfree;
2773#else
2774 return false;
2775#endif /* CONFIG_INET */
2776}
2777
2778/* This helper checks if a socket is a full socket,
2779 * ie _not_ a timewait or request socket.
2780 */
2781static inline bool sk_fullsock(const struct sock *sk)
2782{
2783 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2784}
2785
2786static inline bool
2787sk_is_refcounted(struct sock *sk)
2788{
2789 /* Only full sockets have sk->sk_flags. */
2790 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2791}
2792
2793/* Checks if this SKB belongs to an HW offloaded socket
2794 * and whether any SW fallbacks are required based on dev.
2795 * Check decrypted mark in case skb_orphan() cleared socket.
2796 */
2797static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2798 struct net_device *dev)
2799{
2800#ifdef CONFIG_SOCK_VALIDATE_XMIT
2801 struct sock *sk = skb->sk;
2802
2803 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2804 skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2805 } else if (unlikely(skb_is_decrypted(skb))) {
2806 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2807 kfree_skb(skb);
2808 skb = NULL;
2809 }
2810#endif
2811
2812 return skb;
2813}
2814
2815/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2816 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2817 */
2818static inline bool sk_listener(const struct sock *sk)
2819{
2820 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2821}
2822
2823/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV or TIME_WAIT
2824 * TCP SYNACK messages can be attached to LISTEN or NEW_SYN_RECV (depending on SYNCOOKIE)
2825 * TCP RST and ACK can be attached to TIME_WAIT.
2826 */
2827static inline bool sk_listener_or_tw(const struct sock *sk)
2828{
2829 return (1 << READ_ONCE(sk->sk_state)) &
2830 (TCPF_LISTEN | TCPF_NEW_SYN_RECV | TCPF_TIME_WAIT);
2831}
2832
2833void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2834int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2835 int type);
2836
2837bool sk_ns_capable(const struct sock *sk,
2838 struct user_namespace *user_ns, int cap);
2839bool sk_capable(const struct sock *sk, int cap);
2840bool sk_net_capable(const struct sock *sk, int cap);
2841
2842void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2843
2844/* Take into consideration the size of the struct sk_buff overhead in the
2845 * determination of these values, since that is non-constant across
2846 * platforms. This makes socket queueing behavior and performance
2847 * not depend upon such differences.
2848 */
2849#define _SK_MEM_PACKETS 256
2850#define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2851#define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2852#define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2853
2854extern __u32 sysctl_wmem_max;
2855extern __u32 sysctl_rmem_max;
2856
2857extern __u32 sysctl_wmem_default;
2858extern __u32 sysctl_rmem_default;
2859
2860#define SKB_FRAG_PAGE_ORDER get_order(32768)
2861DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2862
2863static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2864{
2865 /* Does this proto have per netns sysctl_wmem ? */
2866 if (proto->sysctl_wmem_offset)
2867 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
2868
2869 return READ_ONCE(*proto->sysctl_wmem);
2870}
2871
2872static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2873{
2874 /* Does this proto have per netns sysctl_rmem ? */
2875 if (proto->sysctl_rmem_offset)
2876 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
2877
2878 return READ_ONCE(*proto->sysctl_rmem);
2879}
2880
2881/* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2882 * Some wifi drivers need to tweak it to get more chunks.
2883 * They can use this helper from their ndo_start_xmit()
2884 */
2885static inline void sk_pacing_shift_update(struct sock *sk, int val)
2886{
2887 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2888 return;
2889 WRITE_ONCE(sk->sk_pacing_shift, val);
2890}
2891
2892/* if a socket is bound to a device, check that the given device
2893 * index is either the same or that the socket is bound to an L3
2894 * master device and the given device index is also enslaved to
2895 * that L3 master
2896 */
2897static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2898{
2899 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
2900 int mdif;
2901
2902 if (!bound_dev_if || bound_dev_if == dif)
2903 return true;
2904
2905 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2906 if (mdif && mdif == bound_dev_if)
2907 return true;
2908
2909 return false;
2910}
2911
2912void sock_def_readable(struct sock *sk);
2913
2914int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2915void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2916int sock_set_timestamping(struct sock *sk, int optname,
2917 struct so_timestamping timestamping);
2918
2919void sock_enable_timestamps(struct sock *sk);
2920void sock_no_linger(struct sock *sk);
2921void sock_set_keepalive(struct sock *sk);
2922void sock_set_priority(struct sock *sk, u32 priority);
2923void sock_set_rcvbuf(struct sock *sk, int val);
2924void sock_set_mark(struct sock *sk, u32 val);
2925void sock_set_reuseaddr(struct sock *sk);
2926void sock_set_reuseport(struct sock *sk);
2927void sock_set_sndtimeo(struct sock *sk, s64 secs);
2928
2929int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2930
2931int sock_get_timeout(long timeo, void *optval, bool old_timeval);
2932int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
2933 sockptr_t optval, int optlen, bool old_timeval);
2934
2935int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
2936 void __user *arg, void *karg, size_t size);
2937int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg);
2938static inline bool sk_is_readable(struct sock *sk)
2939{
2940 if (sk->sk_prot->sock_is_readable)
2941 return sk->sk_prot->sock_is_readable(sk);
2942 return false;
2943}
2944#endif /* _SOCK_H */
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the AF_INET socket handler.
8 *
9 * Version: @(#)sock.h 1.0.4 05/13/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche <flla@stud.uni-sb.de>
15 *
16 * Fixes:
17 * Alan Cox : Volatiles in skbuff pointers. See
18 * skbuff comments. May be overdone,
19 * better to prove they can be removed
20 * than the reverse.
21 * Alan Cox : Added a zapped field for tcp to note
22 * a socket is reset and must stay shut up
23 * Alan Cox : New fields for options
24 * Pauline Middelink : identd support
25 * Alan Cox : Eliminate low level recv/recvfrom
26 * David S. Miller : New socket lookup architecture.
27 * Steve Whitehouse: Default routines for sock_ops
28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
29 * protinfo be just a void pointer, as the
30 * protocol specific parts were moved to
31 * respective headers and ipv4/v6, etc now
32 * use private slabcaches for its socks
33 * Pedro Hortas : New flags field for socket options
34 */
35#ifndef _SOCK_H
36#define _SOCK_H
37
38#include <linux/hardirq.h>
39#include <linux/kernel.h>
40#include <linux/list.h>
41#include <linux/list_nulls.h>
42#include <linux/timer.h>
43#include <linux/cache.h>
44#include <linux/bitops.h>
45#include <linux/lockdep.h>
46#include <linux/netdevice.h>
47#include <linux/skbuff.h> /* struct sk_buff */
48#include <linux/mm.h>
49#include <linux/security.h>
50#include <linux/slab.h>
51#include <linux/uaccess.h>
52#include <linux/page_counter.h>
53#include <linux/memcontrol.h>
54#include <linux/static_key.h>
55#include <linux/sched.h>
56#include <linux/wait.h>
57#include <linux/cgroup-defs.h>
58#include <linux/rbtree.h>
59#include <linux/filter.h>
60#include <linux/rculist_nulls.h>
61#include <linux/poll.h>
62#include <linux/sockptr.h>
63
64#include <linux/atomic.h>
65#include <linux/refcount.h>
66#include <net/dst.h>
67#include <net/checksum.h>
68#include <net/tcp_states.h>
69#include <linux/net_tstamp.h>
70#include <net/l3mdev.h>
71
72/*
73 * This structure really needs to be cleaned up.
74 * Most of it is for TCP, and not used by any of
75 * the other protocols.
76 */
77
78/* Define this to get the SOCK_DBG debugging facility. */
79#define SOCK_DEBUGGING
80#ifdef SOCK_DEBUGGING
81#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
82 printk(KERN_DEBUG msg); } while (0)
83#else
84/* Validate arguments and do nothing */
85static inline __printf(2, 3)
86void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
87{
88}
89#endif
90
91/* This is the per-socket lock. The spinlock provides a synchronization
92 * between user contexts and software interrupt processing, whereas the
93 * mini-semaphore synchronizes multiple users amongst themselves.
94 */
95typedef struct {
96 spinlock_t slock;
97 int owned;
98 wait_queue_head_t wq;
99 /*
100 * We express the mutex-alike socket_lock semantics
101 * to the lock validator by explicitly managing
102 * the slock as a lock variant (in addition to
103 * the slock itself):
104 */
105#ifdef CONFIG_DEBUG_LOCK_ALLOC
106 struct lockdep_map dep_map;
107#endif
108} socket_lock_t;
109
110struct sock;
111struct proto;
112struct net;
113
114typedef __u32 __bitwise __portpair;
115typedef __u64 __bitwise __addrpair;
116
117/**
118 * struct sock_common - minimal network layer representation of sockets
119 * @skc_daddr: Foreign IPv4 addr
120 * @skc_rcv_saddr: Bound local IPv4 addr
121 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
122 * @skc_hash: hash value used with various protocol lookup tables
123 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
124 * @skc_dport: placeholder for inet_dport/tw_dport
125 * @skc_num: placeholder for inet_num/tw_num
126 * @skc_portpair: __u32 union of @skc_dport & @skc_num
127 * @skc_family: network address family
128 * @skc_state: Connection state
129 * @skc_reuse: %SO_REUSEADDR setting
130 * @skc_reuseport: %SO_REUSEPORT setting
131 * @skc_ipv6only: socket is IPV6 only
132 * @skc_net_refcnt: socket is using net ref counting
133 * @skc_bound_dev_if: bound device index if != 0
134 * @skc_bind_node: bind hash linkage for various protocol lookup tables
135 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
136 * @skc_prot: protocol handlers inside a network family
137 * @skc_net: reference to the network namespace of this socket
138 * @skc_v6_daddr: IPV6 destination address
139 * @skc_v6_rcv_saddr: IPV6 source address
140 * @skc_cookie: socket's cookie value
141 * @skc_node: main hash linkage for various protocol lookup tables
142 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
143 * @skc_tx_queue_mapping: tx queue number for this connection
144 * @skc_rx_queue_mapping: rx queue number for this connection
145 * @skc_flags: place holder for sk_flags
146 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
147 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
148 * @skc_listener: connection request listener socket (aka rsk_listener)
149 * [union with @skc_flags]
150 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
151 * [union with @skc_flags]
152 * @skc_incoming_cpu: record/match cpu processing incoming packets
153 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
154 * [union with @skc_incoming_cpu]
155 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
156 * [union with @skc_incoming_cpu]
157 * @skc_refcnt: reference count
158 *
159 * This is the minimal network layer representation of sockets, the header
160 * for struct sock and struct inet_timewait_sock.
