Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * fs/kernfs/mount.c - kernfs mount implementation
  4 *
  5 * Copyright (c) 2001-3 Patrick Mochel
  6 * Copyright (c) 2007 SUSE Linux Products GmbH
  7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
  8 */
  9
 10#include <linux/fs.h>
 11#include <linux/mount.h>
 12#include <linux/init.h>
 13#include <linux/magic.h>
 14#include <linux/slab.h>
 15#include <linux/pagemap.h>
 16#include <linux/namei.h>
 17#include <linux/seq_file.h>
 18#include <linux/exportfs.h>
 19#include <linux/uuid.h>
 20#include <linux/statfs.h>
 21
 22#include "kernfs-internal.h"
 23
 24struct kmem_cache *kernfs_node_cache __ro_after_init;
 25struct kmem_cache *kernfs_iattrs_cache __ro_after_init;
 26struct kernfs_global_locks *kernfs_locks __ro_after_init;
 27
 28static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
 29{
 30	struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry));
 31	struct kernfs_syscall_ops *scops = root->syscall_ops;
 32
 33	if (scops && scops->show_options)
 34		return scops->show_options(sf, root);
 35	return 0;
 36}
 37
 38static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
 39{
 40	struct kernfs_node *node = kernfs_dentry_node(dentry);
 41	struct kernfs_root *root = kernfs_root(node);
 42	struct kernfs_syscall_ops *scops = root->syscall_ops;
 43
 44	if (scops && scops->show_path)
 45		return scops->show_path(sf, node, root);
 46
 47	seq_dentry(sf, dentry, " \t\n\\");
 48	return 0;
 49}
 50
 51static int kernfs_statfs(struct dentry *dentry, struct kstatfs *buf)
 52{
 53	simple_statfs(dentry, buf);
 54	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
 55	return 0;
 56}
 57
 58const struct super_operations kernfs_sops = {
 59	.statfs		= kernfs_statfs,
 60	.drop_inode	= generic_delete_inode,
 61	.evict_inode	= kernfs_evict_inode,
 62
 63	.show_options	= kernfs_sop_show_options,
 64	.show_path	= kernfs_sop_show_path,
 65};
 66
 67static int kernfs_encode_fh(struct inode *inode, __u32 *fh, int *max_len,
 68			    struct inode *parent)
 69{
 70	struct kernfs_node *kn = inode->i_private;
 71
 72	if (*max_len < 2) {
 73		*max_len = 2;
 74		return FILEID_INVALID;
 75	}
 76
 77	*max_len = 2;
 78	*(u64 *)fh = kn->id;
 79	return FILEID_KERNFS;
 80}
 81
 82static struct dentry *__kernfs_fh_to_dentry(struct super_block *sb,
 83					    struct fid *fid, int fh_len,
 84					    int fh_type, bool get_parent)
 85{
 86	struct kernfs_super_info *info = kernfs_info(sb);
 87	struct kernfs_node *kn;
 88	struct inode *inode;
 89	u64 id;
 90
 91	if (fh_len < 2)
 92		return NULL;
 93
 94	switch (fh_type) {
 95	case FILEID_KERNFS:
 96		id = *(u64 *)fid;
 97		break;
 98	case FILEID_INO32_GEN:
 99	case FILEID_INO32_GEN_PARENT:
100		/*
101		 * blk_log_action() exposes "LOW32,HIGH32" pair without
102		 * type and userland can call us with generic fid
103		 * constructed from them.  Combine it back to ID.  See
104		 * blk_log_action().
105		 */
106		id = ((u64)fid->i32.gen << 32) | fid->i32.ino;
107		break;
108	default:
109		return NULL;
110	}
111
112	kn = kernfs_find_and_get_node_by_id(info->root, id);
113	if (!kn)
114		return ERR_PTR(-ESTALE);
115
116	if (get_parent) {
117		struct kernfs_node *parent;
118
119		parent = kernfs_get_parent(kn);
120		kernfs_put(kn);
121		kn = parent;
122		if (!kn)
123			return ERR_PTR(-ESTALE);
124	}
125
126	inode = kernfs_get_inode(sb, kn);
127	kernfs_put(kn);
 
