Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Copyright (C) 2012 - 2014 Allwinner Tech
  4 * Pan Nan <pannan@allwinnertech.com>
  5 *
  6 * Copyright (C) 2014 Maxime Ripard
  7 * Maxime Ripard <maxime.ripard@free-electrons.com>
  8 */
  9
 10#include <linux/bitfield.h>
 11#include <linux/clk.h>
 12#include <linux/delay.h>
 13#include <linux/device.h>
 14#include <linux/interrupt.h>
 15#include <linux/io.h>
 16#include <linux/module.h>
 17#include <linux/of.h>
 18#include <linux/platform_device.h>
 19#include <linux/pm_runtime.h>
 20#include <linux/reset.h>
 21#include <linux/dmaengine.h>
 22
 23#include <linux/spi/spi.h>
 24
 25#define SUN6I_AUTOSUSPEND_TIMEOUT	2000
 26
 27#define SUN6I_FIFO_DEPTH		128
 28#define SUN8I_FIFO_DEPTH		64
 29
 30#define SUN6I_GBL_CTL_REG		0x04
 31#define SUN6I_GBL_CTL_BUS_ENABLE		BIT(0)
 32#define SUN6I_GBL_CTL_MASTER			BIT(1)
 33#define SUN6I_GBL_CTL_TP			BIT(7)
 34#define SUN6I_GBL_CTL_RST			BIT(31)
 35
 36#define SUN6I_TFR_CTL_REG		0x08
 37#define SUN6I_TFR_CTL_CPHA			BIT(0)
 38#define SUN6I_TFR_CTL_CPOL			BIT(1)
 39#define SUN6I_TFR_CTL_SPOL			BIT(2)
 40#define SUN6I_TFR_CTL_CS_MASK			0x30
 41#define SUN6I_TFR_CTL_CS(cs)			(((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
 42#define SUN6I_TFR_CTL_CS_MANUAL			BIT(6)
 43#define SUN6I_TFR_CTL_CS_LEVEL			BIT(7)
 44#define SUN6I_TFR_CTL_DHB			BIT(8)
 45#define SUN6I_TFR_CTL_SDC			BIT(11)
 46#define SUN6I_TFR_CTL_FBS			BIT(12)
 47#define SUN6I_TFR_CTL_SDM			BIT(13)
 48#define SUN6I_TFR_CTL_XCH			BIT(31)
 49
 50#define SUN6I_INT_CTL_REG		0x10
 51#define SUN6I_INT_CTL_RF_RDY			BIT(0)
 52#define SUN6I_INT_CTL_TF_ERQ			BIT(4)
 53#define SUN6I_INT_CTL_RF_OVF			BIT(8)
 54#define SUN6I_INT_CTL_TC			BIT(12)
 55
 56#define SUN6I_INT_STA_REG		0x14
 57
 58#define SUN6I_FIFO_CTL_REG		0x18
 59#define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK	0xff
 60#define SUN6I_FIFO_CTL_RF_DRQ_EN		BIT(8)
 61#define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS	0
 62#define SUN6I_FIFO_CTL_RF_RST			BIT(15)
 63#define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK	0xff
 64#define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS	16
 65#define SUN6I_FIFO_CTL_TF_DRQ_EN		BIT(24)
 66#define SUN6I_FIFO_CTL_TF_RST			BIT(31)
 67
 68#define SUN6I_FIFO_STA_REG		0x1c
 69#define SUN6I_FIFO_STA_RF_CNT_MASK		GENMASK(7, 0)
 70#define SUN6I_FIFO_STA_TF_CNT_MASK		GENMASK(23, 16)
 71
 72#define SUN6I_CLK_CTL_REG		0x24
 73#define SUN6I_CLK_CTL_CDR2_MASK			0xff
 74#define SUN6I_CLK_CTL_CDR2(div)			(((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
 75#define SUN6I_CLK_CTL_CDR1_MASK			0xf
 76#define SUN6I_CLK_CTL_CDR1(div)			(((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
 77#define SUN6I_CLK_CTL_DRS			BIT(12)
 78
 79#define SUN6I_MAX_XFER_SIZE		0xffffff
 80
 81#define SUN6I_BURST_CNT_REG		0x30
 82
 83#define SUN6I_XMIT_CNT_REG		0x34
 84
 85#define SUN6I_BURST_CTL_CNT_REG		0x38
 86#define SUN6I_BURST_CTL_CNT_STC_MASK		GENMASK(23, 0)
 87#define SUN6I_BURST_CTL_CNT_DRM			BIT(28)
 88#define SUN6I_BURST_CTL_CNT_QUAD_EN		BIT(29)
 89
 90#define SUN6I_TXDATA_REG		0x200
 91#define SUN6I_RXDATA_REG		0x300
 92
 93struct sun6i_spi_cfg {
 94	unsigned long		fifo_depth;
 95	bool			has_clk_ctl;
 96	u32			mode_bits;
 97};
 98
 99struct sun6i_spi {
100	struct spi_controller	*host;
101	void __iomem		*base_addr;
102	dma_addr_t		dma_addr_rx;
103	dma_addr_t		dma_addr_tx;
104	struct clk		*hclk;
105	struct clk		*mclk;
106	struct reset_control	*rstc;
107
108	struct completion	done;
109	struct completion	dma_rx_done;
110
111	const u8		*tx_buf;
112	u8			*rx_buf;
113	int			len;
114	const struct sun6i_spi_cfg *cfg;
115};
116
117static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
118{
119	return readl(sspi->base_addr + reg);
120}
121
122static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
123{
124	writel(value, sspi->base_addr + reg);
125}
126
127static inline u32 sun6i_spi_get_rx_fifo_count(struct sun6i_spi *sspi)
128{
129	u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
130
131	return FIELD_GET(SUN6I_FIFO_STA_RF_CNT_MASK, reg);
132}
133
134static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi)
135{
136	u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
137
138	return FIELD_GET(SUN6I_FIFO_STA_TF_CNT_MASK, reg);
139}
140
141static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask)
142{
143	u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
144
145	reg &= ~mask;
146	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
147}
148
149static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi)
150{
151	u32 len;
152	u8 byte;
153
154	/* See how much data is available */
155	len = sun6i_spi_get_rx_fifo_count(sspi);
156
157	while (len--) {
158		byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
159		if (sspi->rx_buf)
160			*sspi->rx_buf++ = byte;
161	}
162}
163
164static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi)
165{
166	u32 cnt;
167	int len;
168	u8 byte;
169
170	/* See how much data we can fit */
171	cnt = sspi->cfg->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi);
172
173	len = min((int)cnt, sspi->len);
174
175	while (len--) {
176		byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
177		writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
178		sspi->len--;
179	}
180}
181
182static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
183{
184	struct sun6i_spi *sspi = spi_controller_get_devdata(spi->controller);
185	u32 reg;
186
187	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
188	reg &= ~SUN6I_TFR_CTL_CS_MASK;
189	reg |= SUN6I_TFR_CTL_CS(spi_get_chipselect(spi, 0));
190
191	if (enable)
192		reg |= SUN6I_TFR_CTL_CS_LEVEL;
193	else
194		reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
195
196	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
197}
198
199static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
200{
201	return SUN6I_MAX_XFER_SIZE - 1;
202}
203
204static void sun6i_spi_dma_rx_cb(void *param)
205{
206	struct sun6i_spi *sspi = param;
207
208	complete(&sspi->dma_rx_done);
209}
210
211static int sun6i_spi_prepare_dma(struct sun6i_spi *sspi,
212				 struct spi_transfer *tfr)
213{
214	struct dma_async_tx_descriptor *rxdesc, *txdesc;
215	struct spi_controller *host = sspi->host;
216
217	rxdesc = NULL;
218	if (tfr->rx_buf) {
219		struct dma_slave_config rxconf = {
220			.direction = DMA_DEV_TO_MEM,
221			.src_addr = sspi->dma_addr_rx,
222			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
223			.src_maxburst = 8,
224		};
225
226		dmaengine_slave_config(host->dma_rx, &rxconf);
227
228		rxdesc = dmaengine_prep_slave_sg(host->dma_rx,
229						 tfr->rx_sg.sgl,
230						 tfr->rx_sg.nents,
231						 DMA_DEV_TO_MEM,
232						 DMA_PREP_INTERRUPT);
233		if (!rxdesc)
234			return -EINVAL;
235		rxdesc->callback_param = sspi;
236		rxdesc->callback = sun6i_spi_dma_rx_cb;
237	}
238
239	txdesc = NULL;
240	if (tfr->tx_buf) {
241		struct dma_slave_config txconf = {
242			.direction = DMA_MEM_TO_DEV,
243			.dst_addr = sspi->dma_addr_tx,
244			.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
245			.dst_maxburst = 8,
246		};
247
248		dmaengine_slave_config(host->dma_tx, &txconf);
249
250		txdesc = dmaengine_prep_slave_sg(host->dma_tx,
251						 tfr->tx_sg.sgl,
252						 tfr->tx_sg.nents,
253						 DMA_MEM_TO_DEV,
254						 DMA_PREP_INTERRUPT);
255		if (!txdesc) {
256			if (rxdesc)
257				dmaengine_terminate_sync(host->dma_rx);
258			return -EINVAL;
259		}
260	}
261
262	if (tfr->rx_buf) {
263		dmaengine_submit(rxdesc);
264		dma_async_issue_pending(host->dma_rx);
265	}
266
267	if (tfr->tx_buf) {
268		dmaengine_submit(txdesc);
269		dma_async_issue_pending(host->dma_tx);
270	}
271
272	return 0;
273}
274
275static int sun6i_spi_transfer_one(struct spi_controller *host,
276				  struct spi_device *spi,
277				  struct spi_transfer *tfr)
278{
279	struct sun6i_spi *sspi = spi_controller_get_devdata(host);
280	unsigned int div, div_cdr1, div_cdr2;
281	unsigned long time_left;
282	unsigned int start, end, tx_time;
283	unsigned int trig_level;
284	unsigned int tx_len = 0, rx_len = 0, nbits = 0;
285	bool use_dma;
286	int ret = 0;
287	u32 reg;
288
289	if (tfr->len > SUN6I_MAX_XFER_SIZE)
290		return -EINVAL;
291
292	reinit_completion(&sspi->done);
293	reinit_completion(&sspi->dma_rx_done);
294	sspi->tx_buf = tfr->tx_buf;
295	sspi->rx_buf = tfr->rx_buf;
296	sspi->len = tfr->len;
297	use_dma = host->can_dma ? host->can_dma(host, spi, tfr) : false;
298
299	/* Clear pending interrupts */
300	sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
301
302	/* Reset FIFO */
303	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
304			SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
305
306	reg = 0;
307
308	if (!use_dma) {
309		/*
310		 * Setup FIFO interrupt trigger level
311		 * Here we choose 3/4 of the full fifo depth, as it's
312		 * the hardcoded value used in old generation of Allwinner
313		 * SPI controller. (See spi-sun4i.c)
314		 */
315		trig_level = sspi->cfg->fifo_depth / 4 * 3;
316	} else {
317		/*
318		 * Setup FIFO DMA request trigger level
319		 * We choose 1/2 of the full fifo depth, that value will
320		 * be used as DMA burst length.
321		 */
322		trig_level = sspi->cfg->fifo_depth / 2;
323
324		if (tfr->tx_buf)
325			reg |= SUN6I_FIFO_CTL_TF_DRQ_EN;
326		if (tfr->rx_buf)
327			reg |= SUN6I_FIFO_CTL_RF_DRQ_EN;
328	}
329
330	reg |= (trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) |
331	       (trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS);
332
333	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG, reg);
334
335	/*
336	 * Setup the transfer control register: Chip Select,
337	 * polarities, etc.
338	 */
339	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
340
341	if (spi->mode & SPI_CPOL)
342		reg |= SUN6I_TFR_CTL_CPOL;
343	else
344		reg &= ~SUN6I_TFR_CTL_CPOL;
345
346	if (spi->mode & SPI_CPHA)
347		reg |= SUN6I_TFR_CTL_CPHA;
348	else
349		reg &= ~SUN6I_TFR_CTL_CPHA;
350
351	if (spi->mode & SPI_LSB_FIRST)
352		reg |= SUN6I_TFR_CTL_FBS;
353	else
354		reg &= ~SUN6I_TFR_CTL_FBS;
355
356	/*
357	 * If it's a TX only transfer, we don't want to fill the RX
358	 * FIFO with bogus data
359	 */
360	if (sspi->rx_buf) {
361		reg &= ~SUN6I_TFR_CTL_DHB;
362		rx_len = tfr->len;
363	} else {
364		reg |= SUN6I_TFR_CTL_DHB;
365	}
366
367	/* We want to control the chip select manually */
368	reg |= SUN6I_TFR_CTL_CS_MANUAL;
369
370	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
371
372	if (sspi->cfg->has_clk_ctl) {
373		unsigned int mclk_rate = clk_get_rate(sspi->mclk);
374
375		/* Ensure that we have a parent clock fast enough */
376		if (mclk_rate < (2 * tfr->speed_hz)) {
377			clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
378			mclk_rate = clk_get_rate(sspi->mclk);
379		}
380
381		/*
382		 * Setup clock divider.
383		 *
384		 * We have two choices there. Either we can use the clock
385		 * divide rate 1, which is calculated thanks to this formula:
386		 * SPI_CLK = MOD_CLK / (2 ^ cdr)
387		 * Or we can use CDR2, which is calculated with the formula:
388		 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
389		 * Wether we use the former or the latter is set through the
390		 * DRS bit.
391		 *
392		 * First try CDR2, and if we can't reach the expected
393		 * frequency, fall back to CDR1.
394		 */
395		div_cdr1 = DIV_ROUND_UP(mclk_rate, tfr->speed_hz);
396		div_cdr2 = DIV_ROUND_UP(div_cdr1, 2);
397		if (div_cdr2 <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
398			reg = SUN6I_CLK_CTL_CDR2(div_cdr2 - 1) | SUN6I_CLK_CTL_DRS;
399			tfr->effective_speed_hz = mclk_rate / (2 * div_cdr2);
400		} else {
401			div = min(SUN6I_CLK_CTL_CDR1_MASK, order_base_2(div_cdr1));
402			reg = SUN6I_CLK_CTL_CDR1(div);
403			tfr->effective_speed_hz = mclk_rate / (1 << div);
404		}
405
406		sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
407	} else {
408		clk_set_rate(sspi->mclk, tfr->speed_hz);
409		tfr->effective_speed_hz = clk_get_rate(sspi->mclk);
 
