Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * drivers/of/property.c - Procedures for accessing and interpreting
4 * Devicetree properties and graphs.
5 *
6 * Initially created by copying procedures from drivers/of/base.c. This
7 * file contains the OF property as well as the OF graph interface
8 * functions.
9 *
10 * Paul Mackerras August 1996.
11 * Copyright (C) 1996-2005 Paul Mackerras.
12 *
13 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
14 * {engebret|bergner}@us.ibm.com
15 *
16 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
17 *
18 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
19 * Grant Likely.
20 */
21
22#define pr_fmt(fmt) "OF: " fmt
23
24#include <linux/of.h>
25#include <linux/of_address.h>
26#include <linux/of_device.h>
27#include <linux/of_graph.h>
28#include <linux/of_irq.h>
29#include <linux/string.h>
30#include <linux/moduleparam.h>
31
32#include "of_private.h"
33
34/**
35 * of_graph_is_present() - check graph's presence
36 * @node: pointer to device_node containing graph port
37 *
38 * Return: True if @node has a port or ports (with a port) sub-node,
39 * false otherwise.
40 */
41bool of_graph_is_present(const struct device_node *node)
42{
43 struct device_node *ports __free(device_node) = of_get_child_by_name(node, "ports");
44
45 if (ports)
46 node = ports;
47
48 struct device_node *port __free(device_node) = of_get_child_by_name(node, "port");
49
50 return !!port;
51}
52EXPORT_SYMBOL(of_graph_is_present);
53
54/**
55 * of_property_count_elems_of_size - Count the number of elements in a property
56 *
57 * @np: device node from which the property value is to be read.
58 * @propname: name of the property to be searched.
59 * @elem_size: size of the individual element
60 *
61 * Search for a property in a device node and count the number of elements of
62 * size elem_size in it.
63 *
64 * Return: The number of elements on sucess, -EINVAL if the property does not
65 * exist or its length does not match a multiple of elem_size and -ENODATA if
66 * the property does not have a value.
67 */
68int of_property_count_elems_of_size(const struct device_node *np,
69 const char *propname, int elem_size)
70{
71 const struct property *prop = of_find_property(np, propname, NULL);
72
73 if (!prop)
74 return -EINVAL;
75 if (!prop->value)
76 return -ENODATA;
77
78 if (prop->length % elem_size != 0) {
79 pr_err("size of %s in node %pOF is not a multiple of %d\n",
80 propname, np, elem_size);
81 return -EINVAL;
82 }
83
84 return prop->length / elem_size;
85}
86EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
87
88/**
89 * of_find_property_value_of_size
90 *
91 * @np: device node from which the property value is to be read.
92 * @propname: name of the property to be searched.
93 * @min: minimum allowed length of property value
94 * @max: maximum allowed length of property value (0 means unlimited)
95 * @len: if !=NULL, actual length is written to here
96 *
97 * Search for a property in a device node and valid the requested size.
98 *
99 * Return: The property value on success, -EINVAL if the property does not
100 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
101 * property data is too small or too large.
102 *
103 */
104static void *of_find_property_value_of_size(const struct device_node *np,
105 const char *propname, u32 min, u32 max, size_t *len)
106{
107 const struct property *prop = of_find_property(np, propname, NULL);
108
109 if (!prop)
110 return ERR_PTR(-EINVAL);
111 if (!prop->value)
112 return ERR_PTR(-ENODATA);
113 if (prop->length < min)
114 return ERR_PTR(-EOVERFLOW);
115 if (max && prop->length > max)
116 return ERR_PTR(-EOVERFLOW);
117
118 if (len)
119 *len = prop->length;
120
121 return prop->value;
122}
123
124/**
125 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
126 *
127 * @np: device node from which the property value is to be read.
128 * @propname: name of the property to be searched.
129 * @index: index of the u32 in the list of values
130 * @out_value: pointer to return value, modified only if no error.
131 *
132 * Search for a property in a device node and read nth 32-bit value from
133 * it.
134 *
135 * Return: 0 on success, -EINVAL if the property does not exist,
136 * -ENODATA if property does not have a value, and -EOVERFLOW if the
137 * property data isn't large enough.
138 *
139 * The out_value is modified only if a valid u32 value can be decoded.
140 */
141int of_property_read_u32_index(const struct device_node *np,
142 const char *propname,
143 u32 index, u32 *out_value)
144{
145 const u32 *val = of_find_property_value_of_size(np, propname,
146 ((index + 1) * sizeof(*out_value)),
147 0,
148 NULL);
149
150 if (IS_ERR(val))
151 return PTR_ERR(val);
152
153 *out_value = be32_to_cpup(((__be32 *)val) + index);
154 return 0;
155}
156EXPORT_SYMBOL_GPL(of_property_read_u32_index);
157
158/**
159 * of_property_read_u64_index - Find and read a u64 from a multi-value property.
160 *
161 * @np: device node from which the property value is to be read.
162 * @propname: name of the property to be searched.
163 * @index: index of the u64 in the list of values
164 * @out_value: pointer to return value, modified only if no error.
165 *
166 * Search for a property in a device node and read nth 64-bit value from
167 * it.
168 *
169 * Return: 0 on success, -EINVAL if the property does not exist,
170 * -ENODATA if property does not have a value, and -EOVERFLOW if the
171 * property data isn't large enough.
172 *
173 * The out_value is modified only if a valid u64 value can be decoded.
174 */
175int of_property_read_u64_index(const struct device_node *np,
176 const char *propname,
177 u32 index, u64 *out_value)
178{
179 const u64 *val = of_find_property_value_of_size(np, propname,
180 ((index + 1) * sizeof(*out_value)),
181 0, NULL);
182
183 if (IS_ERR(val))
184 return PTR_ERR(val);
185
186 *out_value = be64_to_cpup(((__be64 *)val) + index);
187 return 0;
188}
189EXPORT_SYMBOL_GPL(of_property_read_u64_index);
190
191/**
192 * of_property_read_variable_u8_array - Find and read an array of u8 from a
193 * property, with bounds on the minimum and maximum array size.
194 *
195 * @np: device node from which the property value is to be read.
196 * @propname: name of the property to be searched.
197 * @out_values: pointer to found values.
198 * @sz_min: minimum number of array elements to read
199 * @sz_max: maximum number of array elements to read, if zero there is no
200 * upper limit on the number of elements in the dts entry but only
201 * sz_min will be read.
202 *
203 * Search for a property in a device node and read 8-bit value(s) from
204 * it.
205 *
206 * dts entry of array should be like:
207 * ``property = /bits/ 8 <0x50 0x60 0x70>;``
208 *
209 * Return: The number of elements read on success, -EINVAL if the property
210 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
211 * if the property data is smaller than sz_min or longer than sz_max.
212 *
213 * The out_values is modified only if a valid u8 value can be decoded.
214 */
215int of_property_read_variable_u8_array(const struct device_node *np,
216 const char *propname, u8 *out_values,
217 size_t sz_min, size_t sz_max)
218{
219 size_t sz, count;
220 const u8 *val = of_find_property_value_of_size(np, propname,
221 (sz_min * sizeof(*out_values)),
222 (sz_max * sizeof(*out_values)),
223 &sz);
224
225 if (IS_ERR(val))
226 return PTR_ERR(val);
227
228 if (!sz_max)
229 sz = sz_min;
230 else
231 sz /= sizeof(*out_values);
232
233 count = sz;
234 while (count--)
235 *out_values++ = *val++;
236
237 return sz;
238}
239EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
240
241/**
242 * of_property_read_variable_u16_array - Find and read an array of u16 from a
243 * property, with bounds on the minimum and maximum array size.
244 *
245 * @np: device node from which the property value is to be read.
246 * @propname: name of the property to be searched.
247 * @out_values: pointer to found values.
248 * @sz_min: minimum number of array elements to read
249 * @sz_max: maximum number of array elements to read, if zero there is no
250 * upper limit on the number of elements in the dts entry but only
251 * sz_min will be read.
252 *
253 * Search for a property in a device node and read 16-bit value(s) from
254 * it.
255 *
256 * dts entry of array should be like:
257 * ``property = /bits/ 16 <0x5000 0x6000 0x7000>;``
258 *
259 * Return: The number of elements read on success, -EINVAL if the property
260 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
261 * if the property data is smaller than sz_min or longer than sz_max.
262 *
263 * The out_values is modified only if a valid u16 value can be decoded.
264 */
265int of_property_read_variable_u16_array(const struct device_node *np,
266 const char *propname, u16 *out_values,
267 size_t sz_min, size_t sz_max)
268{
269 size_t sz, count;
270 const __be16 *val = of_find_property_value_of_size(np, propname,
271 (sz_min * sizeof(*out_values)),
272 (sz_max * sizeof(*out_values)),
273 &sz);
274
275 if (IS_ERR(val))
276 return PTR_ERR(val);
277
278 if (!sz_max)
279 sz = sz_min;
280 else
281 sz /= sizeof(*out_values);
282
283 count = sz;
284 while (count--)
285 *out_values++ = be16_to_cpup(val++);
286
287 return sz;
288}
289EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
290
291/**
292 * of_property_read_variable_u32_array - Find and read an array of 32 bit
293 * integers from a property, with bounds on the minimum and maximum array size.
294 *
295 * @np: device node from which the property value is to be read.
296 * @propname: name of the property to be searched.
297 * @out_values: pointer to return found values.
298 * @sz_min: minimum number of array elements to read
299 * @sz_max: maximum number of array elements to read, if zero there is no
300 * upper limit on the number of elements in the dts entry but only
301 * sz_min will be read.
302 *
303 * Search for a property in a device node and read 32-bit value(s) from
304 * it.
305 *
306 * Return: The number of elements read on success, -EINVAL if the property
307 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
308 * if the property data is smaller than sz_min or longer than sz_max.
309 *
310 * The out_values is modified only if a valid u32 value can be decoded.
311 */
312int of_property_read_variable_u32_array(const struct device_node *np,
313 const char *propname, u32 *out_values,
314 size_t sz_min, size_t sz_max)
315{
316 size_t sz, count;
317 const __be32 *val = of_find_property_value_of_size(np, propname,
318 (sz_min * sizeof(*out_values)),
319 (sz_max * sizeof(*out_values)),
320 &sz);
321
322 if (IS_ERR(val))
323 return PTR_ERR(val);
324
325 if (!sz_max)
326 sz = sz_min;
327 else
328 sz /= sizeof(*out_values);
329
330 count = sz;
331 while (count--)
332 *out_values++ = be32_to_cpup(val++);
333
334 return sz;
335}
336EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
337
338/**
339 * of_property_read_u64 - Find and read a 64 bit integer from a property
340 * @np: device node from which the property value is to be read.
341 * @propname: name of the property to be searched.
342 * @out_value: pointer to return value, modified only if return value is 0.
343 *
344 * Search for a property in a device node and read a 64-bit value from
345 * it.
346 *
347 * Return: 0 on success, -EINVAL if the property does not exist,
348 * -ENODATA if property does not have a value, and -EOVERFLOW if the
349 * property data isn't large enough.
350 *
351 * The out_value is modified only if a valid u64 value can be decoded.
352 */
353int of_property_read_u64(const struct device_node *np, const char *propname,
354 u64 *out_value)
355{
356 const __be32 *val = of_find_property_value_of_size(np, propname,
357 sizeof(*out_value),
358 0,
359 NULL);
360
361 if (IS_ERR(val))
362 return PTR_ERR(val);
363
364 *out_value = of_read_number(val, 2);
365 return 0;
366}
367EXPORT_SYMBOL_GPL(of_property_read_u64);
368
369/**
370 * of_property_read_variable_u64_array - Find and read an array of 64 bit
371 * integers from a property, with bounds on the minimum and maximum array size.
372 *
373 * @np: device node from which the property value is to be read.
374 * @propname: name of the property to be searched.
375 * @out_values: pointer to found values.
376 * @sz_min: minimum number of array elements to read
377 * @sz_max: maximum number of array elements to read, if zero there is no
378 * upper limit on the number of elements in the dts entry but only
379 * sz_min will be read.
380 *
381 * Search for a property in a device node and read 64-bit value(s) from
382 * it.
