Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * SBP2 driver (SCSI over IEEE1394)
   4 *
   5 * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
   6 */
   7
   8/*
   9 * The basic structure of this driver is based on the old storage driver,
  10 * drivers/ieee1394/sbp2.c, originally written by
  11 *     James Goodwin <jamesg@filanet.com>
  12 * with later contributions and ongoing maintenance from
  13 *     Ben Collins <bcollins@debian.org>,
  14 *     Stefan Richter <stefanr@s5r6.in-berlin.de>
  15 * and many others.
  16 */
  17
  18#include <linux/blkdev.h>
  19#include <linux/bug.h>
  20#include <linux/completion.h>
  21#include <linux/delay.h>
  22#include <linux/device.h>
  23#include <linux/dma-mapping.h>
  24#include <linux/firewire.h>
  25#include <linux/firewire-constants.h>
  26#include <linux/init.h>
  27#include <linux/jiffies.h>
  28#include <linux/kernel.h>
  29#include <linux/kref.h>
  30#include <linux/list.h>
  31#include <linux/mod_devicetable.h>
  32#include <linux/module.h>
  33#include <linux/moduleparam.h>
  34#include <linux/scatterlist.h>
  35#include <linux/slab.h>
  36#include <linux/spinlock.h>
  37#include <linux/string.h>
  38#include <linux/stringify.h>
  39#include <linux/workqueue.h>
  40
  41#include <asm/byteorder.h>
  42
  43#include <scsi/scsi.h>
  44#include <scsi/scsi_cmnd.h>
  45#include <scsi/scsi_device.h>
  46#include <scsi/scsi_host.h>
  47
  48/*
  49 * So far only bridges from Oxford Semiconductor are known to support
  50 * concurrent logins. Depending on firmware, four or two concurrent logins
  51 * are possible on OXFW911 and newer Oxsemi bridges.
  52 *
  53 * Concurrent logins are useful together with cluster filesystems.
  54 */
  55static bool sbp2_param_exclusive_login = 1;
  56module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
  57MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
  58		 "(default = Y, use N for concurrent initiators)");
  59
  60/*
  61 * Flags for firmware oddities
  62 *
  63 * - 128kB max transfer
  64 *   Limit transfer size. Necessary for some old bridges.
  65 *
  66 * - 36 byte inquiry
  67 *   When scsi_mod probes the device, let the inquiry command look like that
  68 *   from MS Windows.
  69 *
  70 * - skip mode page 8
  71 *   Suppress sending of mode_sense for mode page 8 if the device pretends to
  72 *   support the SCSI Primary Block commands instead of Reduced Block Commands.
  73 *
  74 * - fix capacity
  75 *   Tell sd_mod to correct the last sector number reported by read_capacity.
  76 *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
  77 *   Don't use this with devices which don't have this bug.
  78 *
  79 * - delay inquiry
  80 *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
  81 *
  82 * - power condition
  83 *   Set the power condition field in the START STOP UNIT commands sent by
  84 *   sd_mod on suspend, resume, and shutdown (if manage_system_start_stop or
  85 *   manage_runtime_start_stop is on).
  86 *   Some disks need this to spin down or to resume properly.
  87 *
  88 * - override internal blacklist
  89 *   Instead of adding to the built-in blacklist, use only the workarounds
  90 *   specified in the module load parameter.
  91 *   Useful if a blacklist entry interfered with a non-broken device.
  92 */
  93#define SBP2_WORKAROUND_128K_MAX_TRANS	0x1
  94#define SBP2_WORKAROUND_INQUIRY_36	0x2
  95#define SBP2_WORKAROUND_MODE_SENSE_8	0x4
  96#define SBP2_WORKAROUND_FIX_CAPACITY	0x8
  97#define SBP2_WORKAROUND_DELAY_INQUIRY	0x10
  98#define SBP2_INQUIRY_DELAY		12
  99#define SBP2_WORKAROUND_POWER_CONDITION	0x20
 100#define SBP2_WORKAROUND_OVERRIDE	0x100
 101
 102static int sbp2_param_workarounds;
 103module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
 104MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
 105	", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
 106	", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
 107	", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
 108	", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
 109	", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
 110	", set power condition in start stop unit = "
 111				  __stringify(SBP2_WORKAROUND_POWER_CONDITION)
 112	", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
 113	", or a combination)");
 114
 115/*
 116 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
 117 * and one struct scsi_device per sbp2_logical_unit.
 118 */
 119struct sbp2_logical_unit {
 120	struct sbp2_target *tgt;
 121	struct list_head link;
 122	struct fw_address_handler address_handler;
 123	struct list_head orb_list;
 124
 125	u64 command_block_agent_address;
 126	u16 lun;
 127	int login_id;
 128
 129	/*
 130	 * The generation is updated once we've logged in or reconnected
 131	 * to the logical unit.  Thus, I/O to the device will automatically
 132	 * fail and get retried if it happens in a window where the device
 133	 * is not ready, e.g. after a bus reset but before we reconnect.
 134	 */
 135	int generation;
 136	int retries;
 137	work_func_t workfn;
 138	struct delayed_work work;
 139	bool has_sdev;
 140	bool blocked;
 141};
 142
 143static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
 144{
 145	queue_delayed_work(fw_workqueue, &lu->work, delay);
 146}
 147
 148/*
 149 * We create one struct sbp2_target per IEEE 1212 Unit Directory
 150 * and one struct Scsi_Host per sbp2_target.
 151 */
 152struct sbp2_target {
 153	struct fw_unit *unit;
 154	struct list_head lu_list;
 155
 156	u64 management_agent_address;
 157	u64 guid;
 158	int directory_id;
 159	int node_id;
 160	int address_high;
 161	unsigned int workarounds;
 162	unsigned int mgt_orb_timeout;
 163	unsigned int max_payload;
 164
 165	spinlock_t lock;
 166	int dont_block;	/* counter for each logical unit */
 167	int blocked;	/* ditto */
 168};
 169
 170static struct fw_device *target_parent_device(struct sbp2_target *tgt)
 171{
 172	return fw_parent_device(tgt->unit);
 173}
 174
 175static const struct device *tgt_dev(const struct sbp2_target *tgt)
 176{
 177	return &tgt->unit->device;
 178}
 179
 180static const struct device *lu_dev(const struct sbp2_logical_unit *lu)
 181{
 182	return &lu->tgt->unit->device;
 183}
 184
 185/* Impossible login_id, to detect logout attempt before successful login */
 186#define INVALID_LOGIN_ID 0x10000
 187
 188#define SBP2_ORB_TIMEOUT		2000U		/* Timeout in ms */
 189#define SBP2_ORB_NULL			0x80000000
 190#define SBP2_RETRY_LIMIT		0xf		/* 15 retries */
 191#define SBP2_CYCLE_LIMIT		(0xc8 << 12)	/* 200 125us cycles */
 192
 193/*
 194 * There is no transport protocol limit to the CDB length,  but we implement
 195 * a fixed length only.  16 bytes is enough for disks larger than 2 TB.
 196 */
 197#define SBP2_MAX_CDB_SIZE		16
 198
 199/*
 200 * The maximum SBP-2 data buffer size is 0xffff.  We quadlet-align this
 201 * for compatibility with earlier versions of this driver.
 202 */
 203#define SBP2_MAX_SEG_SIZE		0xfffc
 204
 205/* Unit directory keys */
 206#define SBP2_CSR_UNIT_CHARACTERISTICS	0x3a
 207#define SBP2_CSR_FIRMWARE_REVISION	0x3c
 208#define SBP2_CSR_LOGICAL_UNIT_NUMBER	0x14
 209#define SBP2_CSR_UNIT_UNIQUE_ID		0x8d
 210#define SBP2_CSR_LOGICAL_UNIT_DIRECTORY	0xd4
 211
 212/* Management orb opcodes */
 213#define SBP2_LOGIN_REQUEST		0x0
 214#define SBP2_QUERY_LOGINS_REQUEST	0x1
 215#define SBP2_RECONNECT_REQUEST		0x3
 216#define SBP2_SET_PASSWORD_REQUEST	0x4
 217#define SBP2_LOGOUT_REQUEST		0x7
 218#define SBP2_ABORT_TASK_REQUEST		0xb
 219#define SBP2_ABORT_TASK_SET		0xc
 220#define SBP2_LOGICAL_UNIT_RESET		0xe
 221#define SBP2_TARGET_RESET_REQUEST	0xf
 222
 223/* Offsets for command block agent registers */
 224#define SBP2_AGENT_STATE		0x00
 225#define SBP2_AGENT_RESET		0x04
 226#define SBP2_ORB_POINTER		0x08
 227#define SBP2_DOORBELL			0x10
 228#define SBP2_UNSOLICITED_STATUS_ENABLE	0x14
 229
 230/* Status write response codes */
 231#define SBP2_STATUS_REQUEST_COMPLETE	0x0
 232#define SBP2_STATUS_TRANSPORT_FAILURE	0x1
 233#define SBP2_STATUS_ILLEGAL_REQUEST	0x2
 234#define SBP2_STATUS_VENDOR_DEPENDENT	0x3
 235
 236#define STATUS_GET_ORB_HIGH(v)		((v).status & 0xffff)
 237#define STATUS_GET_SBP_STATUS(v)	(((v).status >> 16) & 0xff)
 238#define STATUS_GET_LEN(v)		(((v).status >> 24) & 0x07)
 239#define STATUS_GET_DEAD(v)		(((v).status >> 27) & 0x01)
 240#define STATUS_GET_RESPONSE(v)		(((v).status >> 28) & 0x03)
 241#define STATUS_GET_SOURCE(v)		(((v).status >> 30) & 0x03)
 242#define STATUS_GET_ORB_LOW(v)		((v).orb_low)
 243#define STATUS_GET_DATA(v)		((v).data)
 244
 245struct sbp2_status {
 246	u32 status;
 247	u32 orb_low;
 248	u8 data[24];
 249};
 250
 251struct sbp2_pointer {
 252	__be32 high;
 253	__be32 low;
 254};
 255
 256struct sbp2_orb {
 257	struct fw_transaction t;
 258	struct kref kref;
 259	dma_addr_t request_bus;
 260	int rcode;
 261	void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
 262	struct sbp2_logical_unit *lu;
 263	struct list_head link;
 264};
 265
 266#define MANAGEMENT_ORB_LUN(v)			((v))
 267#define MANAGEMENT_ORB_FUNCTION(v)		((v) << 16)
 268#define MANAGEMENT_ORB_RECONNECT(v)		((v) << 20)
 269#define MANAGEMENT_ORB_EXCLUSIVE(v)		((v) ? 1 << 28 : 0)
 270#define MANAGEMENT_ORB_REQUEST_FORMAT(v)	((v) << 29)
 271#define MANAGEMENT_ORB_NOTIFY			((1) << 31)
 272
 273#define MANAGEMENT_ORB_RESPONSE_LENGTH(v)	((v))
 274#define MANAGEMENT_ORB_PASSWORD_LENGTH(v)	((v) << 16)
 275
 276struct sbp2_management_orb {
 277	struct sbp2_orb base;
 278	struct {
 279		struct sbp2_pointer password;
 280		struct sbp2_pointer response;
 281		__be32 misc;
 282		__be32 length;
 283		struct sbp2_pointer status_fifo;
 284	} request;
 285	__be32 response[4];
 286	dma_addr_t response_bus;
 287	struct completion done;
 288	struct sbp2_status status;
 289};
 290
 291struct sbp2_login_response {
 292	__be32 misc;
 293	struct sbp2_pointer command_block_agent;
 294	__be32 reconnect_hold;
 295};
 296#define COMMAND_ORB_DATA_SIZE(v)	((v))
 297#define COMMAND_ORB_PAGE_SIZE(v)	((v) << 16)
 298#define COMMAND_ORB_PAGE_TABLE_PRESENT	((1) << 19)
 299#define COMMAND_ORB_MAX_PAYLOAD(v)	((v) << 20)
 300#define COMMAND_ORB_SPEED(v)		((v) << 24)
 301#define COMMAND_ORB_DIRECTION		((1) << 27)
 302#define COMMAND_ORB_REQUEST_FORMAT(v)	((v) << 29)
 303#define COMMAND_ORB_NOTIFY		((1) << 31)
 304
 305struct sbp2_command_orb {
 306	struct sbp2_orb base;
 307	struct {
 308		struct sbp2_pointer next;
 309		struct sbp2_pointer data_descriptor;
 310		__be32 misc;
 311		u8 command_block[SBP2_MAX_CDB_SIZE];
 312	} request;
 313	struct scsi_cmnd *cmd;
 314
 315	struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
 316	dma_addr_t page_table_bus;
 317};
 318
 319#define SBP2_ROM_VALUE_WILDCARD ~0         /* match all */
 320#define SBP2_ROM_VALUE_MISSING  0xff000000 /* not present in the unit dir. */
 321
 322/*
 323 * List of devices with known bugs.
 324 *
 325 * The firmware_revision field, masked with 0xffff00, is the best
 326 * indicator for the type of bridge chip of a device.  It yields a few
 327 * false positives but this did not break correctly behaving devices
 328 * so far.