161 */
162struct sock_common {
163 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
164 * address on 64bit arches : cf INET_MATCH()
165 */
166 union {
167 __addrpair skc_addrpair;
168 struct {
169 __be32 skc_daddr;
170 __be32 skc_rcv_saddr;
171 };
172 };
173 union {
174 unsigned int skc_hash;
175 __u16 skc_u16hashes[2];
176 };
177 /* skc_dport && skc_num must be grouped as well */
178 union {
179 __portpair skc_portpair;
180 struct {
181 __be16 skc_dport;
182 __u16 skc_num;
183 };
184 };
185
186 unsigned short skc_family;
187 volatile unsigned char skc_state;
188 unsigned char skc_reuse:4;
189 unsigned char skc_reuseport:1;
190 unsigned char skc_ipv6only:1;
191 unsigned char skc_net_refcnt:1;
192 int skc_bound_dev_if;
193 union {
194 struct hlist_node skc_bind_node;
195 struct hlist_node skc_portaddr_node;
196 };
197 struct proto *skc_prot;
198 possible_net_t skc_net;
199
200#if IS_ENABLED(CONFIG_IPV6)
201 struct in6_addr skc_v6_daddr;
202 struct in6_addr skc_v6_rcv_saddr;
203#endif
204
205 atomic64_t skc_cookie;
206
207 /* following fields are padding to force
208 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
209 * assuming IPV6 is enabled. We use this padding differently
210 * for different kind of 'sockets'
211 */
212 union {
213 unsigned long skc_flags;
214 struct sock *skc_listener; /* request_sock */
215 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
216 };
217 /*
218 * fields between dontcopy_begin/dontcopy_end
219 * are not copied in sock_copy()
220 */
221 /* private: */
222 int skc_dontcopy_begin[0];
223 /* public: */
224 union {
225 struct hlist_node skc_node;
226 struct hlist_nulls_node skc_nulls_node;
227 };
228 unsigned short skc_tx_queue_mapping;
229#ifdef CONFIG_XPS
230 unsigned short skc_rx_queue_mapping;
231#endif
232 union {
233 int skc_incoming_cpu;
234 u32 skc_rcv_wnd;
235 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
236 };
237
238 refcount_t skc_refcnt;
239 /* private: */
240 int skc_dontcopy_end[0];
241 union {
242 u32 skc_rxhash;
243 u32 skc_window_clamp;
244 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
245 };
246 /* public: */
247};
248
249struct bpf_sk_storage;
250
251/**
252 * struct sock - network layer representation of sockets
253 * @__sk_common: shared layout with inet_timewait_sock
254 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
255 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
256 * @sk_lock: synchronizer
257 * @sk_kern_sock: True if sock is using kernel lock classes
258 * @sk_rcvbuf: size of receive buffer in bytes
259 * @sk_wq: sock wait queue and async head
260 * @sk_rx_dst: receive input route used by early demux
261 * @sk_dst_cache: destination cache
262 * @sk_dst_pending_confirm: need to confirm neighbour
263 * @sk_policy: flow policy
264 * @sk_rx_skb_cache: cache copy of recently accessed RX skb
265 * @sk_receive_queue: incoming packets
266 * @sk_wmem_alloc: transmit queue bytes committed
267 * @sk_tsq_flags: TCP Small Queues flags
268 * @sk_write_queue: Packet sending queue
269 * @sk_omem_alloc: "o" is "option" or "other"
270 * @sk_wmem_queued: persistent queue size
271 * @sk_forward_alloc: space allocated forward
272 * @sk_napi_id: id of the last napi context to receive data for sk
273 * @sk_ll_usec: usecs to busypoll when there is no data
274 * @sk_allocation: allocation mode
275 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
276 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
277 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
278 * @sk_sndbuf: size of send buffer in bytes
279 * @__sk_flags_offset: empty field used to determine location of bitfield
280 * @sk_padding: unused element for alignment
281 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
282 * @sk_no_check_rx: allow zero checksum in RX packets
283 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
284 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
285 * @sk_route_forced_caps: static, forced route capabilities
286 * (set in tcp_init_sock())
287 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
288 * @sk_gso_max_size: Maximum GSO segment size to build
289 * @sk_gso_max_segs: Maximum number of GSO segments
290 * @sk_pacing_shift: scaling factor for TCP Small Queues
291 * @sk_lingertime: %SO_LINGER l_linger setting
292 * @sk_backlog: always used with the per-socket spinlock held
293 * @sk_callback_lock: used with the callbacks in the end of this struct
294 * @sk_error_queue: rarely used
295 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
296 * IPV6_ADDRFORM for instance)
297 * @sk_err: last error
298 * @sk_err_soft: errors that don't cause failure but are the cause of a
299 * persistent failure not just 'timed out'
300 * @sk_drops: raw/udp drops counter
301 * @sk_ack_backlog: current listen backlog
302 * @sk_max_ack_backlog: listen backlog set in listen()
303 * @sk_uid: user id of owner
304 * @sk_priority: %SO_PRIORITY setting
305 * @sk_type: socket type (%SOCK_STREAM, etc)
306 * @sk_protocol: which protocol this socket belongs in this network family
307 * @sk_peer_pid: &struct pid for this socket's peer
308 * @sk_peer_cred: %SO_PEERCRED setting
309 * @sk_rcvlowat: %SO_RCVLOWAT setting
310 * @sk_rcvtimeo: %SO_RCVTIMEO setting
311 * @sk_sndtimeo: %SO_SNDTIMEO setting
312 * @sk_txhash: computed flow hash for use on transmit
313 * @sk_filter: socket filtering instructions
314 * @sk_timer: sock cleanup timer
315 * @sk_stamp: time stamp of last packet received
316 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
317 * @sk_tsflags: SO_TIMESTAMPING socket options
318 * @sk_tskey: counter to disambiguate concurrent tstamp requests
319 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
320 * @sk_socket: Identd and reporting IO signals
321 * @sk_user_data: RPC layer private data
322 * @sk_frag: cached page frag
323 * @sk_peek_off: current peek_offset value
324 * @sk_send_head: front of stuff to transmit
325 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
326 * @sk_tx_skb_cache: cache copy of recently accessed TX skb
327 * @sk_security: used by security modules
328 * @sk_mark: generic packet mark
329 * @sk_cgrp_data: cgroup data for this cgroup
330 * @sk_memcg: this socket's memory cgroup association
331 * @sk_write_pending: a write to stream socket waits to start
332 * @sk_state_change: callback to indicate change in the state of the sock
333 * @sk_data_ready: callback to indicate there is data to be processed
334 * @sk_write_space: callback to indicate there is bf sending space available
335 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
336 * @sk_backlog_rcv: callback to process the backlog
337 * @sk_validate_xmit_skb: ptr to an optional validate function
338 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
339 * @sk_reuseport_cb: reuseport group container
340 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage
341 * @sk_rcu: used during RCU grace period
342 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
343 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
344 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME
345 * @sk_txtime_unused: unused txtime flags
346 */
347struct sock {
348 /*
349 * Now struct inet_timewait_sock also uses sock_common, so please just
350 * don't add nothing before this first member (__sk_common) --acme
351 */
352 struct sock_common __sk_common;
353#define sk_node __sk_common.skc_node
354#define sk_nulls_node __sk_common.skc_nulls_node
355#define sk_refcnt __sk_common.skc_refcnt
356#define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
357#ifdef CONFIG_XPS
358#define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
359#endif
360
361#define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
362#define sk_dontcopy_end __sk_common.skc_dontcopy_end
363#define sk_hash __sk_common.skc_hash
364#define sk_portpair __sk_common.skc_portpair
365#define sk_num __sk_common.skc_num
366#define sk_dport __sk_common.skc_dport
367#define sk_addrpair __sk_common.skc_addrpair
368#define sk_daddr __sk_common.skc_daddr
369#define sk_rcv_saddr __sk_common.skc_rcv_saddr
370#define sk_family __sk_common.skc_family
371#define sk_state __sk_common.skc_state
372#define sk_reuse __sk_common.skc_reuse
373#define sk_reuseport __sk_common.skc_reuseport
374#define sk_ipv6only __sk_common.skc_ipv6only
375#define sk_net_refcnt __sk_common.skc_net_refcnt
376#define sk_bound_dev_if __sk_common.skc_bound_dev_if
377#define sk_bind_node __sk_common.skc_bind_node
378#define sk_prot __sk_common.skc_prot
379#define sk_net __sk_common.skc_net
380#define sk_v6_daddr __sk_common.skc_v6_daddr
381#define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
382#define sk_cookie __sk_common.skc_cookie
383#define sk_incoming_cpu __sk_common.skc_incoming_cpu
384#define sk_flags __sk_common.skc_flags
385#define sk_rxhash __sk_common.skc_rxhash
386
387 socket_lock_t sk_lock;
388 atomic_t sk_drops;
389 int sk_rcvlowat;
390 struct sk_buff_head sk_error_queue;
391 struct sk_buff *sk_rx_skb_cache;
392 struct sk_buff_head sk_receive_queue;
393 /*
394 * The backlog queue is special, it is always used with
395 * the per-socket spinlock held and requires low latency
396 * access. Therefore we special case it's implementation.
397 * Note : rmem_alloc is in this structure to fill a hole
398 * on 64bit arches, not because its logically part of
399 * backlog.
400 */
401 struct {
402 atomic_t rmem_alloc;
403 int len;
404 struct sk_buff *head;
405 struct sk_buff *tail;
406 } sk_backlog;
407#define sk_rmem_alloc sk_backlog.rmem_alloc
408
409 int sk_forward_alloc;
410#ifdef CONFIG_NET_RX_BUSY_POLL
411 unsigned int sk_ll_usec;
412 /* ===== mostly read cache line ===== */
413 unsigned int sk_napi_id;
414#endif
415 int sk_rcvbuf;
416
417 struct sk_filter __rcu *sk_filter;
418 union {
419 struct socket_wq __rcu *sk_wq;
420 /* private: */
421 struct socket_wq *sk_wq_raw;
422 /* public: */
423 };
424#ifdef CONFIG_XFRM
425 struct xfrm_policy __rcu *sk_policy[2];
426#endif
427 struct dst_entry *sk_rx_dst;
428 struct dst_entry __rcu *sk_dst_cache;
429 atomic_t sk_omem_alloc;
430 int sk_sndbuf;
431
432 /* ===== cache line for TX ===== */
433 int sk_wmem_queued;
434 refcount_t sk_wmem_alloc;
435 unsigned long sk_tsq_flags;
436 union {
437 struct sk_buff *sk_send_head;
438 struct rb_root tcp_rtx_queue;
439 };
440 struct sk_buff *sk_tx_skb_cache;
441 struct sk_buff_head sk_write_queue;
442 __s32 sk_peek_off;
443 int sk_write_pending;
444 __u32 sk_dst_pending_confirm;
445 u32 sk_pacing_status; /* see enum sk_pacing */
446 long sk_sndtimeo;
447 struct timer_list sk_timer;
448 __u32 sk_priority;
449 __u32 sk_mark;
450 unsigned long sk_pacing_rate; /* bytes per second */
451 unsigned long sk_max_pacing_rate;
452 struct page_frag sk_frag;
453 netdev_features_t sk_route_caps;
454 netdev_features_t sk_route_nocaps;
455 netdev_features_t sk_route_forced_caps;
456 int sk_gso_type;
457 unsigned int sk_gso_max_size;
458 gfp_t sk_allocation;
459 __u32 sk_txhash;
460
461 /*
462 * Because of non atomicity rules, all
463 * changes are protected by socket lock.
