Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/file.c
   4 *
   5 *  Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
   6 *
   7 *  Manage the dynamic fd arrays in the process files_struct.
   8 */
   9
  10#include <linux/syscalls.h>
  11#include <linux/export.h>
  12#include <linux/fs.h>
  13#include <linux/kernel.h>
  14#include <linux/mm.h>
  15#include <linux/sched/signal.h>
  16#include <linux/slab.h>
  17#include <linux/file.h>
  18#include <linux/fdtable.h>
  19#include <linux/bitops.h>
  20#include <linux/spinlock.h>
  21#include <linux/rcupdate.h>
  22#include <linux/close_range.h>
  23#include <linux/file_ref.h>
  24#include <net/sock.h>
  25#include <linux/init_task.h>
  26
  27#include "internal.h"
  28
  29/**
  30 * __file_ref_put - Slowpath of file_ref_put()
  31 * @ref:	Pointer to the reference count
  32 * @cnt:	Current reference count
  33 *
  34 * Invoked when the reference count is outside of the valid zone.
  35 *
  36 * Return:
  37 *	True if this was the last reference with no future references
  38 *	possible. This signals the caller that it can safely schedule the
  39 *	object, which is protected by the reference counter, for
  40 *	deconstruction.
  41 *
  42 *	False if there are still active references or the put() raced
  43 *	with a concurrent get()/put() pair. Caller is not allowed to
  44 *	deconstruct the protected object.
  45 */
  46bool __file_ref_put(file_ref_t *ref, unsigned long cnt)
  47{
  48	/* Did this drop the last reference? */
  49	if (likely(cnt == FILE_REF_NOREF)) {
  50		/*
  51		 * Carefully try to set the reference count to FILE_REF_DEAD.
  52		 *
  53		 * This can fail if a concurrent get() operation has
  54		 * elevated it again or the corresponding put() even marked
  55		 * it dead already. Both are valid situations and do not
  56		 * require a retry. If this fails the caller is not
  57		 * allowed to deconstruct the object.
  58		 */
  59		if (!atomic_long_try_cmpxchg_release(&ref->refcnt, &cnt, FILE_REF_DEAD))
  60			return false;
  61
  62		/*
  63		 * The caller can safely schedule the object for
  64		 * deconstruction. Provide acquire ordering.
  65		 */
  66		smp_acquire__after_ctrl_dep();
  67		return true;
  68	}
  69
  70	/*
  71	 * If the reference count was already in the dead zone, then this
  72	 * put() operation is imbalanced. Warn, put the reference count back to
  73	 * DEAD and tell the caller to not deconstruct the object.
  74	 */
  75	if (WARN_ONCE(cnt >= FILE_REF_RELEASED, "imbalanced put on file reference count")) {
  76		atomic_long_set(&ref->refcnt, FILE_REF_DEAD);
  77		return false;
  78	}
  79
  80	/*
  81	 * This is a put() operation on a saturated refcount. Restore the
  82	 * mean saturation value and tell the caller to not deconstruct the
  83	 * object.
  84	 */
  85	if (cnt > FILE_REF_MAXREF)
  86		atomic_long_set(&ref->refcnt, FILE_REF_SATURATED);
  87	return false;
  88}
  89EXPORT_SYMBOL_GPL(__file_ref_put);
  90
  91unsigned int sysctl_nr_open __read_mostly = 1024*1024;
  92unsigned int sysctl_nr_open_min = BITS_PER_LONG;
  93/* our min() is unusable in constant expressions ;-/ */
  94#define __const_min(x, y) ((x) < (y) ? (x) : (y))
  95unsigned int sysctl_nr_open_max =
  96	__const_min(INT_MAX, ~(size_t)0/sizeof(void *)) & -BITS_PER_LONG;
  97
  98static void __free_fdtable(struct fdtable *fdt)
  99{
 100	kvfree(fdt->fd);
 101	kvfree(fdt->open_fds);
 102	kfree(fdt);
 103}
 104
 105static void free_fdtable_rcu(struct rcu_head *rcu)
 106{
 107	__free_fdtable(container_of(rcu, struct fdtable, rcu));
 108}
 109
 110#define BITBIT_NR(nr)	BITS_TO_LONGS(BITS_TO_LONGS(nr))
 111#define BITBIT_SIZE(nr)	(BITBIT_NR(nr) * sizeof(long))
 112
 113#define fdt_words(fdt) ((fdt)->max_fds / BITS_PER_LONG) // words in ->open_fds
 114/*
 115 * Copy 'count' fd bits from the old table to the new table and clear the extra
 116 * space if any.  This does not copy the file pointers.  Called with the files
 117 * spinlock held for write.
 118 */
 119static inline void copy_fd_bitmaps(struct fdtable *nfdt, struct fdtable *ofdt,
 120			    unsigned int copy_words)
 121{
 122	unsigned int nwords = fdt_words(nfdt);
 123
 124	bitmap_copy_and_extend(nfdt->open_fds, ofdt->open_fds,
 125			copy_words * BITS_PER_LONG, nwords * BITS_PER_LONG);
 126	bitmap_copy_and_extend(nfdt->close_on_exec, ofdt->close_on_exec,
 127			copy_words * BITS_PER_LONG, nwords * BITS_PER_LONG);
 128	bitmap_copy_and_extend(nfdt->full_fds_bits, ofdt->full_fds_bits,
 129			copy_words, nwords);
 
 
 
 
 
 130}
 131
 132/*
 133 * Copy all file descriptors from the old table to the new, expanded table and
 134 * clear the extra space.  Called with the files spinlock held for write.
 135 */
 136static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
 137{
 138	size_t cpy, set;
 139
 140	BUG_ON(nfdt->max_fds < ofdt->max_fds);
 141
 142	cpy = ofdt->max_fds * sizeof(struct file *);
 143	set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
 144	memcpy(nfdt->fd, ofdt->fd, cpy);
 145	memset((char *)nfdt->fd + cpy, 0, set);
 146
 147	copy_fd_bitmaps(nfdt, ofdt, fdt_words(ofdt));
 148}
 149
 150/*
 151 * Note how the fdtable bitmap allocations very much have to be a multiple of
 152 * BITS_PER_LONG. This is not only because we walk those things in chunks of
 153 * 'unsigned long' in some places, but simply because that is how the Linux
 154 * kernel bitmaps are defined to work: they are not "bits in an array of bytes",
 155 * they are very much "bits in an array of unsigned long".
 156 */
 157static struct fdtable *alloc_fdtable(unsigned int slots_wanted)
 158{
 159	struct fdtable *fdt;
 160	unsigned int nr;
 161	void *data;
 162
 163	/*
 164	 * Figure out how many fds we actually want to support in this fdtable.
 165	 * Allocation steps are keyed to the size of the fdarray, since it
 166	 * grows far faster than any of the other dynamic data. We try to fit
 167	 * the fdarray into comfortable page-tuned chunks: starting at 1024B
 168	 * and growing in powers of two from there on.  Since we called only
 169	 * with slots_wanted > BITS_PER_LONG (embedded instance in files->fdtab
 170	 * already gives BITS_PER_LONG slots), the above boils down to
 171	 * 1.  use the smallest power of two large enough to give us that many
 172	 * slots.
 173	 * 2.  on 32bit skip 64 and 128 - the minimal capacity we want there is
 174	 * 256 slots (i.e. 1Kb fd array).
 175	 * 3.  on 64bit don't skip anything, 1Kb fd array means 128 slots there
 176	 * and we are never going to be asked for 64 or less.
 177	 */
 178	if (IS_ENABLED(CONFIG_32BIT) && slots_wanted < 256)
 179		nr = 256;
 180	else
 181		nr = roundup_pow_of_two(slots_wanted);
 182	/*
 183	 * Note that this can drive nr *below* what we had passed if sysctl_nr_open
 184	 * had been set lower between the check in expand_files() and here.
 
 185	 *
 186	 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
 187	 * bitmaps handling below becomes unpleasant, to put it mildly...
 188	 */
 189	if (unlikely(nr > sysctl_nr_open)) {
 190		nr = round_down(sysctl_nr_open, BITS_PER_LONG);
 191		if (nr < slots_wanted)
 192			return ERR_PTR(-EMFILE);
 193	}
 194
 195	fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL_ACCOUNT);
 196	if (!fdt)
 197		goto out;
 198	fdt->max_fds = nr;
 199	data = kvmalloc_array(nr, sizeof(struct file *), GFP_KERNEL_ACCOUNT);
 200	if (!data)
 201		goto out_fdt;
 202	fdt->fd = data;
 203
 204	data = kvmalloc(max_t(size_t,
 205				 2 * nr / BITS_PER_BYTE + BITBIT_SIZE(nr), L1_CACHE_BYTES),
 206				 GFP_KERNEL_ACCOUNT);
 207	if (!data)
 208		goto out_arr;
 209	fdt->open_fds = data;
 210	data += nr / BITS_PER_BYTE;
 211	fdt->close_on_exec = data;
 212	data += nr / BITS_PER_BYTE;
 213	fdt->full_fds_bits = data;
 214
 215	return fdt;
 216
 217out_arr:
 218	kvfree(fdt->fd);
 219out_fdt:
 220	kfree(fdt);
 221out:
 222	return ERR_PTR(-ENOMEM);
 223}
 224
 225/*
 226 * Expand the file descriptor table.
 227 * This function will allocate a new fdtable and both fd array and fdset, of
 228 * the given size.
 229 * Return <0 error code on error; 0 on successful completion.
 230 * The files->file_lock should be held on entry, and will be held on exit.
 231 */
 232static int expand_fdtable(struct files_struct *files, unsigned int nr)
 233	__releases(files->file_lock)
 234	__acquires(files->file_lock)
 235{
 236	struct fdtable *new_fdt, *cur_fdt;
 237
 238	spin_unlock(&files->file_lock);
 239	new_fdt = alloc_fdtable(nr + 1);
 240
 241	/* make sure all fd_install() have seen resize_in_progress
 242	 * or have finished their rcu_read_lock_sched() section.
 243	 */
 244	if (atomic_read(&files->count) > 1)
 245		synchronize_rcu();
 246
 247	spin_lock(&files->file_lock);
 248	if (IS_ERR(new_fdt))
 249		return PTR_ERR(new_fdt);
 
 
 
 
 
 
 
 
 250	cur_fdt = files_fdtable(files);
 251	BUG_ON(nr < cur_fdt->max_fds);
 252	copy_fdtable(new_fdt, cur_fdt);
 253	rcu_assign_pointer(files->fdt, new_fdt);
 254	if (cur_fdt != &files->fdtab)
 255		call_rcu(&cur_fdt->rcu, free_fdtable_rcu);
 256	/* coupled with smp_rmb() in fd_install() */
 257	smp_wmb();
 258	return 0;
 259}
 260
 261/*
 262 * Expand files.
 263 * This function will expand the file structures, if the requested size exceeds
 264 * the current capacity and there is room for expansion.
 265 * Return <0 error code on error; 0 on success.
 