 329 */
 330static const struct {
 331	u32 firmware_revision;
 332	u32 model;
 333	unsigned int workarounds;
 334} sbp2_workarounds_table[] = {
 335	/* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
 336		.firmware_revision	= 0x002800,
 337		.model			= 0x001010,
 338		.workarounds		= SBP2_WORKAROUND_INQUIRY_36 |
 339					  SBP2_WORKAROUND_MODE_SENSE_8 |
 340					  SBP2_WORKAROUND_POWER_CONDITION,
 341	},
 342	/* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
 343		.firmware_revision	= 0x002800,
 344		.model			= 0x000000,
 345		.workarounds		= SBP2_WORKAROUND_POWER_CONDITION,
 346	},
 347	/* Initio bridges, actually only needed for some older ones */ {
 348		.firmware_revision	= 0x000200,
 349		.model			= SBP2_ROM_VALUE_WILDCARD,
 350		.workarounds		= SBP2_WORKAROUND_INQUIRY_36,
 351	},
 352	/* PL-3507 bridge with Prolific firmware */ {
 353		.firmware_revision	= 0x012800,
 354		.model			= SBP2_ROM_VALUE_WILDCARD,
 355		.workarounds		= SBP2_WORKAROUND_POWER_CONDITION,
 356	},
 357	/* Symbios bridge */ {
 358		.firmware_revision	= 0xa0b800,
 359		.model			= SBP2_ROM_VALUE_WILDCARD,
 360		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
 361	},
 362	/* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
 363		.firmware_revision	= 0x002600,
 364		.model			= SBP2_ROM_VALUE_WILDCARD,
 365		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
 366	},
 367	/*
 368	 * iPod 2nd generation: needs 128k max transfer size workaround
 369	 * iPod 3rd generation: needs fix capacity workaround
 370	 */
 371	{
 372		.firmware_revision	= 0x0a2700,
 373		.model			= 0x000000,
 374		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS |
 375					  SBP2_WORKAROUND_FIX_CAPACITY,
 376	},
 377	/* iPod 4th generation */ {
 378		.firmware_revision	= 0x0a2700,
 379		.model			= 0x000021,
 380		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
 381	},
 382	/* iPod mini */ {
 383		.firmware_revision	= 0x0a2700,
 384		.model			= 0x000022,
 385		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
 386	},
 387	/* iPod mini */ {
 388		.firmware_revision	= 0x0a2700,
 389		.model			= 0x000023,
 390		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
 391	},
 392	/* iPod Photo */ {
 393		.firmware_revision	= 0x0a2700,
 394		.model			= 0x00007e,
 395		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
 396	}
 397};
 398
 399static void free_orb(struct kref *kref)
 400{
 401	struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
 402
 403	kfree(orb);
 404}
 405
 406static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
 407			      int tcode, int destination, int source,
 408			      int generation, unsigned long long offset,
 409			      void *payload, size_t length, void *callback_data)
 410{
 411	struct sbp2_logical_unit *lu = callback_data;
 412	struct sbp2_orb *orb = NULL, *iter;
 413	struct sbp2_status status;
 414	unsigned long flags;
 415
 416	if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
 417	    length < 8 || length > sizeof(status)) {
 418		fw_send_response(card, request, RCODE_TYPE_ERROR);
 419		return;
 420	}
 421
 422	status.status  = be32_to_cpup(payload);
 423	status.orb_low = be32_to_cpup(payload + 4);
 424	memset(status.data, 0, sizeof(status.data));
 425	if (length > 8)
 426		memcpy(status.data, payload + 8, length - 8);
 427
 428	if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
 429		dev_notice(lu_dev(lu),
 430			   "non-ORB related status write, not handled\n");
 431		fw_send_response(card, request, RCODE_COMPLETE);
 432		return;
 433	}
 434
 435	/* Lookup the orb corresponding to this status write. */
 436	spin_lock_irqsave(&lu->tgt->lock, flags);
 437	list_for_each_entry(iter, &lu->orb_list, link) {
 438		if (STATUS_GET_ORB_HIGH(status) == 0 &&
 439		    STATUS_GET_ORB_LOW(status) == iter->request_bus) {
 440			iter->rcode = RCODE_COMPLETE;
 441			list_del(&iter->link);
 442			orb = iter;
 443			break;
 444		}
 445	}
 446	spin_unlock_irqrestore(&lu->tgt->lock, flags);
 447
 448	if (orb) {
 449		orb->callback(orb, &status);
 450		kref_put(&orb->kref, free_orb); /* orb callback reference */
 451	} else {
 452		dev_err(lu_dev(lu), "status write for unknown ORB\n");
 453	}
 454
 455	fw_send_response(card, request, RCODE_COMPLETE);
 456}
 457
 458static void complete_transaction(struct fw_card *card, int rcode,
 459				 void *payload, size_t length, void *data)
 460{
 461	struct sbp2_orb *orb = data;
 462	unsigned long flags;
 463
 464	/*
 465	 * This is a little tricky.  We can get the status write for
 466	 * the orb before we get this callback.  The status write
 467	 * handler above will assume the orb pointer transaction was
 468	 * successful and set the rcode to RCODE_COMPLETE for the orb.
 469	 * So this callback only sets the rcode if it hasn't already
 470	 * been set and only does the cleanup if the transaction
 471	 * failed and we didn't already get a status write.
 472	 */
 473	spin_lock_irqsave(&orb->lu->tgt->lock, flags);
 474
 475	if (orb->rcode == -1)
 476		orb->rcode = rcode;
 477	if (orb->rcode != RCODE_COMPLETE) {
 478		list_del(&orb->link);
 479		spin_unlock_irqrestore(&orb->lu->tgt->lock, flags);
 480
 481		orb->callback(orb, NULL);
 482		kref_put(&orb->kref, free_orb); /* orb callback reference */
 483	} else {
 484		spin_unlock_irqrestore(&orb->lu->tgt->lock, flags);
 485	}
 486
 487	kref_put(&orb->kref, free_orb); /* transaction callback reference */
 488}
 489
 490static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
 491			  int node_id, int generation, u64 offset)
 492{
 493	struct fw_device *device = target_parent_device(lu->tgt);
 494	struct sbp2_pointer orb_pointer;
 495	unsigned long flags;
 496
 497	orb_pointer.high = 0;
 498	orb_pointer.low = cpu_to_be32(orb->request_bus);
 499
 500	orb->lu = lu;
 501	spin_lock_irqsave(&lu->tgt->lock, flags);
 502	list_add_tail(&orb->link, &lu->orb_list);
 503	spin_unlock_irqrestore(&lu->tgt->lock, flags);
 504
 505	kref_get(&orb->kref); /* transaction callback reference */
 506	kref_get(&orb->kref); /* orb callback reference */
 507
 508	fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
 509			node_id, generation, device->max_speed, offset,
 510			&orb_pointer, 8, complete_transaction, orb);
 511}
 512
 513static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
 514{
 515	struct fw_device *device = target_parent_device(lu->tgt);
 516	struct sbp2_orb *orb, *next;
 517	struct list_head list;
 518	int retval = -ENOENT;
 519
 520	INIT_LIST_HEAD(&list);
 521	spin_lock_irq(&lu->tgt->lock);
 522	list_splice_init(&lu->orb_list, &list);
 523	spin_unlock_irq(&lu->tgt->lock);
 524
 525	list_for_each_entry_safe(orb, next, &list, link) {
 526		retval = 0;
 527		if (fw_cancel_transaction(device->card, &orb->t) == 0)
 528			continue;
 529
 530		orb->rcode = RCODE_CANCELLED;
 531		orb->callback(orb, NULL);
 532		kref_put(&orb->kref, free_orb); /* orb callback reference */
 533	}
 534
 535	return retval;
 536}
 537
 538static void complete_management_orb(struct sbp2_orb *base_orb,
 539				    struct sbp2_status *status)
 540{
 541	struct sbp2_management_orb *orb =
 542		container_of(base_orb, struct sbp2_management_orb, base);
 543
 544	if (status)
 545		memcpy(&orb->status, status, sizeof(*status));
 546	complete(&orb->done);
 547}
 548
 549static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
 550				    int generation, int function,
 551				    int lun_or_login_id, void *response)
 552{
 553	struct fw_device *device = target_parent_device(lu->tgt);
 554	struct sbp2_management_orb *orb;
 555	unsigned int timeout;
 556	int retval = -ENOMEM;
 557
 558	if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
 559		return 0;
 560
 561	orb = kzalloc(sizeof(*orb), GFP_NOIO);
 562	if (orb == NULL)
 563		return -ENOMEM;
 564
 565	kref_init(&orb->base.kref);
 566	orb->response_bus =
 567		dma_map_single(device->card->device, &orb->response,
 568			       sizeof(orb->response), DMA_FROM_DEVICE);
 569	if (dma_mapping_error(device->card->device, orb->response_bus))
 570		goto fail_mapping_response;
 571
 572	orb->request.response.high = 0;
 573	orb->request.response.low  = cpu_to_be32(orb->response_bus);
 574
 575	orb->request.misc = cpu_to_be32(
 576		MANAGEMENT_ORB_NOTIFY |
 577		MANAGEMENT_ORB_FUNCTION(function) |
 578		MANAGEMENT_ORB_LUN(lun_or_login_id));
 579	orb->request.length = cpu_to_be32(
 580		MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
 581
 582	orb->request.status_fifo.high =
 583		cpu_to_be32(lu->address_handler.offset >> 32);
 584	orb->request.status_fifo.low  =
 585		cpu_to_be32(lu->address_handler.offset);
 586
 587	if (function == SBP2_LOGIN_REQUEST) {
 588		/* Ask for 2^2 == 4 seconds reconnect grace period */
 589		orb->request.misc |= cpu_to_be32(
 590			MANAGEMENT_ORB_RECONNECT(2) |
 591			MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
 592		timeout = lu->tgt->mgt_orb_timeout;
 593	} else {
 594		timeout = SBP2_ORB_TIMEOUT;
 595	}
 596
 597	init_completion(&orb->done);
 598	orb->base.callback = complete_management_orb;
 599
 600	orb->base.request_bus =
 601		dma_map_single(device->card->device, &orb->request,
 602			       sizeof(orb->request), DMA_TO_DEVICE);
 603	if (dma_mapping_error(device->card->device, orb->base.request_bus))
 604		goto fail_mapping_request;
 605
 606	sbp2_send_orb(&orb->base, lu, node_id, generation,
 607		      lu->tgt->management_agent_address);
 608
 609	wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
 610
 611	retval = -EIO;
 612	if (sbp2_cancel_orbs(lu) == 0) {
 613		dev_err(lu_dev(lu), "ORB reply timed out, rcode 0x%02x\n",
 614			orb->base.rcode);
 615		goto out;
 616	}
 617
 618	if (orb->base.rcode != RCODE_COMPLETE) {
 619		dev_err(lu_dev(lu), "management write failed, rcode 0x%02x\n",
 620			orb->base.rcode);
 621		goto out;
 622	}
 623
 624	if (STATUS_GET_RESPONSE(orb->status) != 0 ||
 625	    STATUS_GET_SBP_STATUS(orb->status) != 0) {
 626		dev_err(lu_dev(lu), "error status: %d:%d\n",
 627			 STATUS_GET_RESPONSE(orb->status),
 628			 STATUS_GET_SBP_STATUS(orb->status));
 629		goto out;
 630	}
 631
 632	retval = 0;
 633 out:
 634	dma_unmap_single(device->card->device, orb->base.request_bus,
 635			 sizeof(orb->request), DMA_TO_DEVICE);
 636 fail_mapping_request:
 637	dma_unmap_single(device->card->device, orb->response_bus,
 638			 sizeof(orb->response), DMA_FROM_DEVICE);
 639 fail_mapping_response:
 640	if (response)
 641		memcpy(response, orb->response, sizeof(orb->response));
 642	kref_put(&orb->base.kref, free_orb);
 643
 644	return retval;
 645}
 646
 647static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
 648{
 649	struct fw_device *device = target_parent_device(lu->tgt);
 650	__be32 d = 0;
 651
 652	fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
 653			   lu->tgt->node_id, lu->generation, device->max_speed,
 654			   lu->command_block_agent_address + SBP2_AGENT_RESET,
 655			   &d, 4);
 656}
 657
 658static void complete_agent_reset_write_no_wait(struct fw_card *card,
 659		int rcode, void *payload, size_t length, void *data)
 660{
 661	kfree(data);
 662}
 663
 664static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
 665{
 666	struct fw_device *device = target_parent_device(lu->tgt);
 667	struct fw_transaction *t;
 668	static __be32 d;
 669
 670	t = kmalloc(sizeof(*t), GFP_ATOMIC);
 671	if (t == NULL)
 672		return;
 673
 674	fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
 675			lu->tgt->node_id, lu->generation, device->max_speed,
 676			lu->command_block_agent_address + SBP2_AGENT_RESET,
 677			&d, 4, complete_agent_reset_write_no_wait, t);
 678}
 679
 680static inline void sbp2_allow_block(struct sbp2_target *tgt)
 681{
 682	spin_lock_irq(&tgt->lock);
 683	--tgt->dont_block;
 684	spin_unlock_irq(&tgt->lock);
 685}
 686
 687/*
 688 * Blocks lu->tgt if all of the following conditions are met:
 689 *   - Login, INQUIRY, and high-level SCSI setup of all of the target's
 690 *     logical units have been finished (indicated by dont_block == 0).
 691 *   - lu->generation is stale.
 692 *
 693 * Note, scsi_block_requests() must be called while holding tgt->lock,
 694 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
 695 * unblock the target.
 696 */
 697static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
 698{
 699	struct sbp2_target *tgt = lu->tgt;
 700	struct fw_card *card = target_parent_device(tgt)->card;
 701	struct Scsi_Host *shost =
 702		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
 703	unsigned long flags;
 704
 705	spin_lock_irqsave(&tgt->lock, flags);
 706	if (!tgt->dont_block && !lu->blocked &&
 707	    lu->generation != card->generation) {
 708		lu->blocked = true;
 709		if (++tgt->blocked == 1)
 710			scsi_block_requests(shost);
 711	}
 712	spin_unlock_irqrestore(&tgt->lock, flags);
 713}
 714
 715/*
 716 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
 717 * Note, it is harmless to run scsi_unblock_requests() outside the
 718 * tgt->lock protected section.  On the other hand, running it inside
 719 * the section might clash with shost->host_lock.
 720 */
 721static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
 722{
 723	struct sbp2_target *tgt = lu->tgt;
 724	struct fw_card *card = target_parent_device(tgt)->card;
 725	struct Scsi_Host *shost =
 726		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
 727	bool unblock = false;
 728
 729	spin_lock_irq(&tgt->lock);
 730	if (lu->blocked && lu->generation == card->generation) {
 731		lu->blocked = false;
 732		unblock = --tgt->blocked == 0;
 733	}
 734	spin_unlock_irq(&tgt->lock);
 735
 736	if (unblock)
 737		scsi_unblock_requests(shost);
 738}
 739
 740/*
 741 * Prevents future blocking of tgt and unblocks it.
 742 * Note, it is harmless to run scsi_unblock_requests() outside the
 743 * tgt->lock protected section.  On the other hand, running it inside
 744 * the section might clash with shost->host_lock.
 745 */
 746static void sbp2_unblock(struct sbp2_target *tgt)
 747{
 748	struct Scsi_Host *shost =
 749		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
 750
 751	spin_lock_irq(&tgt->lock);
 752	++tgt->dont_block;
 753	spin_unlock_irq(&tgt->lock);
 754
 755	scsi_unblock_requests(shost);
 756}
 757
 758static int sbp2_lun2int(u16 lun)
 759{
 760	struct scsi_lun eight_bytes_lun;
 761
 762	memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
 763	eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
 764	eight_bytes_lun.scsi_lun[1] = lun & 0xff;
 765
 766	return scsilun_to_int(&eight_bytes_lun);
 767}
 768
 769/*
 770 * Write retransmit retry values into the BUSY_TIMEOUT register.