464 */
465 u8 sk_padding : 1,
466 sk_kern_sock : 1,
467 sk_no_check_tx : 1,
468 sk_no_check_rx : 1,
469 sk_userlocks : 4;
470 u8 sk_pacing_shift;
471 u16 sk_type;
472 u16 sk_protocol;
473 u16 sk_gso_max_segs;
474 unsigned long sk_lingertime;
475 struct proto *sk_prot_creator;
476 rwlock_t sk_callback_lock;
477 int sk_err,
478 sk_err_soft;
479 u32 sk_ack_backlog;
480 u32 sk_max_ack_backlog;
481 kuid_t sk_uid;
482 struct pid *sk_peer_pid;
483 const struct cred *sk_peer_cred;
484 long sk_rcvtimeo;
485 ktime_t sk_stamp;
486#if BITS_PER_LONG==32
487 seqlock_t sk_stamp_seq;
488#endif
489 u16 sk_tsflags;
490 u8 sk_shutdown;
491 u32 sk_tskey;
492 atomic_t sk_zckey;
493
494 u8 sk_clockid;
495 u8 sk_txtime_deadline_mode : 1,
496 sk_txtime_report_errors : 1,
497 sk_txtime_unused : 6;
498
499 struct socket *sk_socket;
500 void *sk_user_data;
501#ifdef CONFIG_SECURITY
502 void *sk_security;
503#endif
504 struct sock_cgroup_data sk_cgrp_data;
505 struct mem_cgroup *sk_memcg;
506 void (*sk_state_change)(struct sock *sk);
507 void (*sk_data_ready)(struct sock *sk);
508 void (*sk_write_space)(struct sock *sk);
509 void (*sk_error_report)(struct sock *sk);
510 int (*sk_backlog_rcv)(struct sock *sk,
511 struct sk_buff *skb);
512#ifdef CONFIG_SOCK_VALIDATE_XMIT
513 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk,
514 struct net_device *dev,
515 struct sk_buff *skb);
516#endif
517 void (*sk_destruct)(struct sock *sk);
518 struct sock_reuseport __rcu *sk_reuseport_cb;
519#ifdef CONFIG_BPF_SYSCALL
520 struct bpf_sk_storage __rcu *sk_bpf_storage;
521#endif
522 struct rcu_head sk_rcu;
523};
524
525enum sk_pacing {
526 SK_PACING_NONE = 0,
527 SK_PACING_NEEDED = 1,
528 SK_PACING_FQ = 2,
529};
530
531/* Pointer stored in sk_user_data might not be suitable for copying
532 * when cloning the socket. For instance, it can point to a reference
533 * counted object. sk_user_data bottom bit is set if pointer must not
534 * be copied.
535 */
536#define SK_USER_DATA_NOCOPY 1UL
537#define SK_USER_DATA_BPF 2UL /* Managed by BPF */
538#define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF)
539
540/**
541 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
542 * @sk: socket
543 */
544static inline bool sk_user_data_is_nocopy(const struct sock *sk)
545{
546 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
547}
548
549#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
550
551#define rcu_dereference_sk_user_data(sk) \
552({ \
553 void *__tmp = rcu_dereference(__sk_user_data((sk))); \
554 (void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK); \
555})
556#define rcu_assign_sk_user_data(sk, ptr) \
557({ \
558 uintptr_t __tmp = (uintptr_t)(ptr); \
559 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \
560 rcu_assign_pointer(__sk_user_data((sk)), __tmp); \
561})
562#define rcu_assign_sk_user_data_nocopy(sk, ptr) \
563({ \
564 uintptr_t __tmp = (uintptr_t)(ptr); \
565 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \
566 rcu_assign_pointer(__sk_user_data((sk)), \
567 __tmp | SK_USER_DATA_NOCOPY); \
568})
569
570/*
571 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
572 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
573 * on a socket means that the socket will reuse everybody else's port
574 * without looking at the other's sk_reuse value.
575 */
576
577#define SK_NO_REUSE 0
578#define SK_CAN_REUSE 1
579#define SK_FORCE_REUSE 2
580
581int sk_set_peek_off(struct sock *sk, int val);
582
583static inline int sk_peek_offset(struct sock *sk, int flags)
584{
585 if (unlikely(flags & MSG_PEEK)) {
586 return READ_ONCE(sk->sk_peek_off);
587 }
588
589 return 0;
590}
591
592static inline void sk_peek_offset_bwd(struct sock *sk, int val)
593{
594 s32 off = READ_ONCE(sk->sk_peek_off);
595
596 if (unlikely(off >= 0)) {
597 off = max_t(s32, off - val, 0);
598 WRITE_ONCE(sk->sk_peek_off, off);
599 }
600}
601
602static inline void sk_peek_offset_fwd(struct sock *sk, int val)
603{
604 sk_peek_offset_bwd(sk, -val);
605}
606
607/*
608 * Hashed lists helper routines
609 */
610static inline struct sock *sk_entry(const struct hlist_node *node)
611{
612 return hlist_entry(node, struct sock, sk_node);
613}
614
615static inline struct sock *__sk_head(const struct hlist_head *head)
616{
617 return hlist_entry(head->first, struct sock, sk_node);
618}
619
620static inline struct sock *sk_head(const struct hlist_head *head)
621{
622 return hlist_empty(head) ? NULL : __sk_head(head);
623}
624
625static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
626{
627 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
628}
629
630static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
631{
632 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
633}
634
635static inline struct sock *sk_next(const struct sock *sk)
636{
637 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
638}
639
640static inline struct sock *sk_nulls_next(const struct sock *sk)
641{
642 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
643 hlist_nulls_entry(sk->sk_nulls_node.next,
644 struct sock, sk_nulls_node) :
645 NULL;
646}
647
648static inline bool sk_unhashed(const struct sock *sk)
649{
650 return hlist_unhashed(&sk->sk_node);
651}
652
653static inline bool sk_hashed(const struct sock *sk)
654{
655 return !sk_unhashed(sk);
656}
657
658static inline void sk_node_init(struct hlist_node *node)
659{
660 node->pprev = NULL;
661}
662
663static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
664{
665 node->pprev = NULL;
666}
667
668static inline void __sk_del_node(struct sock *sk)
669{
670 __hlist_del(&sk->sk_node);
671}
672
673/* NB: equivalent to hlist_del_init_rcu */
674static inline bool __sk_del_node_init(struct sock *sk)
675{
676 if (sk_hashed(sk)) {
677 __sk_del_node(sk);
678 sk_node_init(&sk->sk_node);
679 return true;
680 }
681 return false;
682}
683
684/* Grab socket reference count. This operation is valid only
685 when sk is ALREADY grabbed f.e. it is found in hash table
686 or a list and the lookup is made under lock preventing hash table
687 modifications.
688 */
689
690static __always_inline void sock_hold(struct sock *sk)
691{
692 refcount_inc(&sk->sk_refcnt);
693}
694
695/* Ungrab socket in the context, which assumes that socket refcnt
696 cannot hit zero, f.e. it is true in context of any socketcall.
697 */
698static __always_inline void __sock_put(struct sock *sk)
699{
700 refcount_dec(&sk->sk_refcnt);
701}
702
703static inline bool sk_del_node_init(struct sock *sk)
704{
705 bool rc = __sk_del_node_init(sk);
706
707 if (rc) {
708 /* paranoid for a while -acme */
709 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
710 __sock_put(sk);
711 }
712 return rc;
713}
714#define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
715
716static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
717{
718 if (sk_hashed(sk)) {
719 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
720 return true;
721 }
722 return false;
723}
724
725static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
726{
727 bool rc = __sk_nulls_del_node_init_rcu(sk);
728
729 if (rc) {
730 /* paranoid for a while -acme */
731 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
732 __sock_put(sk);
733 }
734 return rc;
735}
736
737static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
738{
739 hlist_add_head(&sk->sk_node, list);
740}
741
742static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
743{
744 sock_hold(sk);
745 __sk_add_node(sk, list);
746}
747
748static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
749{
750 sock_hold(sk);
751 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
752 sk->sk_family == AF_INET6)
753 hlist_add_tail_rcu(&sk->sk_node, list);
754 else
755 hlist_add_head_rcu(&sk->sk_node, list);
756}
757
758static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
759{
760 sock_hold(sk);
761 hlist_add_tail_rcu(&sk->sk_node, list);
762}
763
764static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
765{
766 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
767}
768
769static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
770{
771 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
772}
773
774static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
775{
776 sock_hold(sk);
777 __sk_nulls_add_node_rcu(sk, list);
778}
779
780static inline void __sk_del_bind_node(struct sock *sk)
781{
782 __hlist_del(&sk->sk_bind_node);
783}
784
785static inline void sk_add_bind_node(struct sock *sk,
786 struct hlist_head *list)
787{
788 hlist_add_head(&sk->sk_bind_node, list);
789}
790
791#define sk_for_each(__sk, list) \
792 hlist_for_each_entry(__sk, list, sk_node)
793#define sk_for_each_rcu(__sk, list) \
794 hlist_for_each_entry_rcu(__sk, list, sk_node)
795#define sk_nulls_for_each(__sk, node, list) \
796 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
797#define sk_nulls_for_each_rcu(__sk, node, list) \
798 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
799#define sk_for_each_from(__sk) \
800 hlist_for_each_entry_from(__sk, sk_node)
801#define sk_nulls_for_each_from(__sk, node) \
802 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
803 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
804#define sk_for_each_safe(__sk, tmp, list) \
805 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
806#define sk_for_each_bound(__sk, list) \
807 hlist_for_each_entry(__sk, list, sk_bind_node)
808
809/**
810 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
811 * @tpos: the type * to use as a loop cursor.
812 * @pos: the &struct hlist_node to use as a loop cursor.
813 * @head: the head for your list.
814 * @offset: offset of hlist_node within the struct.
