Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Support for Lite-On LTR501 and similar ambient light and proximity sensors.
4 *
5 * Copyright 2014 Peter Meerwald <pmeerw@pmeerw.net>
6 *
7 * 7-bit I2C slave address 0x23
8 *
9 * TODO: IR LED characteristics
10 */
11
12#include <linux/module.h>
13#include <linux/mod_devicetable.h>
14#include <linux/i2c.h>
15#include <linux/err.h>
16#include <linux/delay.h>
17#include <linux/regmap.h>
18#include <linux/regulator/consumer.h>
19
20#include <linux/iio/iio.h>
21#include <linux/iio/events.h>
22#include <linux/iio/sysfs.h>
23#include <linux/iio/trigger_consumer.h>
24#include <linux/iio/buffer.h>
25#include <linux/iio/triggered_buffer.h>
26
27#define LTR501_DRV_NAME "ltr501"
28
29#define LTR501_ALS_CONTR 0x80 /* ALS operation mode, SW reset */
30#define LTR501_PS_CONTR 0x81 /* PS operation mode */
31#define LTR501_PS_MEAS_RATE 0x84 /* measurement rate*/
32#define LTR501_ALS_MEAS_RATE 0x85 /* ALS integ time, measurement rate*/
33#define LTR501_PART_ID 0x86
34#define LTR501_MANUFAC_ID 0x87
35#define LTR501_ALS_DATA1 0x88 /* 16-bit, little endian */
36#define LTR501_ALS_DATA1_UPPER 0x89 /* upper 8 bits of LTR501_ALS_DATA1 */
37#define LTR501_ALS_DATA0 0x8a /* 16-bit, little endian */
38#define LTR501_ALS_DATA0_UPPER 0x8b /* upper 8 bits of LTR501_ALS_DATA0 */
39#define LTR501_ALS_PS_STATUS 0x8c
40#define LTR501_PS_DATA 0x8d /* 16-bit, little endian */
41#define LTR501_PS_DATA_UPPER 0x8e /* upper 8 bits of LTR501_PS_DATA */
42#define LTR501_INTR 0x8f /* output mode, polarity, mode */
43#define LTR501_PS_THRESH_UP 0x90 /* 11 bit, ps upper threshold */
44#define LTR501_PS_THRESH_LOW 0x92 /* 11 bit, ps lower threshold */
45#define LTR501_ALS_THRESH_UP 0x97 /* 16 bit, ALS upper threshold */
46#define LTR501_ALS_THRESH_LOW 0x99 /* 16 bit, ALS lower threshold */
47#define LTR501_INTR_PRST 0x9e /* ps thresh, als thresh */
48#define LTR501_MAX_REG 0x9f
49
50#define LTR501_ALS_CONTR_SW_RESET BIT(2)
51#define LTR501_CONTR_PS_GAIN_MASK (BIT(3) | BIT(2))
52#define LTR501_CONTR_PS_GAIN_SHIFT 2
53#define LTR501_CONTR_ALS_GAIN_MASK BIT(3)
54#define LTR501_CONTR_ACTIVE BIT(1)
55
56#define LTR501_STATUS_ALS_INTR BIT(3)
57#define LTR501_STATUS_ALS_RDY BIT(2)
58#define LTR501_STATUS_PS_INTR BIT(1)
59#define LTR501_STATUS_PS_RDY BIT(0)
60
61#define LTR501_PS_DATA_MASK 0x7ff
62#define LTR501_PS_THRESH_MASK 0x7ff
63#define LTR501_ALS_THRESH_MASK 0xffff
64
65#define LTR501_ALS_DEF_PERIOD 500000
66#define LTR501_PS_DEF_PERIOD 100000
67
68#define LTR501_REGMAP_NAME "ltr501_regmap"
69
70#define LTR501_LUX_CONV(vis_coeff, vis_data, ir_coeff, ir_data) \
71 ((vis_coeff * vis_data) - (ir_coeff * ir_data))
72
73static const int int_time_mapping[] = {100000, 50000, 200000, 400000};
74
75static const struct reg_field reg_field_it =
76 REG_FIELD(LTR501_ALS_MEAS_RATE, 3, 4);
77static const struct reg_field reg_field_als_intr =
78 REG_FIELD(LTR501_INTR, 1, 1);
79static const struct reg_field reg_field_ps_intr =
80 REG_FIELD(LTR501_INTR, 0, 0);
81static const struct reg_field reg_field_als_rate =
82 REG_FIELD(LTR501_ALS_MEAS_RATE, 0, 2);
83static const struct reg_field reg_field_ps_rate =
84 REG_FIELD(LTR501_PS_MEAS_RATE, 0, 3);
85static const struct reg_field reg_field_als_prst =
86 REG_FIELD(LTR501_INTR_PRST, 0, 3);
87static const struct reg_field reg_field_ps_prst =
88 REG_FIELD(LTR501_INTR_PRST, 4, 7);
89
90struct ltr501_samp_table {
91 int freq_val; /* repetition frequency in micro HZ*/
92 int time_val; /* repetition rate in micro seconds */
93};
94
95#define LTR501_RESERVED_GAIN -1
96
97enum {
98 ltr501 = 0,
99 ltr559,
100 ltr301,
101 ltr303,
102};
103
104struct ltr501_gain {
105 int scale;
106 int uscale;
107};
108
109static const struct ltr501_gain ltr501_als_gain_tbl[] = {
110 {1, 0},
111 {0, 5000},
112};
113
114static const struct ltr501_gain ltr559_als_gain_tbl[] = {
115 {1, 0},
116 {0, 500000},
117 {0, 250000},
118 {0, 125000},
119 {LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN},
120 {LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN},
121 {0, 20000},
122 {0, 10000},
123};
124
125static const struct ltr501_gain ltr501_ps_gain_tbl[] = {
126 {1, 0},
127 {0, 250000},
128 {0, 125000},
129 {0, 62500},
130};
131
132static const struct ltr501_gain ltr559_ps_gain_tbl[] = {
133 {0, 62500}, /* x16 gain */
134 {0, 31250}, /* x32 gain */
135 {0, 15625}, /* bits X1 are for x64 gain */
136 {0, 15624},
137};
138
139struct ltr501_chip_info {
140 u8 partid;
141 const struct ltr501_gain *als_gain;
142 int als_gain_tbl_size;
143 const struct ltr501_gain *ps_gain;
144 int ps_gain_tbl_size;
145 u8 als_mode_active;
146 u8 als_gain_mask;
147 u8 als_gain_shift;
148 struct iio_chan_spec const *channels;
149 const int no_channels;
150 const struct iio_info *info;
151 const struct iio_info *info_no_irq;
152};
153
154struct ltr501_data {
155 struct i2c_client *client;
156 struct mutex lock_als, lock_ps;
157 const struct ltr501_chip_info *chip_info;
158 u8 als_contr, ps_contr;
159 int als_period, ps_period; /* period in micro seconds */
160 struct regmap *regmap;
161 struct regmap_field *reg_it;
162 struct regmap_field *reg_als_intr;
163 struct regmap_field *reg_ps_intr;
164 struct regmap_field *reg_als_rate;
165 struct regmap_field *reg_ps_rate;
166 struct regmap_field *reg_als_prst;
167 struct regmap_field *reg_ps_prst;
168 uint32_t near_level;
169};
170
171static const struct ltr501_samp_table ltr501_als_samp_table[] = {
172 {20000000, 50000}, {10000000, 100000},
173 {5000000, 200000}, {2000000, 500000},
174 {1000000, 1000000}, {500000, 2000000},
175 {500000, 2000000}, {500000, 2000000}
176};
177
178static const struct ltr501_samp_table ltr501_ps_samp_table[] = {
179 {20000000, 50000}, {14285714, 70000},
180 {10000000, 100000}, {5000000, 200000},
181 {2000000, 500000}, {1000000, 1000000},
182 {500000, 2000000}, {500000, 2000000},
183 {500000, 2000000}
184};
185
186static int ltr501_match_samp_freq(const struct ltr501_samp_table *tab,
187 int len, int val, int val2)
188{
189 int i, freq;
190
191 freq = val * 1000000 + val2;
192
193 for (i = 0; i < len; i++) {
194 if (tab[i].freq_val == freq)
195 return i;
196 }
197
198 return -EINVAL;
199}
200
201static int ltr501_als_read_samp_freq(const struct ltr501_data *data,
202 int *val, int *val2)
203{
204 int ret, i;
205
206 ret = regmap_field_read(data->reg_als_rate, &i);
207 if (ret < 0)
208 return ret;
209
210 if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table))
211 return -EINVAL;
212
213 *val = ltr501_als_samp_table[i].freq_val / 1000000;
214 *val2 = ltr501_als_samp_table[i].freq_val % 1000000;
215
216 return IIO_VAL_INT_PLUS_MICRO;
217}
218
219static int ltr501_ps_read_samp_freq(const struct ltr501_data *data,
220 int *val, int *val2)
221{
222 int ret, i;
223
224 ret = regmap_field_read(data->reg_ps_rate, &i);
225 if (ret < 0)
226 return ret;
227
228 if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table))
229 return -EINVAL;
230
231 *val = ltr501_ps_samp_table[i].freq_val / 1000000;
232 *val2 = ltr501_ps_samp_table[i].freq_val % 1000000;
233
234 return IIO_VAL_INT_PLUS_MICRO;
235}
236
237static int ltr501_als_write_samp_freq(struct ltr501_data *data,
238 int val, int val2)
239{
240 int i, ret;
241
242 i = ltr501_match_samp_freq(ltr501_als_samp_table,
243 ARRAY_SIZE(ltr501_als_samp_table),
244 val, val2);
245
246 if (i < 0)
247 return i;
248
249 mutex_lock(&data->lock_als);
250 ret = regmap_field_write(data->reg_als_rate, i);
251 mutex_unlock(&data->lock_als);
252
253 return ret;
254}
255
256static int ltr501_ps_write_samp_freq(struct ltr501_data *data,
257 int val, int val2)
258{
259 int i, ret;
260
261 i = ltr501_match_samp_freq(ltr501_ps_samp_table,
262 ARRAY_SIZE(ltr501_ps_samp_table),
263 val, val2);
264
265 if (i < 0)
266 return i;
267
268 mutex_lock(&data->lock_ps);
269 ret = regmap_field_write(data->reg_ps_rate, i);
270 mutex_unlock(&data->lock_ps);
271
272 return ret;
273}
274
275static int ltr501_als_read_samp_period(const struct ltr501_data *data, int *val)
276{
277 int ret, i;
278
279 ret = regmap_field_read(data->reg_als_rate, &i);
280 if (ret < 0)
281 return ret;
282
283 if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table))
284 return -EINVAL;
285
286 *val = ltr501_als_samp_table[i].time_val;
287
288 return IIO_VAL_INT;
289}
290
291static int ltr501_ps_read_samp_period(const struct ltr501_data *data, int *val)
292{
293 int ret, i;
294
295 ret = regmap_field_read(data->reg_ps_rate, &i);
296 if (ret < 0)
297 return ret;
298
299 if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table))
300 return -EINVAL;
301
302 *val = ltr501_ps_samp_table[i].time_val;
303
304 return IIO_VAL_INT;
305}
306
307/* IR and visible spectrum coeff's are given in data sheet */
308static unsigned long ltr501_calculate_lux(u16 vis_data, u16 ir_data)
309{
310 unsigned long ratio, lux;
311
312 if (vis_data == 0)
313 return 0;
314
315 /* multiply numerator by 100 to avoid handling ratio < 1 */
316 ratio = DIV_ROUND_UP(ir_data * 100, ir_data + vis_data);
317
318 if (ratio < 45)
319 lux = LTR501_LUX_CONV(1774, vis_data, -1105, ir_data);
320 else if (ratio >= 45 && ratio < 64)
321 lux = LTR501_LUX_CONV(3772, vis_data, 1336, ir_data);
322 else if (ratio >= 64 && ratio < 85)
323 lux = LTR501_LUX_CONV(1690, vis_data, 169, ir_data);
324 else
325 lux = 0;
326
327 return lux / 1000;
328}
329
330static int ltr501_drdy(const struct ltr501_data *data, u8 drdy_mask)
331{
332 int tries = 100;
333 int ret, status;
334
335 while (tries--) {
336 ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status);
337 if (ret < 0)
338 return ret;
339 if ((status & drdy_mask) == drdy_mask)
340 return 0;
341 msleep(25);
342 }
343
344 dev_err(&data->client->dev, "ltr501_drdy() failed, data not ready\n");
345 return -EIO;
346}
347
348static int ltr501_set_it_time(struct ltr501_data *data, int it)
349{
350 int ret, i, index = -1, status;
351
352 for (i = 0; i < ARRAY_SIZE(int_time_mapping); i++) {
353 if (int_time_mapping[i] == it) {
354 index = i;
355 break;
356 }
357 }
358 /* Make sure integ time index is valid */
359 if (index < 0)
360 return -EINVAL;
361
362 ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status);
363 if (ret < 0)
364 return ret;
365
366 if (status & LTR501_CONTR_ALS_GAIN_MASK) {
367 /*
368 * 200 ms and 400 ms integ time can only be
369 * used in dynamic range 1
370 */
371 if (index > 1)
372 return -EINVAL;
373 } else
374 /* 50 ms integ time can only be used in dynamic range 2 */
375 if (index == 1)
376 return -EINVAL;
377
378 return regmap_field_write(data->reg_it, index);
379}
380
381/* read int time in micro seconds */
382static int ltr501_read_it_time(const struct ltr501_data *data,
383 int *val, int *val2)
384{
385 int ret, index;
386
387 ret = regmap_field_read(data->reg_it, &index);
388 if (ret < 0)
389 return ret;
390
391 /* Make sure integ time index is valid */
392 if (index < 0 || index >= ARRAY_SIZE(int_time_mapping))
393 return -EINVAL;
394
395 *val2 = int_time_mapping[index];