 771 * - The single-phase retry protocol is supported by all SBP-2 devices, but the
 772 *   default retry_limit value is 0 (i.e. never retry transmission). We write a
 773 *   saner value after logging into the device.
 774 * - The dual-phase retry protocol is optional to implement, and if not
 775 *   supported, writes to the dual-phase portion of the register will be
 776 *   ignored. We try to write the original 1394-1995 default here.
 777 * - In the case of devices that are also SBP-3-compliant, all writes are
 778 *   ignored, as the register is read-only, but contains single-phase retry of
 779 *   15, which is what we're trying to set for all SBP-2 device anyway, so this
 780 *   write attempt is safe and yields more consistent behavior for all devices.
 781 *
 782 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
 783 * and section 6.4 of the SBP-3 spec for further details.
 784 */
 785static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
 786{
 787	struct fw_device *device = target_parent_device(lu->tgt);
 788	__be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
 789
 790	fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
 791			   lu->tgt->node_id, lu->generation, device->max_speed,
 792			   CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4);
 793}
 794
 795static void sbp2_reconnect(struct work_struct *work);
 796
 797static void sbp2_login(struct work_struct *work)
 798{
 799	struct sbp2_logical_unit *lu =
 800		container_of(work, struct sbp2_logical_unit, work.work);
 801	struct sbp2_target *tgt = lu->tgt;
 802	struct fw_device *device = target_parent_device(tgt);
 803	struct Scsi_Host *shost;
 804	struct scsi_device *sdev;
 805	struct sbp2_login_response response;
 806	int generation, node_id, local_node_id;
 807
 808	if (fw_device_is_shutdown(device))
 809		return;
 810
 811	generation    = device->generation;
 812	smp_rmb();    /* node IDs must not be older than generation */
 813	node_id       = device->node_id;
 814	local_node_id = device->card->node_id;
 815
 816	/* If this is a re-login attempt, log out, or we might be rejected. */
 817	if (lu->has_sdev)
 818		sbp2_send_management_orb(lu, device->node_id, generation,
 819				SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
 820
 821	if (sbp2_send_management_orb(lu, node_id, generation,
 822				SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
 823		if (lu->retries++ < 5) {
 824			sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
 825		} else {
 826			dev_err(tgt_dev(tgt), "failed to login to LUN %04x\n",
 827				lu->lun);
 828			/* Let any waiting I/O fail from now on. */
 829			sbp2_unblock(lu->tgt);
 830		}
 831		return;
 832	}
 833
 834	tgt->node_id	  = node_id;
 835	tgt->address_high = local_node_id << 16;
 836	smp_wmb();	  /* node IDs must not be older than generation */
 837	lu->generation	  = generation;
 838
 839	lu->command_block_agent_address =
 840		((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
 841		      << 32) | be32_to_cpu(response.command_block_agent.low);
 842	lu->login_id = be32_to_cpu(response.misc) & 0xffff;
 843
 844	dev_notice(tgt_dev(tgt), "logged in to LUN %04x (%d retries)\n",
 845		   lu->lun, lu->retries);
 846
 847	/* set appropriate retry limit(s) in BUSY_TIMEOUT register */
 848	sbp2_set_busy_timeout(lu);
 849
 850	lu->workfn = sbp2_reconnect;
 851	sbp2_agent_reset(lu);
 852
 853	/* This was a re-login. */
 854	if (lu->has_sdev) {
 855		sbp2_cancel_orbs(lu);
 856		sbp2_conditionally_unblock(lu);
 857
 858		return;
 859	}
 860
 861	if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
 862		ssleep(SBP2_INQUIRY_DELAY);
 863
 864	shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
 865	sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
 866	/*
 867	 * FIXME:  We are unable to perform reconnects while in sbp2_login().
 868	 * Therefore __scsi_add_device() will get into trouble if a bus reset
 869	 * happens in parallel.  It will either fail or leave us with an
 870	 * unusable sdev.  As a workaround we check for this and retry the
 871	 * whole login and SCSI probing.
 872	 */
 873
 874	/* Reported error during __scsi_add_device() */
 875	if (IS_ERR(sdev))
 876		goto out_logout_login;
 877
 878	/* Unreported error during __scsi_add_device() */
 879	smp_rmb(); /* get current card generation */
 880	if (generation != device->card->generation) {
 881		scsi_remove_device(sdev);
 882		scsi_device_put(sdev);
 883		goto out_logout_login;
 884	}
 885
 886	/* No error during __scsi_add_device() */
 887	lu->has_sdev = true;
 888	scsi_device_put(sdev);
 889	sbp2_allow_block(tgt);
 890
 891	return;
 892
 893 out_logout_login:
 894	smp_rmb(); /* generation may have changed */
 895	generation = device->generation;
 896	smp_rmb(); /* node_id must not be older than generation */
 897
 898	sbp2_send_management_orb(lu, device->node_id, generation,
 899				 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
 900	/*
 901	 * If a bus reset happened, sbp2_update will have requeued
 902	 * lu->work already.  Reset the work from reconnect to login.
 903	 */
 904	lu->workfn = sbp2_login;
 905}
 906
 907static void sbp2_reconnect(struct work_struct *work)
 908{
 909	struct sbp2_logical_unit *lu =
 910		container_of(work, struct sbp2_logical_unit, work.work);
 911	struct sbp2_target *tgt = lu->tgt;
 912	struct fw_device *device = target_parent_device(tgt);
 913	int generation, node_id, local_node_id;
 914
 915	if (fw_device_is_shutdown(device))
 916		return;
 917
 918	generation    = device->generation;
 919	smp_rmb();    /* node IDs must not be older than generation */
 920	node_id       = device->node_id;
 921	local_node_id = device->card->node_id;
 922
 923	if (sbp2_send_management_orb(lu, node_id, generation,
 924				     SBP2_RECONNECT_REQUEST,
 925				     lu->login_id, NULL) < 0) {
 926		/*
 927		 * If reconnect was impossible even though we are in the
 928		 * current generation, fall back and try to log in again.
 929		 *
 930		 * We could check for "Function rejected" status, but
 931		 * looking at the bus generation as simpler and more general.
 932		 */
 933		smp_rmb(); /* get current card generation */
 934		if (generation == device->card->generation ||
 935		    lu->retries++ >= 5) {
 936			dev_err(tgt_dev(tgt), "failed to reconnect\n");
 937			lu->retries = 0;
 938			lu->workfn = sbp2_login;
 939		}
 940		sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
 941
 942		return;
 943	}
 944
 945	tgt->node_id      = node_id;
 946	tgt->address_high = local_node_id << 16;
 947	smp_wmb();	  /* node IDs must not be older than generation */
 948	lu->generation	  = generation;
 949
 950	dev_notice(tgt_dev(tgt), "reconnected to LUN %04x (%d retries)\n",
 951		   lu->lun, lu->retries);
 952
 953	sbp2_agent_reset(lu);
 954	sbp2_cancel_orbs(lu);
 955	sbp2_conditionally_unblock(lu);
 956}
 957
 958static void sbp2_lu_workfn(struct work_struct *work)
 959{
 960	struct sbp2_logical_unit *lu = container_of(to_delayed_work(work),
 961						struct sbp2_logical_unit, work);
 962	lu->workfn(work);
 963}
 964
 965static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
 966{
 967	struct sbp2_logical_unit *lu;
 968
 969	lu = kmalloc(sizeof(*lu), GFP_KERNEL);
 970	if (!lu)
 971		return -ENOMEM;
 972
 973	lu->address_handler.length           = 0x100;
 974	lu->address_handler.address_callback = sbp2_status_write;
 975	lu->address_handler.callback_data    = lu;
 976
 977	if (fw_core_add_address_handler(&lu->address_handler,
 978					&fw_high_memory_region) < 0) {
 979		kfree(lu);
 980		return -ENOMEM;
 981	}
 982
 983	lu->tgt      = tgt;
 984	lu->lun      = lun_entry & 0xffff;
 985	lu->login_id = INVALID_LOGIN_ID;
 986	lu->retries  = 0;
 987	lu->has_sdev = false;
 988	lu->blocked  = false;
 989	++tgt->dont_block;
 990	INIT_LIST_HEAD(&lu->orb_list);
 991	lu->workfn = sbp2_login;
 992	INIT_DELAYED_WORK(&lu->work, sbp2_lu_workfn);
 993
 994	list_add_tail(&lu->link, &tgt->lu_list);
 995	return 0;
 996}
 997
 998static void sbp2_get_unit_unique_id(struct sbp2_target *tgt,
 999				    const u32 *leaf)
1000{
1001	if ((leaf[0] & 0xffff0000) == 0x00020000)
1002		tgt->guid = (u64)leaf[1] << 32 | leaf[2];
1003}
1004
1005static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt,
1006				      const u32 *directory)
1007{
1008	struct fw_csr_iterator ci;
1009	int key, value;
1010
1011	fw_csr_iterator_init(&ci, directory);
1012	while (fw_csr_iterator_next(&ci, &key, &value))
1013		if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1014		    sbp2_add_logical_unit(tgt, value) < 0)
1015			return -ENOMEM;
1016	return 0;
1017}
1018
1019static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory,
1020			      u32 *model, u32 *firmware_revision)
1021{
1022	struct fw_csr_iterator ci;
1023	int key, value;
1024
1025	fw_csr_iterator_init(&ci, directory);
1026	while (fw_csr_iterator_next(&ci, &key, &value)) {
1027		switch (key) {
1028
1029		case CSR_DEPENDENT_INFO | CSR_OFFSET:
1030			tgt->management_agent_address =
1031					CSR_REGISTER_BASE + 4 * value;
1032			break;
1033
1034		case CSR_DIRECTORY_ID:
1035			tgt->directory_id = value;
1036			break;
1037
1038		case CSR_MODEL:
1039			*model = value;
1040			break;
1041
1042		case SBP2_CSR_FIRMWARE_REVISION:
1043			*firmware_revision = value;
1044			break;
1045
1046		case SBP2_CSR_UNIT_CHARACTERISTICS:
1047			/* the timeout value is stored in 500ms units */
1048			tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500;
1049			break;
1050
1051		case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1052			if (sbp2_add_logical_unit(tgt, value) < 0)
1053				return -ENOMEM;
1054			break;
1055
1056		case SBP2_CSR_UNIT_UNIQUE_ID:
1057			sbp2_get_unit_unique_id(tgt, ci.p - 1 + value);
1058			break;
1059
1060		case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1061			/* Adjust for the increment in the iterator */
1062			if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1063				return -ENOMEM;
1064			break;
1065		}
1066	}
1067	return 0;
1068}
1069
1070/*
1071 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
1072 * provided in the config rom. Most devices do provide a value, which
1073 * we'll use for login management orbs, but with some sane limits.
1074 */
1075static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt)
1076{
1077	unsigned int timeout = tgt->mgt_orb_timeout;
1078
1079	if (timeout > 40000)
1080		dev_notice(tgt_dev(tgt), "%ds mgt_ORB_timeout limited to 40s\n",
1081			   timeout / 1000);
1082
1083	tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000);
1084}
1085
1086static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1087				  u32 firmware_revision)
1088{
1089	int i;
1090	unsigned int w = sbp2_param_workarounds;
1091
1092	if (w)
1093		dev_notice(tgt_dev(tgt),
1094			   "Please notify linux1394-devel@lists.sf.net "
1095			   "if you need the workarounds parameter\n");
1096
1097	if (w & SBP2_WORKAROUND_OVERRIDE)
1098		goto out;
1099
1100	for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1101
1102		if (sbp2_workarounds_table[i].firmware_revision !=
1103		    (firmware_revision & 0xffffff00))
1104			continue;
1105
1106		if (sbp2_workarounds_table[i].model != model &&
1107		    sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1108			continue;
1109
1110		w |= sbp2_workarounds_table[i].workarounds;
1111		break;
1112	}
1113 out:
1114	if (w)
1115		dev_notice(tgt_dev(tgt), "workarounds 0x%x "
1116			   "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1117			   w, firmware_revision, model);
1118	tgt->workarounds = w;
1119}
1120
1121static const struct scsi_host_template scsi_driver_template;
1122static void sbp2_remove(struct fw_unit *unit);
1123
1124static int sbp2_probe(struct fw_unit *unit, const struct ieee1394_device_id *id)
1125{
1126	struct fw_device *device = fw_parent_device(unit);
1127	struct sbp2_target *tgt;
1128	struct sbp2_logical_unit *lu;
1129	struct Scsi_Host *shost;
1130	u32 model, firmware_revision;
1131
1132	/* cannot (or should not) handle targets on the local node */
1133	if (device->is_local)
1134		return -ENODEV;
1135
1136	shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1137	if (shost == NULL)
1138		return -ENOMEM;
1139
1140	tgt = (struct sbp2_target *)shost->hostdata;
1141	dev_set_drvdata(&unit->device, tgt);
1142	tgt->unit = unit;
1143	INIT_LIST_HEAD(&tgt->lu_list);
1144	spin_lock_init(&tgt->lock);
1145	tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1146
1147	if (fw_device_enable_phys_dma(device) < 0)
1148		goto fail_shost_put;
1149
1150	shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
1151
1152	if (scsi_add_host_with_dma(shost, &unit->device,
1153				   device->card->device) < 0)
1154		goto fail_shost_put;
1155
1156	/* implicit directory ID */
1157	tgt->directory_id = ((unit->directory - device->config_rom) * 4
1158			     + CSR_CONFIG_ROM) & 0xffffff;
1159
1160	firmware_revision = SBP2_ROM_VALUE_MISSING;
1161	model		  = SBP2_ROM_VALUE_MISSING;
1162
1163	if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1164			       &firmware_revision) < 0)
1165		goto fail_remove;
1166
1167	sbp2_clamp_management_orb_timeout(tgt);
1168	sbp2_init_workarounds(tgt, model, firmware_revision);
1169
1170	/*
1171	 * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1172	 * and so on up to 4096 bytes.  The SBP-2 max_payload field
1173	 * specifies the max payload size as 2 ^ (max_payload + 2), so
1174	 * if we set this to max_speed + 7, we get the right value.