815 *
816 */
817#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
818 for (pos = rcu_dereference(hlist_first_rcu(head)); \
819 pos != NULL && \
820 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
821 pos = rcu_dereference(hlist_next_rcu(pos)))
822
823static inline struct user_namespace *sk_user_ns(struct sock *sk)
824{
825 /* Careful only use this in a context where these parameters
826 * can not change and must all be valid, such as recvmsg from
827 * userspace.
828 */
829 return sk->sk_socket->file->f_cred->user_ns;
830}
831
832/* Sock flags */
833enum sock_flags {
834 SOCK_DEAD,
835 SOCK_DONE,
836 SOCK_URGINLINE,
837 SOCK_KEEPOPEN,
838 SOCK_LINGER,
839 SOCK_DESTROY,
840 SOCK_BROADCAST,
841 SOCK_TIMESTAMP,
842 SOCK_ZAPPED,
843 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
844 SOCK_DBG, /* %SO_DEBUG setting */
845 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
846 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
847 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
848 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
849 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
850 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
851 SOCK_FASYNC, /* fasync() active */
852 SOCK_RXQ_OVFL,
853 SOCK_ZEROCOPY, /* buffers from userspace */
854 SOCK_WIFI_STATUS, /* push wifi status to userspace */
855 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
856 * Will use last 4 bytes of packet sent from
857 * user-space instead.
858 */
859 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
860 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
861 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
862 SOCK_TXTIME,
863 SOCK_XDP, /* XDP is attached */
864 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
865};
866
867#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
868
869static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
870{
871 nsk->sk_flags = osk->sk_flags;
872}
873
874static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
875{
876 __set_bit(flag, &sk->sk_flags);
877}
878
879static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
880{
881 __clear_bit(flag, &sk->sk_flags);
882}
883
884static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
885 int valbool)
886{
887 if (valbool)
888 sock_set_flag(sk, bit);
889 else
890 sock_reset_flag(sk, bit);
891}
892
893static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
894{
895 return test_bit(flag, &sk->sk_flags);
896}
897
898#ifdef CONFIG_NET
899DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
900static inline int sk_memalloc_socks(void)
901{
902 return static_branch_unlikely(&memalloc_socks_key);
903}
904
905void __receive_sock(struct file *file);
906#else
907
908static inline int sk_memalloc_socks(void)
909{
910 return 0;
911}
912
913static inline void __receive_sock(struct file *file)
914{ }
915#endif
916
917static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
918{
919 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
920}
921
922static inline void sk_acceptq_removed(struct sock *sk)
923{
924 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
925}
926
927static inline void sk_acceptq_added(struct sock *sk)
928{
929 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
930}
931
932static inline bool sk_acceptq_is_full(const struct sock *sk)
933{
934 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
935}
936
937/*
938 * Compute minimal free write space needed to queue new packets.
939 */
940static inline int sk_stream_min_wspace(const struct sock *sk)
941{
942 return READ_ONCE(sk->sk_wmem_queued) >> 1;
943}
944
945static inline int sk_stream_wspace(const struct sock *sk)
946{
947 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
948}
949
950static inline void sk_wmem_queued_add(struct sock *sk, int val)
951{
952 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
953}
954
955void sk_stream_write_space(struct sock *sk);
956
957/* OOB backlog add */
958static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
959{
960 /* dont let skb dst not refcounted, we are going to leave rcu lock */
961 skb_dst_force(skb);
962
963 if (!sk->sk_backlog.tail)
964 WRITE_ONCE(sk->sk_backlog.head, skb);
965 else
966 sk->sk_backlog.tail->next = skb;
967
968 WRITE_ONCE(sk->sk_backlog.tail, skb);
969 skb->next = NULL;
970}
971
972/*
973 * Take into account size of receive queue and backlog queue
974 * Do not take into account this skb truesize,
975 * to allow even a single big packet to come.
976 */
977static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
978{
979 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
980
981 return qsize > limit;
982}
983
984/* The per-socket spinlock must be held here. */
985static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
986 unsigned int limit)
987{
988 if (sk_rcvqueues_full(sk, limit))
989 return -ENOBUFS;
990
991 /*
992 * If the skb was allocated from pfmemalloc reserves, only
993 * allow SOCK_MEMALLOC sockets to use it as this socket is
994 * helping free memory
995 */
996 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
997 return -ENOMEM;
998
999 __sk_add_backlog(sk, skb);
1000 sk->sk_backlog.len += skb->truesize;
1001 return 0;
1002}
1003
1004int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1005
1006static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1007{
1008 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1009 return __sk_backlog_rcv(sk, skb);
1010
1011 return sk->sk_backlog_rcv(sk, skb);
1012}
1013
1014static inline void sk_incoming_cpu_update(struct sock *sk)
1015{
1016 int cpu = raw_smp_processor_id();
1017
1018 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1019 WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1020}
1021
1022static inline void sock_rps_record_flow_hash(__u32 hash)
1023{
1024#ifdef CONFIG_RPS
1025 struct rps_sock_flow_table *sock_flow_table;
1026
1027 rcu_read_lock();
1028 sock_flow_table = rcu_dereference(rps_sock_flow_table);
1029 rps_record_sock_flow(sock_flow_table, hash);
1030 rcu_read_unlock();
1031#endif
1032}
1033
1034static inline void sock_rps_record_flow(const struct sock *sk)
1035{
1036#ifdef CONFIG_RPS
1037 if (static_branch_unlikely(&rfs_needed)) {
1038 /* Reading sk->sk_rxhash might incur an expensive cache line
1039 * miss.
1040 *
1041 * TCP_ESTABLISHED does cover almost all states where RFS
1042 * might be useful, and is cheaper [1] than testing :
1043 * IPv4: inet_sk(sk)->inet_daddr
1044 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1045 * OR an additional socket flag
1046 * [1] : sk_state and sk_prot are in the same cache line.
1047 */
1048 if (sk->sk_state == TCP_ESTABLISHED)
1049 sock_rps_record_flow_hash(sk->sk_rxhash);
1050 }
1051#endif
1052}
1053
1054static inline void sock_rps_save_rxhash(struct sock *sk,
1055 const struct sk_buff *skb)
1056{
1057#ifdef CONFIG_RPS
1058 if (unlikely(sk->sk_rxhash != skb->hash))
1059 sk->sk_rxhash = skb->hash;
1060#endif
1061}
1062
1063static inline void sock_rps_reset_rxhash(struct sock *sk)
1064{
1065#ifdef CONFIG_RPS
1066 sk->sk_rxhash = 0;
1067#endif
1068}
1069
1070#define sk_wait_event(__sk, __timeo, __condition, __wait) \
1071 ({ int __rc; \
1072 release_sock(__sk); \
1073 __rc = __condition; \
1074 if (!__rc) { \
1075 *(__timeo) = wait_woken(__wait, \
1076 TASK_INTERRUPTIBLE, \
1077 *(__timeo)); \
1078 } \
1079 sched_annotate_sleep(); \
1080 lock_sock(__sk); \
1081 __rc = __condition; \
1082 __rc; \
1083 })
1084
1085int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1086int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1087void sk_stream_wait_close(struct sock *sk, long timeo_p);
1088int sk_stream_error(struct sock *sk, int flags, int err);
1089void sk_stream_kill_queues(struct sock *sk);
1090void sk_set_memalloc(struct sock *sk);
1091void sk_clear_memalloc(struct sock *sk);
1092
1093void __sk_flush_backlog(struct sock *sk);
1094
1095static inline bool sk_flush_backlog(struct sock *sk)
1096{
1097 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1098 __sk_flush_backlog(sk);
1099 return true;
1100 }
1101 return false;
1102}
1103
1104int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1105
1106struct request_sock_ops;
1107struct timewait_sock_ops;
1108struct inet_hashinfo;
1109struct raw_hashinfo;
1110struct smc_hashinfo;
1111struct module;
1112
1113/*
1114 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1115 * un-modified. Special care is taken when initializing object to zero.
1116 */
1117static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1118{
1119 if (offsetof(struct sock, sk_node.next) != 0)
1120 memset(sk, 0, offsetof(struct sock, sk_node.next));
1121 memset(&sk->sk_node.pprev, 0,
1122 size - offsetof(struct sock, sk_node.pprev));
1123}
1124
1125/* Networking protocol blocks we attach to sockets.
1126 * socket layer -> transport layer interface
1127 */
1128struct proto {
1129 void (*close)(struct sock *sk,
1130 long timeout);
1131 int (*pre_connect)(struct sock *sk,
1132 struct sockaddr *uaddr,
1133 int addr_len);
1134 int (*connect)(struct sock *sk,
1135 struct sockaddr *uaddr,
1136 int addr_len);
1137 int (*disconnect)(struct sock *sk, int flags);
1138
1139 struct sock * (*accept)(struct sock *sk, int flags, int *err,
1140 bool kern);
1141
1142 int (*ioctl)(struct sock *sk, int cmd,
1143 unsigned long arg);
1144 int (*init)(struct sock *sk);
1145 void (*destroy)(struct sock *sk);
1146 void (*shutdown)(struct sock *sk, int how);
1147 int (*setsockopt)(struct sock *sk, int level,
1148 int optname, sockptr_t optval,
1149 unsigned int optlen);
1150 int (*getsockopt)(struct sock *sk, int level,
1151 int optname, char __user *optval,
1152 int __user *option);
1153 void (*keepalive)(struct sock *sk, int valbool);
1154#ifdef CONFIG_COMPAT
1155 int (*compat_ioctl)(struct sock *sk,
1156 unsigned int cmd, unsigned long arg);
1157#endif
1158 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1159 size_t len);
1160 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1161 size_t len, int noblock, int flags,
1162 int *addr_len);
1163 int (*sendpage)(struct sock *sk, struct page *page,
1164 int offset, size_t size, int flags);
1165 int (*bind)(struct sock *sk,
1166 struct sockaddr *addr, int addr_len);
1167 int (*bind_add)(struct sock *sk,
1168 struct sockaddr *addr, int addr_len);
1169
1170 int (*backlog_rcv) (struct sock *sk,
1171 struct sk_buff *skb);
1172
1173 void (*release_cb)(struct sock *sk);
1174
1175 /* Keeping track of sk's, looking them up, and port selection methods. */
1176 int (*hash)(struct sock *sk);
1177 void (*unhash)(struct sock *sk);
1178 void (*rehash)(struct sock *sk);
1179 int (*get_port)(struct sock *sk, unsigned short snum);
1180
1181 /* Keeping track of sockets in use */
1182#ifdef CONFIG_PROC_FS
1183 unsigned int inuse_idx;
1184#endif
1185
1186 bool (*stream_memory_free)(const struct sock *sk, int wake);
1187 bool (*stream_memory_read)(const struct sock *sk);
1188 /* Memory pressure */
1189 void (*enter_memory_pressure)(struct sock *sk);
1190 void (*leave_memory_pressure)(struct sock *sk);
1191 atomic_long_t *memory_allocated; /* Current allocated memory. */
1192 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1193 /*
1194 * Pressure flag: try to collapse.
