Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2016 Broadcom
   4 */
   5
   6/**
   7 * DOC: VC4 DSI0/DSI1 module
   8 *
   9 * BCM2835 contains two DSI modules, DSI0 and DSI1.  DSI0 is a
  10 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
  11 * controller.
  12 *
  13 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
  14 * while the compute module brings both DSI0 and DSI1 out.
  15 *
  16 * This driver has been tested for DSI1 video-mode display only
  17 * currently, with most of the information necessary for DSI0
  18 * hopefully present.
  19 */
  20
  21#include <linux/clk-provider.h>
  22#include <linux/clk.h>
  23#include <linux/completion.h>
  24#include <linux/component.h>
  25#include <linux/dma-mapping.h>
  26#include <linux/dmaengine.h>
 
  27#include <linux/io.h>
  28#include <linux/of.h>
  29#include <linux/of_address.h>
  30#include <linux/platform_device.h>
  31#include <linux/pm_runtime.h>
  32
  33#include <drm/drm_atomic_helper.h>
  34#include <drm/drm_bridge.h>
  35#include <drm/drm_edid.h>
  36#include <drm/drm_mipi_dsi.h>
  37#include <drm/drm_of.h>
  38#include <drm/drm_panel.h>
  39#include <drm/drm_probe_helper.h>
  40#include <drm/drm_simple_kms_helper.h>
  41
  42#include "vc4_drv.h"
  43#include "vc4_regs.h"
  44
  45#define DSI_CMD_FIFO_DEPTH  16
  46#define DSI_PIX_FIFO_DEPTH 256
  47#define DSI_PIX_FIFO_WIDTH   4
  48
  49#define DSI0_CTRL		0x00
  50
  51/* Command packet control. */
  52#define DSI0_TXPKT1C		0x04 /* AKA PKTC */
  53#define DSI1_TXPKT1C		0x04
  54# define DSI_TXPKT1C_TRIG_CMD_MASK	VC4_MASK(31, 24)
  55# define DSI_TXPKT1C_TRIG_CMD_SHIFT	24
  56# define DSI_TXPKT1C_CMD_REPEAT_MASK	VC4_MASK(23, 10)
  57# define DSI_TXPKT1C_CMD_REPEAT_SHIFT	10
  58
  59# define DSI_TXPKT1C_DISPLAY_NO_MASK	VC4_MASK(9, 8)
  60# define DSI_TXPKT1C_DISPLAY_NO_SHIFT	8
  61/* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
  62# define DSI_TXPKT1C_DISPLAY_NO_SHORT		0
  63/* Primary display where cmdfifo provides part of the payload and
  64 * pixelvalve the rest.
  65 */
  66# define DSI_TXPKT1C_DISPLAY_NO_PRIMARY		1
  67/* Secondary display where cmdfifo provides part of the payload and
  68 * pixfifo the rest.
  69 */
  70# define DSI_TXPKT1C_DISPLAY_NO_SECONDARY	2
  71
  72# define DSI_TXPKT1C_CMD_TX_TIME_MASK	VC4_MASK(7, 6)
  73# define DSI_TXPKT1C_CMD_TX_TIME_SHIFT	6
  74
  75# define DSI_TXPKT1C_CMD_CTRL_MASK	VC4_MASK(5, 4)
  76# define DSI_TXPKT1C_CMD_CTRL_SHIFT	4
  77/* Command only.  Uses TXPKT1H and DISPLAY_NO */
  78# define DSI_TXPKT1C_CMD_CTRL_TX	0
  79/* Command with BTA for either ack or read data. */
  80# define DSI_TXPKT1C_CMD_CTRL_RX	1
  81/* Trigger according to TRIG_CMD */
  82# define DSI_TXPKT1C_CMD_CTRL_TRIG	2
  83/* BTA alone for getting error status after a command, or a TE trigger
  84 * without a previous command.
  85 */
  86# define DSI_TXPKT1C_CMD_CTRL_BTA	3
  87
  88# define DSI_TXPKT1C_CMD_MODE_LP	BIT(3)
  89# define DSI_TXPKT1C_CMD_TYPE_LONG	BIT(2)
  90# define DSI_TXPKT1C_CMD_TE_EN		BIT(1)
  91# define DSI_TXPKT1C_CMD_EN		BIT(0)
  92
  93/* Command packet header. */
  94#define DSI0_TXPKT1H		0x08 /* AKA PKTH */
  95#define DSI1_TXPKT1H		0x08
  96# define DSI_TXPKT1H_BC_CMDFIFO_MASK	VC4_MASK(31, 24)
  97# define DSI_TXPKT1H_BC_CMDFIFO_SHIFT	24
  98# define DSI_TXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
  99# define DSI_TXPKT1H_BC_PARAM_SHIFT	8
 100# define DSI_TXPKT1H_BC_DT_MASK		VC4_MASK(7, 0)
 101# define DSI_TXPKT1H_BC_DT_SHIFT	0
 102
 103#define DSI0_RXPKT1H		0x0c /* AKA RX1_PKTH */
 104#define DSI1_RXPKT1H		0x14
 105# define DSI_RXPKT1H_CRC_ERR		BIT(31)
 106# define DSI_RXPKT1H_DET_ERR		BIT(30)
 107# define DSI_RXPKT1H_ECC_ERR		BIT(29)
 108# define DSI_RXPKT1H_COR_ERR		BIT(28)
 109# define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
 110# define DSI_RXPKT1H_PKT_TYPE_LONG	BIT(24)
 111/* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
 112# define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
 113# define DSI_RXPKT1H_BC_PARAM_SHIFT	8
 114/* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
 115# define DSI_RXPKT1H_SHORT_1_MASK	VC4_MASK(23, 16)
 116# define DSI_RXPKT1H_SHORT_1_SHIFT	16
 117# define DSI_RXPKT1H_SHORT_0_MASK	VC4_MASK(15, 8)
 118# define DSI_RXPKT1H_SHORT_0_SHIFT	8
 119# define DSI_RXPKT1H_DT_LP_CMD_MASK	VC4_MASK(7, 0)
 120# define DSI_RXPKT1H_DT_LP_CMD_SHIFT	0
 121
 122#define DSI0_RXPKT2H		0x10 /* AKA RX2_PKTH */
 123#define DSI1_RXPKT2H		0x18
 124# define DSI_RXPKT1H_DET_ERR		BIT(30)
 125# define DSI_RXPKT1H_ECC_ERR		BIT(29)
 126# define DSI_RXPKT1H_COR_ERR		BIT(28)
 127# define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
 128# define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
 129# define DSI_RXPKT1H_BC_PARAM_SHIFT	8
 130# define DSI_RXPKT1H_DT_MASK		VC4_MASK(7, 0)
 131# define DSI_RXPKT1H_DT_SHIFT		0
 132
 133#define DSI0_TXPKT_CMD_FIFO	0x14 /* AKA CMD_DATAF */
 134#define DSI1_TXPKT_CMD_FIFO	0x1c
 135
 136#define DSI0_DISP0_CTRL		0x18
 137# define DSI_DISP0_PIX_CLK_DIV_MASK	VC4_MASK(21, 13)
 138# define DSI_DISP0_PIX_CLK_DIV_SHIFT	13
 139# define DSI_DISP0_LP_STOP_CTRL_MASK	VC4_MASK(12, 11)
 140# define DSI_DISP0_LP_STOP_CTRL_SHIFT	11
 141# define DSI_DISP0_LP_STOP_DISABLE	0
 142# define DSI_DISP0_LP_STOP_PERLINE	1
 143# define DSI_DISP0_LP_STOP_PERFRAME	2
 144
 145/* Transmit RGB pixels and null packets only during HACTIVE, instead
 146 * of going to LP-STOP.
 147 */
 148# define DSI_DISP_HACTIVE_NULL		BIT(10)
 149/* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
 150# define DSI_DISP_VBLP_CTRL		BIT(9)
 151/* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
 152# define DSI_DISP_HFP_CTRL		BIT(8)
 153/* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
 154# define DSI_DISP_HBP_CTRL		BIT(7)
 155# define DSI_DISP0_CHANNEL_MASK		VC4_MASK(6, 5)
 156# define DSI_DISP0_CHANNEL_SHIFT	5
 157/* Enables end events for HSYNC/VSYNC, not just start events. */
 158# define DSI_DISP0_ST_END		BIT(4)
 159# define DSI_DISP0_PFORMAT_MASK		VC4_MASK(3, 2)
 160# define DSI_DISP0_PFORMAT_SHIFT	2
 161# define DSI_PFORMAT_RGB565		0
 162# define DSI_PFORMAT_RGB666_PACKED	1
 163# define DSI_PFORMAT_RGB666		2
 164# define DSI_PFORMAT_RGB888		3
 165/* Default is VIDEO mode. */
 166# define DSI_DISP0_COMMAND_MODE		BIT(1)
 167# define DSI_DISP0_ENABLE		BIT(0)
 168
 169#define DSI0_DISP1_CTRL		0x1c
 170#define DSI1_DISP1_CTRL		0x2c
 171/* Format of the data written to TXPKT_PIX_FIFO. */
 172# define DSI_DISP1_PFORMAT_MASK		VC4_MASK(2, 1)
 173# define DSI_DISP1_PFORMAT_SHIFT	1
 174# define DSI_DISP1_PFORMAT_16BIT	0
 175# define DSI_DISP1_PFORMAT_24BIT	1
 176# define DSI_DISP1_PFORMAT_32BIT_LE	2
 177# define DSI_DISP1_PFORMAT_32BIT_BE	3
 178
 179/* DISP1 is always command mode. */
 180# define DSI_DISP1_ENABLE		BIT(0)
 181
 182#define DSI0_TXPKT_PIX_FIFO		0x20 /* AKA PIX_FIFO */
 183
 184#define DSI0_INT_STAT			0x24
 185#define DSI0_INT_EN			0x28
 186# define DSI0_INT_FIFO_ERR		BIT(25)
 187# define DSI0_INT_CMDC_DONE_MASK	VC4_MASK(24, 23)
 188# define DSI0_INT_CMDC_DONE_SHIFT	23
 189#  define DSI0_INT_CMDC_DONE_NO_REPEAT		1
 190#  define DSI0_INT_CMDC_DONE_REPEAT		3
 191# define DSI0_INT_PHY_DIR_RTF		BIT(22)
 192# define DSI0_INT_PHY_D1_ULPS		BIT(21)
 193# define DSI0_INT_PHY_D1_STOP		BIT(20)
 194# define DSI0_INT_PHY_RXLPDT		BIT(19)
 195# define DSI0_INT_PHY_RXTRIG		BIT(18)
 196# define DSI0_INT_PHY_D0_ULPS		BIT(17)
 197# define DSI0_INT_PHY_D0_LPDT		BIT(16)
 198# define DSI0_INT_PHY_D0_FTR		BIT(15)
 199# define DSI0_INT_PHY_D0_STOP		BIT(14)
 200/* Signaled when the clock lane enters the given state. */
 201# define DSI0_INT_PHY_CLK_ULPS		BIT(13)
 202# define DSI0_INT_PHY_CLK_HS		BIT(12)
 203# define DSI0_INT_PHY_CLK_FTR		BIT(11)
 204/* Signaled on timeouts */
 205# define DSI0_INT_PR_TO			BIT(10)
 206# define DSI0_INT_TA_TO			BIT(9)
 207# define DSI0_INT_LPRX_TO		BIT(8)
 208# define DSI0_INT_HSTX_TO		BIT(7)
 209/* Contention on a line when trying to drive the line low */
 210# define DSI0_INT_ERR_CONT_LP1		BIT(6)
 211# define DSI0_INT_ERR_CONT_LP0		BIT(5)
 212/* Control error: incorrect line state sequence on data lane 0. */
 213# define DSI0_INT_ERR_CONTROL		BIT(4)
 214# define DSI0_INT_ERR_SYNC_ESC		BIT(3)
 215# define DSI0_INT_RX2_PKT		BIT(2)
 216# define DSI0_INT_RX1_PKT		BIT(1)
 217# define DSI0_INT_CMD_PKT		BIT(0)
 218
 219#define DSI0_INTERRUPTS_ALWAYS_ENABLED	(DSI0_INT_ERR_SYNC_ESC | \
 220					 DSI0_INT_ERR_CONTROL |	 \
 221					 DSI0_INT_ERR_CONT_LP0 | \
 222					 DSI0_INT_ERR_CONT_LP1 | \
 223					 DSI0_INT_HSTX_TO |	 \
 224					 DSI0_INT_LPRX_TO |	 \
 225					 DSI0_INT_TA_TO |	 \
 226					 DSI0_INT_PR_TO)
 227
 228# define DSI1_INT_PHY_D3_ULPS		BIT(30)
 229# define DSI1_INT_PHY_D3_STOP		BIT(29)
 230# define DSI1_INT_PHY_D2_ULPS		BIT(28)
 231# define DSI1_INT_PHY_D2_STOP		BIT(27)
 232# define DSI1_INT_PHY_D1_ULPS		BIT(26)
 233# define DSI1_INT_PHY_D1_STOP		BIT(25)
 234# define DSI1_INT_PHY_D0_ULPS		BIT(24)
 235# define DSI1_INT_PHY_D0_STOP		BIT(23)
 236# define DSI1_INT_FIFO_ERR		BIT(22)
 237# define DSI1_INT_PHY_DIR_RTF		BIT(21)
 238# define DSI1_INT_PHY_RXLPDT		BIT(20)
 239# define DSI1_INT_PHY_RXTRIG		BIT(19)
 240# define DSI1_INT_PHY_D0_LPDT		BIT(18)
 241# define DSI1_INT_PHY_DIR_FTR		BIT(17)
 242
 243/* Signaled when the clock lane enters the given state. */
 244# define DSI1_INT_PHY_CLOCK_ULPS	BIT(16)
 245# define DSI1_INT_PHY_CLOCK_HS		BIT(15)
 246# define DSI1_INT_PHY_CLOCK_STOP	BIT(14)
 247
 248/* Signaled on timeouts */
 249# define DSI1_INT_PR_TO			BIT(13)
 250# define DSI1_INT_TA_TO			BIT(12)
 251# define DSI1_INT_LPRX_TO		BIT(11)
 252# define DSI1_INT_HSTX_TO		BIT(10)
 253
 254/* Contention on a line when trying to drive the line low */
 255# define DSI1_INT_ERR_CONT_LP1		BIT(9)
 256# define DSI1_INT_ERR_CONT_LP0		BIT(8)
 257
 258/* Control error: incorrect line state sequence on data lane 0. */
 259# define DSI1_INT_ERR_CONTROL		BIT(7)
 260/* LPDT synchronization error (bits received not a multiple of 8. */
 261
 262# define DSI1_INT_ERR_SYNC_ESC		BIT(6)
 263/* Signaled after receiving an error packet from the display in
 264 * response to a read.
 265 */
 266# define DSI1_INT_RXPKT2		BIT(5)
 267/* Signaled after receiving a packet.  The header and optional short
 268 * response will be in RXPKT1H, and a long response will be in the
 269 * RXPKT_FIFO.
 270 */
 271# define DSI1_INT_RXPKT1		BIT(4)
 272# define DSI1_INT_TXPKT2_DONE		BIT(3)
 273# define DSI1_INT_TXPKT2_END		BIT(2)
 274/* Signaled after all repeats of TXPKT1 are transferred. */
 275# define DSI1_INT_TXPKT1_DONE		BIT(1)
 276/* Signaled after each TXPKT1 repeat is scheduled. */
 277# define DSI1_INT_TXPKT1_END		BIT(0)
 278
 279#define DSI1_INTERRUPTS_ALWAYS_ENABLED	(DSI1_INT_ERR_SYNC_ESC | \
 280					 DSI1_INT_ERR_CONTROL |	 \
 281					 DSI1_INT_ERR_CONT_LP0 | \
 282					 DSI1_INT_ERR_CONT_LP1 | \
 283					 DSI1_INT_HSTX_TO |	 \
 284					 DSI1_INT_LPRX_TO |	 \
 285					 DSI1_INT_TA_TO |	 \
 286					 DSI1_INT_PR_TO)
 287
 288#define DSI0_STAT		0x2c
 289#define DSI0_HSTX_TO_CNT	0x30
 290#define DSI0_LPRX_TO_CNT	0x34
 291#define DSI0_TA_TO_CNT		0x38
 292#define DSI0_PR_TO_CNT		0x3c
 293#define DSI0_PHYC		0x40
 294# define DSI1_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(25, 20)
 295# define DSI1_PHYC_ESC_CLK_LPDT_SHIFT	20
 296# define DSI1_PHYC_HS_CLK_CONTINUOUS	BIT(18)
 297# define DSI0_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(17, 12)
 298# define DSI0_PHYC_ESC_CLK_LPDT_SHIFT	12
 299# define DSI1_PHYC_CLANE_ULPS		BIT(17)
 300# define DSI1_PHYC_CLANE_ENABLE		BIT(16)
 301# define DSI_PHYC_DLANE3_ULPS		BIT(13)
 302# define DSI_PHYC_DLANE3_ENABLE		BIT(12)
 303# define DSI0_PHYC_HS_CLK_CONTINUOUS	BIT(10)
 304# define DSI0_PHYC_CLANE_ULPS		BIT(9)
 305# define DSI_PHYC_DLANE2_ULPS		BIT(9)
 306# define DSI0_PHYC_CLANE_ENABLE		BIT(8)
 307# define DSI_PHYC_DLANE2_ENABLE		BIT(8)
 308# define DSI_PHYC_DLANE1_ULPS		BIT(5)
 309# define DSI_PHYC_DLANE1_ENABLE		BIT(4)
 310# define DSI_PHYC_DLANE0_FORCE_STOP	BIT(2)
 311# define DSI_PHYC_DLANE0_ULPS		BIT(1)
 312# define DSI_PHYC_DLANE0_ENABLE		BIT(0)
 313
 314#define DSI0_HS_CLT0		0x44
 315#define DSI0_HS_CLT1		0x48
 316#define DSI0_HS_CLT2		0x4c
 317#define DSI0_HS_DLT3		0x50
 318#define DSI0_HS_DLT4		0x54
 319#define DSI0_HS_DLT5		0x58
 320#define DSI0_HS_DLT6		0x5c
 321#define DSI0_HS_DLT7		0x60
 322
 323#define DSI0_PHY_AFEC0		0x64
 324# define DSI0_PHY_AFEC0_DDR2CLK_EN		BIT(26)
 325# define DSI0_PHY_AFEC0_DDRCLK_EN		BIT(25)
 326# define DSI0_PHY_AFEC0_LATCH_ULPS		BIT(24)
 327# define DSI1_PHY_AFEC0_IDR_DLANE3_MASK		VC4_MASK(31, 29)
 328# define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT	29
 329# define DSI1_PHY_AFEC0_IDR_DLANE2_MASK		VC4_MASK(28, 26)
 330# define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT	26
 331# define DSI1_PHY_AFEC0_IDR_DLANE1_MASK		VC4_MASK(27, 23)
 332# define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT	23
 333# define DSI1_PHY_AFEC0_IDR_DLANE0_MASK		VC4_MASK(22, 20)
 334# define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT	20
 335# define DSI1_PHY_AFEC0_IDR_CLANE_MASK		VC4_MASK(19, 17)
 336# define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT		17
 337# define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK	VC4_MASK(23, 20)
 338# define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT	20
 339# define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK	VC4_MASK(19, 16)
 340# define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT	16
 341# define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK	VC4_MASK(15, 12)
 342# define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT	12
 343# define DSI1_PHY_AFEC0_DDR2CLK_EN		BIT(16)
 344# define DSI1_PHY_AFEC0_DDRCLK_EN		BIT(15)
 345# define DSI1_PHY_AFEC0_LATCH_ULPS		BIT(14)
 346# define DSI1_PHY_AFEC0_RESET			BIT(13)
 347# define DSI1_PHY_AFEC0_PD			BIT(12)
 348# define DSI0_PHY_AFEC0_RESET			BIT(11)
 349# define DSI1_PHY_AFEC0_PD_BG			BIT(11)
 350# define DSI0_PHY_AFEC0_PD			BIT(10)
 351# define DSI1_PHY_AFEC0_PD_DLANE1		BIT(10)
 352# define DSI0_PHY_AFEC0_PD_BG			BIT(9)
 353# define DSI1_PHY_AFEC0_PD_DLANE2		BIT(9)
 354# define DSI0_PHY_AFEC0_PD_DLANE1		BIT(8)
 355# define DSI1_PHY_AFEC0_PD_DLANE3		BIT(8)
 356# define DSI_PHY_AFEC0_PTATADJ_MASK		VC4_MASK(7, 4)
 357# define DSI_PHY_AFEC0_PTATADJ_SHIFT		4
 358# define DSI_PHY_AFEC0_CTATADJ_MASK		VC4_MASK(3, 0)
 359# define DSI_PHY_AFEC0_CTATADJ_SHIFT		0
 360
 361#define DSI0_PHY_AFEC1		0x68
 362# define DSI0_PHY_AFEC1_IDR_DLANE1_MASK		VC4_MASK(10, 8)
 363# define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT	8
 364# define DSI0_PHY_AFEC1_IDR_DLANE0_MASK		VC4_MASK(6, 4)
 365# define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT	4
 366# define DSI0_PHY_AFEC1_IDR_CLANE_MASK		VC4_MASK(2, 0)
 367# define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT		0
 368
 369#define DSI0_TST_SEL		0x6c
 370#define DSI0_TST_MON		0x70
 371#define DSI0_ID			0x74
 372# define DSI_ID_VALUE		0x00647369
 373
 374#define DSI1_CTRL		0x00
 375# define DSI_CTRL_HS_CLKC_MASK		VC4_MASK(15, 14)
 376# define DSI_CTRL_HS_CLKC_SHIFT		14
 377# define DSI_CTRL_HS_CLKC_BYTE		0
 378# define DSI_CTRL_HS_CLKC_DDR2		1
 379# define DSI_CTRL_HS_CLKC_DDR		2
 380
 381# define DSI_CTRL_RX_LPDT_EOT_DISABLE	BIT(13)
 382# define DSI_CTRL_LPDT_EOT_DISABLE	BIT(12)
 383# define DSI_CTRL_HSDT_EOT_DISABLE	BIT(11)
 384# define DSI_CTRL_SOFT_RESET_CFG	BIT(10)
 385# define DSI_CTRL_CAL_BYTE		BIT(9)
 386# define DSI_CTRL_INV_BYTE		BIT(8)
 387# define DSI_CTRL_CLR_LDF		BIT(7)
 388# define DSI0_CTRL_CLR_PBCF		BIT(6)
 389# define DSI1_CTRL_CLR_RXF		BIT(6)
 390# define DSI0_CTRL_CLR_CPBCF		BIT(5)
 391# define DSI1_CTRL_CLR_PDF		BIT(5)
 392# define DSI0_CTRL_CLR_PDF		BIT(4)
 393# define DSI1_CTRL_CLR_CDF		BIT(4)
 394# define DSI0_CTRL_CLR_CDF		BIT(3)
 395# define DSI0_CTRL_CTRL2		BIT(2)
 396# define DSI1_CTRL_DISABLE_DISP_CRCC	BIT(2)
 397# define DSI0_CTRL_CTRL1		BIT(1)
 398# define DSI1_CTRL_DISABLE_DISP_ECCC	BIT(1)
 399# define DSI0_CTRL_CTRL0		BIT(0)
 400# define DSI1_CTRL_EN			BIT(0)
 401# define DSI0_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
 402					 DSI0_CTRL_CLR_PBCF | \
 403					 DSI0_CTRL_CLR_CPBCF |	\
 404					 DSI0_CTRL_CLR_PDF | \
 405					 DSI0_CTRL_CLR_CDF)
 406# define DSI1_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
 407					 DSI1_CTRL_CLR_RXF | \
 408					 DSI1_CTRL_CLR_PDF | \
 409					 DSI1_CTRL_CLR_CDF)
 410
 411#define DSI1_TXPKT2C		0x0c
 412#define DSI1_TXPKT2H		0x10
 413#define DSI1_TXPKT_PIX_FIFO	0x20
 414#define DSI1_RXPKT_FIFO		0x24
 415#define DSI1_DISP0_CTRL		0x28
 416#define DSI1_INT_STAT		0x30
 417#define DSI1_INT_EN		0x34
 418/* State reporting bits.  These mostly behave like INT_STAT, where
 419 * writing a 1 clears the bit.
 420 */
 421#define DSI1_STAT		0x38
 422# define DSI1_STAT_PHY_D3_ULPS		BIT(31)
 423# define DSI1_STAT_PHY_D3_STOP		BIT(30)
 424# define DSI1_STAT_PHY_D2_ULPS		BIT(29)
 425# define DSI1_STAT_PHY_D2_STOP		BIT(28)
 426# define DSI1_STAT_PHY_D1_ULPS		BIT(27)
 427# define DSI1_STAT_PHY_D1_STOP		BIT(26)
 428# define DSI1_STAT_PHY_D0_ULPS		BIT(25)
 429# define DSI1_STAT_PHY_D0_STOP		BIT(24)
 430# define DSI1_STAT_FIFO_ERR		BIT(23)
 431# define DSI1_STAT_PHY_RXLPDT		BIT(22)
 432# define DSI1_STAT_PHY_RXTRIG		BIT(21)
 433# define DSI1_STAT_PHY_D0_LPDT		BIT(20)
 434/* Set when in forward direction */
 435# define DSI1_STAT_PHY_DIR		BIT(19)
 436# define DSI1_STAT_PHY_CLOCK_ULPS	BIT(18)
 437# define DSI1_STAT_PHY_CLOCK_HS		BIT(17)
 438# define DSI1_STAT_PHY_CLOCK_STOP	BIT(16)
 439# define DSI1_STAT_PR_TO		BIT(15)
 440# define DSI1_STAT_TA_TO		BIT(14)
 441# define DSI1_STAT_LPRX_TO		BIT(13)
 442# define DSI1_STAT_HSTX_TO		BIT(12)
 443# define DSI1_STAT_ERR_CONT_LP1		BIT(11)
 444# define DSI1_STAT_ERR_CONT_LP0		BIT(10)
 445# define DSI1_STAT_ERR_CONTROL		BIT(9)
 446# define DSI1_STAT_ERR_SYNC_ESC		BIT(8)
 447# define DSI1_STAT_RXPKT2		BIT(7)
 448# define DSI1_STAT_RXPKT1		BIT(6)
 449# define DSI1_STAT_TXPKT2_BUSY		BIT(5)
 450# define DSI1_STAT_TXPKT2_DONE		BIT(4)
 451# define DSI1_STAT_TXPKT2_END		BIT(3)
 452# define DSI1_STAT_TXPKT1_BUSY		BIT(2)
 453# define DSI1_STAT_TXPKT1_DONE		BIT(1)
 454# define DSI1_STAT_TXPKT1_END		BIT(0)
 455
 456#define DSI1_HSTX_TO_CNT	0x3c
 457#define DSI1_LPRX_TO_CNT	0x40
 458#define DSI1_TA_TO_CNT		0x44
 459#define DSI1_PR_TO_CNT		0x48
 460#define DSI1_PHYC		0x4c
 461
 462#define DSI1_HS_CLT0		0x50
 463# define DSI_HS_CLT0_CZERO_MASK		VC4_MASK(26, 18)
 464# define DSI_HS_CLT0_CZERO_SHIFT	18
 465# define DSI_HS_CLT0_CPRE_MASK		VC4_MASK(17, 9)
 466# define DSI_HS_CLT0_CPRE_SHIFT		9
 467# define DSI_HS_CLT0_CPREP_MASK		VC4_MASK(8, 0)
 468# define DSI_HS_CLT0_CPREP_SHIFT	0
 469
 470#define DSI1_HS_CLT1		0x54
 471# define DSI_HS_CLT1_CTRAIL_MASK	VC4_MASK(17, 9)
 472# define DSI_HS_CLT1_CTRAIL_SHIFT	9
 473# define DSI_HS_CLT1_CPOST_MASK		VC4_MASK(8, 0)
 474# define DSI_HS_CLT1_CPOST_SHIFT	0
 475
 476#define DSI1_HS_CLT2		0x58
 477# define DSI_HS_CLT2_WUP_MASK		VC4_MASK(23, 0)
 478# define DSI_HS_CLT2_WUP_SHIFT		0
 479
 480#define DSI1_HS_DLT3		0x5c
 481# define DSI_HS_DLT3_EXIT_MASK		VC4_MASK(26, 18)
 482# define DSI_HS_DLT3_EXIT_SHIFT		18
 483# define DSI_HS_DLT3_ZERO_MASK		VC4_MASK(17, 9)
 484# define DSI_HS_DLT3_ZERO_SHIFT		9
 485# define DSI_HS_DLT3_PRE_MASK		VC4_MASK(8, 0)
 486# define DSI_HS_DLT3_PRE_SHIFT		0
 487
 488#define DSI1_HS_DLT4		0x60
 489# define DSI_HS_DLT4_ANLAT_MASK		VC4_MASK(22, 18)
 490# define DSI_HS_DLT4_ANLAT_SHIFT	18
 491# define DSI_HS_DLT4_TRAIL_MASK		VC4_MASK(17, 9)
 492# define DSI_HS_DLT4_TRAIL_SHIFT	9
 493# define DSI_HS_DLT4_LPX_MASK		VC4_MASK(8, 0)
 494# define DSI_HS_DLT4_LPX_SHIFT		0
 495
 496#define DSI1_HS_DLT5		0x64
 497# define DSI_HS_DLT5_INIT_MASK		VC4_MASK(23, 0)
 498# define DSI_HS_DLT5_INIT_SHIFT		0
 499
 500#define DSI1_HS_DLT6		0x68
 501# define DSI_HS_DLT6_TA_GET_MASK	VC4_MASK(31, 24)
 502# define DSI_HS_DLT6_TA_GET_SHIFT	24
 503# define DSI_HS_DLT6_TA_SURE_MASK	VC4_MASK(23, 16)
 504# define DSI_HS_DLT6_TA_SURE_SHIFT	16
 505# define DSI_HS_DLT6_TA_GO_MASK		VC4_MASK(15, 8)
 506# define DSI_HS_DLT6_TA_GO_SHIFT	8
 507# define DSI_HS_DLT6_LP_LPX_MASK	VC4_MASK(7, 0)
 508# define DSI_HS_DLT6_LP_LPX_SHIFT	0
 509
 510#define DSI1_HS_DLT7		0x6c
 511# define DSI_HS_DLT7_LP_WUP_MASK	VC4_MASK(23, 0)
 512# define DSI_HS_DLT7_LP_WUP_SHIFT	0
 513
 514#define DSI1_PHY_AFEC0		0x70
 515
 516#define DSI1_PHY_AFEC1		0x74
 517# define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK	VC4_MASK(19, 16)
 518# define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT	16
 519# define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK	VC4_MASK(15, 12)
 520# define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT	12
 521# define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK	VC4_MASK(11, 8)
 522# define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT	8
 523# define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK	VC4_MASK(7, 4)
 524# define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT	4
 525# define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK	VC4_MASK(3, 0)
 526# define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT	0
 527
 528#define DSI1_TST_SEL		0x78
 529#define DSI1_TST_MON		0x7c
 530#define DSI1_PHY_TST1		0x80
 531#define DSI1_PHY_TST2		0x84
 532#define DSI1_PHY_FIFO_STAT	0x88
 533/* Actually, all registers in the range that aren't otherwise claimed
 534 * will return the ID.
 535 */
 536#define DSI1_ID			0x8c
 537
 538struct vc4_dsi_variant {
 539	/* Whether we're on bcm2835's DSI0 or DSI1. */
 540	unsigned int port;
 541
 542	bool broken_axi_workaround;
 543
 544	const char *debugfs_name;
 545	const struct debugfs_reg32 *regs;
 546	size_t nregs;
 547
 548};
 549
 550/* General DSI hardware state. */
 551struct vc4_dsi {
 552	struct vc4_encoder encoder;
 553	struct mipi_dsi_host dsi_host;
 554
 555	struct kref kref;
 556
 557	struct platform_device *pdev;
 558
 559	struct drm_bridge *out_bridge;
 560	struct drm_bridge bridge;
 