383 *
384 * Return: The number of elements read on success, -EINVAL if the property
385 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
386 * if the property data is smaller than sz_min or longer than sz_max.
387 *
388 * The out_values is modified only if a valid u64 value can be decoded.
389 */
390int of_property_read_variable_u64_array(const struct device_node *np,
391 const char *propname, u64 *out_values,
392 size_t sz_min, size_t sz_max)
393{
394 size_t sz, count;
395 const __be32 *val = of_find_property_value_of_size(np, propname,
396 (sz_min * sizeof(*out_values)),
397 (sz_max * sizeof(*out_values)),
398 &sz);
399
400 if (IS_ERR(val))
401 return PTR_ERR(val);
402
403 if (!sz_max)
404 sz = sz_min;
405 else
406 sz /= sizeof(*out_values);
407
408 count = sz;
409 while (count--) {
410 *out_values++ = of_read_number(val, 2);
411 val += 2;
412 }
413
414 return sz;
415}
416EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
417
418/**
419 * of_property_read_string - Find and read a string from a property
420 * @np: device node from which the property value is to be read.
421 * @propname: name of the property to be searched.
422 * @out_string: pointer to null terminated return string, modified only if
423 * return value is 0.
424 *
425 * Search for a property in a device tree node and retrieve a null
426 * terminated string value (pointer to data, not a copy).
427 *
428 * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if
429 * property does not have a value, and -EILSEQ if the string is not
430 * null-terminated within the length of the property data.
431 *
432 * Note that the empty string "" has length of 1, thus -ENODATA cannot
433 * be interpreted as an empty string.
434 *
435 * The out_string pointer is modified only if a valid string can be decoded.
436 */
437int of_property_read_string(const struct device_node *np, const char *propname,
438 const char **out_string)
439{
440 const struct property *prop = of_find_property(np, propname, NULL);
441
442 if (!prop)
443 return -EINVAL;
444 if (!prop->length)
445 return -ENODATA;
446 if (strnlen(prop->value, prop->length) >= prop->length)
447 return -EILSEQ;
448 *out_string = prop->value;
449 return 0;
450}
451EXPORT_SYMBOL_GPL(of_property_read_string);
452
453/**
454 * of_property_match_string() - Find string in a list and return index
455 * @np: pointer to the node containing the string list property
456 * @propname: string list property name
457 * @string: pointer to the string to search for in the string list
458 *
459 * Search for an exact match of string in a device node property which is a
460 * string of lists.
461 *
462 * Return: the index of the first occurrence of the string on success, -EINVAL
463 * if the property does not exist, -ENODATA if the property does not have a
464 * value, and -EILSEQ if the string is not null-terminated within the length of
465 * the property data.
466 */
467int of_property_match_string(const struct device_node *np, const char *propname,
468 const char *string)
469{
470 const struct property *prop = of_find_property(np, propname, NULL);
471 size_t l;
472 int i;
473 const char *p, *end;
474
475 if (!prop)
476 return -EINVAL;
477 if (!prop->value)
478 return -ENODATA;
479
480 p = prop->value;
481 end = p + prop->length;
482
483 for (i = 0; p < end; i++, p += l) {
484 l = strnlen(p, end - p) + 1;
485 if (p + l > end)
486 return -EILSEQ;
487 pr_debug("comparing %s with %s\n", string, p);
488 if (strcmp(string, p) == 0)
489 return i; /* Found it; return index */
490 }
491 return -ENODATA;
492}
493EXPORT_SYMBOL_GPL(of_property_match_string);
494
495/**
496 * of_property_read_string_helper() - Utility helper for parsing string properties
497 * @np: device node from which the property value is to be read.
498 * @propname: name of the property to be searched.
499 * @out_strs: output array of string pointers.
500 * @sz: number of array elements to read.
501 * @skip: Number of strings to skip over at beginning of list.
502 *
503 * Don't call this function directly. It is a utility helper for the
504 * of_property_read_string*() family of functions.
505 */
506int of_property_read_string_helper(const struct device_node *np,
507 const char *propname, const char **out_strs,
508 size_t sz, int skip)
509{
510 const struct property *prop = of_find_property(np, propname, NULL);
511 int l = 0, i = 0;
512 const char *p, *end;
513
514 if (!prop)
515 return -EINVAL;
516 if (!prop->value)
517 return -ENODATA;
518 p = prop->value;
519 end = p + prop->length;
520
521 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
522 l = strnlen(p, end - p) + 1;
523 if (p + l > end)
524 return -EILSEQ;
525 if (out_strs && i >= skip)
526 *out_strs++ = p;
527 }
528 i -= skip;
529 return i <= 0 ? -ENODATA : i;
530}
531EXPORT_SYMBOL_GPL(of_property_read_string_helper);
532
533const __be32 *of_prop_next_u32(const struct property *prop, const __be32 *cur,
534 u32 *pu)
535{
536 const void *curv = cur;
537
538 if (!prop)
539 return NULL;
540
541 if (!cur) {
542 curv = prop->value;
543 goto out_val;
544 }
545
546 curv += sizeof(*cur);
547 if (curv >= prop->value + prop->length)
548 return NULL;
549
550out_val:
551 *pu = be32_to_cpup(curv);
552 return curv;
553}
554EXPORT_SYMBOL_GPL(of_prop_next_u32);
555
556const char *of_prop_next_string(const struct property *prop, const char *cur)
557{
558 const void *curv = cur;
559
560 if (!prop)
561 return NULL;
562
563 if (!cur)
564 return prop->value;
565
566 curv += strlen(cur) + 1;
567 if (curv >= prop->value + prop->length)
568 return NULL;
569
570 return curv;
571}
572EXPORT_SYMBOL_GPL(of_prop_next_string);
573
574/**
575 * of_graph_parse_endpoint() - parse common endpoint node properties
576 * @node: pointer to endpoint device_node
577 * @endpoint: pointer to the OF endpoint data structure
578 *
579 * The caller should hold a reference to @node.
580 */
581int of_graph_parse_endpoint(const struct device_node *node,
582 struct of_endpoint *endpoint)
583{
584 struct device_node *port_node __free(device_node) =
585 of_get_parent(node);
586
587 WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n",
588 __func__, node);
589
590 memset(endpoint, 0, sizeof(*endpoint));
591
592 endpoint->local_node = node;
593 /*
594 * It doesn't matter whether the two calls below succeed.
595 * If they don't then the default value 0 is used.
596 */
597 of_property_read_u32(port_node, "reg", &endpoint->port);
598 of_property_read_u32(node, "reg", &endpoint->id);
599
600 return 0;
601}
602EXPORT_SYMBOL(of_graph_parse_endpoint);
603
604/**
605 * of_graph_get_port_by_id() - get the port matching a given id
606 * @parent: pointer to the parent device node
607 * @id: id of the port
608 *
609 * Return: A 'port' node pointer with refcount incremented. The caller
610 * has to use of_node_put() on it when done.
611 */
612struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
613{
614 struct device_node *node __free(device_node) = of_get_child_by_name(parent, "ports");
615
616 if (node)
617 parent = node;
618
619 for_each_child_of_node_scoped(parent, port) {
620 u32 port_id = 0;
621
622 if (!of_node_name_eq(port, "port"))
623 continue;
624 of_property_read_u32(port, "reg", &port_id);
625 if (id == port_id)
626 return_ptr(port);
627 }
628
629 return NULL;
630}
631EXPORT_SYMBOL(of_graph_get_port_by_id);
632
633/**
634 * of_graph_get_next_port() - get next port node.
635 * @parent: pointer to the parent device node, or parent ports node
636 * @prev: previous port node, or NULL to get first
637 *
638 * Parent device node can be used as @parent whether device node has ports node
639 * or not. It will work same as ports@0 node.
640 *
641 * Return: A 'port' node pointer with refcount incremented. Refcount
642 * of the passed @prev node is decremented.
643 */
644struct device_node *of_graph_get_next_port(const struct device_node *parent,
645 struct device_node *prev)
646{
647 if (!parent)
648 return NULL;
649
650 if (!prev) {
651 struct device_node *node __free(device_node) =
652 of_get_child_by_name(parent, "ports");
653
654 if (node)
655 parent = node;
656
657 return of_get_child_by_name(parent, "port");
658 }
659
660 do {
661 prev = of_get_next_child(parent, prev);
662 if (!prev)
663 break;
664 } while (!of_node_name_eq(prev, "port"));
665
666 return prev;
667}
668EXPORT_SYMBOL(of_graph_get_next_port);
669
670/**
671 * of_graph_get_next_port_endpoint() - get next endpoint node in port.
672 * If it reached to end of the port, it will return NULL.
673 * @port: pointer to the target port node
674 * @prev: previous endpoint node, or NULL to get first
675 *
676 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
677 * of the passed @prev node is decremented.
678 */
679struct device_node *of_graph_get_next_port_endpoint(const struct device_node *port,
680 struct device_node *prev)
681{
682 while (1) {
683 prev = of_get_next_child(port, prev);
684 if (!prev)
685 break;
686 if (WARN(!of_node_name_eq(prev, "endpoint"),
687 "non endpoint node is used (%pOF)", prev))
688 continue;
689
690 break;
691 }
692
693 return prev;
694}
695EXPORT_SYMBOL(of_graph_get_next_port_endpoint);
696
697/**
698 * of_graph_get_next_endpoint() - get next endpoint node
699 * @parent: pointer to the parent device node
700 * @prev: previous endpoint node, or NULL to get first
701 *
702 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
703 * of the passed @prev node is decremented.
704 */
705struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
706 struct device_node *prev)
707{
708 struct device_node *endpoint;
709 struct device_node *port;
710
711 if (!parent)
712 return NULL;
713
714 /*
715 * Start by locating the port node. If no previous endpoint is specified
716 * search for the first port node, otherwise get the previous endpoint
717 * parent port node.
718 */
719 if (!prev) {
720 port = of_graph_get_next_port(parent, NULL);
721 if (!port) {
722 pr_debug("graph: no port node found in %pOF\n", parent);
723 return NULL;
724 }
725 } else {
726 port = of_get_parent(prev);
727 if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n",
728 __func__, prev))
729 return NULL;
730 }
731
732 while (1) {
733 /*
734 * Now that we have a port node, get the next endpoint by
735 * getting the next child. If the previous endpoint is NULL this
736 * will return the first child.
737 */
738 endpoint = of_graph_get_next_port_endpoint(port, prev);
739 if (endpoint) {
740 of_node_put(port);
741 return endpoint;
742 }
743
744 /* No more endpoints under this port, try the next one. */
745 prev = NULL;
746
747 port = of_graph_get_next_port(parent, port);
748 if (!port)
749 return NULL;
750 }
751}
752EXPORT_SYMBOL(of_graph_get_next_endpoint);
753
754/**
755 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
756 * @parent: pointer to the parent device node
757 * @port_reg: identifier (value of reg property) of the parent port node
758 * @reg: identifier (value of reg property) of the endpoint node
759 *
760 * Return: An 'endpoint' node pointer which is identified by reg and at the same
761 * is the child of a port node identified by port_reg. reg and port_reg are
762 * ignored when they are -1. Use of_node_put() on the pointer when done.
763 */
764struct device_node *of_graph_get_endpoint_by_regs(
765 const struct device_node *parent, int port_reg, int reg)
766{
767 struct of_endpoint endpoint;
768 struct device_node *node = NULL;
769
770 for_each_endpoint_of_node(parent, node) {
771 of_graph_parse_endpoint(node, &endpoint);
772 if (((port_reg == -1) || (endpoint.port == port_reg)) &&
773 ((reg == -1) || (endpoint.id == reg)))
774 return node;
775 }
776
777 return NULL;
778}
779EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
780
781/**
782 * of_graph_get_remote_endpoint() - get remote endpoint node
783 * @node: pointer to a local endpoint device_node
784 *
785 * Return: Remote endpoint node associated with remote endpoint node linked
786 * to @node. Use of_node_put() on it when done.