 
 
128	return d_obtain_alias(inode);
129}
130
131static struct dentry *kernfs_fh_to_dentry(struct super_block *sb,
132					  struct fid *fid, int fh_len,
133					  int fh_type)
134{
135	return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, false);
136}
137
138static struct dentry *kernfs_fh_to_parent(struct super_block *sb,
139					  struct fid *fid, int fh_len,
140					  int fh_type)
141{
142	return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, true);
143}
144
145static struct dentry *kernfs_get_parent_dentry(struct dentry *child)
146{
147	struct kernfs_node *kn = kernfs_dentry_node(child);
148
149	return d_obtain_alias(kernfs_get_inode(child->d_sb, kn->parent));
150}
151
152static const struct export_operations kernfs_export_ops = {
153	.encode_fh	= kernfs_encode_fh,
154	.fh_to_dentry	= kernfs_fh_to_dentry,
155	.fh_to_parent	= kernfs_fh_to_parent,
156	.get_parent	= kernfs_get_parent_dentry,
157};
158
159/**
160 * kernfs_root_from_sb - determine kernfs_root associated with a super_block
161 * @sb: the super_block in question
162 *
163 * Return: the kernfs_root associated with @sb.  If @sb is not a kernfs one,
164 * %NULL is returned.
165 */
166struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
167{
168	if (sb->s_op == &kernfs_sops)
169		return kernfs_info(sb)->root;
170	return NULL;
171}
172
173/*
174 * find the next ancestor in the path down to @child, where @parent was the
175 * ancestor whose descendant we want to find.
176 *
177 * Say the path is /a/b/c/d.  @child is d, @parent is %NULL.  We return the root
178 * node.  If @parent is b, then we return the node for c.
179 * Passing in d as @parent is not ok.
180 */
181static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
182					      struct kernfs_node *parent)
183{
184	if (child == parent) {
185		pr_crit_once("BUG in find_next_ancestor: called with parent == child");
186		return NULL;
187	}
188
189	while (child->parent != parent) {
190		if (!child->parent)
191			return NULL;
192		child = child->parent;
193	}
194
195	return child;
196}
197
198/**
199 * kernfs_node_dentry - get a dentry for the given kernfs_node
200 * @kn: kernfs_node for which a dentry is needed
201 * @sb: the kernfs super_block
202 *
203 * Return: the dentry pointer
204 */
205struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
206				  struct super_block *sb)
207{
208	struct dentry *dentry;
209	struct kernfs_node *knparent;
210
211	BUG_ON(sb->s_op != &kernfs_sops);
212
213	dentry = dget(sb->s_root);
214
215	/* Check if this is the root kernfs_node */
216	if (!kn->parent)
217		return dentry;
218
219	knparent = find_next_ancestor(kn, NULL);
220	if (WARN_ON(!knparent)) {
221		dput(dentry);
222		return ERR_PTR(-EINVAL);
223	}
224
225	do {
226		struct dentry *dtmp;
227		struct kernfs_node *kntmp;
228
229		if (kn == knparent)
230			return dentry;
231		kntmp = find_next_ancestor(kn, knparent);
232		if (WARN_ON(!kntmp)) {
233			dput(dentry);
234			return ERR_PTR(-EINVAL);
235		}
236		dtmp = lookup_positive_unlocked(kntmp->name, dentry,
