Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.9.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * ARM CoreSight Architecture PMU driver.
   4 *
   5 * This driver adds support for uncore PMU based on ARM CoreSight Performance
   6 * Monitoring Unit Architecture. The PMU is accessible via MMIO registers and
   7 * like other uncore PMUs, it does not support process specific events and
   8 * cannot be used in sampling mode.
   9 *
  10 * This code is based on other uncore PMUs like ARM DSU PMU. It provides a
  11 * generic implementation to operate the PMU according to CoreSight PMU
  12 * architecture and ACPI ARM PMU table (APMT) documents below:
  13 *   - ARM CoreSight PMU architecture document number: ARM IHI 0091 A.a-00bet0.
  14 *   - APMT document number: ARM DEN0117.
  15 *
  16 * The user should refer to the vendor technical documentation to get details
  17 * about the supported events.
  18 *
  19 * Copyright (c) 2022-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
  20 *
  21 */
  22
  23#include <linux/acpi.h>
  24#include <linux/cacheinfo.h>
  25#include <linux/ctype.h>
  26#include <linux/interrupt.h>
  27#include <linux/io-64-nonatomic-lo-hi.h>
  28#include <linux/module.h>
  29#include <linux/mutex.h>
  30#include <linux/of.h>
  31#include <linux/perf_event.h>
  32#include <linux/platform_device.h>
  33
  34#include "arm_cspmu.h"
  35
  36#define PMUNAME "arm_cspmu"
  37#define DRVNAME "arm-cs-arch-pmu"
  38
  39#define ARM_CSPMU_CPUMASK_ATTR(_name, _config)			\
  40	ARM_CSPMU_EXT_ATTR(_name, arm_cspmu_cpumask_show,	\
  41				(unsigned long)_config)
  42
  43/*
  44 * CoreSight PMU Arch register offsets.
  45 */
  46#define PMEVCNTR_LO					0x0
  47#define PMEVCNTR_HI					0x4
  48#define PMEVTYPER					0x400
  49#define PMCCFILTR					0x47C
  50#define PMEVFILTR					0xA00
  51#define PMCNTENSET					0xC00
  52#define PMCNTENCLR					0xC20
  53#define PMINTENSET					0xC40
  54#define PMINTENCLR					0xC60
  55#define PMOVSCLR					0xC80
  56#define PMOVSSET					0xCC0
  57#define PMCFGR						0xE00
  58#define PMCR						0xE04
  59#define PMIIDR						0xE08
  60
  61/* PMCFGR register field */
  62#define PMCFGR_NCG					GENMASK(31, 28)
  63#define PMCFGR_HDBG					BIT(24)
  64#define PMCFGR_TRO					BIT(23)
  65#define PMCFGR_SS					BIT(22)
  66#define PMCFGR_FZO					BIT(21)
  67#define PMCFGR_MSI					BIT(20)
  68#define PMCFGR_UEN					BIT(19)
  69#define PMCFGR_NA					BIT(17)
  70#define PMCFGR_EX					BIT(16)
  71#define PMCFGR_CCD					BIT(15)
  72#define PMCFGR_CC					BIT(14)
  73#define PMCFGR_SIZE					GENMASK(13, 8)
  74#define PMCFGR_N					GENMASK(7, 0)
  75
  76/* PMCR register field */
  77#define PMCR_TRO					BIT(11)
  78#define PMCR_HDBG					BIT(10)
  79#define PMCR_FZO					BIT(9)
  80#define PMCR_NA						BIT(8)
  81#define PMCR_DP						BIT(5)
  82#define PMCR_X						BIT(4)
  83#define PMCR_D						BIT(3)
  84#define PMCR_C						BIT(2)
  85#define PMCR_P						BIT(1)
  86#define PMCR_E						BIT(0)
  87
  88/* Each SET/CLR register supports up to 32 counters. */
  89#define ARM_CSPMU_SET_CLR_COUNTER_SHIFT		5
  90#define ARM_CSPMU_SET_CLR_COUNTER_NUM		\
  91	(1 << ARM_CSPMU_SET_CLR_COUNTER_SHIFT)
  92
  93/* Convert counter idx into SET/CLR register number. */
  94#define COUNTER_TO_SET_CLR_ID(idx)			\
  95	(idx >> ARM_CSPMU_SET_CLR_COUNTER_SHIFT)
  96
  97/* Convert counter idx into SET/CLR register bit. */
  98#define COUNTER_TO_SET_CLR_BIT(idx)			\
  99	(idx & (ARM_CSPMU_SET_CLR_COUNTER_NUM - 1))
 100
 101#define ARM_CSPMU_ACTIVE_CPU_MASK		0x0
 102#define ARM_CSPMU_ASSOCIATED_CPU_MASK		0x1
 103
 104/*
 105 * Maximum poll count for reading counter value using high-low-high sequence.
 106 */
 107#define HILOHI_MAX_POLL	1000
 108
 109static unsigned long arm_cspmu_cpuhp_state;
 110
 111static DEFINE_MUTEX(arm_cspmu_lock);
 112
 113static void arm_cspmu_set_ev_filter(struct arm_cspmu *cspmu,
 114				    struct hw_perf_event *hwc, u32 filter);
 115
 116static struct acpi_apmt_node *arm_cspmu_apmt_node(struct device *dev)
 117{
 118	struct acpi_apmt_node **ptr = dev_get_platdata(dev);
 119
 120	return ptr ? *ptr : NULL;
 121}
 122
 123/*
 124 * In CoreSight PMU architecture, all of the MMIO registers are 32-bit except
 125 * counter register. The counter register can be implemented as 32-bit or 64-bit
 126 * register depending on the value of PMCFGR.SIZE field. For 64-bit access,
 127 * single-copy 64-bit atomic support is implementation defined. APMT node flag
 128 * is used to identify if the PMU supports 64-bit single copy atomic. If 64-bit
 129 * single copy atomic is not supported, the driver treats the register as a pair
 130 * of 32-bit register.
 131 */
 132
 133/*
 134 * Read 64-bit register as a pair of 32-bit registers using hi-lo-hi sequence.