787 */
788struct device_node *of_graph_get_remote_endpoint(const struct device_node *node)
789{
790 /* Get remote endpoint node. */
791 return of_parse_phandle(node, "remote-endpoint", 0);
792}
793EXPORT_SYMBOL(of_graph_get_remote_endpoint);
794
795/**
796 * of_graph_get_port_parent() - get port's parent node
797 * @node: pointer to a local endpoint device_node
798 *
799 * Return: device node associated with endpoint node linked
800 * to @node. Use of_node_put() on it when done.
801 */
802struct device_node *of_graph_get_port_parent(struct device_node *node)
803{
804 unsigned int depth;
805
806 if (!node)
807 return NULL;
808
809 /*
810 * Preserve usecount for passed in node as of_get_next_parent()
811 * will do of_node_put() on it.
812 */
813 of_node_get(node);
814
815 /* Walk 3 levels up only if there is 'ports' node. */
816 for (depth = 3; depth && node; depth--) {
817 node = of_get_next_parent(node);
818 if (depth == 2 && !of_node_name_eq(node, "ports") &&
819 !of_node_name_eq(node, "in-ports") &&
820 !of_node_name_eq(node, "out-ports"))
821 break;
822 }
823 return node;
824}
825EXPORT_SYMBOL(of_graph_get_port_parent);
826
827/**
828 * of_graph_get_remote_port_parent() - get remote port's parent node
829 * @node: pointer to a local endpoint device_node
830 *
831 * Return: Remote device node associated with remote endpoint node linked
832 * to @node. Use of_node_put() on it when done.
833 */
834struct device_node *of_graph_get_remote_port_parent(
835 const struct device_node *node)
836{
837 /* Get remote endpoint node. */
838 struct device_node *np __free(device_node) =
839 of_graph_get_remote_endpoint(node);
840
841 return of_graph_get_port_parent(np);
842}
843EXPORT_SYMBOL(of_graph_get_remote_port_parent);
844
845/**
846 * of_graph_get_remote_port() - get remote port node
847 * @node: pointer to a local endpoint device_node
848 *
849 * Return: Remote port node associated with remote endpoint node linked
850 * to @node. Use of_node_put() on it when done.
851 */
852struct device_node *of_graph_get_remote_port(const struct device_node *node)
853{
854 struct device_node *np;
855
856 /* Get remote endpoint node. */
857 np = of_graph_get_remote_endpoint(node);
858 if (!np)
859 return NULL;
860 return of_get_next_parent(np);
861}
862EXPORT_SYMBOL(of_graph_get_remote_port);
863
864/**
865 * of_graph_get_endpoint_count() - get the number of endpoints in a device node
866 * @np: parent device node containing ports and endpoints
867 *
868 * Return: count of endpoint of this device node
869 */
870unsigned int of_graph_get_endpoint_count(const struct device_node *np)
871{
872 struct device_node *endpoint;
873 unsigned int num = 0;
874
875 for_each_endpoint_of_node(np, endpoint)
876 num++;
877
878 return num;
879}
880EXPORT_SYMBOL(of_graph_get_endpoint_count);
881
882/**
883 * of_graph_get_port_count() - get the number of port in a device or ports node
884 * @np: pointer to the device or ports node
885 *
886 * Return: count of port of this device or ports node
887 */
888unsigned int of_graph_get_port_count(struct device_node *np)
889{
890 unsigned int num = 0;
891
892 for_each_of_graph_port(np, port)
893 num++;
894
895 return num;
896}
897EXPORT_SYMBOL(of_graph_get_port_count);
898
899/**
900 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
901 * @node: pointer to parent device_node containing graph port/endpoint
902 * @port: identifier (value of reg property) of the parent port node
903 * @endpoint: identifier (value of reg property) of the endpoint node
904 *
905 * Return: Remote device node associated with remote endpoint node linked
906 * to @node. Use of_node_put() on it when done.
907 */
908struct device_node *of_graph_get_remote_node(const struct device_node *node,
909 u32 port, u32 endpoint)
910{
911 struct device_node *endpoint_node, *remote;
912
913 endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
914 if (!endpoint_node) {
915 pr_debug("no valid endpoint (%d, %d) for node %pOF\n",
916 port, endpoint, node);
917 return NULL;
918 }
919
920 remote = of_graph_get_remote_port_parent(endpoint_node);
921 of_node_put(endpoint_node);
922 if (!remote) {
923 pr_debug("no valid remote node\n");
924 return NULL;
925 }
926
927 if (!of_device_is_available(remote)) {
928 pr_debug("not available for remote node\n");
929 of_node_put(remote);
930 return NULL;
931 }
932
933 return remote;
934}
935EXPORT_SYMBOL(of_graph_get_remote_node);
936
937static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode)
938{
939 return of_fwnode_handle(of_node_get(to_of_node(fwnode)));
940}
941
942static void of_fwnode_put(struct fwnode_handle *fwnode)
943{
944 of_node_put(to_of_node(fwnode));
945}
946
947static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode)
948{
949 return of_device_is_available(to_of_node(fwnode));
950}
951
952static bool of_fwnode_device_dma_supported(const struct fwnode_handle *fwnode)
953{
954 return true;
955}
956
957static enum dev_dma_attr
958of_fwnode_device_get_dma_attr(const struct fwnode_handle *fwnode)
959{
960 if (of_dma_is_coherent(to_of_node(fwnode)))
961 return DEV_DMA_COHERENT;
962 else
963 return DEV_DMA_NON_COHERENT;
964}
965
966static bool of_fwnode_property_present(const struct fwnode_handle *fwnode,
967 const char *propname)
968{
969 return of_property_read_bool(to_of_node(fwnode), propname);
970}
971
972static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
973 const char *propname,
974 unsigned int elem_size, void *val,
975 size_t nval)
976{
977 const struct device_node *node = to_of_node(fwnode);
978
979 if (!val)
980 return of_property_count_elems_of_size(node, propname,
981 elem_size);
982
983 switch (elem_size) {
984 case sizeof(u8):
985 return of_property_read_u8_array(node, propname, val, nval);
986 case sizeof(u16):
987 return of_property_read_u16_array(node, propname, val, nval);
988 case sizeof(u32):
989 return of_property_read_u32_array(node, propname, val, nval);
990 case sizeof(u64):
991 return of_property_read_u64_array(node, propname, val, nval);
992 }
993
994 return -ENXIO;
995}
996
997static int
998of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
999 const char *propname, const char **val,
1000 size_t nval)
1001{
1002 const struct device_node *node = to_of_node(fwnode);
1003
1004 return val ?
1005 of_property_read_string_array(node, propname, val, nval) :
1006 of_property_count_strings(node, propname);
1007}
1008
1009static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode)
1010{
1011 return kbasename(to_of_node(fwnode)->full_name);
1012}
1013
1014static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
1015{
1016 /* Root needs no prefix here (its name is "/"). */
1017 if (!to_of_node(fwnode)->parent)
1018 return "";
1019
1020 return "/";
1021}
1022
1023static struct fwnode_handle *
1024of_fwnode_get_parent(const struct fwnode_handle *fwnode)
1025{
1026 return of_fwnode_handle(of_get_parent(to_of_node(fwnode)));
1027}
1028
1029static struct fwnode_handle *
1030of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
1031 struct fwnode_handle *child)
1032{
1033 return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode),
1034 to_of_node(child)));
1035}
1036
1037static struct fwnode_handle *
1038of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
1039 const char *childname)
1040{
1041 const struct device_node *node = to_of_node(fwnode);
1042 struct device_node *child;
1043
1044 for_each_available_child_of_node(node, child)
1045 if (of_node_name_eq(child, childname))
1046 return of_fwnode_handle(child);
1047
1048 return NULL;
1049}
1050
1051static int
1052of_fwnode_get_reference_args(const struct fwnode_handle *fwnode,
1053 const char *prop, const char *nargs_prop,
1054 unsigned int nargs, unsigned int index,
1055 struct fwnode_reference_args *args)
1056{
1057 struct of_phandle_args of_args;
1058 unsigned int i;
1059 int ret;
1060
1061 if (nargs_prop)
1062 ret = of_parse_phandle_with_args(to_of_node(fwnode), prop,
1063 nargs_prop, index, &of_args);
1064 else
1065 ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop,
1066 nargs, index, &of_args);
1067 if (ret < 0)
1068 return ret;
1069 if (!args) {
1070 of_node_put(of_args.np);
1071 return 0;
1072 }
1073
1074 args->nargs = of_args.args_count;
1075 args->fwnode = of_fwnode_handle(of_args.np);
1076
1077 for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++)
1078 args->args[i] = i < of_args.args_count ? of_args.args[i] : 0;
1079
1080 return 0;
1081}
1082
1083static struct fwnode_handle *
1084of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1085 struct fwnode_handle *prev)
1086{
1087 return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode),
1088 to_of_node(prev)));
1089}
1090
1091static struct fwnode_handle *
1092of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1093{
1094 return of_fwnode_handle(
1095 of_graph_get_remote_endpoint(to_of_node(fwnode)));
1096}
1097
1098static struct fwnode_handle *
1099of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode)
1100{
1101 struct device_node *np;
1102
1103 /* Get the parent of the port */
1104 np = of_get_parent(to_of_node(fwnode));
1105 if (!np)
1106 return NULL;
1107
1108 /* Is this the "ports" node? If not, it's the port parent. */
1109 if (!of_node_name_eq(np, "ports"))
1110 return of_fwnode_handle(np);
1111
1112 return of_fwnode_handle(of_get_next_parent(np));
1113}
1114
1115static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1116 struct fwnode_endpoint *endpoint)
1117{
1118 const struct device_node *node = to_of_node(fwnode);
1119 struct device_node *port_node __free(device_node) = of_get_parent(node);
1120
1121 endpoint->local_fwnode = fwnode;
1122
1123 of_property_read_u32(port_node, "reg", &endpoint->port);
1124 of_property_read_u32(node, "reg", &endpoint->id);
1125
1126 return 0;
1127}
1128
1129static const void *
1130of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode,
1131 const struct device *dev)
1132{
1133 return of_device_get_match_data(dev);
1134}
1135
1136static void of_link_to_phandle(struct device_node *con_np,
1137 struct device_node *sup_np,
1138 u8 flags)
1139{
1140 struct device_node *tmp_np __free(device_node) = of_node_get(sup_np);
1141
1142 /* Check that sup_np and its ancestors are available. */
1143 while (tmp_np) {
1144 if (of_fwnode_handle(tmp_np)->dev)
1145 break;
1146
1147 if (!of_device_is_available(tmp_np))
1148 return;
1149
1150 tmp_np = of_get_next_parent(tmp_np);
1151 }
1152
1153 fwnode_link_add(of_fwnode_handle(con_np), of_fwnode_handle(sup_np), flags);
1154}
1155
1156/**
1157 * parse_prop_cells - Property parsing function for suppliers
1158 *
1159 * @np: Pointer to device tree node containing a list
1160 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1161 * @index: For properties holding a list of phandles, this is the index
1162 * into the list.
1163 * @list_name: Property name that is known to contain list of phandle(s) to
1164 * supplier(s)
1165 * @cells_name: property name that specifies phandles' arguments count
1166 *
1167 * This is a helper function to parse properties that have a known fixed name
1168 * and are a list of phandles and phandle arguments.
1169 *
1170 * Returns:
1171 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1172 * on it when done.
1173 * - NULL if no phandle found at index
1174 */
1175static struct device_node *parse_prop_cells(struct device_node *np,
1176 const char *prop_name, int index,
1177 const char *list_name,
1178 const char *cells_name)
1179{
1180 struct of_phandle_args sup_args;
1181
1182 if (strcmp(prop_name, list_name))
1183 return NULL;
1184
1185 if (__of_parse_phandle_with_args(np, list_name, cells_name, 0, index,
1186 &sup_args))
1187 return NULL;
1188
1189 return sup_args.np;
1190}
1191
1192#define DEFINE_SIMPLE_PROP(fname, name, cells) \
1193static struct device_node *parse_##fname(struct device_node *np, \
1194 const char *prop_name, int index) \
1195{ \
1196 return parse_prop_cells(np, prop_name, index, name, cells); \
1197}
1198
1199static int strcmp_suffix(const char *str, const char *suffix)
1200{
1201 unsigned int len, suffix_len;
1202
1203 len = strlen(str);
1204 suffix_len = strlen(suffix);
1205 if (len <= suffix_len)
1206 return -1;
1207 return strcmp(str + len - suffix_len, suffix);
1208}
1209
1210/**
1211 * parse_suffix_prop_cells - Suffix property parsing function for suppliers
1212 *
1213 * @np: Pointer to device tree node containing a list
1214 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1215 * @index: For properties holding a list of phandles, this is the index
1216 * into the list.