237					       strlen(kntmp->name));
238		dput(dentry);
239		if (IS_ERR(dtmp))
240			return dtmp;
241		knparent = kntmp;
242		dentry = dtmp;
243	} while (true);
244}
245
246static int kernfs_fill_super(struct super_block *sb, struct kernfs_fs_context *kfc)
247{
248	struct kernfs_super_info *info = kernfs_info(sb);
249	struct kernfs_root *kf_root = kfc->root;
250	struct inode *inode;
251	struct dentry *root;
252
253	info->sb = sb;
254	/* Userspace would break if executables or devices appear on sysfs */
255	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
256	sb->s_blocksize = PAGE_SIZE;
257	sb->s_blocksize_bits = PAGE_SHIFT;
258	sb->s_magic = kfc->magic;
259	sb->s_op = &kernfs_sops;
260	sb->s_xattr = kernfs_xattr_handlers;
261	if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP)
262		sb->s_export_op = &kernfs_export_ops;
263	sb->s_time_gran = 1;
264
265	/* sysfs dentries and inodes don't require IO to create */
266	sb->s_shrink->seeks = 0;
267
268	/* get root inode, initialize and unlock it */
269	down_read(&kf_root->kernfs_rwsem);
270	inode = kernfs_get_inode(sb, info->root->kn);
271	up_read(&kf_root->kernfs_rwsem);
272	if (!inode) {
273		pr_debug("kernfs: could not get root inode\n");
274		return -ENOMEM;
275	}
276
277	/* instantiate and link root dentry */
278	root = d_make_root(inode);
279	if (!root) {
280		pr_debug("%s: could not get root dentry!\n", __func__);
281		return -ENOMEM;
282	}
283	sb->s_root = root;
284	sb->s_d_op = &kernfs_dops;
285	return 0;
286}
287
288static int kernfs_test_super(struct super_block *sb, struct fs_context *fc)
289{
290	struct kernfs_super_info *sb_info = kernfs_info(sb);
291	struct kernfs_super_info *info = fc->s_fs_info;
292
293	return sb_info->root == info->root && sb_info->ns == info->ns;
294}
295
296static int kernfs_set_super(struct super_block *sb, struct fs_context *fc)
297{
298	struct kernfs_fs_context *kfc = fc->fs_private;
299
300	kfc->ns_tag = NULL;
301	return set_anon_super_fc(sb, fc);
302}
303
304/**
305 * kernfs_super_ns - determine the namespace tag of a kernfs super_block
306 * @sb: super_block of interest
307 *
308 * Return: the namespace tag associated with kernfs super_block @sb.
309 */
310const void *kernfs_super_ns(struct super_block *sb)
311{
312	struct kernfs_super_info *info = kernfs_info(sb);
313
314	return info->ns;
315}
316
317/**
318 * kernfs_get_tree - kernfs filesystem access/retrieval helper
319 * @fc: The filesystem context.
320 *
321 * This is to be called from each kernfs user's fs_context->ops->get_tree()
322 * implementation, which should set the specified ->@fs_type and ->@flags, and
323 * specify the hierarchy and namespace tag to mount via ->@root and ->@ns,
324 * respectively.
325 *
326 * Return: %0 on success, -errno on failure.
327 */
328int kernfs_get_tree(struct fs_context *fc)
329{
330	struct kernfs_fs_context *kfc = fc->fs_private;
331	struct super_block *sb;
332	struct kernfs_super_info *info;
333	int error;
334
335	info = kzalloc(sizeof(*info), GFP_KERNEL);
336	if (!info)
337		return -ENOMEM;
338
339	info->root = kfc->root;