 
410
411		/*
412		 * Configure work mode.
413		 *
414		 * There are three work modes depending on the controller clock
415		 * frequency:
416		 * - normal sample mode           : CLK <= 24MHz SDM=1 SDC=0
417		 * - delay half-cycle sample mode : CLK <= 40MHz SDM=0 SDC=0
418		 * - delay one-cycle sample mode  : CLK >= 80MHz SDM=0 SDC=1
419		 */
420		reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
421		reg &= ~(SUN6I_TFR_CTL_SDM | SUN6I_TFR_CTL_SDC);
422
423		if (tfr->effective_speed_hz <= 24000000)
424			reg |= SUN6I_TFR_CTL_SDM;
425		else if (tfr->effective_speed_hz >= 80000000)
426			reg |= SUN6I_TFR_CTL_SDC;
427
428		sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
429	}
430
431	/* Finally enable the bus - doing so before might raise SCK to HIGH */
432	reg = sun6i_spi_read(sspi, SUN6I_GBL_CTL_REG);
433	reg |= SUN6I_GBL_CTL_BUS_ENABLE;
434	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG, reg);
435
436	/* Setup the transfer now... */
437	if (sspi->tx_buf) {
438		tx_len = tfr->len;
439		nbits = tfr->tx_nbits;
440	} else if (tfr->rx_buf) {
441		nbits = tfr->rx_nbits;
442	}
443
444	switch (nbits) {
445	case SPI_NBITS_DUAL:
446		reg = SUN6I_BURST_CTL_CNT_DRM;
447		break;
448	case SPI_NBITS_QUAD:
449		reg = SUN6I_BURST_CTL_CNT_QUAD_EN;
450		break;
451	case SPI_NBITS_SINGLE:
452	default:
453		reg = FIELD_PREP(SUN6I_BURST_CTL_CNT_STC_MASK, tx_len);
454	}
455
456	/* Setup the counters */
457	sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG, reg);
458	sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, tfr->len);
459	sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, tx_len);
 