 
 561
 562	void __iomem *regs;
 563
 564	struct dma_chan *reg_dma_chan;
 565	dma_addr_t reg_dma_paddr;
 566	u32 *reg_dma_mem;
 567	dma_addr_t reg_paddr;
 568
 569	const struct vc4_dsi_variant *variant;
 
 570
 571	/* DSI channel for the panel we're connected to. */
 572	u32 channel;
 573	u32 lanes;
 574	u32 format;
 575	u32 divider;
 576	u32 mode_flags;
 577
 578	/* Input clock from CPRMAN to the digital PHY, for the DSI
 579	 * escape clock.
 580	 */
 581	struct clk *escape_clock;
 582
 583	/* Input clock to the analog PHY, used to generate the DSI bit
 584	 * clock.
 585	 */
 586	struct clk *pll_phy_clock;
 587
 588	/* HS Clocks generated within the DSI analog PHY. */
 589	struct clk_fixed_factor phy_clocks[3];
 590
 591	struct clk_hw_onecell_data *clk_onecell;
 592
 593	/* Pixel clock output to the pixelvalve, generated from the HS
 594	 * clock.
 595	 */
 596	struct clk *pixel_clock;
 597
 598	struct completion xfer_completion;
 599	int xfer_result;
 600
 601	struct debugfs_regset32 regset;
 602};
 603
 604#define host_to_dsi(host)					\
 605	container_of_const(host, struct vc4_dsi, dsi_host)
 606
 607#define to_vc4_dsi(_encoder)					\
 608	container_of_const(_encoder, struct vc4_dsi, encoder.base)
 609
 610#define bridge_to_vc4_dsi(_bridge)				\
 611	container_of_const(_bridge, struct vc4_dsi, bridge)
 612
 613static inline void
 614dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
 615{
 616	struct drm_device *drm = dsi->bridge.dev;
 617	struct dma_chan *chan = dsi->reg_dma_chan;
 618	struct dma_async_tx_descriptor *tx;
 619	dma_cookie_t cookie;
 620	int ret;
 621
 622	kunit_fail_current_test("Accessing a register in a unit test!\n");
 623
 624	/* DSI0 should be able to write normally. */
 625	if (!chan) {
 626		writel(val, dsi->regs + offset);
 627		return;
 628	}
 629
 630	*dsi->reg_dma_mem = val;
 631
 632	tx = chan->device->device_prep_dma_memcpy(chan,
 633						  dsi->reg_paddr + offset,
 634						  dsi->reg_dma_paddr,
 635						  4, 0);
 636	if (!tx) {
 637		drm_err(drm, "Failed to set up DMA register write\n");
 638		return;
 639	}
 640
 641	cookie = tx->tx_submit(tx);
 642	ret = dma_submit_error(cookie);
 643	if (ret) {
 644		drm_err(drm, "Failed to submit DMA: %d\n", ret);
 645		return;
 646	}
 647	ret = dma_sync_wait(chan, cookie);
 648	if (ret)
 649		drm_err(drm, "Failed to wait for DMA: %d\n", ret);
 650}
 651
 652#define DSI_READ(offset)								\
 653	({										\
 654		kunit_fail_current_test("Accessing a register in a unit test!\n");	\
 655		readl(dsi->regs + (offset));						\
 656	})
 657
 658#define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
 659#define DSI_PORT_READ(offset) \
 660	DSI_READ(dsi->variant->port ? DSI1_##offset : DSI0_##offset)
 661#define DSI_PORT_WRITE(offset, val) \
 662	DSI_WRITE(dsi->variant->port ? DSI1_##offset : DSI0_##offset, val)
 663#define DSI_PORT_BIT(bit) (dsi->variant->port ? DSI1_##bit : DSI0_##bit)
 
 
 
 
 
 
 
 
 
 
 