1195 * Technical note: it is used by multiple contexts non atomically.
1196 * All the __sk_mem_schedule() is of this nature: accounting
1197 * is strict, actions are advisory and have some latency.
1198 */
1199 unsigned long *memory_pressure;
1200 long *sysctl_mem;
1201
1202 int *sysctl_wmem;
1203 int *sysctl_rmem;
1204 u32 sysctl_wmem_offset;
1205 u32 sysctl_rmem_offset;
1206
1207 int max_header;
1208 bool no_autobind;
1209
1210 struct kmem_cache *slab;
1211 unsigned int obj_size;
1212 slab_flags_t slab_flags;
1213 unsigned int useroffset; /* Usercopy region offset */
1214 unsigned int usersize; /* Usercopy region size */
1215
1216 struct percpu_counter *orphan_count;
1217
1218 struct request_sock_ops *rsk_prot;
1219 struct timewait_sock_ops *twsk_prot;
1220
1221 union {
1222 struct inet_hashinfo *hashinfo;
1223 struct udp_table *udp_table;
1224 struct raw_hashinfo *raw_hash;
1225 struct smc_hashinfo *smc_hash;
1226 } h;
1227
1228 struct module *owner;
1229
1230 char name[32];
1231
1232 struct list_head node;
1233#ifdef SOCK_REFCNT_DEBUG
1234 atomic_t socks;
1235#endif
1236 int (*diag_destroy)(struct sock *sk, int err);
1237} __randomize_layout;
1238
1239int proto_register(struct proto *prot, int alloc_slab);
1240void proto_unregister(struct proto *prot);
1241int sock_load_diag_module(int family, int protocol);
1242
1243#ifdef SOCK_REFCNT_DEBUG
1244static inline void sk_refcnt_debug_inc(struct sock *sk)
1245{
1246 atomic_inc(&sk->sk_prot->socks);
1247}
1248
1249static inline void sk_refcnt_debug_dec(struct sock *sk)
1250{
1251 atomic_dec(&sk->sk_prot->socks);
1252 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1253 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1254}
1255
1256static inline void sk_refcnt_debug_release(const struct sock *sk)
1257{
1258 if (refcount_read(&sk->sk_refcnt) != 1)
1259 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1260 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1261}
1262#else /* SOCK_REFCNT_DEBUG */
1263#define sk_refcnt_debug_inc(sk) do { } while (0)
1264#define sk_refcnt_debug_dec(sk) do { } while (0)
1265#define sk_refcnt_debug_release(sk) do { } while (0)
1266#endif /* SOCK_REFCNT_DEBUG */
1267
1268static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1269{
1270 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1271 return false;
1272
1273 return sk->sk_prot->stream_memory_free ?
1274 sk->sk_prot->stream_memory_free(sk, wake) : true;
1275}
1276
1277static inline bool sk_stream_memory_free(const struct sock *sk)
1278{
1279 return __sk_stream_memory_free(sk, 0);
1280}
1281
1282static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1283{
1284 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1285 __sk_stream_memory_free(sk, wake);
1286}
1287
1288static inline bool sk_stream_is_writeable(const struct sock *sk)
1289{
1290 return __sk_stream_is_writeable(sk, 0);
1291}
1292
1293static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1294 struct cgroup *ancestor)
1295{
1296#ifdef CONFIG_SOCK_CGROUP_DATA
1297 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1298 ancestor);
1299#else
1300 return -ENOTSUPP;
1301#endif
1302}
1303
1304static inline bool sk_has_memory_pressure(const struct sock *sk)
1305{
1306 return sk->sk_prot->memory_pressure != NULL;
1307}
1308
1309static inline bool sk_under_memory_pressure(const struct sock *sk)
1310{
1311 if (!sk->sk_prot->memory_pressure)
1312 return false;
1313
1314 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1315 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1316 return true;
1317
1318 return !!*sk->sk_prot->memory_pressure;
1319}
1320
1321static inline long
1322sk_memory_allocated(const struct sock *sk)
1323{
1324 return atomic_long_read(sk->sk_prot->memory_allocated);
1325}
1326
1327static inline long
1328sk_memory_allocated_add(struct sock *sk, int amt)
1329{
1330 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1331}
1332
1333static inline void
1334sk_memory_allocated_sub(struct sock *sk, int amt)
1335{
1336 atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1337}
1338
1339static inline void sk_sockets_allocated_dec(struct sock *sk)
1340{
1341 percpu_counter_dec(sk->sk_prot->sockets_allocated);
1342}
1343
1344static inline void sk_sockets_allocated_inc(struct sock *sk)
1345{
1346 percpu_counter_inc(sk->sk_prot->sockets_allocated);
1347}
1348
1349static inline u64
1350sk_sockets_allocated_read_positive(struct sock *sk)
1351{
1352 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1353}
1354
1355static inline int
1356proto_sockets_allocated_sum_positive(struct proto *prot)
1357{
1358 return percpu_counter_sum_positive(prot->sockets_allocated);
1359}
1360
1361static inline long
1362proto_memory_allocated(struct proto *prot)
1363{
1364 return atomic_long_read(prot->memory_allocated);
1365}
1366
1367static inline bool
1368proto_memory_pressure(struct proto *prot)
1369{
1370 if (!prot->memory_pressure)
1371 return false;
1372 return !!*prot->memory_pressure;
1373}
1374
1375
1376#ifdef CONFIG_PROC_FS
1377/* Called with local bh disabled */
1378void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1379int sock_prot_inuse_get(struct net *net, struct proto *proto);
1380int sock_inuse_get(struct net *net);
1381#else
1382static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1383 int inc)
1384{
1385}
1386#endif
1387
1388
1389/* With per-bucket locks this operation is not-atomic, so that
1390 * this version is not worse.
1391 */
1392static inline int __sk_prot_rehash(struct sock *sk)
1393{
1394 sk->sk_prot->unhash(sk);
1395 return sk->sk_prot->hash(sk);
1396}
1397
1398/* About 10 seconds */
1399#define SOCK_DESTROY_TIME (10*HZ)
1400
1401/* Sockets 0-1023 can't be bound to unless you are superuser */
1402#define PROT_SOCK 1024
1403
1404#define SHUTDOWN_MASK 3
1405#define RCV_SHUTDOWN 1
1406#define SEND_SHUTDOWN 2
1407
1408#define SOCK_SNDBUF_LOCK 1
1409#define SOCK_RCVBUF_LOCK 2
1410#define SOCK_BINDADDR_LOCK 4
1411#define SOCK_BINDPORT_LOCK 8
1412
1413struct socket_alloc {
1414 struct socket socket;
1415 struct inode vfs_inode;
1416};
1417
1418static inline struct socket *SOCKET_I(struct inode *inode)
1419{
1420 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1421}
1422
1423static inline struct inode *SOCK_INODE(struct socket *socket)
1424{
1425 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1426}
1427
1428/*
1429 * Functions for memory accounting
1430 */
1431int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1432int __sk_mem_schedule(struct sock *sk, int size, int kind);
1433void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1434void __sk_mem_reclaim(struct sock *sk, int amount);
1435
1436/* We used to have PAGE_SIZE here, but systems with 64KB pages
1437 * do not necessarily have 16x time more memory than 4KB ones.
1438 */
1439#define SK_MEM_QUANTUM 4096
1440#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1441#define SK_MEM_SEND 0
1442#define SK_MEM_RECV 1
1443
1444/* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1445static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1446{
1447 long val = sk->sk_prot->sysctl_mem[index];
1448
1449#if PAGE_SIZE > SK_MEM_QUANTUM
1450 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1451#elif PAGE_SIZE < SK_MEM_QUANTUM
1452 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1453#endif
1454 return val;
1455}
1456
1457static inline int sk_mem_pages(int amt)
1458{
1459 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1460}
1461
1462static inline bool sk_has_account(struct sock *sk)
1463{
1464 /* return true if protocol supports memory accounting */
1465 return !!sk->sk_prot->memory_allocated;
1466}
1467
1468static inline bool sk_wmem_schedule(struct sock *sk, int size)
1469{
1470 if (!sk_has_account(sk))
1471 return true;
1472 return size <= sk->sk_forward_alloc ||
1473 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1474}
1475
1476static inline bool
1477sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1478{
1479 if (!sk_has_account(sk))
1480 return true;
1481 return size<= sk->sk_forward_alloc ||
1482 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1483 skb_pfmemalloc(skb);
1484}
1485
1486static inline void sk_mem_reclaim(struct sock *sk)
1487{
1488 if (!sk_has_account(sk))
1489 return;
1490 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1491 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1492}
1493
1494static inline void sk_mem_reclaim_partial(struct sock *sk)
1495{
1496 if (!sk_has_account(sk))
1497 return;
1498 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1499 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1500}
1501
1502static inline void sk_mem_charge(struct sock *sk, int size)
1503{
1504 if (!sk_has_account(sk))
1505 return;
1506 sk->sk_forward_alloc -= size;
1507}
1508
1509static inline void sk_mem_uncharge(struct sock *sk, int size)
1510{
1511 if (!sk_has_account(sk))
1512 return;
1513 sk->sk_forward_alloc += size;
1514
1515 /* Avoid a possible overflow.
1516 * TCP send queues can make this happen, if sk_mem_reclaim()
1517 * is not called and more than 2 GBytes are released at once.
1518 *
1519 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1520 * no need to hold that much forward allocation anyway.
1521 */
1522 if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1523 __sk_mem_reclaim(sk, 1 << 20);
1524}
1525
1526DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
1527static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1528{
1529 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1530 sk_wmem_queued_add(sk, -skb->truesize);
1531 sk_mem_uncharge(sk, skb->truesize);
1532 if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
1533 !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
1534 skb_ext_reset(skb);
1535 skb_zcopy_clear(skb, true);
1536 sk->sk_tx_skb_cache = skb;
1537 return;
1538 }
1539 __kfree_skb(skb);
1540}
1541
1542static inline void sock_release_ownership(struct sock *sk)
1543{
1544 if (sk->sk_lock.owned) {
1545 sk->sk_lock.owned = 0;
1546
1547 /* The sk_lock has mutex_unlock() semantics: */
1548 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1549 }
1550}
1551
1552/*
1553 * Macro so as to not evaluate some arguments when
1554 * lockdep is not enabled.