460
461	if (!use_dma) {
462		/* Fill the TX FIFO */
463		sun6i_spi_fill_fifo(sspi);
464	} else {
465		ret = sun6i_spi_prepare_dma(sspi, tfr);
466		if (ret) {
467			dev_warn(&host->dev,
468				 "%s: prepare DMA failed, ret=%d",
469				 dev_name(&spi->dev), ret);
470			return ret;
471		}
472	}
473
474	/* Enable the interrupts */
475	reg = SUN6I_INT_CTL_TC;
476
477	if (!use_dma) {
478		if (rx_len > sspi->cfg->fifo_depth)
479			reg |= SUN6I_INT_CTL_RF_RDY;
480		if (tx_len > sspi->cfg->fifo_depth)
481			reg |= SUN6I_INT_CTL_TF_ERQ;
482	}
483
484	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
485
486	/* Start the transfer */
487	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
488	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
489
490	tx_time = spi_controller_xfer_timeout(host, tfr);
491	start = jiffies;
492	time_left = wait_for_completion_timeout(&sspi->done,
493						msecs_to_jiffies(tx_time));
494
495	if (!use_dma) {
496		sun6i_spi_drain_fifo(sspi);
497	} else {
498		if (time_left && rx_len) {
499			/*
500			 * Even though RX on the peripheral side has finished
501			 * RX DMA might still be in flight
502			 */
503			time_left = wait_for_completion_timeout(&sspi->dma_rx_done,
504								time_left);
505			if (!time_left)
506				dev_warn(&host->dev, "RX DMA timeout\n");
507		}
508	}
509
510	end = jiffies;
511	if (!time_left) {
512		dev_warn(&host->dev,
513			 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
514			 dev_name(&spi->dev), tfr->len, tfr->speed_hz,
515			 jiffies_to_msecs(end - start), tx_time);
516		ret = -ETIMEDOUT;
517	}
518
519	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
520
521	if (ret && use_dma) {
522		dmaengine_terminate_sync(host->dma_rx);
523		dmaengine_terminate_sync(host->dma_tx);
524	}
525
526	return ret;
527}
528
529static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
530{
531	struct sun6i_spi *sspi = dev_id;
532	u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
533
534	/* Transfer complete */
535	if (status & SUN6I_INT_CTL_TC) {
536		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
 