396 *val = 0;
397
398 return IIO_VAL_INT_PLUS_MICRO;
399}
400
401static int ltr501_read_als(const struct ltr501_data *data, __le16 buf[2])
402{
403 int ret;
404
405 ret = ltr501_drdy(data, LTR501_STATUS_ALS_RDY);
406 if (ret < 0)
407 return ret;
408 /* always read both ALS channels in given order */
409 return regmap_bulk_read(data->regmap, LTR501_ALS_DATA1,
410 buf, 2 * sizeof(__le16));
411}
412
413static int ltr501_read_ps(const struct ltr501_data *data)
414{
415 __le16 status;
416 int ret;
417
418 ret = ltr501_drdy(data, LTR501_STATUS_PS_RDY);
419 if (ret < 0)
420 return ret;
421
422 ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA,
423 &status, sizeof(status));
424 if (ret < 0)
425 return ret;
426
427 return le16_to_cpu(status);
428}
429
430static int ltr501_read_intr_prst(const struct ltr501_data *data,
431 enum iio_chan_type type,
432 int *val2)
433{
434 int ret, samp_period, prst;
435
436 switch (type) {
437 case IIO_INTENSITY:
438 ret = regmap_field_read(data->reg_als_prst, &prst);
439 if (ret < 0)
440 return ret;
441
442 ret = ltr501_als_read_samp_period(data, &samp_period);
443
444 if (ret < 0)
445 return ret;
446 *val2 = samp_period * prst;
447 return IIO_VAL_INT_PLUS_MICRO;
448 case IIO_PROXIMITY:
449 ret = regmap_field_read(data->reg_ps_prst, &prst);
450 if (ret < 0)
451 return ret;
452
453 ret = ltr501_ps_read_samp_period(data, &samp_period);
454
455 if (ret < 0)
456 return ret;
457
458 *val2 = samp_period * prst;
459 return IIO_VAL_INT_PLUS_MICRO;
460 default:
461 return -EINVAL;
462 }
463
464 return -EINVAL;
465}
466
467static int ltr501_write_intr_prst(struct ltr501_data *data,
468 enum iio_chan_type type,
469 int val, int val2)
470{
471 int ret, samp_period, new_val;
472 unsigned long period;
473
474 if (val < 0 || val2 < 0)
475 return -EINVAL;
476
477 /* period in microseconds */
478 period = ((val * 1000000) + val2);
479
480 switch (type) {
481 case IIO_INTENSITY:
482 ret = ltr501_als_read_samp_period(data, &samp_period);
483 if (ret < 0)
484 return ret;
485
486 /* period should be atleast equal to sampling period */
487 if (period < samp_period)
488 return -EINVAL;
489
490 new_val = DIV_ROUND_UP(period, samp_period);
491 if (new_val < 0 || new_val > 0x0f)
492 return -EINVAL;
493
494 mutex_lock(&data->lock_als);
495 ret = regmap_field_write(data->reg_als_prst, new_val);
496 mutex_unlock(&data->lock_als);
497 if (ret >= 0)
498 data->als_period = period;
499
500 return ret;
501 case IIO_PROXIMITY:
502 ret = ltr501_ps_read_samp_period(data, &samp_period);
503 if (ret < 0)
504 return ret;
505
506 /* period should be atleast equal to rate */
507 if (period < samp_period)
508 return -EINVAL;
509
510 new_val = DIV_ROUND_UP(period, samp_period);
511 if (new_val < 0 || new_val > 0x0f)
512 return -EINVAL;
513
514 mutex_lock(&data->lock_ps);
515 ret = regmap_field_write(data->reg_ps_prst, new_val);
516 mutex_unlock(&data->lock_ps);
517 if (ret >= 0)
518 data->ps_period = period;
519
520 return ret;
521 default:
522 return -EINVAL;
523 }
524
525 return -EINVAL;
526}
527
528static ssize_t ltr501_read_near_level(struct iio_dev *indio_dev,
529 uintptr_t priv,
530 const struct iio_chan_spec *chan,
531 char *buf)
532{
533 struct ltr501_data *data = iio_priv(indio_dev);
534
535 return sprintf(buf, "%u\n", data->near_level);
536}
537
538static const struct iio_chan_spec_ext_info ltr501_ext_info[] = {
539 {
540 .name = "nearlevel",
541 .shared = IIO_SEPARATE,
542 .read = ltr501_read_near_level,
543 },
544 { /* sentinel */ }
545};
546
547static const struct iio_event_spec ltr501_als_event_spec[] = {
548 {
549 .type = IIO_EV_TYPE_THRESH,
550 .dir = IIO_EV_DIR_RISING,
551 .mask_separate = BIT(IIO_EV_INFO_VALUE),
552 }, {
553 .type = IIO_EV_TYPE_THRESH,
554 .dir = IIO_EV_DIR_FALLING,
555 .mask_separate = BIT(IIO_EV_INFO_VALUE),
556 }, {
557 .type = IIO_EV_TYPE_THRESH,
558 .dir = IIO_EV_DIR_EITHER,
559 .mask_separate = BIT(IIO_EV_INFO_ENABLE) |
560 BIT(IIO_EV_INFO_PERIOD),
561 },
562
563};
564
565static const struct iio_event_spec ltr501_pxs_event_spec[] = {
566 {
567 .type = IIO_EV_TYPE_THRESH,
568 .dir = IIO_EV_DIR_RISING,
569 .mask_separate = BIT(IIO_EV_INFO_VALUE),
570 }, {
571 .type = IIO_EV_TYPE_THRESH,
572 .dir = IIO_EV_DIR_FALLING,
573 .mask_separate = BIT(IIO_EV_INFO_VALUE),
574 }, {
575 .type = IIO_EV_TYPE_THRESH,
576 .dir = IIO_EV_DIR_EITHER,
577 .mask_separate = BIT(IIO_EV_INFO_ENABLE) |
578 BIT(IIO_EV_INFO_PERIOD),
579 },
580};
581
582#define LTR501_INTENSITY_CHANNEL(_idx, _addr, _mod, _shared, \
583 _evspec, _evsize) { \
584 .type = IIO_INTENSITY, \
585 .modified = 1, \
586 .address = (_addr), \
587 .channel2 = (_mod), \
588 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
589 .info_mask_shared_by_type = (_shared), \
590 .scan_index = (_idx), \
591 .scan_type = { \
592 .sign = 'u', \
593 .realbits = 16, \
594 .storagebits = 16, \
595 .endianness = IIO_CPU, \
596 }, \
597 .event_spec = _evspec,\
598 .num_event_specs = _evsize,\
599}
600
601#define LTR501_LIGHT_CHANNEL() { \
602 .type = IIO_LIGHT, \
603 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \
604 .scan_index = -1, \
605}
606
607static const struct iio_chan_spec ltr501_channels[] = {
608 LTR501_LIGHT_CHANNEL(),
609 LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0,
610 ltr501_als_event_spec,
611 ARRAY_SIZE(ltr501_als_event_spec)),
612 LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR,
613 BIT(IIO_CHAN_INFO_SCALE) |
614 BIT(IIO_CHAN_INFO_INT_TIME) |
615 BIT(IIO_CHAN_INFO_SAMP_FREQ),
616 NULL, 0),
617 {
618 .type = IIO_PROXIMITY,
619 .address = LTR501_PS_DATA,
620 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
621 BIT(IIO_CHAN_INFO_SCALE),
622 .scan_index = 2,
623 .scan_type = {
624 .sign = 'u',
625 .realbits = 11,
626 .storagebits = 16,
627 .endianness = IIO_CPU,
628 },
629 .event_spec = ltr501_pxs_event_spec,
630 .num_event_specs = ARRAY_SIZE(ltr501_pxs_event_spec),
631 .ext_info = ltr501_ext_info,
632 },
633 IIO_CHAN_SOFT_TIMESTAMP(3),
634};
635
636static const struct iio_chan_spec ltr301_channels[] = {
637 LTR501_LIGHT_CHANNEL(),
638 LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0,
639 ltr501_als_event_spec,
640 ARRAY_SIZE(ltr501_als_event_spec)),
641 LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR,
642 BIT(IIO_CHAN_INFO_SCALE) |
643 BIT(IIO_CHAN_INFO_INT_TIME) |
644 BIT(IIO_CHAN_INFO_SAMP_FREQ),
645 NULL, 0),
646 IIO_CHAN_SOFT_TIMESTAMP(2),
647};
648
649static int ltr501_read_raw(struct iio_dev *indio_dev,
650 struct iio_chan_spec const *chan,
651 int *val, int *val2, long mask)
652{
653 struct ltr501_data *data = iio_priv(indio_dev);
654 __le16 buf[2];
655 int ret, i;
656
657 switch (mask) {
658 case IIO_CHAN_INFO_PROCESSED:
659 switch (chan->type) {
660 case IIO_LIGHT:
661 ret = iio_device_claim_direct_mode(indio_dev);
662 if (ret)
663 return ret;
664
665 mutex_lock(&data->lock_als);
666 ret = ltr501_read_als(data, buf);
667 mutex_unlock(&data->lock_als);
668 iio_device_release_direct_mode(indio_dev);
669 if (ret < 0)
670 return ret;
671 *val = ltr501_calculate_lux(le16_to_cpu(buf[1]),
672 le16_to_cpu(buf[0]));
673 return IIO_VAL_INT;
674 default:
675 return -EINVAL;
676 }
677 case IIO_CHAN_INFO_RAW:
678 ret = iio_device_claim_direct_mode(indio_dev);
679 if (ret)
680 return ret;
681
682 switch (chan->type) {
683 case IIO_INTENSITY:
684 mutex_lock(&data->lock_als);
685 ret = ltr501_read_als(data, buf);
686 mutex_unlock(&data->lock_als);
687 if (ret < 0)
688 break;
689 *val = le16_to_cpu(chan->address == LTR501_ALS_DATA1 ?
690 buf[0] : buf[1]);
691 ret = IIO_VAL_INT;
692 break;
693 case IIO_PROXIMITY:
694 mutex_lock(&data->lock_ps);
695 ret = ltr501_read_ps(data);
696 mutex_unlock(&data->lock_ps);
697 if (ret < 0)
698 break;
699 *val = ret & LTR501_PS_DATA_MASK;
700 ret = IIO_VAL_INT;
701 break;
702 default:
703 ret = -EINVAL;
704 break;
705 }
706
707 iio_device_release_direct_mode(indio_dev);
708 return ret;
709
710 case IIO_CHAN_INFO_SCALE:
711 switch (chan->type) {
712 case IIO_INTENSITY:
713 i = (data->als_contr & data->chip_info->als_gain_mask)
714 >> data->chip_info->als_gain_shift;
715 *val = data->chip_info->als_gain[i].scale;
716 *val2 = data->chip_info->als_gain[i].uscale;
717 return IIO_VAL_INT_PLUS_MICRO;
718 case IIO_PROXIMITY:
719 i = (data->ps_contr & LTR501_CONTR_PS_GAIN_MASK) >>
720 LTR501_CONTR_PS_GAIN_SHIFT;
721 *val = data->chip_info->ps_gain[i].scale;
722 *val2 = data->chip_info->ps_gain[i].uscale;
723 return IIO_VAL_INT_PLUS_MICRO;
724 default:
725 return -EINVAL;
726 }
727 case IIO_CHAN_INFO_INT_TIME:
728 switch (chan->type) {
729 case IIO_INTENSITY:
730 return ltr501_read_it_time(data, val, val2);
731 default:
732 return -EINVAL;
733 }
734 case IIO_CHAN_INFO_SAMP_FREQ:
735 switch (chan->type) {
736 case IIO_INTENSITY:
737 return ltr501_als_read_samp_freq(data, val, val2);
738 case IIO_PROXIMITY:
739 return ltr501_ps_read_samp_freq(data, val, val2);
740 default:
741 return -EINVAL;
742 }
743 }
744 return -EINVAL;
745}
746
747static int ltr501_get_gain_index(const struct ltr501_gain *gain, int size,
748 int val, int val2)
749{
750 int i;
751
752 for (i = 0; i < size; i++)
753 if (val == gain[i].scale && val2 == gain[i].uscale)
754 return i;
755
756 return -1;
757}
758
759static int ltr501_write_raw(struct iio_dev *indio_dev,
760 struct iio_chan_spec const *chan,
761 int val, int val2, long mask)
762{
763 struct ltr501_data *data = iio_priv(indio_dev);
764 int i, ret, freq_val, freq_val2;
765 const struct ltr501_chip_info *info = data->chip_info;
766
767 ret = iio_device_claim_direct_mode(indio_dev);
768 if (ret)
769 return ret;
770
771 switch (mask) {
772 case IIO_CHAN_INFO_SCALE:
773 switch (chan->type) {
774 case IIO_INTENSITY:
775 i = ltr501_get_gain_index(info->als_gain,
776 info->als_gain_tbl_size,
777 val, val2);
778 if (i < 0) {
779 ret = -EINVAL;
780 break;
781 }
782
783 data->als_contr &= ~info->als_gain_mask;
784 data->als_contr |= i << info->als_gain_shift;
785
786 ret = regmap_write(data->regmap, LTR501_ALS_CONTR,
787 data->als_contr);
788 break;
789 case IIO_PROXIMITY:
790 i = ltr501_get_gain_index(info->ps_gain,
791 info->ps_gain_tbl_size,
792 val, val2);
793 if (i < 0) {
794 ret = -EINVAL;
795 break;
796 }
797 data->ps_contr &= ~LTR501_CONTR_PS_GAIN_MASK;
798 data->ps_contr |= i << LTR501_CONTR_PS_GAIN_SHIFT;
799
800 ret = regmap_write(data->regmap, LTR501_PS_CONTR,
801 data->ps_contr);
802 break;
803 default:
804 ret = -EINVAL;
805 break;
806 }
807 break;
808
809 case IIO_CHAN_INFO_INT_TIME:
810 switch (chan->type) {
811 case IIO_INTENSITY:
812 if (val != 0) {
813 ret = -EINVAL;
814 break;
815 }
816 mutex_lock(&data->lock_als);
817 ret = ltr501_set_it_time(data, val2);
818 mutex_unlock(&data->lock_als);
819 break;
820 default:
821 ret = -EINVAL;
822 break;
823 }
824 break;
825
826 case IIO_CHAN_INFO_SAMP_FREQ:
827 switch (chan->type) {
828 case IIO_INTENSITY:
829 ret = ltr501_als_read_samp_freq(data, &freq_val,
830 &freq_val2);
831 if (ret < 0)
832 break;
833