340	info->ns = kfc->ns_tag;
341	INIT_LIST_HEAD(&info->node);
342
343	fc->s_fs_info = info;
344	sb = sget_fc(fc, kernfs_test_super, kernfs_set_super);
345	if (IS_ERR(sb))
346		return PTR_ERR(sb);
347
348	if (!sb->s_root) {
349		struct kernfs_super_info *info = kernfs_info(sb);
350		struct kernfs_root *root = kfc->root;
351
352		kfc->new_sb_created = true;
353
354		error = kernfs_fill_super(sb, kfc);
355		if (error) {
356			deactivate_locked_super(sb);
357			return error;
358		}
359		sb->s_flags |= SB_ACTIVE;
360
361		uuid_t uuid;
362		uuid_gen(&uuid);
363		super_set_uuid(sb, uuid.b, sizeof(uuid));
364
365		down_write(&root->kernfs_supers_rwsem);
366		list_add(&info->node, &info->root->supers);
367		up_write(&root->kernfs_supers_rwsem);
368	}
369
370	fc->root = dget(sb->s_root);
371	return 0;
372}
373
374void kernfs_free_fs_context(struct fs_context *fc)
375{
376	/* Note that we don't deal with kfc->ns_tag here. */
377	kfree(fc->s_fs_info);
378	fc->s_fs_info = NULL;
379}
380
381/**
382 * kernfs_kill_sb - kill_sb for kernfs
383 * @sb: super_block being killed
384 *
385 * This can be used directly for file_system_type->kill_sb().  If a kernfs
386 * user needs extra cleanup, it can implement its own kill_sb() and call
387 * this function at the end.
388 */
389void kernfs_kill_sb(struct super_block *sb)
390{
391	struct kernfs_super_info *info = kernfs_info(sb);
392	struct kernfs_root *root = info->root;
393
394	down_write(&root->kernfs_supers_rwsem);
395	list_del(&info->node);
396	up_write(&root->kernfs_supers_rwsem);
397
398	/*
399	 * Remove the superblock from fs_supers/s_instances
400	 * so we can't find it, before freeing kernfs_super_info.
401	 */
402	kill_anon_super(sb);
403	kfree(info);
404}
405
406static void __init kernfs_mutex_init(void)
407{
408	int count;
409
410	for (count = 0; count < NR_KERNFS_LOCKS; count++)
411		mutex_init(&kernfs_locks->open_file_mutex[count]);
412}
413
414static void __init kernfs_lock_init(void)
415{
416	kernfs_locks = kmalloc(sizeof(struct kernfs_global_locks), GFP_KERNEL);
417	WARN_ON(!kernfs_locks);
418
419	kernfs_mutex_init();
420}
421
422void __init kernfs_init(void)
423{
424	kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
425					      sizeof(struct kernfs_node),
426					      0, SLAB_PANIC, NULL);
427
428	/* Creates slab cache for kernfs inode attributes */
429	kernfs_iattrs_cache  = kmem_cache_create("kernfs_iattrs_cache",
430					      sizeof(struct kernfs_iattrs),
431					      0, SLAB_PANIC, NULL);
432
433	kernfs_lock_init();
434}
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * fs/kernfs/mount.c - kernfs mount implementation
  4 *
  5 * Copyright (c) 2001-3 Patrick Mochel
  6 * Copyright (c) 2007 SUSE Linux Products GmbH
  7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
  8 */
  9
 10#include <linux/fs.h>
 11#include <linux/mount.h>
 12#include <linux/init.h>
 13#include <linux/magic.h>
 14#include <linux/slab.h>
 15#include <linux/pagemap.h>
 16#include <linux/namei.h>
 17#include <linux/seq_file.h>
 18#include <linux/exportfs.h>
 