1555 *
1556 * Mark both the sk_lock and the sk_lock.slock as a
1557 * per-address-family lock class.
1558 */
1559#define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1560do { \
1561 sk->sk_lock.owned = 0; \
1562 init_waitqueue_head(&sk->sk_lock.wq); \
1563 spin_lock_init(&(sk)->sk_lock.slock); \
1564 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1565 sizeof((sk)->sk_lock)); \
1566 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1567 (skey), (sname)); \
1568 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1569} while (0)
1570
1571#ifdef CONFIG_LOCKDEP
1572static inline bool lockdep_sock_is_held(const struct sock *sk)
1573{
1574 return lockdep_is_held(&sk->sk_lock) ||
1575 lockdep_is_held(&sk->sk_lock.slock);
1576}
1577#endif
1578
1579void lock_sock_nested(struct sock *sk, int subclass);
1580
1581static inline void lock_sock(struct sock *sk)
1582{
1583 lock_sock_nested(sk, 0);
1584}
1585
1586void __release_sock(struct sock *sk);
1587void release_sock(struct sock *sk);
1588
1589/* BH context may only use the following locking interface. */
1590#define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1591#define bh_lock_sock_nested(__sk) \
1592 spin_lock_nested(&((__sk)->sk_lock.slock), \
1593 SINGLE_DEPTH_NESTING)
1594#define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1595
1596bool lock_sock_fast(struct sock *sk);
1597/**
1598 * unlock_sock_fast - complement of lock_sock_fast
1599 * @sk: socket
1600 * @slow: slow mode
1601 *
1602 * fast unlock socket for user context.
1603 * If slow mode is on, we call regular release_sock()
1604 */
1605static inline void unlock_sock_fast(struct sock *sk, bool slow)
1606{
1607 if (slow)
1608 release_sock(sk);
1609 else
1610 spin_unlock_bh(&sk->sk_lock.slock);
1611}
1612
1613/* Used by processes to "lock" a socket state, so that
1614 * interrupts and bottom half handlers won't change it
1615 * from under us. It essentially blocks any incoming
1616 * packets, so that we won't get any new data or any
1617 * packets that change the state of the socket.
1618 *
1619 * While locked, BH processing will add new packets to
1620 * the backlog queue. This queue is processed by the
1621 * owner of the socket lock right before it is released.
1622 *
1623 * Since ~2.3.5 it is also exclusive sleep lock serializing
1624 * accesses from user process context.
1625 */
1626
1627static inline void sock_owned_by_me(const struct sock *sk)
1628{
1629#ifdef CONFIG_LOCKDEP
1630 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1631#endif
1632}
1633
1634static inline bool sock_owned_by_user(const struct sock *sk)
1635{
1636 sock_owned_by_me(sk);
1637 return sk->sk_lock.owned;
1638}
1639
1640static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1641{
1642 return sk->sk_lock.owned;
1643}
1644
1645/* no reclassification while locks are held */
1646static inline bool sock_allow_reclassification(const struct sock *csk)
1647{
1648 struct sock *sk = (struct sock *)csk;
1649
1650 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1651}
1652
1653struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1654 struct proto *prot, int kern);
1655void sk_free(struct sock *sk);
1656void sk_destruct(struct sock *sk);
1657struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1658void sk_free_unlock_clone(struct sock *sk);
1659
1660struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1661 gfp_t priority);
1662void __sock_wfree(struct sk_buff *skb);
1663void sock_wfree(struct sk_buff *skb);
1664struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1665 gfp_t priority);
1666void skb_orphan_partial(struct sk_buff *skb);
1667void sock_rfree(struct sk_buff *skb);
1668void sock_efree(struct sk_buff *skb);
1669#ifdef CONFIG_INET
1670void sock_edemux(struct sk_buff *skb);
1671void sock_pfree(struct sk_buff *skb);
1672#else
1673#define sock_edemux sock_efree
1674#endif
1675
1676int sock_setsockopt(struct socket *sock, int level, int op,
1677 sockptr_t optval, unsigned int optlen);
1678
1679int sock_getsockopt(struct socket *sock, int level, int op,
1680 char __user *optval, int __user *optlen);
1681int sock_gettstamp(struct socket *sock, void __user *userstamp,
1682 bool timeval, bool time32);
1683struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1684 int noblock, int *errcode);
1685struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1686 unsigned long data_len, int noblock,
1687 int *errcode, int max_page_order);
1688void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1689void sock_kfree_s(struct sock *sk, void *mem, int size);
1690void sock_kzfree_s(struct sock *sk, void *mem, int size);
1691void sk_send_sigurg(struct sock *sk);
1692
1693struct sockcm_cookie {
1694 u64 transmit_time;
1695 u32 mark;
1696 u16 tsflags;
1697};
1698
1699static inline void sockcm_init(struct sockcm_cookie *sockc,
1700 const struct sock *sk)
1701{
1702 *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1703}
1704
1705int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1706 struct sockcm_cookie *sockc);
1707int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1708 struct sockcm_cookie *sockc);
1709
1710/*
1711 * Functions to fill in entries in struct proto_ops when a protocol
1712 * does not implement a particular function.
1713 */
1714int sock_no_bind(struct socket *, struct sockaddr *, int);
1715int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1716int sock_no_socketpair(struct socket *, struct socket *);
1717int sock_no_accept(struct socket *, struct socket *, int, bool);
1718int sock_no_getname(struct socket *, struct sockaddr *, int);
1719int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1720int sock_no_listen(struct socket *, int);
1721int sock_no_shutdown(struct socket *, int);
1722int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1723int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1724int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1725int sock_no_mmap(struct file *file, struct socket *sock,
1726 struct vm_area_struct *vma);
1727ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1728 size_t size, int flags);
1729ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1730 int offset, size_t size, int flags);
1731
1732/*
1733 * Functions to fill in entries in struct proto_ops when a protocol
1734 * uses the inet style.
1735 */
1736int sock_common_getsockopt(struct socket *sock, int level, int optname,
1737 char __user *optval, int __user *optlen);
1738int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1739 int flags);
1740int sock_common_setsockopt(struct socket *sock, int level, int optname,
1741 sockptr_t optval, unsigned int optlen);
1742
1743void sk_common_release(struct sock *sk);
1744
1745/*
1746 * Default socket callbacks and setup code
1747 */
1748
1749/* Initialise core socket variables */
1750void sock_init_data(struct socket *sock, struct sock *sk);
1751
1752/*
1753 * Socket reference counting postulates.
1754 *
1755 * * Each user of socket SHOULD hold a reference count.
1756 * * Each access point to socket (an hash table bucket, reference from a list,
1757 * running timer, skb in flight MUST hold a reference count.
1758 * * When reference count hits 0, it means it will never increase back.
1759 * * When reference count hits 0, it means that no references from
1760 * outside exist to this socket and current process on current CPU
1761 * is last user and may/should destroy this socket.
1762 * * sk_free is called from any context: process, BH, IRQ. When
1763 * it is called, socket has no references from outside -> sk_free
1764 * may release descendant resources allocated by the socket, but
1765 * to the time when it is called, socket is NOT referenced by any
1766 * hash tables, lists etc.
1767 * * Packets, delivered from outside (from network or from another process)
1768 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1769 * when they sit in queue. Otherwise, packets will leak to hole, when
1770 * socket is looked up by one cpu and unhasing is made by another CPU.
1771 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1772 * (leak to backlog). Packet socket does all the processing inside
1773 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1774 * use separate SMP lock, so that they are prone too.
1775 */
1776
1777/* Ungrab socket and destroy it, if it was the last reference. */
1778static inline void sock_put(struct sock *sk)
1779{
1780 if (refcount_dec_and_test(&sk->sk_refcnt))
1781 sk_free(sk);
1782}
1783/* Generic version of sock_put(), dealing with all sockets
1784 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1785 */
1786void sock_gen_put(struct sock *sk);
1787
1788int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1789 unsigned int trim_cap, bool refcounted);
1790static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1791 const int nested)
1792{
1793 return __sk_receive_skb(sk, skb, nested, 1, true);
1794}
1795
1796static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1797{
1798 /* sk_tx_queue_mapping accept only upto a 16-bit value */
1799 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1800 return;
1801 sk->sk_tx_queue_mapping = tx_queue;
1802}
1803
1804#define NO_QUEUE_MAPPING USHRT_MAX
1805
1806static inline void sk_tx_queue_clear(struct sock *sk)
1807{
1808 sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1809}
1810
1811static inline int sk_tx_queue_get(const struct sock *sk)
1812{
1813 if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1814 return sk->sk_tx_queue_mapping;
1815
1816 return -1;
1817}
1818
1819static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1820{
1821#ifdef CONFIG_XPS
1822 if (skb_rx_queue_recorded(skb)) {
1823 u16 rx_queue = skb_get_rx_queue(skb);
1824
1825 if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1826 return;
1827
1828 sk->sk_rx_queue_mapping = rx_queue;
1829 }
1830#endif
1831}
1832
1833static inline void sk_rx_queue_clear(struct sock *sk)
1834{
1835#ifdef CONFIG_XPS
1836 sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1837#endif
1838}
1839
1840#ifdef CONFIG_XPS
1841static inline int sk_rx_queue_get(const struct sock *sk)
1842{
1843 if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1844 return sk->sk_rx_queue_mapping;
1845
1846 return -1;
1847}
1848#endif
1849
1850static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1851{
1852 sk->sk_socket = sock;
1853}
1854
1855static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1856{
1857 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1858 return &rcu_dereference_raw(sk->sk_wq)->wait;
1859}
1860/* Detach socket from process context.
1861 * Announce socket dead, detach it from wait queue and inode.
1862 * Note that parent inode held reference count on this struct sock,
1863 * we do not release it in this function, because protocol
1864 * probably wants some additional cleanups or even continuing
1865 * to work with this socket (TCP).