 266 * The files->file_lock should be held on entry, and will be held on exit.
 267 */
 268static int expand_files(struct files_struct *files, unsigned int nr)
 269	__releases(files->file_lock)
 270	__acquires(files->file_lock)
 271{
 272	struct fdtable *fdt;
 273	int error;
 274
 275repeat:
 276	fdt = files_fdtable(files);
 277
 278	/* Do we need to expand? */
 279	if (nr < fdt->max_fds)
 280		return 0;
 281
 282	/* Can we expand? */
 283	if (nr >= sysctl_nr_open)
 284		return -EMFILE;
 285
 286	if (unlikely(files->resize_in_progress)) {
 287		spin_unlock(&files->file_lock);
 
 288		wait_event(files->resize_wait, !files->resize_in_progress);
 289		spin_lock(&files->file_lock);
 290		goto repeat;
 291	}
 292
 293	/* All good, so we try */
 294	files->resize_in_progress = true;
 295	error = expand_fdtable(files, nr);
 296	files->resize_in_progress = false;
 297
 298	wake_up_all(&files->resize_wait);
 299	return error;
 300}
 301
 302static inline void __set_close_on_exec(unsigned int fd, struct fdtable *fdt,
 303				       bool set)
 304{
 305	if (set) {
 306		__set_bit(fd, fdt->close_on_exec);
 307	} else {
 308		if (test_bit(fd, fdt->close_on_exec))
 309			__clear_bit(fd, fdt->close_on_exec);
 310	}
 311}
 312
 313static inline void __set_open_fd(unsigned int fd, struct fdtable *fdt, bool set)
 
 
 
 
 
 
 314{
 315	__set_bit(fd, fdt->open_fds);
 316	__set_close_on_exec(fd, fdt, set);
 317	fd /= BITS_PER_LONG;
 318	if (!~fdt->open_fds[fd])
 319		__set_bit(fd, fdt->full_fds_bits);
 320}
 321
 322static inline void __clear_open_fd(unsigned int fd, struct fdtable *fdt)
 323{
 324	__clear_bit(fd, fdt->open_fds);
 325	fd /= BITS_PER_LONG;
 326	if (test_bit(fd, fdt->full_fds_bits))
 327		__clear_bit(fd, fdt->full_fds_bits);
 328}
 329
 330static inline bool fd_is_open(unsigned int fd, const struct fdtable *fdt)
 331{
 332	return test_bit(fd, fdt->open_fds);
 
 
 
 
 
 
 
 
 
 333}
 334
 335/*
 336 * Note that a sane fdtable size always has to be a multiple of
 337 * BITS_PER_LONG, since we have bitmaps that are sized by this.
 338 *
 339 * punch_hole is optional - when close_range() is asked to unshare
 340 * and close, we don't need to copy descriptors in that range, so
 341 * a smaller cloned descriptor table might suffice if the last
 342 * currently opened descriptor falls into that range.
 343 */
 344static unsigned int sane_fdtable_size(struct fdtable *fdt, struct fd_range *punch_hole)
 345{
 346	unsigned int last = find_last_bit(fdt->open_fds, fdt->max_fds);
 347
 348	if (last == fdt->max_fds)
 349		return NR_OPEN_DEFAULT;
 350	if (punch_hole && punch_hole->to >= last && punch_hole->from <= last) {
 351		last = find_last_bit(fdt->open_fds, punch_hole->from);
 352		if (last == punch_hole->from)
 353			return NR_OPEN_DEFAULT;
 354	}
 355	return ALIGN(last + 1, BITS_PER_LONG);
 356}
 357
 358/*
 359 * Allocate a new descriptor table and copy contents from the passed in
 360 * instance.  Returns a pointer to cloned table on success, ERR_PTR()
 361 * on failure.  For 'punch_hole' see sane_fdtable_size().
 362 */
 363struct files_struct *dup_fd(struct files_struct *oldf, struct fd_range *punch_hole)
 364{
 365	struct files_struct *newf;
 366	struct file **old_fds, **new_fds;
 367	unsigned int open_files, i;
 368	struct fdtable *old_fdt, *new_fdt;
 369
 
 370	newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
 371	if (!newf)
 372		return ERR_PTR(-ENOMEM);
 373
 374	atomic_set(&newf->count, 1);
 375
 376	spin_lock_init(&newf->file_lock);
 377	newf->resize_in_progress = false;
 378	init_waitqueue_head(&newf->resize_wait);
 379	newf->next_fd = 0;
 380	new_fdt = &newf->fdtab;
 381	new_fdt->max_fds = NR_OPEN_DEFAULT;
 382	new_fdt->close_on_exec = newf->close_on_exec_init;
 383	new_fdt->open_fds = newf->open_fds_init;
 384	new_fdt->full_fds_bits = newf->full_fds_bits_init;
 385	new_fdt->fd = &newf->fd_array[0];
 386
 387	spin_lock(&oldf->file_lock);
 388	old_fdt = files_fdtable(oldf);
 389	open_files = sane_fdtable_size(old_fdt, punch_hole);
 390
 391	/*
 392	 * Check whether we need to allocate a larger fd array and fd set.
 393	 */
 394	while (unlikely(open_files > new_fdt->max_fds)) {
 395		spin_unlock(&oldf->file_lock);
 396
 397		if (new_fdt != &newf->fdtab)
 398			__free_fdtable(new_fdt);
 399
 400		new_fdt = alloc_fdtable(open_files);
 401		if (IS_ERR(new_fdt)) {
 402			kmem_cache_free(files_cachep, newf);
 403			return ERR_CAST(new_fdt);
 
 
 
 
 
 
 
 404		}
 405
 406		/*
 407		 * Reacquire the oldf lock and a pointer to its fd table
 408		 * who knows it may have a new bigger fd table. We need
 409		 * the latest pointer.
 410		 */
 411		spin_lock(&oldf->file_lock);
 412		old_fdt = files_fdtable(oldf);
 413		open_files = sane_fdtable_size(old_fdt, punch_hole);
 414	}
 415
 416	copy_fd_bitmaps(new_fdt, old_fdt, open_files / BITS_PER_LONG);
 417
 418	old_fds = old_fdt->fd;
 419	new_fds = new_fdt->fd;
 420
 421	for (i = open_files; i != 0; i--) {
 422		struct file *f = *old_fds++;
 423		if (f) {
 424			get_file(f);
 425		} else {
 426			/*
 427			 * The fd may be claimed in the fd bitmap but not yet
 428			 * instantiated in the files array if a sibling thread
 429			 * is partway through open().  So make sure that this
 430			 * fd is available to the new process.
 431			 */
 432			__clear_open_fd(open_files - i, new_fdt);
 433		}
 434		rcu_assign_pointer(*new_fds++, f);
 435	}
 436	spin_unlock(&oldf->file_lock);
 437
 438	/* clear the remainder */
 439	memset(new_fds, 0, (new_fdt->max_fds - open_files) * sizeof(struct file *));
 440
 441	rcu_assign_pointer(newf->fdt, new_fdt);
 442
 443	return newf;
 
 
 
 
 
 444}
 445
 446static struct fdtable *close_files(struct files_struct * files)
 447{
 448	/*
 449	 * It is safe to dereference the fd table without RCU or
 450	 * ->file_lock because this is the last reference to the
 451	 * files structure.
 452	 */
 453	struct fdtable *fdt = rcu_dereference_raw(files->fdt);
 454	unsigned int i, j = 0;
 455
 456	for (;;) {
 457		unsigned long set;
 458		i = j * BITS_PER_LONG;
 459		if (i >= fdt->max_fds)
 460			break;
 461		set = fdt->open_fds[j++];
 462		while (set) {
 463			if (set & 1) {
 464				struct file *file = fdt->fd[i];
 465				if (file) {
 466					filp_close(file, files);
 467					cond_resched();
 468				}
 469			}
 470			i++;
 471			set >>= 1;
 472		}
 473	}
 474
 475	return fdt;
 476}
 477
 
 
 
 
 
 
 
 
 
 
 
 
 
 478void put_files_struct(struct files_struct *files)
 479{
 480	if (atomic_dec_and_test(&files->count)) {
 481		struct fdtable *fdt = close_files(files);
 482
 483		/* free the arrays if they are not embedded */
 484		if (fdt != &files->fdtab)
 485			__free_fdtable(fdt);
 486		kmem_cache_free(files_cachep, files);
 487	}
 488}
 489
 
 
 
 
 
 
 
 
 
 
 
 
 490void exit_files(struct task_struct *tsk)
 491{
 492	struct files_struct * files = tsk->files;
 493
 494	if (files) {
 495		task_lock(tsk);
 496		tsk->files = NULL;
 497		task_unlock(tsk);
 498		put_files_struct(files);
 499	}
 500}
 501
 502struct files_struct init_files = {
 503	.count		= ATOMIC_INIT(1),
 504	.fdt		= &init_files.fdtab,
 505	.fdtab		= {
 506		.max_fds	= NR_OPEN_DEFAULT,
 507		.fd		= &init_files.fd_array[0],
 508		.close_on_exec	= init_files.close_on_exec_init,
 509		.open_fds	= init_files.open_fds_init,
 510		.full_fds_bits	= init_files.full_fds_bits_init,
 511	},
 512	.file_lock	= __SPIN_LOCK_UNLOCKED(init_files.file_lock),
 513	.resize_wait	= __WAIT_QUEUE_HEAD_INITIALIZER(init_files.resize_wait),
 514};
 515
 516static unsigned int find_next_fd(struct fdtable *fdt, unsigned int start)
 517{
 518	unsigned int maxfd = fdt->max_fds; /* always multiple of BITS_PER_LONG */
 519	unsigned int maxbit = maxfd / BITS_PER_LONG;
 520	unsigned int bitbit = start / BITS_PER_LONG;
 521	unsigned int bit;
 522
 523	/*
 524	 * Try to avoid looking at the second level bitmap
 525	 */
 526	bit = find_next_zero_bit(&fdt->open_fds[bitbit], BITS_PER_LONG,
 527				 start & (BITS_PER_LONG - 1));
 528	if (bit < BITS_PER_LONG)
 529		return bit + bitbit * BITS_PER_LONG;
 530
 531	bitbit = find_next_zero_bit(fdt->full_fds_bits, maxbit, bitbit) * BITS_PER_LONG;
 532	if (bitbit >= maxfd)
 533		return maxfd;
 534	if (bitbit > start)
 535		start = bitbit;
 536	return find_next_zero_bit(fdt->open_fds, maxfd, start);
 537}
 538
 539/*
 540 * allocate a file descriptor, mark it busy.
 541 */
 542static int alloc_fd(unsigned start, unsigned end, unsigned flags)
 
 543{
 544	struct files_struct *files = current->files;
 545	unsigned int fd;
 546	int error;
 547	struct fdtable *fdt;
 548
 549	spin_lock(&files->file_lock);
 550repeat:
 551	fdt = files_fdtable(files);
 552	fd = start;
 553	if (fd < files->next_fd)
 554		fd = files->next_fd;
 555
 556	if (likely(fd < fdt->max_fds))
 557		fd = find_next_fd(fdt, fd);
 558
 559	/*
 560	 * N.B. For clone tasks sharing a files structure, this test
 561	 * will limit the total number of files that can be opened.
 562	 */
 563	error = -EMFILE;
 564	if (unlikely(fd >= end))
 565		goto out;
 566
 567	if (unlikely(fd >= fdt->max_fds)) {
 568		error = expand_files(files, fd);
 569		if (error < 0)
 570			goto out;
 571
 
 
 
 
 
 572		goto repeat;
 573	}
 574
 575	if (start <= files->next_fd)
 576		files->next_fd = fd + 1;
 577
 578	__set_open_fd(fd, fdt, flags & O_CLOEXEC);
 
 
 
 
 579	error = fd;
 
 
 
 
 
 
 
 580
 581out:
 582	spin_unlock(&files->file_lock);
 583	return error;
 584}
 585
 
 
 
 
 
 586int __get_unused_fd_flags(unsigned flags, unsigned long nofile)
 587{
 588	return alloc_fd(0, nofile, flags);
 589}
 590
 591int get_unused_fd_flags(unsigned flags)
 592{
 593	return __get_unused_fd_flags(flags, rlimit(RLIMIT_NOFILE));
 594}
 595EXPORT_SYMBOL(get_unused_fd_flags);
 596
 597static void __put_unused_fd(struct files_struct *files, unsigned int fd)
 598{
 599	struct fdtable *fdt = files_fdtable(files);
 600	__clear_open_fd(fd, fdt);
 601	if (fd < files->next_fd)
 602		files->next_fd = fd;
 603}
 604
 605void put_unused_fd(unsigned int fd)
 606{
 607	struct files_struct *files = current->files;
 608	spin_lock(&files->file_lock);
 609	__put_unused_fd(files, fd);
 610	spin_unlock(&files->file_lock);
 611}
 612
 613EXPORT_SYMBOL(put_unused_fd);
 614
 615/*
 616 * Install a file pointer in the fd array.
 617 *
 618 * The VFS is full of places where we drop the files lock between
 619 * setting the open_fds bitmap and installing the file in the file
 620 * array.  At any such point, we are vulnerable to a dup2() race
 621 * installing a file in the array before us.  We need to detect this and
 622 * fput() the struct file we are about to overwrite in this case.
 623 *
 624 * It should never happen - if we allow dup2() do it, _really_ bad things
 625 * will follow.
 626 *
 627 * This consumes the "file" refcount, so callers should treat it
 628 * as if they had called fput(file).
 