 
 19
 20#include "kernfs-internal.h"
 21
 22struct kmem_cache *kernfs_node_cache, *kernfs_iattrs_cache;
 
 
 23
 24static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
 25{
 26	struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry));
 27	struct kernfs_syscall_ops *scops = root->syscall_ops;
 28
 29	if (scops && scops->show_options)
 30		return scops->show_options(sf, root);
 31	return 0;
 32}
 33
 34static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
 35{
 36	struct kernfs_node *node = kernfs_dentry_node(dentry);
 37	struct kernfs_root *root = kernfs_root(node);
 38	struct kernfs_syscall_ops *scops = root->syscall_ops;
 39
 40	if (scops && scops->show_path)
 41		return scops->show_path(sf, node, root);
 42
 43	seq_dentry(sf, dentry, " \t\n\\");
 44	return 0;
 45}
 46
 
 
 
 
 
 
 
 47const struct super_operations kernfs_sops = {
 48	.statfs		= simple_statfs,
 49	.drop_inode	= generic_delete_inode,
 50	.evict_inode	= kernfs_evict_inode,
 51
 52	.show_options	= kernfs_sop_show_options,
 53	.show_path	= kernfs_sop_show_path,
 54};
 55
 56static int kernfs_encode_fh(struct inode *inode, __u32 *fh, int *max_len,
 57			    struct inode *parent)
 58{
 59	struct kernfs_node *kn = inode->i_private;
 60
 61	if (*max_len < 2) {
 62		*max_len = 2;
 63		return FILEID_INVALID;
 64	}
 65
 66	*max_len = 2;
 67	*(u64 *)fh = kn->id;
 68	return FILEID_KERNFS;
 69}
 70
 71static struct dentry *__kernfs_fh_to_dentry(struct super_block *sb,
 72					    struct fid *fid, int fh_len,
 73					    int fh_type, bool get_parent)
 74{
 75	struct kernfs_super_info *info = kernfs_info(sb);
 76	struct kernfs_node *kn;
 77	struct inode *inode;
 78	u64 id;
 79
 80	if (fh_len < 2)
 81		return NULL;
 82
 83	switch (fh_type) {
 84	case FILEID_KERNFS:
 85		id = *(u64 *)fid;
 86		break;
 87	case FILEID_INO32_GEN:
 88	case FILEID_INO32_GEN_PARENT:
 89		/*
 90		 * blk_log_action() exposes "LOW32,HIGH32" pair without
 91		 * type and userland can call us with generic fid
 92		 * constructed from them.  Combine it back to ID.  See
 93		 * blk_log_action().
 94		 */
 95		id = ((u64)fid->i32.gen << 32) | fid->i32.ino;
 96		break;
 97	default:
 98		return NULL;
 99	}
100
101	kn = kernfs_find_and_get_node_by_id(info->root, id);
102	if (!kn)
103		return ERR_PTR(-ESTALE);
104
105	if (get_parent) {
106		struct kernfs_node *parent;
107
108		parent = kernfs_get_parent(kn);
109		kernfs_put(kn);
110		kn = parent;
111		if (!kn)
112			return ERR_PTR(-ESTALE);
113	}
114
115	inode = kernfs_get_inode(sb, kn);
116	kernfs_put(kn);
117	if (!inode)
118		return ERR_PTR(-ESTALE);
119
120	return d_obtain_alias(inode);
121}
122
123static struct dentry *kernfs_fh_to_dentry(struct super_block *sb,
124					  struct fid *fid, int fh_len,
125					  int fh_type)
126{
127	return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, false);
128}
129
130static struct dentry *kernfs_fh_to_parent(struct super_block *sb,
131					  struct fid *fid, int fh_len,
132					  int fh_type)
133{
134	return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, true);
135}
136
137static struct dentry *kernfs_get_parent_dentry(struct dentry *child)
138{
139	struct kernfs_node *kn = kernfs_dentry_node(child);
140
141	return d_obtain_alias(kernfs_get_inode(child->d_sb, kn->parent));
142}
143
144static const struct export_operations kernfs_export_ops = {
145	.encode_fh	= kernfs_encode_fh,
146	.fh_to_dentry	= kernfs_fh_to_dentry,
147	.fh_to_parent	= kernfs_fh_to_parent,
148	.get_parent	= kernfs_get_parent_dentry,
149};
150
151/**
152 * kernfs_root_from_sb - determine kernfs_root associated with a super_block
153 * @sb: the super_block in question
154 *
155 * Return the kernfs_root associated with @sb.  If @sb is not a kernfs one,
156 * %NULL is returned.
157 */
158struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
159{
160	if (sb->s_op == &kernfs_sops)
161		return kernfs_info(sb)->root;
162	return NULL;
163}
164
165/*
166 * find the next ancestor in the path down to @child, where @parent was the
167 * ancestor whose descendant we want to find.
168 *
169 * Say the path is /a/b/c/d.  @child is d, @parent is NULL.  We return the root
170 * node.  If @parent is b, then we return the node for c.
171 * Passing in d as @parent is not ok.
172 */
173static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
174					      struct kernfs_node *parent)
175{
176	if (child == parent) {
177		pr_crit_once("BUG in find_next_ancestor: called with parent == child");
178		return NULL;
179	}
180
181	while (child->parent != parent) {
182		if (!child->parent)
183			return NULL;
184		child = child->parent;
185	}
186
187	return child;
188}
189
190/**
191 * kernfs_node_dentry - get a dentry for the given kernfs_node
192 * @kn: kernfs_node for which a dentry is needed
193 * @sb: the kernfs super_block
 