834 ret = ltr501_als_write_samp_freq(data, val, val2);
835 if (ret < 0)
836 break;
837
838 /* update persistence count when changing frequency */
839 ret = ltr501_write_intr_prst(data, chan->type,
840 0, data->als_period);
841
842 if (ret < 0)
843 ret = ltr501_als_write_samp_freq(data, freq_val,
844 freq_val2);
845 break;
846 case IIO_PROXIMITY:
847 ret = ltr501_ps_read_samp_freq(data, &freq_val,
848 &freq_val2);
849 if (ret < 0)
850 break;
851
852 ret = ltr501_ps_write_samp_freq(data, val, val2);
853 if (ret < 0)
854 break;
855
856 /* update persistence count when changing frequency */
857 ret = ltr501_write_intr_prst(data, chan->type,
858 0, data->ps_period);
859
860 if (ret < 0)
861 ret = ltr501_ps_write_samp_freq(data, freq_val,
862 freq_val2);
863 break;
864 default:
865 ret = -EINVAL;
866 break;
867 }
868 break;
869
870 default:
871 ret = -EINVAL;
872 break;
873 }
874
875 iio_device_release_direct_mode(indio_dev);
876 return ret;
877}
878
879static int ltr501_read_thresh(const struct iio_dev *indio_dev,
880 const struct iio_chan_spec *chan,
881 enum iio_event_type type,
882 enum iio_event_direction dir,
883 enum iio_event_info info,
884 int *val, int *val2)
885{
886 const struct ltr501_data *data = iio_priv(indio_dev);
887 int ret, thresh_data;
888
889 switch (chan->type) {
890 case IIO_INTENSITY:
891 switch (dir) {
892 case IIO_EV_DIR_RISING:
893 ret = regmap_bulk_read(data->regmap,
894 LTR501_ALS_THRESH_UP,
895 &thresh_data, 2);
896 if (ret < 0)
897 return ret;
898 *val = thresh_data & LTR501_ALS_THRESH_MASK;
899 return IIO_VAL_INT;
900 case IIO_EV_DIR_FALLING:
901 ret = regmap_bulk_read(data->regmap,
902 LTR501_ALS_THRESH_LOW,
903 &thresh_data, 2);
904 if (ret < 0)
905 return ret;
906 *val = thresh_data & LTR501_ALS_THRESH_MASK;
907 return IIO_VAL_INT;
908 default:
909 return -EINVAL;
910 }
911 case IIO_PROXIMITY:
912 switch (dir) {
913 case IIO_EV_DIR_RISING:
914 ret = regmap_bulk_read(data->regmap,
915 LTR501_PS_THRESH_UP,
916 &thresh_data, 2);
917 if (ret < 0)
918 return ret;
919 *val = thresh_data & LTR501_PS_THRESH_MASK;
920 return IIO_VAL_INT;
921 case IIO_EV_DIR_FALLING:
922 ret = regmap_bulk_read(data->regmap,
923 LTR501_PS_THRESH_LOW,
924 &thresh_data, 2);
925 if (ret < 0)
926 return ret;
927 *val = thresh_data & LTR501_PS_THRESH_MASK;
928 return IIO_VAL_INT;
929 default:
930 return -EINVAL;
931 }
932 default:
933 return -EINVAL;
934 }
935
936 return -EINVAL;
937}
938
939static int ltr501_write_thresh(struct iio_dev *indio_dev,
940 const struct iio_chan_spec *chan,
941 enum iio_event_type type,
942 enum iio_event_direction dir,
943 enum iio_event_info info,
944 int val, int val2)
945{
946 struct ltr501_data *data = iio_priv(indio_dev);
947 int ret;
948
949 if (val < 0)
950 return -EINVAL;
951
952 switch (chan->type) {
953 case IIO_INTENSITY:
954 if (val > LTR501_ALS_THRESH_MASK)
955 return -EINVAL;
956 switch (dir) {
957 case IIO_EV_DIR_RISING:
958 mutex_lock(&data->lock_als);
959 ret = regmap_bulk_write(data->regmap,
960 LTR501_ALS_THRESH_UP,
961 &val, 2);
962 mutex_unlock(&data->lock_als);
963 return ret;
964 case IIO_EV_DIR_FALLING:
965 mutex_lock(&data->lock_als);
966 ret = regmap_bulk_write(data->regmap,
967 LTR501_ALS_THRESH_LOW,
968 &val, 2);
969 mutex_unlock(&data->lock_als);
970 return ret;
971 default:
972 return -EINVAL;
973 }
974 case IIO_PROXIMITY:
975 if (val > LTR501_PS_THRESH_MASK)
976 return -EINVAL;
977 switch (dir) {
978 case IIO_EV_DIR_RISING:
979 mutex_lock(&data->lock_ps);
980 ret = regmap_bulk_write(data->regmap,
981 LTR501_PS_THRESH_UP,
982 &val, 2);
983 mutex_unlock(&data->lock_ps);
984 return ret;
985 case IIO_EV_DIR_FALLING:
986 mutex_lock(&data->lock_ps);
987 ret = regmap_bulk_write(data->regmap,
988 LTR501_PS_THRESH_LOW,
989 &val, 2);
990 mutex_unlock(&data->lock_ps);
991 return ret;
992 default:
993 return -EINVAL;
994 }
995 default:
996 return -EINVAL;
997 }
998
999 return -EINVAL;
1000}
1001
1002static int ltr501_read_event(struct iio_dev *indio_dev,
1003 const struct iio_chan_spec *chan,
1004 enum iio_event_type type,
1005 enum iio_event_direction dir,
1006 enum iio_event_info info,
1007 int *val, int *val2)
1008{
1009 int ret;
1010
1011 switch (info) {
1012 case IIO_EV_INFO_VALUE:
1013 return ltr501_read_thresh(indio_dev, chan, type, dir,
1014 info, val, val2);
1015 case IIO_EV_INFO_PERIOD:
1016 ret = ltr501_read_intr_prst(iio_priv(indio_dev),
1017 chan->type, val2);
1018 *val = *val2 / 1000000;
1019 *val2 = *val2 % 1000000;
1020 return ret;
1021 default:
1022 return -EINVAL;
1023 }
1024
1025 return -EINVAL;
1026}
1027
1028static int ltr501_write_event(struct iio_dev *indio_dev,
1029 const struct iio_chan_spec *chan,
1030 enum iio_event_type type,
1031 enum iio_event_direction dir,
1032 enum iio_event_info info,
1033 int val, int val2)
1034{
1035 switch (info) {
1036 case IIO_EV_INFO_VALUE:
1037 if (val2 != 0)
1038 return -EINVAL;
1039 return ltr501_write_thresh(indio_dev, chan, type, dir,
1040 info, val, val2);
1041 case IIO_EV_INFO_PERIOD:
1042 return ltr501_write_intr_prst(iio_priv(indio_dev), chan->type,
1043 val, val2);
1044 default:
1045 return -EINVAL;
1046 }
1047
1048 return -EINVAL;
1049}
1050
1051static int ltr501_read_event_config(struct iio_dev *indio_dev,
1052 const struct iio_chan_spec *chan,
1053 enum iio_event_type type,
1054 enum iio_event_direction dir)
1055{
1056 struct ltr501_data *data = iio_priv(indio_dev);
1057 int ret, status;
1058
1059 switch (chan->type) {
1060 case IIO_INTENSITY:
1061 ret = regmap_field_read(data->reg_als_intr, &status);
1062 if (ret < 0)
1063 return ret;
1064 return status;
1065 case IIO_PROXIMITY:
1066 ret = regmap_field_read(data->reg_ps_intr, &status);
1067 if (ret < 0)
1068 return ret;
1069 return status;
1070 default:
1071 return -EINVAL;
1072 }
1073
1074 return -EINVAL;
1075}
1076
1077static int ltr501_write_event_config(struct iio_dev *indio_dev,
1078 const struct iio_chan_spec *chan,
1079 enum iio_event_type type,
1080 enum iio_event_direction dir, bool state)
1081{
1082 struct ltr501_data *data = iio_priv(indio_dev);
1083 int ret;
1084
1085 switch (chan->type) {
1086 case IIO_INTENSITY:
1087 mutex_lock(&data->lock_als);
1088 ret = regmap_field_write(data->reg_als_intr, state);
1089 mutex_unlock(&data->lock_als);
1090 return ret;
1091 case IIO_PROXIMITY:
1092 mutex_lock(&data->lock_ps);
1093 ret = regmap_field_write(data->reg_ps_intr, state);
1094 mutex_unlock(&data->lock_ps);
1095 return ret;
1096 default:
1097 return -EINVAL;
1098 }
1099
1100 return -EINVAL;
1101}
1102
1103static ssize_t ltr501_show_proximity_scale_avail(struct device *dev,
1104 struct device_attribute *attr,
1105 char *buf)
1106{
1107 struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev));
1108 const struct ltr501_chip_info *info = data->chip_info;
1109 ssize_t len = 0;
1110 int i;
1111
1112 for (i = 0; i < info->ps_gain_tbl_size; i++) {
1113 if (info->ps_gain[i].scale == LTR501_RESERVED_GAIN)
1114 continue;
1115 len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ",
1116 info->ps_gain[i].scale,
1117 info->ps_gain[i].uscale);
1118 }
1119
1120 buf[len - 1] = '\n';
1121
1122 return len;
1123}
1124
1125static ssize_t ltr501_show_intensity_scale_avail(struct device *dev,
1126 struct device_attribute *attr,
1127 char *buf)
1128{
1129 struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev));
1130 const struct ltr501_chip_info *info = data->chip_info;
1131 ssize_t len = 0;
1132 int i;
1133
1134 for (i = 0; i < info->als_gain_tbl_size; i++) {
1135 if (info->als_gain[i].scale == LTR501_RESERVED_GAIN)
1136 continue;
1137 len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ",
1138 info->als_gain[i].scale,
1139 info->als_gain[i].uscale);
1140 }
1141
1142 buf[len - 1] = '\n';
1143
1144 return len;
1145}
1146
1147static IIO_CONST_ATTR_INT_TIME_AVAIL("0.05 0.1 0.2 0.4");
1148static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("20 10 5 2 1 0.5");
1149
1150static IIO_DEVICE_ATTR(in_proximity_scale_available, S_IRUGO,
1151 ltr501_show_proximity_scale_avail, NULL, 0);
1152static IIO_DEVICE_ATTR(in_intensity_scale_available, S_IRUGO,
1153 ltr501_show_intensity_scale_avail, NULL, 0);
1154
1155static struct attribute *ltr501_attributes[] = {
1156 &iio_dev_attr_in_proximity_scale_available.dev_attr.attr,
1157 &iio_dev_attr_in_intensity_scale_available.dev_attr.attr,
1158 &iio_const_attr_integration_time_available.dev_attr.attr,
1159 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
1160 NULL
1161};
1162
1163static struct attribute *ltr301_attributes[] = {
1164 &iio_dev_attr_in_intensity_scale_available.dev_attr.attr,
1165 &iio_const_attr_integration_time_available.dev_attr.attr,
1166 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
1167 NULL
1168};
1169
1170static const struct attribute_group ltr501_attribute_group = {
1171 .attrs = ltr501_attributes,
1172};
1173
1174static const struct attribute_group ltr301_attribute_group = {
1175 .attrs = ltr301_attributes,
1176};
1177
1178static const struct iio_info ltr501_info_no_irq = {
1179 .read_raw = ltr501_read_raw,
1180 .write_raw = ltr501_write_raw,
1181 .attrs = <r501_attribute_group,
1182};
1183
1184static const struct iio_info ltr501_info = {
1185 .read_raw = ltr501_read_raw,
1186 .write_raw = ltr501_write_raw,
1187 .attrs = <r501_attribute_group,
1188 .read_event_value = <r501_read_event,
1189 .write_event_value = <r501_write_event,
1190 .read_event_config = <r501_read_event_config,
1191 .write_event_config = <r501_write_event_config,
1192};
1193
1194static const struct iio_info ltr301_info_no_irq = {
1195 .read_raw = ltr501_read_raw,
1196 .write_raw = ltr501_write_raw,
1197 .attrs = <r301_attribute_group,
1198};
1199
1200static const struct iio_info ltr301_info = {
1201 .read_raw = ltr501_read_raw,
1202 .write_raw = ltr501_write_raw,
1203 .attrs = <r301_attribute_group,
1204 .read_event_value = <r501_read_event,
1205 .write_event_value = <r501_write_event,
1206 .read_event_config = <r501_read_event_config,
1207 .write_event_config = <r501_write_event_config,
1208};
1209
1210static const struct ltr501_chip_info ltr501_chip_info_tbl[] = {
1211 [ltr501] = {
1212 .partid = 0x08,
1213 .als_gain = ltr501_als_gain_tbl,
1214 .als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl),
1215 .ps_gain = ltr501_ps_gain_tbl,
1216 .ps_gain_tbl_size = ARRAY_SIZE(ltr501_ps_gain_tbl),
1217 .als_mode_active = BIT(0) | BIT(1),
1218 .als_gain_mask = BIT(3),
1219 .als_gain_shift = 3,
1220 .info = <r501_info,
1221 .info_no_irq = <r501_info_no_irq,
1222 .channels = ltr501_channels,
1223 .no_channels = ARRAY_SIZE(ltr501_channels),
1224 },
1225 [ltr559] = {
1226 .partid = 0x09,
1227 .als_gain = ltr559_als_gain_tbl,
1228 .als_gain_tbl_size = ARRAY_SIZE(ltr559_als_gain_tbl),
1229 .ps_gain = ltr559_ps_gain_tbl,
1230 .ps_gain_tbl_size = ARRAY_SIZE(ltr559_ps_gain_tbl),
1231 .als_mode_active = BIT(0),
1232 .als_gain_mask = BIT(2) | BIT(3) | BIT(4),
1233 .als_gain_shift = 2,
1234 .info = <r501_info,
1235 .info_no_irq = <r501_info_no_irq,