1175	 */
1176	tgt->max_payload = min3(device->max_speed + 7, 10U,
1177				device->card->max_receive - 1);
1178
1179	/* Do the login in a workqueue so we can easily reschedule retries. */
1180	list_for_each_entry(lu, &tgt->lu_list, link)
1181		sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1182
1183	return 0;
1184
1185 fail_remove:
1186	sbp2_remove(unit);
1187	return -ENOMEM;
1188
1189 fail_shost_put:
1190	scsi_host_put(shost);
1191	return -ENOMEM;
1192}
1193
1194static void sbp2_update(struct fw_unit *unit)
1195{
1196	struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1197	struct sbp2_logical_unit *lu;
1198
1199	fw_device_enable_phys_dma(fw_parent_device(unit));
1200
1201	/*
1202	 * Fw-core serializes sbp2_update() against sbp2_remove().
1203	 * Iteration over tgt->lu_list is therefore safe here.
1204	 */
1205	list_for_each_entry(lu, &tgt->lu_list, link) {
1206		sbp2_conditionally_block(lu);
1207		lu->retries = 0;
1208		sbp2_queue_work(lu, 0);
1209	}
1210}
1211
1212static void sbp2_remove(struct fw_unit *unit)
1213{
1214	struct fw_device *device = fw_parent_device(unit);
1215	struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1216	struct sbp2_logical_unit *lu, *next;
1217	struct Scsi_Host *shost =
1218		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
1219	struct scsi_device *sdev;
1220
1221	/* prevent deadlocks */
1222	sbp2_unblock(tgt);
1223
1224	list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
1225		cancel_delayed_work_sync(&lu->work);
1226		sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
1227		if (sdev) {
1228			scsi_remove_device(sdev);
1229			scsi_device_put(sdev);
1230		}
1231		if (lu->login_id != INVALID_LOGIN_ID) {
1232			int generation, node_id;
1233			/*
1234			 * tgt->node_id may be obsolete here if we failed
1235			 * during initial login or after a bus reset where
1236			 * the topology changed.
1237			 */
1238			generation = device->generation;
1239			smp_rmb(); /* node_id vs. generation */
1240			node_id    = device->node_id;
1241			sbp2_send_management_orb(lu, node_id, generation,
1242						 SBP2_LOGOUT_REQUEST,
1243						 lu->login_id, NULL);
1244		}
1245		fw_core_remove_address_handler(&lu->address_handler);
1246		list_del(&lu->link);
1247		kfree(lu);
1248	}
1249	scsi_remove_host(shost);
1250	dev_notice(&unit->device, "released target %d:0:0\n", shost->host_no);
1251
1252	scsi_host_put(shost);
1253}
1254
1255#define SBP2_UNIT_SPEC_ID_ENTRY	0x0000609e
1256#define SBP2_SW_VERSION_ENTRY	0x00010483
1257
1258static const struct ieee1394_device_id sbp2_id_table[] = {
1259	{
1260		.match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1261				IEEE1394_MATCH_VERSION,
1262		.specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1263		.version      = SBP2_SW_VERSION_ENTRY,
1264	},
1265	{ }
1266};
1267
1268static struct fw_driver sbp2_driver = {
1269	.driver   = {
1270		.owner  = THIS_MODULE,
1271		.name   = KBUILD_MODNAME,
1272		.bus    = &fw_bus_type,
1273	},
1274	.probe    = sbp2_probe,
1275	.update   = sbp2_update,
1276	.remove   = sbp2_remove,
1277	.id_table = sbp2_id_table,
1278};
1279
1280static void sbp2_unmap_scatterlist(struct device *card_device,
1281				   struct sbp2_command_orb *orb)
1282{
1283	scsi_dma_unmap(orb->cmd);
1284
1285	if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
1286		dma_unmap_single(card_device, orb->page_table_bus,
1287				 sizeof(orb->page_table), DMA_TO_DEVICE);
1288}
1289
1290static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1291{
1292	int sam_status;
1293	int sfmt = (sbp2_status[0] >> 6) & 0x03;
1294
1295	if (sfmt == 2 || sfmt == 3) {
1296		/*
1297		 * Reserved for future standardization (2) or
1298		 * Status block format vendor-dependent (3)
1299		 */
1300		return DID_ERROR << 16;
1301	}
1302
1303	sense_data[0] = 0x70 | sfmt | (sbp2_status[1] & 0x80);
1304	sense_data[1] = 0x0;
1305	sense_data[2] = ((sbp2_status[1] << 1) & 0xe0) | (sbp2_status[1] & 0x0f);
1306	sense_data[3] = sbp2_status[4];
1307	sense_data[4] = sbp2_status[5];
1308	sense_data[5] = sbp2_status[6];
1309	sense_data[6] = sbp2_status[7];
1310	sense_data[7] = 10;
1311	sense_data[8] = sbp2_status[8];
1312	sense_data[9] = sbp2_status[9];
1313	sense_data[10] = sbp2_status[10];
1314	sense_data[11] = sbp2_status[11];
1315	sense_data[12] = sbp2_status[2];
1316	sense_data[13] = sbp2_status[3];
1317	sense_data[14] = sbp2_status[12];
1318	sense_data[15] = sbp2_status[13];
1319
1320	sam_status = sbp2_status[0] & 0x3f;
1321
1322	switch (sam_status) {
1323	case SAM_STAT_GOOD:
1324	case SAM_STAT_CHECK_CONDITION:
1325	case SAM_STAT_CONDITION_MET:
1326	case SAM_STAT_BUSY:
1327	case SAM_STAT_RESERVATION_CONFLICT:
1328	case SAM_STAT_COMMAND_TERMINATED:
1329		return DID_OK << 16 | sam_status;
1330
1331	default:
1332		return DID_ERROR << 16;
1333	}
1334}
1335
1336static void complete_command_orb(struct sbp2_orb *base_orb,
1337				 struct sbp2_status *status)
1338{
1339	struct sbp2_command_orb *orb =
1340		container_of(base_orb, struct sbp2_command_orb, base);
1341	struct fw_device *device = target_parent_device(base_orb->lu->tgt);
1342	int result;
1343
1344	if (status != NULL) {
1345		if (STATUS_GET_DEAD(*status))
1346			sbp2_agent_reset_no_wait(base_orb->lu);
1347
1348		switch (STATUS_GET_RESPONSE(*status)) {
1349		case SBP2_STATUS_REQUEST_COMPLETE:
1350			result = DID_OK << 16;
1351			break;
1352		case SBP2_STATUS_TRANSPORT_FAILURE:
1353			result = DID_BUS_BUSY << 16;
1354			break;
1355		case SBP2_STATUS_ILLEGAL_REQUEST:
1356		case SBP2_STATUS_VENDOR_DEPENDENT:
1357		default:
1358			result = DID_ERROR << 16;
1359			break;
1360		}
1361
1362		if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1363			result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1364							   orb->cmd->sense_buffer);
1365	} else {
1366		/*
1367		 * If the orb completes with status == NULL, something
1368		 * went wrong, typically a bus reset happened mid-orb
1369		 * or when sending the write (less likely).
1370		 */
1371		result = DID_BUS_BUSY << 16;
1372		sbp2_conditionally_block(base_orb->lu);
1373	}
1374
1375	dma_unmap_single(device->card->device, orb->base.request_bus,
1376			 sizeof(orb->request), DMA_TO_DEVICE);
1377	sbp2_unmap_scatterlist(device->card->device, orb);
1378
1379	orb->cmd->result = result;
1380	scsi_done(orb->cmd);
1381}
1382
1383static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
1384		struct fw_device *device, struct sbp2_logical_unit *lu)
1385{
1386	struct scatterlist *sg = scsi_sglist(orb->cmd);
1387	int i, n;
1388
1389	n = scsi_dma_map(orb->cmd);
1390	if (n <= 0)
1391		goto fail;
1392
1393	/*
1394	 * Handle the special case where there is only one element in
1395	 * the scatter list by converting it to an immediate block
1396	 * request. This is also a workaround for broken devices such
1397	 * as the second generation iPod which doesn't support page
1398	 * tables.
1399	 */
1400	if (n == 1) {
1401		orb->request.data_descriptor.high =
1402			cpu_to_be32(lu->tgt->address_high);
1403		orb->request.data_descriptor.low  =
1404			cpu_to_be32(sg_dma_address(sg));
1405		orb->request.misc |=
1406			cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1407		return 0;
1408	}
1409
1410	for_each_sg(sg, sg, n, i) {
1411		orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1412		orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1413	}
1414
1415	orb->page_table_bus =
1416		dma_map_single(device->card->device, orb->page_table,
1417			       sizeof(orb->page_table), DMA_TO_DEVICE);
1418	if (dma_mapping_error(device->card->device, orb->page_table_bus))
1419		goto fail_page_table;
1420
1421	/*
1422	 * The data_descriptor pointer is the one case where we need
1423	 * to fill in the node ID part of the address.  All other
1424	 * pointers assume that the data referenced reside on the
1425	 * initiator (i.e. us), but data_descriptor can refer to data
1426	 * on other nodes so we need to put our ID in descriptor.high.
1427	 */
1428	orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1429	orb->request.data_descriptor.low  = cpu_to_be32(orb->page_table_bus);
1430	orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1431					 COMMAND_ORB_DATA_SIZE(n));
1432
1433	return 0;
1434
1435 fail_page_table:
1436	scsi_dma_unmap(orb->cmd);
1437 fail:
1438	return -ENOMEM;
1439}
1440
1441/* SCSI stack integration */
1442
1443static int sbp2_scsi_queuecommand(struct Scsi_Host *shost,
1444				  struct scsi_cmnd *cmd)
1445{
1446	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1447	struct fw_device *device = target_parent_device(lu->tgt);
1448	struct sbp2_command_orb *orb;
1449	int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1450
1451	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1452	if (orb == NULL)
1453		return SCSI_MLQUEUE_HOST_BUSY;
1454
1455	/* Initialize rcode to something not RCODE_COMPLETE. */
1456	orb->base.rcode = -1;
1457	kref_init(&orb->base.kref);
1458	orb->cmd = cmd;
1459	orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1460	orb->request.misc = cpu_to_be32(
1461		COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1462		COMMAND_ORB_SPEED(device->max_speed) |
1463		COMMAND_ORB_NOTIFY);
1464
1465	if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1466		orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1467
1468	generation = device->generation;
1469	smp_rmb();    /* sbp2_map_scatterlist looks at tgt->address_high */
1470
1471	if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1472		goto out;
1473
1474	memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1475
1476	orb->base.callback = complete_command_orb;
1477	orb->base.request_bus =
1478		dma_map_single(device->card->device, &orb->request,
1479			       sizeof(orb->request), DMA_TO_DEVICE);
1480	if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1481		sbp2_unmap_scatterlist(device->card->device, orb);
1482		goto out;
1483	}
1484
1485	sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1486		      lu->command_block_agent_address + SBP2_ORB_POINTER);
1487	retval = 0;
1488 out:
1489	kref_put(&orb->base.kref, free_orb);
1490	return retval;
1491}
1492
1493static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1494{
1495	struct sbp2_logical_unit *lu = sdev->hostdata;
1496
1497	/* (Re-)Adding logical units via the SCSI stack is not supported. */
1498	if (!lu)
1499		return -ENOSYS;
1500
1501	sdev->allow_restart = 1;
1502
 
 
 
 
 
 
1503	if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1504		sdev->inquiry_len = 36;
1505
1506	return 0;
1507}
1508
1509static int sbp2_scsi_device_configure(struct scsi_device *sdev,
1510		struct queue_limits *lim)
1511{
1512	struct sbp2_logical_unit *lu = sdev->hostdata;
1513
1514	sdev->use_10_for_rw = 1;
1515
1516	if (sbp2_param_exclusive_login) {
1517		sdev->manage_system_start_stop = 1;
1518		sdev->manage_runtime_start_stop = 1;
1519		sdev->manage_shutdown = 1;
1520	}
1521
1522	if (sdev->type == TYPE_ROM)
1523		sdev->use_10_for_ms = 1;
1524
1525	if (sdev->type == TYPE_DISK &&
1526	    lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1527		sdev->skip_ms_page_8 = 1;
1528
1529	if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1530		sdev->fix_capacity = 1;
1531
1532	if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1533		sdev->start_stop_pwr_cond = 1;
1534
1535	if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1536		lim->max_hw_sectors = 128 * 1024 / 512;
1537
1538	return 0;
1539}
1540
1541/*
1542 * Called by scsi stack when something has really gone wrong.  Usually
1543 * called when a command has timed-out for some reason.
1544 */
1545static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1546{
1547	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1548
1549	dev_notice(lu_dev(lu), "sbp2_scsi_abort\n");
1550	sbp2_agent_reset(lu);
1551	sbp2_cancel_orbs(lu);
1552
1553	return SUCCESS;
1554}
1555
1556/*
1557 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1558 * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1559 *
1560 * This is the concatenation of target port identifier and logical unit
1561 * identifier as per SAM-2...SAM-4 annex A.
1562 */
1563static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
1564			struct device_attribute *attr, char *buf)
1565{
1566	struct scsi_device *sdev = to_scsi_device(dev);
1567	struct sbp2_logical_unit *lu;
1568
1569	if (!sdev)
1570		return 0;
1571
1572	lu = sdev->hostdata;
1573
1574	return sprintf(buf, "%016llx:%06x:%04x\n",
1575			(unsigned long long)lu->tgt->guid,
1576			lu->tgt->directory_id, lu->lun);
1577}
1578
1579static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1580
1581static struct attribute *sbp2_scsi_sysfs_attrs[] = {
1582	&dev_attr_ieee1394_id.attr,
1583	NULL
1584};
1585
1586ATTRIBUTE_GROUPS(sbp2_scsi_sysfs);
1587
1588static const struct scsi_host_template scsi_driver_template = {
1589	.module			= THIS_MODULE,
1590	.name			= "SBP-2 IEEE-1394",
1591	.proc_name		= "sbp2",
1592	.queuecommand		= sbp2_scsi_queuecommand,
1593	.slave_alloc		= sbp2_scsi_slave_alloc,
1594	.device_configure	= sbp2_scsi_device_configure,
1595	.eh_abort_handler	= sbp2_scsi_abort,
1596	.this_id		= -1,
1597	.sg_tablesize		= SG_ALL,
1598	.max_segment_size	= SBP2_MAX_SEG_SIZE,
1599	.can_queue		= 1,
1600	.sdev_groups		= sbp2_scsi_sysfs_groups,
1601};
1602
1603MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1604MODULE_DESCRIPTION("SCSI over IEEE1394");
1605MODULE_LICENSE("GPL");
1606MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1607
1608/* Provide a module alias so root-on-sbp2 initrds don't break. */
1609MODULE_ALIAS("sbp2");
1610
1611static int __init sbp2_init(void)
1612{
1613	return driver_register(&sbp2_driver.driver);
1614}
1615
1616static void __exit sbp2_cleanup(void)
1617{
1618	driver_unregister(&sbp2_driver.driver);
1619}
1620
1621module_init(sbp2_init);
1622module_exit(sbp2_cleanup);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * SBP2 driver (SCSI over IEEE1394)
   4 *
   5 * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
   6 */
   7
   8/*
   9 * The basic structure of this driver is based on the old storage driver,
  10 * drivers/ieee1394/sbp2.c, originally written by
  11 *     James Goodwin <jamesg@filanet.com>
  12 * with later contributions and ongoing maintenance from
  13 *     Ben Collins <bcollins@debian.org>,
  14 *     Stefan Richter <stefanr@s5r6.in-berlin.de>
  15 * and many others.