 135 */
 136static u64 read_reg64_hilohi(const void __iomem *addr, u32 max_poll_count)
 137{
 138	u32 val_lo, val_hi;
 139	u64 val;
 140
 141	/* Use high-low-high sequence to avoid tearing */
 142	do {
 143		if (max_poll_count-- == 0) {
 144			pr_err("ARM CSPMU: timeout hi-low-high sequence\n");
 145			return 0;
 146		}
 147
 148		val_hi = readl(addr + 4);
 149		val_lo = readl(addr);
 150	} while (val_hi != readl(addr + 4));
 151
 152	val = (((u64)val_hi << 32) | val_lo);
 153
 154	return val;
 155}
 156
 157/* Check if cycle counter is supported. */
 158static inline bool supports_cycle_counter(const struct arm_cspmu *cspmu)
 159{
 160	return (cspmu->pmcfgr & PMCFGR_CC);
 161}
 162
 163/* Get counter size, which is (PMCFGR_SIZE + 1). */
 164static inline u32 counter_size(const struct arm_cspmu *cspmu)
 165{
 166	return FIELD_GET(PMCFGR_SIZE, cspmu->pmcfgr) + 1;
 167}
 168
 169/* Get counter mask. */
 170static inline u64 counter_mask(const struct arm_cspmu *cspmu)
 171{
 172	return GENMASK_ULL(counter_size(cspmu) - 1, 0);
 173}
 174
 175/* Check if counter is implemented as 64-bit register. */
 176static inline bool use_64b_counter_reg(const struct arm_cspmu *cspmu)
 177{
 178	return (counter_size(cspmu) > 32);
 179}
 180
 181ssize_t arm_cspmu_sysfs_event_show(struct device *dev,
 182				struct device_attribute *attr, char *buf)
 183{
 184	struct perf_pmu_events_attr *pmu_attr;
 185
 186	pmu_attr = container_of(attr, typeof(*pmu_attr), attr);
 187	return sysfs_emit(buf, "event=0x%llx\n", pmu_attr->id);
 188}
 189EXPORT_SYMBOL_GPL(arm_cspmu_sysfs_event_show);
 190
 191/* Default event list. */
 192static struct attribute *arm_cspmu_event_attrs[] = {
 193	ARM_CSPMU_EVENT_ATTR(cycles, ARM_CSPMU_EVT_CYCLES_DEFAULT),
 194	NULL,
 195};
 196
 197static struct attribute **
 198arm_cspmu_get_event_attrs(const struct arm_cspmu *cspmu)
 199{
 200	struct attribute **attrs;
 201
 202	attrs = devm_kmemdup(cspmu->dev, arm_cspmu_event_attrs,
 203		sizeof(arm_cspmu_event_attrs), GFP_KERNEL);
 204
 205	return attrs;
 206}
 207
 208static umode_t
 209arm_cspmu_event_attr_is_visible(struct kobject *kobj,
 210				struct attribute *attr, int unused)
 211{
 212	struct device *dev = kobj_to_dev(kobj);
 213	struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev));
 214	struct perf_pmu_events_attr *eattr;
 215
 216	eattr = container_of(attr, typeof(*eattr), attr.attr);
 217
 218	/* Hide cycle event if not supported */
 219	if (!supports_cycle_counter(cspmu) &&
 220	    eattr->id == ARM_CSPMU_EVT_CYCLES_DEFAULT)
 221		return 0;
 222
 223	return attr->mode;
 224}
 225
 226static struct attribute *arm_cspmu_format_attrs[] = {
 227	ARM_CSPMU_FORMAT_EVENT_ATTR,
 228	ARM_CSPMU_FORMAT_FILTER_ATTR,
 229	NULL,
 230};
 231
 232static struct attribute **
 233arm_cspmu_get_format_attrs(const struct arm_cspmu *cspmu)
 234{
 235	struct attribute **attrs;
 236
 237	attrs = devm_kmemdup(cspmu->dev, arm_cspmu_format_attrs,
 238		sizeof(arm_cspmu_format_attrs), GFP_KERNEL);
 239
 240	return attrs;
 241}
 242
 243static u32 arm_cspmu_event_type(const struct perf_event *event)
 244{
 245	return event->attr.config & ARM_CSPMU_EVENT_MASK;
 246}
 247
 248static bool arm_cspmu_is_cycle_counter_event(const struct perf_event *event)
 249{
 250	return (event->attr.config == ARM_CSPMU_EVT_CYCLES_DEFAULT);
 251}
 252
 253static u32 arm_cspmu_event_filter(const struct perf_event *event)
 254{
 255	return event->attr.config1 & ARM_CSPMU_FILTER_MASK;
 256}
 257
 258static ssize_t arm_cspmu_identifier_show(struct device *dev,
 259					 struct device_attribute *attr,
 260					 char *page)
 261{
 262	struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev));
 263
 264	return sysfs_emit(page, "%s\n", cspmu->identifier);
 265}
 266
 267static struct device_attribute arm_cspmu_identifier_attr =
 268	__ATTR(identifier, 0444, arm_cspmu_identifier_show, NULL);
 269
 270static struct attribute *arm_cspmu_identifier_attrs[] = {
 271	&arm_cspmu_identifier_attr.attr,
 272	NULL,
 273};
 274
 275static struct attribute_group arm_cspmu_identifier_attr_group = {
 276	.attrs = arm_cspmu_identifier_attrs,
 277};
 278
 279static const char *arm_cspmu_get_identifier(const struct arm_cspmu *cspmu)
 280{
 281	const char *identifier =
 282		devm_kasprintf(cspmu->dev, GFP_KERNEL, "%x",
 283			       cspmu->impl.pmiidr);
 284	return identifier;
 285}
 286
 287static const char *arm_cspmu_type_str[ACPI_APMT_NODE_TYPE_COUNT] = {
 288	"mc",
 289	"smmu",
 290	"pcie",
 291	"acpi",
 292	"cache",
 293};
 294
 295static const char *arm_cspmu_get_name(const struct arm_cspmu *cspmu)
 296{
 297	struct device *dev;
 298	struct acpi_apmt_node *apmt_node;
 299	u8 pmu_type;
 300	char *name;
 301	char acpi_hid_string[ACPI_ID_LEN] = { 0 };
 302	static atomic_t pmu_idx[ACPI_APMT_NODE_TYPE_COUNT] = { 0 };
 303
 304	dev = cspmu->dev;
 305	apmt_node = arm_cspmu_apmt_node(dev);
 306	if (!apmt_node)
 307		return devm_kasprintf(dev, GFP_KERNEL, PMUNAME "_%u",
 308				      atomic_fetch_inc(&pmu_idx[0]));
 309
 310	pmu_type = apmt_node->type;
 311
 312	if (pmu_type >= ACPI_APMT_NODE_TYPE_COUNT) {
 313		dev_err(dev, "unsupported PMU type-%u\n", pmu_type);
 314		return NULL;
 315	}
 316
 317	if (pmu_type == ACPI_APMT_NODE_TYPE_ACPI) {
 318		memcpy(acpi_hid_string,
 319			&apmt_node->inst_primary,
 320			sizeof(apmt_node->inst_primary));
 321		name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%s_%u", PMUNAME,
 322				      arm_cspmu_type_str[pmu_type],
 323				      acpi_hid_string,
 324				      apmt_node->inst_secondary);