537		complete(&sspi->done);
538		return IRQ_HANDLED;
539	}
540
541	/* Receive FIFO 3/4 full */
542	if (status & SUN6I_INT_CTL_RF_RDY) {
543		sun6i_spi_drain_fifo(sspi);
544		/* Only clear the interrupt _after_ draining the FIFO */
545		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY);
546		return IRQ_HANDLED;
547	}
548
549	/* Transmit FIFO 3/4 empty */
550	if (status & SUN6I_INT_CTL_TF_ERQ) {
551		sun6i_spi_fill_fifo(sspi);
552
553		if (!sspi->len)
554			/* nothing left to transmit */
555			sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
556
557		/* Only clear the interrupt _after_ re-seeding the FIFO */
558		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ);
559
560		return IRQ_HANDLED;
561	}
562
563	return IRQ_NONE;
564}
565
566static int sun6i_spi_runtime_resume(struct device *dev)
567{
568	struct spi_controller *host = dev_get_drvdata(dev);
569	struct sun6i_spi *sspi = spi_controller_get_devdata(host);
570	int ret;
571
572	ret = clk_prepare_enable(sspi->hclk);
573	if (ret) {
574		dev_err(dev, "Couldn't enable AHB clock\n");
575		goto out;
576	}
577
578	ret = clk_prepare_enable(sspi->mclk);
579	if (ret) {
580		dev_err(dev, "Couldn't enable module clock\n");
581		goto err;
582	}
583
584	ret = reset_control_deassert(sspi->rstc);
585	if (ret) {
586		dev_err(dev, "Couldn't deassert the device from reset\n");
587		goto err2;
588	}
589
590	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
591			SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
592
593	return 0;
594
595err2:
596	clk_disable_unprepare(sspi->mclk);
597err:
598	clk_disable_unprepare(sspi->hclk);
599out:
600	return ret;
601}
602
603static int sun6i_spi_runtime_suspend(struct device *dev)
604{
605	struct spi_controller *host = dev_get_drvdata(dev);
606	struct sun6i_spi *sspi = spi_controller_get_devdata(host);
607
608	reset_control_assert(sspi->rstc);
609	clk_disable_unprepare(sspi->mclk);
610	clk_disable_unprepare(sspi->hclk);
611
612	return 0;
613}
614
615static bool sun6i_spi_can_dma(struct spi_controller *host,
616			      struct spi_device *spi,
617			      struct spi_transfer *xfer)
618{
619	struct sun6i_spi *sspi = spi_controller_get_devdata(host);
620
621	/*
622	 * If the number of spi words to transfer is less or equal than
623	 * the fifo length we can just fill the fifo and wait for a single
624	 * irq, so don't bother setting up dma
625	 */
626	return xfer->len > sspi->cfg->fifo_depth;
627}
628
629static int sun6i_spi_probe(struct platform_device *pdev)
630{
631	struct spi_controller *host;
632	struct sun6i_spi *sspi;
633	struct resource *mem;
634	int ret = 0, irq;
635
636	host = spi_alloc_host(&pdev->dev, sizeof(struct sun6i_spi));
637	if (!host) {
638		dev_err(&pdev->dev, "Unable to allocate SPI Host\n");
639		return -ENOMEM;
640	}
641
642	platform_set_drvdata(pdev, host);
643	sspi = spi_controller_get_devdata(host);
644
645	sspi->base_addr = devm_platform_get_and_ioremap_resource(pdev, 0, &mem);
646	if (IS_ERR(sspi->base_addr)) {
647		ret = PTR_ERR(sspi->base_addr);
648		goto err_free_host;
649	}
650
651	irq = platform_get_irq(pdev, 0);
652	if (irq < 0) {
653		ret = -ENXIO;
654		goto err_free_host;
655	}
656
657	ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
658			       0, "sun6i-spi", sspi);
659	if (ret) {
660		dev_err(&pdev->dev, "Cannot request IRQ\n");
661		goto err_free_host;
662	}
663
664	sspi->host = host;
665	sspi->cfg = of_device_get_match_data(&pdev->dev);
666
667	host->max_speed_hz = 100 * 1000 * 1000;
668	host->min_speed_hz = 3 * 1000;
669	host->use_gpio_descriptors = true;
670	host->set_cs = sun6i_spi_set_cs;
671	host->transfer_one = sun6i_spi_transfer_one;
672	host->num_chipselect = 4;
673	host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST |
674			  sspi->cfg->mode_bits;
675	host->bits_per_word_mask = SPI_BPW_MASK(8);
676	host->dev.of_node = pdev->dev.of_node;
677	host->auto_runtime_pm = true;
678	host->max_transfer_size = sun6i_spi_max_transfer_size;
679
680	sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
681	if (IS_ERR(sspi->hclk)) {
682		dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
683		ret = PTR_ERR(sspi->hclk);
684		goto err_free_host;
685	}
686
687	sspi->mclk = devm_clk_get(&pdev->dev, "mod");
688	if (IS_ERR(sspi->mclk)) {
689		dev_err(&pdev->dev, "Unable to acquire module clock\n");
690		ret = PTR_ERR(sspi->mclk);
691		goto err_free_host;
692	}
693
694	init_completion(&sspi->done);
695	init_completion(&sspi->dma_rx_done);
696
697	sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
698	if (IS_ERR(sspi->rstc)) {
699		dev_err(&pdev->dev, "Couldn't get reset controller\n");
700		ret = PTR_ERR(sspi->rstc);
701		goto err_free_host;
702	}
703
704	host->dma_tx = dma_request_chan(&pdev->dev, "tx");
705	if (IS_ERR(host->dma_tx)) {
706		/* Check tx to see if we need defer probing driver */
707		if (PTR_ERR(host->dma_tx) == -EPROBE_DEFER) {
708			ret = -EPROBE_DEFER;
709			goto err_free_host;
710		}
711		dev_warn(&pdev->dev, "Failed to request TX DMA channel\n");
712		host->dma_tx = NULL;
713	}
714
715	host->dma_rx = dma_request_chan(&pdev->dev, "rx");
716	if (IS_ERR(host->dma_rx)) {
717		if (PTR_ERR(host->dma_rx) == -EPROBE_DEFER) {
718			ret = -EPROBE_DEFER;
719			goto err_free_dma_tx;
720		}
721		dev_warn(&pdev->dev, "Failed to request RX DMA channel\n");
722		host->dma_rx = NULL;
723	}
724
725	if (host->dma_tx && host->dma_rx) {
726		sspi->dma_addr_tx = mem->start + SUN6I_TXDATA_REG;
727		sspi->dma_addr_rx = mem->start + SUN6I_RXDATA_REG;
728		host->can_dma = sun6i_spi_can_dma;
729	}
730
731	/*
732	 * This wake-up/shutdown pattern is to be able to have the
733	 * device woken up, even if runtime_pm is disabled
734	 */
735	ret = sun6i_spi_runtime_resume(&pdev->dev);
736	if (ret) {
737		dev_err(&pdev->dev, "Couldn't resume the device\n");
738		goto err_free_dma_rx;
739	}
740
741	pm_runtime_set_autosuspend_delay(&pdev->dev, SUN6I_AUTOSUSPEND_TIMEOUT);
742	pm_runtime_use_autosuspend(&pdev->dev);
743	pm_runtime_set_active(&pdev->dev);
744	pm_runtime_enable(&pdev->dev);
 