 
 664
 665static const struct debugfs_reg32 dsi0_regs[] = {
 666	VC4_REG32(DSI0_CTRL),
 667	VC4_REG32(DSI0_STAT),
 668	VC4_REG32(DSI0_HSTX_TO_CNT),
 669	VC4_REG32(DSI0_LPRX_TO_CNT),
 670	VC4_REG32(DSI0_TA_TO_CNT),
 671	VC4_REG32(DSI0_PR_TO_CNT),
 672	VC4_REG32(DSI0_DISP0_CTRL),
 673	VC4_REG32(DSI0_DISP1_CTRL),
 674	VC4_REG32(DSI0_INT_STAT),
 675	VC4_REG32(DSI0_INT_EN),
 676	VC4_REG32(DSI0_PHYC),
 677	VC4_REG32(DSI0_HS_CLT0),
 678	VC4_REG32(DSI0_HS_CLT1),
 679	VC4_REG32(DSI0_HS_CLT2),
 680	VC4_REG32(DSI0_HS_DLT3),
 681	VC4_REG32(DSI0_HS_DLT4),
 682	VC4_REG32(DSI0_HS_DLT5),
 683	VC4_REG32(DSI0_HS_DLT6),
 684	VC4_REG32(DSI0_HS_DLT7),
 685	VC4_REG32(DSI0_PHY_AFEC0),
 686	VC4_REG32(DSI0_PHY_AFEC1),
 687	VC4_REG32(DSI0_ID),
 688};
 689
 690static const struct debugfs_reg32 dsi1_regs[] = {
 691	VC4_REG32(DSI1_CTRL),
 692	VC4_REG32(DSI1_STAT),
 693	VC4_REG32(DSI1_HSTX_TO_CNT),
 694	VC4_REG32(DSI1_LPRX_TO_CNT),
 695	VC4_REG32(DSI1_TA_TO_CNT),
 696	VC4_REG32(DSI1_PR_TO_CNT),
 697	VC4_REG32(DSI1_DISP0_CTRL),
 698	VC4_REG32(DSI1_DISP1_CTRL),
 699	VC4_REG32(DSI1_INT_STAT),
 700	VC4_REG32(DSI1_INT_EN),
 701	VC4_REG32(DSI1_PHYC),
 702	VC4_REG32(DSI1_HS_CLT0),
 703	VC4_REG32(DSI1_HS_CLT1),
 704	VC4_REG32(DSI1_HS_CLT2),
 705	VC4_REG32(DSI1_HS_DLT3),
 706	VC4_REG32(DSI1_HS_DLT4),
 707	VC4_REG32(DSI1_HS_DLT5),
 708	VC4_REG32(DSI1_HS_DLT6),
 709	VC4_REG32(DSI1_HS_DLT7),
 710	VC4_REG32(DSI1_PHY_AFEC0),
 711	VC4_REG32(DSI1_PHY_AFEC1),
 712	VC4_REG32(DSI1_ID),
 713};
 714
 715static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
 716{
 717	u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
 718
 719	if (latch)
 720		afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
 721	else
 722		afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
 723
 724	DSI_PORT_WRITE(PHY_AFEC0, afec0);
 725}
 726
 727/* Enters or exits Ultra Low Power State. */
 728static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
 729{
 730	bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
 731	u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
 732			 DSI_PHYC_DLANE0_ULPS |
 733			 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
 734			 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
 735			 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
 736	u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
 737			 DSI1_STAT_PHY_D0_ULPS |
 738			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
 739			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
 740			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
 741	u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
 742			 DSI1_STAT_PHY_D0_STOP |
 743			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
 744			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
 745			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
 746	int ret;
 747	bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) &
 748				       DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS));
 749
 750	if (ulps == ulps_currently_enabled)
 751		return;
 752
 753	DSI_PORT_WRITE(STAT, stat_ulps);
 754	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
 755	ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
 756	if (ret) {
 757		dev_warn(&dsi->pdev->dev,
 758			 "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
 759			 DSI_PORT_READ(STAT));
 760		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
 761		vc4_dsi_latch_ulps(dsi, false);
 762		return;
 763	}
 764
 765	/* The DSI module can't be disabled while the module is
 766	 * generating ULPS state.  So, to be able to disable the
 767	 * module, we have the AFE latch the ULPS state and continue
 768	 * on to having the module enter STOP.
 769	 */
 770	vc4_dsi_latch_ulps(dsi, ulps);
 771
 772	DSI_PORT_WRITE(STAT, stat_stop);
 773	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
 774	ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
 775	if (ret) {
 776		dev_warn(&dsi->pdev->dev,
 777			 "Timeout waiting for DSI STOP entry: STAT 0x%08x",
 778			 DSI_PORT_READ(STAT));
 779		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
 780		return;
 781	}
 782}
 783
 784static u32
 785dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
 786{
 787	/* The HS timings have to be rounded up to a multiple of 8
 788	 * because we're using the byte clock.
 789	 */
 790	return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
 791}
 792
 793/* ESC always runs at 100Mhz. */
 794#define ESC_TIME_NS 10
 795
 796static u32
 797dsi_esc_timing(u32 ns)
 798{
 799	return DIV_ROUND_UP(ns, ESC_TIME_NS);
 800}
 801
 802static void vc4_dsi_bridge_disable(struct drm_bridge *bridge,
 803				   struct drm_bridge_state *state)
 804{
 805	struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge);
 806	u32 disp0_ctrl;
 
 
 807
 808	disp0_ctrl = DSI_PORT_READ(DISP0_CTRL);
 809	disp0_ctrl &= ~DSI_DISP0_ENABLE;
 810	DSI_PORT_WRITE(DISP0_CTRL, disp0_ctrl);
 811}
 812
 813static void vc4_dsi_bridge_post_disable(struct drm_bridge *bridge,
 814					struct drm_bridge_state *state)
 815{
 816	struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge);
 817	struct device *dev = &dsi->pdev->dev;
 
 818
 819	clk_disable_unprepare(dsi->pll_phy_clock);
 820	clk_disable_unprepare(dsi->escape_clock);
 821	clk_disable_unprepare(dsi->pixel_clock);
 822
 823	pm_runtime_put(dev);
 824}
 825
 826/* Extends the mode's blank intervals to handle BCM2835's integer-only
 827 * DSI PLL divider.
 828 *
 829 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
 830 * driver since most peripherals are hanging off of the PLLD_PER
 831 * divider.  PLLD_DSI1, which drives our DSI bit clock (and therefore
 832 * the pixel clock), only has an integer divider off of DSI.
 833 *
 834 * To get our panel mode to refresh at the expected 60Hz, we need to
 835 * extend the horizontal blank time.  This means we drive a
 836 * higher-than-expected clock rate to the panel, but that's what the
 837 * firmware does too.
 838 */
 839static bool vc4_dsi_bridge_mode_fixup(struct drm_bridge *bridge,
 840				      const struct drm_display_mode *mode,
 841				      struct drm_display_mode *adjusted_mode)
 842{
 843	struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge);
 
 844	struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
 845	unsigned long parent_rate = clk_get_rate(phy_parent);
 846	unsigned long pixel_clock_hz = mode->clock * 1000;
 847	unsigned long pll_clock = pixel_clock_hz * dsi->divider;
 848	int divider;
 849
 850	/* Find what divider gets us a faster clock than the requested
 851	 * pixel clock.
 852	 */
 853	for (divider = 1; divider < 255; divider++) {
 854		if (parent_rate / (divider + 1) < pll_clock)
 
 855			break;
 
 856	}
 857
 858	/* Now that we've picked a PLL divider, calculate back to its
 859	 * pixel clock.
 860	 */
 861	pll_clock = parent_rate / divider;
 862	pixel_clock_hz = pll_clock / dsi->divider;
 863
 864	adjusted_mode->clock = pixel_clock_hz / 1000;
 865
 866	/* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
 867	adjusted_mode->htotal = adjusted_mode->clock * mode->htotal /
 868				mode->clock;
 869	adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
 870	adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
 871
 872	return true;
 873}
 874
 875static void vc4_dsi_bridge_pre_enable(struct drm_bridge *bridge,
 876				      struct drm_bridge_state *old_state)
 877{
 878	struct drm_atomic_state *state = old_state->base.state;
 879	struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge);
 880	const struct drm_crtc_state *crtc_state;
 881	struct device *dev = &dsi->pdev->dev;
 882	const struct drm_display_mode *mode;
 883	struct drm_connector *connector;
 884	bool debug_dump_regs = false;
 
 885	unsigned long hs_clock;
 886	struct drm_crtc *crtc;
 887	u32 ui_ns;
 888	/* Minimum LP state duration in escape clock cycles. */
 889	u32 lpx = dsi_esc_timing(60);
 890	unsigned long pixel_clock_hz;
 891	unsigned long dsip_clock;
 892	unsigned long phy_clock;
 893	int ret;
 894
 895	ret = pm_runtime_resume_and_get(dev);
 896	if (ret) {
 897		drm_err(bridge->dev, "Failed to runtime PM enable on DSI%d\n", dsi->variant->port);
 898		return;
 899	}
 900
 901	if (debug_dump_regs) {
 902		struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
 903		dev_info(&dsi->pdev->dev, "DSI regs before:\n");
 904		drm_print_regset32(&p, &dsi->regset);
 905	}
 906
 907	/*
 908	 * Retrieve the CRTC adjusted mode. This requires a little dance to go
 909	 * from the bridge to the encoder, to the connector and to the CRTC.
 910	 */
 911	connector = drm_atomic_get_new_connector_for_encoder(state,
 912							     bridge->encoder);
 913	crtc = drm_atomic_get_new_connector_state(state, connector)->crtc;
 914	crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
 915	mode = &crtc_state->adjusted_mode;
 916
 917	pixel_clock_hz = mode->clock * 1000;
 918
 919	/* Round up the clk_set_rate() request slightly, since
 920	 * PLLD_DSI1 is an integer divider and its rate selection will
 921	 * never round up.
 922	 */
 923	phy_clock = (pixel_clock_hz + 1000) * dsi->divider;
 924	ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
 925	if (ret) {
 926		dev_err(&dsi->pdev->dev,
 927			"Failed to set phy clock to %ld: %d\n", phy_clock, ret);
 928	}
 929
 930	/* Reset the DSI and all its fifos. */
 931	DSI_PORT_WRITE(CTRL,
 932		       DSI_CTRL_SOFT_RESET_CFG |
 933		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
 934
 935	DSI_PORT_WRITE(CTRL,
 936		       DSI_CTRL_HSDT_EOT_DISABLE |
 937		       DSI_CTRL_RX_LPDT_EOT_DISABLE);
 938
 939	/* Clear all stat bits so we see what has happened during enable. */
 940	DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
 941
 942	/* Set AFE CTR00/CTR1 to release powerdown of analog. */
 943	if (dsi->variant->port == 0) {
 944		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
 945			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
 946
 947		if (dsi->lanes < 2)
 948			afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
 949
 950		if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
 951			afec0 |= DSI0_PHY_AFEC0_RESET;
 952
 953		DSI_PORT_WRITE(PHY_AFEC0, afec0);
 954
 955		/* AFEC reset hold time */
 956		mdelay(1);
 957
 958		DSI_PORT_WRITE(PHY_AFEC1,
 959			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE1) |
 960			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE0) |
 961			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_CLANE));
 962	} else {
 963		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
 964			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
 965			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
 966			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
 967			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
 968			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
 969			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
 970
 971		if (dsi->lanes < 4)
 972			afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
 973		if (dsi->lanes < 3)
 974			afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
 975		if (dsi->lanes < 2)
 976			afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
 977
 978		afec0 |= DSI1_PHY_AFEC0_RESET;
 979
 980		DSI_PORT_WRITE(PHY_AFEC0, afec0);
 981
 982		DSI_PORT_WRITE(PHY_AFEC1, 0);
 983
 984		/* AFEC reset hold time */
 985		mdelay(1);
 986	}
 987
 988	ret = clk_prepare_enable(dsi->escape_clock);
 989	if (ret) {
 990		drm_err(bridge->dev, "Failed to turn on DSI escape clock: %d\n",
 991			ret);
 992		return;
 993	}
 994
 995	ret = clk_prepare_enable(dsi->pll_phy_clock);
 996	if (ret) {
 997		drm_err(bridge->dev, "Failed to turn on DSI PLL: %d\n", ret);
 998		return;
 999	}
1000
1001	hs_clock = clk_get_rate(dsi->pll_phy_clock);
1002
1003	/* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
1004	 * not the pixel clock rate.  DSIxP take from the APHY's byte,
1005	 * DDR2, or DDR4 clock (we use byte) and feed into the PV at
1006	 * that rate.  Separately, a value derived from PIX_CLK_DIV
1007	 * and HS_CLKC is fed into the PV to divide down to the actual
1008	 * pixel clock for pushing pixels into DSI.
1009	 */
1010	dsip_clock = phy_clock / 8;
1011	ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
1012	if (ret) {
1013		dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
1014			dsip_clock, ret);
1015	}
1016
1017	ret = clk_prepare_enable(dsi->pixel_clock);
1018	if (ret) {
1019		drm_err(bridge->dev, "Failed to turn on DSI pixel clock: %d\n", ret);
1020		return;
1021	}
1022
1023	/* How many ns one DSI unit interval is.  Note that the clock
1024	 * is DDR, so there's an extra divide by 2.
1025	 */
1026	ui_ns = DIV_ROUND_UP(500000000, hs_clock);
1027
1028	DSI_PORT_WRITE(HS_CLT0,
1029		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
1030				     DSI_HS_CLT0_CZERO) |
1031		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
1032				     DSI_HS_CLT0_CPRE) |
1033		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
1034				     DSI_HS_CLT0_CPREP));
1035
1036	DSI_PORT_WRITE(HS_CLT1,
1037		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
1038				     DSI_HS_CLT1_CTRAIL) |
1039		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
1040				     DSI_HS_CLT1_CPOST));
1041
1042	DSI_PORT_WRITE(HS_CLT2,
1043		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
1044				     DSI_HS_CLT2_WUP));
1045
1046	DSI_PORT_WRITE(HS_DLT3,
1047		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
1048				     DSI_HS_DLT3_EXIT) |
1049		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
1050				     DSI_HS_DLT3_ZERO) |
1051		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
1052				     DSI_HS_DLT3_PRE));
1053
1054	DSI_PORT_WRITE(HS_DLT4,
1055		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
1056				     DSI_HS_DLT4_LPX) |
1057		       VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
1058					 dsi_hs_timing(ui_ns, 60, 4)),
1059				     DSI_HS_DLT4_TRAIL) |
1060		       VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
1061
1062	/* T_INIT is how long STOP is driven after power-up to
1063	 * indicate to the slave (also coming out of power-up) that
1064	 * master init is complete, and should be greater than the
1065	 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE.  The
1066	 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
1067	 * T_INIT,SLAVE, while allowing protocols on top of it to give
1068	 * greater minimums.  The vc4 firmware uses an extremely
1069	 * conservative 5ms, and we maintain that here.
1070	 */
1071	DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
1072							    5 * 1000 * 1000, 0),
1073					      DSI_HS_DLT5_INIT));
1074
1075	DSI_PORT_WRITE(HS_DLT6,
1076		       VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
1077		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
1078		       VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
1079		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
1080
1081	DSI_PORT_WRITE(HS_DLT7,
1082		       VC4_SET_FIELD(dsi_esc_timing(1000000),
1083				     DSI_HS_DLT7_LP_WUP));
1084
1085	DSI_PORT_WRITE(PHYC,
1086		       DSI_PHYC_DLANE0_ENABLE |
1087		       (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
1088		       (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
1089		       (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
1090		       DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
1091		       ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
1092			0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
1093		       (dsi->variant->port == 0 ?
1094			VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
1095			VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
1096
1097	DSI_PORT_WRITE(CTRL,
1098		       DSI_PORT_READ(CTRL) |
1099		       DSI_CTRL_CAL_BYTE);
1100
1101	/* HS timeout in HS clock cycles: disabled. */
1102	DSI_PORT_WRITE(HSTX_TO_CNT, 0);
1103	/* LP receive timeout in HS clocks. */
1104	DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
1105	/* Bus turnaround timeout */
1106	DSI_PORT_WRITE(TA_TO_CNT, 100000);
1107	/* Display reset sequence timeout */
1108	DSI_PORT_WRITE(PR_TO_CNT, 100000);
1109
1110	/* Set up DISP1 for transferring long command payloads through
1111	 * the pixfifo.
1112	 */
1113	DSI_PORT_WRITE(DISP1_CTRL,
1114		       VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
1115				     DSI_DISP1_PFORMAT) |
1116		       DSI_DISP1_ENABLE);
1117
1118	/* Ungate the block. */
1119	if (dsi->variant->port == 0)
1120		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
1121	else
1122		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
1123
1124	/* Bring AFE out of reset. */
1125	DSI_PORT_WRITE(PHY_AFEC0,
1126		       DSI_PORT_READ(PHY_AFEC0) &
1127		       ~DSI_PORT_BIT(PHY_AFEC0_RESET));
 
 
 
1128
1129	vc4_dsi_ulps(dsi, false);
1130
 
 
 
 
 
1131	if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
1132		DSI_PORT_WRITE(DISP0_CTRL,
1133			       VC4_SET_FIELD(dsi->divider,
1134					     DSI_DISP0_PIX_CLK_DIV) |
1135			       VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
1136			       VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
1137					     DSI_DISP0_LP_STOP_CTRL) |
1138			       DSI_DISP0_ST_END);
 
1139	} else {
1140		DSI_PORT_WRITE(DISP0_CTRL,
1141			       DSI_DISP0_COMMAND_MODE);
 
1142	}
1143}
1144
1145static void vc4_dsi_bridge_enable(struct drm_bridge *bridge,
1146				  struct drm_bridge_state *old_state)
1147{
1148	struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge);
1149	bool debug_dump_regs = false;
1150	u32 disp0_ctrl;
1151
1152	disp0_ctrl = DSI_PORT_READ(DISP0_CTRL);
1153	disp0_ctrl |= DSI_DISP0_ENABLE;
1154	DSI_PORT_WRITE(DISP0_CTRL, disp0_ctrl);
 