 325	} else {
 326		name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%d", PMUNAME,
 327				      arm_cspmu_type_str[pmu_type],
 328				      atomic_fetch_inc(&pmu_idx[pmu_type]));
 329	}
 330
 331	return name;
 332}
 333
 334static ssize_t arm_cspmu_cpumask_show(struct device *dev,
 335				      struct device_attribute *attr,
 336				      char *buf)
 337{
 338	struct pmu *pmu = dev_get_drvdata(dev);
 339	struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
 340	struct dev_ext_attribute *eattr =
 341		container_of(attr, struct dev_ext_attribute, attr);
 342	unsigned long mask_id = (unsigned long)eattr->var;
 343	const cpumask_t *cpumask;
 344
 345	switch (mask_id) {
 346	case ARM_CSPMU_ACTIVE_CPU_MASK:
 347		cpumask = &cspmu->active_cpu;
 348		break;
 349	case ARM_CSPMU_ASSOCIATED_CPU_MASK:
 350		cpumask = &cspmu->associated_cpus;
 351		break;
 352	default:
 353		return 0;
 354	}
 355	return cpumap_print_to_pagebuf(true, buf, cpumask);
 356}
 357
 358static struct attribute *arm_cspmu_cpumask_attrs[] = {
 359	ARM_CSPMU_CPUMASK_ATTR(cpumask, ARM_CSPMU_ACTIVE_CPU_MASK),
 360	ARM_CSPMU_CPUMASK_ATTR(associated_cpus, ARM_CSPMU_ASSOCIATED_CPU_MASK),
 361	NULL,
 362};
 363
 364static struct attribute_group arm_cspmu_cpumask_attr_group = {
 365	.attrs = arm_cspmu_cpumask_attrs,
 366};
 367
 368static struct arm_cspmu_impl_match impl_match[] = {
 369	{
 370		.module_name	= "nvidia_cspmu",
 371		.pmiidr_val	= ARM_CSPMU_IMPL_ID_NVIDIA,
 372		.pmiidr_mask	= ARM_CSPMU_PMIIDR_IMPLEMENTER,
 373		.module		= NULL,
 374		.impl_init_ops	= NULL,
 375	},
 376	{
 377		.module_name	= "ampere_cspmu",
 378		.pmiidr_val	= ARM_CSPMU_IMPL_ID_AMPERE,
 379		.pmiidr_mask	= ARM_CSPMU_PMIIDR_IMPLEMENTER,
 380		.module		= NULL,
 381		.impl_init_ops	= NULL,
 382	},
 383
 384	{0}
 385};
 386
 387static struct arm_cspmu_impl_match *arm_cspmu_impl_match_get(u32 pmiidr)
 388{
 389	struct arm_cspmu_impl_match *match = impl_match;
 390
 391	for (; match->pmiidr_val; match++) {
 392		u32 mask = match->pmiidr_mask;
 393
 394		if ((match->pmiidr_val & mask) == (pmiidr & mask))
 395			return match;
 396	}
 397
 398	return NULL;
 399}
 400
 401#define DEFAULT_IMPL_OP(name)	.name = arm_cspmu_##name
 402
 403static int arm_cspmu_init_impl_ops(struct arm_cspmu *cspmu)
 404{
 405	int ret = 0;
 406	struct acpi_apmt_node *apmt_node = arm_cspmu_apmt_node(cspmu->dev);
 407	struct arm_cspmu_impl_match *match;
 408
 409	/* Start with a default PMU implementation */
 410	cspmu->impl.module = THIS_MODULE;
 411	cspmu->impl.pmiidr = readl(cspmu->base0 + PMIIDR);
 412	cspmu->impl.ops = (struct arm_cspmu_impl_ops) {
 413		DEFAULT_IMPL_OP(get_event_attrs),
 414		DEFAULT_IMPL_OP(get_format_attrs),
 415		DEFAULT_IMPL_OP(get_identifier),
 416		DEFAULT_IMPL_OP(get_name),
 417		DEFAULT_IMPL_OP(is_cycle_counter_event),
 418		DEFAULT_IMPL_OP(event_type),
 419		DEFAULT_IMPL_OP(event_filter),
 420		DEFAULT_IMPL_OP(set_ev_filter),
 421		DEFAULT_IMPL_OP(event_attr_is_visible),
 422	};
 423
 424	/* Firmware may override implementer/product ID from PMIIDR */
 425	if (apmt_node && apmt_node->impl_id)
 426		cspmu->impl.pmiidr = apmt_node->impl_id;
 427
 428	/* Find implementer specific attribute ops. */
 429	match = arm_cspmu_impl_match_get(cspmu->impl.pmiidr);
 430
 431	/* Load implementer module and initialize the callbacks. */
 432	if (match) {
 433		mutex_lock(&arm_cspmu_lock);
 434
 435		if (match->impl_init_ops) {
 436			/* Prevent unload until PMU registration is done. */
 437			if (try_module_get(match->module)) {
 438				cspmu->impl.module = match->module;
 439				cspmu->impl.match = match;
 440				ret = match->impl_init_ops(cspmu);
 441				if (ret)
 442					module_put(match->module);
 443			} else {
 444				WARN(1, "arm_cspmu failed to get module: %s\n",
 445					match->module_name);
 446				ret = -EINVAL;
 447			}
 448		} else {
 449			request_module_nowait(match->module_name);
 450			ret = -EPROBE_DEFER;
 451		}
 452
 453		mutex_unlock(&arm_cspmu_lock);
 454	}
 455
 456	return ret;
 457}
 458
 459static struct attribute_group *
 460arm_cspmu_alloc_event_attr_group(struct arm_cspmu *cspmu)
 461{
 462	struct attribute_group *event_group;
 463	struct device *dev = cspmu->dev;
 464	const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops;
 465
 466	event_group =
 467		devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL);
 468	if (!event_group)
 469		return NULL;
 470
 471	event_group->name = "events";
 472	event_group->is_visible = impl_ops->event_attr_is_visible;
 473	event_group->attrs = impl_ops->get_event_attrs(cspmu);
 474
 475	if (!event_group->attrs)
 476		return NULL;
 477
 478	return event_group;
 479}
 480
 481static struct attribute_group *
 482arm_cspmu_alloc_format_attr_group(struct arm_cspmu *cspmu)
 483{
 484	struct attribute_group *format_group;
 485	struct device *dev = cspmu->dev;
 486
 487	format_group =
 488		devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL);
 489	if (!format_group)
 490		return NULL;
 491
 492	format_group->name = "format";
 493	format_group->attrs = cspmu->impl.ops.get_format_attrs(cspmu);
 494
 495	if (!format_group->attrs)
 496		return NULL;
 497
 498	return format_group;
 499}
 500
 501static int arm_cspmu_alloc_attr_groups(struct arm_cspmu *cspmu)
 502{
 503	const struct attribute_group **attr_groups = cspmu->attr_groups;
 504	const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops;
 505
 506	cspmu->identifier = impl_ops->get_identifier(cspmu);
 507	cspmu->name = impl_ops->get_name(cspmu);
 508