  16 */
  17
  18#include <linux/blkdev.h>
  19#include <linux/bug.h>
  20#include <linux/completion.h>
  21#include <linux/delay.h>
  22#include <linux/device.h>
  23#include <linux/dma-mapping.h>
  24#include <linux/firewire.h>
  25#include <linux/firewire-constants.h>
  26#include <linux/init.h>
  27#include <linux/jiffies.h>
  28#include <linux/kernel.h>
  29#include <linux/kref.h>
  30#include <linux/list.h>
  31#include <linux/mod_devicetable.h>
  32#include <linux/module.h>
  33#include <linux/moduleparam.h>
  34#include <linux/scatterlist.h>
  35#include <linux/slab.h>
  36#include <linux/spinlock.h>
  37#include <linux/string.h>
  38#include <linux/stringify.h>
  39#include <linux/workqueue.h>
  40
  41#include <asm/byteorder.h>
  42
  43#include <scsi/scsi.h>
  44#include <scsi/scsi_cmnd.h>
  45#include <scsi/scsi_device.h>
  46#include <scsi/scsi_host.h>
  47
  48/*
  49 * So far only bridges from Oxford Semiconductor are known to support
  50 * concurrent logins. Depending on firmware, four or two concurrent logins
  51 * are possible on OXFW911 and newer Oxsemi bridges.
  52 *
  53 * Concurrent logins are useful together with cluster filesystems.
  54 */
  55static bool sbp2_param_exclusive_login = 1;
  56module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
  57MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
  58		 "(default = Y, use N for concurrent initiators)");
  59
  60/*
  61 * Flags for firmware oddities
  62 *
  63 * - 128kB max transfer
  64 *   Limit transfer size. Necessary for some old bridges.
  65 *
  66 * - 36 byte inquiry
  67 *   When scsi_mod probes the device, let the inquiry command look like that
  68 *   from MS Windows.
  69 *
  70 * - skip mode page 8
  71 *   Suppress sending of mode_sense for mode page 8 if the device pretends to
  72 *   support the SCSI Primary Block commands instead of Reduced Block Commands.
  73 *
  74 * - fix capacity
  75 *   Tell sd_mod to correct the last sector number reported by read_capacity.
  76 *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
  77 *   Don't use this with devices which don't have this bug.
  78 *
  79 * - delay inquiry
  80 *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
  81 *
  82 * - power condition
  83 *   Set the power condition field in the START STOP UNIT commands sent by
  84 *   sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
 
  85 *   Some disks need this to spin down or to resume properly.
  86 *
  87 * - override internal blacklist
  88 *   Instead of adding to the built-in blacklist, use only the workarounds
  89 *   specified in the module load parameter.
  90 *   Useful if a blacklist entry interfered with a non-broken device.
  91 */
  92#define SBP2_WORKAROUND_128K_MAX_TRANS	0x1
  93#define SBP2_WORKAROUND_INQUIRY_36	0x2
  94#define SBP2_WORKAROUND_MODE_SENSE_8	0x4
  95#define SBP2_WORKAROUND_FIX_CAPACITY	0x8
  96#define SBP2_WORKAROUND_DELAY_INQUIRY	0x10
  97#define SBP2_INQUIRY_DELAY		12
  98#define SBP2_WORKAROUND_POWER_CONDITION	0x20
  99#define SBP2_WORKAROUND_OVERRIDE	0x100
 100
 101static int sbp2_param_workarounds;
 102module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
 103MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
 104	", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
 105	", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
 106	", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
 107	", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
 108	", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
 109	", set power condition in start stop unit = "
 110				  __stringify(SBP2_WORKAROUND_POWER_CONDITION)
 111	", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
 112	", or a combination)");
 113
 114/*
 115 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
 116 * and one struct scsi_device per sbp2_logical_unit.
 117 */
 118struct sbp2_logical_unit {
 119	struct sbp2_target *tgt;
 120	struct list_head link;
 121	struct fw_address_handler address_handler;
 122	struct list_head orb_list;
 123
 124	u64 command_block_agent_address;
 125	u16 lun;
 126	int login_id;
 127
 128	/*
 129	 * The generation is updated once we've logged in or reconnected
 130	 * to the logical unit.  Thus, I/O to the device will automatically
 131	 * fail and get retried if it happens in a window where the device
 132	 * is not ready, e.g. after a bus reset but before we reconnect.
 133	 */
 134	int generation;
 135	int retries;
 136	work_func_t workfn;
 137	struct delayed_work work;
 138	bool has_sdev;
 139	bool blocked;
 140};
 141
 142static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
 143{
 144	queue_delayed_work(fw_workqueue, &lu->work, delay);
 145}
 146
 147/*
 148 * We create one struct sbp2_target per IEEE 1212 Unit Directory
 149 * and one struct Scsi_Host per sbp2_target.
 150 */
 151struct sbp2_target {
 152	struct fw_unit *unit;
 153	struct list_head lu_list;
 154
 155	u64 management_agent_address;
 156	u64 guid;
 157	int directory_id;
 158	int node_id;
 159	int address_high;
 160	unsigned int workarounds;
 161	unsigned int mgt_orb_timeout;
 162	unsigned int max_payload;
 163
 164	spinlock_t lock;
 165	int dont_block;	/* counter for each logical unit */
 166	int blocked;	/* ditto */
 167};
 168
 169static struct fw_device *target_parent_device(struct sbp2_target *tgt)
 170{
 171	return fw_parent_device(tgt->unit);
 172}
 173
 174static const struct device *tgt_dev(const struct sbp2_target *tgt)
 175{
 176	return &tgt->unit->device;
 177}
 178
 179static const struct device *lu_dev(const struct sbp2_logical_unit *lu)
 180{
 181	return &lu->tgt->unit->device;
 182}
 183
 184/* Impossible login_id, to detect logout attempt before successful login */
 185#define INVALID_LOGIN_ID 0x10000
 186
 187#define SBP2_ORB_TIMEOUT		2000U		/* Timeout in ms */
 188#define SBP2_ORB_NULL			0x80000000
 189#define SBP2_RETRY_LIMIT		0xf		/* 15 retries */
 190#define SBP2_CYCLE_LIMIT		(0xc8 << 12)	/* 200 125us cycles */
 191
 192/*
 193 * There is no transport protocol limit to the CDB length,  but we implement
 194 * a fixed length only.  16 bytes is enough for disks larger than 2 TB.
 195 */
 196#define SBP2_MAX_CDB_SIZE		16
 197
 198/*
 199 * The maximum SBP-2 data buffer size is 0xffff.  We quadlet-align this
 200 * for compatibility with earlier versions of this driver.
 201 */
 202#define SBP2_MAX_SEG_SIZE		0xfffc
 203
 204/* Unit directory keys */
 205#define SBP2_CSR_UNIT_CHARACTERISTICS	0x3a
 206#define SBP2_CSR_FIRMWARE_REVISION	0x3c
 207#define SBP2_CSR_LOGICAL_UNIT_NUMBER	0x14
 208#define SBP2_CSR_UNIT_UNIQUE_ID		0x8d
 209#define SBP2_CSR_LOGICAL_UNIT_DIRECTORY	0xd4
 210
 211/* Management orb opcodes */
 212#define SBP2_LOGIN_REQUEST		0x0
 213#define SBP2_QUERY_LOGINS_REQUEST	0x1
 214#define SBP2_RECONNECT_REQUEST		0x3
 215#define SBP2_SET_PASSWORD_REQUEST	0x4
 216#define SBP2_LOGOUT_REQUEST		0x7
 217#define SBP2_ABORT_TASK_REQUEST		0xb
 218#define SBP2_ABORT_TASK_SET		0xc
 219#define SBP2_LOGICAL_UNIT_RESET		0xe
 220#define SBP2_TARGET_RESET_REQUEST	0xf
 221
 222/* Offsets for command block agent registers */
 223#define SBP2_AGENT_STATE		0x00
 224#define SBP2_AGENT_RESET		0x04
 225#define SBP2_ORB_POINTER		0x08
 226#define SBP2_DOORBELL			0x10
 227#define SBP2_UNSOLICITED_STATUS_ENABLE	0x14
 228
 229/* Status write response codes */
 230#define SBP2_STATUS_REQUEST_COMPLETE	0x0
 231#define SBP2_STATUS_TRANSPORT_FAILURE	0x1
 232#define SBP2_STATUS_ILLEGAL_REQUEST	0x2
 233#define SBP2_STATUS_VENDOR_DEPENDENT	0x3
 234
 235#define STATUS_GET_ORB_HIGH(v)		((v).status & 0xffff)
 236#define STATUS_GET_SBP_STATUS(v)	(((v).status >> 16) & 0xff)
 237#define STATUS_GET_LEN(v)		(((v).status >> 24) & 0x07)
 238#define STATUS_GET_DEAD(v)		(((v).status >> 27) & 0x01)
 239#define STATUS_GET_RESPONSE(v)		(((v).status >> 28) & 0x03)
 240#define STATUS_GET_SOURCE(v)		(((v).status >> 30) & 0x03)
 241#define STATUS_GET_ORB_LOW(v)		((v).orb_low)
 242#define STATUS_GET_DATA(v)		((v).data)
 243
 244struct sbp2_status {
 245	u32 status;
 246	u32 orb_low;
 247	u8 data[24];
 248};
 249
 250struct sbp2_pointer {
 251	__be32 high;
 252	__be32 low;
 253};
 254
 255struct sbp2_orb {
 256	struct fw_transaction t;
 257	struct kref kref;
 258	dma_addr_t request_bus;
 259	int rcode;
 260	void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
 261	struct sbp2_logical_unit *lu;
 262	struct list_head link;
 263};
 264
 265#define MANAGEMENT_ORB_LUN(v)			((v))
 266#define MANAGEMENT_ORB_FUNCTION(v)		((v) << 16)
 267#define MANAGEMENT_ORB_RECONNECT(v)		((v) << 20)
 268#define MANAGEMENT_ORB_EXCLUSIVE(v)		((v) ? 1 << 28 : 0)
 269#define MANAGEMENT_ORB_REQUEST_FORMAT(v)	((v) << 29)
 270#define MANAGEMENT_ORB_NOTIFY			((1) << 31)
 271
 272#define MANAGEMENT_ORB_RESPONSE_LENGTH(v)	((v))
 273#define MANAGEMENT_ORB_PASSWORD_LENGTH(v)	((v) << 16)
 274
 275struct sbp2_management_orb {
 276	struct sbp2_orb base;
 277	struct {
 278		struct sbp2_pointer password;
 279		struct sbp2_pointer response;
 280		__be32 misc;
 281		__be32 length;
 282		struct sbp2_pointer status_fifo;
 283	} request;
 284	__be32 response[4];
 285	dma_addr_t response_bus;
 286	struct completion done;
 287	struct sbp2_status status;
 288};
 289
 290struct sbp2_login_response {
 291	__be32 misc;
 292	struct sbp2_pointer command_block_agent;
 293	__be32 reconnect_hold;
 294};
 295#define COMMAND_ORB_DATA_SIZE(v)	((v))
 296#define COMMAND_ORB_PAGE_SIZE(v)	((v) << 16)
 297#define COMMAND_ORB_PAGE_TABLE_PRESENT	((1) << 19)
 298#define COMMAND_ORB_MAX_PAYLOAD(v)	((v) << 20)
 299#define COMMAND_ORB_SPEED(v)		((v) << 24)
 300#define COMMAND_ORB_DIRECTION		((1) << 27)
 301#define COMMAND_ORB_REQUEST_FORMAT(v)	((v) << 29)
 302#define COMMAND_ORB_NOTIFY		((1) << 31)
 303
 304struct sbp2_command_orb {
 305	struct sbp2_orb base;
 306	struct {
 307		struct sbp2_pointer next;
 308		struct sbp2_pointer data_descriptor;
 309		__be32 misc;
 310		u8 command_block[SBP2_MAX_CDB_SIZE];
 311	} request;
 312	struct scsi_cmnd *cmd;
 313
 314	struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
 315	dma_addr_t page_table_bus;
 316};
 317
 318#define SBP2_ROM_VALUE_WILDCARD ~0         /* match all */
 319#define SBP2_ROM_VALUE_MISSING  0xff000000 /* not present in the unit dir. */
 320
 321/*
 322 * List of devices with known bugs.
 323 *
 324 * The firmware_revision field, masked with 0xffff00, is the best
 325 * indicator for the type of bridge chip of a device.  It yields a few
 326 * false positives but this did not break correctly behaving devices
 327 * so far.