 
 
 
 629 */
 630
 631void fd_install(unsigned int fd, struct file *file)
 
 632{
 633	struct files_struct *files = current->files;
 634	struct fdtable *fdt;
 635
 636	if (WARN_ON_ONCE(unlikely(file->f_mode & FMODE_BACKING)))
 637		return;
 638
 639	rcu_read_lock_sched();
 640
 641	if (unlikely(files->resize_in_progress)) {
 642		rcu_read_unlock_sched();
 643		spin_lock(&files->file_lock);
 644		fdt = files_fdtable(files);
 645		WARN_ON(fdt->fd[fd] != NULL);
 646		rcu_assign_pointer(fdt->fd[fd], file);
 647		spin_unlock(&files->file_lock);
 648		return;
 649	}
 650	/* coupled with smp_wmb() in expand_fdtable() */
 651	smp_rmb();
 652	fdt = rcu_dereference_sched(files->fdt);
 653	BUG_ON(fdt->fd[fd] != NULL);
 654	rcu_assign_pointer(fdt->fd[fd], file);
 655	rcu_read_unlock_sched();
 656}
 657
 658EXPORT_SYMBOL(fd_install);
 659
 660/**
 661 * file_close_fd_locked - return file associated with fd
 662 * @files: file struct to retrieve file from
 663 * @fd: file descriptor to retrieve file for
 664 *
 665 * Doesn't take a separate reference count.
 666 *
 667 * Context: files_lock must be held.
 668 *
 669 * Returns: The file associated with @fd (NULL if @fd is not open)
 670 */
 671struct file *file_close_fd_locked(struct files_struct *files, unsigned fd)
 672{
 673	struct fdtable *fdt = files_fdtable(files);
 674	struct file *file;
 675
 676	lockdep_assert_held(&files->file_lock);
 677
 678	if (fd >= fdt->max_fds)
 679		return NULL;
 680
 681	fd = array_index_nospec(fd, fdt->max_fds);
 682	file = fdt->fd[fd];
 683	if (file) {
 684		rcu_assign_pointer(fdt->fd[fd], NULL);
 685		__put_unused_fd(files, fd);
 686	}
 687	return file;
 688}
 689
 690int close_fd(unsigned fd)
 
 
 691{
 692	struct files_struct *files = current->files;
 693	struct file *file;
 694
 695	spin_lock(&files->file_lock);
 696	file = file_close_fd_locked(files, fd);
 697	spin_unlock(&files->file_lock);
 
 
 698	if (!file)
 699		return -EBADF;
 
 
 700
 701	return filp_close(file, files);
 
 
 702}
 703EXPORT_SYMBOL(close_fd);
 704
 705/**
 706 * last_fd - return last valid index into fd table
 707 * @fdt: File descriptor table.
 708 *
 709 * Context: Either rcu read lock or files_lock must be held.
 710 *
 711 * Returns: Last valid index into fdtable.
 712 */
 713static inline unsigned last_fd(struct fdtable *fdt)
 714{
 715	return fdt->max_fds - 1;
 716}
 717
 718static inline void __range_cloexec(struct files_struct *cur_fds,
 719				   unsigned int fd, unsigned int max_fd)
 720{
 721	struct fdtable *fdt;
 722
 723	/* make sure we're using the correct maximum value */
 724	spin_lock(&cur_fds->file_lock);
 725	fdt = files_fdtable(cur_fds);
 726	max_fd = min(last_fd(fdt), max_fd);
 727	if (fd <= max_fd)
 728		bitmap_set(fdt->close_on_exec, fd, max_fd - fd + 1);
 729	spin_unlock(&cur_fds->file_lock);
 730}
 731
 732static inline void __range_close(struct files_struct *files, unsigned int fd,
 733				 unsigned int max_fd)
 734{
 735	struct file *file;
 736	unsigned n;
 737
 738	spin_lock(&files->file_lock);
 739	n = last_fd(files_fdtable(files));
 740	max_fd = min(max_fd, n);
 741
 742	for (; fd <= max_fd; fd++) {
 743		file = file_close_fd_locked(files, fd);
 744		if (file) {
 745			spin_unlock(&files->file_lock);
 746			filp_close(file, files);
 747			cond_resched();
 748			spin_lock(&files->file_lock);
 749		} else if (need_resched()) {
 750			spin_unlock(&files->file_lock);
 751			cond_resched();
 752			spin_lock(&files->file_lock);
 753		}
 754	}
 755	spin_unlock(&files->file_lock);
 756}
 
 757
 758/**
 759 * sys_close_range() - Close all file descriptors in a given range.
 760 *
 761 * @fd:     starting file descriptor to close
 762 * @max_fd: last file descriptor to close
 763 * @flags:  CLOSE_RANGE flags.
 764 *
 765 * This closes a range of file descriptors. All file descriptors
 766 * from @fd up to and including @max_fd are closed.
 767 * Currently, errors to close a given file descriptor are ignored.
 768 */
 769SYSCALL_DEFINE3(close_range, unsigned int, fd, unsigned int, max_fd,
 770		unsigned int, flags)
 771{
 
 772	struct task_struct *me = current;
 773	struct files_struct *cur_fds = me->files, *fds = NULL;
 774
 775	if (flags & ~(CLOSE_RANGE_UNSHARE | CLOSE_RANGE_CLOEXEC))
 776		return -EINVAL;
 777
 778	if (fd > max_fd)
 779		return -EINVAL;
 780
 781	if ((flags & CLOSE_RANGE_UNSHARE) && atomic_read(&cur_fds->count) > 1) {
 782		struct fd_range range = {fd, max_fd}, *punch_hole = &range;
 
 
 
 
 
 
 
 
 783
 784		/*
 785		 * If the caller requested all fds to be made cloexec we always
 786		 * copy all of the file descriptors since they still want to
 787		 * use them.
 788		 */
 789		if (flags & CLOSE_RANGE_CLOEXEC)
 790			punch_hole = NULL;
 
 
 
 
 791
 792		fds = dup_fd(cur_fds, punch_hole);
 793		if (IS_ERR(fds))
 794			return PTR_ERR(fds);
 795		/*
 796		 * We used to share our file descriptor table, and have now
 797		 * created a private one, make sure we're using it below.
 798		 */
 799		swap(cur_fds, fds);
 
 800	}
 801
 802	if (flags & CLOSE_RANGE_CLOEXEC)
 803		__range_cloexec(cur_fds, fd, max_fd);
 804	else
 805		__range_close(cur_fds, fd, max_fd);
 
 
 
 
 
 
 
 806
 807	if (fds) {
 808		/*
 809		 * We're done closing the files we were supposed to. Time to install
 810		 * the new file descriptor table and drop the old one.
 811		 */
 812		task_lock(me);
 813		me->files = cur_fds;
 814		task_unlock(me);
 815		put_files_struct(fds);
 816	}
 817
 818	return 0;
 819}
 820
 821/**
 822 * file_close_fd - return file associated with fd
 823 * @fd: file descriptor to retrieve file for
 824 *
 825 * Doesn't take a separate reference count.
 826 *
 827 * Returns: The file associated with @fd (NULL if @fd is not open)
 828 */
 829struct file *file_close_fd(unsigned int fd)
 830{
 831	struct files_struct *files = current->files;
 832	struct file *file;
 
 833
 834	spin_lock(&files->file_lock);
 835	file = file_close_fd_locked(files, fd);
 
 
 
 
 
 
 
 836	spin_unlock(&files->file_lock);
 
 
 
 837
 838	return file;
 
 
 