1236 .channels = ltr501_channels,
1237 .no_channels = ARRAY_SIZE(ltr501_channels),
1238 },
1239 [ltr301] = {
1240 .partid = 0x08,
1241 .als_gain = ltr501_als_gain_tbl,
1242 .als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl),
1243 .als_mode_active = BIT(0) | BIT(1),
1244 .als_gain_mask = BIT(3),
1245 .als_gain_shift = 3,
1246 .info = <r301_info,
1247 .info_no_irq = <r301_info_no_irq,
1248 .channels = ltr301_channels,
1249 .no_channels = ARRAY_SIZE(ltr301_channels),
1250 },
1251 [ltr303] = {
1252 .partid = 0x0A,
1253 .als_gain = ltr559_als_gain_tbl,
1254 .als_gain_tbl_size = ARRAY_SIZE(ltr559_als_gain_tbl),
1255 .als_mode_active = BIT(0),
1256 .als_gain_mask = BIT(2) | BIT(3) | BIT(4),
1257 .als_gain_shift = 2,
1258 .info = <r301_info,
1259 .info_no_irq = <r301_info_no_irq,
1260 .channels = ltr301_channels,
1261 .no_channels = ARRAY_SIZE(ltr301_channels),
1262 },
1263};
1264
1265static int ltr501_write_contr(struct ltr501_data *data, u8 als_val, u8 ps_val)
1266{
1267 int ret;
1268
1269 ret = regmap_write(data->regmap, LTR501_ALS_CONTR, als_val);
1270 if (ret < 0)
1271 return ret;
1272
1273 return regmap_write(data->regmap, LTR501_PS_CONTR, ps_val);
1274}
1275
1276static irqreturn_t ltr501_trigger_handler(int irq, void *p)
1277{
1278 struct iio_poll_func *pf = p;
1279 struct iio_dev *indio_dev = pf->indio_dev;
1280 struct ltr501_data *data = iio_priv(indio_dev);
1281 struct {
1282 u16 channels[3];
1283 s64 ts __aligned(8);
1284 } scan;
1285 __le16 als_buf[2];
1286 u8 mask = 0;
1287 int j = 0;
1288 int ret, psdata;
1289
1290 memset(&scan, 0, sizeof(scan));
1291
1292 /* figure out which data needs to be ready */
1293 if (test_bit(0, indio_dev->active_scan_mask) ||
1294 test_bit(1, indio_dev->active_scan_mask))
1295 mask |= LTR501_STATUS_ALS_RDY;
1296 if (test_bit(2, indio_dev->active_scan_mask))
1297 mask |= LTR501_STATUS_PS_RDY;
1298
1299 ret = ltr501_drdy(data, mask);
1300 if (ret < 0)
1301 goto done;
1302
1303 if (mask & LTR501_STATUS_ALS_RDY) {
1304 ret = regmap_bulk_read(data->regmap, LTR501_ALS_DATA1,
1305 als_buf, sizeof(als_buf));
1306 if (ret < 0)
1307 goto done;
1308 if (test_bit(0, indio_dev->active_scan_mask))
1309 scan.channels[j++] = le16_to_cpu(als_buf[1]);
1310 if (test_bit(1, indio_dev->active_scan_mask))
1311 scan.channels[j++] = le16_to_cpu(als_buf[0]);
1312 }
1313
1314 if (mask & LTR501_STATUS_PS_RDY) {
1315 ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA,
1316 &psdata, 2);
1317 if (ret < 0)
1318 goto done;
1319 scan.channels[j++] = psdata & LTR501_PS_DATA_MASK;
1320 }
1321
1322 iio_push_to_buffers_with_timestamp(indio_dev, &scan,
1323 iio_get_time_ns(indio_dev));
1324
1325done:
1326 iio_trigger_notify_done(indio_dev->trig);
1327
1328 return IRQ_HANDLED;
1329}
1330
1331static irqreturn_t ltr501_interrupt_handler(int irq, void *private)
1332{
1333 struct iio_dev *indio_dev = private;
1334 struct ltr501_data *data = iio_priv(indio_dev);
1335 int ret, status;
1336
1337 ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status);
1338 if (ret < 0) {
1339 dev_err(&data->client->dev,
1340 "irq read int reg failed\n");
1341 return IRQ_HANDLED;
1342 }
1343
1344 if (status & LTR501_STATUS_ALS_INTR)
1345 iio_push_event(indio_dev,
1346 IIO_UNMOD_EVENT_CODE(IIO_INTENSITY, 0,
1347 IIO_EV_TYPE_THRESH,
1348 IIO_EV_DIR_EITHER),
1349 iio_get_time_ns(indio_dev));
1350
1351 if (status & LTR501_STATUS_PS_INTR)
1352 iio_push_event(indio_dev,
1353 IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0,
1354 IIO_EV_TYPE_THRESH,
1355 IIO_EV_DIR_EITHER),
1356 iio_get_time_ns(indio_dev));
1357
1358 return IRQ_HANDLED;
1359}
1360
1361static int ltr501_init(struct ltr501_data *data)
1362{
1363 int ret, status;
1364
1365 ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status);
1366 if (ret < 0)
1367 return ret;
1368
1369 data->als_contr = status | data->chip_info->als_mode_active;
1370
1371 ret = regmap_read(data->regmap, LTR501_PS_CONTR, &status);
1372 if (ret < 0)
1373 return ret;
1374
1375 data->ps_contr = status | LTR501_CONTR_ACTIVE;
1376
1377 ret = ltr501_read_intr_prst(data, IIO_INTENSITY, &data->als_period);
1378 if (ret < 0)
1379 return ret;
1380
1381 ret = ltr501_read_intr_prst(data, IIO_PROXIMITY, &data->ps_period);
1382 if (ret < 0)
1383 return ret;
1384
1385 return ltr501_write_contr(data, data->als_contr, data->ps_contr);
1386}
1387
1388static bool ltr501_is_volatile_reg(struct device *dev, unsigned int reg)
1389{
1390 switch (reg) {
1391 case LTR501_ALS_DATA1:
1392 case LTR501_ALS_DATA1_UPPER:
1393 case LTR501_ALS_DATA0:
1394 case LTR501_ALS_DATA0_UPPER:
1395 case LTR501_ALS_PS_STATUS:
1396 case LTR501_PS_DATA:
1397 case LTR501_PS_DATA_UPPER:
1398 return true;
1399 default:
1400 return false;
1401 }
1402}
1403
1404static const struct regmap_config ltr501_regmap_config = {
1405 .name = LTR501_REGMAP_NAME,
1406 .reg_bits = 8,
1407 .val_bits = 8,
1408 .max_register = LTR501_MAX_REG,
1409 .cache_type = REGCACHE_RBTREE,
1410 .volatile_reg = ltr501_is_volatile_reg,
1411};
1412
1413static int ltr501_powerdown(struct ltr501_data *data)
1414{
1415 return ltr501_write_contr(data, data->als_contr &
1416 ~data->chip_info->als_mode_active,
1417 data->ps_contr & ~LTR501_CONTR_ACTIVE);
1418}
1419
1420static int ltr501_probe(struct i2c_client *client)
1421{
1422 const struct i2c_device_id *id = i2c_client_get_device_id(client);
1423 static const char * const regulator_names[] = { "vdd", "vddio" };
1424 struct ltr501_data *data;
1425 struct iio_dev *indio_dev;
1426 struct regmap *regmap;
1427 const void *ddata = NULL;
1428 int partid, chip_idx;
1429 const char *name;
1430 int ret;
1431
1432 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
1433 if (!indio_dev)
1434 return -ENOMEM;
1435
1436 regmap = devm_regmap_init_i2c(client, <r501_regmap_config);
1437 if (IS_ERR(regmap)) {
1438 dev_err(&client->dev, "Regmap initialization failed.\n");
1439 return PTR_ERR(regmap);
1440 }
1441
1442 data = iio_priv(indio_dev);
1443 i2c_set_clientdata(client, indio_dev);
1444 data->client = client;
1445 data->regmap = regmap;
1446 mutex_init(&data->lock_als);
1447 mutex_init(&data->lock_ps);
1448
1449 ret = devm_regulator_bulk_get_enable(&client->dev,
1450 ARRAY_SIZE(regulator_names),
1451 regulator_names);
1452 if (ret)
1453 return dev_err_probe(&client->dev, ret,
1454 "Failed to get regulators\n");
1455
1456 data->reg_it = devm_regmap_field_alloc(&client->dev, regmap,
1457 reg_field_it);
1458 if (IS_ERR(data->reg_it)) {
1459 dev_err(&client->dev, "Integ time reg field init failed.\n");
1460 return PTR_ERR(data->reg_it);
1461 }
1462
1463 data->reg_als_intr = devm_regmap_field_alloc(&client->dev, regmap,
1464 reg_field_als_intr);
1465 if (IS_ERR(data->reg_als_intr)) {
1466 dev_err(&client->dev, "ALS intr mode reg field init failed\n");
1467 return PTR_ERR(data->reg_als_intr);
1468 }
1469
1470 data->reg_ps_intr = devm_regmap_field_alloc(&client->dev, regmap,
1471 reg_field_ps_intr);
1472 if (IS_ERR(data->reg_ps_intr)) {
1473 dev_err(&client->dev, "PS intr mode reg field init failed.\n");
1474 return PTR_ERR(data->reg_ps_intr);
1475 }
1476
1477 data->reg_als_rate = devm_regmap_field_alloc(&client->dev, regmap,
1478 reg_field_als_rate);
1479 if (IS_ERR(data->reg_als_rate)) {
1480 dev_err(&client->dev, "ALS samp rate field init failed.\n");
1481 return PTR_ERR(data->reg_als_rate);
1482 }
1483
1484 data->reg_ps_rate = devm_regmap_field_alloc(&client->dev, regmap,
1485 reg_field_ps_rate);
1486 if (IS_ERR(data->reg_ps_rate)) {
1487 dev_err(&client->dev, "PS samp rate field init failed.\n");
1488 return PTR_ERR(data->reg_ps_rate);
1489 }
1490
1491 data->reg_als_prst = devm_regmap_field_alloc(&client->dev, regmap,
1492 reg_field_als_prst);
1493 if (IS_ERR(data->reg_als_prst)) {
1494 dev_err(&client->dev, "ALS prst reg field init failed\n");
1495 return PTR_ERR(data->reg_als_prst);
1496 }
1497
1498 data->reg_ps_prst = devm_regmap_field_alloc(&client->dev, regmap,
1499 reg_field_ps_prst);
1500 if (IS_ERR(data->reg_ps_prst)) {
1501 dev_err(&client->dev, "PS prst reg field init failed.\n");
1502 return PTR_ERR(data->reg_ps_prst);
1503 }
1504
1505 ret = regmap_read(data->regmap, LTR501_PART_ID, &partid);
1506 if (ret < 0)
1507 return ret;
1508
1509 if (id) {
1510 name = id->name;
1511 chip_idx = id->driver_data;
1512 } else {
1513 name = iio_get_acpi_device_name_and_data(&client->dev, &ddata);
1514 chip_idx = (intptr_t)ddata;
1515 }
1516 if (!name)
1517 return -ENODEV;
1518
1519 data->chip_info = <r501_chip_info_tbl[chip_idx];
1520
1521 if ((partid >> 4) != data->chip_info->partid)
1522 return -ENODEV;
1523
1524 if (device_property_read_u32(&client->dev, "proximity-near-level",
1525 &data->near_level))
1526 data->near_level = 0;
1527
1528 indio_dev->info = data->chip_info->info;
1529 indio_dev->channels = data->chip_info->channels;
1530 indio_dev->num_channels = data->chip_info->no_channels;
1531 indio_dev->name = name;
1532 indio_dev->modes = INDIO_DIRECT_MODE;
1533
1534 ret = ltr501_init(data);
1535 if (ret < 0)
1536 return ret;
1537
1538 if (client->irq > 0) {
1539 ret = devm_request_threaded_irq(&client->dev, client->irq,
1540 NULL, ltr501_interrupt_handler,
1541 IRQF_TRIGGER_FALLING |
1542 IRQF_ONESHOT,
1543 "ltr501_thresh_event",
1544 indio_dev);
1545 if (ret) {
1546 dev_err(&client->dev, "request irq (%d) failed\n",
1547 client->irq);
1548 return ret;
1549 }
1550 } else {
1551 indio_dev->info = data->chip_info->info_no_irq;
1552 }
1553
1554 ret = iio_triggered_buffer_setup(indio_dev, NULL,
1555 ltr501_trigger_handler, NULL);
1556 if (ret)
1557 goto powerdown_on_error;
1558
1559 ret = iio_device_register(indio_dev);
1560 if (ret)
1561 goto error_unreg_buffer;
1562
1563 return 0;
1564
1565error_unreg_buffer:
1566 iio_triggered_buffer_cleanup(indio_dev);
1567powerdown_on_error:
1568 ltr501_powerdown(data);
1569 return ret;
1570}
1571
1572static void ltr501_remove(struct i2c_client *client)
1573{
1574 struct iio_dev *indio_dev = i2c_get_clientdata(client);
1575
1576 iio_device_unregister(indio_dev);
1577 iio_triggered_buffer_cleanup(indio_dev);
1578 ltr501_powerdown(iio_priv(indio_dev));
1579}
1580
1581static int ltr501_suspend(struct device *dev)
1582{
1583 struct ltr501_data *data = iio_priv(i2c_get_clientdata(
1584 to_i2c_client(dev)));
1585 return ltr501_powerdown(data);
1586}
1587
1588static int ltr501_resume(struct device *dev)
1589{
1590 struct ltr501_data *data = iio_priv(i2c_get_clientdata(
1591 to_i2c_client(dev)));
1592
1593 return ltr501_write_contr(data, data->als_contr,
1594 data->ps_contr);
1595}
1596
1597static DEFINE_SIMPLE_DEV_PM_OPS(ltr501_pm_ops, ltr501_suspend, ltr501_resume);
1598
1599static const struct acpi_device_id ltr_acpi_match[] = {
1600 { "LTER0301", ltr301 },
1601 /* https://www.catalog.update.microsoft.com/Search.aspx?q=lter0303 */
1602 { "LTER0303", ltr303 },
1603 { },
1604};
1605MODULE_DEVICE_TABLE(acpi, ltr_acpi_match);
1606
1607static const struct i2c_device_id ltr501_id[] = {
1608 { "ltr501", ltr501 },
1609 { "ltr559", ltr559 },