 509	if (!cspmu->identifier || !cspmu->name)
 510		return -ENOMEM;
 511
 512	attr_groups[0] = arm_cspmu_alloc_event_attr_group(cspmu);
 513	attr_groups[1] = arm_cspmu_alloc_format_attr_group(cspmu);
 514	attr_groups[2] = &arm_cspmu_identifier_attr_group;
 515	attr_groups[3] = &arm_cspmu_cpumask_attr_group;
 516
 517	if (!attr_groups[0] || !attr_groups[1])
 518		return -ENOMEM;
 519
 520	return 0;
 521}
 522
 523static inline void arm_cspmu_reset_counters(struct arm_cspmu *cspmu)
 524{
 525	writel(PMCR_C | PMCR_P, cspmu->base0 + PMCR);
 526}
 527
 528static inline void arm_cspmu_start_counters(struct arm_cspmu *cspmu)
 529{
 530	writel(PMCR_E, cspmu->base0 + PMCR);
 531}
 532
 533static inline void arm_cspmu_stop_counters(struct arm_cspmu *cspmu)
 534{
 535	writel(0, cspmu->base0 + PMCR);
 536}
 537
 538static void arm_cspmu_enable(struct pmu *pmu)
 539{
 540	bool disabled;
 541	struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
 542
 543	disabled = bitmap_empty(cspmu->hw_events.used_ctrs,
 544				cspmu->num_logical_ctrs);
 545
 546	if (disabled)
 547		return;
 548
 549	arm_cspmu_start_counters(cspmu);
 550}
 551
 552static void arm_cspmu_disable(struct pmu *pmu)
 553{
 554	struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
 555
 556	arm_cspmu_stop_counters(cspmu);
 557}
 558
 559static int arm_cspmu_get_event_idx(struct arm_cspmu_hw_events *hw_events,
 560				struct perf_event *event)
 561{
 562	int idx, ret;
 563	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
 564
 565	if (supports_cycle_counter(cspmu)) {
 566		if (cspmu->impl.ops.is_cycle_counter_event(event)) {
 567			/* Search for available cycle counter. */
 568			if (test_and_set_bit(cspmu->cycle_counter_logical_idx,
 569					     hw_events->used_ctrs))
 570				return -EAGAIN;
 571
 572			return cspmu->cycle_counter_logical_idx;
 573		}
 574
 575		/*
 576		 * Search a regular counter from the used counter bitmap.
 577		 * The cycle counter divides the bitmap into two parts. Search
 578		 * the first then second half to exclude the cycle counter bit.
 579		 */
 580		idx = find_first_zero_bit(hw_events->used_ctrs,
 581					  cspmu->cycle_counter_logical_idx);
 582		if (idx >= cspmu->cycle_counter_logical_idx) {
 583			idx = find_next_zero_bit(
 584				hw_events->used_ctrs,
 585				cspmu->num_logical_ctrs,
 586				cspmu->cycle_counter_logical_idx + 1);
 587		}
 588	} else {
 589		idx = find_first_zero_bit(hw_events->used_ctrs,
 590					  cspmu->num_logical_ctrs);
 591	}
 592
 593	if (idx >= cspmu->num_logical_ctrs)
 594		return -EAGAIN;
 595
 596	if (cspmu->impl.ops.validate_event) {
 597		ret = cspmu->impl.ops.validate_event(cspmu, event);
 598		if (ret)
 599			return ret;
 600	}
 601
 602	set_bit(idx, hw_events->used_ctrs);
 603
 604	return idx;
 605}
 606
 607static bool arm_cspmu_validate_event(struct pmu *pmu,
 608				 struct arm_cspmu_hw_events *hw_events,
 609				 struct perf_event *event)
 610{
 611	if (is_software_event(event))
 612		return true;
 613
 614	/* Reject groups spanning multiple HW PMUs. */
 615	if (event->pmu != pmu)
 616		return false;
 617
 618	return (arm_cspmu_get_event_idx(hw_events, event) >= 0);
 619}
 620
 621/*
 622 * Make sure the group of events can be scheduled at once
 623 * on the PMU.
 624 */
 625static bool arm_cspmu_validate_group(struct perf_event *event)
 626{
 627	struct perf_event *sibling, *leader = event->group_leader;
 628	struct arm_cspmu_hw_events fake_hw_events;
 629
 630	if (event->group_leader == event)
 631		return true;
 632
 633	memset(&fake_hw_events, 0, sizeof(fake_hw_events));
 634
 635	if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events, leader))
 636		return false;
 637
 638	for_each_sibling_event(sibling, leader) {
 639		if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events,
 640						  sibling))
 641			return false;
 642	}
 643
 644	return arm_cspmu_validate_event(event->pmu, &fake_hw_events, event);
 645}
 646
 647static int arm_cspmu_event_init(struct perf_event *event)
 648{
 649	struct arm_cspmu *cspmu;
 650	struct hw_perf_event *hwc = &event->hw;
 651
 652	cspmu = to_arm_cspmu(event->pmu);
 653
 654	if (event->attr.type != event->pmu->type)
 655		return -ENOENT;
 656
 657	/*
 658	 * Following other "uncore" PMUs, we do not support sampling mode or
 659	 * attach to a task (per-process mode).
 660	 */
 661	if (is_sampling_event(event)) {
 662		dev_dbg(cspmu->pmu.dev,
 663			"Can't support sampling events\n");
 664		return -EOPNOTSUPP;
 665	}
 666
 667	if (event->cpu < 0 || event->attach_state & PERF_ATTACH_TASK) {
 668		dev_dbg(cspmu->pmu.dev,
 669			"Can't support per-task counters\n");
 670		return -EINVAL;
 671	}
 672
 673	/*
 674	 * Make sure the CPU assignment is on one of the CPUs associated with
 675	 * this PMU.
 676	 */
 677	if (!cpumask_test_cpu(event->cpu, &cspmu->associated_cpus)) {
 678		dev_dbg(cspmu->pmu.dev,
 679			"Requested cpu is not associated with the PMU\n");
 680		return -EINVAL;
 681	}
 682
 683	/* Enforce the current active CPU to handle the events in this PMU. */
 684	event->cpu = cpumask_first(&cspmu->active_cpu);
 685	if (event->cpu >= nr_cpu_ids)
 686		return -EINVAL;
 687
 688	if (!arm_cspmu_validate_group(event))
 689		return -EINVAL;
 690
 691	/*
 692	 * The logical counter id is tracked with hw_perf_event.extra_reg.idx.
 693	 * The physical counter id is tracked with hw_perf_event.idx.
 694	 * We don't assign an index until we actually place the event onto
 695	 * hardware. Use -1 to signify that we haven't decided where to put it
 696	 * yet.