1155
1156	if (debug_dump_regs) {
1157		struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
1158		dev_info(&dsi->pdev->dev, "DSI regs after:\n");
1159		drm_print_regset32(&p, &dsi->regset);
1160	}
1161}
1162
1163static int vc4_dsi_bridge_attach(struct drm_bridge *bridge,
1164				 enum drm_bridge_attach_flags flags)
1165{
1166	struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge);
1167
1168	/* Attach the panel or bridge to the dsi bridge */
1169	return drm_bridge_attach(bridge->encoder, dsi->out_bridge,
1170				 &dsi->bridge, flags);
1171}
1172
1173static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
1174				     const struct mipi_dsi_msg *msg)
1175{
1176	struct vc4_dsi *dsi = host_to_dsi(host);
1177	struct drm_device *drm = dsi->bridge.dev;
1178	struct mipi_dsi_packet packet;
1179	u32 pkth = 0, pktc = 0;
1180	int i, ret;
1181	bool is_long = mipi_dsi_packet_format_is_long(msg->type);
1182	u32 cmd_fifo_len = 0, pix_fifo_len = 0;
1183
1184	mipi_dsi_create_packet(&packet, msg);
1185
1186	pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
1187	pkth |= VC4_SET_FIELD(packet.header[1] |
1188			      (packet.header[2] << 8),
1189			      DSI_TXPKT1H_BC_PARAM);
1190	if (is_long) {
1191		/* Divide data across the various FIFOs we have available.
1192		 * The command FIFO takes byte-oriented data, but is of
1193		 * limited size. The pixel FIFO (never actually used for
1194		 * pixel data in reality) is word oriented, and substantially
1195		 * larger. So, we use the pixel FIFO for most of the data,
1196		 * sending the residual bytes in the command FIFO at the start.
1197		 *
1198		 * With this arrangement, the command FIFO will never get full.
1199		 */
1200		if (packet.payload_length <= 16) {
1201			cmd_fifo_len = packet.payload_length;
1202			pix_fifo_len = 0;
1203		} else {
1204			cmd_fifo_len = (packet.payload_length %
1205					DSI_PIX_FIFO_WIDTH);
1206			pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
1207					DSI_PIX_FIFO_WIDTH);
1208		}
1209
1210		WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
1211
1212		pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
1213	}
1214
1215	if (msg->rx_len) {
1216		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
1217				      DSI_TXPKT1C_CMD_CTRL);
1218	} else {
1219		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
1220				      DSI_TXPKT1C_CMD_CTRL);
1221	}
1222
1223	for (i = 0; i < cmd_fifo_len; i++)
1224		DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
1225	for (i = 0; i < pix_fifo_len; i++) {
1226		const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
1227
1228		DSI_PORT_WRITE(TXPKT_PIX_FIFO,
1229			       pix[0] |
1230			       pix[1] << 8 |
1231			       pix[2] << 16 |
1232			       pix[3] << 24);
1233	}
1234
1235	if (msg->flags & MIPI_DSI_MSG_USE_LPM)
1236		pktc |= DSI_TXPKT1C_CMD_MODE_LP;
1237	if (is_long)
1238		pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
1239
1240	/* Send one copy of the packet.  Larger repeats are used for pixel
1241	 * data in command mode.
1242	 */
1243	pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
1244
1245	pktc |= DSI_TXPKT1C_CMD_EN;
1246	if (pix_fifo_len) {
1247		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
1248				      DSI_TXPKT1C_DISPLAY_NO);
1249	} else {
1250		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
1251				      DSI_TXPKT1C_DISPLAY_NO);
1252	}
1253
1254	/* Enable the appropriate interrupt for the transfer completion. */
1255	dsi->xfer_result = 0;
1256	reinit_completion(&dsi->xfer_completion);
1257	if (dsi->variant->port == 0) {
1258		DSI_PORT_WRITE(INT_STAT,
1259			       DSI0_INT_CMDC_DONE_MASK | DSI1_INT_PHY_DIR_RTF);
1260		if (msg->rx_len) {
1261			DSI_PORT_WRITE(INT_EN, (DSI0_INTERRUPTS_ALWAYS_ENABLED |
1262						DSI0_INT_PHY_DIR_RTF));
1263		} else {
1264			DSI_PORT_WRITE(INT_EN,
1265				       (DSI0_INTERRUPTS_ALWAYS_ENABLED |
1266					VC4_SET_FIELD(DSI0_INT_CMDC_DONE_NO_REPEAT,
1267						      DSI0_INT_CMDC_DONE)));
1268		}
1269	} else {
1270		DSI_PORT_WRITE(INT_STAT,
1271			       DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
1272		if (msg->rx_len) {
1273			DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1274						DSI1_INT_PHY_DIR_RTF));
1275		} else {
1276			DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1277						DSI1_INT_TXPKT1_DONE));
1278		}
1279	}
1280
1281	/* Send the packet. */
1282	DSI_PORT_WRITE(TXPKT1H, pkth);
1283	DSI_PORT_WRITE(TXPKT1C, pktc);
1284
1285	if (!wait_for_completion_timeout(&dsi->xfer_completion,
1286					 msecs_to_jiffies(1000))) {
1287		dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
1288		dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
1289			DSI_PORT_READ(INT_STAT));
1290		ret = -ETIMEDOUT;
1291	} else {
1292		ret = dsi->xfer_result;
1293	}
1294
1295	DSI_PORT_WRITE(INT_EN, DSI_PORT_BIT(INTERRUPTS_ALWAYS_ENABLED));
1296
1297	if (ret)
1298		goto reset_fifo_and_return;
1299
1300	if (ret == 0 && msg->rx_len) {
1301		u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
1302		u8 *msg_rx = msg->rx_buf;
1303
1304		if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
1305			u32 rxlen = VC4_GET_FIELD(rxpkt1h,
1306						  DSI_RXPKT1H_BC_PARAM);
1307
1308			if (rxlen != msg->rx_len) {
1309				drm_err(drm, "DSI returned %db, expecting %db\n",
1310					rxlen, (int)msg->rx_len);
1311				ret = -ENXIO;
1312				goto reset_fifo_and_return;
1313			}
1314
1315			for (i = 0; i < msg->rx_len; i++)
1316				msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
1317		} else {
1318			/* FINISHME: Handle AWER */
1319
1320			msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
1321						  DSI_RXPKT1H_SHORT_0);
1322			if (msg->rx_len > 1) {
1323				msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
1324							  DSI_RXPKT1H_SHORT_1);
1325			}
1326		}
1327	}
1328
1329	return ret;
1330
1331reset_fifo_and_return:
1332	drm_err(drm, "DSI transfer failed, resetting: %d\n", ret);
1333
1334	DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
1335	udelay(1);
1336	DSI_PORT_WRITE(CTRL,
1337		       DSI_PORT_READ(CTRL) |
1338		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
1339
1340	DSI_PORT_WRITE(TXPKT1C, 0);
1341	DSI_PORT_WRITE(INT_EN, DSI_PORT_BIT(INTERRUPTS_ALWAYS_ENABLED));
1342	return ret;
1343}
1344
1345static const struct component_ops vc4_dsi_ops;
1346static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
1347			       struct mipi_dsi_device *device)
1348{
1349	struct vc4_dsi *dsi = host_to_dsi(host);
1350	int ret;
1351
1352	dsi->lanes = device->lanes;
1353	dsi->channel = device->channel;
1354	dsi->mode_flags = device->mode_flags;
1355
1356	switch (device->format) {
1357	case MIPI_DSI_FMT_RGB888:
1358		dsi->format = DSI_PFORMAT_RGB888;
1359		dsi->divider = 24 / dsi->lanes;
1360		break;
1361	case MIPI_DSI_FMT_RGB666:
1362		dsi->format = DSI_PFORMAT_RGB666;
1363		dsi->divider = 24 / dsi->lanes;
1364		break;
1365	case MIPI_DSI_FMT_RGB666_PACKED:
1366		dsi->format = DSI_PFORMAT_RGB666_PACKED;
1367		dsi->divider = 18 / dsi->lanes;
1368		break;
1369	case MIPI_DSI_FMT_RGB565:
1370		dsi->format = DSI_PFORMAT_RGB565;
1371		dsi->divider = 16 / dsi->lanes;
1372		break;
1373	default:
1374		dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
1375			dsi->format);
1376		return 0;
1377	}
1378
1379	if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1380		dev_err(&dsi->pdev->dev,
1381			"Only VIDEO mode panels supported currently.\n");
1382		return 0;
1383	}
1384
1385	drm_bridge_add(&dsi->bridge);
1386
1387	ret = component_add(&dsi->pdev->dev, &vc4_dsi_ops);
1388	if (ret) {
1389		drm_bridge_remove(&dsi->bridge);
1390		return ret;
1391	}
1392
1393	return 0;
1394}
1395
1396static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
1397			       struct mipi_dsi_device *device)
1398{
1399	struct vc4_dsi *dsi = host_to_dsi(host);
1400
1401	component_del(&dsi->pdev->dev, &vc4_dsi_ops);
1402	drm_bridge_remove(&dsi->bridge);
1403	return 0;
1404}
1405
1406static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
1407	.attach = vc4_dsi_host_attach,
1408	.detach = vc4_dsi_host_detach,
1409	.transfer = vc4_dsi_host_transfer,
1410};
1411
1412static const struct drm_bridge_funcs vc4_dsi_bridge_funcs = {
1413	.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
1414	.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
1415	.atomic_reset = drm_atomic_helper_bridge_reset,
1416	.atomic_pre_enable = vc4_dsi_bridge_pre_enable,
1417	.atomic_enable = vc4_dsi_bridge_enable,
1418	.atomic_disable = vc4_dsi_bridge_disable,
1419	.atomic_post_disable = vc4_dsi_bridge_post_disable,
1420	.attach = vc4_dsi_bridge_attach,
1421	.mode_fixup = vc4_dsi_bridge_mode_fixup,
1422};
1423
1424static int vc4_dsi_late_register(struct drm_encoder *encoder)
1425{
1426	struct drm_device *drm = encoder->dev;
1427	struct vc4_dsi *dsi = to_vc4_dsi(encoder);
1428
1429	vc4_debugfs_add_regset32(drm, dsi->variant->debugfs_name, &dsi->regset);
1430
1431	return 0;
1432}
1433
1434static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = {
1435	.late_register = vc4_dsi_late_register,
1436};
1437
1438static const struct vc4_dsi_variant bcm2711_dsi1_variant = {
1439	.port			= 1,
1440	.debugfs_name		= "dsi1_regs",
1441	.regs			= dsi1_regs,
1442	.nregs			= ARRAY_SIZE(dsi1_regs),
1443};
1444
1445static const struct vc4_dsi_variant bcm2835_dsi0_variant = {
1446	.port			= 0,
1447	.debugfs_name		= "dsi0_regs",
1448	.regs			= dsi0_regs,
1449	.nregs			= ARRAY_SIZE(dsi0_regs),
1450};
1451
1452static const struct vc4_dsi_variant bcm2835_dsi1_variant = {
1453	.port			= 1,
1454	.broken_axi_workaround	= true,
1455	.debugfs_name		= "dsi1_regs",
1456	.regs			= dsi1_regs,
1457	.nregs			= ARRAY_SIZE(dsi1_regs),
1458};
1459
1460static const struct of_device_id vc4_dsi_dt_match[] = {
1461	{ .compatible = "brcm,bcm2711-dsi1", &bcm2711_dsi1_variant },
1462	{ .compatible = "brcm,bcm2835-dsi0", &bcm2835_dsi0_variant },
1463	{ .compatible = "brcm,bcm2835-dsi1", &bcm2835_dsi1_variant },
1464	{}
1465};
1466
1467static void dsi_handle_error(struct vc4_dsi *dsi,
1468			     irqreturn_t *ret, u32 stat, u32 bit,
1469			     const char *type)
1470{
1471	if (!(stat & bit))
1472		return;
1473
1474	drm_err(dsi->bridge.dev, "DSI%d: %s error\n", dsi->variant->port,
1475		type);
1476	*ret = IRQ_HANDLED;
1477}
1478
1479/*
1480 * Initial handler for port 1 where we need the reg_dma workaround.
1481 * The register DMA writes sleep, so we can't do it in the top half.
1482 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
1483 * parent interrupt contrller until our interrupt thread is done.
1484 */
1485static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data)
1486{
1487	struct vc4_dsi *dsi = data;
1488	u32 stat = DSI_PORT_READ(INT_STAT);
1489
1490	if (!stat)
1491		return IRQ_NONE;
1492
1493	return IRQ_WAKE_THREAD;
1494}
1495
1496/*
1497 * Normal IRQ handler for port 0, or the threaded IRQ handler for port
1498 * 1 where we need the reg_dma workaround.
1499 */
1500static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
1501{
1502	struct vc4_dsi *dsi = data;
1503	u32 stat = DSI_PORT_READ(INT_STAT);
1504	irqreturn_t ret = IRQ_NONE;
1505
1506	DSI_PORT_WRITE(INT_STAT, stat);
1507
1508	dsi_handle_error(dsi, &ret, stat,
1509			 DSI_PORT_BIT(INT_ERR_SYNC_ESC), "LPDT sync");
1510	dsi_handle_error(dsi, &ret, stat,
1511			 DSI_PORT_BIT(INT_ERR_CONTROL), "data lane 0 sequence");
1512	dsi_handle_error(dsi, &ret, stat,
1513			 DSI_PORT_BIT(INT_ERR_CONT_LP0), "LP0 contention");
1514	dsi_handle_error(dsi, &ret, stat,
1515			 DSI_PORT_BIT(INT_ERR_CONT_LP1), "LP1 contention");
1516	dsi_handle_error(dsi, &ret, stat,
1517			 DSI_PORT_BIT(INT_HSTX_TO), "HSTX timeout");
1518	dsi_handle_error(dsi, &ret, stat,
1519			 DSI_PORT_BIT(INT_LPRX_TO), "LPRX timeout");
1520	dsi_handle_error(dsi, &ret, stat,
1521			 DSI_PORT_BIT(INT_TA_TO), "turnaround timeout");
1522	dsi_handle_error(dsi, &ret, stat,
1523			 DSI_PORT_BIT(INT_PR_TO), "peripheral reset timeout");
1524
1525	if (stat & ((dsi->variant->port ? DSI1_INT_TXPKT1_DONE :
1526					  DSI0_INT_CMDC_DONE_MASK) |
1527		    DSI_PORT_BIT(INT_PHY_DIR_RTF))) {
1528		complete(&dsi->xfer_completion);
1529		ret = IRQ_HANDLED;
1530	} else if (stat & DSI_PORT_BIT(INT_HSTX_TO)) {
1531		complete(&dsi->xfer_completion);
1532		dsi->xfer_result = -ETIMEDOUT;
1533		ret = IRQ_HANDLED;
1534	}
1535
1536	return ret;
1537}
1538
1539/**
1540 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1541 * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1542 * @dsi: DSI encoder
1543 */
1544static int
1545vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
1546{
1547	struct device *dev = &dsi->pdev->dev;
1548	const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
1549	static const struct {
1550		const char *name;
1551		int div;
1552	} phy_clocks[] = {
1553		{ "byte", 8 },
1554		{ "ddr2", 4 },
1555		{ "ddr", 2 },
1556	};
1557	int i;
1558
1559	dsi->clk_onecell = devm_kzalloc(dev,
1560					sizeof(*dsi->clk_onecell) +
1561					ARRAY_SIZE(phy_clocks) *
1562					sizeof(struct clk_hw *),
1563					GFP_KERNEL);
1564	if (!dsi->clk_onecell)
1565		return -ENOMEM;
1566	dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
1567
1568	for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
1569		struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
1570		struct clk_init_data init;
1571		char clk_name[16];
1572		int ret;
1573
1574		snprintf(clk_name, sizeof(clk_name),
1575			 "dsi%u_%s", dsi->variant->port, phy_clocks[i].name);
1576
1577		/* We just use core fixed factor clock ops for the PHY
1578		 * clocks.  The clocks are actually gated by the
1579		 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1580		 * setting if we use the DDR/DDR2 clocks.  However,
1581		 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1582		 * setting both our parent DSI PLL's rate and this
1583		 * clock's rate, so it knows if DDR/DDR2 are going to
1584		 * be used and could enable the gates itself.
1585		 */
1586		fix->mult = 1;
1587		fix->div = phy_clocks[i].div;
1588		fix->hw.init = &init;
1589
1590		memset(&init, 0, sizeof(init));
1591		init.parent_names = &parent_name;
1592		init.num_parents = 1;
1593		init.name = clk_name;
 
 
 
1594		init.ops = &clk_fixed_factor_ops;
1595
1596		ret = devm_clk_hw_register(dev, &fix->hw);
1597		if (ret)
1598			return ret;
1599
1600		dsi->clk_onecell->hws[i] = &fix->hw;
1601	}
1602
1603	return of_clk_add_hw_provider(dev->of_node,
1604				      of_clk_hw_onecell_get,
1605				      dsi->clk_onecell);
1606}
1607
1608static void vc4_dsi_dma_mem_release(void *ptr)
1609{
1610	struct vc4_dsi *dsi = ptr;
1611	struct device *dev = &dsi->pdev->dev;
1612
1613	dma_free_coherent(dev, 4, dsi->reg_dma_mem, dsi->reg_dma_paddr);
1614	dsi->reg_dma_mem = NULL;
1615}
1616
1617static void vc4_dsi_dma_chan_release(void *ptr)
1618{
1619	struct vc4_dsi *dsi = ptr;
1620
1621	dma_release_channel(dsi->reg_dma_chan);
1622	dsi->reg_dma_chan = NULL;
1623}
1624
1625static void vc4_dsi_release(struct kref *kref)
1626{
1627	struct vc4_dsi *dsi =
1628		container_of(kref, struct vc4_dsi, kref);
1629
1630	kfree(dsi);
1631}
1632
1633static void vc4_dsi_get(struct vc4_dsi *dsi)
1634{
1635	kref_get(&dsi->kref);
1636}
1637
1638static void vc4_dsi_put(struct vc4_dsi *dsi)
1639{
1640	kref_put(&dsi->kref, &vc4_dsi_release);
1641}
1642
1643static void vc4_dsi_release_action(struct drm_device *drm, void *ptr)
1644{
1645	struct vc4_dsi *dsi = ptr;
1646
1647	vc4_dsi_put(dsi);
1648}
1649
1650static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
1651{
1652	struct platform_device *pdev = to_platform_device(dev);
1653	struct drm_device *drm = dev_get_drvdata(master);
 
1654	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1655	struct drm_encoder *encoder = &dsi->encoder.base;
 
 
 
1656	int ret;
1657
1658	vc4_dsi_get(dsi);
 
 
1659
1660	ret = drmm_add_action_or_reset(drm, vc4_dsi_release_action, dsi);
1661	if (ret)
1662		return ret;
1663
1664	dsi->variant = of_device_get_match_data(dev);
 
 
 
1665
1666	dsi->encoder.type = dsi->variant->port ?
1667		VC4_ENCODER_TYPE_DSI1 : VC4_ENCODER_TYPE_DSI0;
 
 
1668
1669	dsi->regs = vc4_ioremap_regs(pdev, 0);
1670	if (IS_ERR(dsi->regs))
1671		return PTR_ERR(dsi->regs);
1672
1673	dsi->regset.base = dsi->regs;
1674	dsi->regset.regs = dsi->variant->regs;
1675	dsi->regset.nregs = dsi->variant->nregs;
 
 
 
 
 
1676
1677	if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
1678		dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
1679			DSI_PORT_READ(ID), DSI_ID_VALUE);
1680		return -ENODEV;
1681	}
1682
1683	/* DSI1 on BCM2835/6/7 has a broken AXI slave that doesn't respond to
1684	 * writes from the ARM.  It does handle writes from the DMA engine,
1685	 * so set up a channel for talking to it.
1686	 */
1687	if (dsi->variant->broken_axi_workaround) {
1688		dma_cap_mask_t dma_mask;
1689
1690		dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
1691						      &dsi->reg_dma_paddr,
1692						      GFP_KERNEL);
1693		if (!dsi->reg_dma_mem) {
1694			drm_err(drm, "Failed to get DMA memory\n");
1695			return -ENOMEM;
1696		}
1697
1698		ret = devm_add_action_or_reset(dev, vc4_dsi_dma_mem_release, dsi);
1699		if (ret)
1700			return ret;
1701
1702		dma_cap_zero(dma_mask);
1703		dma_cap_set(DMA_MEMCPY, dma_mask);
1704
1705		dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
1706		if (IS_ERR(dsi->reg_dma_chan)) {
1707			ret = PTR_ERR(dsi->reg_dma_chan);
1708			if (ret != -EPROBE_DEFER)
1709				drm_err(drm, "Failed to get DMA channel: %d\n",
1710					ret);
1711			return ret;
1712		}
1713
1714		ret = devm_add_action_or_reset(dev, vc4_dsi_dma_chan_release, dsi);
1715		if (ret)
1716			return ret;
1717
1718		/* Get the physical address of the device's registers.  The
1719		 * struct resource for the regs gives us the bus address
1720		 * instead.
1721		 */
1722		dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
1723							     0, NULL, NULL));
1724	}
1725
1726	init_completion(&dsi->xfer_completion);
1727	/* At startup enable error-reporting interrupts and nothing else. */
1728	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1729	/* Clear any existing interrupt state. */
1730	DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
1731
1732	if (dsi->reg_dma_mem)
1733		ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
1734						vc4_dsi_irq_defer_to_thread_handler,
1735						vc4_dsi_irq_handler,
1736						IRQF_ONESHOT,
1737						"vc4 dsi", dsi);
1738	else
1739		ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1740				       vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
1741	if (ret) {
1742		if (ret != -EPROBE_DEFER)
1743			dev_err(dev, "Failed to get interrupt: %d\n", ret);
1744		return ret;
1745	}
1746
1747	dsi->escape_clock = devm_clk_get(dev, "escape");
1748	if (IS_ERR(dsi->escape_clock)) {
1749		ret = PTR_ERR(dsi->escape_clock);
1750		if (ret != -EPROBE_DEFER)
1751			dev_err(dev, "Failed to get escape clock: %d\n", ret);
1752		return ret;
1753	}
1754
1755	dsi->pll_phy_clock = devm_clk_get(dev, "phy");
1756	if (IS_ERR(dsi->pll_phy_clock)) {
1757		ret = PTR_ERR(dsi->pll_phy_clock);
1758		if (ret != -EPROBE_DEFER)
1759			dev_err(dev, "Failed to get phy clock: %d\n", ret);
1760		return ret;
1761	}
1762
1763	dsi->pixel_clock = devm_clk_get(dev, "pixel");
1764	if (IS_ERR(dsi->pixel_clock)) {
1765		ret = PTR_ERR(dsi->pixel_clock);
1766		if (ret != -EPROBE_DEFER)
1767			dev_err(dev, "Failed to get pixel clock: %d\n", ret);
1768		return ret;
1769	}
1770
1771	dsi->out_bridge = drmm_of_get_bridge(drm, dev->of_node, 0, 0);
1772	if (IS_ERR(dsi->out_bridge))
1773		return PTR_ERR(dsi->out_bridge);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1774
1775	/* The esc clock rate is supposed to always be 100Mhz. */
1776	ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
1777	if (ret) {
1778		dev_err(dev, "Failed to set esc clock: %d\n", ret);
1779		return ret;
1780	}
1781
1782	ret = vc4_dsi_init_phy_clocks(dsi);
1783	if (ret)
1784		return ret;
1785
1786	ret = drmm_encoder_init(drm, encoder,
1787				&vc4_dsi_encoder_funcs,
1788				DRM_MODE_ENCODER_DSI,
1789				NULL);
1790	if (ret)
1791		return ret;
1792
1793	ret = devm_pm_runtime_enable(dev);
1794	if (ret)
1795		return ret;
1796
1797	ret = drm_bridge_attach(encoder, &dsi->bridge, NULL, 0);
1798	if (ret)
 