1610 { "ltr301", ltr301 },
1611 { "ltr303", ltr303 },
1612 { }
1613};
1614MODULE_DEVICE_TABLE(i2c, ltr501_id);
1615
1616static const struct of_device_id ltr501_of_match[] = {
1617 { .compatible = "liteon,ltr501", },
1618 { .compatible = "liteon,ltr559", },
1619 { .compatible = "liteon,ltr301", },
1620 { .compatible = "liteon,ltr303", },
1621 {}
1622};
1623MODULE_DEVICE_TABLE(of, ltr501_of_match);
1624
1625static struct i2c_driver ltr501_driver = {
1626 .driver = {
1627 .name = LTR501_DRV_NAME,
1628 .of_match_table = ltr501_of_match,
1629 .pm = pm_sleep_ptr(<r501_pm_ops),
1630 .acpi_match_table = ltr_acpi_match,
1631 },
1632 .probe = ltr501_probe,
1633 .remove = ltr501_remove,
1634 .id_table = ltr501_id,
1635};
1636
1637module_i2c_driver(ltr501_driver);
1638
1639MODULE_AUTHOR("Peter Meerwald <pmeerw@pmeerw.net>");
1640MODULE_DESCRIPTION("Lite-On LTR501 ambient light and proximity sensor driver");
1641MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * ltr501.c - Support for Lite-On LTR501 ambient light and proximity sensor
4 *
5 * Copyright 2014 Peter Meerwald <pmeerw@pmeerw.net>
6 *
7 * 7-bit I2C slave address 0x23
8 *
9 * TODO: IR LED characteristics
10 */
11
12#include <linux/module.h>
13#include <linux/i2c.h>
14#include <linux/err.h>
15#include <linux/delay.h>
16#include <linux/regmap.h>
17#include <linux/acpi.h>
18
19#include <linux/iio/iio.h>
20#include <linux/iio/events.h>
21#include <linux/iio/sysfs.h>
22#include <linux/iio/trigger_consumer.h>
23#include <linux/iio/buffer.h>
24#include <linux/iio/triggered_buffer.h>
25
26#define LTR501_DRV_NAME "ltr501"
27
28#define LTR501_ALS_CONTR 0x80 /* ALS operation mode, SW reset */
29#define LTR501_PS_CONTR 0x81 /* PS operation mode */
30#define LTR501_PS_MEAS_RATE 0x84 /* measurement rate*/
31#define LTR501_ALS_MEAS_RATE 0x85 /* ALS integ time, measurement rate*/
32#define LTR501_PART_ID 0x86
33#define LTR501_MANUFAC_ID 0x87
34#define LTR501_ALS_DATA1 0x88 /* 16-bit, little endian */
35#define LTR501_ALS_DATA0 0x8a /* 16-bit, little endian */
36#define LTR501_ALS_PS_STATUS 0x8c
37#define LTR501_PS_DATA 0x8d /* 16-bit, little endian */
38#define LTR501_INTR 0x8f /* output mode, polarity, mode */
39#define LTR501_PS_THRESH_UP 0x90 /* 11 bit, ps upper threshold */
40#define LTR501_PS_THRESH_LOW 0x92 /* 11 bit, ps lower threshold */
41#define LTR501_ALS_THRESH_UP 0x97 /* 16 bit, ALS upper threshold */
42#define LTR501_ALS_THRESH_LOW 0x99 /* 16 bit, ALS lower threshold */
43#define LTR501_INTR_PRST 0x9e /* ps thresh, als thresh */
44#define LTR501_MAX_REG 0x9f
45
46#define LTR501_ALS_CONTR_SW_RESET BIT(2)
47#define LTR501_CONTR_PS_GAIN_MASK (BIT(3) | BIT(2))
48#define LTR501_CONTR_PS_GAIN_SHIFT 2
49#define LTR501_CONTR_ALS_GAIN_MASK BIT(3)
50#define LTR501_CONTR_ACTIVE BIT(1)
51
52#define LTR501_STATUS_ALS_INTR BIT(3)
53#define LTR501_STATUS_ALS_RDY BIT(2)
54#define LTR501_STATUS_PS_INTR BIT(1)
55#define LTR501_STATUS_PS_RDY BIT(0)
56
57#define LTR501_PS_DATA_MASK 0x7ff
58#define LTR501_PS_THRESH_MASK 0x7ff
59#define LTR501_ALS_THRESH_MASK 0xffff
60
61#define LTR501_ALS_DEF_PERIOD 500000
62#define LTR501_PS_DEF_PERIOD 100000
63
64#define LTR501_REGMAP_NAME "ltr501_regmap"
65
66#define LTR501_LUX_CONV(vis_coeff, vis_data, ir_coeff, ir_data) \
67 ((vis_coeff * vis_data) - (ir_coeff * ir_data))
68
69static const int int_time_mapping[] = {100000, 50000, 200000, 400000};
70
71static const struct reg_field reg_field_it =
72 REG_FIELD(LTR501_ALS_MEAS_RATE, 3, 4);
73static const struct reg_field reg_field_als_intr =
74 REG_FIELD(LTR501_INTR, 1, 1);
75static const struct reg_field reg_field_ps_intr =
76 REG_FIELD(LTR501_INTR, 0, 0);
77static const struct reg_field reg_field_als_rate =
78 REG_FIELD(LTR501_ALS_MEAS_RATE, 0, 2);
79static const struct reg_field reg_field_ps_rate =
80 REG_FIELD(LTR501_PS_MEAS_RATE, 0, 3);
81static const struct reg_field reg_field_als_prst =
82 REG_FIELD(LTR501_INTR_PRST, 0, 3);
83static const struct reg_field reg_field_ps_prst =
84 REG_FIELD(LTR501_INTR_PRST, 4, 7);
85
86struct ltr501_samp_table {
87 int freq_val; /* repetition frequency in micro HZ*/
88 int time_val; /* repetition rate in micro seconds */
89};
90
91#define LTR501_RESERVED_GAIN -1
92
93enum {
94 ltr501 = 0,
95 ltr559,
96 ltr301,
97};
98
99struct ltr501_gain {
100 int scale;
101 int uscale;
102};
103
104static const struct ltr501_gain ltr501_als_gain_tbl[] = {
105 {1, 0},
106 {0, 5000},
107};
108
109static const struct ltr501_gain ltr559_als_gain_tbl[] = {
110 {1, 0},
111 {0, 500000},
112 {0, 250000},
113 {0, 125000},
114 {LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN},
115 {LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN},
116 {0, 20000},
117 {0, 10000},
118};
119
120static const struct ltr501_gain ltr501_ps_gain_tbl[] = {
121 {1, 0},
122 {0, 250000},
123 {0, 125000},
124 {0, 62500},
125};
126
127static const struct ltr501_gain ltr559_ps_gain_tbl[] = {
128 {0, 62500}, /* x16 gain */
129 {0, 31250}, /* x32 gain */
130 {0, 15625}, /* bits X1 are for x64 gain */
131 {0, 15624},
132};
133
134struct ltr501_chip_info {
135 u8 partid;
136 const struct ltr501_gain *als_gain;
137 int als_gain_tbl_size;
138 const struct ltr501_gain *ps_gain;
139 int ps_gain_tbl_size;
140 u8 als_mode_active;
141 u8 als_gain_mask;
142 u8 als_gain_shift;
143 struct iio_chan_spec const *channels;
144 const int no_channels;
145 const struct iio_info *info;
146 const struct iio_info *info_no_irq;
147};
148
149struct ltr501_data {
150 struct i2c_client *client;
151 struct mutex lock_als, lock_ps;
152 struct ltr501_chip_info *chip_info;
153 u8 als_contr, ps_contr;
154 int als_period, ps_period; /* period in micro seconds */
155 struct regmap *regmap;
156 struct regmap_field *reg_it;
157 struct regmap_field *reg_als_intr;
158 struct regmap_field *reg_ps_intr;
159 struct regmap_field *reg_als_rate;
160 struct regmap_field *reg_ps_rate;
161 struct regmap_field *reg_als_prst;
162 struct regmap_field *reg_ps_prst;
163};
164
165static const struct ltr501_samp_table ltr501_als_samp_table[] = {
166 {20000000, 50000}, {10000000, 100000},
167 {5000000, 200000}, {2000000, 500000},
168 {1000000, 1000000}, {500000, 2000000},
169 {500000, 2000000}, {500000, 2000000}
170};
171
172static const struct ltr501_samp_table ltr501_ps_samp_table[] = {
173 {20000000, 50000}, {14285714, 70000},
174 {10000000, 100000}, {5000000, 200000},
175 {2000000, 500000}, {1000000, 1000000},
176 {500000, 2000000}, {500000, 2000000},
177 {500000, 2000000}
178};
179
180static int ltr501_match_samp_freq(const struct ltr501_samp_table *tab,
181 int len, int val, int val2)
182{
183 int i, freq;
184
185 freq = val * 1000000 + val2;
186
187 for (i = 0; i < len; i++) {
188 if (tab[i].freq_val == freq)
189 return i;
190 }
191
192 return -EINVAL;
193}
194
195static int ltr501_als_read_samp_freq(const struct ltr501_data *data,
196 int *val, int *val2)
197{
198 int ret, i;
199
200 ret = regmap_field_read(data->reg_als_rate, &i);
201 if (ret < 0)
202 return ret;
203
204 if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table))
205 return -EINVAL;
206
207 *val = ltr501_als_samp_table[i].freq_val / 1000000;
208 *val2 = ltr501_als_samp_table[i].freq_val % 1000000;
209
210 return IIO_VAL_INT_PLUS_MICRO;
211}
212
213static int ltr501_ps_read_samp_freq(const struct ltr501_data *data,
214 int *val, int *val2)
215{
216 int ret, i;
217
218 ret = regmap_field_read(data->reg_ps_rate, &i);
219 if (ret < 0)
220 return ret;
221
222 if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table))
223 return -EINVAL;
224
225 *val = ltr501_ps_samp_table[i].freq_val / 1000000;
226 *val2 = ltr501_ps_samp_table[i].freq_val % 1000000;
227
228 return IIO_VAL_INT_PLUS_MICRO;
229}
230
231static int ltr501_als_write_samp_freq(struct ltr501_data *data,
232 int val, int val2)
233{
234 int i, ret;
235
236 i = ltr501_match_samp_freq(ltr501_als_samp_table,
237 ARRAY_SIZE(ltr501_als_samp_table),
238 val, val2);
239
240 if (i < 0)
241 return i;
242
243 mutex_lock(&data->lock_als);
244 ret = regmap_field_write(data->reg_als_rate, i);
245 mutex_unlock(&data->lock_als);
246
247 return ret;
248}
249
250static int ltr501_ps_write_samp_freq(struct ltr501_data *data,
251 int val, int val2)
252{
253 int i, ret;
254
255 i = ltr501_match_samp_freq(ltr501_ps_samp_table,
256 ARRAY_SIZE(ltr501_ps_samp_table),
257 val, val2);
258
259 if (i < 0)
260 return i;
261
262 mutex_lock(&data->lock_ps);
263 ret = regmap_field_write(data->reg_ps_rate, i);
264 mutex_unlock(&data->lock_ps);
265
266 return ret;
267}
268
269static int ltr501_als_read_samp_period(const struct ltr501_data *data, int *val)
270{
271 int ret, i;
272
273 ret = regmap_field_read(data->reg_als_rate, &i);
274 if (ret < 0)
275 return ret;
276
277 if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table))
278 return -EINVAL;
279
280 *val = ltr501_als_samp_table[i].time_val;
281
282 return IIO_VAL_INT;
283}
284
285static int ltr501_ps_read_samp_period(const struct ltr501_data *data, int *val)
286{
287 int ret, i;
288
289 ret = regmap_field_read(data->reg_ps_rate, &i);
290 if (ret < 0)
291 return ret;
292
293 if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table))
294 return -EINVAL;
295
296 *val = ltr501_ps_samp_table[i].time_val;
297
298 return IIO_VAL_INT;
299}
300
301/* IR and visible spectrum coeff's are given in data sheet */
302static unsigned long ltr501_calculate_lux(u16 vis_data, u16 ir_data)
303{
304 unsigned long ratio, lux;
305
306 if (vis_data == 0)
307 return 0;
308
309 /* multiply numerator by 100 to avoid handling ratio < 1 */
310 ratio = DIV_ROUND_UP(ir_data * 100, ir_data + vis_data);
311
312 if (ratio < 45)
313 lux = LTR501_LUX_CONV(1774, vis_data, -1105, ir_data);
314 else if (ratio >= 45 && ratio < 64)
315 lux = LTR501_LUX_CONV(3772, vis_data, 1336, ir_data);
316 else if (ratio >= 64 && ratio < 85)
317 lux = LTR501_LUX_CONV(1690, vis_data, 169, ir_data);
318 else
319 lux = 0;
320
321 return lux / 1000;
322}
323
324static int ltr501_drdy(const struct ltr501_data *data, u8 drdy_mask)
325{
326 int tries = 100;
327 int ret, status;
328
329 while (tries--) {
330 ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status);
331 if (ret < 0)
332 return ret;
333 if ((status & drdy_mask) == drdy_mask)
334 return 0;
335 msleep(25);
336 }
337
338 dev_err(&data->client->dev, "ltr501_drdy() failed, data not ready\n");
339 return -EIO;
340}
341
342static int ltr501_set_it_time(struct ltr501_data *data, int it)
343{
344 int ret, i, index = -1, status;
345
346 for (i = 0; i < ARRAY_SIZE(int_time_mapping); i++) {
347 if (int_time_mapping[i] == it) {
348 index = i;
349 break;
350 }
351 }
352 /* Make sure integ time index is valid */
353 if (index < 0)
354 return -EINVAL;
355
356 ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status);
357 if (ret < 0)
358 return ret;
359
360 if (status & LTR501_CONTR_ALS_GAIN_MASK) {
361 /*
362 * 200 ms and 400 ms integ time can only be
363 * used in dynamic range 1
364 */
365 if (index > 1)