 697	 */
 698	hwc->idx = -1;
 699	hwc->extra_reg.idx = -1;
 700	hwc->config = cspmu->impl.ops.event_type(event);
 701
 702	return 0;
 703}
 704
 705static inline u32 counter_offset(u32 reg_sz, u32 ctr_idx)
 706{
 707	return (PMEVCNTR_LO + (reg_sz * ctr_idx));
 708}
 709
 710static void arm_cspmu_write_counter(struct perf_event *event, u64 val)
 711{
 712	u32 offset;
 713	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
 714
 715	if (use_64b_counter_reg(cspmu)) {
 716		offset = counter_offset(sizeof(u64), event->hw.idx);
 717
 718		if (cspmu->has_atomic_dword)
 719			writeq(val, cspmu->base1 + offset);
 720		else
 721			lo_hi_writeq(val, cspmu->base1 + offset);
 722	} else {
 723		offset = counter_offset(sizeof(u32), event->hw.idx);
 724
 725		writel(lower_32_bits(val), cspmu->base1 + offset);
 726	}
 727}
 728
 729static u64 arm_cspmu_read_counter(struct perf_event *event)
 730{
 731	u32 offset;
 732	const void __iomem *counter_addr;
 733	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
 734
 735	if (use_64b_counter_reg(cspmu)) {
 736		offset = counter_offset(sizeof(u64), event->hw.idx);
 737		counter_addr = cspmu->base1 + offset;
 738
 739		return cspmu->has_atomic_dword ?
 740			       readq(counter_addr) :
 741			       read_reg64_hilohi(counter_addr, HILOHI_MAX_POLL);
 742	}
 743
 744	offset = counter_offset(sizeof(u32), event->hw.idx);
 745	return readl(cspmu->base1 + offset);
 746}
 747
 748/*
 749 * arm_cspmu_set_event_period: Set the period for the counter.
 750 *
 751 * To handle cases of extreme interrupt latency, we program
 752 * the counter with half of the max count for the counters.
 753 */
 754static void arm_cspmu_set_event_period(struct perf_event *event)
 755{
 756	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
 757	u64 val = counter_mask(cspmu) >> 1ULL;
 758
 759	local64_set(&event->hw.prev_count, val);
 760	arm_cspmu_write_counter(event, val);
 761}
 762
 763static void arm_cspmu_enable_counter(struct arm_cspmu *cspmu, int idx)
 764{
 765	u32 reg_id, reg_bit, inten_off, cnten_off;
 766
 767	reg_id = COUNTER_TO_SET_CLR_ID(idx);
 768	reg_bit = COUNTER_TO_SET_CLR_BIT(idx);
 769
 770	inten_off = PMINTENSET + (4 * reg_id);
 771	cnten_off = PMCNTENSET + (4 * reg_id);
 772
 773	writel(BIT(reg_bit), cspmu->base0 + inten_off);
 774	writel(BIT(reg_bit), cspmu->base0 + cnten_off);
 775}
 776
 777static void arm_cspmu_disable_counter(struct arm_cspmu *cspmu, int idx)
 778{
 779	u32 reg_id, reg_bit, inten_off, cnten_off;
 780
 781	reg_id = COUNTER_TO_SET_CLR_ID(idx);
 782	reg_bit = COUNTER_TO_SET_CLR_BIT(idx);
 783
 784	inten_off = PMINTENCLR + (4 * reg_id);
 785	cnten_off = PMCNTENCLR + (4 * reg_id);
 786
 787	writel(BIT(reg_bit), cspmu->base0 + cnten_off);
 788	writel(BIT(reg_bit), cspmu->base0 + inten_off);
 789}
 790
 791static void arm_cspmu_event_update(struct perf_event *event)
 792{
 793	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
 794	struct hw_perf_event *hwc = &event->hw;
 795	u64 delta, prev, now;
 796
 797	do {
 798		prev = local64_read(&hwc->prev_count);
 799		now = arm_cspmu_read_counter(event);
 800	} while (local64_cmpxchg(&hwc->prev_count, prev, now) != prev);
 801
 802	delta = (now - prev) & counter_mask(cspmu);
 803	local64_add(delta, &event->count);
 804}
 805
 806static inline void arm_cspmu_set_event(struct arm_cspmu *cspmu,
 807					struct hw_perf_event *hwc)
 808{
 809	u32 offset = PMEVTYPER + (4 * hwc->idx);
 810
 811	writel(hwc->config, cspmu->base0 + offset);
 812}
 813
 814static void arm_cspmu_set_ev_filter(struct arm_cspmu *cspmu,
 815					struct hw_perf_event *hwc,
 816					u32 filter)
 817{
 818	u32 offset = PMEVFILTR + (4 * hwc->idx);
 819
 820	writel(filter, cspmu->base0 + offset);
 821}
 822
 823static inline void arm_cspmu_set_cc_filter(struct arm_cspmu *cspmu, u32 filter)
 824{
 825	u32 offset = PMCCFILTR;
 826
 827	writel(filter, cspmu->base0 + offset);
 828}
 829
 830static void arm_cspmu_start(struct perf_event *event, int pmu_flags)
 831{
 832	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
 833	struct hw_perf_event *hwc = &event->hw;
 834	u32 filter;
 835
 836	/* We always reprogram the counter */
 837	if (pmu_flags & PERF_EF_RELOAD)
 838		WARN_ON(!(hwc->state & PERF_HES_UPTODATE));
 839
 840	arm_cspmu_set_event_period(event);
 841
 842	filter = cspmu->impl.ops.event_filter(event);
 843
 844	if (event->hw.extra_reg.idx == cspmu->cycle_counter_logical_idx) {
 845		arm_cspmu_set_cc_filter(cspmu, filter);
 846	} else {
 847		arm_cspmu_set_event(cspmu, hwc);
 848		cspmu->impl.ops.set_ev_filter(cspmu, hwc, filter);
 849	}
 850
 851	hwc->state = 0;
 852
 853	arm_cspmu_enable_counter(cspmu, hwc->idx);
 854}
 855
 856static void arm_cspmu_stop(struct perf_event *event, int pmu_flags)
 857{
 858	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
 859	struct hw_perf_event *hwc = &event->hw;
 860
 861	if (hwc->state & PERF_HES_STOPPED)
 862		return;
 863
 864	arm_cspmu_disable_counter(cspmu, hwc->idx);
 865	arm_cspmu_event_update(event);
 866
 867	hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
 868}
 869
 870static inline u32 to_phys_idx(struct arm_cspmu *cspmu, u32 idx)
 871{
 872	return (idx == cspmu->cycle_counter_logical_idx) ?