745
746	ret = devm_spi_register_controller(&pdev->dev, host);
747	if (ret) {
748		dev_err(&pdev->dev, "cannot register SPI host\n");
749		goto err_pm_disable;
750	}
751
752	return 0;
753
754err_pm_disable:
755	pm_runtime_disable(&pdev->dev);
756	sun6i_spi_runtime_suspend(&pdev->dev);
757err_free_dma_rx:
758	if (host->dma_rx)
759		dma_release_channel(host->dma_rx);
760err_free_dma_tx:
761	if (host->dma_tx)
762		dma_release_channel(host->dma_tx);
763err_free_host:
764	spi_controller_put(host);
765	return ret;
766}
767
768static void sun6i_spi_remove(struct platform_device *pdev)
769{
770	struct spi_controller *host = platform_get_drvdata(pdev);
771
772	pm_runtime_force_suspend(&pdev->dev);
773
774	if (host->dma_tx)
775		dma_release_channel(host->dma_tx);
776	if (host->dma_rx)
777		dma_release_channel(host->dma_rx);
778}
779
780static const struct sun6i_spi_cfg sun6i_a31_spi_cfg = {
781	.fifo_depth	= SUN6I_FIFO_DEPTH,
782	.has_clk_ctl	= true,
783};
784
785static const struct sun6i_spi_cfg sun8i_h3_spi_cfg = {
786	.fifo_depth	= SUN8I_FIFO_DEPTH,
787	.has_clk_ctl	= true,
788};
789
790static const struct sun6i_spi_cfg sun50i_r329_spi_cfg = {
791	.fifo_depth	= SUN8I_FIFO_DEPTH,
792	.mode_bits	= SPI_RX_DUAL | SPI_TX_DUAL | SPI_RX_QUAD | SPI_TX_QUAD,
793};
794
795static const struct of_device_id sun6i_spi_match[] = {
796	{ .compatible = "allwinner,sun6i-a31-spi", .data = &sun6i_a31_spi_cfg },
797	{ .compatible = "allwinner,sun8i-h3-spi",  .data = &sun8i_h3_spi_cfg },
798	{
799		.compatible = "allwinner,sun50i-r329-spi",
800		.data = &sun50i_r329_spi_cfg
801	},
802	{}
803};
804MODULE_DEVICE_TABLE(of, sun6i_spi_match);
805
806static const struct dev_pm_ops sun6i_spi_pm_ops = {
807	.runtime_resume		= sun6i_spi_runtime_resume,
808	.runtime_suspend	= sun6i_spi_runtime_suspend,
809};
810
811static struct platform_driver sun6i_spi_driver = {
812	.probe	= sun6i_spi_probe,
813	.remove = sun6i_spi_remove,
814	.driver	= {
815		.name		= "sun6i-spi",
816		.of_match_table	= sun6i_spi_match,
817		.pm		= &sun6i_spi_pm_ops,
818	},
819};
820module_platform_driver(sun6i_spi_driver);
821
822MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
823MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
824MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
825MODULE_LICENSE("GPL");
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Copyright (C) 2012 - 2014 Allwinner Tech
  4 * Pan Nan <pannan@allwinnertech.com>
  5 *
  6 * Copyright (C) 2014 Maxime Ripard
  7 * Maxime Ripard <maxime.ripard@free-electrons.com>
  8 */
  9
 10#include <linux/bitfield.h>
 11#include <linux/clk.h>
 12#include <linux/delay.h>
 13#include <linux/device.h>
 14#include <linux/interrupt.h>
 15#include <linux/io.h>
 16#include <linux/module.h>
 17#include <linux/of_device.h>
 18#include <linux/platform_device.h>
 19#include <linux/pm_runtime.h>
 20#include <linux/reset.h>
 