366 return -EINVAL;
367 } else
368 /* 50 ms integ time can only be used in dynamic range 2 */
369 if (index == 1)
370 return -EINVAL;
371
372 return regmap_field_write(data->reg_it, index);
373}
374
375/* read int time in micro seconds */
376static int ltr501_read_it_time(const struct ltr501_data *data,
377 int *val, int *val2)
378{
379 int ret, index;
380
381 ret = regmap_field_read(data->reg_it, &index);
382 if (ret < 0)
383 return ret;
384
385 /* Make sure integ time index is valid */
386 if (index < 0 || index >= ARRAY_SIZE(int_time_mapping))
387 return -EINVAL;
388
389 *val2 = int_time_mapping[index];
390 *val = 0;
391
392 return IIO_VAL_INT_PLUS_MICRO;
393}
394
395static int ltr501_read_als(const struct ltr501_data *data, __le16 buf[2])
396{
397 int ret;
398
399 ret = ltr501_drdy(data, LTR501_STATUS_ALS_RDY);
400 if (ret < 0)
401 return ret;
402 /* always read both ALS channels in given order */
403 return regmap_bulk_read(data->regmap, LTR501_ALS_DATA1,
404 buf, 2 * sizeof(__le16));
405}
406
407static int ltr501_read_ps(const struct ltr501_data *data)
408{
409 int ret, status;
410
411 ret = ltr501_drdy(data, LTR501_STATUS_PS_RDY);
412 if (ret < 0)
413 return ret;
414
415 ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA,
416 &status, 2);
417 if (ret < 0)
418 return ret;
419
420 return status;
421}
422
423static int ltr501_read_intr_prst(const struct ltr501_data *data,
424 enum iio_chan_type type,
425 int *val2)
426{
427 int ret, samp_period, prst;
428
429 switch (type) {
430 case IIO_INTENSITY:
431 ret = regmap_field_read(data->reg_als_prst, &prst);
432 if (ret < 0)
433 return ret;
434
435 ret = ltr501_als_read_samp_period(data, &samp_period);
436
437 if (ret < 0)
438 return ret;
439 *val2 = samp_period * prst;
440 return IIO_VAL_INT_PLUS_MICRO;
441 case IIO_PROXIMITY:
442 ret = regmap_field_read(data->reg_ps_prst, &prst);
443 if (ret < 0)
444 return ret;
445
446 ret = ltr501_ps_read_samp_period(data, &samp_period);
447
448 if (ret < 0)
449 return ret;
450
451 *val2 = samp_period * prst;
452 return IIO_VAL_INT_PLUS_MICRO;
453 default:
454 return -EINVAL;
455 }
456
457 return -EINVAL;
458}
459
460static int ltr501_write_intr_prst(struct ltr501_data *data,
461 enum iio_chan_type type,
462 int val, int val2)
463{
464 int ret, samp_period, new_val;
465 unsigned long period;
466
467 if (val < 0 || val2 < 0)
468 return -EINVAL;
469
470 /* period in microseconds */
471 period = ((val * 1000000) + val2);
472
473 switch (type) {
474 case IIO_INTENSITY:
475 ret = ltr501_als_read_samp_period(data, &samp_period);
476 if (ret < 0)
477 return ret;
478
479 /* period should be atleast equal to sampling period */
480 if (period < samp_period)
481 return -EINVAL;
482
483 new_val = DIV_ROUND_UP(period, samp_period);
484 if (new_val < 0 || new_val > 0x0f)
485 return -EINVAL;
486
487 mutex_lock(&data->lock_als);
488 ret = regmap_field_write(data->reg_als_prst, new_val);
489 mutex_unlock(&data->lock_als);
490 if (ret >= 0)
491 data->als_period = period;
492
493 return ret;
494 case IIO_PROXIMITY:
495 ret = ltr501_ps_read_samp_period(data, &samp_period);
496 if (ret < 0)
497 return ret;
498
499 /* period should be atleast equal to rate */
500 if (period < samp_period)
501 return -EINVAL;
502
503 new_val = DIV_ROUND_UP(period, samp_period);
504 if (new_val < 0 || new_val > 0x0f)
505 return -EINVAL;
506
507 mutex_lock(&data->lock_ps);
508 ret = regmap_field_write(data->reg_ps_prst, new_val);
509 mutex_unlock(&data->lock_ps);
510 if (ret >= 0)
511 data->ps_period = period;
512
513 return ret;
514 default:
515 return -EINVAL;
516 }
517
518 return -EINVAL;
519}
520
521static const struct iio_event_spec ltr501_als_event_spec[] = {
522 {
523 .type = IIO_EV_TYPE_THRESH,
524 .dir = IIO_EV_DIR_RISING,
525 .mask_separate = BIT(IIO_EV_INFO_VALUE),
526 }, {
527 .type = IIO_EV_TYPE_THRESH,
528 .dir = IIO_EV_DIR_FALLING,
529 .mask_separate = BIT(IIO_EV_INFO_VALUE),
530 }, {
531 .type = IIO_EV_TYPE_THRESH,
532 .dir = IIO_EV_DIR_EITHER,
533 .mask_separate = BIT(IIO_EV_INFO_ENABLE) |
534 BIT(IIO_EV_INFO_PERIOD),
535 },
536
537};
538
539static const struct iio_event_spec ltr501_pxs_event_spec[] = {
540 {
541 .type = IIO_EV_TYPE_THRESH,
542 .dir = IIO_EV_DIR_RISING,
543 .mask_separate = BIT(IIO_EV_INFO_VALUE),
544 }, {
545 .type = IIO_EV_TYPE_THRESH,
546 .dir = IIO_EV_DIR_FALLING,
547 .mask_separate = BIT(IIO_EV_INFO_VALUE),
548 }, {
549 .type = IIO_EV_TYPE_THRESH,
550 .dir = IIO_EV_DIR_EITHER,
551 .mask_separate = BIT(IIO_EV_INFO_ENABLE) |
552 BIT(IIO_EV_INFO_PERIOD),
553 },
554};
555
556#define LTR501_INTENSITY_CHANNEL(_idx, _addr, _mod, _shared, \
557 _evspec, _evsize) { \
558 .type = IIO_INTENSITY, \
559 .modified = 1, \
560 .address = (_addr), \
561 .channel2 = (_mod), \
562 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
563 .info_mask_shared_by_type = (_shared), \
564 .scan_index = (_idx), \
565 .scan_type = { \
566 .sign = 'u', \
567 .realbits = 16, \
568 .storagebits = 16, \
569 .endianness = IIO_CPU, \
570 }, \
571 .event_spec = _evspec,\
572 .num_event_specs = _evsize,\
573}
574
575#define LTR501_LIGHT_CHANNEL() { \
576 .type = IIO_LIGHT, \
577 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \
578 .scan_index = -1, \
579}
580
581static const struct iio_chan_spec ltr501_channels[] = {
582 LTR501_LIGHT_CHANNEL(),
583 LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0,
584 ltr501_als_event_spec,
585 ARRAY_SIZE(ltr501_als_event_spec)),
586 LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR,
587 BIT(IIO_CHAN_INFO_SCALE) |
588 BIT(IIO_CHAN_INFO_INT_TIME) |
589 BIT(IIO_CHAN_INFO_SAMP_FREQ),
590 NULL, 0),
591 {
592 .type = IIO_PROXIMITY,
593 .address = LTR501_PS_DATA,
594 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
595 BIT(IIO_CHAN_INFO_SCALE),
596 .scan_index = 2,
597 .scan_type = {
598 .sign = 'u',
599 .realbits = 11,
600 .storagebits = 16,
601 .endianness = IIO_CPU,
602 },
603 .event_spec = ltr501_pxs_event_spec,
604 .num_event_specs = ARRAY_SIZE(ltr501_pxs_event_spec),
605 },
606 IIO_CHAN_SOFT_TIMESTAMP(3),
607};
608
609static const struct iio_chan_spec ltr301_channels[] = {
610 LTR501_LIGHT_CHANNEL(),
611 LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0,
612 ltr501_als_event_spec,
613 ARRAY_SIZE(ltr501_als_event_spec)),
614 LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR,
615 BIT(IIO_CHAN_INFO_SCALE) |
616 BIT(IIO_CHAN_INFO_INT_TIME) |
617 BIT(IIO_CHAN_INFO_SAMP_FREQ),
618 NULL, 0),
619 IIO_CHAN_SOFT_TIMESTAMP(2),
620};
621
622static int ltr501_read_raw(struct iio_dev *indio_dev,
623 struct iio_chan_spec const *chan,
624 int *val, int *val2, long mask)
625{
626 struct ltr501_data *data = iio_priv(indio_dev);
627 __le16 buf[2];
628 int ret, i;
629
630 switch (mask) {
631 case IIO_CHAN_INFO_PROCESSED:
632 switch (chan->type) {
633 case IIO_LIGHT:
634 ret = iio_device_claim_direct_mode(indio_dev);
635 if (ret)
636 return ret;
637
638 mutex_lock(&data->lock_als);
639 ret = ltr501_read_als(data, buf);
640 mutex_unlock(&data->lock_als);
641 iio_device_release_direct_mode(indio_dev);
642 if (ret < 0)
643 return ret;
644 *val = ltr501_calculate_lux(le16_to_cpu(buf[1]),
645 le16_to_cpu(buf[0]));
646 return IIO_VAL_INT;
647 default:
648 return -EINVAL;
649 }
650 case IIO_CHAN_INFO_RAW:
651 ret = iio_device_claim_direct_mode(indio_dev);
652 if (ret)
653 return ret;
654
655 switch (chan->type) {
656 case IIO_INTENSITY:
657 mutex_lock(&data->lock_als);
658 ret = ltr501_read_als(data, buf);
659 mutex_unlock(&data->lock_als);
660 if (ret < 0)
661 break;
662 *val = le16_to_cpu(chan->address == LTR501_ALS_DATA1 ?
663 buf[0] : buf[1]);
664 ret = IIO_VAL_INT;
665 break;
666 case IIO_PROXIMITY:
667 mutex_lock(&data->lock_ps);
668 ret = ltr501_read_ps(data);
669 mutex_unlock(&data->lock_ps);
670 if (ret < 0)
671 break;
672 *val = ret & LTR501_PS_DATA_MASK;
673 ret = IIO_VAL_INT;
674 break;
675 default:
676 ret = -EINVAL;
677 break;
678 }
679
680 iio_device_release_direct_mode(indio_dev);
681 return ret;
682
683 case IIO_CHAN_INFO_SCALE:
684 switch (chan->type) {
685 case IIO_INTENSITY:
686 i = (data->als_contr & data->chip_info->als_gain_mask)
687 >> data->chip_info->als_gain_shift;
688 *val = data->chip_info->als_gain[i].scale;
689 *val2 = data->chip_info->als_gain[i].uscale;
690 return IIO_VAL_INT_PLUS_MICRO;
691 case IIO_PROXIMITY:
692 i = (data->ps_contr & LTR501_CONTR_PS_GAIN_MASK) >>
693 LTR501_CONTR_PS_GAIN_SHIFT;
694 *val = data->chip_info->ps_gain[i].scale;
695 *val2 = data->chip_info->ps_gain[i].uscale;
696 return IIO_VAL_INT_PLUS_MICRO;
697 default:
698 return -EINVAL;
699 }
700 case IIO_CHAN_INFO_INT_TIME:
701 switch (chan->type) {
702 case IIO_INTENSITY:
703 return ltr501_read_it_time(data, val, val2);
704 default:
705 return -EINVAL;
706 }
707 case IIO_CHAN_INFO_SAMP_FREQ:
708 switch (chan->type) {
709 case IIO_INTENSITY:
710 return ltr501_als_read_samp_freq(data, val, val2);
711 case IIO_PROXIMITY:
712 return ltr501_ps_read_samp_freq(data, val, val2);
713 default:
714 return -EINVAL;
715 }
716 }
717 return -EINVAL;
718}
719
720static int ltr501_get_gain_index(const struct ltr501_gain *gain, int size,
721 int val, int val2)
722{
723 int i;
724
725 for (i = 0; i < size; i++)
726 if (val == gain[i].scale && val2 == gain[i].uscale)
727 return i;
728
729 return -1;
730}
731
732static int ltr501_write_raw(struct iio_dev *indio_dev,
733 struct iio_chan_spec const *chan,
734 int val, int val2, long mask)
735{
736 struct ltr501_data *data = iio_priv(indio_dev);
737 int i, ret, freq_val, freq_val2;
738 struct ltr501_chip_info *info = data->chip_info;
739
740 ret = iio_device_claim_direct_mode(indio_dev);
741 if (ret)
742 return ret;
743
744 switch (mask) {
745 case IIO_CHAN_INFO_SCALE:
746 switch (chan->type) {
747 case IIO_INTENSITY:
748 i = ltr501_get_gain_index(info->als_gain,
749 info->als_gain_tbl_size,
750 val, val2);
751 if (i < 0) {
752 ret = -EINVAL;
753 break;
754 }
755
756 data->als_contr &= ~info->als_gain_mask;
757 data->als_contr |= i << info->als_gain_shift;
758
759 ret = regmap_write(data->regmap, LTR501_ALS_CONTR,
760 data->als_contr);
761 break;
762 case IIO_PROXIMITY:
763 i = ltr501_get_gain_index(info->ps_gain,
764 info->ps_gain_tbl_size,
765 val, val2);
766 if (i < 0) {
767 ret = -EINVAL;
768 break;
769 }
770 data->ps_contr &= ~LTR501_CONTR_PS_GAIN_MASK;
771 data->ps_contr |= i << LTR501_CONTR_PS_GAIN_SHIFT;
772
773 ret = regmap_write(data->regmap, LTR501_PS_CONTR,
774 data->ps_contr);
775 break;
776 default:
777 ret = -EINVAL;
778 break;
779 }
780 break;
781
782 case IIO_CHAN_INFO_INT_TIME:
783 switch (chan->type) {
784 case IIO_INTENSITY:
785 if (val != 0) {
786 ret = -EINVAL;
787 break;
788 }
789 mutex_lock(&data->lock_als);
790 ret = ltr501_set_it_time(data, val2);
791 mutex_unlock(&data->lock_als);
792 break;
793 default:
794 ret = -EINVAL;
795 break;
796 }
797 break;
798
799 case IIO_CHAN_INFO_SAMP_FREQ:
800 switch (chan->type) {
801 case IIO_INTENSITY:
802 ret = ltr501_als_read_samp_freq(data, &freq_val,
803 &freq_val2);