1799		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1800
1801	return 0;
1802}
1803
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1804static const struct component_ops vc4_dsi_ops = {
1805	.bind   = vc4_dsi_bind,
 
1806};
1807
1808static int vc4_dsi_dev_probe(struct platform_device *pdev)
1809{
1810	struct device *dev = &pdev->dev;
1811	struct vc4_dsi *dsi;
 
1812
1813	dsi = kzalloc(sizeof(*dsi), GFP_KERNEL);
1814	if (!dsi)
1815		return -ENOMEM;
1816	dev_set_drvdata(dev, dsi);
1817
1818	kref_init(&dsi->kref);
1819
1820	dsi->pdev = pdev;
1821	dsi->bridge.funcs = &vc4_dsi_bridge_funcs;
1822#ifdef CONFIG_OF
1823	dsi->bridge.of_node = dev->of_node;
1824#endif
1825	dsi->bridge.type = DRM_MODE_CONNECTOR_DSI;
 
 
 
 
 
1826	dsi->dsi_host.ops = &vc4_dsi_host_ops;
1827	dsi->dsi_host.dev = dev;
1828	mipi_dsi_host_register(&dsi->dsi_host);
1829
 
 
 
 
 
 
1830	return 0;
1831}
1832
1833static void vc4_dsi_dev_remove(struct platform_device *pdev)
1834{
1835	struct device *dev = &pdev->dev;
1836	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1837
 
1838	mipi_dsi_host_unregister(&dsi->dsi_host);
1839	vc4_dsi_put(dsi);
 
1840}
1841
1842struct platform_driver vc4_dsi_driver = {
1843	.probe = vc4_dsi_dev_probe,
1844	.remove = vc4_dsi_dev_remove,
1845	.driver = {
1846		.name = "vc4_dsi",
1847		.of_match_table = vc4_dsi_dt_match,
1848	},
1849};
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2016 Broadcom
   4 */
   5
   6/**
   7 * DOC: VC4 DSI0/DSI1 module
   8 *
   9 * BCM2835 contains two DSI modules, DSI0 and DSI1.  DSI0 is a
  10 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
  11 * controller.
  12 *
  13 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
  14 * while the compute module brings both DSI0 and DSI1 out.
  15 *
  16 * This driver has been tested for DSI1 video-mode display only
  17 * currently, with most of the information necessary for DSI0
  18 * hopefully present.
  19 */
  20
  21#include <linux/clk-provider.h>
  22#include <linux/clk.h>
  23#include <linux/completion.h>
  24#include <linux/component.h>
  25#include <linux/dma-mapping.h>
  26#include <linux/dmaengine.h>
  27#include <linux/i2c.h>
  28#include <linux/io.h>
 
  29#include <linux/of_address.h>
  30#include <linux/of_platform.h>
  31#include <linux/pm_runtime.h>
  32
  33#include <drm/drm_atomic_helper.h>
  34#include <drm/drm_bridge.h>
  35#include <drm/drm_edid.h>
  36#include <drm/drm_mipi_dsi.h>
  37#include <drm/drm_of.h>
  38#include <drm/drm_panel.h>
  39#include <drm/drm_probe_helper.h>
  40#include <drm/drm_simple_kms_helper.h>
  41
  42#include "vc4_drv.h"
  43#include "vc4_regs.h"
  44
  45#define DSI_CMD_FIFO_DEPTH  16
  46#define DSI_PIX_FIFO_DEPTH 256
  47#define DSI_PIX_FIFO_WIDTH   4
  48
  49#define DSI0_CTRL		0x00
  50
  51/* Command packet control. */
  52#define DSI0_TXPKT1C		0x04 /* AKA PKTC */
  53#define DSI1_TXPKT1C		0x04
  54# define DSI_TXPKT1C_TRIG_CMD_MASK	VC4_MASK(31, 24)
  55# define DSI_TXPKT1C_TRIG_CMD_SHIFT	24
  56# define DSI_TXPKT1C_CMD_REPEAT_MASK	VC4_MASK(23, 10)
  57# define DSI_TXPKT1C_CMD_REPEAT_SHIFT	10
  58
  59# define DSI_TXPKT1C_DISPLAY_NO_MASK	VC4_MASK(9, 8)
  60# define DSI_TXPKT1C_DISPLAY_NO_SHIFT	8
  61/* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
  62# define DSI_TXPKT1C_DISPLAY_NO_SHORT		0
  63/* Primary display where cmdfifo provides part of the payload and
  64 * pixelvalve the rest.
  65 */
  66# define DSI_TXPKT1C_DISPLAY_NO_PRIMARY		1
  67/* Secondary display where cmdfifo provides part of the payload and
  68 * pixfifo the rest.
  69 */
  70# define DSI_TXPKT1C_DISPLAY_NO_SECONDARY	2
  71
  72# define DSI_TXPKT1C_CMD_TX_TIME_MASK	VC4_MASK(7, 6)
  73# define DSI_TXPKT1C_CMD_TX_TIME_SHIFT	6
  74
  75# define DSI_TXPKT1C_CMD_CTRL_MASK	VC4_MASK(5, 4)
  76# define DSI_TXPKT1C_CMD_CTRL_SHIFT	4
  77/* Command only.  Uses TXPKT1H and DISPLAY_NO */
  78# define DSI_TXPKT1C_CMD_CTRL_TX	0
  79/* Command with BTA for either ack or read data. */
  80# define DSI_TXPKT1C_CMD_CTRL_RX	1
  81/* Trigger according to TRIG_CMD */
  82# define DSI_TXPKT1C_CMD_CTRL_TRIG	2
  83/* BTA alone for getting error status after a command, or a TE trigger
  84 * without a previous command.
  85 */
  86# define DSI_TXPKT1C_CMD_CTRL_BTA	3
  87
  88# define DSI_TXPKT1C_CMD_MODE_LP	BIT(3)
  89# define DSI_TXPKT1C_CMD_TYPE_LONG	BIT(2)
  90# define DSI_TXPKT1C_CMD_TE_EN		BIT(1)
  91# define DSI_TXPKT1C_CMD_EN		BIT(0)
  92
  93/* Command packet header. */
  94#define DSI0_TXPKT1H		0x08 /* AKA PKTH */
  95#define DSI1_TXPKT1H		0x08
  96# define DSI_TXPKT1H_BC_CMDFIFO_MASK	VC4_MASK(31, 24)
  97# define DSI_TXPKT1H_BC_CMDFIFO_SHIFT	24
  98# define DSI_TXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
  99# define DSI_TXPKT1H_BC_PARAM_SHIFT	8
 100# define DSI_TXPKT1H_BC_DT_MASK		VC4_MASK(7, 0)
 101# define DSI_TXPKT1H_BC_DT_SHIFT	0
 102
 103#define DSI0_RXPKT1H		0x0c /* AKA RX1_PKTH */
 104#define DSI1_RXPKT1H		0x14
 105# define DSI_RXPKT1H_CRC_ERR		BIT(31)
 106# define DSI_RXPKT1H_DET_ERR		BIT(30)
 107# define DSI_RXPKT1H_ECC_ERR		BIT(29)
 108# define DSI_RXPKT1H_COR_ERR		BIT(28)
 109# define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
 110# define DSI_RXPKT1H_PKT_TYPE_LONG	BIT(24)
 111/* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
 112# define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
 113# define DSI_RXPKT1H_BC_PARAM_SHIFT	8
 114/* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
 115# define DSI_RXPKT1H_SHORT_1_MASK	VC4_MASK(23, 16)
 116# define DSI_RXPKT1H_SHORT_1_SHIFT	16
 117# define DSI_RXPKT1H_SHORT_0_MASK	VC4_MASK(15, 8)
 118# define DSI_RXPKT1H_SHORT_0_SHIFT	8
 119# define DSI_RXPKT1H_DT_LP_CMD_MASK	VC4_MASK(7, 0)
 120# define DSI_RXPKT1H_DT_LP_CMD_SHIFT	0
 121
 122#define DSI0_RXPKT2H		0x10 /* AKA RX2_PKTH */
 123#define DSI1_RXPKT2H		0x18
 124# define DSI_RXPKT1H_DET_ERR		BIT(30)
 125# define DSI_RXPKT1H_ECC_ERR		BIT(29)
 126# define DSI_RXPKT1H_COR_ERR		BIT(28)
 127# define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
 128# define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
 129# define DSI_RXPKT1H_BC_PARAM_SHIFT	8
 130# define DSI_RXPKT1H_DT_MASK		VC4_MASK(7, 0)
 131# define DSI_RXPKT1H_DT_SHIFT		0
 132
 133#define DSI0_TXPKT_CMD_FIFO	0x14 /* AKA CMD_DATAF */
 134#define DSI1_TXPKT_CMD_FIFO	0x1c
 135
 136#define DSI0_DISP0_CTRL		0x18
 137# define DSI_DISP0_PIX_CLK_DIV_MASK	VC4_MASK(21, 13)
 138# define DSI_DISP0_PIX_CLK_DIV_SHIFT	13
 139# define DSI_DISP0_LP_STOP_CTRL_MASK	VC4_MASK(12, 11)
 140# define DSI_DISP0_LP_STOP_CTRL_SHIFT	11
 141# define DSI_DISP0_LP_STOP_DISABLE	0
 142# define DSI_DISP0_LP_STOP_PERLINE	1
 143# define DSI_DISP0_LP_STOP_PERFRAME	2
 144
 145/* Transmit RGB pixels and null packets only during HACTIVE, instead
 146 * of going to LP-STOP.
 147 */
 148# define DSI_DISP_HACTIVE_NULL		BIT(10)
 149/* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
 150# define DSI_DISP_VBLP_CTRL		BIT(9)
 151/* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
 152# define DSI_DISP_HFP_CTRL		BIT(8)
 153/* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
 154# define DSI_DISP_HBP_CTRL		BIT(7)
 155# define DSI_DISP0_CHANNEL_MASK		VC4_MASK(6, 5)
 156# define DSI_DISP0_CHANNEL_SHIFT	5
 157/* Enables end events for HSYNC/VSYNC, not just start events. */
 158# define DSI_DISP0_ST_END		BIT(4)
 159# define DSI_DISP0_PFORMAT_MASK		VC4_MASK(3, 2)
 160# define DSI_DISP0_PFORMAT_SHIFT	2
 161# define DSI_PFORMAT_RGB565		0
 162# define DSI_PFORMAT_RGB666_PACKED	1
 163# define DSI_PFORMAT_RGB666		2
 164# define DSI_PFORMAT_RGB888		3
 165/* Default is VIDEO mode. */
 166# define DSI_DISP0_COMMAND_MODE		BIT(1)
 167# define DSI_DISP0_ENABLE		BIT(0)
 168
 169#define DSI0_DISP1_CTRL		0x1c
 170#define DSI1_DISP1_CTRL		0x2c
 171/* Format of the data written to TXPKT_PIX_FIFO. */
 172# define DSI_DISP1_PFORMAT_MASK		VC4_MASK(2, 1)
 173# define DSI_DISP1_PFORMAT_SHIFT	1
 174# define DSI_DISP1_PFORMAT_16BIT	0
 175# define DSI_DISP1_PFORMAT_24BIT	1
 176# define DSI_DISP1_PFORMAT_32BIT_LE	2
 177# define DSI_DISP1_PFORMAT_32BIT_BE	3
 178
 179/* DISP1 is always command mode. */
 180# define DSI_DISP1_ENABLE		BIT(0)
 181
 182#define DSI0_TXPKT_PIX_FIFO		0x20 /* AKA PIX_FIFO */
 183
 184#define DSI0_INT_STAT		0x24
 185#define DSI0_INT_EN		0x28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 186# define DSI1_INT_PHY_D3_ULPS		BIT(30)
 187# define DSI1_INT_PHY_D3_STOP		BIT(29)
 188# define DSI1_INT_PHY_D2_ULPS		BIT(28)
 189# define DSI1_INT_PHY_D2_STOP		BIT(27)
 190# define DSI1_INT_PHY_D1_ULPS		BIT(26)
 191# define DSI1_INT_PHY_D1_STOP		BIT(25)
 192# define DSI1_INT_PHY_D0_ULPS		BIT(24)
 193# define DSI1_INT_PHY_D0_STOP		BIT(23)
 194# define DSI1_INT_FIFO_ERR		BIT(22)
 195# define DSI1_INT_PHY_DIR_RTF		BIT(21)
 196# define DSI1_INT_PHY_RXLPDT		BIT(20)
 197# define DSI1_INT_PHY_RXTRIG		BIT(19)
 198# define DSI1_INT_PHY_D0_LPDT		BIT(18)
 199# define DSI1_INT_PHY_DIR_FTR		BIT(17)
 200
 201/* Signaled when the clock lane enters the given state. */
 202# define DSI1_INT_PHY_CLOCK_ULPS	BIT(16)
 203# define DSI1_INT_PHY_CLOCK_HS		BIT(15)
 204# define DSI1_INT_PHY_CLOCK_STOP	BIT(14)
 205
 206/* Signaled on timeouts */
 207# define DSI1_INT_PR_TO			BIT(13)
 208# define DSI1_INT_TA_TO			BIT(12)
 209# define DSI1_INT_LPRX_TO		BIT(11)
 210# define DSI1_INT_HSTX_TO		BIT(10)
 211
 212/* Contention on a line when trying to drive the line low */
 213# define DSI1_INT_ERR_CONT_LP1		BIT(9)
 214# define DSI1_INT_ERR_CONT_LP0		BIT(8)
 215
 216/* Control error: incorrect line state sequence on data lane 0. */
 217# define DSI1_INT_ERR_CONTROL		BIT(7)
 218/* LPDT synchronization error (bits received not a multiple of 8. */
 219
 220# define DSI1_INT_ERR_SYNC_ESC		BIT(6)
 221/* Signaled after receiving an error packet from the display in
 222 * response to a read.
 223 */
 224# define DSI1_INT_RXPKT2		BIT(5)
 225/* Signaled after receiving a packet.  The header and optional short
 226 * response will be in RXPKT1H, and a long response will be in the
 227 * RXPKT_FIFO.
 228 */
 229# define DSI1_INT_RXPKT1		BIT(4)
 230# define DSI1_INT_TXPKT2_DONE		BIT(3)
 231# define DSI1_INT_TXPKT2_END		BIT(2)
 232/* Signaled after all repeats of TXPKT1 are transferred. */
 233# define DSI1_INT_TXPKT1_DONE		BIT(1)
 234/* Signaled after each TXPKT1 repeat is scheduled. */
 235# define DSI1_INT_TXPKT1_END		BIT(0)
 236
 237#define DSI1_INTERRUPTS_ALWAYS_ENABLED	(DSI1_INT_ERR_SYNC_ESC | \
 238					 DSI1_INT_ERR_CONTROL |	 \
 239					 DSI1_INT_ERR_CONT_LP0 | \
 240					 DSI1_INT_ERR_CONT_LP1 | \
 241					 DSI1_INT_HSTX_TO |	 \
 242					 DSI1_INT_LPRX_TO |	 \
 243					 DSI1_INT_TA_TO |	 \
 244					 DSI1_INT_PR_TO)
 245
 246#define DSI0_STAT		0x2c
 247#define DSI0_HSTX_TO_CNT	0x30
 248#define DSI0_LPRX_TO_CNT	0x34
 249#define DSI0_TA_TO_CNT		0x38
 250#define DSI0_PR_TO_CNT		0x3c
 251#define DSI0_PHYC		0x40
 252# define DSI1_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(25, 20)
 253# define DSI1_PHYC_ESC_CLK_LPDT_SHIFT	20
 254# define DSI1_PHYC_HS_CLK_CONTINUOUS	BIT(18)
 255# define DSI0_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(17, 12)
 256# define DSI0_PHYC_ESC_CLK_LPDT_SHIFT	12
 257# define DSI1_PHYC_CLANE_ULPS		BIT(17)
 258# define DSI1_PHYC_CLANE_ENABLE		BIT(16)
 259# define DSI_PHYC_DLANE3_ULPS		BIT(13)
 260# define DSI_PHYC_DLANE3_ENABLE		BIT(12)
 261# define DSI0_PHYC_HS_CLK_CONTINUOUS	BIT(10)
 262# define DSI0_PHYC_CLANE_ULPS		BIT(9)
 263# define DSI_PHYC_DLANE2_ULPS		BIT(9)
 264# define DSI0_PHYC_CLANE_ENABLE		BIT(8)
 265# define DSI_PHYC_DLANE2_ENABLE		BIT(8)
 266# define DSI_PHYC_DLANE1_ULPS		BIT(5)
 267# define DSI_PHYC_DLANE1_ENABLE		BIT(4)
 268# define DSI_PHYC_DLANE0_FORCE_STOP	BIT(2)
 269# define DSI_PHYC_DLANE0_ULPS		BIT(1)
 270# define DSI_PHYC_DLANE0_ENABLE		BIT(0)
 271
 272#define DSI0_HS_CLT0		0x44
 273#define DSI0_HS_CLT1		0x48
 274#define DSI0_HS_CLT2		0x4c
 275#define DSI0_HS_DLT3		0x50
 276#define DSI0_HS_DLT4		0x54
 277#define DSI0_HS_DLT5		0x58
 278#define DSI0_HS_DLT6		0x5c
 279#define DSI0_HS_DLT7		0x60
 280
 281#define DSI0_PHY_AFEC0		0x64
 282# define DSI0_PHY_AFEC0_DDR2CLK_EN		BIT(26)
 283# define DSI0_PHY_AFEC0_DDRCLK_EN		BIT(25)
 284# define DSI0_PHY_AFEC0_LATCH_ULPS		BIT(24)
 285# define DSI1_PHY_AFEC0_IDR_DLANE3_MASK		VC4_MASK(31, 29)
 286# define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT	29
 287# define DSI1_PHY_AFEC0_IDR_DLANE2_MASK		VC4_MASK(28, 26)
 288# define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT	26
 289# define DSI1_PHY_AFEC0_IDR_DLANE1_MASK		VC4_MASK(27, 23)
 290# define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT	23
 291# define DSI1_PHY_AFEC0_IDR_DLANE0_MASK		VC4_MASK(22, 20)
 292# define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT	20
 293# define DSI1_PHY_AFEC0_IDR_CLANE_MASK		VC4_MASK(19, 17)
 294# define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT		17
 295# define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK	VC4_MASK(23, 20)
 296# define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT	20
 297# define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK	VC4_MASK(19, 16)
 298# define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT	16
 299# define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK	VC4_MASK(15, 12)
 300# define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT	12
 301# define DSI1_PHY_AFEC0_DDR2CLK_EN		BIT(16)
 302# define DSI1_PHY_AFEC0_DDRCLK_EN		BIT(15)
 303# define DSI1_PHY_AFEC0_LATCH_ULPS		BIT(14)
 304# define DSI1_PHY_AFEC0_RESET			BIT(13)
 305# define DSI1_PHY_AFEC0_PD			BIT(12)
 306# define DSI0_PHY_AFEC0_RESET			BIT(11)
 307# define DSI1_PHY_AFEC0_PD_BG			BIT(11)
 308# define DSI0_PHY_AFEC0_PD			BIT(10)
 309# define DSI1_PHY_AFEC0_PD_DLANE3		BIT(10)
 310# define DSI0_PHY_AFEC0_PD_BG			BIT(9)
 311# define DSI1_PHY_AFEC0_PD_DLANE2		BIT(9)
 312# define DSI0_PHY_AFEC0_PD_DLANE1		BIT(8)
 313# define DSI1_PHY_AFEC0_PD_DLANE1		BIT(8)
 314# define DSI_PHY_AFEC0_PTATADJ_MASK		VC4_MASK(7, 4)
 315# define DSI_PHY_AFEC0_PTATADJ_SHIFT		4
 316# define DSI_PHY_AFEC0_CTATADJ_MASK		VC4_MASK(3, 0)
 317# define DSI_PHY_AFEC0_CTATADJ_SHIFT		0
 318
 319#define DSI0_PHY_AFEC1		0x68
 320# define DSI0_PHY_AFEC1_IDR_DLANE1_MASK		VC4_MASK(10, 8)
 321# define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT	8
 322# define DSI0_PHY_AFEC1_IDR_DLANE0_MASK		VC4_MASK(6, 4)
 323# define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT	4
 324# define DSI0_PHY_AFEC1_IDR_CLANE_MASK		VC4_MASK(2, 0)
 325# define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT		0
 326
 327#define DSI0_TST_SEL		0x6c
 328#define DSI0_TST_MON		0x70
 329#define DSI0_ID			0x74
 330# define DSI_ID_VALUE		0x00647369
 331
 332#define DSI1_CTRL		0x00
 333# define DSI_CTRL_HS_CLKC_MASK		VC4_MASK(15, 14)
 334# define DSI_CTRL_HS_CLKC_SHIFT		14
 335# define DSI_CTRL_HS_CLKC_BYTE		0
 336# define DSI_CTRL_HS_CLKC_DDR2		1
 337# define DSI_CTRL_HS_CLKC_DDR		2
 338
 339# define DSI_CTRL_RX_LPDT_EOT_DISABLE	BIT(13)
 340# define DSI_CTRL_LPDT_EOT_DISABLE	BIT(12)
 341# define DSI_CTRL_HSDT_EOT_DISABLE	BIT(11)
 342# define DSI_CTRL_SOFT_RESET_CFG	BIT(10)
 343# define DSI_CTRL_CAL_BYTE		BIT(9)
 344# define DSI_CTRL_INV_BYTE		BIT(8)
 345# define DSI_CTRL_CLR_LDF		BIT(7)
 346# define DSI0_CTRL_CLR_PBCF		BIT(6)
 347# define DSI1_CTRL_CLR_RXF		BIT(6)
 348# define DSI0_CTRL_CLR_CPBCF		BIT(5)
 349# define DSI1_CTRL_CLR_PDF		BIT(5)
 350# define DSI0_CTRL_CLR_PDF		BIT(4)
 351# define DSI1_CTRL_CLR_CDF		BIT(4)
 352# define DSI0_CTRL_CLR_CDF		BIT(3)
 353# define DSI0_CTRL_CTRL2		BIT(2)
 354# define DSI1_CTRL_DISABLE_DISP_CRCC	BIT(2)
 355# define DSI0_CTRL_CTRL1		BIT(1)
 356# define DSI1_CTRL_DISABLE_DISP_ECCC	BIT(1)
 357# define DSI0_CTRL_CTRL0		BIT(0)
 358# define DSI1_CTRL_EN			BIT(0)
 359# define DSI0_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
 360					 DSI0_CTRL_CLR_PBCF | \
 361					 DSI0_CTRL_CLR_CPBCF |	\
 362					 DSI0_CTRL_CLR_PDF | \
 363					 DSI0_CTRL_CLR_CDF)
 364# define DSI1_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
 365					 DSI1_CTRL_CLR_RXF | \
 366					 DSI1_CTRL_CLR_PDF | \
 367					 DSI1_CTRL_CLR_CDF)
 368
 369#define DSI1_TXPKT2C		0x0c
 370#define DSI1_TXPKT2H		0x10
 371#define DSI1_TXPKT_PIX_FIFO	0x20
 372#define DSI1_RXPKT_FIFO		0x24
 373#define DSI1_DISP0_CTRL		0x28
 374#define DSI1_INT_STAT		0x30
 375#define DSI1_INT_EN		0x34
 376/* State reporting bits.  These mostly behave like INT_STAT, where
 377 * writing a 1 clears the bit.
 378 */
 379#define DSI1_STAT		0x38
 380# define DSI1_STAT_PHY_D3_ULPS		BIT(31)
 381# define DSI1_STAT_PHY_D3_STOP		BIT(30)
 382# define DSI1_STAT_PHY_D2_ULPS		BIT(29)
 383# define DSI1_STAT_PHY_D2_STOP		BIT(28)
 384# define DSI1_STAT_PHY_D1_ULPS		BIT(27)
 385# define DSI1_STAT_PHY_D1_STOP		BIT(26)
 386# define DSI1_STAT_PHY_D0_ULPS		BIT(25)
 387# define DSI1_STAT_PHY_D0_STOP		BIT(24)
 388# define DSI1_STAT_FIFO_ERR		BIT(23)
 389# define DSI1_STAT_PHY_RXLPDT		BIT(22)
 390# define DSI1_STAT_PHY_RXTRIG		BIT(21)
 391# define DSI1_STAT_PHY_D0_LPDT		BIT(20)
 392/* Set when in forward direction */
 393# define DSI1_STAT_PHY_DIR		BIT(19)
 394# define DSI1_STAT_PHY_CLOCK_ULPS	BIT(18)
 395# define DSI1_STAT_PHY_CLOCK_HS		BIT(17)
 396# define DSI1_STAT_PHY_CLOCK_STOP	BIT(16)
 397# define DSI1_STAT_PR_TO		BIT(15)
 398# define DSI1_STAT_TA_TO		BIT(14)
 399# define DSI1_STAT_LPRX_TO		BIT(13)
 400# define DSI1_STAT_HSTX_TO		BIT(12)
 401# define DSI1_STAT_ERR_CONT_LP1		BIT(11)
 402# define DSI1_STAT_ERR_CONT_LP0		BIT(10)
 403# define DSI1_STAT_ERR_CONTROL		BIT(9)
 404# define DSI1_STAT_ERR_SYNC_ESC		BIT(8)
 405# define DSI1_STAT_RXPKT2		BIT(7)
 406# define DSI1_STAT_RXPKT1		BIT(6)
 407# define DSI1_STAT_TXPKT2_BUSY		BIT(5)
 408# define DSI1_STAT_TXPKT2_DONE		BIT(4)
 409# define DSI1_STAT_TXPKT2_END		BIT(3)
 410# define DSI1_STAT_TXPKT1_BUSY		BIT(2)
 411# define DSI1_STAT_TXPKT1_DONE		BIT(1)
 412# define DSI1_STAT_TXPKT1_END		BIT(0)
 413
 414#define DSI1_HSTX_TO_CNT	0x3c
 415#define DSI1_LPRX_TO_CNT	0x40
 416#define DSI1_TA_TO_CNT		0x44
 417#define DSI1_PR_TO_CNT		0x48
 418#define DSI1_PHYC		0x4c
 419
 420#define DSI1_HS_CLT0		0x50
 421# define DSI_HS_CLT0_CZERO_MASK		VC4_MASK(26, 18)
 422# define DSI_HS_CLT0_CZERO_SHIFT	18
 423# define DSI_HS_CLT0_CPRE_MASK		VC4_MASK(17, 9)
 424# define DSI_HS_CLT0_CPRE_SHIFT		9
 425# define DSI_HS_CLT0_CPREP_MASK		VC4_MASK(8, 0)
 426# define DSI_HS_CLT0_CPREP_SHIFT	0
 427
 428#define DSI1_HS_CLT1		0x54
 429# define DSI_HS_CLT1_CTRAIL_MASK	VC4_MASK(17, 9)
 430# define DSI_HS_CLT1_CTRAIL_SHIFT	9
 431# define DSI_HS_CLT1_CPOST_MASK		VC4_MASK(8, 0)
 432# define DSI_HS_CLT1_CPOST_SHIFT	0
 433
 434#define DSI1_HS_CLT2		0x58
 435# define DSI_HS_CLT2_WUP_MASK		VC4_MASK(23, 0)
 436# define DSI_HS_CLT2_WUP_SHIFT		0
 437
 438#define DSI1_HS_DLT3		0x5c
 439# define DSI_HS_DLT3_EXIT_MASK		VC4_MASK(26, 18)
 440# define DSI_HS_DLT3_EXIT_SHIFT		18
 441# define DSI_HS_DLT3_ZERO_MASK		VC4_MASK(17, 9)
 442# define DSI_HS_DLT3_ZERO_SHIFT		9
 443# define DSI_HS_DLT3_PRE_MASK		VC4_MASK(8, 0)
 444# define DSI_HS_DLT3_PRE_SHIFT		0
 445
 446#define DSI1_HS_DLT4		0x60
 447# define DSI_HS_DLT4_ANLAT_MASK		VC4_MASK(22, 18)
 448# define DSI_HS_DLT4_ANLAT_SHIFT	18
 449# define DSI_HS_DLT4_TRAIL_MASK		VC4_MASK(17, 9)
 450# define DSI_HS_DLT4_TRAIL_SHIFT	9
 451# define DSI_HS_DLT4_LPX_MASK		VC4_MASK(8, 0)
 452# define DSI_HS_DLT4_LPX_SHIFT		0
 453
 454#define DSI1_HS_DLT5		0x64
 455# define DSI_HS_DLT5_INIT_MASK		VC4_MASK(23, 0)
 456# define DSI_HS_DLT5_INIT_SHIFT		0
 457
 458#define DSI1_HS_DLT6		0x68
 459# define DSI_HS_DLT6_TA_GET_MASK	VC4_MASK(31, 24)
 460# define DSI_HS_DLT6_TA_GET_SHIFT	24
 461# define DSI_HS_DLT6_TA_SURE_MASK	VC4_MASK(23, 16)
 462# define DSI_HS_DLT6_TA_SURE_SHIFT	16
 463# define DSI_HS_DLT6_TA_GO_MASK		VC4_MASK(15, 8)
 464# define DSI_HS_DLT6_TA_GO_SHIFT	8
 465# define DSI_HS_DLT6_LP_LPX_MASK	VC4_MASK(7, 0)
 466# define DSI_HS_DLT6_LP_LPX_SHIFT	0
 467
 468#define DSI1_HS_DLT7		0x6c
 469# define DSI_HS_DLT7_LP_WUP_MASK	VC4_MASK(23, 0)
 470# define DSI_HS_DLT7_LP_WUP_SHIFT	0
 471
 472#define DSI1_PHY_AFEC0		0x70
 473
 474#define DSI1_PHY_AFEC1		0x74
 475# define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK	VC4_MASK(19, 16)
 476# define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT	16
 477# define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK	VC4_MASK(15, 12)
 478# define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT	12
 479# define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK	VC4_MASK(11, 8)
 480# define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT	8
 481# define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK	VC4_MASK(7, 4)
 482# define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT	4
 483# define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK	VC4_MASK(3, 0)
 484# define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT	0
 485
 486#define DSI1_TST_SEL		0x78
 487#define DSI1_TST_MON		0x7c
 488#define DSI1_PHY_TST1		0x80
 489#define DSI1_PHY_TST2		0x84
 490#define DSI1_PHY_FIFO_STAT	0x88
 491/* Actually, all registers in the range that aren't otherwise claimed
 492 * will return the ID.
 493 */
 494#define DSI1_ID			0x8c
 495
 