 
194 */
195struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
196				  struct super_block *sb)
197{
198	struct dentry *dentry;
199	struct kernfs_node *knparent = NULL;
200
201	BUG_ON(sb->s_op != &kernfs_sops);
202
203	dentry = dget(sb->s_root);
204
205	/* Check if this is the root kernfs_node */
206	if (!kn->parent)
207		return dentry;
208
209	knparent = find_next_ancestor(kn, NULL);
210	if (WARN_ON(!knparent)) {
211		dput(dentry);
212		return ERR_PTR(-EINVAL);
213	}
214
215	do {
216		struct dentry *dtmp;
217		struct kernfs_node *kntmp;
218
219		if (kn == knparent)
220			return dentry;
221		kntmp = find_next_ancestor(kn, knparent);
222		if (WARN_ON(!kntmp)) {
223			dput(dentry);
224			return ERR_PTR(-EINVAL);
225		}
226		dtmp = lookup_positive_unlocked(kntmp->name, dentry,
227					       strlen(kntmp->name));
228		dput(dentry);
229		if (IS_ERR(dtmp))
230			return dtmp;
231		knparent = kntmp;
232		dentry = dtmp;
233	} while (true);
234}
235
236static int kernfs_fill_super(struct super_block *sb, struct kernfs_fs_context *kfc)
237{
238	struct kernfs_super_info *info = kernfs_info(sb);
 
239	struct inode *inode;
240	struct dentry *root;
241
242	info->sb = sb;
243	/* Userspace would break if executables or devices appear on sysfs */
244	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
245	sb->s_blocksize = PAGE_SIZE;
246	sb->s_blocksize_bits = PAGE_SHIFT;
247	sb->s_magic = kfc->magic;
248	sb->s_op = &kernfs_sops;
249	sb->s_xattr = kernfs_xattr_handlers;
250	if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP)
251		sb->s_export_op = &kernfs_export_ops;
252	sb->s_time_gran = 1;
253
254	/* sysfs dentries and inodes don't require IO to create */
255	sb->s_shrink.seeks = 0;
256
257	/* get root inode, initialize and unlock it */
258	mutex_lock(&kernfs_mutex);
259	inode = kernfs_get_inode(sb, info->root->kn);
260	mutex_unlock(&kernfs_mutex);
261	if (!inode) {
262		pr_debug("kernfs: could not get root inode\n");
263		return -ENOMEM;
264	}
265
266	/* instantiate and link root dentry */
267	root = d_make_root(inode);
268	if (!root) {
269		pr_debug("%s: could not get root dentry!\n", __func__);
270		return -ENOMEM;
271	}
272	sb->s_root = root;
273	sb->s_d_op = &kernfs_dops;
274	return 0;
275}
276
277static int kernfs_test_super(struct super_block *sb, struct fs_context *fc)
278{
279	struct kernfs_super_info *sb_info = kernfs_info(sb);
280	struct kernfs_super_info *info = fc->s_fs_info;
281
282	return sb_info->root == info->root && sb_info->ns == info->ns;
283}
284
285static int kernfs_set_super(struct super_block *sb, struct fs_context *fc)
286{
287	struct kernfs_fs_context *kfc = fc->fs_private;
288
289	kfc->ns_tag = NULL;
290	return set_anon_super_fc(sb, fc);
291}
292
293/**
294 * kernfs_super_ns - determine the namespace tag of a kernfs super_block
295 * @sb: super_block of interest
296 *
297 * Return the namespace tag associated with kernfs super_block @sb.
298 */
299const void *kernfs_super_ns(struct super_block *sb)
300{
301	struct kernfs_super_info *info = kernfs_info(sb);
302
303	return info->ns;
304}
305
306/**
307 * kernfs_get_tree - kernfs filesystem access/retrieval helper
308 * @fc: The filesystem context.
309 *
310 * This is to be called from each kernfs user's fs_context->ops->get_tree()
311 * implementation, which should set the specified ->@fs_type and ->@flags, and
312 * specify the hierarchy and namespace tag to mount via ->@root and ->@ns,
313 * respectively.
 