804 if (ret < 0)
805 break;
806
807 ret = ltr501_als_write_samp_freq(data, val, val2);
808 if (ret < 0)
809 break;
810
811 /* update persistence count when changing frequency */
812 ret = ltr501_write_intr_prst(data, chan->type,
813 0, data->als_period);
814
815 if (ret < 0)
816 ret = ltr501_als_write_samp_freq(data, freq_val,
817 freq_val2);
818 break;
819 case IIO_PROXIMITY:
820 ret = ltr501_ps_read_samp_freq(data, &freq_val,
821 &freq_val2);
822 if (ret < 0)
823 break;
824
825 ret = ltr501_ps_write_samp_freq(data, val, val2);
826 if (ret < 0)
827 break;
828
829 /* update persistence count when changing frequency */
830 ret = ltr501_write_intr_prst(data, chan->type,
831 0, data->ps_period);
832
833 if (ret < 0)
834 ret = ltr501_ps_write_samp_freq(data, freq_val,
835 freq_val2);
836 break;
837 default:
838 ret = -EINVAL;
839 break;
840 }
841 break;
842
843 default:
844 ret = -EINVAL;
845 break;
846 }
847
848 iio_device_release_direct_mode(indio_dev);
849 return ret;
850}
851
852static int ltr501_read_thresh(const struct iio_dev *indio_dev,
853 const struct iio_chan_spec *chan,
854 enum iio_event_type type,
855 enum iio_event_direction dir,
856 enum iio_event_info info,
857 int *val, int *val2)
858{
859 const struct ltr501_data *data = iio_priv(indio_dev);
860 int ret, thresh_data;
861
862 switch (chan->type) {
863 case IIO_INTENSITY:
864 switch (dir) {
865 case IIO_EV_DIR_RISING:
866 ret = regmap_bulk_read(data->regmap,
867 LTR501_ALS_THRESH_UP,
868 &thresh_data, 2);
869 if (ret < 0)
870 return ret;
871 *val = thresh_data & LTR501_ALS_THRESH_MASK;
872 return IIO_VAL_INT;
873 case IIO_EV_DIR_FALLING:
874 ret = regmap_bulk_read(data->regmap,
875 LTR501_ALS_THRESH_LOW,
876 &thresh_data, 2);
877 if (ret < 0)
878 return ret;
879 *val = thresh_data & LTR501_ALS_THRESH_MASK;
880 return IIO_VAL_INT;
881 default:
882 return -EINVAL;
883 }
884 case IIO_PROXIMITY:
885 switch (dir) {
886 case IIO_EV_DIR_RISING:
887 ret = regmap_bulk_read(data->regmap,
888 LTR501_PS_THRESH_UP,
889 &thresh_data, 2);
890 if (ret < 0)
891 return ret;
892 *val = thresh_data & LTR501_PS_THRESH_MASK;
893 return IIO_VAL_INT;
894 case IIO_EV_DIR_FALLING:
895 ret = regmap_bulk_read(data->regmap,
896 LTR501_PS_THRESH_LOW,
897 &thresh_data, 2);
898 if (ret < 0)
899 return ret;
900 *val = thresh_data & LTR501_PS_THRESH_MASK;
901 return IIO_VAL_INT;
902 default:
903 return -EINVAL;
904 }
905 default:
906 return -EINVAL;
907 }
908
909 return -EINVAL;
910}
911
912static int ltr501_write_thresh(struct iio_dev *indio_dev,
913 const struct iio_chan_spec *chan,
914 enum iio_event_type type,
915 enum iio_event_direction dir,
916 enum iio_event_info info,
917 int val, int val2)
918{
919 struct ltr501_data *data = iio_priv(indio_dev);
920 int ret;
921
922 if (val < 0)
923 return -EINVAL;
924
925 switch (chan->type) {
926 case IIO_INTENSITY:
927 if (val > LTR501_ALS_THRESH_MASK)
928 return -EINVAL;
929 switch (dir) {
930 case IIO_EV_DIR_RISING:
931 mutex_lock(&data->lock_als);
932 ret = regmap_bulk_write(data->regmap,
933 LTR501_ALS_THRESH_UP,
934 &val, 2);
935 mutex_unlock(&data->lock_als);
936 return ret;
937 case IIO_EV_DIR_FALLING:
938 mutex_lock(&data->lock_als);
939 ret = regmap_bulk_write(data->regmap,
940 LTR501_ALS_THRESH_LOW,
941 &val, 2);
942 mutex_unlock(&data->lock_als);
943 return ret;
944 default:
945 return -EINVAL;
946 }
947 case IIO_PROXIMITY:
948 if (val > LTR501_PS_THRESH_MASK)
949 return -EINVAL;
950 switch (dir) {
951 case IIO_EV_DIR_RISING:
952 mutex_lock(&data->lock_ps);
953 ret = regmap_bulk_write(data->regmap,
954 LTR501_PS_THRESH_UP,
955 &val, 2);
956 mutex_unlock(&data->lock_ps);
957 return ret;
958 case IIO_EV_DIR_FALLING:
959 mutex_lock(&data->lock_ps);
960 ret = regmap_bulk_write(data->regmap,
961 LTR501_PS_THRESH_LOW,
962 &val, 2);
963 mutex_unlock(&data->lock_ps);
964 return ret;
965 default:
966 return -EINVAL;
967 }
968 default:
969 return -EINVAL;
970 }
971
972 return -EINVAL;
973}
974
975static int ltr501_read_event(struct iio_dev *indio_dev,
976 const struct iio_chan_spec *chan,
977 enum iio_event_type type,
978 enum iio_event_direction dir,
979 enum iio_event_info info,
980 int *val, int *val2)
981{
982 int ret;
983
984 switch (info) {
985 case IIO_EV_INFO_VALUE:
986 return ltr501_read_thresh(indio_dev, chan, type, dir,
987 info, val, val2);
988 case IIO_EV_INFO_PERIOD:
989 ret = ltr501_read_intr_prst(iio_priv(indio_dev),
990 chan->type, val2);
991 *val = *val2 / 1000000;
992 *val2 = *val2 % 1000000;
993 return ret;
994 default:
995 return -EINVAL;
996 }
997
998 return -EINVAL;
999}
1000
1001static int ltr501_write_event(struct iio_dev *indio_dev,
1002 const struct iio_chan_spec *chan,
1003 enum iio_event_type type,
1004 enum iio_event_direction dir,
1005 enum iio_event_info info,
1006 int val, int val2)
1007{
1008 switch (info) {
1009 case IIO_EV_INFO_VALUE:
1010 if (val2 != 0)
1011 return -EINVAL;
1012 return ltr501_write_thresh(indio_dev, chan, type, dir,
1013 info, val, val2);
1014 case IIO_EV_INFO_PERIOD:
1015 return ltr501_write_intr_prst(iio_priv(indio_dev), chan->type,
1016 val, val2);
1017 default:
1018 return -EINVAL;
1019 }
1020
1021 return -EINVAL;
1022}
1023
1024static int ltr501_read_event_config(struct iio_dev *indio_dev,
1025 const struct iio_chan_spec *chan,
1026 enum iio_event_type type,
1027 enum iio_event_direction dir)
1028{
1029 struct ltr501_data *data = iio_priv(indio_dev);
1030 int ret, status;
1031
1032 switch (chan->type) {
1033 case IIO_INTENSITY:
1034 ret = regmap_field_read(data->reg_als_intr, &status);
1035 if (ret < 0)
1036 return ret;
1037 return status;
1038 case IIO_PROXIMITY:
1039 ret = regmap_field_read(data->reg_ps_intr, &status);
1040 if (ret < 0)
1041 return ret;
1042 return status;
1043 default:
1044 return -EINVAL;
1045 }
1046
1047 return -EINVAL;
1048}
1049
1050static int ltr501_write_event_config(struct iio_dev *indio_dev,
1051 const struct iio_chan_spec *chan,
1052 enum iio_event_type type,
1053 enum iio_event_direction dir, int state)
1054{
1055 struct ltr501_data *data = iio_priv(indio_dev);
1056 int ret;
1057
1058 /* only 1 and 0 are valid inputs */
1059 if (state != 1 && state != 0)
1060 return -EINVAL;
1061
1062 switch (chan->type) {
1063 case IIO_INTENSITY:
1064 mutex_lock(&data->lock_als);
1065 ret = regmap_field_write(data->reg_als_intr, state);
1066 mutex_unlock(&data->lock_als);
1067 return ret;
1068 case IIO_PROXIMITY:
1069 mutex_lock(&data->lock_ps);
1070 ret = regmap_field_write(data->reg_ps_intr, state);
1071 mutex_unlock(&data->lock_ps);
1072 return ret;
1073 default:
1074 return -EINVAL;
1075 }
1076
1077 return -EINVAL;
1078}
1079
1080static ssize_t ltr501_show_proximity_scale_avail(struct device *dev,
1081 struct device_attribute *attr,
1082 char *buf)
1083{
1084 struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev));
1085 struct ltr501_chip_info *info = data->chip_info;
1086 ssize_t len = 0;
1087 int i;
1088
1089 for (i = 0; i < info->ps_gain_tbl_size; i++) {
1090 if (info->ps_gain[i].scale == LTR501_RESERVED_GAIN)
1091 continue;
1092 len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ",
1093 info->ps_gain[i].scale,
1094 info->ps_gain[i].uscale);
1095 }
1096
1097 buf[len - 1] = '\n';
1098
1099 return len;
1100}
1101
1102static ssize_t ltr501_show_intensity_scale_avail(struct device *dev,
1103 struct device_attribute *attr,
1104 char *buf)
1105{
1106 struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev));
1107 struct ltr501_chip_info *info = data->chip_info;
1108 ssize_t len = 0;
1109 int i;
1110
1111 for (i = 0; i < info->als_gain_tbl_size; i++) {
1112 if (info->als_gain[i].scale == LTR501_RESERVED_GAIN)
1113 continue;
1114 len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ",
1115 info->als_gain[i].scale,
1116 info->als_gain[i].uscale);
1117 }
1118
1119 buf[len - 1] = '\n';
1120
1121 return len;
1122}
1123
1124static IIO_CONST_ATTR_INT_TIME_AVAIL("0.05 0.1 0.2 0.4");
1125static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("20 10 5 2 1 0.5");
1126
1127static IIO_DEVICE_ATTR(in_proximity_scale_available, S_IRUGO,
1128 ltr501_show_proximity_scale_avail, NULL, 0);
1129static IIO_DEVICE_ATTR(in_intensity_scale_available, S_IRUGO,
1130 ltr501_show_intensity_scale_avail, NULL, 0);
1131
1132static struct attribute *ltr501_attributes[] = {
1133 &iio_dev_attr_in_proximity_scale_available.dev_attr.attr,
1134 &iio_dev_attr_in_intensity_scale_available.dev_attr.attr,
1135 &iio_const_attr_integration_time_available.dev_attr.attr,
1136 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
1137 NULL
1138};
1139
1140static struct attribute *ltr301_attributes[] = {
1141 &iio_dev_attr_in_intensity_scale_available.dev_attr.attr,
1142 &iio_const_attr_integration_time_available.dev_attr.attr,
1143 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
1144 NULL
1145};
1146
1147static const struct attribute_group ltr501_attribute_group = {
1148 .attrs = ltr501_attributes,
1149};
1150
1151static const struct attribute_group ltr301_attribute_group = {
1152 .attrs = ltr301_attributes,
1153};
1154
1155static const struct iio_info ltr501_info_no_irq = {
1156 .read_raw = ltr501_read_raw,
1157 .write_raw = ltr501_write_raw,
1158 .attrs = <r501_attribute_group,
1159};
1160
1161static const struct iio_info ltr501_info = {
1162 .read_raw = ltr501_read_raw,
1163 .write_raw = ltr501_write_raw,
1164 .attrs = <r501_attribute_group,
1165 .read_event_value = <r501_read_event,
1166 .write_event_value = <r501_write_event,
1167 .read_event_config = <r501_read_event_config,
1168 .write_event_config = <r501_write_event_config,
1169};
1170
1171static const struct iio_info ltr301_info_no_irq = {
1172 .read_raw = ltr501_read_raw,
1173 .write_raw = ltr501_write_raw,
1174 .attrs = <r301_attribute_group,
1175};
1176
1177static const struct iio_info ltr301_info = {
1178 .read_raw = ltr501_read_raw,
1179 .write_raw = ltr501_write_raw,
1180 .attrs = <r301_attribute_group,
1181 .read_event_value = <r501_read_event,
1182 .write_event_value = <r501_write_event,
1183 .read_event_config = <r501_read_event_config,
1184 .write_event_config = <r501_write_event_config,
1185};
1186
1187static struct ltr501_chip_info ltr501_chip_info_tbl[] = {
1188 [ltr501] = {
1189 .partid = 0x08,
1190 .als_gain = ltr501_als_gain_tbl,
1191 .als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl),
1192 .ps_gain = ltr501_ps_gain_tbl,
1193 .ps_gain_tbl_size = ARRAY_SIZE(ltr501_ps_gain_tbl),
1194 .als_mode_active = BIT(0) | BIT(1),
1195 .als_gain_mask = BIT(3),
1196 .als_gain_shift = 3,
1197 .info = <r501_info,
1198 .info_no_irq = <r501_info_no_irq,
1199 .channels = ltr501_channels,
1200 .no_channels = ARRAY_SIZE(ltr501_channels),
1201 },
1202 [ltr559] = {
1203 .partid = 0x09,
1204 .als_gain = ltr559_als_gain_tbl,
1205 .als_gain_tbl_size = ARRAY_SIZE(ltr559_als_gain_tbl),
1206 .ps_gain = ltr559_ps_gain_tbl,
1207 .ps_gain_tbl_size = ARRAY_SIZE(ltr559_ps_gain_tbl),
1208 .als_mode_active = BIT(1),
1209 .als_gain_mask = BIT(2) | BIT(3) | BIT(4),