 21
 22#include <linux/spi/spi.h>
 23
 
 
 24#define SUN6I_FIFO_DEPTH		128
 25#define SUN8I_FIFO_DEPTH		64
 26
 27#define SUN6I_GBL_CTL_REG		0x04
 28#define SUN6I_GBL_CTL_BUS_ENABLE		BIT(0)
 29#define SUN6I_GBL_CTL_MASTER			BIT(1)
 30#define SUN6I_GBL_CTL_TP			BIT(7)
 31#define SUN6I_GBL_CTL_RST			BIT(31)
 32
 33#define SUN6I_TFR_CTL_REG		0x08
 34#define SUN6I_TFR_CTL_CPHA			BIT(0)
 35#define SUN6I_TFR_CTL_CPOL			BIT(1)
 36#define SUN6I_TFR_CTL_SPOL			BIT(2)
 37#define SUN6I_TFR_CTL_CS_MASK			0x30
 38#define SUN6I_TFR_CTL_CS(cs)			(((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
 39#define SUN6I_TFR_CTL_CS_MANUAL			BIT(6)
 40#define SUN6I_TFR_CTL_CS_LEVEL			BIT(7)
 41#define SUN6I_TFR_CTL_DHB			BIT(8)
 
 42#define SUN6I_TFR_CTL_FBS			BIT(12)
 
 43#define SUN6I_TFR_CTL_XCH			BIT(31)
 44
 45#define SUN6I_INT_CTL_REG		0x10
 46#define SUN6I_INT_CTL_RF_RDY			BIT(0)
 47#define SUN6I_INT_CTL_TF_ERQ			BIT(4)
 48#define SUN6I_INT_CTL_RF_OVF			BIT(8)
 49#define SUN6I_INT_CTL_TC			BIT(12)
 50
 51#define SUN6I_INT_STA_REG		0x14
 52
 53#define SUN6I_FIFO_CTL_REG		0x18
 54#define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK	0xff
 
 55#define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS	0
 56#define SUN6I_FIFO_CTL_RF_RST			BIT(15)
 57#define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK	0xff
 58#define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS	16
 
 59#define SUN6I_FIFO_CTL_TF_RST			BIT(31)
 60
 61#define SUN6I_FIFO_STA_REG		0x1c
 62#define SUN6I_FIFO_STA_RF_CNT_MASK		GENMASK(7, 0)
 63#define SUN6I_FIFO_STA_TF_CNT_MASK		GENMASK(23, 16)
 64
 65#define SUN6I_CLK_CTL_REG		0x24
 66#define SUN6I_CLK_CTL_CDR2_MASK			0xff
 67#define SUN6I_CLK_CTL_CDR2(div)			(((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
 68#define SUN6I_CLK_CTL_CDR1_MASK			0xf
 69#define SUN6I_CLK_CTL_CDR1(div)			(((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
 70#define SUN6I_CLK_CTL_DRS			BIT(12)
 71
 72#define SUN6I_MAX_XFER_SIZE		0xffffff
 73
 74#define SUN6I_BURST_CNT_REG		0x30
 75
 76#define SUN6I_XMIT_CNT_REG		0x34
 77
 78#define SUN6I_BURST_CTL_CNT_REG		0x38
 
 
 
 79
 80#define SUN6I_TXDATA_REG		0x200
 81#define SUN6I_RXDATA_REG		0x300
 82
 
 
 
 
 
 
 83struct sun6i_spi {
 84	struct spi_master	*master;
 85	void __iomem		*base_addr;
 
 
 86	struct clk		*hclk;
 87	struct clk		*mclk;
 88	struct reset_control	*rstc;
 89
 90	struct completion	done;
 
 91
 92	const u8		*tx_buf;
 93	u8			*rx_buf;
 94	int			len;
 95	unsigned long		fifo_depth;
 96};
 97
 98static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
 99{
100	return readl(sspi->base_addr + reg);
101}
102
103static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
104{
105	writel(value, sspi->base_addr + reg);
106}
107
108static inline u32 sun6i_spi_get_rx_fifo_count(struct sun6i_spi *sspi)
109{
110	u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
111
112	return FIELD_GET(SUN6I_FIFO_STA_RF_CNT_MASK, reg);
113}
114
115static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi)
116{
117	u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
118
119	return FIELD_GET(SUN6I_FIFO_STA_TF_CNT_MASK, reg);
120}
121
122static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask)
123{
124	u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
125
126	reg &= ~mask;
127	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
128}
129
130static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi)
131{
132	u32 len;
133	u8 byte;
134
135	/* See how much data is available */
136	len = sun6i_spi_get_rx_fifo_count(sspi);
137
138	while (len--) {
139		byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
140		if (sspi->rx_buf)
141			*sspi->rx_buf++ = byte;
142	}
143}
144
145static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi)
146{
147	u32 cnt;
148	int len;
149	u8 byte;
150
151	/* See how much data we can fit */
152	cnt = sspi->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi);
153
154	len = min((int)cnt, sspi->len);
155
156	while (len--) {
157		byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
158		writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
159		sspi->len--;
160	}
161}
162
163static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
164{
165	struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
166	u32 reg;
167
168	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
169	reg &= ~SUN6I_TFR_CTL_CS_MASK;
170	reg |= SUN6I_TFR_CTL_CS(spi->chip_select);
171
172	if (enable)
173		reg |= SUN6I_TFR_CTL_CS_LEVEL;
174	else
175		reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
176
177	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
178}
179
180static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
181{
182	return SUN6I_MAX_XFER_SIZE - 1;
183}
184
185static int sun6i_spi_transfer_one(struct spi_master *master,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
186				  struct spi_device *spi,
187				  struct spi_transfer *tfr)
188{
189	struct sun6i_spi *sspi = spi_master_get_devdata(master);
190	unsigned int mclk_rate, div, div_cdr1, div_cdr2, timeout;
 
191	unsigned int start, end, tx_time;
192	unsigned int trig_level;
193	unsigned int tx_len = 0, rx_len = 0;
 
194	int ret = 0;
195	u32 reg;
196
197	if (tfr->len > SUN6I_MAX_XFER_SIZE)
198		return -EINVAL;
199
200	reinit_completion(&sspi->done);
 