 839}
 840
 841void do_close_on_exec(struct files_struct *files)
 842{
 843	unsigned i;
 844	struct fdtable *fdt;
 845
 846	/* exec unshares first */
 847	spin_lock(&files->file_lock);
 848	for (i = 0; ; i++) {
 849		unsigned long set;
 850		unsigned fd = i * BITS_PER_LONG;
 851		fdt = files_fdtable(files);
 852		if (fd >= fdt->max_fds)
 853			break;
 854		set = fdt->close_on_exec[i];
 855		if (!set)
 856			continue;
 857		fdt->close_on_exec[i] = 0;
 858		for ( ; set ; fd++, set >>= 1) {
 859			struct file *file;
 860			if (!(set & 1))
 861				continue;
 862			file = fdt->fd[fd];
 863			if (!file)
 864				continue;
 865			rcu_assign_pointer(fdt->fd[fd], NULL);
 866			__put_unused_fd(files, fd);
 867			spin_unlock(&files->file_lock);
 868			filp_close(file, files);
 869			cond_resched();
 870			spin_lock(&files->file_lock);
 871		}
 872
 873	}
 874	spin_unlock(&files->file_lock);
 875}
 876
 877static struct file *__get_file_rcu(struct file __rcu **f)
 878{
 879	struct file __rcu *file;
 880	struct file __rcu *file_reloaded;
 881	struct file __rcu *file_reloaded_cmp;
 882
 883	file = rcu_dereference_raw(*f);
 884	if (!file)
 885		return NULL;
 886
 887	if (unlikely(!file_ref_get(&file->f_ref)))
 888		return ERR_PTR(-EAGAIN);
 889
 890	file_reloaded = rcu_dereference_raw(*f);
 891
 892	/*
 893	 * Ensure that all accesses have a dependency on the load from
 894	 * rcu_dereference_raw() above so we get correct ordering
 895	 * between reuse/allocation and the pointer check below.
 896	 */
 897	file_reloaded_cmp = file_reloaded;
 898	OPTIMIZER_HIDE_VAR(file_reloaded_cmp);
 899
 900	/*
 901	 * file_ref_get() above provided a full memory barrier when we
 902	 * acquired a reference.
 903	 *
 904	 * This is paired with the write barrier from assigning to the
 905	 * __rcu protected file pointer so that if that pointer still
 906	 * matches the current file, we know we have successfully
 907	 * acquired a reference to the right file.
 908	 *
 909	 * If the pointers don't match the file has been reallocated by
 910	 * SLAB_TYPESAFE_BY_RCU.
 911	 */
 912	if (file == file_reloaded_cmp)
 913		return file_reloaded;
 914
 915	fput(file);
 916	return ERR_PTR(-EAGAIN);
 917}
 918
 919/**
 920 * get_file_rcu - try go get a reference to a file under rcu
 921 * @f: the file to get a reference on
 922 *
 923 * This function tries to get a reference on @f carefully verifying that
 924 * @f hasn't been reused.
 925 *
 926 * This function should rarely have to be used and only by users who
 927 * understand the implications of SLAB_TYPESAFE_BY_RCU. Try to avoid it.
 928 *
 929 * Return: Returns @f with the reference count increased or NULL.
 930 */
 931struct file *get_file_rcu(struct file __rcu **f)
 932{
 933	for (;;) {
 934		struct file __rcu *file;
 935
 936		file = __get_file_rcu(f);
 937		if (!IS_ERR(file))
 938			return file;
 939	}
 940}
 941EXPORT_SYMBOL_GPL(get_file_rcu);
 942
 943/**
 944 * get_file_active - try go get a reference to a file
 945 * @f: the file to get a reference on
 946 *
 947 * In contast to get_file_rcu() the pointer itself isn't part of the
 948 * reference counting.
 949 *
 950 * This function should rarely have to be used and only by users who
 951 * understand the implications of SLAB_TYPESAFE_BY_RCU. Try to avoid it.
 952 *
 953 * Return: Returns @f with the reference count increased or NULL.
 954 */
 955struct file *get_file_active(struct file **f)
 956{
 957	struct file __rcu *file;
 958
 959	rcu_read_lock();
 960	file = __get_file_rcu(f);
 961	rcu_read_unlock();
 962	if (IS_ERR(file))
 963		file = NULL;
 964	return file;
 965}
 966EXPORT_SYMBOL_GPL(get_file_active);
 967
 968static inline struct file *__fget_files_rcu(struct files_struct *files,
 969       unsigned int fd, fmode_t mask)
 970{
 971	for (;;) {
 972		struct file *file;
 973		struct fdtable *fdt = rcu_dereference_raw(files->fdt);
 974		struct file __rcu **fdentry;
 975		unsigned long nospec_mask;
 976
 977		/* Mask is a 0 for invalid fd's, ~0 for valid ones */
 978		nospec_mask = array_index_mask_nospec(fd, fdt->max_fds);
 979
 980		/*
 981		 * fdentry points to the 'fd' offset, or fdt->fd[0].
 982		 * Loading from fdt->fd[0] is always safe, because the
 983		 * array always exists.
 984		 */
 985		fdentry = fdt->fd + (fd & nospec_mask);
 986
 987		/* Do the load, then mask any invalid result */
 988		file = rcu_dereference_raw(*fdentry);
 989		file = (void *)(nospec_mask & (unsigned long)file);
 990		if (unlikely(!file))
 991			return NULL;
 992
 993		/*
 994		 * Ok, we have a file pointer that was valid at
 995		 * some point, but it might have become stale since.
 996		 *
 997		 * We need to confirm it by incrementing the refcount
 998		 * and then check the lookup again.
 999		 *
1000		 * file_ref_get() gives us a full memory barrier. We
1001		 * only really need an 'acquire' one to protect the
1002		 * loads below, but we don't have that.
1003		 */
1004		if (unlikely(!file_ref_get(&file->f_ref)))
1005			continue;
1006
1007		/*
1008		 * Such a race can take two forms:
1009		 *
1010		 *  (a) the file ref already went down to zero and the
1011		 *      file hasn't been reused yet or the file count
1012		 *      isn't zero but the file has already been reused.
1013		 *
1014		 *  (b) the file table entry has changed under us.
1015		 *       Note that we don't need to re-check the 'fdt->fd'
1016		 *       pointer having changed, because it always goes
1017		 *       hand-in-hand with 'fdt'.
1018		 *
1019		 * If so, we need to put our ref and try again.
1020		 */
1021		if (unlikely(file != rcu_dereference_raw(*fdentry)) ||
1022		    unlikely(rcu_dereference_raw(files->fdt) != fdt)) {
1023			fput(file);
1024			continue;
1025		}
1026
1027		/*
1028		 * This isn't the file we're looking for or we're not
1029		 * allowed to get a reference to it.
1030		 */
1031		if (unlikely(file->f_mode & mask)) {
1032			fput(file);
1033			return NULL;
1034		}
1035
1036		/*
1037		 * Ok, we have a ref to the file, and checked that it
1038		 * still exists.
1039		 */
1040		return file;
1041	}
1042}
1043
1044static struct file *__fget_files(struct files_struct *files, unsigned int fd,
1045				 fmode_t mask)
1046{
1047	struct file *file;
1048
1049	rcu_read_lock();
1050	file = __fget_files_rcu(files, fd, mask);
 
 
 
 
 
 
 
 
 
 
 
1051	rcu_read_unlock();
1052
1053	return file;
1054}
1055
1056static inline struct file *__fget(unsigned int fd, fmode_t mask)
 
 
 
 
 
 
1057{
1058	return __fget_files(current->files, fd, mask);
1059}
1060
1061struct file *fget(unsigned int fd)
1062{
1063	return __fget(fd, FMODE_PATH);
1064}
1065EXPORT_SYMBOL(fget);
1066
1067struct file *fget_raw(unsigned int fd)
1068{
1069	return __fget(fd, 0);
1070}
1071EXPORT_SYMBOL(fget_raw);
1072
1073struct file *fget_task(struct task_struct *task, unsigned int fd)
1074{
1075	struct file *file = NULL;
1076
1077	task_lock(task);
1078	if (task->files)
1079		file = __fget_files(task->files, fd, 0);
1080	task_unlock(task);
1081
1082	return file;
1083}
1084
1085struct file *fget_task_next(struct task_struct *task, unsigned int *ret_fd)
1086{
1087	/* Must be called with rcu_read_lock held */
1088	struct files_struct *files;
1089	unsigned int fd = *ret_fd;
1090	struct file *file = NULL;
1091
1092	task_lock(task);
1093	files = task->files;
1094	if (files) {
1095		rcu_read_lock();
1096		for (; fd < files_fdtable(files)->max_fds; fd++) {
1097			file = __fget_files_rcu(files, fd, 0);
1098			if (file)
1099				break;
1100		}
1101		rcu_read_unlock();
1102	}
1103	task_unlock(task);
1104	*ret_fd = fd;
1105	return file;
1106}
1107EXPORT_SYMBOL(fget_task_next);
1108
1109/*
1110 * Lightweight file lookup - no refcnt increment if fd table isn't shared.
1111 *
1112 * You can use this instead of fget if you satisfy all of the following
1113 * conditions:
1114 * 1) You must call fput_light before exiting the syscall and returning control
1115 *    to userspace (i.e. you cannot remember the returned struct file * after
1116 *    returning to userspace).
1117 * 2) You must not call filp_close on the returned struct file * in between
1118 *    calls to fget_light and fput_light.
1119 * 3) You must not clone the current task in between the calls to fget_light
1120 *    and fput_light.
1121 *
1122 * The fput_needed flag returned by fget_light should be passed to the
1123 * corresponding fput_light.
1124 *
1125 * (As an exception to rule 2, you can call filp_close between fget_light and
1126 * fput_light provided that you capture a real refcount with get_file before
1127 * the call to filp_close, and ensure that this real refcount is fput *after*
1128 * the fput_light call.)
1129 *
1130 * See also the documentation in rust/kernel/file.rs.
1131 */
1132static inline struct fd __fget_light(unsigned int fd, fmode_t mask)
1133{
1134	struct files_struct *files = current->files;
1135	struct file *file;
1136
1137	/*
1138	 * If another thread is concurrently calling close_fd() followed
1139	 * by put_files_struct(), we must not observe the old table
1140	 * entry combined with the new refcount - otherwise we could
1141	 * return a file that is concurrently being freed.
1142	 *
1143	 * atomic_read_acquire() pairs with atomic_dec_and_test() in
1144	 * put_files_struct().
1145	 */
1146	if (likely(atomic_read_acquire(&files->count) == 1)) {
1147		file = files_lookup_fd_raw(files, fd);
1148		if (!file || unlikely(file->f_mode & mask))
1149			return EMPTY_FD;
1150		return BORROWED_FD(file);
1151	} else {
1152		file = __fget_files(files, fd, mask);
1153		if (!file)
1154			return EMPTY_FD;
1155		return CLONED_FD(file);
1156	}
1157}
1158struct fd fdget(unsigned int fd)
1159{
1160	return __fget_light(fd, FMODE_PATH);
1161}
1162EXPORT_SYMBOL(fdget);
1163
1164struct fd fdget_raw(unsigned int fd)
1165{
1166	return __fget_light(fd, 0);
1167}
1168
1169/*
1170 * Try to avoid f_pos locking. We only need it if the
1171 * file is marked for FMODE_ATOMIC_POS, and it can be
1172 * accessed multiple ways.
1173 *
1174 * Always do it for directories, because pidfd_getfd()
1175 * can make a file accessible even if it otherwise would
1176 * not be, and for directories this is a correctness
1177 * issue, not a "POSIX requirement".
1178 */
1179static inline bool file_needs_f_pos_lock(struct file *file)
1180{
1181	return (file->f_mode & FMODE_ATOMIC_POS) &&
1182		(file_count(file) > 1 || file->f_op->iterate_shared);
1183}
1184
1185struct fd fdget_pos(unsigned int fd)
1186{
1187	struct fd f = fdget(fd);
1188	struct file *file = fd_file(f);
1189
1190	if (file && file_needs_f_pos_lock(file)) {
1191		f.word |= FDPUT_POS_UNLOCK;
1192		mutex_lock(&file->f_pos_lock);
 
 
1193	}
1194	return f;
1195}
1196
1197void __f_unlock_pos(struct file *f)
1198{
1199	mutex_unlock(&f->f_pos_lock);
1200}
1201
1202/*
1203 * We only lock f_pos if we have threads or if the file might be
1204 * shared with another process. In both cases we'll have an elevated
1205 * file count (done either by fdget() or by fork()).
1206 */
1207
1208void set_close_on_exec(unsigned int fd, int flag)
1209{
1210	struct files_struct *files = current->files;
 
1211	spin_lock(&files->file_lock);
1212	__set_close_on_exec(fd, files_fdtable(files), flag);
 
 
 
 
1213	spin_unlock(&files->file_lock);
1214}
1215
1216bool get_close_on_exec(unsigned int fd)
1217{
 
 
1218	bool res;
1219	rcu_read_lock();
1220	res = close_on_exec(fd, current->files);
 
1221	rcu_read_unlock();
1222	return res;
1223}
1224
1225static int do_dup2(struct files_struct *files,
1226	struct file *file, unsigned fd, unsigned flags)
1227__releases(&files->file_lock)
1228{
1229	struct file *tofree;
1230	struct fdtable *fdt;
1231
1232	/*
1233	 * We need to detect attempts to do dup2() over allocated but still
1234	 * not finished descriptor.  NB: OpenBSD avoids that at the price of
1235	 * extra work in their equivalent of fget() - they insert struct
1236	 * file immediately after grabbing descriptor, mark it larval if
1237	 * more work (e.g. actual opening) is needed and make sure that
1238	 * fget() treats larval files as absent.  Potentially interesting,
1239	 * but while extra work in fget() is trivial, locking implications
1240	 * and amount of surgery on open()-related paths in VFS are not.
1241	 * FreeBSD fails with -EBADF in the same situation, NetBSD "solution"
1242	 * deadlocks in rather amusing ways, AFAICS.  All of that is out of
1243	 * scope of POSIX or SUS, since neither considers shared descriptor
1244	 * tables and this condition does not arise without those.
1245	 */
1246	fdt = files_fdtable(files);
1247	fd = array_index_nospec(fd, fdt->max_fds);
1248	tofree = fdt->fd[fd];
1249	if (!tofree && fd_is_open(fd, fdt))
1250		goto Ebusy;
1251	get_file(file);
1252	rcu_assign_pointer(fdt->fd[fd], file);
1253	__set_open_fd(fd, fdt, flags & O_CLOEXEC);
 
 
 