 873		ARM_CSPMU_CYCLE_CNTR_IDX : idx;
 874}
 875
 876static int arm_cspmu_add(struct perf_event *event, int flags)
 877{
 878	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
 879	struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events;
 880	struct hw_perf_event *hwc = &event->hw;
 881	int idx;
 882
 883	if (WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(),
 884					   &cspmu->associated_cpus)))
 885		return -ENOENT;
 886
 887	idx = arm_cspmu_get_event_idx(hw_events, event);
 888	if (idx < 0)
 889		return idx;
 890
 891	hw_events->events[idx] = event;
 892	hwc->idx = to_phys_idx(cspmu, idx);
 893	hwc->extra_reg.idx = idx;
 894	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
 895
 896	if (flags & PERF_EF_START)
 897		arm_cspmu_start(event, PERF_EF_RELOAD);
 898
 899	/* Propagate changes to the userspace mapping. */
 900	perf_event_update_userpage(event);
 901
 902	return 0;
 903}
 904
 905static void arm_cspmu_del(struct perf_event *event, int flags)
 906{
 907	struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
 908	struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events;
 909	struct hw_perf_event *hwc = &event->hw;
 910	int idx = hwc->extra_reg.idx;
 911
 912	arm_cspmu_stop(event, PERF_EF_UPDATE);
 913
 914	hw_events->events[idx] = NULL;
 915
 916	clear_bit(idx, hw_events->used_ctrs);
 917
 918	perf_event_update_userpage(event);
 919}
 920
 921static void arm_cspmu_read(struct perf_event *event)
 922{
 923	arm_cspmu_event_update(event);
 924}
 925
 926static struct arm_cspmu *arm_cspmu_alloc(struct platform_device *pdev)
 927{
 928	struct acpi_apmt_node *apmt_node;
 929	struct arm_cspmu *cspmu;
 930	struct device *dev = &pdev->dev;
 931
 932	cspmu = devm_kzalloc(dev, sizeof(*cspmu), GFP_KERNEL);
 933	if (!cspmu)
 934		return NULL;
 935
 936	cspmu->dev = dev;
 937	platform_set_drvdata(pdev, cspmu);
 938
 939	apmt_node = arm_cspmu_apmt_node(dev);
 940	if (apmt_node) {
 941		cspmu->has_atomic_dword = apmt_node->flags & ACPI_APMT_FLAGS_ATOMIC;
 942	} else {
 943		u32 width = 0;
 944
 945		device_property_read_u32(dev, "reg-io-width", &width);
 946		cspmu->has_atomic_dword = (width == 8);
 947	}
 948
 949	return cspmu;
 950}
 951
 952static int arm_cspmu_init_mmio(struct arm_cspmu *cspmu)
 953{
 954	struct device *dev;
 955	struct platform_device *pdev;
 956
 957	dev = cspmu->dev;
 958	pdev = to_platform_device(dev);
 959
 960	/* Base address for page 0. */
 961	cspmu->base0 = devm_platform_ioremap_resource(pdev, 0);
 962	if (IS_ERR(cspmu->base0)) {
 963		dev_err(dev, "ioremap failed for page-0 resource\n");
 964		return PTR_ERR(cspmu->base0);
 965	}
 966
 967	/* Base address for page 1 if supported. Otherwise point to page 0. */
 968	cspmu->base1 = cspmu->base0;
 969	if (platform_get_resource(pdev, IORESOURCE_MEM, 1)) {
 970		cspmu->base1 = devm_platform_ioremap_resource(pdev, 1);
 971		if (IS_ERR(cspmu->base1)) {
 972			dev_err(dev, "ioremap failed for page-1 resource\n");
 973			return PTR_ERR(cspmu->base1);
 974		}
 975	}
 976
 977	cspmu->pmcfgr = readl(cspmu->base0 + PMCFGR);
 978
 979	cspmu->num_logical_ctrs = FIELD_GET(PMCFGR_N, cspmu->pmcfgr) + 1;
 980
 981	cspmu->cycle_counter_logical_idx = ARM_CSPMU_MAX_HW_CNTRS;
 982
 983	if (supports_cycle_counter(cspmu)) {
 984		/*
 985		 * The last logical counter is mapped to cycle counter if
 986		 * there is a gap between regular and cycle counter. Otherwise,
 987		 * logical and physical have 1-to-1 mapping.
 988		 */
 989		cspmu->cycle_counter_logical_idx =
 990			(cspmu->num_logical_ctrs <= ARM_CSPMU_CYCLE_CNTR_IDX) ?
 991				cspmu->num_logical_ctrs - 1 :
 992				ARM_CSPMU_CYCLE_CNTR_IDX;
 993	}
 994
 995	cspmu->num_set_clr_reg =
 996		DIV_ROUND_UP(cspmu->num_logical_ctrs,
 997				ARM_CSPMU_SET_CLR_COUNTER_NUM);
 998
 999	cspmu->hw_events.events =
1000		devm_kcalloc(dev, cspmu->num_logical_ctrs,
1001			     sizeof(*cspmu->hw_events.events), GFP_KERNEL);
1002
1003	if (!cspmu->hw_events.events)
1004		return -ENOMEM;
1005
1006	return 0;
1007}
1008
1009static inline int arm_cspmu_get_reset_overflow(struct arm_cspmu *cspmu,
1010					       u32 *pmovs)
1011{
1012	int i;
1013	u32 pmovclr_offset = PMOVSCLR;
1014	u32 has_overflowed = 0;
1015
1016	for (i = 0; i < cspmu->num_set_clr_reg; ++i) {
1017		pmovs[i] = readl(cspmu->base1 + pmovclr_offset);
1018		has_overflowed |= pmovs[i];
1019		writel(pmovs[i], cspmu->base1 + pmovclr_offset);
1020		pmovclr_offset += sizeof(u32);
1021	}
1022
1023	return has_overflowed != 0;
1024}
1025
1026static irqreturn_t arm_cspmu_handle_irq(int irq_num, void *dev)
1027{
1028	int idx, has_overflowed;
1029	struct perf_event *event;
1030	struct arm_cspmu *cspmu = dev;
1031	DECLARE_BITMAP(pmovs, ARM_CSPMU_MAX_HW_CNTRS);
1032	bool handled = false;
1033
1034	arm_cspmu_stop_counters(cspmu);
1035
1036	has_overflowed = arm_cspmu_get_reset_overflow(cspmu, (u32 *)pmovs);
1037	if (!has_overflowed)
1038		goto done;
1039
1040	for_each_set_bit(idx, cspmu->hw_events.used_ctrs,
1041			cspmu->num_logical_ctrs) {
1042		event = cspmu->hw_events.events[idx];
1043
1044		if (!event)
1045			continue;
1046
1047		if (!test_bit(event->hw.idx, pmovs))
1048			continue;
1049