201	sspi->tx_buf = tfr->tx_buf;
202	sspi->rx_buf = tfr->rx_buf;
203	sspi->len = tfr->len;
 
204
205	/* Clear pending interrupts */
206	sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
207
208	/* Reset FIFO */
209	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
210			SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
211
212	/*
213	 * Setup FIFO interrupt trigger level
214	 * Here we choose 3/4 of the full fifo depth, as it's the hardcoded
215	 * value used in old generation of Allwinner SPI controller.
216	 * (See spi-sun4i.c)
217	 */
218	trig_level = sspi->fifo_depth / 4 * 3;
219	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
220			(trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) |
221			(trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
222
223	/*
224	 * Setup the transfer control register: Chip Select,
225	 * polarities, etc.
226	 */
227	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
228
229	if (spi->mode & SPI_CPOL)
230		reg |= SUN6I_TFR_CTL_CPOL;
231	else
232		reg &= ~SUN6I_TFR_CTL_CPOL;
233
234	if (spi->mode & SPI_CPHA)
235		reg |= SUN6I_TFR_CTL_CPHA;
236	else
237		reg &= ~SUN6I_TFR_CTL_CPHA;
238
239	if (spi->mode & SPI_LSB_FIRST)
240		reg |= SUN6I_TFR_CTL_FBS;
241	else
242		reg &= ~SUN6I_TFR_CTL_FBS;
243
244	/*
245	 * If it's a TX only transfer, we don't want to fill the RX
246	 * FIFO with bogus data
247	 */
248	if (sspi->rx_buf) {
249		reg &= ~SUN6I_TFR_CTL_DHB;
250		rx_len = tfr->len;
251	} else {
252		reg |= SUN6I_TFR_CTL_DHB;
253	}
254
255	/* We want to control the chip select manually */
256	reg |= SUN6I_TFR_CTL_CS_MANUAL;
257
258	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
259
260	/* Ensure that we have a parent clock fast enough */
261	mclk_rate = clk_get_rate(sspi->mclk);
262	if (mclk_rate < (2 * tfr->speed_hz)) {
263		clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
264		mclk_rate = clk_get_rate(sspi->mclk);
265	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
266
267	/*
268	 * Setup clock divider.
269	 *
270	 * We have two choices there. Either we can use the clock
271	 * divide rate 1, which is calculated thanks to this formula:
272	 * SPI_CLK = MOD_CLK / (2 ^ cdr)
273	 * Or we can use CDR2, which is calculated with the formula:
274	 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
275	 * Wether we use the former or the latter is set through the
276	 * DRS bit.
277	 *
278	 * First try CDR2, and if we can't reach the expected
279	 * frequency, fall back to CDR1.
280	 */
281	div_cdr1 = DIV_ROUND_UP(mclk_rate, tfr->speed_hz);
282	div_cdr2 = DIV_ROUND_UP(div_cdr1, 2);
283	if (div_cdr2 <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
284		reg = SUN6I_CLK_CTL_CDR2(div_cdr2 - 1) | SUN6I_CLK_CTL_DRS;
285		tfr->effective_speed_hz = mclk_rate / (2 * div_cdr2);
286	} else {
287		div = min(SUN6I_CLK_CTL_CDR1_MASK, order_base_2(div_cdr1));
288		reg = SUN6I_CLK_CTL_CDR1(div);
289		tfr->effective_speed_hz = mclk_rate / (1 << div);
290	}
291
292	sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
293
294	/* Setup the transfer now... */
295	if (sspi->tx_buf)
296		tx_len = tfr->len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
297
298	/* Setup the counters */
 
299	sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, tfr->len);
300	sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, tx_len);
301	sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG, tx_len);
302
303	/* Fill the TX FIFO */
304	sun6i_spi_fill_fifo(sspi);
 
 
 
 
 
 
 
 
 
 
305
306	/* Enable the interrupts */
307	reg = SUN6I_INT_CTL_TC;
308
309	if (rx_len > sspi->fifo_depth)
310		reg |= SUN6I_INT_CTL_RF_RDY;
311	if (tx_len > sspi->fifo_depth)
312		reg |= SUN6I_INT_CTL_TF_ERQ;
 
 
313
314	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
315
316	/* Start the transfer */
317	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
318	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
319
320	tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
321	start = jiffies;
322	timeout = wait_for_completion_timeout(&sspi->done,
323					      msecs_to_jiffies(tx_time));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
324	end = jiffies;
325	if (!timeout) {
326		dev_warn(&master->dev,
327			 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
328			 dev_name(&spi->dev), tfr->len, tfr->speed_hz,
329			 jiffies_to_msecs(end - start), tx_time);
330		ret = -ETIMEDOUT;
331	}
332
333	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
334
 
 
 
 
 