 
 
 
 
 
 
 
 
 
 
 
 496/* General DSI hardware state. */
 497struct vc4_dsi {
 
 
 
 
 
 498	struct platform_device *pdev;
 499
 500	struct mipi_dsi_host dsi_host;
 501	struct drm_encoder *encoder;
 502	struct drm_bridge *bridge;
 503	struct list_head bridge_chain;
 504
 505	void __iomem *regs;
 506
 507	struct dma_chan *reg_dma_chan;
 508	dma_addr_t reg_dma_paddr;
 509	u32 *reg_dma_mem;
 510	dma_addr_t reg_paddr;
 511
 512	/* Whether we're on bcm2835's DSI0 or DSI1. */
 513	int port;
 514
 515	/* DSI channel for the panel we're connected to. */
 516	u32 channel;
 517	u32 lanes;
 518	u32 format;
 519	u32 divider;
 520	u32 mode_flags;
 521
 522	/* Input clock from CPRMAN to the digital PHY, for the DSI
 523	 * escape clock.
 524	 */
 525	struct clk *escape_clock;
 526
 527	/* Input clock to the analog PHY, used to generate the DSI bit
 528	 * clock.
 529	 */
 530	struct clk *pll_phy_clock;
 531
 532	/* HS Clocks generated within the DSI analog PHY. */
 533	struct clk_fixed_factor phy_clocks[3];
 534
 535	struct clk_hw_onecell_data *clk_onecell;
 536
 537	/* Pixel clock output to the pixelvalve, generated from the HS
 538	 * clock.
 539	 */
 540	struct clk *pixel_clock;
 541
 542	struct completion xfer_completion;
 543	int xfer_result;
 544
 545	struct debugfs_regset32 regset;
 546};
 547
 548#define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
 
 
 
 
 
 
 
 549
 550static inline void
 551dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
 552{
 
 553	struct dma_chan *chan = dsi->reg_dma_chan;
 554	struct dma_async_tx_descriptor *tx;
 555	dma_cookie_t cookie;
 556	int ret;
 557
 
 
 558	/* DSI0 should be able to write normally. */
 559	if (!chan) {
 560		writel(val, dsi->regs + offset);
 561		return;
 562	}
 563
 564	*dsi->reg_dma_mem = val;
 565
 566	tx = chan->device->device_prep_dma_memcpy(chan,
 567						  dsi->reg_paddr + offset,
 568						  dsi->reg_dma_paddr,
 569						  4, 0);
 570	if (!tx) {
 571		DRM_ERROR("Failed to set up DMA register write\n");
 572		return;
 573	}
 574
 575	cookie = tx->tx_submit(tx);
 576	ret = dma_submit_error(cookie);
 577	if (ret) {
 578		DRM_ERROR("Failed to submit DMA: %d\n", ret);
 579		return;
 580	}
 581	ret = dma_sync_wait(chan, cookie);
 582	if (ret)
 583		DRM_ERROR("Failed to wait for DMA: %d\n", ret);
 584}
 585
 586#define DSI_READ(offset) readl(dsi->regs + (offset))
 
 
 
 
 