 328 */
 329static const struct {
 330	u32 firmware_revision;
 331	u32 model;
 332	unsigned int workarounds;
 333} sbp2_workarounds_table[] = {
 334	/* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
 335		.firmware_revision	= 0x002800,
 336		.model			= 0x001010,
 337		.workarounds		= SBP2_WORKAROUND_INQUIRY_36 |
 338					  SBP2_WORKAROUND_MODE_SENSE_8 |
 339					  SBP2_WORKAROUND_POWER_CONDITION,
 340	},
 341	/* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
 342		.firmware_revision	= 0x002800,
 343		.model			= 0x000000,
 344		.workarounds		= SBP2_WORKAROUND_POWER_CONDITION,
 345	},
 346	/* Initio bridges, actually only needed for some older ones */ {
 347		.firmware_revision	= 0x000200,
 348		.model			= SBP2_ROM_VALUE_WILDCARD,
 349		.workarounds		= SBP2_WORKAROUND_INQUIRY_36,
 350	},
 351	/* PL-3507 bridge with Prolific firmware */ {
 352		.firmware_revision	= 0x012800,
 353		.model			= SBP2_ROM_VALUE_WILDCARD,
 354		.workarounds		= SBP2_WORKAROUND_POWER_CONDITION,
 355	},
 356	/* Symbios bridge */ {
 357		.firmware_revision	= 0xa0b800,
 358		.model			= SBP2_ROM_VALUE_WILDCARD,
 359		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
 360	},
 361	/* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
 362		.firmware_revision	= 0x002600,
 363		.model			= SBP2_ROM_VALUE_WILDCARD,
 364		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
 365	},
 366	/*
 367	 * iPod 2nd generation: needs 128k max transfer size workaround
 368	 * iPod 3rd generation: needs fix capacity workaround
 369	 */
 370	{
 371		.firmware_revision	= 0x0a2700,
 372		.model			= 0x000000,
 373		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS |
 374					  SBP2_WORKAROUND_FIX_CAPACITY,
 375	},
 376	/* iPod 4th generation */ {
 377		.firmware_revision	= 0x0a2700,
 378		.model			= 0x000021,
 379		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
 380	},
 381	/* iPod mini */ {
 382		.firmware_revision	= 0x0a2700,
 383		.model			= 0x000022,
 384		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
 385	},
 386	/* iPod mini */ {
 387		.firmware_revision	= 0x0a2700,
 388		.model			= 0x000023,
 389		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
 390	},
 391	/* iPod Photo */ {
 392		.firmware_revision	= 0x0a2700,
 393		.model			= 0x00007e,
 394		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
 395	}
 396};
 397
 398static void free_orb(struct kref *kref)
 399{
 400	struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
 401
 402	kfree(orb);
 403}
 404
 405static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
 406			      int tcode, int destination, int source,
 407			      int generation, unsigned long long offset,
 408			      void *payload, size_t length, void *callback_data)
 409{
 410	struct sbp2_logical_unit *lu = callback_data;
 411	struct sbp2_orb *orb;
 412	struct sbp2_status status;
 413	unsigned long flags;
 414
 415	if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
 416	    length < 8 || length > sizeof(status)) {
 417		fw_send_response(card, request, RCODE_TYPE_ERROR);
 418		return;
 419	}
 420
 421	status.status  = be32_to_cpup(payload);
 422	status.orb_low = be32_to_cpup(payload + 4);
 423	memset(status.data, 0, sizeof(status.data));
 424	if (length > 8)
 425		memcpy(status.data, payload + 8, length - 8);
 426
 427	if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
 428		dev_notice(lu_dev(lu),
 429			   "non-ORB related status write, not handled\n");
 430		fw_send_response(card, request, RCODE_COMPLETE);
 431		return;
 432	}
 433
 434	/* Lookup the orb corresponding to this status write. */
 435	spin_lock_irqsave(&lu->tgt->lock, flags);
 436	list_for_each_entry(orb, &lu->orb_list, link) {
 437		if (STATUS_GET_ORB_HIGH(status) == 0 &&
 438		    STATUS_GET_ORB_LOW(status) == orb->request_bus) {
 439			orb->rcode = RCODE_COMPLETE;
 440			list_del(&orb->link);
 
 441			break;
 442		}
 443	}
 444	spin_unlock_irqrestore(&lu->tgt->lock, flags);
 445
 446	if (&orb->link != &lu->orb_list) {
 447		orb->callback(orb, &status);
 448		kref_put(&orb->kref, free_orb); /* orb callback reference */
 449	} else {
 450		dev_err(lu_dev(lu), "status write for unknown ORB\n");
 451	}
 452
 453	fw_send_response(card, request, RCODE_COMPLETE);
 454}
 455
 456static void complete_transaction(struct fw_card *card, int rcode,
 457				 void *payload, size_t length, void *data)
 458{
 459	struct sbp2_orb *orb = data;
 460	unsigned long flags;
 461
 462	/*
 463	 * This is a little tricky.  We can get the status write for
 464	 * the orb before we get this callback.  The status write
 465	 * handler above will assume the orb pointer transaction was
 466	 * successful and set the rcode to RCODE_COMPLETE for the orb.
 467	 * So this callback only sets the rcode if it hasn't already
 468	 * been set and only does the cleanup if the transaction
 469	 * failed and we didn't already get a status write.
 470	 */
 471	spin_lock_irqsave(&orb->lu->tgt->lock, flags);
 472
 473	if (orb->rcode == -1)
 474		orb->rcode = rcode;
 475	if (orb->rcode != RCODE_COMPLETE) {
 476		list_del(&orb->link);
 477		spin_unlock_irqrestore(&orb->lu->tgt->lock, flags);
 478
 479		orb->callback(orb, NULL);
 480		kref_put(&orb->kref, free_orb); /* orb callback reference */
 481	} else {
 482		spin_unlock_irqrestore(&orb->lu->tgt->lock, flags);
 483	}
 484
 485	kref_put(&orb->kref, free_orb); /* transaction callback reference */
 486}
 487
 488static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
 489			  int node_id, int generation, u64 offset)
 490{
 491	struct fw_device *device = target_parent_device(lu->tgt);
 492	struct sbp2_pointer orb_pointer;
 493	unsigned long flags;
 494
 495	orb_pointer.high = 0;
 496	orb_pointer.low = cpu_to_be32(orb->request_bus);
 497
 498	orb->lu = lu;
 499	spin_lock_irqsave(&lu->tgt->lock, flags);
 500	list_add_tail(&orb->link, &lu->orb_list);
 501	spin_unlock_irqrestore(&lu->tgt->lock, flags);
 502
 503	kref_get(&orb->kref); /* transaction callback reference */
 504	kref_get(&orb->kref); /* orb callback reference */
 505
 506	fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
 507			node_id, generation, device->max_speed, offset,
 508			&orb_pointer, 8, complete_transaction, orb);
 509}
 510
 511static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
 512{
 513	struct fw_device *device = target_parent_device(lu->tgt);
 514	struct sbp2_orb *orb, *next;
 515	struct list_head list;
 516	int retval = -ENOENT;
 517
 518	INIT_LIST_HEAD(&list);
 519	spin_lock_irq(&lu->tgt->lock);
 520	list_splice_init(&lu->orb_list, &list);
 521	spin_unlock_irq(&lu->tgt->lock);
 522
 523	list_for_each_entry_safe(orb, next, &list, link) {
 524		retval = 0;
 525		if (fw_cancel_transaction(device->card, &orb->t) == 0)
 526			continue;
 527
 528		orb->rcode = RCODE_CANCELLED;
 529		orb->callback(orb, NULL);
 530		kref_put(&orb->kref, free_orb); /* orb callback reference */
 531	}
 532
 533	return retval;
 534}
 535
 536static void complete_management_orb(struct sbp2_orb *base_orb,
 537				    struct sbp2_status *status)
 538{
 539	struct sbp2_management_orb *orb =
 540		container_of(base_orb, struct sbp2_management_orb, base);
 541
 542	if (status)
 543		memcpy(&orb->status, status, sizeof(*status));
 544	complete(&orb->done);
 545}
 546
 547static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
 548				    int generation, int function,
 549				    int lun_or_login_id, void *response)
 550{
 551	struct fw_device *device = target_parent_device(lu->tgt);
 552	struct sbp2_management_orb *orb;
 553	unsigned int timeout;
 554	int retval = -ENOMEM;
 555
 556	if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
 557		return 0;
 558
 559	orb = kzalloc(sizeof(*orb), GFP_NOIO);
 560	if (orb == NULL)
 561		return -ENOMEM;
 562
 563	kref_init(&orb->base.kref);
 564	orb->response_bus =
 565		dma_map_single(device->card->device, &orb->response,
 566			       sizeof(orb->response), DMA_FROM_DEVICE);
 567	if (dma_mapping_error(device->card->device, orb->response_bus))
 568		goto fail_mapping_response;
 569
 570	orb->request.response.high = 0;
 571	orb->request.response.low  = cpu_to_be32(orb->response_bus);
 572
 573	orb->request.misc = cpu_to_be32(
 574		MANAGEMENT_ORB_NOTIFY |
 575		MANAGEMENT_ORB_FUNCTION(function) |
 576		MANAGEMENT_ORB_LUN(lun_or_login_id));
 577	orb->request.length = cpu_to_be32(
 578		MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
 579
 580	orb->request.status_fifo.high =
 581		cpu_to_be32(lu->address_handler.offset >> 32);
 582	orb->request.status_fifo.low  =
 583		cpu_to_be32(lu->address_handler.offset);
 584
 585	if (function == SBP2_LOGIN_REQUEST) {
 586		/* Ask for 2^2 == 4 seconds reconnect grace period */
 587		orb->request.misc |= cpu_to_be32(
 588			MANAGEMENT_ORB_RECONNECT(2) |
 589			MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
 590		timeout = lu->tgt->mgt_orb_timeout;
 591	} else {
 592		timeout = SBP2_ORB_TIMEOUT;
 593	}
 594
 595	init_completion(&orb->done);
 596	orb->base.callback = complete_management_orb;
 597
 598	orb->base.request_bus =
 599		dma_map_single(device->card->device, &orb->request,
 600			       sizeof(orb->request), DMA_TO_DEVICE);
 601	if (dma_mapping_error(device->card->device, orb->base.request_bus))
 602		goto fail_mapping_request;
 603
 604	sbp2_send_orb(&orb->base, lu, node_id, generation,
 605		      lu->tgt->management_agent_address);
 606
 607	wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
 608
 609	retval = -EIO;
 610	if (sbp2_cancel_orbs(lu) == 0) {
 611		dev_err(lu_dev(lu), "ORB reply timed out, rcode 0x%02x\n",
 612			orb->base.rcode);
 613		goto out;
 614	}
 615
 616	if (orb->base.rcode != RCODE_COMPLETE) {
 617		dev_err(lu_dev(lu), "management write failed, rcode 0x%02x\n",
 618			orb->base.rcode);
 619		goto out;
 620	}
 621
 622	if (STATUS_GET_RESPONSE(orb->status) != 0 ||
 623	    STATUS_GET_SBP_STATUS(orb->status) != 0) {
 624		dev_err(lu_dev(lu), "error status: %d:%d\n",
 625			 STATUS_GET_RESPONSE(orb->status),
 626			 STATUS_GET_SBP_STATUS(orb->status));
 627		goto out;
 628	}
 629
 630	retval = 0;
 631 out:
 632	dma_unmap_single(device->card->device, orb->base.request_bus,
 633			 sizeof(orb->request), DMA_TO_DEVICE);
 634 fail_mapping_request:
 635	dma_unmap_single(device->card->device, orb->response_bus,
 636			 sizeof(orb->response), DMA_FROM_DEVICE);
 637 fail_mapping_response:
 638	if (response)
 639		memcpy(response, orb->response, sizeof(orb->response));
 640	kref_put(&orb->base.kref, free_orb);
 641
 642	return retval;
 643}
 644
 645static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
 646{
 647	struct fw_device *device = target_parent_device(lu->tgt);
 648	__be32 d = 0;
 649
 650	fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
 651			   lu->tgt->node_id, lu->generation, device->max_speed,
 652			   lu->command_block_agent_address + SBP2_AGENT_RESET,
 653			   &d, 4);
 654}
 655
 656static void complete_agent_reset_write_no_wait(struct fw_card *card,
 657		int rcode, void *payload, size_t length, void *data)
 658{
 659	kfree(data);
 660}
 661
 662static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
 663{
 664	struct fw_device *device = target_parent_device(lu->tgt);
 665	struct fw_transaction *t;
 666	static __be32 d;
 667
 668	t = kmalloc(sizeof(*t), GFP_ATOMIC);
 669	if (t == NULL)
 670		return;
 671
 672	fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
 673			lu->tgt->node_id, lu->generation, device->max_speed,
 674			lu->command_block_agent_address + SBP2_AGENT_RESET,
 675			&d, 4, complete_agent_reset_write_no_wait, t);
 676}
 677
 678static inline void sbp2_allow_block(struct sbp2_target *tgt)
 679{
 680	spin_lock_irq(&tgt->lock);
 681	--tgt->dont_block;
 682	spin_unlock_irq(&tgt->lock);
 683}
 684
 685/*
 686 * Blocks lu->tgt if all of the following conditions are met:
 687 *   - Login, INQUIRY, and high-level SCSI setup of all of the target's
 688 *     logical units have been finished (indicated by dont_block == 0).
 689 *   - lu->generation is stale.
 690 *
 691 * Note, scsi_block_requests() must be called while holding tgt->lock,
 692 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
 693 * unblock the target.
 694 */
 695static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
 696{
 697	struct sbp2_target *tgt = lu->tgt;
 698	struct fw_card *card = target_parent_device(tgt)->card;
 699	struct Scsi_Host *shost =
 700		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
 701	unsigned long flags;
 702
 703	spin_lock_irqsave(&tgt->lock, flags);
 704	if (!tgt->dont_block && !lu->blocked &&
 705	    lu->generation != card->generation) {
 706		lu->blocked = true;
 707		if (++tgt->blocked == 1)
 708			scsi_block_requests(shost);
 709	}
 710	spin_unlock_irqrestore(&tgt->lock, flags);
 711}
 712
 713/*
 714 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
 715 * Note, it is harmless to run scsi_unblock_requests() outside the
 716 * tgt->lock protected section.  On the other hand, running it inside
 717 * the section might clash with shost->host_lock.
 718 */
 719static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
 720{
 721	struct sbp2_target *tgt = lu->tgt;
 722	struct fw_card *card = target_parent_device(tgt)->card;
 723	struct Scsi_Host *shost =
 724		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
 725	bool unblock = false;
 726
 727	spin_lock_irq(&tgt->lock);
 728	if (lu->blocked && lu->generation == card->generation) {
 729		lu->blocked = false;
 730		unblock = --tgt->blocked == 0;
 731	}
 732	spin_unlock_irq(&tgt->lock);
 733
 734	if (unblock)
 735		scsi_unblock_requests(shost);
 736}
 737
 738/*
 739 * Prevents future blocking of tgt and unblocks it.
 740 * Note, it is harmless to run scsi_unblock_requests() outside the
 741 * tgt->lock protected section.  On the other hand, running it inside
 742 * the section might clash with shost->host_lock.
 743 */
 744static void sbp2_unblock(struct sbp2_target *tgt)
 745{
 746	struct Scsi_Host *shost =
 747		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
 748
 749	spin_lock_irq(&tgt->lock);
 750	++tgt->dont_block;
 751	spin_unlock_irq(&tgt->lock);
 752
 753	scsi_unblock_requests(shost);
 754}
 755
 756static int sbp2_lun2int(u16 lun)
 757{
 758	struct scsi_lun eight_bytes_lun;
 759
 760	memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
 761	eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
 762	eight_bytes_lun.scsi_lun[1] = lun & 0xff;
 763
 764	return scsilun_to_int(&eight_bytes_lun);
 765}
 766
 767/*
 768 * Write retransmit retry values into the BUSY_TIMEOUT register.