 
1254	spin_unlock(&files->file_lock);
1255
1256	if (tofree)
1257		filp_close(tofree, files);
1258
1259	return fd;
1260
1261Ebusy:
1262	spin_unlock(&files->file_lock);
1263	return -EBUSY;
1264}
1265
1266int replace_fd(unsigned fd, struct file *file, unsigned flags)
1267{
1268	int err;
1269	struct files_struct *files = current->files;
1270
1271	if (!file)
1272		return close_fd(fd);
1273
1274	if (fd >= rlimit(RLIMIT_NOFILE))
1275		return -EBADF;
1276
1277	spin_lock(&files->file_lock);
1278	err = expand_files(files, fd);
1279	if (unlikely(err < 0))
1280		goto out_unlock;
1281	return do_dup2(files, file, fd, flags);
1282
1283out_unlock:
1284	spin_unlock(&files->file_lock);
1285	return err;
1286}
1287
1288/**
1289 * receive_fd() - Install received file into file descriptor table
 
 
1290 * @file: struct file that was received from another process
1291 * @ufd: __user pointer to write new fd number to
1292 * @o_flags: the O_* flags to apply to the new fd entry
1293 *
1294 * Installs a received file into the file descriptor table, with appropriate
1295 * checks and count updates. Optionally writes the fd number to userspace, if
1296 * @ufd is non-NULL.
1297 *
1298 * This helper handles its own reference counting of the incoming
1299 * struct file.
1300 *
1301 * Returns newly install fd or -ve on error.
1302 */
1303int receive_fd(struct file *file, int __user *ufd, unsigned int o_flags)
1304{
1305	int new_fd;
1306	int error;
1307
1308	error = security_file_receive(file);
1309	if (error)
1310		return error;
1311
1312	new_fd = get_unused_fd_flags(o_flags);
1313	if (new_fd < 0)
1314		return new_fd;
 
 
 
 
1315
1316	if (ufd) {
1317		error = put_user(new_fd, ufd);
1318		if (error) {
1319			put_unused_fd(new_fd);
 
1320			return error;
1321		}
1322	}
1323
1324	fd_install(new_fd, get_file(file));
1325	__receive_sock(file);
1326	return new_fd;
1327}
1328EXPORT_SYMBOL_GPL(receive_fd);
1329
1330int receive_fd_replace(int new_fd, struct file *file, unsigned int o_flags)
1331{
1332	int error;
1333
1334	error = security_file_receive(file);
1335	if (error)
1336		return error;
1337	error = replace_fd(new_fd, file, o_flags);
1338	if (error)
1339		return error;
1340	__receive_sock(file);
1341	return new_fd;
1342}
1343
1344static int ksys_dup3(unsigned int oldfd, unsigned int newfd, int flags)
1345{
1346	int err = -EBADF;
1347	struct file *file;
1348	struct files_struct *files = current->files;
1349
1350	if ((flags & ~O_CLOEXEC) != 0)
1351		return -EINVAL;
1352
1353	if (unlikely(oldfd == newfd))
1354		return -EINVAL;
1355
1356	if (newfd >= rlimit(RLIMIT_NOFILE))
1357		return -EBADF;
1358
1359	spin_lock(&files->file_lock);
1360	err = expand_files(files, newfd);
1361	file = files_lookup_fd_locked(files, oldfd);
1362	if (unlikely(!file))
1363		goto Ebadf;
1364	if (unlikely(err < 0)) {
1365		if (err == -EMFILE)
1366			goto Ebadf;
1367		goto out_unlock;
1368	}
1369	return do_dup2(files, file, newfd, flags);
1370
1371Ebadf:
1372	err = -EBADF;
1373out_unlock:
1374	spin_unlock(&files->file_lock);
1375	return err;
1376}
1377
1378SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags)
1379{
1380	return ksys_dup3(oldfd, newfd, flags);
1381}
1382
1383SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd)
1384{
1385	if (unlikely(newfd == oldfd)) { /* corner case */
1386		struct files_struct *files = current->files;
1387		struct file *f;
1388		int retval = oldfd;
1389
1390		rcu_read_lock();
1391		f = __fget_files_rcu(files, oldfd, 0);
1392		if (!f)
1393			retval = -EBADF;
1394		rcu_read_unlock();
1395		if (f)
1396			fput(f);
1397		return retval;
1398	}
1399	return ksys_dup3(oldfd, newfd, 0);
1400}
1401
1402SYSCALL_DEFINE1(dup, unsigned int, fildes)
1403{
1404	int ret = -EBADF;
1405	struct file *file = fget_raw(fildes);
1406
1407	if (file) {
1408		ret = get_unused_fd_flags(0);
1409		if (ret >= 0)
1410			fd_install(ret, file);
1411		else
1412			fput(file);
1413	}
1414	return ret;
1415}
1416
1417int f_dupfd(unsigned int from, struct file *file, unsigned flags)
1418{
1419	unsigned long nofile = rlimit(RLIMIT_NOFILE);
1420	int err;
1421	if (from >= nofile)
1422		return -EINVAL;
1423	err = alloc_fd(from, nofile, flags);
1424	if (err >= 0) {
1425		get_file(file);
1426		fd_install(err, file);
1427	}
1428	return err;
1429}
1430
1431int iterate_fd(struct files_struct *files, unsigned n,
1432		int (*f)(const void *, struct file *, unsigned),
1433		const void *p)
1434{
1435	struct fdtable *fdt;
1436	int res = 0;
1437	if (!files)
1438		return 0;
1439	spin_lock(&files->file_lock);
1440	for (fdt = files_fdtable(files); n < fdt->max_fds; n++) {
1441		struct file *file;
1442		file = rcu_dereference_check_fdtable(files, fdt->fd[n]);
1443		if (!file)
1444			continue;
1445		res = f(p, file, n);
1446		if (res)
1447			break;
1448	}
1449	spin_unlock(&files->file_lock);
1450	return res;
1451}
1452EXPORT_SYMBOL(iterate_fd);
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/file.c
   4 *
   5 *  Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
   6 *
   7 *  Manage the dynamic fd arrays in the process files_struct.
   8 */
   9
  10#include <linux/syscalls.h>
  11#include <linux/export.h>
  12#include <linux/fs.h>
  13#include <linux/kernel.h>
  14#include <linux/mm.h>
  15#include <linux/sched/signal.h>
  16#include <linux/slab.h>
  17#include <linux/file.h>
  18#include <linux/fdtable.h>
  19#include <linux/bitops.h>
  20#include <linux/spinlock.h>
  21#include <linux/rcupdate.h>
  22#include <linux/close_range.h>
 
  23#include <net/sock.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  24
  25unsigned int sysctl_nr_open __read_mostly = 1024*1024;
  26unsigned int sysctl_nr_open_min = BITS_PER_LONG;
  27/* our min() is unusable in constant expressions ;-/ */
  28#define __const_min(x, y) ((x) < (y) ? (x) : (y))
  29unsigned int sysctl_nr_open_max =
  30	__const_min(INT_MAX, ~(size_t)0/sizeof(void *)) & -BITS_PER_LONG;
  31
  32static void __free_fdtable(struct fdtable *fdt)
  33{
  34	kvfree(fdt->fd);
  35	kvfree(fdt->open_fds);
  36	kfree(fdt);
  37}
  38
  39static void free_fdtable_rcu(struct rcu_head *rcu)
  40{
  41	__free_fdtable(container_of(rcu, struct fdtable, rcu));
  42}
  43
  44#define BITBIT_NR(nr)	BITS_TO_LONGS(BITS_TO_LONGS(nr))
  45#define BITBIT_SIZE(nr)	(BITBIT_NR(nr) * sizeof(long))
  46
 
  47/*
  48 * Copy 'count' fd bits from the old table to the new table and clear the extra
  49 * space if any.  This does not copy the file pointers.  Called with the files
  50 * spinlock held for write.
  51 */
  52static void copy_fd_bitmaps(struct fdtable *nfdt, struct fdtable *ofdt,
  53			    unsigned int count)
  54{
  55	unsigned int cpy, set;
  56
  57	cpy = count / BITS_PER_BYTE;
  58	set = (nfdt->max_fds - count) / BITS_PER_BYTE;
  59	memcpy(nfdt->open_fds, ofdt->open_fds, cpy);
  60	memset((char *)nfdt->open_fds + cpy, 0, set);
  61	memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy);
  62	memset((char *)nfdt->close_on_exec + cpy, 0, set);
  63
  64	cpy = BITBIT_SIZE(count);
  65	set = BITBIT_SIZE(nfdt->max_fds) - cpy;
  66	memcpy(nfdt->full_fds_bits, ofdt->full_fds_bits, cpy);
  67	memset((char *)nfdt->full_fds_bits + cpy, 0, set);
  68}
  69
  70/*
  71 * Copy all file descriptors from the old table to the new, expanded table and
  72 * clear the extra space.  Called with the files spinlock held for write.
  73 */
  74static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
  75{
  76	size_t cpy, set;
  77
  78	BUG_ON(nfdt->max_fds < ofdt->max_fds);
  79
  80	cpy = ofdt->max_fds * sizeof(struct file *);
  81	set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
  82	memcpy(nfdt->fd, ofdt->fd, cpy);
  83	memset((char *)nfdt->fd + cpy, 0, set);
  84
  85	copy_fd_bitmaps(nfdt, ofdt, ofdt->max_fds);
  86}
  87
  88static struct fdtable * alloc_fdtable(unsigned int nr)
 
 
 
 
 
 
 
  89{
  90	struct fdtable *fdt;
 
  91	void *data;
  92
  93	/*
  94	 * Figure out how many fds we actually want to support in this fdtable.
  95	 * Allocation steps are keyed to the size of the fdarray, since it
  96	 * grows far faster than any of the other dynamic data. We try to fit
  97	 * the fdarray into comfortable page-tuned chunks: starting at 1024B
  98	 * and growing in powers of two from there on.
 
 
 
 
 
 
 
 
  99	 */
 100	nr /= (1024 / sizeof(struct file *));
 101	nr = roundup_pow_of_two(nr + 1);
 102	nr *= (1024 / sizeof(struct file *));
 
 103	/*
 104	 * Note that this can drive nr *below* what we had passed if sysctl_nr_open
 105	 * had been set lower between the check in expand_files() and here.  Deal
 106	 * with that in caller, it's cheaper that way.
 107	 *
 108	 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
 109	 * bitmaps handling below becomes unpleasant, to put it mildly...
 110	 */
 111	if (unlikely(nr > sysctl_nr_open))
 112		nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1;
 
 
 