1217 * @suffix: Property suffix that is known to contain list of phandle(s) to
1218 * supplier(s)
1219 * @cells_name: property name that specifies phandles' arguments count
1220 *
1221 * This is a helper function to parse properties that have a known fixed suffix
1222 * and are a list of phandles and phandle arguments.
1223 *
1224 * Returns:
1225 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1226 * on it when done.
1227 * - NULL if no phandle found at index
1228 */
1229static struct device_node *parse_suffix_prop_cells(struct device_node *np,
1230 const char *prop_name, int index,
1231 const char *suffix,
1232 const char *cells_name)
1233{
1234 struct of_phandle_args sup_args;
1235
1236 if (strcmp_suffix(prop_name, suffix))
1237 return NULL;
1238
1239 if (of_parse_phandle_with_args(np, prop_name, cells_name, index,
1240 &sup_args))
1241 return NULL;
1242
1243 return sup_args.np;
1244}
1245
1246#define DEFINE_SUFFIX_PROP(fname, suffix, cells) \
1247static struct device_node *parse_##fname(struct device_node *np, \
1248 const char *prop_name, int index) \
1249{ \
1250 return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \
1251}
1252
1253/**
1254 * struct supplier_bindings - Property parsing functions for suppliers
1255 *
1256 * @parse_prop: function name
1257 * parse_prop() finds the node corresponding to a supplier phandle
1258 * parse_prop.np: Pointer to device node holding supplier phandle property
1259 * parse_prop.prop_name: Name of property holding a phandle value
1260 * parse_prop.index: For properties holding a list of phandles, this is the
1261 * index into the list
1262 * @get_con_dev: If the consumer node containing the property is never converted
1263 * to a struct device, implement this ops so fw_devlink can use it
1264 * to find the true consumer.
1265 * @optional: Describes whether a supplier is mandatory or not
1266 * @fwlink_flags: Optional fwnode link flags to use when creating a fwnode link
1267 * for this property.
1268 *
1269 * Returns:
1270 * parse_prop() return values are
1271 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1272 * on it when done.
1273 * - NULL if no phandle found at index
1274 */
1275struct supplier_bindings {
1276 struct device_node *(*parse_prop)(struct device_node *np,
1277 const char *prop_name, int index);
1278 struct device_node *(*get_con_dev)(struct device_node *np);
1279 bool optional;
1280 u8 fwlink_flags;
1281};
1282
1283DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells")
1284DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells")
1285DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells")
1286DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells")
1287DEFINE_SIMPLE_PROP(io_channels, "io-channels", "#io-channel-cells")
1288DEFINE_SIMPLE_PROP(io_backends, "io-backends", "#io-backend-cells")
1289DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells")
1290DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells")
1291DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells")
1292DEFINE_SIMPLE_PROP(extcon, "extcon", NULL)
1293DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", "#nvmem-cell-cells")
1294DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells")
1295DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL)
1296DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL)
1297DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL)
1298DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL)
1299DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL)
1300DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL)
1301DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL)
1302DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL)
1303DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL)
1304DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL)
1305DEFINE_SIMPLE_PROP(pwms, "pwms", "#pwm-cells")
1306DEFINE_SIMPLE_PROP(resets, "resets", "#reset-cells")
1307DEFINE_SIMPLE_PROP(leds, "leds", NULL)
1308DEFINE_SIMPLE_PROP(backlight, "backlight", NULL)
1309DEFINE_SIMPLE_PROP(panel, "panel", NULL)
1310DEFINE_SIMPLE_PROP(msi_parent, "msi-parent", "#msi-cells")
1311DEFINE_SIMPLE_PROP(post_init_providers, "post-init-providers", NULL)
1312DEFINE_SIMPLE_PROP(access_controllers, "access-controllers", "#access-controller-cells")
1313DEFINE_SIMPLE_PROP(pses, "pses", "#pse-cells")
1314DEFINE_SIMPLE_PROP(power_supplies, "power-supplies", NULL)
1315DEFINE_SUFFIX_PROP(regulators, "-supply", NULL)
1316DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells")
1317
1318static struct device_node *parse_gpios(struct device_node *np,
1319 const char *prop_name, int index)
1320{
1321 if (!strcmp_suffix(prop_name, ",nr-gpios"))
1322 return NULL;
1323
1324 return parse_suffix_prop_cells(np, prop_name, index, "-gpios",
1325 "#gpio-cells");
1326}
1327
1328static struct device_node *parse_iommu_maps(struct device_node *np,
1329 const char *prop_name, int index)
1330{
1331 if (strcmp(prop_name, "iommu-map"))
1332 return NULL;
1333
1334 return of_parse_phandle(np, prop_name, (index * 4) + 1);
1335}
1336
1337static struct device_node *parse_gpio_compat(struct device_node *np,
1338 const char *prop_name, int index)
1339{
1340 struct of_phandle_args sup_args;
1341
1342 if (strcmp(prop_name, "gpio") && strcmp(prop_name, "gpios"))
1343 return NULL;
1344
1345 /*
1346 * Ignore node with gpio-hog property since its gpios are all provided
1347 * by its parent.
1348 */
1349 if (of_property_read_bool(np, "gpio-hog"))
1350 return NULL;
1351
1352 if (of_parse_phandle_with_args(np, prop_name, "#gpio-cells", index,
1353 &sup_args))
1354 return NULL;
1355
1356 return sup_args.np;
1357}
1358
1359static struct device_node *parse_interrupts(struct device_node *np,
1360 const char *prop_name, int index)
1361{
1362 struct of_phandle_args sup_args;
1363
1364 if (!IS_ENABLED(CONFIG_OF_IRQ) || IS_ENABLED(CONFIG_PPC))
1365 return NULL;
1366
1367 if (strcmp(prop_name, "interrupts") &&
1368 strcmp(prop_name, "interrupts-extended"))
1369 return NULL;
1370
1371 return of_irq_parse_one(np, index, &sup_args) ? NULL : sup_args.np;
1372}
1373
1374static struct device_node *parse_interrupt_map(struct device_node *np,
1375 const char *prop_name, int index)
1376{
1377 const __be32 *imap, *imap_end;
1378 struct of_phandle_args sup_args;
1379 u32 addrcells, intcells;
1380 int imaplen;
1381
1382 if (!IS_ENABLED(CONFIG_OF_IRQ))
1383 return NULL;
1384
1385 if (strcmp(prop_name, "interrupt-map"))
1386 return NULL;
1387
1388 if (of_property_read_u32(np, "#interrupt-cells", &intcells))
1389 return NULL;
1390 addrcells = of_bus_n_addr_cells(np);
1391
1392 imap = of_get_property(np, "interrupt-map", &imaplen);
1393 if (!imap)
1394 return NULL;
1395 imaplen /= sizeof(*imap);
1396
1397 imap_end = imap + imaplen;
1398
1399 for (int i = 0; imap + addrcells + intcells + 1 < imap_end; i++) {
1400 imap += addrcells + intcells;
1401
1402 imap = of_irq_parse_imap_parent(imap, imap_end - imap, &sup_args);
1403 if (!imap)
1404 return NULL;
1405
1406 if (i == index)
1407 return sup_args.np;
1408
1409 of_node_put(sup_args.np);
1410 }
1411
1412 return NULL;
1413}
1414
1415static struct device_node *parse_remote_endpoint(struct device_node *np,
1416 const char *prop_name,
1417 int index)
1418{
1419 /* Return NULL for index > 0 to signify end of remote-endpoints. */
1420 if (index > 0 || strcmp(prop_name, "remote-endpoint"))
1421 return NULL;
1422
1423 return of_graph_get_remote_port_parent(np);
1424}
1425
1426static const struct supplier_bindings of_supplier_bindings[] = {
1427 { .parse_prop = parse_clocks, },
1428 { .parse_prop = parse_interconnects, },
1429 { .parse_prop = parse_iommus, .optional = true, },
1430 { .parse_prop = parse_iommu_maps, .optional = true, },
1431 { .parse_prop = parse_mboxes, },
1432 { .parse_prop = parse_io_channels, },
1433 { .parse_prop = parse_io_backends, },
1434 { .parse_prop = parse_dmas, .optional = true, },
1435 { .parse_prop = parse_power_domains, },
1436 { .parse_prop = parse_hwlocks, },
1437 { .parse_prop = parse_extcon, },
1438 { .parse_prop = parse_nvmem_cells, },
1439 { .parse_prop = parse_phys, },
1440 { .parse_prop = parse_wakeup_parent, },
1441 { .parse_prop = parse_pinctrl0, },
1442 { .parse_prop = parse_pinctrl1, },
1443 { .parse_prop = parse_pinctrl2, },
1444 { .parse_prop = parse_pinctrl3, },
1445 { .parse_prop = parse_pinctrl4, },
1446 { .parse_prop = parse_pinctrl5, },
1447 { .parse_prop = parse_pinctrl6, },
1448 { .parse_prop = parse_pinctrl7, },
1449 { .parse_prop = parse_pinctrl8, },
1450 {
1451 .parse_prop = parse_remote_endpoint,
1452 .get_con_dev = of_graph_get_port_parent,
1453 },
1454 { .parse_prop = parse_pwms, },
1455 { .parse_prop = parse_resets, },
1456 { .parse_prop = parse_leds, },
1457 { .parse_prop = parse_backlight, },
1458 { .parse_prop = parse_panel, },
1459 { .parse_prop = parse_msi_parent, },
1460 { .parse_prop = parse_pses, },
1461 { .parse_prop = parse_power_supplies, },
1462 { .parse_prop = parse_gpio_compat, },
1463 { .parse_prop = parse_interrupts, },
1464 { .parse_prop = parse_interrupt_map, },
1465 { .parse_prop = parse_access_controllers, },
1466 { .parse_prop = parse_regulators, },
1467 { .parse_prop = parse_gpio, },
1468 { .parse_prop = parse_gpios, },
1469 {
1470 .parse_prop = parse_post_init_providers,
1471 .fwlink_flags = FWLINK_FLAG_IGNORE,
1472 },
1473 {}
1474};
1475
1476/**
1477 * of_link_property - Create device links to suppliers listed in a property
1478 * @con_np: The consumer device tree node which contains the property
1479 * @prop_name: Name of property to be parsed
1480 *
1481 * This function checks if the property @prop_name that is present in the
1482 * @con_np device tree node is one of the known common device tree bindings
1483 * that list phandles to suppliers. If @prop_name isn't one, this function
1484 * doesn't do anything.
1485 *
1486 * If @prop_name is one, this function attempts to create fwnode links from the
1487 * consumer device tree node @con_np to all the suppliers device tree nodes
1488 * listed in @prop_name.
1489 *
1490 * Any failed attempt to create a fwnode link will NOT result in an immediate
1491 * return. of_link_property() must create links to all the available supplier
1492 * device tree nodes even when attempts to create a link to one or more
1493 * suppliers fail.