 
314 */
315int kernfs_get_tree(struct fs_context *fc)
316{
317	struct kernfs_fs_context *kfc = fc->fs_private;
318	struct super_block *sb;
319	struct kernfs_super_info *info;
320	int error;
321
322	info = kzalloc(sizeof(*info), GFP_KERNEL);
323	if (!info)
324		return -ENOMEM;
325
326	info->root = kfc->root;
327	info->ns = kfc->ns_tag;
328	INIT_LIST_HEAD(&info->node);
329
330	fc->s_fs_info = info;
331	sb = sget_fc(fc, kernfs_test_super, kernfs_set_super);
332	if (IS_ERR(sb))
333		return PTR_ERR(sb);
334
335	if (!sb->s_root) {
336		struct kernfs_super_info *info = kernfs_info(sb);
 
337
338		kfc->new_sb_created = true;
339
340		error = kernfs_fill_super(sb, kfc);
341		if (error) {
342			deactivate_locked_super(sb);
343			return error;
344		}
345		sb->s_flags |= SB_ACTIVE;
346
347		mutex_lock(&kernfs_mutex);
 
 
 
 
348		list_add(&info->node, &info->root->supers);
349		mutex_unlock(&kernfs_mutex);
350	}
351
352	fc->root = dget(sb->s_root);
353	return 0;
354}
355
356void kernfs_free_fs_context(struct fs_context *fc)
357{
358	/* Note that we don't deal with kfc->ns_tag here. */
359	kfree(fc->s_fs_info);
360	fc->s_fs_info = NULL;
361}
362
363/**
364 * kernfs_kill_sb - kill_sb for kernfs
365 * @sb: super_block being killed
366 *
367 * This can be used directly for file_system_type->kill_sb().  If a kernfs
368 * user needs extra cleanup, it can implement its own kill_sb() and call
369 * this function at the end.
370 */
371void kernfs_kill_sb(struct super_block *sb)
372{
373	struct kernfs_super_info *info = kernfs_info(sb);
 
374
375	mutex_lock(&kernfs_mutex);
376	list_del(&info->node);
377	mutex_unlock(&kernfs_mutex);
378
379	/*
380	 * Remove the superblock from fs_supers/s_instances
381	 * so we can't find it, before freeing kernfs_super_info.
382	 */
383	kill_anon_super(sb);
384	kfree(info);
385}
386
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
387void __init kernfs_init(void)
388{
389	kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
390					      sizeof(struct kernfs_node),
391					      0, SLAB_PANIC, NULL);
392
393	/* Creates slab cache for kernfs inode attributes */
394	kernfs_iattrs_cache  = kmem_cache_create("kernfs_iattrs_cache",
395					      sizeof(struct kernfs_iattrs),
396					      0, SLAB_PANIC, NULL);
 
 
397}