 113
 114	fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL_ACCOUNT);
 115	if (!fdt)
 116		goto out;
 117	fdt->max_fds = nr;
 118	data = kvmalloc_array(nr, sizeof(struct file *), GFP_KERNEL_ACCOUNT);
 119	if (!data)
 120		goto out_fdt;
 121	fdt->fd = data;
 122
 123	data = kvmalloc(max_t(size_t,
 124				 2 * nr / BITS_PER_BYTE + BITBIT_SIZE(nr), L1_CACHE_BYTES),
 125				 GFP_KERNEL_ACCOUNT);
 126	if (!data)
 127		goto out_arr;
 128	fdt->open_fds = data;
 129	data += nr / BITS_PER_BYTE;
 130	fdt->close_on_exec = data;
 131	data += nr / BITS_PER_BYTE;
 132	fdt->full_fds_bits = data;
 133
 134	return fdt;
 135
 136out_arr:
 137	kvfree(fdt->fd);
 138out_fdt:
 139	kfree(fdt);
 140out:
 141	return NULL;
 142}
 143
 144/*
 145 * Expand the file descriptor table.
 146 * This function will allocate a new fdtable and both fd array and fdset, of
 147 * the given size.
 148 * Return <0 error code on error; 1 on successful completion.
 149 * The files->file_lock should be held on entry, and will be held on exit.
 150 */
 151static int expand_fdtable(struct files_struct *files, unsigned int nr)
 152	__releases(files->file_lock)
 153	__acquires(files->file_lock)
 154{
 155	struct fdtable *new_fdt, *cur_fdt;
 156
 157	spin_unlock(&files->file_lock);
 158	new_fdt = alloc_fdtable(nr);
 159
 160	/* make sure all __fd_install() have seen resize_in_progress
 161	 * or have finished their rcu_read_lock_sched() section.
 162	 */
 163	if (atomic_read(&files->count) > 1)
 164		synchronize_rcu();
 165
 166	spin_lock(&files->file_lock);
 167	if (!new_fdt)
 168		return -ENOMEM;
 169	/*
 170	 * extremely unlikely race - sysctl_nr_open decreased between the check in
 171	 * caller and alloc_fdtable().  Cheaper to catch it here...
 172	 */
 173	if (unlikely(new_fdt->max_fds <= nr)) {
 174		__free_fdtable(new_fdt);
 175		return -EMFILE;
 176	}
 177	cur_fdt = files_fdtable(files);
 178	BUG_ON(nr < cur_fdt->max_fds);
 179	copy_fdtable(new_fdt, cur_fdt);
 180	rcu_assign_pointer(files->fdt, new_fdt);
 181	if (cur_fdt != &files->fdtab)
 182		call_rcu(&cur_fdt->rcu, free_fdtable_rcu);
 183	/* coupled with smp_rmb() in __fd_install() */
 184	smp_wmb();
 185	return 1;
 186}
 187
 188/*
 189 * Expand files.
 190 * This function will expand the file structures, if the requested size exceeds
 191 * the current capacity and there is room for expansion.
 192 * Return <0 error code on error; 0 when nothing done; 1 when files were
 193 * expanded and execution may have blocked.
 194 * The files->file_lock should be held on entry, and will be held on exit.
 195 */
 196static int expand_files(struct files_struct *files, unsigned int nr)
 197	__releases(files->file_lock)
 198	__acquires(files->file_lock)
 199{
 200	struct fdtable *fdt;
 201	int expanded = 0;
 202
 203repeat:
 204	fdt = files_fdtable(files);
 205
 206	/* Do we need to expand? */
 207	if (nr < fdt->max_fds)
 208		return expanded;
 209
 210	/* Can we expand? */
 211	if (nr >= sysctl_nr_open)
 212		return -EMFILE;
 213
 214	if (unlikely(files->resize_in_progress)) {
 215		spin_unlock(&files->file_lock);
 216		expanded = 1;
 217		wait_event(files->resize_wait, !files->resize_in_progress);
 218		spin_lock(&files->file_lock);
 219		goto repeat;
 220	}
 221
 222	/* All good, so we try */
 223	files->resize_in_progress = true;
 224	expanded = expand_fdtable(files, nr);
 225	files->resize_in_progress = false;
 226
 227	wake_up_all(&files->resize_wait);
 228	return expanded;
 229}
 230
 231static inline void __set_close_on_exec(unsigned int fd, struct fdtable *fdt)
 
 232{
 233	__set_bit(fd, fdt->close_on_exec);
 
 
 
 
 
 234}
 235
 236static inline void __clear_close_on_exec(unsigned int fd, struct fdtable *fdt)
 237{
 238	if (test_bit(fd, fdt->close_on_exec))
 239		__clear_bit(fd, fdt->close_on_exec);
 240}
 241
 242static inline void __set_open_fd(unsigned int fd, struct fdtable *fdt)
 243{
 244	__set_bit(fd, fdt->open_fds);
 
 245	fd /= BITS_PER_LONG;
 246	if (!~fdt->open_fds[fd])
 247		__set_bit(fd, fdt->full_fds_bits);
 248}
 249
 250static inline void __clear_open_fd(unsigned int fd, struct fdtable *fdt)
 251{
 252	__clear_bit(fd, fdt->open_fds);
 253	__clear_bit(fd / BITS_PER_LONG, fdt->full_fds_bits);
 
 
 254}
 255
 256static unsigned int count_open_files(struct fdtable *fdt)
 257{
 258	unsigned int size = fdt->max_fds;
 259	unsigned int i;
 260
 261	/* Find the last open fd */
 262	for (i = size / BITS_PER_LONG; i > 0; ) {
 263		if (fdt->open_fds[--i])
 264			break;
 265	}
 266	i = (i + 1) * BITS_PER_LONG;
 267	return i;
 268}
 269
 270static unsigned int sane_fdtable_size(struct fdtable *fdt, unsigned int max_fds)
 
 
 
 
 
 
 
 
 
 271{
 272	unsigned int count;
 273
 274	count = count_open_files(fdt);
 275	if (max_fds < NR_OPEN_DEFAULT)
 276		max_fds = NR_OPEN_DEFAULT;
 277	return min(count, max_fds);
 
 
 
 
 278}
 279
 280/*
 281 * Allocate a new files structure and copy contents from the
 282 * passed in files structure.
 283 * errorp will be valid only when the returned files_struct is NULL.
 284 */
 285struct files_struct *dup_fd(struct files_struct *oldf, unsigned int max_fds, int *errorp)
 286{
 287	struct files_struct *newf;
 288	struct file **old_fds, **new_fds;
 289	unsigned int open_files, i;
 290	struct fdtable *old_fdt, *new_fdt;
 291
 292	*errorp = -ENOMEM;
 293	newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
 294	if (!newf)
 295		goto out;
 296
 297	atomic_set(&newf->count, 1);
 298
 299	spin_lock_init(&newf->file_lock);
 300	newf->resize_in_progress = false;
 301	init_waitqueue_head(&newf->resize_wait);
 302	newf->next_fd = 0;
 303	new_fdt = &newf->fdtab;
 304	new_fdt->max_fds = NR_OPEN_DEFAULT;
 305	new_fdt->close_on_exec = newf->close_on_exec_init;
 306	new_fdt->open_fds = newf->open_fds_init;
 307	new_fdt->full_fds_bits = newf->full_fds_bits_init;
 308	new_fdt->fd = &newf->fd_array[0];
 309
 310	spin_lock(&oldf->file_lock);
 311	old_fdt = files_fdtable(oldf);
 312	open_files = sane_fdtable_size(old_fdt, max_fds);
 313
 314	/*
 315	 * Check whether we need to allocate a larger fd array and fd set.
 316	 */
 317	while (unlikely(open_files > new_fdt->max_fds)) {
 318		spin_unlock(&oldf->file_lock);
 319
 320		if (new_fdt != &newf->fdtab)
 321			__free_fdtable(new_fdt);
 322
 323		new_fdt = alloc_fdtable(open_files - 1);
 324		if (!new_fdt) {
 325			*errorp = -ENOMEM;
 326			goto out_release;
 327		}
 328
 329		/* beyond sysctl_nr_open; nothing to do */
 330		if (unlikely(new_fdt->max_fds < open_files)) {
 331			__free_fdtable(new_fdt);
 332			*errorp = -EMFILE;
 333			goto out_release;
 334		}
 335
 336		/*
 337		 * Reacquire the oldf lock and a pointer to its fd table
 338		 * who knows it may have a new bigger fd table. We need
 339		 * the latest pointer.
 340		 */
 341		spin_lock(&oldf->file_lock);
 342		old_fdt = files_fdtable(oldf);
 343		open_files = sane_fdtable_size(old_fdt, max_fds);
 344	}
 345
 346	copy_fd_bitmaps(new_fdt, old_fdt, open_files);
 347
 348	old_fds = old_fdt->fd;
 349	new_fds = new_fdt->fd;
 350
 351	for (i = open_files; i != 0; i--) {
 352		struct file *f = *old_fds++;
 353		if (f) {
 354			get_file(f);
 355		} else {
 356			/*
 357			 * The fd may be claimed in the fd bitmap but not yet
 358			 * instantiated in the files array if a sibling thread
 359			 * is partway through open().  So make sure that this
 360			 * fd is available to the new process.
 361			 */
 362			__clear_open_fd(open_files - i, new_fdt);
 363		}
 364		rcu_assign_pointer(*new_fds++, f);
 365	}
 366	spin_unlock(&oldf->file_lock);
 367
 368	/* clear the remainder */
 369	memset(new_fds, 0, (new_fdt->max_fds - open_files) * sizeof(struct file *));
 370
 371	rcu_assign_pointer(newf->fdt, new_fdt);
 372
 373	return newf;
 374
 375out_release:
 376	kmem_cache_free(files_cachep, newf);
 377out:
 378	return NULL;
 379}
 380
 381static struct fdtable *close_files(struct files_struct * files)
 382{
 383	/*
 384	 * It is safe to dereference the fd table without RCU or
 385	 * ->file_lock because this is the last reference to the
 386	 * files structure.
 387	 */
 388	struct fdtable *fdt = rcu_dereference_raw(files->fdt);
 389	unsigned int i, j = 0;
 390
 391	for (;;) {
 392		unsigned long set;
 393		i = j * BITS_PER_LONG;
 394		if (i >= fdt->max_fds)
 395			break;
 396		set = fdt->open_fds[j++];
 397		while (set) {
 398			if (set & 1) {
 399				struct file * file = xchg(&fdt->fd[i], NULL);
 400				if (file) {
 401					filp_close(file, files);
 402					cond_resched();
 403				}
 404			}
 405			i++;
 406			set >>= 1;
 407		}
 408	}
 409
 410	return fdt;
 411}
 412
 413struct files_struct *get_files_struct(struct task_struct *task)
 414{
 415	struct files_struct *files;
 416
 417	task_lock(task);
 418	files = task->files;
 419	if (files)
 420		atomic_inc(&files->count);
 421	task_unlock(task);
 422
 423	return files;
 424}
 425
 426void put_files_struct(struct files_struct *files)
 427{
 428	if (atomic_dec_and_test(&files->count)) {
 429		struct fdtable *fdt = close_files(files);
 430
 431		/* free the arrays if they are not embedded */
 432		if (fdt != &files->fdtab)
 433			__free_fdtable(fdt);
 434		kmem_cache_free(files_cachep, files);
 435	}
 436}
 437
 438void reset_files_struct(struct files_struct *files)
 439{
 440	struct task_struct *tsk = current;
 441	struct files_struct *old;
 442
 443	old = tsk->files;
 444	task_lock(tsk);
 445	tsk->files = files;
 446	task_unlock(tsk);
 447	put_files_struct(old);
 448}
 449
 450void exit_files(struct task_struct *tsk)
 451{
 452	struct files_struct * files = tsk->files;
 453
 454	if (files) {
 455		task_lock(tsk);
 456		tsk->files = NULL;
 457		task_unlock(tsk);
 458		put_files_struct(files);
 459	}
 460}
 461
 462struct files_struct init_files = {
 463	.count		= ATOMIC_INIT(1),
 464	.fdt		= &init_files.fdtab,
 465	.fdtab		= {
 466		.max_fds	= NR_OPEN_DEFAULT,
 467		.fd		= &init_files.fd_array[0],
 468		.close_on_exec	= init_files.close_on_exec_init,
 469		.open_fds	= init_files.open_fds_init,
 470		.full_fds_bits	= init_files.full_fds_bits_init,
 471	},
 472	.file_lock	= __SPIN_LOCK_UNLOCKED(init_files.file_lock),
 473	.resize_wait	= __WAIT_QUEUE_HEAD_INITIALIZER(init_files.resize_wait),
 474};
 475
 476static unsigned int find_next_fd(struct fdtable *fdt, unsigned int start)
 477{
 478	unsigned int maxfd = fdt->max_fds;
 479	unsigned int maxbit = maxfd / BITS_PER_LONG;
 480	unsigned int bitbit = start / BITS_PER_LONG;
 
 
 
 
 
 
 
 
 