1494 */
1495static int of_link_property(struct device_node *con_np, const char *prop_name)
1496{
1497 struct device_node *phandle;
1498 const struct supplier_bindings *s = of_supplier_bindings;
1499 unsigned int i = 0;
1500 bool matched = false;
1501
1502 /* Do not stop at first failed link, link all available suppliers. */
1503 while (!matched && s->parse_prop) {
1504 if (s->optional && !fw_devlink_is_strict()) {
1505 s++;
1506 continue;
1507 }
1508
1509 while ((phandle = s->parse_prop(con_np, prop_name, i))) {
1510 struct device_node *con_dev_np __free(device_node) =
1511 s->get_con_dev ? s->get_con_dev(con_np) : of_node_get(con_np);
1512
1513 matched = true;
1514 i++;
1515 of_link_to_phandle(con_dev_np, phandle, s->fwlink_flags);
1516 of_node_put(phandle);
1517 }
1518 s++;
1519 }
1520 return 0;
1521}
1522
1523static void __iomem *of_fwnode_iomap(struct fwnode_handle *fwnode, int index)
1524{
1525#ifdef CONFIG_OF_ADDRESS
1526 return of_iomap(to_of_node(fwnode), index);
1527#else
1528 return NULL;
1529#endif
1530}
1531
1532static int of_fwnode_irq_get(const struct fwnode_handle *fwnode,
1533 unsigned int index)
1534{
1535 return of_irq_get(to_of_node(fwnode), index);
1536}
1537
1538static int of_fwnode_add_links(struct fwnode_handle *fwnode)
1539{
1540 const struct property *p;
1541 struct device_node *con_np = to_of_node(fwnode);
1542
1543 if (IS_ENABLED(CONFIG_X86))
1544 return 0;
1545
1546 if (!con_np)
1547 return -EINVAL;
1548
1549 for_each_property_of_node(con_np, p)
1550 of_link_property(con_np, p->name);
1551
1552 return 0;
1553}
1554
1555const struct fwnode_operations of_fwnode_ops = {
1556 .get = of_fwnode_get,
1557 .put = of_fwnode_put,
1558 .device_is_available = of_fwnode_device_is_available,
1559 .device_get_match_data = of_fwnode_device_get_match_data,
1560 .device_dma_supported = of_fwnode_device_dma_supported,
1561 .device_get_dma_attr = of_fwnode_device_get_dma_attr,
1562 .property_present = of_fwnode_property_present,
1563 .property_read_int_array = of_fwnode_property_read_int_array,
1564 .property_read_string_array = of_fwnode_property_read_string_array,
1565 .get_name = of_fwnode_get_name,
1566 .get_name_prefix = of_fwnode_get_name_prefix,
1567 .get_parent = of_fwnode_get_parent,
1568 .get_next_child_node = of_fwnode_get_next_child_node,
1569 .get_named_child_node = of_fwnode_get_named_child_node,
1570 .get_reference_args = of_fwnode_get_reference_args,
1571 .graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint,
1572 .graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint,
1573 .graph_get_port_parent = of_fwnode_graph_get_port_parent,
1574 .graph_parse_endpoint = of_fwnode_graph_parse_endpoint,
1575 .iomap = of_fwnode_iomap,
1576 .irq_get = of_fwnode_irq_get,
1577 .add_links = of_fwnode_add_links,
1578};
1579EXPORT_SYMBOL_GPL(of_fwnode_ops);
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * drivers/of/property.c - Procedures for accessing and interpreting
4 * Devicetree properties and graphs.
5 *
6 * Initially created by copying procedures from drivers/of/base.c. This
7 * file contains the OF property as well as the OF graph interface
8 * functions.
9 *
10 * Paul Mackerras August 1996.
11 * Copyright (C) 1996-2005 Paul Mackerras.
12 *
13 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
14 * {engebret|bergner}@us.ibm.com
15 *
16 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
17 *
18 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
19 * Grant Likely.
20 */
21
22#define pr_fmt(fmt) "OF: " fmt
23
24#include <linux/of.h>
25#include <linux/of_device.h>
26#include <linux/of_graph.h>
27#include <linux/string.h>
28#include <linux/moduleparam.h>
29
30#include "of_private.h"
31
32/**
33 * of_graph_is_present() - check graph's presence
34 * @node: pointer to device_node containing graph port
35 *
36 * Return: True if @node has a port or ports (with a port) sub-node,
37 * false otherwise.
38 */
39bool of_graph_is_present(const struct device_node *node)
40{
41 struct device_node *ports, *port;
42
43 ports = of_get_child_by_name(node, "ports");
44 if (ports)
45 node = ports;
46
47 port = of_get_child_by_name(node, "port");
48 of_node_put(ports);
49 of_node_put(port);
50
51 return !!port;
52}
53EXPORT_SYMBOL(of_graph_is_present);
54
55/**
56 * of_property_count_elems_of_size - Count the number of elements in a property
57 *
58 * @np: device node from which the property value is to be read.
59 * @propname: name of the property to be searched.
60 * @elem_size: size of the individual element
61 *
62 * Search for a property in a device node and count the number of elements of
63 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
64 * property does not exist or its length does not match a multiple of elem_size
65 * and -ENODATA if the property does not have a value.
66 */
67int of_property_count_elems_of_size(const struct device_node *np,
68 const char *propname, int elem_size)
69{
70 struct property *prop = of_find_property(np, propname, NULL);
71
72 if (!prop)
73 return -EINVAL;
74 if (!prop->value)
75 return -ENODATA;
76
77 if (prop->length % elem_size != 0) {
78 pr_err("size of %s in node %pOF is not a multiple of %d\n",
79 propname, np, elem_size);
80 return -EINVAL;
81 }
82
83 return prop->length / elem_size;
84}
85EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
86
87/**
88 * of_find_property_value_of_size
89 *
90 * @np: device node from which the property value is to be read.
91 * @propname: name of the property to be searched.
92 * @min: minimum allowed length of property value
93 * @max: maximum allowed length of property value (0 means unlimited)
94 * @len: if !=NULL, actual length is written to here
95 *
96 * Search for a property in a device node and valid the requested size.
97 * Returns the property value on success, -EINVAL if the property does not
98 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
99 * property data is too small or too large.
100 *
101 */
102static void *of_find_property_value_of_size(const struct device_node *np,
103 const char *propname, u32 min, u32 max, size_t *len)
104{
105 struct property *prop = of_find_property(np, propname, NULL);
106
107 if (!prop)
108 return ERR_PTR(-EINVAL);
109 if (!prop->value)
110 return ERR_PTR(-ENODATA);
111 if (prop->length < min)
112 return ERR_PTR(-EOVERFLOW);
113 if (max && prop->length > max)
114 return ERR_PTR(-EOVERFLOW);
115
116 if (len)
117 *len = prop->length;
118
119 return prop->value;
120}
121
122/**
123 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
124 *
125 * @np: device node from which the property value is to be read.
126 * @propname: name of the property to be searched.
127 * @index: index of the u32 in the list of values
128 * @out_value: pointer to return value, modified only if no error.
129 *
130 * Search for a property in a device node and read nth 32-bit value from
131 * it. Returns 0 on success, -EINVAL if the property does not exist,
132 * -ENODATA if property does not have a value, and -EOVERFLOW if the
133 * property data isn't large enough.
134 *
135 * The out_value is modified only if a valid u32 value can be decoded.
136 */
137int of_property_read_u32_index(const struct device_node *np,
138 const char *propname,
139 u32 index, u32 *out_value)
140{
141 const u32 *val = of_find_property_value_of_size(np, propname,
142 ((index + 1) * sizeof(*out_value)),
143 0,
144 NULL);
145
146 if (IS_ERR(val))
147 return PTR_ERR(val);
148
149 *out_value = be32_to_cpup(((__be32 *)val) + index);
150 return 0;
151}
152EXPORT_SYMBOL_GPL(of_property_read_u32_index);
153
154/**
155 * of_property_read_u64_index - Find and read a u64 from a multi-value property.
156 *
157 * @np: device node from which the property value is to be read.
158 * @propname: name of the property to be searched.
159 * @index: index of the u64 in the list of values
160 * @out_value: pointer to return value, modified only if no error.
161 *
162 * Search for a property in a device node and read nth 64-bit value from
163 * it. Returns 0 on success, -EINVAL if the property does not exist,
164 * -ENODATA if property does not have a value, and -EOVERFLOW if the
165 * property data isn't large enough.
166 *
167 * The out_value is modified only if a valid u64 value can be decoded.
168 */
169int of_property_read_u64_index(const struct device_node *np,
170 const char *propname,
171 u32 index, u64 *out_value)
172{
173 const u64 *val = of_find_property_value_of_size(np, propname,
174 ((index + 1) * sizeof(*out_value)),
175 0, NULL);
176
177 if (IS_ERR(val))
178 return PTR_ERR(val);
179
180 *out_value = be64_to_cpup(((__be64 *)val) + index);
181 return 0;
182}
183EXPORT_SYMBOL_GPL(of_property_read_u64_index);
184
185/**
186 * of_property_read_variable_u8_array - Find and read an array of u8 from a
187 * property, with bounds on the minimum and maximum array size.
188 *
189 * @np: device node from which the property value is to be read.
190 * @propname: name of the property to be searched.
191 * @out_values: pointer to found values.
192 * @sz_min: minimum number of array elements to read
193 * @sz_max: maximum number of array elements to read, if zero there is no
194 * upper limit on the number of elements in the dts entry but only
195 * sz_min will be read.
196 *
197 * Search for a property in a device node and read 8-bit value(s) from
198 * it. Returns number of elements read on success, -EINVAL if the property
199 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
200 * if the property data is smaller than sz_min or longer than sz_max.
201 *
202 * dts entry of array should be like:
203 * property = /bits/ 8 <0x50 0x60 0x70>;
204 *
205 * The out_values is modified only if a valid u8 value can be decoded.
206 */
207int of_property_read_variable_u8_array(const struct device_node *np,
208 const char *propname, u8 *out_values,
209 size_t sz_min, size_t sz_max)
210{
211 size_t sz, count;
212 const u8 *val = of_find_property_value_of_size(np, propname,
213 (sz_min * sizeof(*out_values)),
214 (sz_max * sizeof(*out_values)),
215 &sz);
216
217 if (IS_ERR(val))
218 return PTR_ERR(val);
219
220 if (!sz_max)
221 sz = sz_min;
222 else
223 sz /= sizeof(*out_values);
224
225 count = sz;
226 while (count--)
227 *out_values++ = *val++;
228
229 return sz;
230}
231EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
232
233/**
234 * of_property_read_variable_u16_array - Find and read an array of u16 from a
235 * property, with bounds on the minimum and maximum array size.
236 *
237 * @np: device node from which the property value is to be read.
238 * @propname: name of the property to be searched.
239 * @out_values: pointer to found values.
240 * @sz_min: minimum number of array elements to read
241 * @sz_max: maximum number of array elements to read, if zero there is no
242 * upper limit on the number of elements in the dts entry but only
243 * sz_min will be read.
244 *
245 * Search for a property in a device node and read 16-bit value(s) from
246 * it. Returns number of elements read on success, -EINVAL if the property
247 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
248 * if the property data is smaller than sz_min or longer than sz_max.
249 *
250 * dts entry of array should be like:
251 * property = /bits/ 16 <0x5000 0x6000 0x7000>;
252 *
253 * The out_values is modified only if a valid u16 value can be decoded.
254 */
255int of_property_read_variable_u16_array(const struct device_node *np,
256 const char *propname, u16 *out_values,
257 size_t sz_min, size_t sz_max)
258{
259 size_t sz, count;
260 const __be16 *val = of_find_property_value_of_size(np, propname,
261 (sz_min * sizeof(*out_values)),
262 (sz_max * sizeof(*out_values)),
263 &sz);
264
265 if (IS_ERR(val))
266 return PTR_ERR(val);
267
268 if (!sz_max)
269 sz = sz_min;
270 else
271 sz /= sizeof(*out_values);
272
273 count = sz;
274 while (count--)
275 *out_values++ = be16_to_cpup(val++);
276
277 return sz;
278}
279EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
280
281/**
282 * of_property_read_variable_u32_array - Find and read an array of 32 bit
283 * integers from a property, with bounds on the minimum and maximum array size.
284 *
285 * @np: device node from which the property value is to be read.
286 * @propname: name of the property to be searched.
287 * @out_values: pointer to return found values.
288 * @sz_min: minimum number of array elements to read
289 * @sz_max: maximum number of array elements to read, if zero there is no
290 * upper limit on the number of elements in the dts entry but only
291 * sz_min will be read.
292 *
293 * Search for a property in a device node and read 32-bit value(s) from
294 * it. Returns number of elements read on success, -EINVAL if the property
295 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
296 * if the property data is smaller than sz_min or longer than sz_max.