1866 */
1867static inline void sock_orphan(struct sock *sk)
1868{
1869 write_lock_bh(&sk->sk_callback_lock);
1870 sock_set_flag(sk, SOCK_DEAD);
1871 sk_set_socket(sk, NULL);
1872 sk->sk_wq = NULL;
1873 write_unlock_bh(&sk->sk_callback_lock);
1874}
1875
1876static inline void sock_graft(struct sock *sk, struct socket *parent)
1877{
1878 WARN_ON(parent->sk);
1879 write_lock_bh(&sk->sk_callback_lock);
1880 rcu_assign_pointer(sk->sk_wq, &parent->wq);
1881 parent->sk = sk;
1882 sk_set_socket(sk, parent);
1883 sk->sk_uid = SOCK_INODE(parent)->i_uid;
1884 security_sock_graft(sk, parent);
1885 write_unlock_bh(&sk->sk_callback_lock);
1886}
1887
1888kuid_t sock_i_uid(struct sock *sk);
1889unsigned long sock_i_ino(struct sock *sk);
1890
1891static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1892{
1893 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1894}
1895
1896static inline u32 net_tx_rndhash(void)
1897{
1898 u32 v = prandom_u32();
1899
1900 return v ?: 1;
1901}
1902
1903static inline void sk_set_txhash(struct sock *sk)
1904{
1905 sk->sk_txhash = net_tx_rndhash();
1906}
1907
1908static inline void sk_rethink_txhash(struct sock *sk)
1909{
1910 if (sk->sk_txhash)
1911 sk_set_txhash(sk);
1912}
1913
1914static inline struct dst_entry *
1915__sk_dst_get(struct sock *sk)
1916{
1917 return rcu_dereference_check(sk->sk_dst_cache,
1918 lockdep_sock_is_held(sk));
1919}
1920
1921static inline struct dst_entry *
1922sk_dst_get(struct sock *sk)
1923{
1924 struct dst_entry *dst;
1925
1926 rcu_read_lock();
1927 dst = rcu_dereference(sk->sk_dst_cache);
1928 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1929 dst = NULL;
1930 rcu_read_unlock();
1931 return dst;
1932}
1933
1934static inline void dst_negative_advice(struct sock *sk)
1935{
1936 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1937
1938 sk_rethink_txhash(sk);
1939
1940 if (dst && dst->ops->negative_advice) {
1941 ndst = dst->ops->negative_advice(dst);
1942
1943 if (ndst != dst) {
1944 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1945 sk_tx_queue_clear(sk);
1946 sk->sk_dst_pending_confirm = 0;
1947 }
1948 }
1949}
1950
1951static inline void
1952__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1953{
1954 struct dst_entry *old_dst;
1955
1956 sk_tx_queue_clear(sk);
1957 sk->sk_dst_pending_confirm = 0;
1958 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1959 lockdep_sock_is_held(sk));
1960 rcu_assign_pointer(sk->sk_dst_cache, dst);
1961 dst_release(old_dst);
1962}
1963
1964static inline void
1965sk_dst_set(struct sock *sk, struct dst_entry *dst)
1966{
1967 struct dst_entry *old_dst;
1968
1969 sk_tx_queue_clear(sk);
1970 sk->sk_dst_pending_confirm = 0;
1971 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1972 dst_release(old_dst);
1973}
1974
1975static inline void
1976__sk_dst_reset(struct sock *sk)
1977{
1978 __sk_dst_set(sk, NULL);
1979}
1980
1981static inline void
1982sk_dst_reset(struct sock *sk)
1983{
1984 sk_dst_set(sk, NULL);
1985}
1986
1987struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1988
1989struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1990
1991static inline void sk_dst_confirm(struct sock *sk)
1992{
1993 if (!READ_ONCE(sk->sk_dst_pending_confirm))
1994 WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
1995}
1996
1997static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1998{
1999 if (skb_get_dst_pending_confirm(skb)) {
2000 struct sock *sk = skb->sk;
2001 unsigned long now = jiffies;
2002
2003 /* avoid dirtying neighbour */
2004 if (READ_ONCE(n->confirmed) != now)
2005 WRITE_ONCE(n->confirmed, now);
2006 if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2007 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2008 }
2009}
2010
2011bool sk_mc_loop(struct sock *sk);
2012
2013static inline bool sk_can_gso(const struct sock *sk)
2014{
2015 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2016}
2017
2018void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2019
2020static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
2021{
2022 sk->sk_route_nocaps |= flags;
2023 sk->sk_route_caps &= ~flags;
2024}
2025
2026static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2027 struct iov_iter *from, char *to,
2028 int copy, int offset)
2029{
2030 if (skb->ip_summed == CHECKSUM_NONE) {
2031 __wsum csum = 0;
2032 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2033 return -EFAULT;
2034 skb->csum = csum_block_add(skb->csum, csum, offset);
2035 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2036 if (!copy_from_iter_full_nocache(to, copy, from))
2037 return -EFAULT;
2038 } else if (!copy_from_iter_full(to, copy, from))
2039 return -EFAULT;
2040
2041 return 0;
2042}
2043
2044static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2045 struct iov_iter *from, int copy)
2046{
2047 int err, offset = skb->len;
2048
2049 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2050 copy, offset);
2051 if (err)
2052 __skb_trim(skb, offset);
2053
2054 return err;
2055}
2056
2057static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2058 struct sk_buff *skb,
2059 struct page *page,
2060 int off, int copy)
2061{
2062 int err;
2063
2064 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2065 copy, skb->len);
2066 if (err)
2067 return err;
2068
2069 skb->len += copy;
2070 skb->data_len += copy;
2071 skb->truesize += copy;
2072 sk_wmem_queued_add(sk, copy);
2073 sk_mem_charge(sk, copy);
2074 return 0;
2075}
2076
2077/**
2078 * sk_wmem_alloc_get - returns write allocations
2079 * @sk: socket
2080 *
2081 * Return: sk_wmem_alloc minus initial offset of one
2082 */
2083static inline int sk_wmem_alloc_get(const struct sock *sk)
2084{
2085 return refcount_read(&sk->sk_wmem_alloc) - 1;
2086}
2087
2088/**
2089 * sk_rmem_alloc_get - returns read allocations
2090 * @sk: socket
2091 *
2092 * Return: sk_rmem_alloc
2093 */
2094static inline int sk_rmem_alloc_get(const struct sock *sk)
2095{
2096 return atomic_read(&sk->sk_rmem_alloc);
2097}
2098
2099/**
2100 * sk_has_allocations - check if allocations are outstanding
2101 * @sk: socket
2102 *
2103 * Return: true if socket has write or read allocations
2104 */
2105static inline bool sk_has_allocations(const struct sock *sk)
2106{
2107 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2108}
2109
2110/**
2111 * skwq_has_sleeper - check if there are any waiting processes
2112 * @wq: struct socket_wq
2113 *
2114 * Return: true if socket_wq has waiting processes
2115 *
2116 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2117 * barrier call. They were added due to the race found within the tcp code.
2118 *
2119 * Consider following tcp code paths::
2120 *
2121 * CPU1 CPU2
2122 * sys_select receive packet
2123 * ... ...
2124 * __add_wait_queue update tp->rcv_nxt
2125 * ... ...
2126 * tp->rcv_nxt check sock_def_readable
2127 * ... {
2128 * schedule rcu_read_lock();
2129 * wq = rcu_dereference(sk->sk_wq);
2130 * if (wq && waitqueue_active(&wq->wait))
2131 * wake_up_interruptible(&wq->wait)
2132 * ...
2133 * }
2134 *
2135 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2136 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
2137 * could then endup calling schedule and sleep forever if there are no more
2138 * data on the socket.
2139 *
2140 */
2141static inline bool skwq_has_sleeper(struct socket_wq *wq)
2142{
2143 return wq && wq_has_sleeper(&wq->wait);
2144}
2145
2146/**
2147 * sock_poll_wait - place memory barrier behind the poll_wait call.
2148 * @filp: file
2149 * @sock: socket to wait on
2150 * @p: poll_table
2151 *
2152 * See the comments in the wq_has_sleeper function.
2153 */
2154static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2155 poll_table *p)
2156{
2157 if (!poll_does_not_wait(p)) {
2158 poll_wait(filp, &sock->wq.wait, p);
2159 /* We need to be sure we are in sync with the
2160 * socket flags modification.
2161 *
2162 * This memory barrier is paired in the wq_has_sleeper.
2163 */
2164 smp_mb();
2165 }
2166}
2167
2168static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2169{
2170 if (sk->sk_txhash) {
2171 skb->l4_hash = 1;
2172 skb->hash = sk->sk_txhash;
2173 }
2174}
2175
2176void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2177
2178/*
2179 * Queue a received datagram if it will fit. Stream and sequenced
2180 * protocols can't normally use this as they need to fit buffers in
2181 * and play with them.
2182 *
2183 * Inlined as it's very short and called for pretty much every
2184 * packet ever received.
2185 */
2186static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2187{
2188 skb_orphan(skb);
2189 skb->sk = sk;
2190 skb->destructor = sock_rfree;
2191 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2192 sk_mem_charge(sk, skb->truesize);
2193}
2194
2195void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2196 unsigned long expires);
2197
2198void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2199
2200int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2201 struct sk_buff *skb, unsigned int flags,
2202 void (*destructor)(struct sock *sk,
2203 struct sk_buff *skb));
2204int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2205int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2206
2207int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2208struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2209
2210/*
2211 * Recover an error report and clear atomically
2212 */
2213
2214static inline int sock_error(struct sock *sk)
2215{
2216 int err;
2217 if (likely(!sk->sk_err))
2218 return 0;
2219 err = xchg(&sk->sk_err, 0);
2220 return -err;
2221}
2222
2223static inline unsigned long sock_wspace(struct sock *sk)
2224{
2225 int amt = 0;
2226
2227 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2228 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2229 if (amt < 0)
2230 amt = 0;
2231 }
2232 return amt;
2233}
2234
2235/* Note:
2236 * We use sk->sk_wq_raw, from contexts knowing this
2237 * pointer is not NULL and cannot disappear/change.
2238 */
2239static inline void sk_set_bit(int nr, struct sock *sk)
2240{
2241 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2242 !sock_flag(sk, SOCK_FASYNC))
2243 return;
2244
2245 set_bit(nr, &sk->sk_wq_raw->flags);
2246}
2247
2248static inline void sk_clear_bit(int nr, struct sock *sk)
2249{
2250 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2251 !sock_flag(sk, SOCK_FASYNC))
2252 return;
2253
2254 clear_bit(nr, &sk->sk_wq_raw->flags);
2255}
2256
2257static inline void sk_wake_async(const struct sock *sk, int how, int band)
2258{
2259 if (sock_flag(sk, SOCK_FASYNC)) {
2260 rcu_read_lock();
2261 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2262 rcu_read_unlock();
2263 }
2264}
2265
2266/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2267 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2268 * Note: for send buffers, TCP works better if we can build two skbs at
2269 * minimum.
2270 */
2271#define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2272
2273#define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2274#define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2275
2276static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2277{
2278 u32 val;
2279
2280 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2281 return;
2282
2283 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2284
2285 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2286}
2287
2288struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2289 bool force_schedule);
2290
2291/**
2292 * sk_page_frag - return an appropriate page_frag
2293 * @sk: socket
2294 *
2295 * Use the per task page_frag instead of the per socket one for
2296 * optimization when we know that we're in the normal context and owns
2297 * everything that's associated with %current.