335	return ret;
336}
337
338static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
339{
340	struct sun6i_spi *sspi = dev_id;
341	u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
342
343	/* Transfer complete */
344	if (status & SUN6I_INT_CTL_TC) {
345		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
346		sun6i_spi_drain_fifo(sspi);
347		complete(&sspi->done);
348		return IRQ_HANDLED;
349	}
350
351	/* Receive FIFO 3/4 full */
352	if (status & SUN6I_INT_CTL_RF_RDY) {
353		sun6i_spi_drain_fifo(sspi);
354		/* Only clear the interrupt _after_ draining the FIFO */
355		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY);
356		return IRQ_HANDLED;
357	}
358
359	/* Transmit FIFO 3/4 empty */
360	if (status & SUN6I_INT_CTL_TF_ERQ) {
361		sun6i_spi_fill_fifo(sspi);
362
363		if (!sspi->len)
364			/* nothing left to transmit */
365			sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
366
367		/* Only clear the interrupt _after_ re-seeding the FIFO */
368		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ);
369
370		return IRQ_HANDLED;
371	}
372
373	return IRQ_NONE;
374}
375
376static int sun6i_spi_runtime_resume(struct device *dev)
377{
378	struct spi_master *master = dev_get_drvdata(dev);
379	struct sun6i_spi *sspi = spi_master_get_devdata(master);
380	int ret;
381
382	ret = clk_prepare_enable(sspi->hclk);
383	if (ret) {
384		dev_err(dev, "Couldn't enable AHB clock\n");
385		goto out;
386	}
387
388	ret = clk_prepare_enable(sspi->mclk);
389	if (ret) {
390		dev_err(dev, "Couldn't enable module clock\n");
391		goto err;
392	}
393
394	ret = reset_control_deassert(sspi->rstc);
395	if (ret) {
396		dev_err(dev, "Couldn't deassert the device from reset\n");
397		goto err2;
398	}
399
400	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
401			SUN6I_GBL_CTL_BUS_ENABLE | SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
402
403	return 0;
404
405err2:
406	clk_disable_unprepare(sspi->mclk);
407err:
408	clk_disable_unprepare(sspi->hclk);
409out:
410	return ret;
411}
412
413static int sun6i_spi_runtime_suspend(struct device *dev)
414{
415	struct spi_master *master = dev_get_drvdata(dev);
416	struct sun6i_spi *sspi = spi_master_get_devdata(master);
417
418	reset_control_assert(sspi->rstc);
419	clk_disable_unprepare(sspi->mclk);
420	clk_disable_unprepare(sspi->hclk);
421
422	return 0;
423}
424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
425static int sun6i_spi_probe(struct platform_device *pdev)
426{
427	struct spi_master *master;
428	struct sun6i_spi *sspi;
 
429	int ret = 0, irq;
430
431	master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
432	if (!master) {
433		dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
434		return -ENOMEM;
435	}
436
437	platform_set_drvdata(pdev, master);
438	sspi = spi_master_get_devdata(master);
439
440	sspi->base_addr = devm_platform_ioremap_resource(pdev, 0);
441	if (IS_ERR(sspi->base_addr)) {
442		ret = PTR_ERR(sspi->base_addr);
443		goto err_free_master;
444	}
445
446	irq = platform_get_irq(pdev, 0);
447	if (irq < 0) {
448		ret = -ENXIO;
449		goto err_free_master;
450	}
451
452	ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
453			       0, "sun6i-spi", sspi);
454	if (ret) {
455		dev_err(&pdev->dev, "Cannot request IRQ\n");
456		goto err_free_master;
457	}
458
459	sspi->master = master;
460	sspi->fifo_depth = (unsigned long)of_device_get_match_data(&pdev->dev);
461
462	master->max_speed_hz = 100 * 1000 * 1000;
463	master->min_speed_hz = 3 * 1000;
464	master->use_gpio_descriptors = true;
465	master->set_cs = sun6i_spi_set_cs;
466	master->transfer_one = sun6i_spi_transfer_one;
467	master->num_chipselect = 4;
468	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
469	master->bits_per_word_mask = SPI_BPW_MASK(8);
470	master->dev.of_node = pdev->dev.of_node;
471	master->auto_runtime_pm = true;
472	master->max_transfer_size = sun6i_spi_max_transfer_size;
 
473
474	sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
475	if (IS_ERR(sspi->hclk)) {
476		dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
477		ret = PTR_ERR(sspi->hclk);
478		goto err_free_master;
479	}
480
481	sspi->mclk = devm_clk_get(&pdev->dev, "mod");
482	if (IS_ERR(sspi->mclk)) {
483		dev_err(&pdev->dev, "Unable to acquire module clock\n");
484		ret = PTR_ERR(sspi->mclk);
485		goto err_free_master;
486	}
487
488	init_completion(&sspi->done);
 
489
490	sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
491	if (IS_ERR(sspi->rstc)) {
492		dev_err(&pdev->dev, "Couldn't get reset controller\n");
493		ret = PTR_ERR(sspi->rstc);
494		goto err_free_master;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
495	}
496
497	/*
498	 * This wake-up/shutdown pattern is to be able to have the
499	 * device woken up, even if runtime_pm is disabled
500	 */
501	ret = sun6i_spi_runtime_resume(&pdev->dev);
502	if (ret) {
503		dev_err(&pdev->dev, "Couldn't resume the device\n");
504		goto err_free_master;
505	}
506
 
 
507	pm_runtime_set_active(&pdev->dev);
508	pm_runtime_enable(&pdev->dev);
509	pm_runtime_idle(&pdev->dev);
510
511	ret = devm_spi_register_master(&pdev->dev, master);
512	if (ret) {
513		dev_err(&pdev->dev, "cannot register SPI master\n");
514		goto err_pm_disable;
515	}
516
517	return 0;
518
519err_pm_disable:
520	pm_runtime_disable(&pdev->dev);
521	sun6i_spi_runtime_suspend(&pdev->dev);
522err_free_master:
523	spi_master_put(master);
 
 
 
 
 
 
524	return ret;
525}
526
527static int sun6i_spi_remove(struct platform_device *pdev)
528{
 
 
529	pm_runtime_force_suspend(&pdev->dev);
530
531	return 0;
 
 
 
532}
533
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
534static const struct of_device_id sun6i_spi_match[] = {
535	{ .compatible = "allwinner,sun6i-a31-spi", .data = (void *)SUN6I_FIFO_DEPTH },
536	{ .compatible = "allwinner,sun8i-h3-spi",  .data = (void *)SUN8I_FIFO_DEPTH },
 
 
 
 
537	{}
538};
539MODULE_DEVICE_TABLE(of, sun6i_spi_match);
540
541static const struct dev_pm_ops sun6i_spi_pm_ops = {
542	.runtime_resume		= sun6i_spi_runtime_resume,
543	.runtime_suspend	= sun6i_spi_runtime_suspend,
544};
545
546static struct platform_driver sun6i_spi_driver = {
547	.probe	= sun6i_spi_probe,
548	.remove	= sun6i_spi_remove,
549	.driver	= {
550		.name		= "sun6i-spi",
551		.of_match_table	= sun6i_spi_match,
552		.pm		= &sun6i_spi_pm_ops,
553	},
554};
555module_platform_driver(sun6i_spi_driver);
556
557MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
558MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
559MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
560MODULE_LICENSE("GPL");