1050		arm_cspmu_event_update(event);
1051		arm_cspmu_set_event_period(event);
1052
1053		handled = true;
1054	}
1055
1056done:
1057	arm_cspmu_start_counters(cspmu);
1058	return IRQ_RETVAL(handled);
1059}
1060
1061static int arm_cspmu_request_irq(struct arm_cspmu *cspmu)
1062{
1063	int irq, ret;
1064	struct device *dev;
1065	struct platform_device *pdev;
1066
1067	dev = cspmu->dev;
1068	pdev = to_platform_device(dev);
1069
1070	/* Skip IRQ request if the PMU does not support overflow interrupt. */
1071	irq = platform_get_irq_optional(pdev, 0);
1072	if (irq < 0)
1073		return irq == -ENXIO ? 0 : irq;
1074
1075	ret = devm_request_irq(dev, irq, arm_cspmu_handle_irq,
1076			       IRQF_NOBALANCING | IRQF_NO_THREAD, dev_name(dev),
1077			       cspmu);
1078	if (ret) {
1079		dev_err(dev, "Could not request IRQ %d\n", irq);
1080		return ret;
1081	}
1082
1083	cspmu->irq = irq;
1084
1085	return 0;
1086}
1087
1088#if defined(CONFIG_ACPI) && defined(CONFIG_ARM64)
1089#include <acpi/processor.h>
1090
1091static inline int arm_cspmu_find_cpu_container(int cpu, u32 container_uid)
1092{
1093	struct device *cpu_dev;
1094	struct acpi_device *acpi_dev;
1095
1096	cpu_dev = get_cpu_device(cpu);
1097	if (!cpu_dev)
1098		return -ENODEV;
1099
1100	acpi_dev = ACPI_COMPANION(cpu_dev);
1101	while (acpi_dev) {
1102		if (acpi_dev_hid_uid_match(acpi_dev, ACPI_PROCESSOR_CONTAINER_HID, container_uid))
1103			return 0;
1104
1105		acpi_dev = acpi_dev_parent(acpi_dev);
1106	}
1107
1108	return -ENODEV;
1109}
1110
1111static int arm_cspmu_acpi_get_cpus(struct arm_cspmu *cspmu)
1112{
1113	struct acpi_apmt_node *apmt_node;
1114	int affinity_flag;
1115	int cpu;
1116
1117	apmt_node = arm_cspmu_apmt_node(cspmu->dev);
1118	affinity_flag = apmt_node->flags & ACPI_APMT_FLAGS_AFFINITY;
1119
1120	if (affinity_flag == ACPI_APMT_FLAGS_AFFINITY_PROC) {
1121		for_each_possible_cpu(cpu) {
1122			if (apmt_node->proc_affinity ==
1123			    get_acpi_id_for_cpu(cpu)) {
1124				cpumask_set_cpu(cpu, &cspmu->associated_cpus);
1125				break;
1126			}
1127		}
1128	} else {
1129		for_each_possible_cpu(cpu) {
1130			if (arm_cspmu_find_cpu_container(
1131				    cpu, apmt_node->proc_affinity))
1132				continue;
1133
1134			cpumask_set_cpu(cpu, &cspmu->associated_cpus);
1135		}
1136	}
1137
1138	return 0;
1139}
1140#else
1141static int arm_cspmu_acpi_get_cpus(struct arm_cspmu *cspmu)
1142{
1143	return -ENODEV;
1144}
1145#endif
1146
1147static int arm_cspmu_of_get_cpus(struct arm_cspmu *cspmu)
1148{
1149	struct of_phandle_iterator it;
1150	int ret, cpu;
1151
1152	of_for_each_phandle(&it, ret, dev_of_node(cspmu->dev), "cpus", NULL, 0) {
1153		cpu = of_cpu_node_to_id(it.node);
1154		if (cpu < 0)
1155			continue;
1156		cpumask_set_cpu(cpu, &cspmu->associated_cpus);
1157	}
1158	return ret == -ENOENT ? 0 : ret;
1159}
1160
1161static int arm_cspmu_get_cpus(struct arm_cspmu *cspmu)
1162{
1163	int ret = 0;
1164
1165	if (arm_cspmu_apmt_node(cspmu->dev))
1166		ret = arm_cspmu_acpi_get_cpus(cspmu);
1167	else if (device_property_present(cspmu->dev, "cpus"))
1168		ret = arm_cspmu_of_get_cpus(cspmu);
1169	else
1170		cpumask_copy(&cspmu->associated_cpus, cpu_possible_mask);
1171
1172	if (!ret && cpumask_empty(&cspmu->associated_cpus)) {
1173		dev_dbg(cspmu->dev, "No cpu associated with the PMU\n");
1174		ret = -ENODEV;
1175	}
1176	return ret;
1177}
1178
1179static int arm_cspmu_register_pmu(struct arm_cspmu *cspmu)
1180{
1181	int ret, capabilities;
1182
1183	ret = arm_cspmu_alloc_attr_groups(cspmu);
1184	if (ret)
1185		return ret;
1186
1187	ret = cpuhp_state_add_instance(arm_cspmu_cpuhp_state,
1188				       &cspmu->cpuhp_node);
1189	if (ret)
1190		return ret;
1191
1192	capabilities = PERF_PMU_CAP_NO_EXCLUDE;
1193	if (cspmu->irq == 0)
1194		capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1195
1196	cspmu->pmu = (struct pmu){
1197		.task_ctx_nr	= perf_invalid_context,
1198		.module		= cspmu->impl.module,
1199		.parent		= cspmu->dev,
1200		.pmu_enable	= arm_cspmu_enable,
1201		.pmu_disable	= arm_cspmu_disable,
1202		.event_init	= arm_cspmu_event_init,
1203		.add		= arm_cspmu_add,
1204		.del		= arm_cspmu_del,
1205		.start		= arm_cspmu_start,
1206		.stop		= arm_cspmu_stop,
1207		.read		= arm_cspmu_read,
1208		.attr_groups	= cspmu->attr_groups,
1209		.capabilities	= capabilities,
1210	};
1211
1212	/* Hardware counter init */
1213	arm_cspmu_reset_counters(cspmu);
1214
1215	ret = perf_pmu_register(&cspmu->pmu, cspmu->name, -1);
1216	if (ret) {
1217		cpuhp_state_remove_instance(arm_cspmu_cpuhp_state,
1218					    &cspmu->cpuhp_node);
1219	}
1220
1221	return ret;
1222}
1223
1224static int arm_cspmu_device_probe(struct platform_device *pdev)
1225{
1226	int ret;
1227	struct arm_cspmu *cspmu;
1228
1229	cspmu = arm_cspmu_alloc(pdev);
1230	if (!cspmu)
1231		return -ENOMEM;
1232
1233	ret = arm_cspmu_init_mmio(cspmu);
1234	if (ret)
1235		return ret;
1236
1237	ret = arm_cspmu_request_irq(cspmu);
1238	if (ret)
1239		return ret;
1240
1241	ret = arm_cspmu_get_cpus(cspmu);
1242	if (ret)
1243		return ret;
1244
1245	ret = arm_cspmu_init_impl_ops(cspmu);
1246	if (ret)
1247		return ret;
1248
1249	ret = arm_cspmu_register_pmu(cspmu);
1250
1251	/* Matches arm_cspmu_init_impl_ops() above. */