 769 * - The single-phase retry protocol is supported by all SBP-2 devices, but the
 770 *   default retry_limit value is 0 (i.e. never retry transmission). We write a
 771 *   saner value after logging into the device.
 772 * - The dual-phase retry protocol is optional to implement, and if not
 773 *   supported, writes to the dual-phase portion of the register will be
 774 *   ignored. We try to write the original 1394-1995 default here.
 775 * - In the case of devices that are also SBP-3-compliant, all writes are
 776 *   ignored, as the register is read-only, but contains single-phase retry of
 777 *   15, which is what we're trying to set for all SBP-2 device anyway, so this
 778 *   write attempt is safe and yields more consistent behavior for all devices.
 779 *
 780 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
 781 * and section 6.4 of the SBP-3 spec for further details.
 782 */
 783static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
 784{
 785	struct fw_device *device = target_parent_device(lu->tgt);
 786	__be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
 787
 788	fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
 789			   lu->tgt->node_id, lu->generation, device->max_speed,
 790			   CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4);
 791}
 792
 793static void sbp2_reconnect(struct work_struct *work);
 794
 795static void sbp2_login(struct work_struct *work)
 796{
 797	struct sbp2_logical_unit *lu =
 798		container_of(work, struct sbp2_logical_unit, work.work);
 799	struct sbp2_target *tgt = lu->tgt;
 800	struct fw_device *device = target_parent_device(tgt);
 801	struct Scsi_Host *shost;
 802	struct scsi_device *sdev;
 803	struct sbp2_login_response response;
 804	int generation, node_id, local_node_id;
 805
 806	if (fw_device_is_shutdown(device))
 807		return;
 808
 809	generation    = device->generation;
 810	smp_rmb();    /* node IDs must not be older than generation */
 811	node_id       = device->node_id;
 812	local_node_id = device->card->node_id;
 813
 814	/* If this is a re-login attempt, log out, or we might be rejected. */
 815	if (lu->has_sdev)
 816		sbp2_send_management_orb(lu, device->node_id, generation,
 817				SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
 818
 819	if (sbp2_send_management_orb(lu, node_id, generation,
 820				SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
 821		if (lu->retries++ < 5) {
 822			sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
 823		} else {
 824			dev_err(tgt_dev(tgt), "failed to login to LUN %04x\n",
 825				lu->lun);
 826			/* Let any waiting I/O fail from now on. */
 827			sbp2_unblock(lu->tgt);
 828		}
 829		return;
 830	}
 831
 832	tgt->node_id	  = node_id;
 833	tgt->address_high = local_node_id << 16;
 834	smp_wmb();	  /* node IDs must not be older than generation */
 835	lu->generation	  = generation;
 836
 837	lu->command_block_agent_address =
 838		((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
 839		      << 32) | be32_to_cpu(response.command_block_agent.low);
 840	lu->login_id = be32_to_cpu(response.misc) & 0xffff;
 841
 842	dev_notice(tgt_dev(tgt), "logged in to LUN %04x (%d retries)\n",
 843		   lu->lun, lu->retries);
 844
 845	/* set appropriate retry limit(s) in BUSY_TIMEOUT register */
 846	sbp2_set_busy_timeout(lu);
 847
 848	lu->workfn = sbp2_reconnect;
 849	sbp2_agent_reset(lu);
 850
 851	/* This was a re-login. */
 852	if (lu->has_sdev) {
 853		sbp2_cancel_orbs(lu);
 854		sbp2_conditionally_unblock(lu);
 855
 856		return;
 857	}
 858
 859	if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
 860		ssleep(SBP2_INQUIRY_DELAY);
 861
 862	shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
 863	sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
 864	/*
 865	 * FIXME:  We are unable to perform reconnects while in sbp2_login().
 866	 * Therefore __scsi_add_device() will get into trouble if a bus reset
 867	 * happens in parallel.  It will either fail or leave us with an
 868	 * unusable sdev.  As a workaround we check for this and retry the
 869	 * whole login and SCSI probing.
 870	 */
 871
 872	/* Reported error during __scsi_add_device() */
 873	if (IS_ERR(sdev))
 874		goto out_logout_login;
 875
 876	/* Unreported error during __scsi_add_device() */
 877	smp_rmb(); /* get current card generation */
 878	if (generation != device->card->generation) {
 879		scsi_remove_device(sdev);
 880		scsi_device_put(sdev);
 881		goto out_logout_login;
 882	}
 883
 884	/* No error during __scsi_add_device() */
 885	lu->has_sdev = true;
 886	scsi_device_put(sdev);
 887	sbp2_allow_block(tgt);
 888
 889	return;
 890
 891 out_logout_login:
 892	smp_rmb(); /* generation may have changed */
 893	generation = device->generation;
 894	smp_rmb(); /* node_id must not be older than generation */
 895
 896	sbp2_send_management_orb(lu, device->node_id, generation,
 897				 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
 898	/*
 899	 * If a bus reset happened, sbp2_update will have requeued
 900	 * lu->work already.  Reset the work from reconnect to login.
 901	 */
 902	lu->workfn = sbp2_login;
 903}
 904
 905static void sbp2_reconnect(struct work_struct *work)
 906{
 907	struct sbp2_logical_unit *lu =
 908		container_of(work, struct sbp2_logical_unit, work.work);
 909	struct sbp2_target *tgt = lu->tgt;
 910	struct fw_device *device = target_parent_device(tgt);
 911	int generation, node_id, local_node_id;
 912
 913	if (fw_device_is_shutdown(device))
 914		return;
 915
 916	generation    = device->generation;
 917	smp_rmb();    /* node IDs must not be older than generation */
 918	node_id       = device->node_id;
 919	local_node_id = device->card->node_id;
 920
 921	if (sbp2_send_management_orb(lu, node_id, generation,
 922				     SBP2_RECONNECT_REQUEST,
 923				     lu->login_id, NULL) < 0) {
 924		/*
 925		 * If reconnect was impossible even though we are in the
 926		 * current generation, fall back and try to log in again.
 927		 *
 928		 * We could check for "Function rejected" status, but
 929		 * looking at the bus generation as simpler and more general.
 930		 */
 931		smp_rmb(); /* get current card generation */
 932		if (generation == device->card->generation ||
 933		    lu->retries++ >= 5) {
 934			dev_err(tgt_dev(tgt), "failed to reconnect\n");
 935			lu->retries = 0;
 936			lu->workfn = sbp2_login;
 937		}
 938		sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
 939
 940		return;
 941	}
 942
 943	tgt->node_id      = node_id;
 944	tgt->address_high = local_node_id << 16;
 945	smp_wmb();	  /* node IDs must not be older than generation */
 946	lu->generation	  = generation;
 947
 948	dev_notice(tgt_dev(tgt), "reconnected to LUN %04x (%d retries)\n",
 949		   lu->lun, lu->retries);
 950
 951	sbp2_agent_reset(lu);
 952	sbp2_cancel_orbs(lu);
 953	sbp2_conditionally_unblock(lu);
 954}
 955
 956static void sbp2_lu_workfn(struct work_struct *work)
 957{
 958	struct sbp2_logical_unit *lu = container_of(to_delayed_work(work),
 959						struct sbp2_logical_unit, work);
 960	lu->workfn(work);
 961}
 962
 963static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
 964{
 965	struct sbp2_logical_unit *lu;
 966
 967	lu = kmalloc(sizeof(*lu), GFP_KERNEL);
 968	if (!lu)
 969		return -ENOMEM;
 970
 971	lu->address_handler.length           = 0x100;
 972	lu->address_handler.address_callback = sbp2_status_write;
 973	lu->address_handler.callback_data    = lu;
 974
 975	if (fw_core_add_address_handler(&lu->address_handler,
 976					&fw_high_memory_region) < 0) {
 977		kfree(lu);
 978		return -ENOMEM;
 979	}
 980
 981	lu->tgt      = tgt;
 982	lu->lun      = lun_entry & 0xffff;
 983	lu->login_id = INVALID_LOGIN_ID;
 984	lu->retries  = 0;
 985	lu->has_sdev = false;
 986	lu->blocked  = false;
 987	++tgt->dont_block;
 988	INIT_LIST_HEAD(&lu->orb_list);
 989	lu->workfn = sbp2_login;
 990	INIT_DELAYED_WORK(&lu->work, sbp2_lu_workfn);
 991
 992	list_add_tail(&lu->link, &tgt->lu_list);
 993	return 0;
 994}
 995
 996static void sbp2_get_unit_unique_id(struct sbp2_target *tgt,
 997				    const u32 *leaf)
 998{
 999	if ((leaf[0] & 0xffff0000) == 0x00020000)
1000		tgt->guid = (u64)leaf[1] << 32 | leaf[2];
1001}
1002
1003static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt,
1004				      const u32 *directory)
1005{
1006	struct fw_csr_iterator ci;
1007	int key, value;
1008
1009	fw_csr_iterator_init(&ci, directory);
1010	while (fw_csr_iterator_next(&ci, &key, &value))
1011		if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1012		    sbp2_add_logical_unit(tgt, value) < 0)
1013			return -ENOMEM;
1014	return 0;
1015}
1016
1017static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory,
1018			      u32 *model, u32 *firmware_revision)
1019{
1020	struct fw_csr_iterator ci;
1021	int key, value;
1022
1023	fw_csr_iterator_init(&ci, directory);
1024	while (fw_csr_iterator_next(&ci, &key, &value)) {
1025		switch (key) {
1026
1027		case CSR_DEPENDENT_INFO | CSR_OFFSET:
1028			tgt->management_agent_address =
1029					CSR_REGISTER_BASE + 4 * value;
1030			break;
1031
1032		case CSR_DIRECTORY_ID:
1033			tgt->directory_id = value;
1034			break;
1035
1036		case CSR_MODEL:
1037			*model = value;
1038			break;
1039
1040		case SBP2_CSR_FIRMWARE_REVISION:
1041			*firmware_revision = value;
1042			break;
1043
1044		case SBP2_CSR_UNIT_CHARACTERISTICS:
1045			/* the timeout value is stored in 500ms units */
1046			tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500;
1047			break;
1048
1049		case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1050			if (sbp2_add_logical_unit(tgt, value) < 0)
1051				return -ENOMEM;
1052			break;
1053
1054		case SBP2_CSR_UNIT_UNIQUE_ID:
1055			sbp2_get_unit_unique_id(tgt, ci.p - 1 + value);
1056			break;
1057
1058		case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1059			/* Adjust for the increment in the iterator */
1060			if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1061				return -ENOMEM;
1062			break;
1063		}
1064	}
1065	return 0;
1066}
1067
1068/*
1069 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
1070 * provided in the config rom. Most devices do provide a value, which
1071 * we'll use for login management orbs, but with some sane limits.
1072 */
1073static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt)
1074{
1075	unsigned int timeout = tgt->mgt_orb_timeout;
1076
1077	if (timeout > 40000)
1078		dev_notice(tgt_dev(tgt), "%ds mgt_ORB_timeout limited to 40s\n",
1079			   timeout / 1000);
1080
1081	tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000);
1082}
1083
1084static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1085				  u32 firmware_revision)
1086{
1087	int i;
1088	unsigned int w = sbp2_param_workarounds;
1089
1090	if (w)
1091		dev_notice(tgt_dev(tgt),
1092			   "Please notify linux1394-devel@lists.sf.net "
1093			   "if you need the workarounds parameter\n");
1094
1095	if (w & SBP2_WORKAROUND_OVERRIDE)
1096		goto out;
1097
1098	for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1099
1100		if (sbp2_workarounds_table[i].firmware_revision !=
1101		    (firmware_revision & 0xffffff00))
1102			continue;
1103
1104		if (sbp2_workarounds_table[i].model != model &&
1105		    sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1106			continue;
1107
1108		w |= sbp2_workarounds_table[i].workarounds;
1109		break;
1110	}
1111 out:
1112	if (w)
1113		dev_notice(tgt_dev(tgt), "workarounds 0x%x "
1114			   "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1115			   w, firmware_revision, model);
1116	tgt->workarounds = w;
1117}
1118
1119static struct scsi_host_template scsi_driver_template;
1120static void sbp2_remove(struct fw_unit *unit);
1121
1122static int sbp2_probe(struct fw_unit *unit, const struct ieee1394_device_id *id)
1123{
1124	struct fw_device *device = fw_parent_device(unit);
1125	struct sbp2_target *tgt;
1126	struct sbp2_logical_unit *lu;
1127	struct Scsi_Host *shost;
1128	u32 model, firmware_revision;
1129
1130	/* cannot (or should not) handle targets on the local node */
1131	if (device->is_local)
1132		return -ENODEV;
1133
1134	shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1135	if (shost == NULL)
1136		return -ENOMEM;
1137
1138	tgt = (struct sbp2_target *)shost->hostdata;
1139	dev_set_drvdata(&unit->device, tgt);
1140	tgt->unit = unit;
1141	INIT_LIST_HEAD(&tgt->lu_list);
1142	spin_lock_init(&tgt->lock);
1143	tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1144
1145	if (fw_device_enable_phys_dma(device) < 0)
1146		goto fail_shost_put;
1147
1148	shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
1149
1150	if (scsi_add_host_with_dma(shost, &unit->device,
1151				   device->card->device) < 0)
1152		goto fail_shost_put;
1153
1154	/* implicit directory ID */
1155	tgt->directory_id = ((unit->directory - device->config_rom) * 4
1156			     + CSR_CONFIG_ROM) & 0xffffff;
1157
1158	firmware_revision = SBP2_ROM_VALUE_MISSING;
1159	model		  = SBP2_ROM_VALUE_MISSING;
1160
1161	if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1162			       &firmware_revision) < 0)
1163		goto fail_remove;
1164
1165	sbp2_clamp_management_orb_timeout(tgt);
1166	sbp2_init_workarounds(tgt, model, firmware_revision);
1167
1168	/*
1169	 * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1170	 * and so on up to 4096 bytes.  The SBP-2 max_payload field
1171	 * specifies the max payload size as 2 ^ (max_payload + 2), so
1172	 * if we set this to max_speed + 7, we get the right value.