 481
 482	bitbit = find_next_zero_bit(fdt->full_fds_bits, maxbit, bitbit) * BITS_PER_LONG;
 483	if (bitbit > maxfd)
 484		return maxfd;
 485	if (bitbit > start)
 486		start = bitbit;
 487	return find_next_zero_bit(fdt->open_fds, maxfd, start);
 488}
 489
 490/*
 491 * allocate a file descriptor, mark it busy.
 492 */
 493int __alloc_fd(struct files_struct *files,
 494	       unsigned start, unsigned end, unsigned flags)
 495{
 
 496	unsigned int fd;
 497	int error;
 498	struct fdtable *fdt;
 499
 500	spin_lock(&files->file_lock);
 501repeat:
 502	fdt = files_fdtable(files);
 503	fd = start;
 504	if (fd < files->next_fd)
 505		fd = files->next_fd;
 506
 507	if (fd < fdt->max_fds)
 508		fd = find_next_fd(fdt, fd);
 509
 510	/*
 511	 * N.B. For clone tasks sharing a files structure, this test
 512	 * will limit the total number of files that can be opened.
 513	 */
 514	error = -EMFILE;
 515	if (fd >= end)
 516		goto out;
 517
 518	error = expand_files(files, fd);
 519	if (error < 0)
 520		goto out;
 
 521
 522	/*
 523	 * If we needed to expand the fs array we
 524	 * might have blocked - try again.
 525	 */
 526	if (error)
 527		goto repeat;
 
 528
 529	if (start <= files->next_fd)
 530		files->next_fd = fd + 1;
 531
 532	__set_open_fd(fd, fdt);
 533	if (flags & O_CLOEXEC)
 534		__set_close_on_exec(fd, fdt);
 535	else
 536		__clear_close_on_exec(fd, fdt);
 537	error = fd;
 538#if 1
 539	/* Sanity check */
 540	if (rcu_access_pointer(fdt->fd[fd]) != NULL) {
 541		printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd);
 542		rcu_assign_pointer(fdt->fd[fd], NULL);
 543	}
 544#endif
 545
 546out:
 547	spin_unlock(&files->file_lock);
 548	return error;
 549}
 550
 551static int alloc_fd(unsigned start, unsigned flags)
 552{
 553	return __alloc_fd(current->files, start, rlimit(RLIMIT_NOFILE), flags);
 554}
 555
 556int __get_unused_fd_flags(unsigned flags, unsigned long nofile)
 557{
 558	return __alloc_fd(current->files, 0, nofile, flags);
 559}
 560
 561int get_unused_fd_flags(unsigned flags)
 562{
 563	return __get_unused_fd_flags(flags, rlimit(RLIMIT_NOFILE));
 564}
 565EXPORT_SYMBOL(get_unused_fd_flags);
 566
 567static void __put_unused_fd(struct files_struct *files, unsigned int fd)
 568{
 569	struct fdtable *fdt = files_fdtable(files);
 570	__clear_open_fd(fd, fdt);
 571	if (fd < files->next_fd)
 572		files->next_fd = fd;
 573}
 574
 575void put_unused_fd(unsigned int fd)
 576{
 577	struct files_struct *files = current->files;
 578	spin_lock(&files->file_lock);
 579	__put_unused_fd(files, fd);
 580	spin_unlock(&files->file_lock);
 581}
 582
 583EXPORT_SYMBOL(put_unused_fd);
 584
 585/*
 586 * Install a file pointer in the fd array.
 587 *
 588 * The VFS is full of places where we drop the files lock between
 589 * setting the open_fds bitmap and installing the file in the file
 590 * array.  At any such point, we are vulnerable to a dup2() race
 591 * installing a file in the array before us.  We need to detect this and
 592 * fput() the struct file we are about to overwrite in this case.
 593 *
 594 * It should never happen - if we allow dup2() do it, _really_ bad things
 595 * will follow.
 596 *
 597 * NOTE: __fd_install() variant is really, really low-level; don't
 598 * use it unless you are forced to by truly lousy API shoved down
 599 * your throat.  'files' *MUST* be either current->files or obtained
 600 * by get_files_struct(current) done by whoever had given it to you,
 601 * or really bad things will happen.  Normally you want to use
 602 * fd_install() instead.
 603 */
 604
 605void __fd_install(struct files_struct *files, unsigned int fd,
 606		struct file *file)
 607{
 
 608	struct fdtable *fdt;
 609
 
 
 
 610	rcu_read_lock_sched();
 611
 612	if (unlikely(files->resize_in_progress)) {
 613		rcu_read_unlock_sched();
 614		spin_lock(&files->file_lock);
 615		fdt = files_fdtable(files);
 616		BUG_ON(fdt->fd[fd] != NULL);
 617		rcu_assign_pointer(fdt->fd[fd], file);
 618		spin_unlock(&files->file_lock);
 619		return;
 620	}
 621	/* coupled with smp_wmb() in expand_fdtable() */
 622	smp_rmb();
 623	fdt = rcu_dereference_sched(files->fdt);
 624	BUG_ON(fdt->fd[fd] != NULL);
 625	rcu_assign_pointer(fdt->fd[fd], file);
 626	rcu_read_unlock_sched();
 627}
 628
 629/*
 630 * This consumes the "file" refcount, so callers should treat it
 631 * as if they had called fput(file).
 
 
 
 
 
 
 
 
 
 632 */
 633void fd_install(unsigned int fd, struct file *file)
 634{
 635	__fd_install(current->files, fd, file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 636}
 637
 638EXPORT_SYMBOL(fd_install);
 639
 640static struct file *pick_file(struct files_struct *files, unsigned fd)
 641{
 642	struct file *file = NULL;
 643	struct fdtable *fdt;
 644
 645	spin_lock(&files->file_lock);
 646	fdt = files_fdtable(files);
 647	if (fd >= fdt->max_fds)
 648		goto out_unlock;
 649	file = fdt->fd[fd];
 650	if (!file)
 651		goto out_unlock;
 652	rcu_assign_pointer(fdt->fd[fd], NULL);
 653	__put_unused_fd(files, fd);
 654
 655out_unlock:
 656	spin_unlock(&files->file_lock);
 657	return file;
 658}
 
 659
 660/*
 661 * The same warnings as for __alloc_fd()/__fd_install() apply here...
 
 
 
 
 
 662 */
 663int __close_fd(struct files_struct *files, unsigned fd)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 664{
 665	struct file *file;
 
 666
 667	file = pick_file(files, fd);
 668	if (!file)
 669		return -EBADF;
 670
 671	return filp_close(file, files);
 
 
 
 
 
 
 
 
 
 
 
 
 
 672}
 673EXPORT_SYMBOL(__close_fd); /* for ksys_close() */
 674
 675/**
 676 * __close_range() - Close all file descriptors in a given range.
 677 *
 678 * @fd:     starting file descriptor to close
 679 * @max_fd: last file descriptor to close
 
 680 *
 681 * This closes a range of file descriptors. All file descriptors
 682 * from @fd up to and including @max_fd are closed.
 
 683 */
 684int __close_range(unsigned fd, unsigned max_fd, unsigned int flags)
 
 685{
 686	unsigned int cur_max;
 687	struct task_struct *me = current;
 688	struct files_struct *cur_fds = me->files, *fds = NULL;
 689
 690	if (flags & ~CLOSE_RANGE_UNSHARE)
 691		return -EINVAL;
 692
 693	if (fd > max_fd)
 694		return -EINVAL;
 695
 696	rcu_read_lock();
 697	cur_max = files_fdtable(cur_fds)->max_fds;
 698	rcu_read_unlock();
 699
 700	/* cap to last valid index into fdtable */
 701	cur_max--;
 702
 703	if (flags & CLOSE_RANGE_UNSHARE) {
 704		int ret;
 705		unsigned int max_unshare_fds = NR_OPEN_MAX;
 706
 707		/*
 708		 * If the requested range is greater than the current maximum,
 709		 * we're closing everything so only copy all file descriptors
 710		 * beneath the lowest file descriptor.
 711		 */
 712		if (max_fd >= cur_max)
 713			max_unshare_fds = fd;
 714
 715		ret = unshare_fd(CLONE_FILES, max_unshare_fds, &fds);
 716		if (ret)
 717			return ret;
 718
 
 
 
 719		/*
 720		 * We used to share our file descriptor table, and have now
 721		 * created a private one, make sure we're using it below.
 722		 */
 723		if (fds)
 724			swap(cur_fds, fds);
 725	}
 726
 727	max_fd = min(max_fd, cur_max);
 728	while (fd <= max_fd) {
 729		struct file *file;
 730
 731		file = pick_file(cur_fds, fd++);
 732		if (!file)
 733			continue;
 734
 735		filp_close(file, cur_fds);
 736		cond_resched();
 737	}
 738
 739	if (fds) {
 740		/*
 741		 * We're done closing the files we were supposed to. Time to install
 742		 * the new file descriptor table and drop the old one.
 743		 */
 744		task_lock(me);
 745		me->files = cur_fds;
 746		task_unlock(me);
 747		put_files_struct(fds);
 748	}
 749
 750	return 0;
 751}
 752
 753/*
 754 * variant of __close_fd that gets a ref on the file for later fput.
 755 * The caller must ensure that filp_close() called on the file, and then
 756 * an fput().
 
 
 
 757 */
 758int __close_fd_get_file(unsigned int fd, struct file **res)
 759{
 760	struct files_struct *files = current->files;
 761	struct file *file;
 762	struct fdtable *fdt;
 763
 764	spin_lock(&files->file_lock);
 765	fdt = files_fdtable(files);
 766	if (fd >= fdt->max_fds)
 767		goto out_unlock;
 768	file = fdt->fd[fd];
 769	if (!file)
 770		goto out_unlock;
 771	rcu_assign_pointer(fdt->fd[fd], NULL);
 772	__put_unused_fd(files, fd);
 773	spin_unlock(&files->file_lock);
 774	get_file(file);
 775	*res = file;
 776	return 0;
 777
 778out_unlock:
 779	spin_unlock(&files->file_lock);
 780	*res = NULL;
 781	return -ENOENT;
 782}
 783
 784void do_close_on_exec(struct files_struct *files)
 785{
 786	unsigned i;
 787	struct fdtable *fdt;
 788
 789	/* exec unshares first */
 790	spin_lock(&files->file_lock);
 791	for (i = 0; ; i++) {
 792		unsigned long set;
 793		unsigned fd = i * BITS_PER_LONG;
 794		fdt = files_fdtable(files);
 795		if (fd >= fdt->max_fds)
 796			break;
 797		set = fdt->close_on_exec[i];
 798		if (!set)
 799			continue;
 800		fdt->close_on_exec[i] = 0;
 801		for ( ; set ; fd++, set >>= 1) {
 802			struct file *file;
 803			if (!(set & 1))
 804				continue;
 805			file = fdt->fd[fd];
 806			if (!file)
 807				continue;
 808			rcu_assign_pointer(fdt->fd[fd], NULL);
 809			__put_unused_fd(files, fd);
 810			spin_unlock(&files->file_lock);
 811			filp_close(file, files);
 812			cond_resched();
 813			spin_lock(&files->file_lock);
 814		}
 815
 816	}
 817	spin_unlock(&files->file_lock);
 818}
 819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 820static struct file *__fget_files(struct files_struct *files, unsigned int fd,
 821				 fmode_t mask, unsigned int refs)
 822{
 823	struct file *file;
 824
 825	rcu_read_lock();
 826loop:
 827	file = fcheck_files(files, fd);
 828	if (file) {
 829		/* File object ref couldn't be taken.
 830		 * dup2() atomicity guarantee is the reason
 831		 * we loop to catch the new file (or NULL pointer)
 832		 */
 833		if (file->f_mode & mask)
 834			file = NULL;
 835		else if (!get_file_rcu_many(file, refs))
 836			goto loop;
 837	}
 838	rcu_read_unlock();
 839
 840	return file;
 841}
 842
 843static inline struct file *__fget(unsigned int fd, fmode_t mask,
 844				  unsigned int refs)
 845{
 846	return __fget_files(current->files, fd, mask, refs);
 847}
 848
 849struct file *fget_many(unsigned int fd, unsigned int refs)
 850{
 851	return __fget(fd, FMODE_PATH, refs);
 852}
 853
 854struct file *fget(unsigned int fd)
 855{
 856	return __fget(fd, FMODE_PATH, 1);
 857}
 858EXPORT_SYMBOL(fget);
 859
 860struct file *fget_raw(unsigned int fd)
 861{
 862	return __fget(fd, 0, 1);
 863}
 864EXPORT_SYMBOL(fget_raw);
 865
 866struct file *fget_task(struct task_struct *task, unsigned int fd)
 867{
 868	struct file *file = NULL;
 869
 870	task_lock(task);
 871	if (task->files)
 872		file = __fget_files(task->files, fd, 0, 1);
 873	task_unlock(task);
 874
 875	return file;
 876}
 877
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 878/*
 879 * Lightweight file lookup - no refcnt increment if fd table isn't shared.
 880 *
 881 * You can use this instead of fget if you satisfy all of the following
 882 * conditions:
 883 * 1) You must call fput_light before exiting the syscall and returning control
 884 *    to userspace (i.e. you cannot remember the returned struct file * after
 885 *    returning to userspace).
 886 * 2) You must not call filp_close on the returned struct file * in between
 887 *    calls to fget_light and fput_light.
 888 * 3) You must not clone the current task in between the calls to fget_light
 889 *    and fput_light.
 890 *
 891 * The fput_needed flag returned by fget_light should be passed to the
 892 * corresponding fput_light.
 