297 *
298 * The out_values is modified only if a valid u32 value can be decoded.
299 */
300int of_property_read_variable_u32_array(const struct device_node *np,
301 const char *propname, u32 *out_values,
302 size_t sz_min, size_t sz_max)
303{
304 size_t sz, count;
305 const __be32 *val = of_find_property_value_of_size(np, propname,
306 (sz_min * sizeof(*out_values)),
307 (sz_max * sizeof(*out_values)),
308 &sz);
309
310 if (IS_ERR(val))
311 return PTR_ERR(val);
312
313 if (!sz_max)
314 sz = sz_min;
315 else
316 sz /= sizeof(*out_values);
317
318 count = sz;
319 while (count--)
320 *out_values++ = be32_to_cpup(val++);
321
322 return sz;
323}
324EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
325
326/**
327 * of_property_read_u64 - Find and read a 64 bit integer from a property
328 * @np: device node from which the property value is to be read.
329 * @propname: name of the property to be searched.
330 * @out_value: pointer to return value, modified only if return value is 0.
331 *
332 * Search for a property in a device node and read a 64-bit value from
333 * it. Returns 0 on success, -EINVAL if the property does not exist,
334 * -ENODATA if property does not have a value, and -EOVERFLOW if the
335 * property data isn't large enough.
336 *
337 * The out_value is modified only if a valid u64 value can be decoded.
338 */
339int of_property_read_u64(const struct device_node *np, const char *propname,
340 u64 *out_value)
341{
342 const __be32 *val = of_find_property_value_of_size(np, propname,
343 sizeof(*out_value),
344 0,
345 NULL);
346
347 if (IS_ERR(val))
348 return PTR_ERR(val);
349
350 *out_value = of_read_number(val, 2);
351 return 0;
352}
353EXPORT_SYMBOL_GPL(of_property_read_u64);
354
355/**
356 * of_property_read_variable_u64_array - Find and read an array of 64 bit
357 * integers from a property, with bounds on the minimum and maximum array size.
358 *
359 * @np: device node from which the property value is to be read.
360 * @propname: name of the property to be searched.
361 * @out_values: pointer to found values.
362 * @sz_min: minimum number of array elements to read
363 * @sz_max: maximum number of array elements to read, if zero there is no
364 * upper limit on the number of elements in the dts entry but only
365 * sz_min will be read.
366 *
367 * Search for a property in a device node and read 64-bit value(s) from
368 * it. Returns number of elements read on success, -EINVAL if the property
369 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
370 * if the property data is smaller than sz_min or longer than sz_max.
371 *
372 * The out_values is modified only if a valid u64 value can be decoded.
373 */
374int of_property_read_variable_u64_array(const struct device_node *np,
375 const char *propname, u64 *out_values,
376 size_t sz_min, size_t sz_max)
377{
378 size_t sz, count;
379 const __be32 *val = of_find_property_value_of_size(np, propname,
380 (sz_min * sizeof(*out_values)),
381 (sz_max * sizeof(*out_values)),
382 &sz);
383
384 if (IS_ERR(val))
385 return PTR_ERR(val);
386
387 if (!sz_max)
388 sz = sz_min;
389 else
390 sz /= sizeof(*out_values);
391
392 count = sz;
393 while (count--) {
394 *out_values++ = of_read_number(val, 2);
395 val += 2;
396 }
397
398 return sz;
399}
400EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
401
402/**
403 * of_property_read_string - Find and read a string from a property
404 * @np: device node from which the property value is to be read.
405 * @propname: name of the property to be searched.
406 * @out_string: pointer to null terminated return string, modified only if
407 * return value is 0.
408 *
409 * Search for a property in a device tree node and retrieve a null
410 * terminated string value (pointer to data, not a copy). Returns 0 on
411 * success, -EINVAL if the property does not exist, -ENODATA if property
412 * does not have a value, and -EILSEQ if the string is not null-terminated
413 * within the length of the property data.
414 *
415 * The out_string pointer is modified only if a valid string can be decoded.
416 */
417int of_property_read_string(const struct device_node *np, const char *propname,
418 const char **out_string)
419{
420 const struct property *prop = of_find_property(np, propname, NULL);
421 if (!prop)
422 return -EINVAL;
423 if (!prop->value)
424 return -ENODATA;
425 if (strnlen(prop->value, prop->length) >= prop->length)
426 return -EILSEQ;
427 *out_string = prop->value;
428 return 0;
429}
430EXPORT_SYMBOL_GPL(of_property_read_string);
431
432/**
433 * of_property_match_string() - Find string in a list and return index
434 * @np: pointer to node containing string list property
435 * @propname: string list property name
436 * @string: pointer to string to search for in string list
437 *
438 * This function searches a string list property and returns the index
439 * of a specific string value.
440 */
441int of_property_match_string(const struct device_node *np, const char *propname,
442 const char *string)
443{
444 const struct property *prop = of_find_property(np, propname, NULL);
445 size_t l;
446 int i;
447 const char *p, *end;
448
449 if (!prop)
450 return -EINVAL;
451 if (!prop->value)
452 return -ENODATA;
453
454 p = prop->value;
455 end = p + prop->length;
456
457 for (i = 0; p < end; i++, p += l) {
458 l = strnlen(p, end - p) + 1;
459 if (p + l > end)
460 return -EILSEQ;
461 pr_debug("comparing %s with %s\n", string, p);
462 if (strcmp(string, p) == 0)
463 return i; /* Found it; return index */
464 }
465 return -ENODATA;
466}
467EXPORT_SYMBOL_GPL(of_property_match_string);
468
469/**
470 * of_property_read_string_helper() - Utility helper for parsing string properties
471 * @np: device node from which the property value is to be read.
472 * @propname: name of the property to be searched.
473 * @out_strs: output array of string pointers.
474 * @sz: number of array elements to read.
475 * @skip: Number of strings to skip over at beginning of list.
476 *
477 * Don't call this function directly. It is a utility helper for the
478 * of_property_read_string*() family of functions.
479 */
480int of_property_read_string_helper(const struct device_node *np,
481 const char *propname, const char **out_strs,
482 size_t sz, int skip)
483{
484 const struct property *prop = of_find_property(np, propname, NULL);
485 int l = 0, i = 0;
486 const char *p, *end;
487
488 if (!prop)
489 return -EINVAL;
490 if (!prop->value)
491 return -ENODATA;
492 p = prop->value;
493 end = p + prop->length;
494
495 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
496 l = strnlen(p, end - p) + 1;
497 if (p + l > end)
498 return -EILSEQ;
499 if (out_strs && i >= skip)
500 *out_strs++ = p;
501 }
502 i -= skip;
503 return i <= 0 ? -ENODATA : i;
504}
505EXPORT_SYMBOL_GPL(of_property_read_string_helper);
506
507const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
508 u32 *pu)
509{
510 const void *curv = cur;
511
512 if (!prop)
513 return NULL;
514
515 if (!cur) {
516 curv = prop->value;
517 goto out_val;
518 }
519
520 curv += sizeof(*cur);
521 if (curv >= prop->value + prop->length)
522 return NULL;
523
524out_val:
525 *pu = be32_to_cpup(curv);
526 return curv;
527}
528EXPORT_SYMBOL_GPL(of_prop_next_u32);
529
530const char *of_prop_next_string(struct property *prop, const char *cur)
531{
532 const void *curv = cur;
533
534 if (!prop)
535 return NULL;
536
537 if (!cur)
538 return prop->value;
539
540 curv += strlen(cur) + 1;
541 if (curv >= prop->value + prop->length)
542 return NULL;
543
544 return curv;
545}
546EXPORT_SYMBOL_GPL(of_prop_next_string);
547
548/**
549 * of_graph_parse_endpoint() - parse common endpoint node properties
550 * @node: pointer to endpoint device_node
551 * @endpoint: pointer to the OF endpoint data structure
552 *
553 * The caller should hold a reference to @node.
554 */
555int of_graph_parse_endpoint(const struct device_node *node,
556 struct of_endpoint *endpoint)
557{
558 struct device_node *port_node = of_get_parent(node);
559
560 WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n",
561 __func__, node);
562
563 memset(endpoint, 0, sizeof(*endpoint));
564
565 endpoint->local_node = node;
566 /*
567 * It doesn't matter whether the two calls below succeed.
568 * If they don't then the default value 0 is used.
569 */
570 of_property_read_u32(port_node, "reg", &endpoint->port);
571 of_property_read_u32(node, "reg", &endpoint->id);
572
573 of_node_put(port_node);
574
575 return 0;
576}
577EXPORT_SYMBOL(of_graph_parse_endpoint);
578
579/**
580 * of_graph_get_port_by_id() - get the port matching a given id
581 * @parent: pointer to the parent device node
582 * @id: id of the port
583 *
584 * Return: A 'port' node pointer with refcount incremented. The caller
585 * has to use of_node_put() on it when done.
586 */
587struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
588{
589 struct device_node *node, *port;
590
591 node = of_get_child_by_name(parent, "ports");
592 if (node)
593 parent = node;
594
595 for_each_child_of_node(parent, port) {
596 u32 port_id = 0;
597
598 if (!of_node_name_eq(port, "port"))
599 continue;
600 of_property_read_u32(port, "reg", &port_id);
601 if (id == port_id)
602 break;
603 }
604
605 of_node_put(node);
606
607 return port;
608}
609EXPORT_SYMBOL(of_graph_get_port_by_id);
610
611/**
612 * of_graph_get_next_endpoint() - get next endpoint node
613 * @parent: pointer to the parent device node
614 * @prev: previous endpoint node, or NULL to get first
615 *
616 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
617 * of the passed @prev node is decremented.
618 */
619struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
620 struct device_node *prev)
621{
622 struct device_node *endpoint;
623 struct device_node *port;
624
625 if (!parent)
626 return NULL;
627
628 /*
629 * Start by locating the port node. If no previous endpoint is specified
630 * search for the first port node, otherwise get the previous endpoint
631 * parent port node.
632 */
633 if (!prev) {
634 struct device_node *node;
635
636 node = of_get_child_by_name(parent, "ports");
637 if (node)
638 parent = node;
639
640 port = of_get_child_by_name(parent, "port");
641 of_node_put(node);
642
643 if (!port) {
644 pr_err("graph: no port node found in %pOF\n", parent);
645 return NULL;
646 }
647 } else {
648 port = of_get_parent(prev);
649 if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n",
650 __func__, prev))
651 return NULL;
652 }
653
654 while (1) {
655 /*
656 * Now that we have a port node, get the next endpoint by
657 * getting the next child. If the previous endpoint is NULL this
658 * will return the first child.
659 */
660 endpoint = of_get_next_child(port, prev);
661 if (endpoint) {
662 of_node_put(port);
663 return endpoint;
664 }
665
666 /* No more endpoints under this port, try the next one. */
667 prev = NULL;
668
669 do {
670 port = of_get_next_child(parent, port);
671 if (!port)
672 return NULL;
673 } while (!of_node_name_eq(port, "port"));
674 }
675}
676EXPORT_SYMBOL(of_graph_get_next_endpoint);
677
678/**
679 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
680 * @parent: pointer to the parent device node
681 * @port_reg: identifier (value of reg property) of the parent port node
682 * @reg: identifier (value of reg property) of the endpoint node
683 *
684 * Return: An 'endpoint' node pointer which is identified by reg and at the same
685 * is the child of a port node identified by port_reg. reg and port_reg are
686 * ignored when they are -1. Use of_node_put() on the pointer when done.
687 */
688struct device_node *of_graph_get_endpoint_by_regs(
689 const struct device_node *parent, int port_reg, int reg)
690{
691 struct of_endpoint endpoint;
692 struct device_node *node = NULL;
693
694 for_each_endpoint_of_node(parent, node) {
695 of_graph_parse_endpoint(node, &endpoint);
696 if (((port_reg == -1) || (endpoint.port == port_reg)) &&
697 ((reg == -1) || (endpoint.id == reg)))
698 return node;
699 }
700
701 return NULL;
702}
703EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
704
705/**
706 * of_graph_get_remote_endpoint() - get remote endpoint node
707 * @node: pointer to a local endpoint device_node
708 *
709 * Return: Remote endpoint node associated with remote endpoint node linked
710 * to @node. Use of_node_put() on it when done.