2298 *
2299 * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
2300 * inside other socket operations and end up recursing into sk_page_frag()
2301 * while it's already in use.
2302 *
2303 * Return: a per task page_frag if context allows that,
2304 * otherwise a per socket one.
2305 */
2306static inline struct page_frag *sk_page_frag(struct sock *sk)
2307{
2308 if (gfpflags_normal_context(sk->sk_allocation))
2309 return ¤t->task_frag;
2310
2311 return &sk->sk_frag;
2312}
2313
2314bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2315
2316/*
2317 * Default write policy as shown to user space via poll/select/SIGIO
2318 */
2319static inline bool sock_writeable(const struct sock *sk)
2320{
2321 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2322}
2323
2324static inline gfp_t gfp_any(void)
2325{
2326 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2327}
2328
2329static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2330{
2331 return noblock ? 0 : sk->sk_rcvtimeo;
2332}
2333
2334static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2335{
2336 return noblock ? 0 : sk->sk_sndtimeo;
2337}
2338
2339static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2340{
2341 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2342
2343 return v ?: 1;
2344}
2345
2346/* Alas, with timeout socket operations are not restartable.
2347 * Compare this to poll().
2348 */
2349static inline int sock_intr_errno(long timeo)
2350{
2351 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2352}
2353
2354struct sock_skb_cb {
2355 u32 dropcount;
2356};
2357
2358/* Store sock_skb_cb at the end of skb->cb[] so protocol families
2359 * using skb->cb[] would keep using it directly and utilize its
2360 * alignement guarantee.
2361 */
2362#define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2363 sizeof(struct sock_skb_cb)))
2364
2365#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2366 SOCK_SKB_CB_OFFSET))
2367
2368#define sock_skb_cb_check_size(size) \
2369 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2370
2371static inline void
2372sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2373{
2374 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2375 atomic_read(&sk->sk_drops) : 0;
2376}
2377
2378static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2379{
2380 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2381
2382 atomic_add(segs, &sk->sk_drops);
2383}
2384
2385static inline ktime_t sock_read_timestamp(struct sock *sk)
2386{
2387#if BITS_PER_LONG==32
2388 unsigned int seq;
2389 ktime_t kt;
2390
2391 do {
2392 seq = read_seqbegin(&sk->sk_stamp_seq);
2393 kt = sk->sk_stamp;
2394 } while (read_seqretry(&sk->sk_stamp_seq, seq));
2395
2396 return kt;
2397#else
2398 return READ_ONCE(sk->sk_stamp);
2399#endif
2400}
2401
2402static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2403{
2404#if BITS_PER_LONG==32
2405 write_seqlock(&sk->sk_stamp_seq);
2406 sk->sk_stamp = kt;
2407 write_sequnlock(&sk->sk_stamp_seq);
2408#else
2409 WRITE_ONCE(sk->sk_stamp, kt);
2410#endif
2411}
2412
2413void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2414 struct sk_buff *skb);
2415void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2416 struct sk_buff *skb);
2417
2418static inline void
2419sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2420{
2421 ktime_t kt = skb->tstamp;
2422 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2423
2424 /*
2425 * generate control messages if
2426 * - receive time stamping in software requested
2427 * - software time stamp available and wanted
2428 * - hardware time stamps available and wanted
2429 */
2430 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2431 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2432 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2433 (hwtstamps->hwtstamp &&
2434 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2435 __sock_recv_timestamp(msg, sk, skb);
2436 else
2437 sock_write_timestamp(sk, kt);
2438
2439 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2440 __sock_recv_wifi_status(msg, sk, skb);
2441}
2442
2443void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2444 struct sk_buff *skb);
2445
2446#define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2447static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2448 struct sk_buff *skb)
2449{
2450#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2451 (1UL << SOCK_RCVTSTAMP))
2452#define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2453 SOF_TIMESTAMPING_RAW_HARDWARE)
2454
2455 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2456 __sock_recv_ts_and_drops(msg, sk, skb);
2457 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2458 sock_write_timestamp(sk, skb->tstamp);
2459 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2460 sock_write_timestamp(sk, 0);
2461}
2462
2463void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2464
2465/**
2466 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2467 * @sk: socket sending this packet
2468 * @tsflags: timestamping flags to use
2469 * @tx_flags: completed with instructions for time stamping
2470 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno)
2471 *
2472 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2473 */
2474static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2475 __u8 *tx_flags, __u32 *tskey)
2476{
2477 if (unlikely(tsflags)) {
2478 __sock_tx_timestamp(tsflags, tx_flags);
2479 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2480 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2481 *tskey = sk->sk_tskey++;
2482 }
2483 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2484 *tx_flags |= SKBTX_WIFI_STATUS;
2485}
2486
2487static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2488 __u8 *tx_flags)
2489{
2490 _sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2491}
2492
2493static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2494{
2495 _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2496 &skb_shinfo(skb)->tskey);
2497}
2498
2499DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
2500/**
2501 * sk_eat_skb - Release a skb if it is no longer needed
2502 * @sk: socket to eat this skb from
2503 * @skb: socket buffer to eat
2504 *
2505 * This routine must be called with interrupts disabled or with the socket
2506 * locked so that the sk_buff queue operation is ok.
2507*/
2508static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2509{
2510 __skb_unlink(skb, &sk->sk_receive_queue);
2511 if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
2512 !sk->sk_rx_skb_cache) {
2513 sk->sk_rx_skb_cache = skb;
2514 skb_orphan(skb);
2515 return;
2516 }
2517 __kfree_skb(skb);
2518}
2519
2520static inline
2521struct net *sock_net(const struct sock *sk)
2522{
2523 return read_pnet(&sk->sk_net);
2524}
2525
2526static inline
2527void sock_net_set(struct sock *sk, struct net *net)
2528{
2529 write_pnet(&sk->sk_net, net);
2530}
2531
2532static inline bool
2533skb_sk_is_prefetched(struct sk_buff *skb)
2534{
2535#ifdef CONFIG_INET
2536 return skb->destructor == sock_pfree;
2537#else
2538 return false;
2539#endif /* CONFIG_INET */
2540}
2541
2542/* This helper checks if a socket is a full socket,
2543 * ie _not_ a timewait or request socket.
2544 */
2545static inline bool sk_fullsock(const struct sock *sk)
2546{
2547 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2548}
2549
2550static inline bool
2551sk_is_refcounted(struct sock *sk)
2552{
2553 /* Only full sockets have sk->sk_flags. */
2554 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2555}
2556
2557/**
2558 * skb_steal_sock - steal a socket from an sk_buff
2559 * @skb: sk_buff to steal the socket from
2560 * @refcounted: is set to true if the socket is reference-counted
2561 */
2562static inline struct sock *
2563skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2564{
2565 if (skb->sk) {
2566 struct sock *sk = skb->sk;
2567
2568 *refcounted = true;
2569 if (skb_sk_is_prefetched(skb))
2570 *refcounted = sk_is_refcounted(sk);
2571 skb->destructor = NULL;
2572 skb->sk = NULL;
2573 return sk;
2574 }
2575 *refcounted = false;
2576 return NULL;
2577}
2578
2579/* Checks if this SKB belongs to an HW offloaded socket
2580 * and whether any SW fallbacks are required based on dev.
2581 * Check decrypted mark in case skb_orphan() cleared socket.
2582 */
2583static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2584 struct net_device *dev)
2585{
2586#ifdef CONFIG_SOCK_VALIDATE_XMIT
2587 struct sock *sk = skb->sk;
2588
2589 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2590 skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2591#ifdef CONFIG_TLS_DEVICE
2592 } else if (unlikely(skb->decrypted)) {
2593 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2594 kfree_skb(skb);
2595 skb = NULL;
2596#endif
2597 }
2598#endif
2599
2600 return skb;
2601}
2602
2603/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2604 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2605 */
2606static inline bool sk_listener(const struct sock *sk)
2607{
2608 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2609}
2610
2611void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2612int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2613 int type);
2614
2615bool sk_ns_capable(const struct sock *sk,
2616 struct user_namespace *user_ns, int cap);
2617bool sk_capable(const struct sock *sk, int cap);
2618bool sk_net_capable(const struct sock *sk, int cap);
2619
2620void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2621
2622/* Take into consideration the size of the struct sk_buff overhead in the
2623 * determination of these values, since that is non-constant across
2624 * platforms. This makes socket queueing behavior and performance
2625 * not depend upon such differences.
2626 */
2627#define _SK_MEM_PACKETS 256
2628#define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2629#define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2630#define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2631
2632extern __u32 sysctl_wmem_max;
2633extern __u32 sysctl_rmem_max;
2634
2635extern int sysctl_tstamp_allow_data;
2636extern int sysctl_optmem_max;
2637
2638extern __u32 sysctl_wmem_default;
2639extern __u32 sysctl_rmem_default;
2640
2641DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2642
2643static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2644{
2645 /* Does this proto have per netns sysctl_wmem ? */
2646 if (proto->sysctl_wmem_offset)
2647 return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2648
2649 return *proto->sysctl_wmem;
2650}
2651
2652static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2653{
2654 /* Does this proto have per netns sysctl_rmem ? */
2655 if (proto->sysctl_rmem_offset)
2656 return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2657
2658 return *proto->sysctl_rmem;
2659}
2660
2661/* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2662 * Some wifi drivers need to tweak it to get more chunks.
2663 * They can use this helper from their ndo_start_xmit()
2664 */
2665static inline void sk_pacing_shift_update(struct sock *sk, int val)
2666{
2667 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2668 return;
2669 WRITE_ONCE(sk->sk_pacing_shift, val);
2670}
2671
2672/* if a socket is bound to a device, check that the given device
2673 * index is either the same or that the socket is bound to an L3
2674 * master device and the given device index is also enslaved to
2675 * that L3 master
2676 */
2677static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2678{
2679 int mdif;
2680
2681 if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2682 return true;
2683
2684 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2685 if (mdif && mdif == sk->sk_bound_dev_if)
2686 return true;
2687
2688 return false;
2689}
2690
2691void sock_def_readable(struct sock *sk);
2692
2693int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2694void sock_enable_timestamps(struct sock *sk);
2695void sock_no_linger(struct sock *sk);
2696void sock_set_keepalive(struct sock *sk);
2697void sock_set_priority(struct sock *sk, u32 priority);
2698void sock_set_rcvbuf(struct sock *sk, int val);
2699void sock_set_mark(struct sock *sk, u32 val);
2700void sock_set_reuseaddr(struct sock *sk);
2701void sock_set_reuseport(struct sock *sk);
2702void sock_set_sndtimeo(struct sock *sk, s64 secs);
2703
2704int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2705
2706#endif /* _SOCK_H */