1252	if (cspmu->impl.module != THIS_MODULE)
1253		module_put(cspmu->impl.module);
1254
1255	return ret;
1256}
1257
1258static void arm_cspmu_device_remove(struct platform_device *pdev)
1259{
1260	struct arm_cspmu *cspmu = platform_get_drvdata(pdev);
1261
1262	perf_pmu_unregister(&cspmu->pmu);
1263	cpuhp_state_remove_instance(arm_cspmu_cpuhp_state, &cspmu->cpuhp_node);
1264}
1265
1266static const struct platform_device_id arm_cspmu_id[] = {
1267	{DRVNAME, 0},
1268	{ },
1269};
1270MODULE_DEVICE_TABLE(platform, arm_cspmu_id);
1271
1272static const struct of_device_id arm_cspmu_of_match[] = {
1273	{ .compatible = "arm,coresight-pmu" },
1274	{}
1275};
1276MODULE_DEVICE_TABLE(of, arm_cspmu_of_match);
1277
1278static struct platform_driver arm_cspmu_driver = {
1279	.driver = {
1280		.name = DRVNAME,
1281		.of_match_table = arm_cspmu_of_match,
1282		.suppress_bind_attrs = true,
1283	},
1284	.probe = arm_cspmu_device_probe,
1285	.remove = arm_cspmu_device_remove,
1286	.id_table = arm_cspmu_id,
1287};
1288
1289static void arm_cspmu_set_active_cpu(int cpu, struct arm_cspmu *cspmu)
1290{
1291	cpumask_set_cpu(cpu, &cspmu->active_cpu);
1292	if (cspmu->irq)
1293		WARN_ON(irq_set_affinity(cspmu->irq, &cspmu->active_cpu));
1294}
1295
1296static int arm_cspmu_cpu_online(unsigned int cpu, struct hlist_node *node)
1297{
1298	struct arm_cspmu *cspmu =
1299		hlist_entry_safe(node, struct arm_cspmu, cpuhp_node);
1300
1301	if (!cpumask_test_cpu(cpu, &cspmu->associated_cpus))
1302		return 0;
1303
1304	/* If the PMU is already managed, there is nothing to do */
1305	if (!cpumask_empty(&cspmu->active_cpu))
1306		return 0;
1307
1308	/* Use this CPU for event counting */
1309	arm_cspmu_set_active_cpu(cpu, cspmu);
1310
1311	return 0;
1312}
1313
1314static int arm_cspmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1315{
1316	unsigned int dst;
1317
1318	struct arm_cspmu *cspmu =
1319		hlist_entry_safe(node, struct arm_cspmu, cpuhp_node);
1320
1321	/* Nothing to do if this CPU doesn't own the PMU */
1322	if (!cpumask_test_and_clear_cpu(cpu, &cspmu->active_cpu))
1323		return 0;
1324
1325	/* Choose a new CPU to migrate ownership of the PMU to */
1326	dst = cpumask_any_and_but(&cspmu->associated_cpus,
1327				  cpu_online_mask, cpu);
1328	if (dst >= nr_cpu_ids)
1329		return 0;
1330
1331	/* Use this CPU for event counting */
1332	perf_pmu_migrate_context(&cspmu->pmu, cpu, dst);
1333	arm_cspmu_set_active_cpu(dst, cspmu);
1334
1335	return 0;
1336}
1337
1338static int __init arm_cspmu_init(void)
1339{
1340	int ret;
1341
1342	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
1343					"perf/arm/cspmu:online",
1344					arm_cspmu_cpu_online,
1345					arm_cspmu_cpu_teardown);
1346	if (ret < 0)
1347		return ret;
1348	arm_cspmu_cpuhp_state = ret;
1349	return platform_driver_register(&arm_cspmu_driver);
1350}
1351
1352static void __exit arm_cspmu_exit(void)
1353{
1354	platform_driver_unregister(&arm_cspmu_driver);
1355	cpuhp_remove_multi_state(arm_cspmu_cpuhp_state);
1356}
1357
1358int arm_cspmu_impl_register(const struct arm_cspmu_impl_match *impl_match)
1359{
1360	struct arm_cspmu_impl_match *match;
1361	int ret = 0;
1362
1363	match = arm_cspmu_impl_match_get(impl_match->pmiidr_val);
1364
1365	if (match) {
1366		mutex_lock(&arm_cspmu_lock);
1367
1368		if (!match->impl_init_ops) {
1369			match->module = impl_match->module;
1370			match->impl_init_ops = impl_match->impl_init_ops;
1371		} else {
1372			/* Broken match table may contain non-unique entries */
1373			WARN(1, "arm_cspmu backend already registered for module: %s, pmiidr: 0x%x, mask: 0x%x\n",
1374				match->module_name,
1375				match->pmiidr_val,
1376				match->pmiidr_mask);
1377
1378			ret = -EINVAL;
1379		}
1380
1381		mutex_unlock(&arm_cspmu_lock);
1382
1383		if (!ret)
1384			ret = driver_attach(&arm_cspmu_driver.driver);
1385	} else {
1386		pr_err("arm_cspmu reg failed, unable to find a match for pmiidr: 0x%x\n",
1387			impl_match->pmiidr_val);
1388
1389		ret = -EINVAL;
1390	}
1391
1392	return ret;
1393}
1394EXPORT_SYMBOL_GPL(arm_cspmu_impl_register);
1395
1396static int arm_cspmu_match_device(struct device *dev, const void *match)
1397{
1398	struct arm_cspmu *cspmu = platform_get_drvdata(to_platform_device(dev));
1399
1400	return (cspmu && cspmu->impl.match == match) ? 1 : 0;
1401}
1402
1403void arm_cspmu_impl_unregister(const struct arm_cspmu_impl_match *impl_match)
1404{
1405	struct device *dev;
1406	struct arm_cspmu_impl_match *match;
1407
1408	match = arm_cspmu_impl_match_get(impl_match->pmiidr_val);
1409
1410	if (WARN_ON(!match))
1411		return;
1412
1413	/* Unbind the driver from all matching backend devices. */
1414	while ((dev = driver_find_device(&arm_cspmu_driver.driver, NULL,
1415			match, arm_cspmu_match_device)))
1416		device_release_driver(dev);
1417
1418	mutex_lock(&arm_cspmu_lock);
1419
1420	match->module = NULL;
1421	match->impl_init_ops = NULL;
1422
1423	mutex_unlock(&arm_cspmu_lock);
1424}
1425EXPORT_SYMBOL_GPL(arm_cspmu_impl_unregister);
1426
1427module_init(arm_cspmu_init);
1428module_exit(arm_cspmu_exit);
1429
1430MODULE_DESCRIPTION("ARM CoreSight Architecture Performance Monitor Driver");
1431MODULE_LICENSE("GPL v2");