 587#define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
 588#define DSI_PORT_READ(offset) \
 589	DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset)
 590#define DSI_PORT_WRITE(offset, val) \
 591	DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val)
 592#define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit)
 593
 594/* VC4 DSI encoder KMS struct */
 595struct vc4_dsi_encoder {
 596	struct vc4_encoder base;
 597	struct vc4_dsi *dsi;
 598};
 599
 600static inline struct vc4_dsi_encoder *
 601to_vc4_dsi_encoder(struct drm_encoder *encoder)
 602{
 603	return container_of(encoder, struct vc4_dsi_encoder, base.base);
 604}
 605
 606static const struct debugfs_reg32 dsi0_regs[] = {
 607	VC4_REG32(DSI0_CTRL),
 608	VC4_REG32(DSI0_STAT),
 609	VC4_REG32(DSI0_HSTX_TO_CNT),
 610	VC4_REG32(DSI0_LPRX_TO_CNT),
 611	VC4_REG32(DSI0_TA_TO_CNT),
 612	VC4_REG32(DSI0_PR_TO_CNT),
 613	VC4_REG32(DSI0_DISP0_CTRL),
 614	VC4_REG32(DSI0_DISP1_CTRL),
 615	VC4_REG32(DSI0_INT_STAT),
 616	VC4_REG32(DSI0_INT_EN),
 617	VC4_REG32(DSI0_PHYC),
 618	VC4_REG32(DSI0_HS_CLT0),
 619	VC4_REG32(DSI0_HS_CLT1),
 620	VC4_REG32(DSI0_HS_CLT2),
 621	VC4_REG32(DSI0_HS_DLT3),
 622	VC4_REG32(DSI0_HS_DLT4),
 623	VC4_REG32(DSI0_HS_DLT5),
 624	VC4_REG32(DSI0_HS_DLT6),
 625	VC4_REG32(DSI0_HS_DLT7),
 626	VC4_REG32(DSI0_PHY_AFEC0),
 627	VC4_REG32(DSI0_PHY_AFEC1),
 628	VC4_REG32(DSI0_ID),
 629};
 630
 631static const struct debugfs_reg32 dsi1_regs[] = {
 632	VC4_REG32(DSI1_CTRL),
 633	VC4_REG32(DSI1_STAT),
 634	VC4_REG32(DSI1_HSTX_TO_CNT),
 635	VC4_REG32(DSI1_LPRX_TO_CNT),
 636	VC4_REG32(DSI1_TA_TO_CNT),
 637	VC4_REG32(DSI1_PR_TO_CNT),
 638	VC4_REG32(DSI1_DISP0_CTRL),
 639	VC4_REG32(DSI1_DISP1_CTRL),
 640	VC4_REG32(DSI1_INT_STAT),
 641	VC4_REG32(DSI1_INT_EN),
 642	VC4_REG32(DSI1_PHYC),
 643	VC4_REG32(DSI1_HS_CLT0),
 644	VC4_REG32(DSI1_HS_CLT1),
 645	VC4_REG32(DSI1_HS_CLT2),
 646	VC4_REG32(DSI1_HS_DLT3),
 647	VC4_REG32(DSI1_HS_DLT4),
 648	VC4_REG32(DSI1_HS_DLT5),
 649	VC4_REG32(DSI1_HS_DLT6),
 650	VC4_REG32(DSI1_HS_DLT7),
 651	VC4_REG32(DSI1_PHY_AFEC0),
 652	VC4_REG32(DSI1_PHY_AFEC1),
 653	VC4_REG32(DSI1_ID),
 654};
 655
 656static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
 657{
 658	u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
 659
 660	if (latch)
 661		afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
 662	else
 663		afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
 664
 665	DSI_PORT_WRITE(PHY_AFEC0, afec0);
 666}
 667
 668/* Enters or exits Ultra Low Power State. */
 669static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
 670{
 671	bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
 672	u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
 673			 DSI_PHYC_DLANE0_ULPS |
 674			 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
 675			 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
 676			 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
 677	u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
 678			 DSI1_STAT_PHY_D0_ULPS |
 679			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
 680			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
 681			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
 682	u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
 683			 DSI1_STAT_PHY_D0_STOP |
 684			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
 685			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
 686			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
 687	int ret;
 688	bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) &
 689				       DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS));
 690
 691	if (ulps == ulps_currently_enabled)
 692		return;
 693
 694	DSI_PORT_WRITE(STAT, stat_ulps);
 695	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
 696	ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
 697	if (ret) {
 698		dev_warn(&dsi->pdev->dev,
 699			 "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
 700			 DSI_PORT_READ(STAT));
 701		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
 702		vc4_dsi_latch_ulps(dsi, false);
 703		return;
 704	}
 705
 706	/* The DSI module can't be disabled while the module is
 707	 * generating ULPS state.  So, to be able to disable the
 708	 * module, we have the AFE latch the ULPS state and continue
 709	 * on to having the module enter STOP.
 710	 */
 711	vc4_dsi_latch_ulps(dsi, ulps);
 712
 713	DSI_PORT_WRITE(STAT, stat_stop);
 714	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
 715	ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
 716	if (ret) {
 717		dev_warn(&dsi->pdev->dev,
 718			 "Timeout waiting for DSI STOP entry: STAT 0x%08x",
 719			 DSI_PORT_READ(STAT));
 720		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
 721		return;
 722	}
 723}
 724
 725static u32
 726dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
 727{
 728	/* The HS timings have to be rounded up to a multiple of 8
 729	 * because we're using the byte clock.
 730	 */
 731	return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
 732}
 733
 734/* ESC always runs at 100Mhz. */
 735#define ESC_TIME_NS 10
 736
 737static u32
 738dsi_esc_timing(u32 ns)
 739{
 740	return DIV_ROUND_UP(ns, ESC_TIME_NS);
 741}
 742
 743static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
 
 744{
 745	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
 746	struct vc4_dsi *dsi = vc4_encoder->dsi;
 747	struct device *dev = &dsi->pdev->dev;
 748	struct drm_bridge *iter;
 749
 750	list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) {
 751		if (iter->funcs->disable)
 752			iter->funcs->disable(iter);
 753	}
 754
 755	vc4_dsi_ulps(dsi, true);
 756
 757	list_for_each_entry_from(iter, &dsi->bridge_chain, chain_node) {
 758		if (iter->funcs->post_disable)
 759			iter->funcs->post_disable(iter);
 760	}
 761
 762	clk_disable_unprepare(dsi->pll_phy_clock);
 763	clk_disable_unprepare(dsi->escape_clock);
 764	clk_disable_unprepare(dsi->pixel_clock);
 765
 766	pm_runtime_put(dev);
 767}
 768
 769/* Extends the mode's blank intervals to handle BCM2835's integer-only
 770 * DSI PLL divider.
 771 *
 772 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
 773 * driver since most peripherals are hanging off of the PLLD_PER
 774 * divider.  PLLD_DSI1, which drives our DSI bit clock (and therefore
 775 * the pixel clock), only has an integer divider off of DSI.
 776 *
 777 * To get our panel mode to refresh at the expected 60Hz, we need to
 778 * extend the horizontal blank time.  This means we drive a
 779 * higher-than-expected clock rate to the panel, but that's what the
 780 * firmware does too.
 781 */
 782static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
 783				       const struct drm_display_mode *mode,
 784				       struct drm_display_mode *adjusted_mode)
 785{
 786	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
 787	struct vc4_dsi *dsi = vc4_encoder->dsi;
 788	struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
 789	unsigned long parent_rate = clk_get_rate(phy_parent);
 790	unsigned long pixel_clock_hz = mode->clock * 1000;
 791	unsigned long pll_clock = pixel_clock_hz * dsi->divider;
 792	int divider;
 793
 794	/* Find what divider gets us a faster clock than the requested
 795	 * pixel clock.
 796	 */
 797	for (divider = 1; divider < 8; divider++) {
 798		if (parent_rate / divider < pll_clock) {
 799			divider--;
 800			break;
 801		}
 802	}
 803
 804	/* Now that we've picked a PLL divider, calculate back to its
 805	 * pixel clock.
 806	 */
 807	pll_clock = parent_rate / divider;
 808	pixel_clock_hz = pll_clock / dsi->divider;
 809
 810	adjusted_mode->clock = pixel_clock_hz / 1000;
 811
 812	/* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
 813	adjusted_mode->htotal = adjusted_mode->clock * mode->htotal /
 814				mode->clock;
 815	adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
 816	adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
 817
 818	return true;
 819}
 820
 821static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
 
 822{
 823	struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
 824	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
 825	struct vc4_dsi *dsi = vc4_encoder->dsi;
 826	struct device *dev = &dsi->pdev->dev;
 
 
 827	bool debug_dump_regs = false;
 828	struct drm_bridge *iter;
 829	unsigned long hs_clock;
 
 830	u32 ui_ns;
 831	/* Minimum LP state duration in escape clock cycles. */
 832	u32 lpx = dsi_esc_timing(60);
 833	unsigned long pixel_clock_hz = mode->clock * 1000;
 834	unsigned long dsip_clock;
 835	unsigned long phy_clock;
 836	int ret;
 837
 838	ret = pm_runtime_get_sync(dev);
 839	if (ret) {
 840		DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port);
 841		return;
 842	}
 843
 844	if (debug_dump_regs) {
 845		struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
 846		dev_info(&dsi->pdev->dev, "DSI regs before:\n");
 847		drm_print_regset32(&p, &dsi->regset);
 848	}
 849
 
 
 
 
 
 
 
 
 
 
 
 
 850	/* Round up the clk_set_rate() request slightly, since
 851	 * PLLD_DSI1 is an integer divider and its rate selection will
 852	 * never round up.
 853	 */
 854	phy_clock = (pixel_clock_hz + 1000) * dsi->divider;
 855	ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
 856	if (ret) {
 857		dev_err(&dsi->pdev->dev,
 858			"Failed to set phy clock to %ld: %d\n", phy_clock, ret);
 859	}
 860
 861	/* Reset the DSI and all its fifos. */
 862	DSI_PORT_WRITE(CTRL,
 863		       DSI_CTRL_SOFT_RESET_CFG |
 864		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
 865
 866	DSI_PORT_WRITE(CTRL,
 867		       DSI_CTRL_HSDT_EOT_DISABLE |
 868		       DSI_CTRL_RX_LPDT_EOT_DISABLE);
 869
 870	/* Clear all stat bits so we see what has happened during enable. */
 871	DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
 872
 873	/* Set AFE CTR00/CTR1 to release powerdown of analog. */
 874	if (dsi->port == 0) {
 875		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
 876			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
 877
 878		if (dsi->lanes < 2)
 879			afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
 880
 881		if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
 882			afec0 |= DSI0_PHY_AFEC0_RESET;
 883
 884		DSI_PORT_WRITE(PHY_AFEC0, afec0);
 885
 
 
 
 886		DSI_PORT_WRITE(PHY_AFEC1,
 887			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE1) |
 888			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE0) |
 889			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_CLANE));
 890	} else {
 891		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
 892			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
 893			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
 894			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
 895			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
 896			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
 897			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
 898
 899		if (dsi->lanes < 4)
 900			afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
 901		if (dsi->lanes < 3)
 902			afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
 903		if (dsi->lanes < 2)
 904			afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
 905
 906		afec0 |= DSI1_PHY_AFEC0_RESET;
 907
 908		DSI_PORT_WRITE(PHY_AFEC0, afec0);
 909
 910		DSI_PORT_WRITE(PHY_AFEC1, 0);
 911
 912		/* AFEC reset hold time */
 913		mdelay(1);
 914	}
 915
 916	ret = clk_prepare_enable(dsi->escape_clock);
 917	if (ret) {
 918		DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
 
 919		return;
 920	}
 921
 922	ret = clk_prepare_enable(dsi->pll_phy_clock);
 923	if (ret) {
 924		DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
 925		return;
 926	}
 927
 928	hs_clock = clk_get_rate(dsi->pll_phy_clock);
 929
 930	/* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
 931	 * not the pixel clock rate.  DSIxP take from the APHY's byte,
 932	 * DDR2, or DDR4 clock (we use byte) and feed into the PV at
 933	 * that rate.  Separately, a value derived from PIX_CLK_DIV
 934	 * and HS_CLKC is fed into the PV to divide down to the actual
 935	 * pixel clock for pushing pixels into DSI.
 936	 */
 937	dsip_clock = phy_clock / 8;
 938	ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
 939	if (ret) {
 940		dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
 941			dsip_clock, ret);
 942	}
 943
 944	ret = clk_prepare_enable(dsi->pixel_clock);
 945	if (ret) {
 946		DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
 947		return;
 948	}
 949
 950	/* How many ns one DSI unit interval is.  Note that the clock
 951	 * is DDR, so there's an extra divide by 2.
 952	 */
 953	ui_ns = DIV_ROUND_UP(500000000, hs_clock);
 954
 955	DSI_PORT_WRITE(HS_CLT0,
 956		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
 957				     DSI_HS_CLT0_CZERO) |
 958		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
 959				     DSI_HS_CLT0_CPRE) |
 960		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
 961				     DSI_HS_CLT0_CPREP));
 962
 963	DSI_PORT_WRITE(HS_CLT1,
 964		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
 965				     DSI_HS_CLT1_CTRAIL) |
 966		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
 967				     DSI_HS_CLT1_CPOST));
 968
 969	DSI_PORT_WRITE(HS_CLT2,
 970		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
 971				     DSI_HS_CLT2_WUP));
 972
 973	DSI_PORT_WRITE(HS_DLT3,
 974		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
 975				     DSI_HS_DLT3_EXIT) |
 976		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
 977				     DSI_HS_DLT3_ZERO) |
 978		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
 979				     DSI_HS_DLT3_PRE));
 980
 981	DSI_PORT_WRITE(HS_DLT4,
 982		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
 983				     DSI_HS_DLT4_LPX) |
 984		       VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
 985					 dsi_hs_timing(ui_ns, 60, 4)),
 986				     DSI_HS_DLT4_TRAIL) |
 987		       VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
 988
 989	/* T_INIT is how long STOP is driven after power-up to
 990	 * indicate to the slave (also coming out of power-up) that
 991	 * master init is complete, and should be greater than the
 992	 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE.  The
 993	 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
 994	 * T_INIT,SLAVE, while allowing protocols on top of it to give
 995	 * greater minimums.  The vc4 firmware uses an extremely
 996	 * conservative 5ms, and we maintain that here.
 997	 */
 998	DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
 999							    5 * 1000 * 1000, 0),
1000					      DSI_HS_DLT5_INIT));
1001
1002	DSI_PORT_WRITE(HS_DLT6,
1003		       VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
1004		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
1005		       VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
1006		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
1007
1008	DSI_PORT_WRITE(HS_DLT7,
1009		       VC4_SET_FIELD(dsi_esc_timing(1000000),
1010				     DSI_HS_DLT7_LP_WUP));
1011
1012	DSI_PORT_WRITE(PHYC,
1013		       DSI_PHYC_DLANE0_ENABLE |
1014		       (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
1015		       (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
1016		       (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
1017		       DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
1018		       ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
1019			0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
1020		       (dsi->port == 0 ?
1021			VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
1022			VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
1023
1024	DSI_PORT_WRITE(CTRL,
1025		       DSI_PORT_READ(CTRL) |
1026		       DSI_CTRL_CAL_BYTE);
1027
1028	/* HS timeout in HS clock cycles: disabled. */
1029	DSI_PORT_WRITE(HSTX_TO_CNT, 0);
1030	/* LP receive timeout in HS clocks. */
1031	DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
1032	/* Bus turnaround timeout */
1033	DSI_PORT_WRITE(TA_TO_CNT, 100000);
1034	/* Display reset sequence timeout */
1035	DSI_PORT_WRITE(PR_TO_CNT, 100000);
1036
1037	/* Set up DISP1 for transferring long command payloads through
1038	 * the pixfifo.
1039	 */
1040	DSI_PORT_WRITE(DISP1_CTRL,
1041		       VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
1042				     DSI_DISP1_PFORMAT) |
1043		       DSI_DISP1_ENABLE);
1044
1045	/* Ungate the block. */
1046	if (dsi->port == 0)
1047		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
1048	else
1049		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
1050
1051	/* Bring AFE out of reset. */
1052	if (dsi->port == 0) {
1053	} else {
1054		DSI_PORT_WRITE(PHY_AFEC0,
1055			       DSI_PORT_READ(PHY_AFEC0) &
1056			       ~DSI1_PHY_AFEC0_RESET);
1057	}
1058
1059	vc4_dsi_ulps(dsi, false);
1060
1061	list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) {
1062		if (iter->funcs->pre_enable)
1063			iter->funcs->pre_enable(iter);
1064	}
1065
1066	if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
1067		DSI_PORT_WRITE(DISP0_CTRL,
1068			       VC4_SET_FIELD(dsi->divider,
1069					     DSI_DISP0_PIX_CLK_DIV) |
1070			       VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
1071			       VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
1072					     DSI_DISP0_LP_STOP_CTRL) |
1073			       DSI_DISP0_ST_END |
1074			       DSI_DISP0_ENABLE);
1075	} else {
1076		DSI_PORT_WRITE(DISP0_CTRL,
1077			       DSI_DISP0_COMMAND_MODE |
1078			       DSI_DISP0_ENABLE);
1079	}
 
 
 
 
 
 
 
 
1080
1081	list_for_each_entry(iter, &dsi->bridge_chain, chain_node) {
1082		if (iter->funcs->enable)
1083			iter->funcs->enable(iter);
1084	}
1085
1086	if (debug_dump_regs) {
1087		struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
1088		dev_info(&dsi->pdev->dev, "DSI regs after:\n");
1089		drm_print_regset32(&p, &dsi->regset);
1090	}
1091}
1092
 
 
 
 
 
 
 
 
 
 
1093static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
1094				     const struct mipi_dsi_msg *msg)
1095{
1096	struct vc4_dsi *dsi = host_to_dsi(host);
 
1097	struct mipi_dsi_packet packet;
1098	u32 pkth = 0, pktc = 0;
1099	int i, ret;
1100	bool is_long = mipi_dsi_packet_format_is_long(msg->type);
1101	u32 cmd_fifo_len = 0, pix_fifo_len = 0;
1102
1103	mipi_dsi_create_packet(&packet, msg);
1104
1105	pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
1106	pkth |= VC4_SET_FIELD(packet.header[1] |
1107			      (packet.header[2] << 8),
1108			      DSI_TXPKT1H_BC_PARAM);
1109	if (is_long) {
1110		/* Divide data across the various FIFOs we have available.
1111		 * The command FIFO takes byte-oriented data, but is of
1112		 * limited size. The pixel FIFO (never actually used for
1113		 * pixel data in reality) is word oriented, and substantially
1114		 * larger. So, we use the pixel FIFO for most of the data,
1115		 * sending the residual bytes in the command FIFO at the start.
1116		 *
1117		 * With this arrangement, the command FIFO will never get full.
1118		 */
1119		if (packet.payload_length <= 16) {
1120			cmd_fifo_len = packet.payload_length;
1121			pix_fifo_len = 0;
1122		} else {
1123			cmd_fifo_len = (packet.payload_length %
1124					DSI_PIX_FIFO_WIDTH);
1125			pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
1126					DSI_PIX_FIFO_WIDTH);
1127		}
1128
1129		WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
1130
1131		pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
1132	}
1133
1134	if (msg->rx_len) {
1135		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
1136				      DSI_TXPKT1C_CMD_CTRL);
1137	} else {
1138		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
1139				      DSI_TXPKT1C_CMD_CTRL);
1140	}
1141
1142	for (i = 0; i < cmd_fifo_len; i++)
1143		DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
1144	for (i = 0; i < pix_fifo_len; i++) {
1145		const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
1146
1147		DSI_PORT_WRITE(TXPKT_PIX_FIFO,
1148			       pix[0] |
1149			       pix[1] << 8 |
1150			       pix[2] << 16 |
1151			       pix[3] << 24);
1152	}
1153
1154	if (msg->flags & MIPI_DSI_MSG_USE_LPM)
1155		pktc |= DSI_TXPKT1C_CMD_MODE_LP;
1156	if (is_long)
1157		pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
1158
1159	/* Send one copy of the packet.  Larger repeats are used for pixel
1160	 * data in command mode.
1161	 */
1162	pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
1163
1164	pktc |= DSI_TXPKT1C_CMD_EN;
1165	if (pix_fifo_len) {
1166		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
1167				      DSI_TXPKT1C_DISPLAY_NO);
1168	} else {
1169		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
1170				      DSI_TXPKT1C_DISPLAY_NO);
1171	}
1172
1173	/* Enable the appropriate interrupt for the transfer completion. */
1174	dsi->xfer_result = 0;
1175	reinit_completion(&dsi->xfer_completion);
1176	DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
1177	if (msg->rx_len) {
1178		DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1179					DSI1_INT_PHY_DIR_RTF));
 
 
 
 
 
 
 
 
1180	} else {
1181		DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1182					DSI1_INT_TXPKT1_DONE));
 
 
 
 
 