711 */
712struct device_node *of_graph_get_remote_endpoint(const struct device_node *node)
713{
714 /* Get remote endpoint node. */
715 return of_parse_phandle(node, "remote-endpoint", 0);
716}
717EXPORT_SYMBOL(of_graph_get_remote_endpoint);
718
719/**
720 * of_graph_get_port_parent() - get port's parent node
721 * @node: pointer to a local endpoint device_node
722 *
723 * Return: device node associated with endpoint node linked
724 * to @node. Use of_node_put() on it when done.
725 */
726struct device_node *of_graph_get_port_parent(struct device_node *node)
727{
728 unsigned int depth;
729
730 if (!node)
731 return NULL;
732
733 /*
734 * Preserve usecount for passed in node as of_get_next_parent()
735 * will do of_node_put() on it.
736 */
737 of_node_get(node);
738
739 /* Walk 3 levels up only if there is 'ports' node. */
740 for (depth = 3; depth && node; depth--) {
741 node = of_get_next_parent(node);
742 if (depth == 2 && !of_node_name_eq(node, "ports"))
743 break;
744 }
745 return node;
746}
747EXPORT_SYMBOL(of_graph_get_port_parent);
748
749/**
750 * of_graph_get_remote_port_parent() - get remote port's parent node
751 * @node: pointer to a local endpoint device_node
752 *
753 * Return: Remote device node associated with remote endpoint node linked
754 * to @node. Use of_node_put() on it when done.
755 */
756struct device_node *of_graph_get_remote_port_parent(
757 const struct device_node *node)
758{
759 struct device_node *np, *pp;
760
761 /* Get remote endpoint node. */
762 np = of_graph_get_remote_endpoint(node);
763
764 pp = of_graph_get_port_parent(np);
765
766 of_node_put(np);
767
768 return pp;
769}
770EXPORT_SYMBOL(of_graph_get_remote_port_parent);
771
772/**
773 * of_graph_get_remote_port() - get remote port node
774 * @node: pointer to a local endpoint device_node
775 *
776 * Return: Remote port node associated with remote endpoint node linked
777 * to @node. Use of_node_put() on it when done.
778 */
779struct device_node *of_graph_get_remote_port(const struct device_node *node)
780{
781 struct device_node *np;
782
783 /* Get remote endpoint node. */
784 np = of_graph_get_remote_endpoint(node);
785 if (!np)
786 return NULL;
787 return of_get_next_parent(np);
788}
789EXPORT_SYMBOL(of_graph_get_remote_port);
790
791int of_graph_get_endpoint_count(const struct device_node *np)
792{
793 struct device_node *endpoint;
794 int num = 0;
795
796 for_each_endpoint_of_node(np, endpoint)
797 num++;
798
799 return num;
800}
801EXPORT_SYMBOL(of_graph_get_endpoint_count);
802
803/**
804 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
805 * @node: pointer to parent device_node containing graph port/endpoint
806 * @port: identifier (value of reg property) of the parent port node
807 * @endpoint: identifier (value of reg property) of the endpoint node
808 *
809 * Return: Remote device node associated with remote endpoint node linked
810 * to @node. Use of_node_put() on it when done.
811 */
812struct device_node *of_graph_get_remote_node(const struct device_node *node,
813 u32 port, u32 endpoint)
814{
815 struct device_node *endpoint_node, *remote;
816
817 endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
818 if (!endpoint_node) {
819 pr_debug("no valid endpoint (%d, %d) for node %pOF\n",
820 port, endpoint, node);
821 return NULL;
822 }
823
824 remote = of_graph_get_remote_port_parent(endpoint_node);
825 of_node_put(endpoint_node);
826 if (!remote) {
827 pr_debug("no valid remote node\n");
828 return NULL;
829 }
830
831 if (!of_device_is_available(remote)) {
832 pr_debug("not available for remote node\n");
833 of_node_put(remote);
834 return NULL;
835 }
836
837 return remote;
838}
839EXPORT_SYMBOL(of_graph_get_remote_node);
840
841static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode)
842{
843 return of_fwnode_handle(of_node_get(to_of_node(fwnode)));
844}
845
846static void of_fwnode_put(struct fwnode_handle *fwnode)
847{
848 of_node_put(to_of_node(fwnode));
849}
850
851static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode)
852{
853 return of_device_is_available(to_of_node(fwnode));
854}
855
856static bool of_fwnode_property_present(const struct fwnode_handle *fwnode,
857 const char *propname)
858{
859 return of_property_read_bool(to_of_node(fwnode), propname);
860}
861
862static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
863 const char *propname,
864 unsigned int elem_size, void *val,
865 size_t nval)
866{
867 const struct device_node *node = to_of_node(fwnode);
868
869 if (!val)
870 return of_property_count_elems_of_size(node, propname,
871 elem_size);
872
873 switch (elem_size) {
874 case sizeof(u8):
875 return of_property_read_u8_array(node, propname, val, nval);
876 case sizeof(u16):
877 return of_property_read_u16_array(node, propname, val, nval);
878 case sizeof(u32):
879 return of_property_read_u32_array(node, propname, val, nval);
880 case sizeof(u64):
881 return of_property_read_u64_array(node, propname, val, nval);
882 }
883
884 return -ENXIO;
885}
886
887static int
888of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
889 const char *propname, const char **val,
890 size_t nval)
891{
892 const struct device_node *node = to_of_node(fwnode);
893
894 return val ?
895 of_property_read_string_array(node, propname, val, nval) :
896 of_property_count_strings(node, propname);
897}
898
899static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode)
900{
901 return kbasename(to_of_node(fwnode)->full_name);
902}
903
904static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
905{
906 /* Root needs no prefix here (its name is "/"). */
907 if (!to_of_node(fwnode)->parent)
908 return "";
909
910 return "/";
911}
912
913static struct fwnode_handle *
914of_fwnode_get_parent(const struct fwnode_handle *fwnode)
915{
916 return of_fwnode_handle(of_get_parent(to_of_node(fwnode)));
917}
918
919static struct fwnode_handle *
920of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
921 struct fwnode_handle *child)
922{
923 return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode),
924 to_of_node(child)));
925}
926
927static struct fwnode_handle *
928of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
929 const char *childname)
930{
931 const struct device_node *node = to_of_node(fwnode);
932 struct device_node *child;
933
934 for_each_available_child_of_node(node, child)
935 if (of_node_name_eq(child, childname))
936 return of_fwnode_handle(child);
937
938 return NULL;
939}
940
941static int
942of_fwnode_get_reference_args(const struct fwnode_handle *fwnode,
943 const char *prop, const char *nargs_prop,
944 unsigned int nargs, unsigned int index,
945 struct fwnode_reference_args *args)
946{
947 struct of_phandle_args of_args;
948 unsigned int i;
949 int ret;
950
951 if (nargs_prop)
952 ret = of_parse_phandle_with_args(to_of_node(fwnode), prop,
953 nargs_prop, index, &of_args);
954 else
955 ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop,
956 nargs, index, &of_args);
957 if (ret < 0)
958 return ret;
959 if (!args)
960 return 0;
961
962 args->nargs = of_args.args_count;
963 args->fwnode = of_fwnode_handle(of_args.np);
964
965 for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++)
966 args->args[i] = i < of_args.args_count ? of_args.args[i] : 0;
967
968 return 0;
969}
970
971static struct fwnode_handle *
972of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
973 struct fwnode_handle *prev)
974{
975 return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode),
976 to_of_node(prev)));
977}
978
979static struct fwnode_handle *
980of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
981{
982 return of_fwnode_handle(
983 of_graph_get_remote_endpoint(to_of_node(fwnode)));
984}
985
986static struct fwnode_handle *
987of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode)
988{
989 struct device_node *np;
990
991 /* Get the parent of the port */
992 np = of_get_parent(to_of_node(fwnode));
993 if (!np)
994 return NULL;
995
996 /* Is this the "ports" node? If not, it's the port parent. */
997 if (!of_node_name_eq(np, "ports"))
998 return of_fwnode_handle(np);
999
1000 return of_fwnode_handle(of_get_next_parent(np));
1001}
1002
1003static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1004 struct fwnode_endpoint *endpoint)
1005{
1006 const struct device_node *node = to_of_node(fwnode);
1007 struct device_node *port_node = of_get_parent(node);
1008
1009 endpoint->local_fwnode = fwnode;
1010
1011 of_property_read_u32(port_node, "reg", &endpoint->port);
1012 of_property_read_u32(node, "reg", &endpoint->id);
1013
1014 of_node_put(port_node);
1015
1016 return 0;
1017}
1018
1019static const void *
1020of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode,
1021 const struct device *dev)
1022{
1023 return of_device_get_match_data(dev);
1024}
1025
1026static bool of_is_ancestor_of(struct device_node *test_ancestor,
1027 struct device_node *child)
1028{
1029 of_node_get(child);
1030 while (child) {
1031 if (child == test_ancestor) {
1032 of_node_put(child);
1033 return true;
1034 }
1035 child = of_get_next_parent(child);
1036 }
1037 return false;
1038}
1039
1040/**
1041 * of_get_next_parent_dev - Add device link to supplier from supplier phandle
1042 * @np: device tree node
1043 *
1044 * Given a device tree node (@np), this function finds its closest ancestor
1045 * device tree node that has a corresponding struct device.
1046 *
1047 * The caller of this function is expected to call put_device() on the returned
1048 * device when they are done.
1049 */
1050static struct device *of_get_next_parent_dev(struct device_node *np)
1051{
1052 struct device *dev = NULL;
1053
1054 of_node_get(np);
1055 do {
1056 np = of_get_next_parent(np);
1057 if (np)
1058 dev = get_dev_from_fwnode(&np->fwnode);
1059 } while (np && !dev);
1060 of_node_put(np);
1061 return dev;
1062}
1063
1064/**
1065 * of_link_to_phandle - Add device link to supplier from supplier phandle
1066 * @dev: consumer device
1067 * @sup_np: phandle to supplier device tree node
1068 *
1069 * Given a phandle to a supplier device tree node (@sup_np), this function
1070 * finds the device that owns the supplier device tree node and creates a
1071 * device link from @dev consumer device to the supplier device. This function
1072 * doesn't create device links for invalid scenarios such as trying to create a
1073 * link with a parent device as the consumer of its child device. In such
1074 * cases, it returns an error.
1075 *
1076 * Returns:
1077 * - 0 if link successfully created to supplier
1078 * - -EAGAIN if linking to the supplier should be reattempted
1079 * - -EINVAL if the supplier link is invalid and should not be created
1080 * - -ENODEV if there is no device that corresponds to the supplier phandle
1081 */
1082static int of_link_to_phandle(struct device *dev, struct device_node *sup_np,
1083 u32 dl_flags)
1084{
1085 struct device *sup_dev, *sup_par_dev;
1086 int ret = 0;
1087 struct device_node *tmp_np = sup_np;
1088
1089 of_node_get(sup_np);
1090 /*
1091 * Find the device node that contains the supplier phandle. It may be
1092 * @sup_np or it may be an ancestor of @sup_np.
1093 */
1094 while (sup_np) {
1095
1096 /* Don't allow linking to a disabled supplier */
1097 if (!of_device_is_available(sup_np)) {
1098 of_node_put(sup_np);
1099 sup_np = NULL;
1100 }
1101
1102 if (of_find_property(sup_np, "compatible", NULL))
1103 break;
1104
1105 sup_np = of_get_next_parent(sup_np);
1106 }
1107
1108 if (!sup_np) {
1109 dev_dbg(dev, "Not linking to %pOFP - No device\n", tmp_np);
1110 return -ENODEV;
1111 }
1112
1113 /*
1114 * Don't allow linking a device node as a consumer of one of its
1115 * descendant nodes. By definition, a child node can't be a functional
1116 * dependency for the parent node.