1210 .als_gain_shift = 2,
1211 .info = <r501_info,
1212 .info_no_irq = <r501_info_no_irq,
1213 .channels = ltr501_channels,
1214 .no_channels = ARRAY_SIZE(ltr501_channels),
1215 },
1216 [ltr301] = {
1217 .partid = 0x08,
1218 .als_gain = ltr501_als_gain_tbl,
1219 .als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl),
1220 .als_mode_active = BIT(0) | BIT(1),
1221 .als_gain_mask = BIT(3),
1222 .als_gain_shift = 3,
1223 .info = <r301_info,
1224 .info_no_irq = <r301_info_no_irq,
1225 .channels = ltr301_channels,
1226 .no_channels = ARRAY_SIZE(ltr301_channels),
1227 },
1228};
1229
1230static int ltr501_write_contr(struct ltr501_data *data, u8 als_val, u8 ps_val)
1231{
1232 int ret;
1233
1234 ret = regmap_write(data->regmap, LTR501_ALS_CONTR, als_val);
1235 if (ret < 0)
1236 return ret;
1237
1238 return regmap_write(data->regmap, LTR501_PS_CONTR, ps_val);
1239}
1240
1241static irqreturn_t ltr501_trigger_handler(int irq, void *p)
1242{
1243 struct iio_poll_func *pf = p;
1244 struct iio_dev *indio_dev = pf->indio_dev;
1245 struct ltr501_data *data = iio_priv(indio_dev);
1246 struct {
1247 u16 channels[3];
1248 s64 ts __aligned(8);
1249 } scan;
1250 __le16 als_buf[2];
1251 u8 mask = 0;
1252 int j = 0;
1253 int ret, psdata;
1254
1255 memset(&scan, 0, sizeof(scan));
1256
1257 /* figure out which data needs to be ready */
1258 if (test_bit(0, indio_dev->active_scan_mask) ||
1259 test_bit(1, indio_dev->active_scan_mask))
1260 mask |= LTR501_STATUS_ALS_RDY;
1261 if (test_bit(2, indio_dev->active_scan_mask))
1262 mask |= LTR501_STATUS_PS_RDY;
1263
1264 ret = ltr501_drdy(data, mask);
1265 if (ret < 0)
1266 goto done;
1267
1268 if (mask & LTR501_STATUS_ALS_RDY) {
1269 ret = regmap_bulk_read(data->regmap, LTR501_ALS_DATA1,
1270 als_buf, sizeof(als_buf));
1271 if (ret < 0)
1272 return ret;
1273 if (test_bit(0, indio_dev->active_scan_mask))
1274 scan.channels[j++] = le16_to_cpu(als_buf[1]);
1275 if (test_bit(1, indio_dev->active_scan_mask))
1276 scan.channels[j++] = le16_to_cpu(als_buf[0]);
1277 }
1278
1279 if (mask & LTR501_STATUS_PS_RDY) {
1280 ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA,
1281 &psdata, 2);
1282 if (ret < 0)
1283 goto done;
1284 scan.channels[j++] = psdata & LTR501_PS_DATA_MASK;
1285 }
1286
1287 iio_push_to_buffers_with_timestamp(indio_dev, &scan,
1288 iio_get_time_ns(indio_dev));
1289
1290done:
1291 iio_trigger_notify_done(indio_dev->trig);
1292
1293 return IRQ_HANDLED;
1294}
1295
1296static irqreturn_t ltr501_interrupt_handler(int irq, void *private)
1297{
1298 struct iio_dev *indio_dev = private;
1299 struct ltr501_data *data = iio_priv(indio_dev);
1300 int ret, status;
1301
1302 ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status);
1303 if (ret < 0) {
1304 dev_err(&data->client->dev,
1305 "irq read int reg failed\n");
1306 return IRQ_HANDLED;
1307 }
1308
1309 if (status & LTR501_STATUS_ALS_INTR)
1310 iio_push_event(indio_dev,
1311 IIO_UNMOD_EVENT_CODE(IIO_INTENSITY, 0,
1312 IIO_EV_TYPE_THRESH,
1313 IIO_EV_DIR_EITHER),
1314 iio_get_time_ns(indio_dev));
1315
1316 if (status & LTR501_STATUS_PS_INTR)
1317 iio_push_event(indio_dev,
1318 IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0,
1319 IIO_EV_TYPE_THRESH,
1320 IIO_EV_DIR_EITHER),
1321 iio_get_time_ns(indio_dev));
1322
1323 return IRQ_HANDLED;
1324}
1325
1326static int ltr501_init(struct ltr501_data *data)
1327{
1328 int ret, status;
1329
1330 ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status);
1331 if (ret < 0)
1332 return ret;
1333
1334 data->als_contr = status | data->chip_info->als_mode_active;
1335
1336 ret = regmap_read(data->regmap, LTR501_PS_CONTR, &status);
1337 if (ret < 0)
1338 return ret;
1339
1340 data->ps_contr = status | LTR501_CONTR_ACTIVE;
1341
1342 ret = ltr501_read_intr_prst(data, IIO_INTENSITY, &data->als_period);
1343 if (ret < 0)
1344 return ret;
1345
1346 ret = ltr501_read_intr_prst(data, IIO_PROXIMITY, &data->ps_period);
1347 if (ret < 0)
1348 return ret;
1349
1350 return ltr501_write_contr(data, data->als_contr, data->ps_contr);
1351}
1352
1353static bool ltr501_is_volatile_reg(struct device *dev, unsigned int reg)
1354{
1355 switch (reg) {
1356 case LTR501_ALS_DATA1:
1357 case LTR501_ALS_DATA0:
1358 case LTR501_ALS_PS_STATUS:
1359 case LTR501_PS_DATA:
1360 return true;
1361 default:
1362 return false;
1363 }
1364}
1365
1366static const struct regmap_config ltr501_regmap_config = {
1367 .name = LTR501_REGMAP_NAME,
1368 .reg_bits = 8,
1369 .val_bits = 8,
1370 .max_register = LTR501_MAX_REG,
1371 .cache_type = REGCACHE_RBTREE,
1372 .volatile_reg = ltr501_is_volatile_reg,
1373};
1374
1375static int ltr501_powerdown(struct ltr501_data *data)
1376{
1377 return ltr501_write_contr(data, data->als_contr &
1378 ~data->chip_info->als_mode_active,
1379 data->ps_contr & ~LTR501_CONTR_ACTIVE);
1380}
1381
1382static const char *ltr501_match_acpi_device(struct device *dev, int *chip_idx)
1383{
1384 const struct acpi_device_id *id;
1385
1386 id = acpi_match_device(dev->driver->acpi_match_table, dev);
1387 if (!id)
1388 return NULL;
1389 *chip_idx = id->driver_data;
1390 return dev_name(dev);
1391}
1392
1393static int ltr501_probe(struct i2c_client *client,
1394 const struct i2c_device_id *id)
1395{
1396 struct ltr501_data *data;
1397 struct iio_dev *indio_dev;
1398 struct regmap *regmap;
1399 int ret, partid, chip_idx = 0;
1400 const char *name = NULL;
1401
1402 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
1403 if (!indio_dev)
1404 return -ENOMEM;
1405
1406 regmap = devm_regmap_init_i2c(client, <r501_regmap_config);
1407 if (IS_ERR(regmap)) {
1408 dev_err(&client->dev, "Regmap initialization failed.\n");
1409 return PTR_ERR(regmap);
1410 }
1411
1412 data = iio_priv(indio_dev);
1413 i2c_set_clientdata(client, indio_dev);
1414 data->client = client;
1415 data->regmap = regmap;
1416 mutex_init(&data->lock_als);
1417 mutex_init(&data->lock_ps);
1418
1419 data->reg_it = devm_regmap_field_alloc(&client->dev, regmap,
1420 reg_field_it);
1421 if (IS_ERR(data->reg_it)) {
1422 dev_err(&client->dev, "Integ time reg field init failed.\n");
1423 return PTR_ERR(data->reg_it);
1424 }
1425
1426 data->reg_als_intr = devm_regmap_field_alloc(&client->dev, regmap,
1427 reg_field_als_intr);
1428 if (IS_ERR(data->reg_als_intr)) {
1429 dev_err(&client->dev, "ALS intr mode reg field init failed\n");
1430 return PTR_ERR(data->reg_als_intr);
1431 }
1432
1433 data->reg_ps_intr = devm_regmap_field_alloc(&client->dev, regmap,
1434 reg_field_ps_intr);
1435 if (IS_ERR(data->reg_ps_intr)) {
1436 dev_err(&client->dev, "PS intr mode reg field init failed.\n");
1437 return PTR_ERR(data->reg_ps_intr);
1438 }
1439
1440 data->reg_als_rate = devm_regmap_field_alloc(&client->dev, regmap,
1441 reg_field_als_rate);
1442 if (IS_ERR(data->reg_als_rate)) {
1443 dev_err(&client->dev, "ALS samp rate field init failed.\n");
1444 return PTR_ERR(data->reg_als_rate);
1445 }
1446
1447 data->reg_ps_rate = devm_regmap_field_alloc(&client->dev, regmap,
1448 reg_field_ps_rate);
1449 if (IS_ERR(data->reg_ps_rate)) {
1450 dev_err(&client->dev, "PS samp rate field init failed.\n");
1451 return PTR_ERR(data->reg_ps_rate);
1452 }
1453
1454 data->reg_als_prst = devm_regmap_field_alloc(&client->dev, regmap,
1455 reg_field_als_prst);
1456 if (IS_ERR(data->reg_als_prst)) {
1457 dev_err(&client->dev, "ALS prst reg field init failed\n");
1458 return PTR_ERR(data->reg_als_prst);
1459 }
1460
1461 data->reg_ps_prst = devm_regmap_field_alloc(&client->dev, regmap,
1462 reg_field_ps_prst);
1463 if (IS_ERR(data->reg_ps_prst)) {
1464 dev_err(&client->dev, "PS prst reg field init failed.\n");
1465 return PTR_ERR(data->reg_ps_prst);
1466 }
1467
1468 ret = regmap_read(data->regmap, LTR501_PART_ID, &partid);
1469 if (ret < 0)
1470 return ret;
1471
1472 if (id) {
1473 name = id->name;
1474 chip_idx = id->driver_data;
1475 } else if (ACPI_HANDLE(&client->dev)) {
1476 name = ltr501_match_acpi_device(&client->dev, &chip_idx);
1477 } else {
1478 return -ENODEV;
1479 }
1480
1481 data->chip_info = <r501_chip_info_tbl[chip_idx];
1482
1483 if ((partid >> 4) != data->chip_info->partid)
1484 return -ENODEV;
1485
1486 indio_dev->info = data->chip_info->info;
1487 indio_dev->channels = data->chip_info->channels;
1488 indio_dev->num_channels = data->chip_info->no_channels;
1489 indio_dev->name = name;
1490 indio_dev->modes = INDIO_DIRECT_MODE;
1491
1492 ret = ltr501_init(data);
1493 if (ret < 0)
1494 return ret;
1495
1496 if (client->irq > 0) {
1497 ret = devm_request_threaded_irq(&client->dev, client->irq,
1498 NULL, ltr501_interrupt_handler,
1499 IRQF_TRIGGER_FALLING |
1500 IRQF_ONESHOT,
1501 "ltr501_thresh_event",
1502 indio_dev);
1503 if (ret) {
1504 dev_err(&client->dev, "request irq (%d) failed\n",
1505 client->irq);
1506 return ret;
1507 }
1508 } else {
1509 indio_dev->info = data->chip_info->info_no_irq;
1510 }
1511
1512 ret = iio_triggered_buffer_setup(indio_dev, NULL,
1513 ltr501_trigger_handler, NULL);
1514 if (ret)
1515 goto powerdown_on_error;
1516
1517 ret = iio_device_register(indio_dev);
1518 if (ret)
1519 goto error_unreg_buffer;
1520
1521 return 0;
1522
1523error_unreg_buffer:
1524 iio_triggered_buffer_cleanup(indio_dev);
1525powerdown_on_error:
1526 ltr501_powerdown(data);
1527 return ret;
1528}
1529
1530static int ltr501_remove(struct i2c_client *client)
1531{
1532 struct iio_dev *indio_dev = i2c_get_clientdata(client);
1533
1534 iio_device_unregister(indio_dev);
1535 iio_triggered_buffer_cleanup(indio_dev);
1536 ltr501_powerdown(iio_priv(indio_dev));
1537
1538 return 0;
1539}
1540
1541#ifdef CONFIG_PM_SLEEP
1542static int ltr501_suspend(struct device *dev)
1543{
1544 struct ltr501_data *data = iio_priv(i2c_get_clientdata(
1545 to_i2c_client(dev)));
1546 return ltr501_powerdown(data);
1547}
1548
1549static int ltr501_resume(struct device *dev)
1550{
1551 struct ltr501_data *data = iio_priv(i2c_get_clientdata(
1552 to_i2c_client(dev)));
1553
1554 return ltr501_write_contr(data, data->als_contr,
1555 data->ps_contr);
1556}
1557#endif
1558
1559static SIMPLE_DEV_PM_OPS(ltr501_pm_ops, ltr501_suspend, ltr501_resume);
1560
1561static const struct acpi_device_id ltr_acpi_match[] = {
1562 {"LTER0501", ltr501},
1563 {"LTER0559", ltr559},
1564 {"LTER0301", ltr301},
1565 { },
1566};
1567MODULE_DEVICE_TABLE(acpi, ltr_acpi_match);
1568
1569static const struct i2c_device_id ltr501_id[] = {
1570 { "ltr501", ltr501},
1571 { "ltr559", ltr559},
1572 { "ltr301", ltr301},
1573 { }
1574};
1575MODULE_DEVICE_TABLE(i2c, ltr501_id);
1576
1577static struct i2c_driver ltr501_driver = {
1578 .driver = {
1579 .name = LTR501_DRV_NAME,
1580 .pm = <r501_pm_ops,
1581 .acpi_match_table = ACPI_PTR(ltr_acpi_match),
1582 },
1583 .probe = ltr501_probe,
1584 .remove = ltr501_remove,
1585 .id_table = ltr501_id,
1586};
1587
1588module_i2c_driver(ltr501_driver);
1589
1590MODULE_AUTHOR("Peter Meerwald <pmeerw@pmeerw.net>");
1591MODULE_DESCRIPTION("Lite-On LTR501 ambient light and proximity sensor driver");
1592MODULE_LICENSE("GPL");