 
 
1183	}
1184
1185	/* Send the packet. */
1186	DSI_PORT_WRITE(TXPKT1H, pkth);
1187	DSI_PORT_WRITE(TXPKT1C, pktc);
1188
1189	if (!wait_for_completion_timeout(&dsi->xfer_completion,
1190					 msecs_to_jiffies(1000))) {
1191		dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
1192		dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
1193			DSI_PORT_READ(INT_STAT));
1194		ret = -ETIMEDOUT;
1195	} else {
1196		ret = dsi->xfer_result;
1197	}
1198
1199	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1200
1201	if (ret)
1202		goto reset_fifo_and_return;
1203
1204	if (ret == 0 && msg->rx_len) {
1205		u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
1206		u8 *msg_rx = msg->rx_buf;
1207
1208		if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
1209			u32 rxlen = VC4_GET_FIELD(rxpkt1h,
1210						  DSI_RXPKT1H_BC_PARAM);
1211
1212			if (rxlen != msg->rx_len) {
1213				DRM_ERROR("DSI returned %db, expecting %db\n",
1214					  rxlen, (int)msg->rx_len);
1215				ret = -ENXIO;
1216				goto reset_fifo_and_return;
1217			}
1218
1219			for (i = 0; i < msg->rx_len; i++)
1220				msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
1221		} else {
1222			/* FINISHME: Handle AWER */
1223
1224			msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
1225						  DSI_RXPKT1H_SHORT_0);
1226			if (msg->rx_len > 1) {
1227				msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
1228							  DSI_RXPKT1H_SHORT_1);
1229			}
1230		}
1231	}
1232
1233	return ret;
1234
1235reset_fifo_and_return:
1236	DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
1237
1238	DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
1239	udelay(1);
1240	DSI_PORT_WRITE(CTRL,
1241		       DSI_PORT_READ(CTRL) |
1242		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
1243
1244	DSI_PORT_WRITE(TXPKT1C, 0);
1245	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1246	return ret;
1247}
1248
 
1249static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
1250			       struct mipi_dsi_device *device)
1251{
1252	struct vc4_dsi *dsi = host_to_dsi(host);
 
1253
1254	dsi->lanes = device->lanes;
1255	dsi->channel = device->channel;
1256	dsi->mode_flags = device->mode_flags;
1257
1258	switch (device->format) {
1259	case MIPI_DSI_FMT_RGB888:
1260		dsi->format = DSI_PFORMAT_RGB888;
1261		dsi->divider = 24 / dsi->lanes;
1262		break;
1263	case MIPI_DSI_FMT_RGB666:
1264		dsi->format = DSI_PFORMAT_RGB666;
1265		dsi->divider = 24 / dsi->lanes;
1266		break;
1267	case MIPI_DSI_FMT_RGB666_PACKED:
1268		dsi->format = DSI_PFORMAT_RGB666_PACKED;
1269		dsi->divider = 18 / dsi->lanes;
1270		break;
1271	case MIPI_DSI_FMT_RGB565:
1272		dsi->format = DSI_PFORMAT_RGB565;
1273		dsi->divider = 16 / dsi->lanes;
1274		break;
1275	default:
1276		dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
1277			dsi->format);
1278		return 0;
1279	}
1280
1281	if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1282		dev_err(&dsi->pdev->dev,
1283			"Only VIDEO mode panels supported currently.\n");
1284		return 0;
1285	}
1286
 
 
 
 
 
 
 
 
1287	return 0;
1288}
1289
1290static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
1291			       struct mipi_dsi_device *device)
1292{
 
 
 
 
1293	return 0;
1294}
1295
1296static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
1297	.attach = vc4_dsi_host_attach,
1298	.detach = vc4_dsi_host_detach,
1299	.transfer = vc4_dsi_host_transfer,
1300};
1301
1302static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
1303	.disable = vc4_dsi_encoder_disable,
1304	.enable = vc4_dsi_encoder_enable,
1305	.mode_fixup = vc4_dsi_encoder_mode_fixup,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1306};
1307
1308static const struct of_device_id vc4_dsi_dt_match[] = {
1309	{ .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 },
 
 
1310	{}
1311};
1312
1313static void dsi_handle_error(struct vc4_dsi *dsi,
1314			     irqreturn_t *ret, u32 stat, u32 bit,
1315			     const char *type)
1316{
1317	if (!(stat & bit))
1318		return;
1319
1320	DRM_ERROR("DSI%d: %s error\n", dsi->port, type);
 
1321	*ret = IRQ_HANDLED;
1322}
1323
1324/*
1325 * Initial handler for port 1 where we need the reg_dma workaround.
1326 * The register DMA writes sleep, so we can't do it in the top half.
1327 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
1328 * parent interrupt contrller until our interrupt thread is done.
1329 */
1330static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data)
1331{
1332	struct vc4_dsi *dsi = data;
1333	u32 stat = DSI_PORT_READ(INT_STAT);
1334
1335	if (!stat)
1336		return IRQ_NONE;
1337
1338	return IRQ_WAKE_THREAD;
1339}
1340
1341/*
1342 * Normal IRQ handler for port 0, or the threaded IRQ handler for port
1343 * 1 where we need the reg_dma workaround.
1344 */
1345static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
1346{
1347	struct vc4_dsi *dsi = data;
1348	u32 stat = DSI_PORT_READ(INT_STAT);
1349	irqreturn_t ret = IRQ_NONE;
1350
1351	DSI_PORT_WRITE(INT_STAT, stat);
1352
1353	dsi_handle_error(dsi, &ret, stat,
1354			 DSI1_INT_ERR_SYNC_ESC, "LPDT sync");
1355	dsi_handle_error(dsi, &ret, stat,
1356			 DSI1_INT_ERR_CONTROL, "data lane 0 sequence");
1357	dsi_handle_error(dsi, &ret, stat,
1358			 DSI1_INT_ERR_CONT_LP0, "LP0 contention");
1359	dsi_handle_error(dsi, &ret, stat,
1360			 DSI1_INT_ERR_CONT_LP1, "LP1 contention");
1361	dsi_handle_error(dsi, &ret, stat,
1362			 DSI1_INT_HSTX_TO, "HSTX timeout");
1363	dsi_handle_error(dsi, &ret, stat,
1364			 DSI1_INT_LPRX_TO, "LPRX timeout");
1365	dsi_handle_error(dsi, &ret, stat,
1366			 DSI1_INT_TA_TO, "turnaround timeout");
1367	dsi_handle_error(dsi, &ret, stat,
1368			 DSI1_INT_PR_TO, "peripheral reset timeout");
1369
1370	if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) {
 
 
1371		complete(&dsi->xfer_completion);
1372		ret = IRQ_HANDLED;
1373	} else if (stat & DSI1_INT_HSTX_TO) {
1374		complete(&dsi->xfer_completion);
1375		dsi->xfer_result = -ETIMEDOUT;
1376		ret = IRQ_HANDLED;
1377	}
1378
1379	return ret;
1380}
1381
1382/**
1383 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1384 * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1385 * @dsi: DSI encoder
1386 */
1387static int
1388vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
1389{
1390	struct device *dev = &dsi->pdev->dev;
1391	const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
1392	static const struct {
1393		const char *dsi0_name, *dsi1_name;
1394		int div;
1395	} phy_clocks[] = {
1396		{ "dsi0_byte", "dsi1_byte", 8 },
1397		{ "dsi0_ddr2", "dsi1_ddr2", 4 },
1398		{ "dsi0_ddr", "dsi1_ddr", 2 },
1399	};
1400	int i;
1401
1402	dsi->clk_onecell = devm_kzalloc(dev,
1403					sizeof(*dsi->clk_onecell) +
1404					ARRAY_SIZE(phy_clocks) *
1405					sizeof(struct clk_hw *),
1406					GFP_KERNEL);
1407	if (!dsi->clk_onecell)
1408		return -ENOMEM;
1409	dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
1410
1411	for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
1412		struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
1413		struct clk_init_data init;
 
1414		int ret;
1415
 
 
 
1416		/* We just use core fixed factor clock ops for the PHY
1417		 * clocks.  The clocks are actually gated by the
1418		 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1419		 * setting if we use the DDR/DDR2 clocks.  However,
1420		 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1421		 * setting both our parent DSI PLL's rate and this
1422		 * clock's rate, so it knows if DDR/DDR2 are going to
1423		 * be used and could enable the gates itself.
1424		 */
1425		fix->mult = 1;
1426		fix->div = phy_clocks[i].div;
1427		fix->hw.init = &init;
1428
1429		memset(&init, 0, sizeof(init));
1430		init.parent_names = &parent_name;
1431		init.num_parents = 1;
1432		if (dsi->port == 1)
1433			init.name = phy_clocks[i].dsi1_name;
1434		else
1435			init.name = phy_clocks[i].dsi0_name;
1436		init.ops = &clk_fixed_factor_ops;
1437
1438		ret = devm_clk_hw_register(dev, &fix->hw);
1439		if (ret)
1440			return ret;
1441
1442		dsi->clk_onecell->hws[i] = &fix->hw;
1443	}
1444
1445	return of_clk_add_hw_provider(dev->of_node,
1446				      of_clk_hw_onecell_get,
1447				      dsi->clk_onecell);
1448}
1449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1450static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
1451{
1452	struct platform_device *pdev = to_platform_device(dev);
1453	struct drm_device *drm = dev_get_drvdata(master);
1454	struct vc4_dev *vc4 = to_vc4_dev(drm);
1455	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1456	struct vc4_dsi_encoder *vc4_dsi_encoder;
1457	struct drm_panel *panel;
1458	const struct of_device_id *match;
1459	dma_cap_mask_t dma_mask;
1460	int ret;
1461
1462	match = of_match_device(vc4_dsi_dt_match, dev);
1463	if (!match)
1464		return -ENODEV;
1465
1466	dsi->port = (uintptr_t)match->data;
 
 
1467
1468	vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
1469				       GFP_KERNEL);
1470	if (!vc4_dsi_encoder)
1471		return -ENOMEM;
1472
1473	INIT_LIST_HEAD(&dsi->bridge_chain);
1474	vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1;
1475	vc4_dsi_encoder->dsi = dsi;
1476	dsi->encoder = &vc4_dsi_encoder->base.base;
1477
1478	dsi->regs = vc4_ioremap_regs(pdev, 0);
1479	if (IS_ERR(dsi->regs))
1480		return PTR_ERR(dsi->regs);
1481
1482	dsi->regset.base = dsi->regs;
1483	if (dsi->port == 0) {
1484		dsi->regset.regs = dsi0_regs;
1485		dsi->regset.nregs = ARRAY_SIZE(dsi0_regs);
1486	} else {
1487		dsi->regset.regs = dsi1_regs;
1488		dsi->regset.nregs = ARRAY_SIZE(dsi1_regs);
1489	}
1490
1491	if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
1492		dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
1493			DSI_PORT_READ(ID), DSI_ID_VALUE);
1494		return -ENODEV;
1495	}
1496
1497	/* DSI1 has a broken AXI slave that doesn't respond to writes
1498	 * from the ARM.  It does handle writes from the DMA engine,
1499	 * so set up a channel for talking to it.
1500	 */
1501	if (dsi->port == 1) {
 
 
1502		dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
1503						      &dsi->reg_dma_paddr,
1504						      GFP_KERNEL);
1505		if (!dsi->reg_dma_mem) {
1506			DRM_ERROR("Failed to get DMA memory\n");
1507			return -ENOMEM;
1508		}
1509
 
 
 
 
1510		dma_cap_zero(dma_mask);
1511		dma_cap_set(DMA_MEMCPY, dma_mask);
 
1512		dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
1513		if (IS_ERR(dsi->reg_dma_chan)) {
1514			ret = PTR_ERR(dsi->reg_dma_chan);
1515			if (ret != -EPROBE_DEFER)
1516				DRM_ERROR("Failed to get DMA channel: %d\n",
1517					  ret);
1518			return ret;
1519		}
1520
 
 
 
 
1521		/* Get the physical address of the device's registers.  The
1522		 * struct resource for the regs gives us the bus address
1523		 * instead.
1524		 */
1525		dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
1526							     0, NULL, NULL));
1527	}
1528
1529	init_completion(&dsi->xfer_completion);
1530	/* At startup enable error-reporting interrupts and nothing else. */
1531	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1532	/* Clear any existing interrupt state. */
1533	DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
1534
1535	if (dsi->reg_dma_mem)
1536		ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
1537						vc4_dsi_irq_defer_to_thread_handler,
1538						vc4_dsi_irq_handler,
1539						IRQF_ONESHOT,
1540						"vc4 dsi", dsi);
1541	else
1542		ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1543				       vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
1544	if (ret) {
1545		if (ret != -EPROBE_DEFER)
1546			dev_err(dev, "Failed to get interrupt: %d\n", ret);
1547		return ret;
1548	}
1549
1550	dsi->escape_clock = devm_clk_get(dev, "escape");
1551	if (IS_ERR(dsi->escape_clock)) {
1552		ret = PTR_ERR(dsi->escape_clock);
1553		if (ret != -EPROBE_DEFER)
1554			dev_err(dev, "Failed to get escape clock: %d\n", ret);
1555		return ret;
1556	}
1557
1558	dsi->pll_phy_clock = devm_clk_get(dev, "phy");
1559	if (IS_ERR(dsi->pll_phy_clock)) {
1560		ret = PTR_ERR(dsi->pll_phy_clock);
1561		if (ret != -EPROBE_DEFER)
1562			dev_err(dev, "Failed to get phy clock: %d\n", ret);
1563		return ret;
1564	}
1565
1566	dsi->pixel_clock = devm_clk_get(dev, "pixel");
1567	if (IS_ERR(dsi->pixel_clock)) {
1568		ret = PTR_ERR(dsi->pixel_clock);
1569		if (ret != -EPROBE_DEFER)
1570			dev_err(dev, "Failed to get pixel clock: %d\n", ret);
1571		return ret;
1572	}
1573
1574	ret = drm_of_find_panel_or_bridge(dev->of_node, 0, 0,
1575					  &panel, &dsi->bridge);
1576	if (ret) {
1577		/* If the bridge or panel pointed by dev->of_node is not
1578		 * enabled, just return 0 here so that we don't prevent the DRM
1579		 * dev from being registered. Of course that means the DSI
1580		 * encoder won't be exposed, but that's not a problem since
1581		 * nothing is connected to it.
1582		 */
1583		if (ret == -ENODEV)
1584			return 0;
1585
1586		return ret;
1587	}
1588
1589	if (panel) {
1590		dsi->bridge = devm_drm_panel_bridge_add_typed(dev, panel,
1591							      DRM_MODE_CONNECTOR_DSI);
1592		if (IS_ERR(dsi->bridge))
1593			return PTR_ERR(dsi->bridge);
1594	}
1595
1596	/* The esc clock rate is supposed to always be 100Mhz. */
1597	ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
1598	if (ret) {
1599		dev_err(dev, "Failed to set esc clock: %d\n", ret);
1600		return ret;
1601	}
1602
1603	ret = vc4_dsi_init_phy_clocks(dsi);
1604	if (ret)
1605		return ret;
1606
1607	if (dsi->port == 1)
1608		vc4->dsi1 = dsi;
 
 
 
 
1609
1610	drm_simple_encoder_init(drm, dsi->encoder, DRM_MODE_ENCODER_DSI);
1611	drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
 
1612
1613	ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL, 0);
1614	if (ret) {
1615		dev_err(dev, "bridge attach failed: %d\n", ret);
1616		return ret;
1617	}
1618	/* Disable the atomic helper calls into the bridge.  We
1619	 * manually call the bridge pre_enable / enable / etc. calls
1620	 * from our driver, since we need to sequence them within the
1621	 * encoder's enable/disable paths.
1622	 */
1623	list_splice_init(&dsi->encoder->bridge_chain, &dsi->bridge_chain);
1624
1625	if (dsi->port == 0)
1626		vc4_debugfs_add_regset32(drm, "dsi0_regs", &dsi->regset);
1627	else
1628		vc4_debugfs_add_regset32(drm, "dsi1_regs", &dsi->regset);
1629
1630	pm_runtime_enable(dev);
1631
1632	return 0;
1633}
1634
1635static void vc4_dsi_unbind(struct device *dev, struct device *master,
1636			   void *data)
1637{
1638	struct drm_device *drm = dev_get_drvdata(master);
1639	struct vc4_dev *vc4 = to_vc4_dev(drm);
1640	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1641
1642	if (dsi->bridge)
1643		pm_runtime_disable(dev);
1644
1645	/*
1646	 * Restore the bridge_chain so the bridge detach procedure can happen
1647	 * normally.
1648	 */
1649	list_splice_init(&dsi->bridge_chain, &dsi->encoder->bridge_chain);
1650	drm_encoder_cleanup(dsi->encoder);
1651
1652	if (dsi->port == 1)
1653		vc4->dsi1 = NULL;
1654}
1655
1656static const struct component_ops vc4_dsi_ops = {
1657	.bind   = vc4_dsi_bind,
1658	.unbind = vc4_dsi_unbind,
1659};
1660
1661static int vc4_dsi_dev_probe(struct platform_device *pdev)
1662{
1663	struct device *dev = &pdev->dev;
1664	struct vc4_dsi *dsi;
1665	int ret;
1666
1667	dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
1668	if (!dsi)
1669		return -ENOMEM;
1670	dev_set_drvdata(dev, dsi);
1671
 
 
1672	dsi->pdev = pdev;
1673
1674	/* Note, the initialization sequence for DSI and panels is
1675	 * tricky.  The component bind above won't get past its
1676	 * -EPROBE_DEFER until the panel/bridge probes.  The
1677	 * panel/bridge will return -EPROBE_DEFER until it has a
1678	 * mipi_dsi_host to register its device to.  So, we register
1679	 * the host during pdev probe time, so vc4 as a whole can then
1680	 * -EPROBE_DEFER its component bind process until the panel
1681	 * successfully attaches.
1682	 */
1683	dsi->dsi_host.ops = &vc4_dsi_host_ops;
1684	dsi->dsi_host.dev = dev;
1685	mipi_dsi_host_register(&dsi->dsi_host);
1686
1687	ret = component_add(&pdev->dev, &vc4_dsi_ops);
1688	if (ret) {
1689		mipi_dsi_host_unregister(&dsi->dsi_host);
1690		return ret;
1691	}
1692
1693	return 0;
1694}
1695
1696static int vc4_dsi_dev_remove(struct platform_device *pdev)
1697{
1698	struct device *dev = &pdev->dev;
1699	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1700
1701	component_del(&pdev->dev, &vc4_dsi_ops);
1702	mipi_dsi_host_unregister(&dsi->dsi_host);
1703
1704	return 0;
1705}
1706
1707struct platform_driver vc4_dsi_driver = {
1708	.probe = vc4_dsi_dev_probe,
1709	.remove = vc4_dsi_dev_remove,
1710	.driver = {
1711		.name = "vc4_dsi",
1712		.of_match_table = vc4_dsi_dt_match,
1713	},
1714};