 
 
 
 
 
 
 893 */
 894static unsigned long __fget_light(unsigned int fd, fmode_t mask)
 895{
 896	struct files_struct *files = current->files;
 897	struct file *file;
 898
 899	if (atomic_read(&files->count) == 1) {
 900		file = __fcheck_files(files, fd);
 
 
 
 
 
 
 
 
 
 901		if (!file || unlikely(file->f_mode & mask))
 902			return 0;
 903		return (unsigned long)file;
 904	} else {
 905		file = __fget(fd, mask, 1);
 906		if (!file)
 907			return 0;
 908		return FDPUT_FPUT | (unsigned long)file;
 909	}
 910}
 911unsigned long __fdget(unsigned int fd)
 912{
 913	return __fget_light(fd, FMODE_PATH);
 914}
 915EXPORT_SYMBOL(__fdget);
 916
 917unsigned long __fdget_raw(unsigned int fd)
 918{
 919	return __fget_light(fd, 0);
 920}
 921
 922unsigned long __fdget_pos(unsigned int fd)
 
 
 
 
 
 
 
 
 
 
 923{
 924	unsigned long v = __fdget(fd);
 925	struct file *file = (struct file *)(v & ~3);
 
 
 
 
 
 
 926
 927	if (file && (file->f_mode & FMODE_ATOMIC_POS)) {
 928		if (file_count(file) > 1) {
 929			v |= FDPUT_POS_UNLOCK;
 930			mutex_lock(&file->f_pos_lock);
 931		}
 932	}
 933	return v;
 934}
 935
 936void __f_unlock_pos(struct file *f)
 937{
 938	mutex_unlock(&f->f_pos_lock);
 939}
 940
 941/*
 942 * We only lock f_pos if we have threads or if the file might be
 943 * shared with another process. In both cases we'll have an elevated
 944 * file count (done either by fdget() or by fork()).
 945 */
 946
 947void set_close_on_exec(unsigned int fd, int flag)
 948{
 949	struct files_struct *files = current->files;
 950	struct fdtable *fdt;
 951	spin_lock(&files->file_lock);
 952	fdt = files_fdtable(files);
 953	if (flag)
 954		__set_close_on_exec(fd, fdt);
 955	else
 956		__clear_close_on_exec(fd, fdt);
 957	spin_unlock(&files->file_lock);
 958}
 959
 960bool get_close_on_exec(unsigned int fd)
 961{
 962	struct files_struct *files = current->files;
 963	struct fdtable *fdt;
 964	bool res;
 965	rcu_read_lock();
 966	fdt = files_fdtable(files);
 967	res = close_on_exec(fd, fdt);
 968	rcu_read_unlock();
 969	return res;
 970}
 971
 972static int do_dup2(struct files_struct *files,
 973	struct file *file, unsigned fd, unsigned flags)
 974__releases(&files->file_lock)
 975{
 976	struct file *tofree;
 977	struct fdtable *fdt;
 978
 979	/*
 980	 * We need to detect attempts to do dup2() over allocated but still
 981	 * not finished descriptor.  NB: OpenBSD avoids that at the price of
 982	 * extra work in their equivalent of fget() - they insert struct
 983	 * file immediately after grabbing descriptor, mark it larval if
 984	 * more work (e.g. actual opening) is needed and make sure that
 985	 * fget() treats larval files as absent.  Potentially interesting,
 986	 * but while extra work in fget() is trivial, locking implications
 987	 * and amount of surgery on open()-related paths in VFS are not.
 988	 * FreeBSD fails with -EBADF in the same situation, NetBSD "solution"
 989	 * deadlocks in rather amusing ways, AFAICS.  All of that is out of
 990	 * scope of POSIX or SUS, since neither considers shared descriptor
 991	 * tables and this condition does not arise without those.
 992	 */
 993	fdt = files_fdtable(files);
 
 994	tofree = fdt->fd[fd];
 995	if (!tofree && fd_is_open(fd, fdt))
 996		goto Ebusy;
 997	get_file(file);
 998	rcu_assign_pointer(fdt->fd[fd], file);
 999	__set_open_fd(fd, fdt);
1000	if (flags & O_CLOEXEC)
1001		__set_close_on_exec(fd, fdt);
1002	else
1003		__clear_close_on_exec(fd, fdt);
1004	spin_unlock(&files->file_lock);
1005
1006	if (tofree)
1007		filp_close(tofree, files);
1008
1009	return fd;
1010
1011Ebusy:
1012	spin_unlock(&files->file_lock);
1013	return -EBUSY;
1014}
1015
1016int replace_fd(unsigned fd, struct file *file, unsigned flags)
1017{
1018	int err;
1019	struct files_struct *files = current->files;
1020
1021	if (!file)
1022		return __close_fd(files, fd);
1023
1024	if (fd >= rlimit(RLIMIT_NOFILE))
1025		return -EBADF;
1026
1027	spin_lock(&files->file_lock);
1028	err = expand_files(files, fd);
1029	if (unlikely(err < 0))
1030		goto out_unlock;
1031	return do_dup2(files, file, fd, flags);
1032
1033out_unlock:
1034	spin_unlock(&files->file_lock);
1035	return err;
1036}
1037
1038/**
1039 * __receive_fd() - Install received file into file descriptor table
1040 *
1041 * @fd: fd to install into (if negative, a new fd will be allocated)
1042 * @file: struct file that was received from another process
1043 * @ufd: __user pointer to write new fd number to
1044 * @o_flags: the O_* flags to apply to the new fd entry
1045 *
1046 * Installs a received file into the file descriptor table, with appropriate
1047 * checks and count updates. Optionally writes the fd number to userspace, if
1048 * @ufd is non-NULL.
1049 *
1050 * This helper handles its own reference counting of the incoming
1051 * struct file.
1052 *
1053 * Returns newly install fd or -ve on error.
1054 */
1055int __receive_fd(int fd, struct file *file, int __user *ufd, unsigned int o_flags)
1056{
1057	int new_fd;
1058	int error;
1059
1060	error = security_file_receive(file);
1061	if (error)
1062		return error;
1063
1064	if (fd < 0) {
1065		new_fd = get_unused_fd_flags(o_flags);
1066		if (new_fd < 0)
1067			return new_fd;
1068	} else {
1069		new_fd = fd;
1070	}
1071
1072	if (ufd) {
1073		error = put_user(new_fd, ufd);
1074		if (error) {
1075			if (fd < 0)
1076				put_unused_fd(new_fd);
1077			return error;
1078		}
1079	}
1080
1081	if (fd < 0) {
1082		fd_install(new_fd, get_file(file));
1083	} else {
1084		error = replace_fd(new_fd, file, o_flags);
1085		if (error)
1086			return error;
1087	}
 
 
1088
1089	/* Bump the sock usage counts, if any. */
 
 
 
 
 
1090	__receive_sock(file);
1091	return new_fd;
1092}
1093
1094static int ksys_dup3(unsigned int oldfd, unsigned int newfd, int flags)
1095{
1096	int err = -EBADF;
1097	struct file *file;
1098	struct files_struct *files = current->files;
1099
1100	if ((flags & ~O_CLOEXEC) != 0)
1101		return -EINVAL;
1102
1103	if (unlikely(oldfd == newfd))
1104		return -EINVAL;
1105
1106	if (newfd >= rlimit(RLIMIT_NOFILE))
1107		return -EBADF;
1108
1109	spin_lock(&files->file_lock);
1110	err = expand_files(files, newfd);
1111	file = fcheck(oldfd);
1112	if (unlikely(!file))
1113		goto Ebadf;
1114	if (unlikely(err < 0)) {
1115		if (err == -EMFILE)
1116			goto Ebadf;
1117		goto out_unlock;
1118	}
1119	return do_dup2(files, file, newfd, flags);
1120
1121Ebadf:
1122	err = -EBADF;
1123out_unlock:
1124	spin_unlock(&files->file_lock);
1125	return err;
1126}
1127
1128SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags)
1129{
1130	return ksys_dup3(oldfd, newfd, flags);
1131}
1132
1133SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd)
1134{
1135	if (unlikely(newfd == oldfd)) { /* corner case */
1136		struct files_struct *files = current->files;
 
1137		int retval = oldfd;
1138
1139		rcu_read_lock();
1140		if (!fcheck_files(files, oldfd))
 
1141			retval = -EBADF;
1142		rcu_read_unlock();
 
 
1143		return retval;
1144	}
1145	return ksys_dup3(oldfd, newfd, 0);
1146}
1147
1148SYSCALL_DEFINE1(dup, unsigned int, fildes)
1149{
1150	int ret = -EBADF;
1151	struct file *file = fget_raw(fildes);
1152
1153	if (file) {
1154		ret = get_unused_fd_flags(0);
1155		if (ret >= 0)
1156			fd_install(ret, file);
1157		else
1158			fput(file);
1159	}
1160	return ret;
1161}
1162
1163int f_dupfd(unsigned int from, struct file *file, unsigned flags)
1164{
 
1165	int err;
1166	if (from >= rlimit(RLIMIT_NOFILE))
1167		return -EINVAL;
1168	err = alloc_fd(from, flags);
1169	if (err >= 0) {
1170		get_file(file);
1171		fd_install(err, file);
1172	}
1173	return err;
1174}
1175
1176int iterate_fd(struct files_struct *files, unsigned n,
1177		int (*f)(const void *, struct file *, unsigned),
1178		const void *p)
1179{
1180	struct fdtable *fdt;
1181	int res = 0;
1182	if (!files)
1183		return 0;
1184	spin_lock(&files->file_lock);
1185	for (fdt = files_fdtable(files); n < fdt->max_fds; n++) {
1186		struct file *file;
1187		file = rcu_dereference_check_fdtable(files, fdt->fd[n]);
1188		if (!file)
1189			continue;
1190		res = f(p, file, n);
1191		if (res)
1192			break;
1193	}
1194	spin_unlock(&files->file_lock);
1195	return res;
1196}
1197EXPORT_SYMBOL(iterate_fd);