1173	 */
1174	tgt->max_payload = min3(device->max_speed + 7, 10U,
1175				device->card->max_receive - 1);
1176
1177	/* Do the login in a workqueue so we can easily reschedule retries. */
1178	list_for_each_entry(lu, &tgt->lu_list, link)
1179		sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1180
1181	return 0;
1182
1183 fail_remove:
1184	sbp2_remove(unit);
1185	return -ENOMEM;
1186
1187 fail_shost_put:
1188	scsi_host_put(shost);
1189	return -ENOMEM;
1190}
1191
1192static void sbp2_update(struct fw_unit *unit)
1193{
1194	struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1195	struct sbp2_logical_unit *lu;
1196
1197	fw_device_enable_phys_dma(fw_parent_device(unit));
1198
1199	/*
1200	 * Fw-core serializes sbp2_update() against sbp2_remove().
1201	 * Iteration over tgt->lu_list is therefore safe here.
1202	 */
1203	list_for_each_entry(lu, &tgt->lu_list, link) {
1204		sbp2_conditionally_block(lu);
1205		lu->retries = 0;
1206		sbp2_queue_work(lu, 0);
1207	}
1208}
1209
1210static void sbp2_remove(struct fw_unit *unit)
1211{
1212	struct fw_device *device = fw_parent_device(unit);
1213	struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1214	struct sbp2_logical_unit *lu, *next;
1215	struct Scsi_Host *shost =
1216		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
1217	struct scsi_device *sdev;
1218
1219	/* prevent deadlocks */
1220	sbp2_unblock(tgt);
1221
1222	list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
1223		cancel_delayed_work_sync(&lu->work);
1224		sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
1225		if (sdev) {
1226			scsi_remove_device(sdev);
1227			scsi_device_put(sdev);
1228		}
1229		if (lu->login_id != INVALID_LOGIN_ID) {
1230			int generation, node_id;
1231			/*
1232			 * tgt->node_id may be obsolete here if we failed
1233			 * during initial login or after a bus reset where
1234			 * the topology changed.
1235			 */
1236			generation = device->generation;
1237			smp_rmb(); /* node_id vs. generation */
1238			node_id    = device->node_id;
1239			sbp2_send_management_orb(lu, node_id, generation,
1240						 SBP2_LOGOUT_REQUEST,
1241						 lu->login_id, NULL);
1242		}
1243		fw_core_remove_address_handler(&lu->address_handler);
1244		list_del(&lu->link);
1245		kfree(lu);
1246	}
1247	scsi_remove_host(shost);
1248	dev_notice(&unit->device, "released target %d:0:0\n", shost->host_no);
1249
1250	scsi_host_put(shost);
1251}
1252
1253#define SBP2_UNIT_SPEC_ID_ENTRY	0x0000609e
1254#define SBP2_SW_VERSION_ENTRY	0x00010483
1255
1256static const struct ieee1394_device_id sbp2_id_table[] = {
1257	{
1258		.match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1259				IEEE1394_MATCH_VERSION,
1260		.specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1261		.version      = SBP2_SW_VERSION_ENTRY,
1262	},
1263	{ }
1264};
1265
1266static struct fw_driver sbp2_driver = {
1267	.driver   = {
1268		.owner  = THIS_MODULE,
1269		.name   = KBUILD_MODNAME,
1270		.bus    = &fw_bus_type,
1271	},
1272	.probe    = sbp2_probe,
1273	.update   = sbp2_update,
1274	.remove   = sbp2_remove,
1275	.id_table = sbp2_id_table,
1276};
1277
1278static void sbp2_unmap_scatterlist(struct device *card_device,
1279				   struct sbp2_command_orb *orb)
1280{
1281	scsi_dma_unmap(orb->cmd);
1282
1283	if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
1284		dma_unmap_single(card_device, orb->page_table_bus,
1285				 sizeof(orb->page_table), DMA_TO_DEVICE);
1286}
1287
1288static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1289{
1290	int sam_status;
1291	int sfmt = (sbp2_status[0] >> 6) & 0x03;
1292
1293	if (sfmt == 2 || sfmt == 3) {
1294		/*
1295		 * Reserved for future standardization (2) or
1296		 * Status block format vendor-dependent (3)
1297		 */
1298		return DID_ERROR << 16;
1299	}
1300
1301	sense_data[0] = 0x70 | sfmt | (sbp2_status[1] & 0x80);
1302	sense_data[1] = 0x0;
1303	sense_data[2] = ((sbp2_status[1] << 1) & 0xe0) | (sbp2_status[1] & 0x0f);
1304	sense_data[3] = sbp2_status[4];
1305	sense_data[4] = sbp2_status[5];
1306	sense_data[5] = sbp2_status[6];
1307	sense_data[6] = sbp2_status[7];
1308	sense_data[7] = 10;
1309	sense_data[8] = sbp2_status[8];
1310	sense_data[9] = sbp2_status[9];
1311	sense_data[10] = sbp2_status[10];
1312	sense_data[11] = sbp2_status[11];
1313	sense_data[12] = sbp2_status[2];
1314	sense_data[13] = sbp2_status[3];
1315	sense_data[14] = sbp2_status[12];
1316	sense_data[15] = sbp2_status[13];
1317
1318	sam_status = sbp2_status[0] & 0x3f;
1319
1320	switch (sam_status) {
1321	case SAM_STAT_GOOD:
1322	case SAM_STAT_CHECK_CONDITION:
1323	case SAM_STAT_CONDITION_MET:
1324	case SAM_STAT_BUSY:
1325	case SAM_STAT_RESERVATION_CONFLICT:
1326	case SAM_STAT_COMMAND_TERMINATED:
1327		return DID_OK << 16 | sam_status;
1328
1329	default:
1330		return DID_ERROR << 16;
1331	}
1332}
1333
1334static void complete_command_orb(struct sbp2_orb *base_orb,
1335				 struct sbp2_status *status)
1336{
1337	struct sbp2_command_orb *orb =
1338		container_of(base_orb, struct sbp2_command_orb, base);
1339	struct fw_device *device = target_parent_device(base_orb->lu->tgt);
1340	int result;
1341
1342	if (status != NULL) {
1343		if (STATUS_GET_DEAD(*status))
1344			sbp2_agent_reset_no_wait(base_orb->lu);
1345
1346		switch (STATUS_GET_RESPONSE(*status)) {
1347		case SBP2_STATUS_REQUEST_COMPLETE:
1348			result = DID_OK << 16;
1349			break;
1350		case SBP2_STATUS_TRANSPORT_FAILURE:
1351			result = DID_BUS_BUSY << 16;
1352			break;
1353		case SBP2_STATUS_ILLEGAL_REQUEST:
1354		case SBP2_STATUS_VENDOR_DEPENDENT:
1355		default:
1356			result = DID_ERROR << 16;
1357			break;
1358		}
1359
1360		if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1361			result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1362							   orb->cmd->sense_buffer);
1363	} else {
1364		/*
1365		 * If the orb completes with status == NULL, something
1366		 * went wrong, typically a bus reset happened mid-orb
1367		 * or when sending the write (less likely).
1368		 */
1369		result = DID_BUS_BUSY << 16;
1370		sbp2_conditionally_block(base_orb->lu);
1371	}
1372
1373	dma_unmap_single(device->card->device, orb->base.request_bus,
1374			 sizeof(orb->request), DMA_TO_DEVICE);
1375	sbp2_unmap_scatterlist(device->card->device, orb);
1376
1377	orb->cmd->result = result;
1378	orb->cmd->scsi_done(orb->cmd);
1379}
1380
1381static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
1382		struct fw_device *device, struct sbp2_logical_unit *lu)
1383{
1384	struct scatterlist *sg = scsi_sglist(orb->cmd);
1385	int i, n;
1386
1387	n = scsi_dma_map(orb->cmd);
1388	if (n <= 0)
1389		goto fail;
1390
1391	/*
1392	 * Handle the special case where there is only one element in
1393	 * the scatter list by converting it to an immediate block
1394	 * request. This is also a workaround for broken devices such
1395	 * as the second generation iPod which doesn't support page
1396	 * tables.
1397	 */
1398	if (n == 1) {
1399		orb->request.data_descriptor.high =
1400			cpu_to_be32(lu->tgt->address_high);
1401		orb->request.data_descriptor.low  =
1402			cpu_to_be32(sg_dma_address(sg));
1403		orb->request.misc |=
1404			cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1405		return 0;
1406	}
1407
1408	for_each_sg(sg, sg, n, i) {
1409		orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1410		orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1411	}
1412
1413	orb->page_table_bus =
1414		dma_map_single(device->card->device, orb->page_table,
1415			       sizeof(orb->page_table), DMA_TO_DEVICE);
1416	if (dma_mapping_error(device->card->device, orb->page_table_bus))
1417		goto fail_page_table;
1418
1419	/*
1420	 * The data_descriptor pointer is the one case where we need
1421	 * to fill in the node ID part of the address.  All other
1422	 * pointers assume that the data referenced reside on the
1423	 * initiator (i.e. us), but data_descriptor can refer to data
1424	 * on other nodes so we need to put our ID in descriptor.high.
1425	 */
1426	orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1427	orb->request.data_descriptor.low  = cpu_to_be32(orb->page_table_bus);
1428	orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1429					 COMMAND_ORB_DATA_SIZE(n));
1430
1431	return 0;
1432
1433 fail_page_table:
1434	scsi_dma_unmap(orb->cmd);
1435 fail:
1436	return -ENOMEM;
1437}
1438
1439/* SCSI stack integration */
1440
1441static int sbp2_scsi_queuecommand(struct Scsi_Host *shost,
1442				  struct scsi_cmnd *cmd)
1443{
1444	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1445	struct fw_device *device = target_parent_device(lu->tgt);
1446	struct sbp2_command_orb *orb;
1447	int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1448
1449	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1450	if (orb == NULL)
1451		return SCSI_MLQUEUE_HOST_BUSY;
1452
1453	/* Initialize rcode to something not RCODE_COMPLETE. */
1454	orb->base.rcode = -1;
1455	kref_init(&orb->base.kref);
1456	orb->cmd = cmd;
1457	orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1458	orb->request.misc = cpu_to_be32(
1459		COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1460		COMMAND_ORB_SPEED(device->max_speed) |
1461		COMMAND_ORB_NOTIFY);
1462
1463	if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1464		orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1465
1466	generation = device->generation;
1467	smp_rmb();    /* sbp2_map_scatterlist looks at tgt->address_high */
1468
1469	if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1470		goto out;
1471
1472	memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1473
1474	orb->base.callback = complete_command_orb;
1475	orb->base.request_bus =
1476		dma_map_single(device->card->device, &orb->request,
1477			       sizeof(orb->request), DMA_TO_DEVICE);
1478	if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1479		sbp2_unmap_scatterlist(device->card->device, orb);
1480		goto out;
1481	}
1482
1483	sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1484		      lu->command_block_agent_address + SBP2_ORB_POINTER);
1485	retval = 0;
1486 out:
1487	kref_put(&orb->base.kref, free_orb);
1488	return retval;
1489}
1490
1491static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1492{
1493	struct sbp2_logical_unit *lu = sdev->hostdata;
1494
1495	/* (Re-)Adding logical units via the SCSI stack is not supported. */
1496	if (!lu)
1497		return -ENOSYS;
1498
1499	sdev->allow_restart = 1;
1500
1501	/*
1502	 * SBP-2 does not require any alignment, but we set it anyway
1503	 * for compatibility with earlier versions of this driver.
1504	 */
1505	blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1506
1507	if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1508		sdev->inquiry_len = 36;
1509
1510	return 0;
1511}
1512
1513static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
 
1514{
1515	struct sbp2_logical_unit *lu = sdev->hostdata;
1516
1517	sdev->use_10_for_rw = 1;
1518
1519	if (sbp2_param_exclusive_login)
1520		sdev->manage_start_stop = 1;
 
 
 
1521
1522	if (sdev->type == TYPE_ROM)
1523		sdev->use_10_for_ms = 1;
1524
1525	if (sdev->type == TYPE_DISK &&
1526	    lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1527		sdev->skip_ms_page_8 = 1;
1528
1529	if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1530		sdev->fix_capacity = 1;
1531
1532	if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1533		sdev->start_stop_pwr_cond = 1;
1534
1535	if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1536		blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512);
1537
1538	return 0;
1539}
1540
1541/*
1542 * Called by scsi stack when something has really gone wrong.  Usually
1543 * called when a command has timed-out for some reason.
1544 */
1545static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1546{
1547	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1548
1549	dev_notice(lu_dev(lu), "sbp2_scsi_abort\n");
1550	sbp2_agent_reset(lu);
1551	sbp2_cancel_orbs(lu);
1552
1553	return SUCCESS;
1554}
1555
1556/*
1557 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1558 * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1559 *
1560 * This is the concatenation of target port identifier and logical unit
1561 * identifier as per SAM-2...SAM-4 annex A.
1562 */
1563static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
1564			struct device_attribute *attr, char *buf)
1565{
1566	struct scsi_device *sdev = to_scsi_device(dev);
1567	struct sbp2_logical_unit *lu;
1568
1569	if (!sdev)
1570		return 0;
1571
1572	lu = sdev->hostdata;
1573
1574	return sprintf(buf, "%016llx:%06x:%04x\n",
1575			(unsigned long long)lu->tgt->guid,
1576			lu->tgt->directory_id, lu->lun);
1577}
1578
1579static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1580
1581static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1582	&dev_attr_ieee1394_id,
1583	NULL
1584};
1585
1586static struct scsi_host_template scsi_driver_template = {
 
 
1587	.module			= THIS_MODULE,
1588	.name			= "SBP-2 IEEE-1394",
1589	.proc_name		= "sbp2",
1590	.queuecommand		= sbp2_scsi_queuecommand,
1591	.slave_alloc		= sbp2_scsi_slave_alloc,
1592	.slave_configure	= sbp2_scsi_slave_configure,
1593	.eh_abort_handler	= sbp2_scsi_abort,
1594	.this_id		= -1,
1595	.sg_tablesize		= SG_ALL,
1596	.max_segment_size	= SBP2_MAX_SEG_SIZE,
1597	.can_queue		= 1,
1598	.sdev_attrs		= sbp2_scsi_sysfs_attrs,
1599};
1600
1601MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1602MODULE_DESCRIPTION("SCSI over IEEE1394");
1603MODULE_LICENSE("GPL");
1604MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1605
1606/* Provide a module alias so root-on-sbp2 initrds don't break. */
1607MODULE_ALIAS("sbp2");
1608
1609static int __init sbp2_init(void)
1610{
1611	return driver_register(&sbp2_driver.driver);
1612}
1613
1614static void __exit sbp2_cleanup(void)
1615{
1616	driver_unregister(&sbp2_driver.driver);
1617}
1618
1619module_init(sbp2_init);
1620module_exit(sbp2_cleanup);