1117 */
1118 if (of_is_ancestor_of(dev->of_node, sup_np)) {
1119 dev_dbg(dev, "Not linking to %pOFP - is descendant\n", sup_np);
1120 of_node_put(sup_np);
1121 return -EINVAL;
1122 }
1123 sup_dev = get_dev_from_fwnode(&sup_np->fwnode);
1124 if (!sup_dev && of_node_check_flag(sup_np, OF_POPULATED)) {
1125 /* Early device without struct device. */
1126 dev_dbg(dev, "Not linking to %pOFP - No struct device\n",
1127 sup_np);
1128 of_node_put(sup_np);
1129 return -ENODEV;
1130 } else if (!sup_dev) {
1131 /*
1132 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1133 * cycles. So cycle detection isn't necessary and shouldn't be
1134 * done.
1135 */
1136 if (dl_flags & DL_FLAG_SYNC_STATE_ONLY) {
1137 of_node_put(sup_np);
1138 return -EAGAIN;
1139 }
1140
1141 sup_par_dev = of_get_next_parent_dev(sup_np);
1142
1143 if (sup_par_dev && device_is_dependent(dev, sup_par_dev)) {
1144 /* Cyclic dependency detected, don't try to link */
1145 dev_dbg(dev, "Not linking to %pOFP - cycle detected\n",
1146 sup_np);
1147 ret = -EINVAL;
1148 } else {
1149 /*
1150 * Can't check for cycles or no cycles. So let's try
1151 * again later.
1152 */
1153 ret = -EAGAIN;
1154 }
1155
1156 of_node_put(sup_np);
1157 put_device(sup_par_dev);
1158 return ret;
1159 }
1160 of_node_put(sup_np);
1161 if (!device_link_add(dev, sup_dev, dl_flags))
1162 ret = -EINVAL;
1163 put_device(sup_dev);
1164 return ret;
1165}
1166
1167/**
1168 * parse_prop_cells - Property parsing function for suppliers
1169 *
1170 * @np: Pointer to device tree node containing a list
1171 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1172 * @index: For properties holding a list of phandles, this is the index
1173 * into the list.
1174 * @list_name: Property name that is known to contain list of phandle(s) to
1175 * supplier(s)
1176 * @cells_name: property name that specifies phandles' arguments count
1177 *
1178 * This is a helper function to parse properties that have a known fixed name
1179 * and are a list of phandles and phandle arguments.
1180 *
1181 * Returns:
1182 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1183 * on it when done.
1184 * - NULL if no phandle found at index
1185 */
1186static struct device_node *parse_prop_cells(struct device_node *np,
1187 const char *prop_name, int index,
1188 const char *list_name,
1189 const char *cells_name)
1190{
1191 struct of_phandle_args sup_args;
1192
1193 if (strcmp(prop_name, list_name))
1194 return NULL;
1195
1196 if (of_parse_phandle_with_args(np, list_name, cells_name, index,
1197 &sup_args))
1198 return NULL;
1199
1200 return sup_args.np;
1201}
1202
1203#define DEFINE_SIMPLE_PROP(fname, name, cells) \
1204static struct device_node *parse_##fname(struct device_node *np, \
1205 const char *prop_name, int index) \
1206{ \
1207 return parse_prop_cells(np, prop_name, index, name, cells); \
1208}
1209
1210static int strcmp_suffix(const char *str, const char *suffix)
1211{
1212 unsigned int len, suffix_len;
1213
1214 len = strlen(str);
1215 suffix_len = strlen(suffix);
1216 if (len <= suffix_len)
1217 return -1;
1218 return strcmp(str + len - suffix_len, suffix);
1219}
1220
1221/**
1222 * parse_suffix_prop_cells - Suffix property parsing function for suppliers
1223 *
1224 * @np: Pointer to device tree node containing a list
1225 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1226 * @index: For properties holding a list of phandles, this is the index
1227 * into the list.
1228 * @suffix: Property suffix that is known to contain list of phandle(s) to
1229 * supplier(s)
1230 * @cells_name: property name that specifies phandles' arguments count
1231 *
1232 * This is a helper function to parse properties that have a known fixed suffix
1233 * and are a list of phandles and phandle arguments.
1234 *
1235 * Returns:
1236 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1237 * on it when done.
1238 * - NULL if no phandle found at index
1239 */
1240static struct device_node *parse_suffix_prop_cells(struct device_node *np,
1241 const char *prop_name, int index,
1242 const char *suffix,
1243 const char *cells_name)
1244{
1245 struct of_phandle_args sup_args;
1246
1247 if (strcmp_suffix(prop_name, suffix))
1248 return NULL;
1249
1250 if (of_parse_phandle_with_args(np, prop_name, cells_name, index,
1251 &sup_args))
1252 return NULL;
1253
1254 return sup_args.np;
1255}
1256
1257#define DEFINE_SUFFIX_PROP(fname, suffix, cells) \
1258static struct device_node *parse_##fname(struct device_node *np, \
1259 const char *prop_name, int index) \
1260{ \
1261 return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \
1262}
1263
1264/**
1265 * struct supplier_bindings - Property parsing functions for suppliers
1266 *
1267 * @parse_prop: function name
1268 * parse_prop() finds the node corresponding to a supplier phandle
1269 * @parse_prop.np: Pointer to device node holding supplier phandle property
1270 * @parse_prop.prop_name: Name of property holding a phandle value
1271 * @parse_prop.index: For properties holding a list of phandles, this is the
1272 * index into the list
1273 *
1274 * Returns:
1275 * parse_prop() return values are
1276 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1277 * on it when done.
1278 * - NULL if no phandle found at index
1279 */
1280struct supplier_bindings {
1281 struct device_node *(*parse_prop)(struct device_node *np,
1282 const char *prop_name, int index);
1283};
1284
1285DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells")
1286DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells")
1287DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells")
1288DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells")
1289DEFINE_SIMPLE_PROP(io_channels, "io-channel", "#io-channel-cells")
1290DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL)
1291DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells")
1292DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells")
1293DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells")
1294DEFINE_SIMPLE_PROP(extcon, "extcon", NULL)
1295DEFINE_SIMPLE_PROP(interrupts_extended, "interrupts-extended",
1296 "#interrupt-cells")
1297DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", NULL)
1298DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells")
1299DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL)
1300DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL)
1301DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL)
1302DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL)
1303DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL)
1304DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL)
1305DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL)
1306DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL)
1307DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL)
1308DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL)
1309DEFINE_SUFFIX_PROP(regulators, "-supply", NULL)
1310DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells")
1311DEFINE_SUFFIX_PROP(gpios, "-gpios", "#gpio-cells")
1312
1313static struct device_node *parse_iommu_maps(struct device_node *np,
1314 const char *prop_name, int index)
1315{
1316 if (strcmp(prop_name, "iommu-map"))
1317 return NULL;
1318
1319 return of_parse_phandle(np, prop_name, (index * 4) + 1);
1320}
1321
1322static const struct supplier_bindings of_supplier_bindings[] = {
1323 { .parse_prop = parse_clocks, },
1324 { .parse_prop = parse_interconnects, },
1325 { .parse_prop = parse_iommus, },
1326 { .parse_prop = parse_iommu_maps, },
1327 { .parse_prop = parse_mboxes, },
1328 { .parse_prop = parse_io_channels, },
1329 { .parse_prop = parse_interrupt_parent, },
1330 { .parse_prop = parse_dmas, },
1331 { .parse_prop = parse_power_domains, },
1332 { .parse_prop = parse_hwlocks, },
1333 { .parse_prop = parse_extcon, },
1334 { .parse_prop = parse_interrupts_extended, },
1335 { .parse_prop = parse_nvmem_cells, },
1336 { .parse_prop = parse_phys, },
1337 { .parse_prop = parse_wakeup_parent, },
1338 { .parse_prop = parse_pinctrl0, },
1339 { .parse_prop = parse_pinctrl1, },
1340 { .parse_prop = parse_pinctrl2, },
1341 { .parse_prop = parse_pinctrl3, },
1342 { .parse_prop = parse_pinctrl4, },
1343 { .parse_prop = parse_pinctrl5, },
1344 { .parse_prop = parse_pinctrl6, },
1345 { .parse_prop = parse_pinctrl7, },
1346 { .parse_prop = parse_pinctrl8, },
1347 { .parse_prop = parse_regulators, },
1348 { .parse_prop = parse_gpio, },
1349 { .parse_prop = parse_gpios, },
1350 {}
1351};
1352
1353/**
1354 * of_link_property - Create device links to suppliers listed in a property
1355 * @dev: Consumer device
1356 * @con_np: The consumer device tree node which contains the property
1357 * @prop_name: Name of property to be parsed
1358 *
1359 * This function checks if the property @prop_name that is present in the
1360 * @con_np device tree node is one of the known common device tree bindings
1361 * that list phandles to suppliers. If @prop_name isn't one, this function
1362 * doesn't do anything.
1363 *
1364 * If @prop_name is one, this function attempts to create device links from the
1365 * consumer device @dev to all the devices of the suppliers listed in
1366 * @prop_name.
1367 *
1368 * Any failed attempt to create a device link will NOT result in an immediate
1369 * return. of_link_property() must create links to all the available supplier
1370 * devices even when attempts to create a link to one or more suppliers fail.
1371 */
1372static int of_link_property(struct device *dev, struct device_node *con_np,
1373 const char *prop_name)
1374{
1375 struct device_node *phandle;
1376 const struct supplier_bindings *s = of_supplier_bindings;
1377 unsigned int i = 0;
1378 bool matched = false;
1379 int ret = 0;
1380 u32 dl_flags;
1381
1382 if (dev->of_node == con_np)
1383 dl_flags = fw_devlink_get_flags();
1384 else
1385 dl_flags = DL_FLAG_SYNC_STATE_ONLY;
1386
1387 /* Do not stop at first failed link, link all available suppliers. */
1388 while (!matched && s->parse_prop) {
1389 while ((phandle = s->parse_prop(con_np, prop_name, i))) {
1390 matched = true;
1391 i++;
1392 if (of_link_to_phandle(dev, phandle, dl_flags)
1393 == -EAGAIN)
1394 ret = -EAGAIN;
1395 of_node_put(phandle);
1396 }
1397 s++;
1398 }
1399 return ret;
1400}
1401
1402static int of_link_to_suppliers(struct device *dev,
1403 struct device_node *con_np)
1404{
1405 struct device_node *child;
1406 struct property *p;
1407 int ret = 0;
1408
1409 for_each_property_of_node(con_np, p)
1410 if (of_link_property(dev, con_np, p->name))
1411 ret = -ENODEV;
1412
1413 for_each_available_child_of_node(con_np, child)
1414 if (of_link_to_suppliers(dev, child) && !ret)
1415 ret = -EAGAIN;
1416
1417 return ret;
1418}
1419
1420static int of_fwnode_add_links(const struct fwnode_handle *fwnode,
1421 struct device *dev)
1422{
1423 if (unlikely(!is_of_node(fwnode)))
1424 return 0;
1425
1426 return of_link_to_suppliers(dev, to_of_node(fwnode));
1427}
1428
1429const struct fwnode_operations of_fwnode_ops = {
1430 .get = of_fwnode_get,
1431 .put = of_fwnode_put,
1432 .device_is_available = of_fwnode_device_is_available,
1433 .device_get_match_data = of_fwnode_device_get_match_data,
1434 .property_present = of_fwnode_property_present,
1435 .property_read_int_array = of_fwnode_property_read_int_array,
1436 .property_read_string_array = of_fwnode_property_read_string_array,
1437 .get_name = of_fwnode_get_name,
1438 .get_name_prefix = of_fwnode_get_name_prefix,
1439 .get_parent = of_fwnode_get_parent,
1440 .get_next_child_node = of_fwnode_get_next_child_node,
1441 .get_named_child_node = of_fwnode_get_named_child_node,
1442 .get_reference_args = of_fwnode_get_reference_args,
1443 .graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint,
1444 .graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint,
1445 .graph_get_port_parent = of_fwnode_graph_get_port_parent,
1446 .graph_parse_endpoint = of_fwnode_graph_parse_endpoint,
1447 .add_links = of_fwnode_add_links,
1448};
1449EXPORT_SYMBOL_GPL(of_fwnode_ops);